Scene analysis with symmetry

Bill Jackson

School of Mathematical Sciences, Queen Mary University of London b.jackson@qmul.ac.uk

Viktória E. Kaszanitzky

Department of Computer Science and Information Theory, Budapest University of Technology and Economics

kaszanitzky@cs.bme.hu

Bernd Schulze

Department of Mathematics and Statistics, Lancaster University b.schulze@lancaster.ac.uk

1 Introduction

Given an incidence structure S and a straight line drawing of S in the plane, one may ask whether this drawing is the vertical projection of a spatial polyhedral scene. This is a well studied question in Discrete Geometry which has some beautiful connections to areas such as Geometric Rigidity Theory and Polytope Theory, see [5] for details. Moreover, this problem has important applications in Artificial Intelligence, Computer Vision and Robotics. In this paper we consider symmetric drawings and their vertical lifting properties.

1.1 Basic definitions and results

A (polyhedral) incidence structure S is an abstract set of vertices V, an abstract set of faces F, and a set of incidences $I \subseteq V \times F$.

A (d-1)-picture is an incidence structure S together with a corresponding location map $r:V\to\mathbb{R}^{d-1}$, and is denoted by S(r). A d-scene S(p,P) is an incidence structure S=(V,F;I) together with a pair of location maps, $p:V\to\mathbb{R}^d$, and $P:F\to\mathbb{R}^d$, such that for each face F_j the vertices incident with F_j lie in a hyperplane. (Here P is an assignment of normal vectors to the faces.) A lifting of a (d-1)-picture S(r) is a d-scene S(p,P), with the vertical projection $\Pi(p)=r$.

A lifting S(p, P) is trivial if all the faces lie in the same hyperplane. Further, S(p, P) is folded (or non-trivial) if some pair of faces lie in different hyperplanes, and is sharp if each pair of faces sharing a vertex lie in distinct hyperplanes. A picture is called sharp if it has a sharp lifting. Moreover, a picture which has no non-trivial lifting is called flat (or trivial). A picture with a non-trivial lifting is called foldable.

Theorem 1 (Picture Theorem) [4],[5] A generic (d-1)-picture of an incidence structure S = (V, F; I) with at least two faces has a sharp lifting, unique up to lifting equivalence,

if and only if |I| = |V| + d|F| - (d+1) and $|I'| \le |V'| + d|F'| - (d+1)$ for all subsets I' of incidences with at least two faces.

The lifting matrix of a generic (d-1)-picture S has independent rows if and only if for all non-empty subsets I' of incidences, we have $|I'| \leq |V'| + d|F'| - d$.

1.2 Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F; I) is a pair $\alpha = (\pi, \sigma)$, where π is a permutation of V and σ is a permutation of F such that $(v, f) \in I$ if and only if $(\pi(v), \sigma(f)) \in I$ for all $v \in V$ and $f \in F$. For simplicity, we will write $\alpha(v)$ for $\pi(v)$ and $\alpha(f)$ for $\sigma(f)$.

The automorphisms of S form a group under composition, denoted $\operatorname{Aut}(S)$. An action of a group Γ on S is a group homomorphism $\theta:\Gamma\to\operatorname{Aut}(S)$. The incidence structure S is called Γ -symmetric (with respect to θ) if there is such an action.

Let Γ be an abstract group, and let S be a Γ -symmetric incidence structure (with respect to θ). Further, suppose there exists a group representation $\tau : \Gamma \to O(\mathbb{R}^{d-1})$. Then we say that a picture S(r) is Γ -symmetric (with respect to θ and τ) if

$$\tau(\gamma)(r_i) = r_{\theta(\gamma)(i)} \text{ for all } i \in V \text{ and all } \gamma \in \Gamma.$$
 (1)

In this case we also say that $\tau(\Gamma) = \{\tau(\gamma) | \gamma \in \Gamma\}$ is a symmetry group of S(r).

A symmetric picture is called $\tau(\Gamma)$ -generic if the vertex positions are "as generic as possible", that is, the only correspondence among the coordinates of the vertices is implied by the symmetry group $\tau(\Gamma)$.

2 Liftings with incidental symmetry

Now we summarise results regarding the effect of symmetry on the lifting properties of (d-1)-pictures. It was proven in [1] that the number of vertices, faces and incidences fixed by the elements of Γ play a key role in the foldability of symmetric pictures. For every symmetry group of the plane a necessary condition for minimal flatness was given.

Figure 1: Some symmetric 2-pictures with a (sharp) symmetry-induced lifting with 2-fold rotational, reflectional and dihedral symmetry (where all interior regions are faces). All of these structures are flat in a generic non-symmetric position.

In the next two results C_3 is the 3-fold rotational group and V_3 and I_3 denote the set of vertices and incidences fixed by the 3-fold rotation, see [1] for a detailed definition.

Theorem 2 [2] A C_3 -symmetric incidence structure S = (V, F; I) is C_3 -generically minimally flat if and only if |I| = |V| + 3|F| - 3, $|I'| \le |V'| + 3|F'| - 3$ for every subset of incidences |I'| with at least one face and $|I_3(S)| = |V_3(S)|$.

Theorem 3 [2] Let S = (V, F, I) be a C_3 -symmetric incidence structure with $|I'| \le |V'| + 3|F'| - 4$ for every substructure of S with at least two faces.

- 1. If $|V_3(S)| = 0$ then S is C_3 -generically sharp.
- 2. If $|V_3(S)| = |I_3(S)| = 1$ and $|I'| \le |V'| + 3|F'| 6$ holds for every C_3 -symmetric substructure of S with at least two faces, then S is C_3 -generically sharp.

3 Liftings with forced symmetry

In this section we consider the case where the resulting d-scene is required to "extend" the symmetry into a higher dimension.

We first give an example of a symmetric (d-1)-picture that is foldable, but none of its folded liftings "extends" the symmetry of the (d-1)-picture. Consider the 2-picture in Figure 2. Using Theorem 1 it is easy to see that this 2-picture has a non-trivial lifting as it does not have enough incidences to be flat since |I| = |V| + 3|F| - 4 = 16. On the other hand consider a lifting of the same 2-picture which admits a 4-fold rotational symmetry around the z-axis. Such a symmetry forces the vertices belonging to the same vertex orbit to lie in a plane orthogonal to the z-axis. But then the constraints corresponding to the faces force every vertex to lie in the same plane, so the 3-scene must be flat.

Figure 2: A 2-picture with 4-fold rotational symmetry around the origin that has a non-trivial lifting but has no non-trivial symmetric lifting which admits 4-fold rotational symmetry around the z axis. The 2-scene consists of 8 vertices which belong to two vertex orbits and four faces (shown is gray colour) which belong to the same face orbit.

3.1 Formal definitions

Let S(r) be a Γ -symmetric (d-1)-picture with symmetry group $\tau(Gamma)$ and let $\tau': \Gamma \to O(\mathbb{R}^d)$ be a representation of Γ so that:

- 1. the hyperplane of S(r) is invariant under $\tau'(\Gamma)$;
- 2. the restriction of $\tau'(\Gamma)$ to the hyperplane of S(r) is $\tau(\Gamma)$.

We say that S(r) is $\tau'(\Gamma)$ -symmetry-forced flat if it has no non-trivial $\tau'(\Gamma)$ -symmetric liftings. Otherwise it is $\tau'(\Gamma)$ -symmetry-forced foldable. If it has a $\tau'(\Gamma)$ -symmetric sharp lifting then it is $\tau'(\Gamma)$ -symmetry-forced sharpe.

In order to state our results we also need to define a quotient incidence structure. We choose a set of representatives $\mathcal{O}_V = \{v_1, \ldots, v_n\}$, one for each vertex orbit. Similarly, let $\mathcal{O}_F = \{f_1, \ldots, f_m\}$ and $\mathcal{O}_I = \{i_1, \ldots, i_k\}$ be the sets of representatives of F and I, respectively. If $i_l = (\gamma_1 v_i, \gamma_2 f_j) \in I$ where $i_l \in \mathcal{O}_i$, $v_i \in \mathcal{O}_V$, $f_j \in \mathcal{O}_F$ and $\gamma_1, \gamma_2 \in \Gamma$ then we assign $\gamma_1^{-1}\gamma_2$ to i_l . We will use the notation $\psi(i_l) = \gamma_1^{-1}\gamma_2$.

The gain bipartite graph (G_S, ψ) of a Γ -symmetric incidence structure S is an edgelabeled bipartite directed multigraph constructed as follows. The two vertex classes are \mathcal{O}_V and \mathcal{O}_F and there is an edge with label γ between v_i and f_j for each possible group element γ for which $i_l = (v_i, \gamma f_l)$. The edges are oriented towards \mathcal{O}_F .

The gain of a closed (not directed) walk $e_1, e_2, e_3, \ldots, e_k$ that starts at a vertex in \mathcal{O}_V is $\psi(e_1)\psi(e_2)^{-1}\psi(e_3)\ldots\psi(e_k)^{-1}$. (Note that every other edge is used in the reverse direction; for these the inverse of their edge label is taken.) The gain group of a connected

edge set K and a vertex v spanned by K is defined by taking the set of gains of every closed walk in K starting with v. (Further investigations show that the choice of v can be arbitrary.) A connected edge set is balanced, if its gain group is the trivial group. Otherwise it is unbalanced. A not connected edge set is balanced, if it does not have an unbalanced component.

3.2 Necessary sparsity conditions for d=2

Consider the special case when d=2. Let S(r) be a reflection-symmetric 1-picture. There are two choices for Γ' , namely \mathcal{C}_2 (half-turn) and \mathcal{C}_s (reflection). For these two symmetry groups we can give necessary conditions for the constraints to be independent.

Let (G_S, ψ) be the gain-bipartite graph of the incidence structure S. In order to determine independent constraints, every connected subgraph $G'_S = (V_1, F_1; E_1)$ of G_S has to satisfy the following two properties (for both C_2 and C_s):

- 1. for balanced sets $|E_1| \le |V_1| + 2|F_1| 2$;
- 2. for unbalanced sets we have $|E_1| \leq |V_1| + \sum_{f_j \in F_1} c_j 1$ where $c_j = 1$ if $(v_i, f_j) \in I$ and $(\gamma(v_i), f_j) \in I$ for some i and $\gamma \neq id$ and $c_j = 2$ otherwise.

4 Further work

We expect that similar necessary conditions for forced symmetric liftings can also be established for higher dimensions. To obtain combinatorial characterisations, it is natural to consider inductive Henneberg-type construction moves. The results in [3] may also provide useful tools. These investigations are left for a future paper.

Acknowledgements

The second author was supported by the Hungarian Scientific Research Fund (OTKA, grant numbers FK128673, K124171).

References

- [1] Kaszanitzky, V.E. and B. Schulze, Lifting symmetric pictures to polyhedral scenes, Ars Mathematica Contemporanea 13 (1), 31-47
- [2] Kaszanitzky, V.E. and B. Schulze, Characterizing minimally flat symmetric hypergraphs, *Discrete Applied Mathematics* **236**, 256-269
- [3] **Tanigawa**, **S.**, Matroids of gain graphs in applied discrete geometry, *Trans. Amer. Math. Soc.* **367** (2015), 8597-8641
- [4] Whiteley, W., A Matroid on Hypergraphs, with Applications in Scene Analysis and Geometry, *Discrete & Comput. Geom.* 4 (1989), 75–95
- [5] Whiteley, W., Some Matroids from Discrete Applied Geometry, Contemporary Mathematics, AMS 197 (1996), 171–311