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1 Introduction

Given an incidence structure S and a straight line drawing of S in the plane, one may
ask whether this drawing is the vertical projection of a spatial polyhedral scene. This
is a well studied question in Discrete Geometry which has some beautiful connections
to areas such as Geometric Rigidity Theory and Polytope Theory, see [5] for details.
Moreover, this problem has important applications in Artificial Intelligence, Computer
Vision and Robotics. In this paper we consider symmetric drawings and their vertical
lifting properties.

1.1 Basic definitions and results

A (polyhedral) incidence structure S is an abstract set of vertices V , an abstract set of
faces F , and a set of incidences I ⊆ V × F .

A (d − 1)-picture is an incidence structure S together with a corresponding location
map r : V → Rd−1, and is denoted by S(r). A d-scene S(p, P ) is an incidence structure
S = (V, F ; I) together with a pair of location maps, p : V → Rd, and P : F → Rd,
such that for each face Fj the vertices incident with Fj lie in a hyperplane. (Here P is an
assignment of normal vectors to the faces.) A lifting of a (d− 1)-picture S(r) is a d-scene
S(p, P ), with the vertical projection Π(p) = r.

A lifting S(p, P ) is trivial if all the faces lie in the same hyperplane. Further, S(p, P )
is folded (or non-trivial) if some pair of faces lie in different hyperplanes, and is sharp if
each pair of faces sharing a vertex lie in distinct hyperplanes. A picture is called sharp if
it has a sharp lifting. Moreover, a picture which has no non-trivial lifting is called flat (or
trivial). A picture with a non-trivial lifting is called foldable.

Theorem 1 (Picture Theorem) [4],[5] A generic (d−1)-picture of an incidence struc-
ture S = (V, F ; I) with at least two faces has a sharp lifting, unique up to lifting equivalence,
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if and only if |I| = |V |+ d|F | − (d+ 1) and |I ′| ≤ |V ′|+ d|F ′| − (d+ 1) for all subsets I ′

of incidences with at least two faces.
The lifting matrix of a generic (d − 1)-picture S has independent rows if and only if

for all non-empty subsets I ′ of incidences, we have |I ′| ≤ |V ′|+ d|F ′| − d.

1.2 Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F ; I) is a pair α = (π, σ), where π
is a permutation of V and σ is a permutation of F such that (v, f) ∈ I if and only if
(π(v), σ(f)) ∈ I for all v ∈ V and f ∈ F . For simplicity, we will write α(v) for π(v) and
α(f) for σ(f).

The automorphisms of S form a group under composition, denoted Aut(S). An action
of a group Γ on S is a group homomorphism θ : Γ → Aut(S). The incidence structure S
is called Γ-symmetric (with respect to θ) if there is such an action.

Let Γ be an abstract group, and let S be a Γ-symmetric incidence structure (with
respect to θ). Further, suppose there exists a group representation τ : Γ→ O(Rd−1). Then
we say that a picture S(r) is Γ-symmetric (with respect to θ and τ) if

τ(γ)(ri) = rθ(γ)(i) for all i ∈ V and all γ ∈ Γ. (1)

In this case we also say that τ(Γ) = {τ(γ)| γ ∈ Γ} is a symmetry group of S(r).
A symmetric picture is called τ(Γ)-generic if the vertex positions are ”as generic as

possible”, that is, the only correspondence among the coordinates of the vertices is implied
by the symmetry group τ(Γ).

2 Liftings with incidental symmetry

Now we summarise results regarding the effect of symmetry on the lifting properties of
(d − 1)-pictures. It was proven in [1] that the number of vertices, faces and incidences
fixed by the elements of Γ play a key role in the foldability of symmetric pictures. For
every symmetry group of the plane a necessary condition for minimal flatness was given.
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Figure 1: Some symmetric 2-pictures with
a (sharp) symmetry-induced lifting with
2-fold rotational, reflectional and dihedral
symmetry (where all interior regions are
faces). All of these structures are flat in a
generic non-symmetric position.

In the next two results C3 is the 3-fold rotational group and V3 and I3 denote the set
of vertices and incidences fixed by the 3-fold rotation, see [1] for a detailed definition.

Theorem 2 [2] A C3-symmetric incidence structure S = (V, F ; I) is C3-generically min-
imally flat if and only if |I| = |V | + 3|F | − 3, |I ′| ≤ |V ′| + 3|F ′| − 3 for every subset of
incidences |I ′| with at least one face and |I3(S)| = |V3(S)|.

Theorem 3 [2] Let S = (V, F, I) be a C3-symmetric incidence structure with |I ′| ≤ |V ′|+
3|F ′| − 4 for every substructure of S with at least two faces.
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1. If |V3(S)| = 0 then S is C3-generically sharp.

2. If |V3(S)| = |I3(S)| = 1 and |I ′| ≤ |V ′| + 3|F ′| − 6 holds for every C3-symmetric
substructure of S with at least two faces, then S is C3-generically sharp.

3 Liftings with forced symmetry

In this section we consider the case where the resulting d-scene is required to ”extend”
the symmetry into a higher dimension.

We first give an example of a symmetric (d − 1)-picture that is foldable, but none of
its folded liftings ”extends” the symmetry of the (d−1)-picture. Consider the 2-picture in
Figure 2. Using Theorem 1 it is easy to see that this 2-picture has a non-trivial lifting as
it does not have enough incidences to be flat since |I| = |V |+ 3|F | − 4 = 16. On the other
hand consider a lifting of the same 2-picture which admits a 4-fold rotational symmetry
around the z-axis. Such a symmetry forces the vertices belonging to the same vertex orbit
to lie in a plane orthogonal to the z-axis. But then the constraints corresponding to the
faces force every vertex to lie in the same plane, so the 3-scene must be flat.

Figure 2: A 2-picture with 4-fold rotational symmetry around the
origin that has a non-trivial lifting but has no non-trivial symmet-
ric lifting which admits 4-fold rotational symmetry around the z
axis. The 2-scene consists of 8 vertices which belong to two vertex
orbits and four faces (shown is gray colour) which belong to the
same face orbit.

3.1 Formal definitions

Let S(r) be a Γ-symmetric (d − 1)-picture with symmetry group τ(Gamma) and let
τ ′ : Γ→ O(Rd) be a representation of Γ so that:

1. the hyperplane of S(r) is invariant under τ ′(Γ);

2. the restriction of τ ′(Γ) to the hyperplane of S(r) is τ(Γ).

We say that S(r) is τ ′(Γ)-symmetry-forced flat if it has no non-trivial τ ′(Γ)-symmetric
liftings. Otherwise it is τ ′(Γ)-symmetry-forced foldable. If it has a τ ′(Γ)-symmetric sharp
lifting then it is τ ′(Γ)-symmetry-forced sharpe.

In order to state our results we also need to define a quotient incidence structure. We
choose a set of representatives OV = {v1, . . . , vn}, one for each vertex orbit. Similarly,
let OF = {f1, . . . , fm} and OI = {i1, . . . , ik} be the sets of representatives of F and I,
respectively. If il = (γ1vi, γ2fj) ∈ I where il ∈ Oi, vi ∈ OV , fj ∈ OF and γ1, γ2 ∈ Γ then
we assign γ−11 γ2 to il. We will use the notation ψ(il) = γ−11 γ2.

The gain bipartite graph (GS , ψ) of a Γ-symmetric incidence structure S is an edge-
labeled bipartite directed multigraph constructed as follows. The two vertex classes are
OV and OF and there is an edge with label γ between vi and fj for each possible group
element γ for which il = (vi, γfl). The edges are oriented towards OF .

The gain of a closed (not directed) walk e1, e2, e3, . . . , ek that starts at a vertex in
OV is ψ(e1)ψ(e2)

−1ψ(e3) . . . ψ(ek)
−1. (Note that every other edge is used in the reverse

direction; for these the inverse of their edge label is taken.) The gain group of a connected
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edge set K and a vertex v spanned by K is defined by taking the set of gains of every
closed walk in K starting with v. (Further investigations show that the choice of v can be
arbitrary.) A connected edge set is balanced, if its gain group is the trivial group. Otherwise
it is unbalanced. A not connected edge set is balanced, if it does not have an unbalanced
component.

3.2 Necessary sparsity conditions for d = 2

Consider the special case when d = 2. Let S(r) be a reflection-symmetric 1-picture. There
are two choices for Γ′, namely C2 (half-turn) and Cs (reflection). For these two symmetry
groups we can give necessary conditions for the constraints to be independent.

Let (GS , ψ) be the gain-bipartite graph of the incidence structure S. In order to de-
termine independent constraints, every connected subgraph G′S = (V1, F1;E1) of GS has
to satisfy the following two properties (for both C2 and Cs):

1. for balanced sets |E1| ≤ |V1|+ 2|F1| − 2;

2. for unbalanced sets we have |E1| ≤ |V1| +
∑

fj∈F1
cj − 1 where cj = 1 if (vi, fj) ∈ I

and (γ(vi), fj) ∈ I for some i and γ 6= id and cj = 2 otherwise.

4 Further work

We expect that similar necessary conditions for forced symmetric liftings can also be
established for higher dimensions. To obtain combinatorial characterisations, it is natural
to consider inductive Henneberg-type construction moves. The results in [3] may also
provide useful tools. These investigations are left for a future paper.
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