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Abstract 

The distributional pattern of words in language forms the basis of linguistic distributional 

knowledge and contributes to conceptual processing, yet many questions remain regarding its 

role in cognition. We propose that corpus-based linguistic distributional models can represent a 

cognitively plausible approach to understanding linguistic distributional knowledge when 

assumed to represent an essential component of semantics, when trained on corpora 

representative of human language experience, and when they capture the diverse distributional 

relations that are useful to cognition. Using an extensive set of cognitive tasks that vary in the 

complexity of conceptual processing required, we systematically evaluate a wide range of model 

families, corpora, and parameters, and demonstrate that there is no one-size-fits-all approach for 

how linguistic distributional knowledge is used across cognition.  Rather, linguistic distributional 

knowledge is a rich source of information about the world that can be accessed flexibly 

according to the conceptual complexity of the task at hand. 

Online materials are available at https://osf.io/uj92m/. 
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Understanding the role of linguistic distributional knowledge in cognition 

Introduction 

Linguistic distributional knowledge emerges from our experience with language. Humans 

are continually exposed to a rich environment of natural language and, through this exposure, 

learn patterns of linguistic distributional information; that is, statistical regularities in the 

occurrences of different words in different contexts (e.g., Hall, Owen Van Horne, & Farmer, 

2018; Lazaridou, Marelli, & Baroni, 2017; Wonnacott, Newport, & Tanenhaus, 2007). Famously 

summarized by Firth (1957, p. 179) as “You shall know a word by the company it keeps”, these 

regularities form the basis of the distributional hypothesis: words with similar meanings tend to 

appear in similar contexts. For instance, the word cat tends to appear in contexts concerning pet, 

fur, collar, purring, claws, and so on. The word kitten tends to appear in many of the same 

contexts, and the similarity of cat and kitten can thus be estimated by the similarity of their 

contexts. Linguistic distributional knowledge therefore represents conceptual knowledge as 

statistical patterns of how words are distributed in relation to one another (Barsalou, Santos, 

Simmons, & Wilson, 2008; Connell, 2019; Connell & Lynott, 2014; Louwerse, 2011; Louwerse 

& Jeuniaux, 2010; Vigliocco, Meteyard, Andrews, & Kousta, 2009), and empirical research 

shows that it is powerful enough to support a variety of conceptual processes (e.g., Connell & 

Lynott, 2013; Lenci, Lebani, & Passaro, 2018; Louwerse & Jeuniaux, 2008).  

Research on linguistic distributional models (LDMs)1 has developed computational 

means of capturing and approximating word meaning from statistical analyses of associations 

between words and their contexts in large corpora of text. Where the corpora are reasonably 

representative of a natural linguistic environment, the associations learned by an LDM can be 

considered to approximate those which could be learned by a person exposed to that 

environment. While specific LDMs differ in their learning mechanisms, their common goal of 
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constructing distributional representations of meaning has become increasingly important to the 

cognitive sciences since the mid 1990s. At a theoretical level, the potential ability to extract 

complex meaning from a limited set of words has led some researchers to suggest that LDMs 

could go some way to solving Plato’s problem (i.e., poverty of the stimulus: Landauer & 

Dumais, 1997). Indeed, early LDMs such as Latent Semantic Analysis (LSA: Landauer & 

Dumais, 1997) and the Hyperspace Analog to Language (HAL: Lund & Burgess, 1996) were 

able to approximate human performance in an impressive set of tasks, such as TOEFL synonym 

matching (Landauer & Dumais, 1997), semantic priming (Lund, Burgess & Atchley, 1995), and 

category typicality rating (Connell & Ramscar, 2001). However, the limitations of LDMs soon 

emerged (e.g., Glenberg & Robertson, 2000; Perfetti, 1998). For instance, LDMs have difficulty 

inducing novel actions for objects (Glenberg & Robertson, 2000), at least in part because the 

distributional patterns in language are limited to the kinds of human experience about which 

people have talked or written (Connell, 2019). Nonetheless, the ability of LDMs to capture many 

aspects of meaning should not be underestimated, and researchers from across the cognitive 

sciences have continued to debate the extent to which distributional information plays a role in 

human cognitive processing (e.g., Andrews, Frank, & Vigliocco, 2014; Connell & Lynott, 2014; 

Dove, 2014; Günther, Rinaldi & Marelli, 2019; Kumar, 2020; Lenci, 2018; Louwerse 2011; 

Lupyan & Lewis, 2019; McNamara, 2011). 

In the present paper, we review the role of linguistic distributional knowledge in 

cognition and examine how LDMs can contribute to our understanding of this important area. 

We first discuss the cognitive plausibility of LDMs as a general approach to modelling human 

cognition, from the perspective of the symbol grounding problem, the representativeness of 

training corpora in terms of human language experience, and the nature of conceptual relations 

captured by LDMs. We then turn to specific approaches of how LDMs model linguistic 
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distributional knowledge using different model families and corpora that vary in size and quality, 

and discuss how the largely parallel literatures in distributional semantics and linguistic–

simulation research have led to different assumptions regarding how linguistic distributional 

knowledge is used in cognition. In the remainder of the paper, we report the most comprehensive 

investigation to date of linguistic distributional knowledge in cognition. We construct a large set 

of LDMs (540 in total) that vary systematically across model families, training corpora, and 

parameters, and evaluate their ability to capture human performance across a broad set of 

cognitive tasks, from conceptually simple tasks that rely on a single paradigmatic relation to 

conceptually complex tasks that require sophisticated processing of a wide variety of semantic 

relations, particularly of the abstracted bag-of-words type. Overall, we find that LDMs 

successfully model human behaviour in all tasks but that the optimal LDM varies as the 

conceptual complexity increases, indicating that there is no one-size-fits-all approach for how 

linguistic distributional knowledge is used across cognition. Rather, the data support a task-

dependent, flexible approach to the use of linguistic distributional knowledge in cognition. We 

discuss the cross-disciplinary theoretical and methodological implications of viewing linguistic 

distributional knowledge as a rich source of information about the world that can be accessed 

flexibly according to cognitive need. 

Cognitive Plausibility of Linguistic Distributional Models 

The cognitive plausibility of LDMs has been a concern since their inception and 

continues to be a matter of debate (Barsalou, 2017; Boleda & Herbelot, 2017; Glenberg & 

Robertson, 2000; Günther et al., 2019; Perfetti, 1998). Some critics have targeted low-level 

implementational details of specific models, such as the use of supervised learning in Mikolov, 

Chen, Corrado, and Dean’s (2013) word2vec models (e.g., Huebner & Willits, 2018; cf. Hollis, 

2017). For our present purposes, however, we focus in this section on issues that are general to 
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LDMs as an approach to modelling human cognition, namely symbol grounding, choice of 

training corpus, and nature of captured distributional relations. 

Symbol grounding. First is the symbol grounding problem. The ungrounded nature of 

representations within LDMs makes them theoretically problematic as a sole account of 

meaning. When words are connected only to other words, their grasp on semantics quickly runs 

into the artificial circularity of Searle’s (1980) Chinese room (see also Harnad, 1990), and this 

problem remains a perennial point of discussion in theoretical reviews of the linguistic 

distributional approach (e.g., Emerson, 2020; Glenberg & Robertson, 2000; Kumar, 2020). 

However, according to linguistic–simulation theories of concepts and cognition, linguistic 

distributional knowledge is explicitly grounded in simulations of perceptual and action 

experience. These theories propose that human conceptual knowledge is represented partly as 

associative patterns of how words are distributed in relation to one another and partly as an 

embodied simulation (i.e. partial replay) of sensorimotor experience, and include accounts such 

as language as situated simulation (LASS: Barsalou et al., 2008), the symbol interdependency 

hypothesis (Louwerse, 2011; Louwerse & Jeuniaux, 2008), and the linguistic shortcut hypothesis 

(Connell, 2019; Connell & Lynott, 2014), amongst others (e.g., Lynott & Connell, 2010; 

Vigliocco et al., 2009). Critically, when words are connected to sensorimotor (sometimes called 

embodied) representations as well as to other words, they are not subject to the symbol 

grounding problem. For example, linguistic distributional knowledge of dog may include words 

such as collar, tail, cat, walkies, etc., and each of these words is grounded in sensorimotor 

information (e.g., visual, auditory, hand action) in its own right. Indeed, some linguistic–

simulation accounts argue that sensorimotor experience of a referent concept is not necessary for 

grounding, and that distributional connections between words can help to infer grounded 

representations where they are lacking (Louwerse, 2011; see also Johns & Jones, 2012). Other 
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work in computational cognitive modelling has aimed to create grounded models of conceptual 

representation by incorporating both forms of information (e.g., Banks, Wingfield, & Connell, 

2021; Bruni et al., 2014; Lazaridou et al., 2017; Riordan & Jones, 2011). 

The implication of this theoretical perspective is that linguistic distributional knowledge 

cannot be expected to account for all conceptual knowledge, and therefore LDMs—as 

computational instantiations of linguistic distributional knowledge—cannot be expected to 

model all of semantics. Nonetheless, linguistic distributional knowledge can assume some of the 

burden of conceptual processing because, while every word is ultimately grounded in 

sensorimotor information, it does not have to be grounded every time it is processed (Connell, 

2019; Louwerse, 2011). In that sense, LDMs are cognitively plausible if they are assumed to 

model an essential component of semantics that is grounded in a complementary sensorimotor 

component. 

Training corpus. The second issue is that of the size and content of training corpora in 

relation to human language experience. Corpus size is important to the cognitive plausibility of 

LDMs, because if a model can only approximate human behaviour using a corpus that is orders 

of magnitude larger than that accumulated in a human lifetime of language experience, then it is 

not a plausible model of how linguistic distributional knowledge works in humans (cf. Hollis, 

2017). The corpora underlying successful LDMs vary enormously in size, from 11 million words 

in the TASA corpus used by Latent Semantic Analysis (LSA: Landauer & Dumais, 1997) to one 

trillion words in the Google corpus used in Web 1T n-grams (Brants & Franz, 2006). But how 

many words has a typical adult accumulated in a lifetime of language experience? People in 

modern, literate societies tend to experience language through spoken interactions with other 

people, broadcast media such as television, and reading written texts. Brysbaert, Stevens, 

Mandera, and Keuleers (2016) estimate spoken language experience from social interactions at a 
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total of 11.69 million tokens per year (based on recoded data from Mehl, Vazire, Ramírez-

Esparza, Slatcher, & Pennebaker, 2007). Watching television is another important form of 

spoken language experience, which Brysbaert and colleagues estimate at an upper bound of 

27.26 million words per year, but this upper bound is based on a rather implausible 20 hours a 

day of non-stop viewing (subtitle corpus data from van Heuven et al., 2014). Reading text clocks 

up written language experience even more quickly than spoken language experience, with an 

estimate of 105 million words per year at the upper bound, though this again is based on a rather 

implausible 16 hours a day of rapid reading (Brysbaert et al.’s estimates of reading rates from 

e.g., Carver, 1989).  

Using Brysbaert et al.’s collated figures, let us imagine a person whose average day 

contains a typical amount of social interactions (11.69 million words/year), plus 2 hours of 

watching television (2.73 million words/year), and 1 hour of reading any form of text (6.57 

million words/year). This person’s language experience, based on a reasonable approximation of 

human activity, comes to approximately 21 million words per year. A 20-year old (assuming this 

pattern from age 5) would have language experience of 315 million words. By age 60, it would 

have increased to 1.15 billion words. These estimates are of course highly variable. Someone 

who never reads and watches television for one extra hour each day will accumulate language 

experience (15.8 million words/year) at approximately half the rate of someone who never 

watches television and instead reads for an extra two hours each day (31.4 million words/year). 

This relatively minor variation in behaviour would lead to language experience of 237 million 

words for a 20-year-old television fan, but 1.73 billion words for a keen 60-year-old reader. 

In short, these estimates suggest that the cumulative total language experience of an 

English-speaking adult appears to range legitimately from a couple of hundred million words up 

to a couple of billion words. Any LDMs that use corpora in this size range are cognitively 
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plausible in their assumed extent of language experience, but small corpora of tens of millions of 

words, and large corpora of tens of billions to trillions of words, are implausible. 

However, the content of language experience is another matter. Very large corpora 

comprising billions of words tend to be based on uncorrected text scraped from the web (e.g., 

UKWAC has 2 billion words: Baroni et al., 2009; Google News corpus has up to 100 billion 

words: Mikolov, Chen, et al., 2013; Common Crawl corpus expands monthly but has been used 

up to 840 billion words: Pennington, Socher, & Manning, 2014). As well as containing relatively 

high levels of noise (i.e., typos and other non-word tokens: Baroni et al., 2009), the very nature 

of web-scraped corpora will bear little resemblance to the language experience of a human who 

accumulates up to 2 billion words over decades of social interactions, consuming media, and 

reading text. 

By contrast, high-quality, professionally curated corpora, that aim to bring together a 

representative collection of spoken and written English in a given dialect, tend to be a lot 

smaller. For instance, the British National Corpus (BNC: BNC Consortium, 2007) contains 

approximately 10% spoken content (i.e., mostly spontaneous conversation from a 

demographically balanced sample of speakers, with some formal spoken contexts such as 

lectures, news commentaries, radio show transcripts, and business/committee meetings) and 90% 

written content (i.e., texts from a wide range of ages and contexts, such as children’s essays, 

leaflets, brochures, magazines, newspapers, fiction and nonfiction books, and television scripts). 

Its content is high-quality corrected text that is representative of British English, and is 

cognitively plausible in its resemblance to the content of human language experience, but, at 100 

million words, its size is under the lower bound of adult language experience.  

A third group of corpora has become popular in recent years, based on the subtitling of 

television and film, that tends to lie in between the web-scraped and professional corpora in 
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terms of both size and content. Typically, these corpora contain transcripts of both unscripted 

and scripted speech, from television shows and movies across a range of genres directed at both 

children and adults. Subtitle corpora generated from automated or amateur transcriptions are 

large but prone to error (e.g., the English portion of OpenSubtitles-2016 has 2.5 billion words: 

Lison & Tiedemann, 2016, but includes machine translations with grammatical and translation 

errors, Lison & Dogruöz, 2018), while those based on professional transcriptions for DVDs or 

public broadcasters are smaller but higher quality (e.g., the SUBTLEX-UK corpus is based on 

200 million words of corrected subtitles for the British Broadcasting Corporation: van Heuven, 

Mandera, Keuleers, & Brysbaert, 2014). 

In summary, there exists a certain tension between cognitively plausible content and 

cognitively plausible size of available corpora for LDMs. Professional, representative corpora 

that balance spoken (both social and media) and written sources are relatively small but comprise 

the most plausible content, followed by medium-sized subtitle corpora that contain a 

representative range of spoken media sources, while very large web-scraped corpora that 

comprise unrepresentative written sources are the least plausible. Nonetheless, there is some 

evidence that differences in corpus content become less important once corpus size is large 

enough, although it may depend on the particular task used to evaluate performance (e.g., 

Bullinaria & Levy, 2012). It therefore remains an open question which form of training corpus 

(from relatively small but high quality to large but noisy) can best approximate human language 

experience in an LDM, and whether the efficacy of this approximation generalizes across tasks 

and models. 

Nature of distributional relations. Third, and final, is the nature of distributional 

relations captured by LDMs. From a theoretical perspective, LDMs are generally assumed to 

approximate human experience of linguistic distributional knowledge rather than to model its 
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learning mechanisms literally; that is, they address Marr’s (1982; see also Bechtel & Shagrir, 

2015) computational and to some extent algorithmic level of cognitive modelling, but not the 

implementational level. As an approximation, the forms of linguistic distributional knowledge 

captured by LDMs include syntagmatic and paradigmatic relations (de Saussure, 1916; 

Hjelmslev, 1961), both of which are plausibly useful to human cognition (e.g., Murphy, 2003; 

Nelson, 1977; Sloutsky, Yim, Yao, & Dennis, 2017), as well as more generalized non-

syntagmatic, non-paradigmatic relations that we discuss below2.  

Syntagmatic relations are built from words appearing in complementary syntactic 

positions within the same sentential structure. For example, in the sentence she has blue eyes, the 

words blue and eyes are syntagmatically related due to the syntactic positions they occupy in 

relation to one another (i.e., adjective modifies noun). Such relations can be learned from a 

single occurrence, but more generally, if blue usually co-occurs in this syntactic role with eyes 

across language experience, then one could expect the word blue to evoke the word eyes on a 

syntagmatic basis. Syntagmatic relationships of this sort reflect a range of semantic information, 

including concept properties via adjectives (e.g., blue–eyes, happy–childhood), constituent parts 

via possessives (e.g., dog–tail, tractor–wheels), and thematic relationships such as agent actions 

(e.g., cat–miaow, customer–pay), object functions (throw–ball, sit–chair), and thematic agent-

patient roles (e.g., dog–ball, boat–river) via verb structure. 

Paradigmatic relations, on the other hand, are built from words appearing in the same 

syntactic positions across similar sentential contexts, even if they never appear together. For 

instance, in the additional sentence he has brown eyes, the words blue and brown are 

paradigmatically related because each word independently occurs in the same syntactic position 

within the shared context of eyes. Such relations require multiple exposures to learn, but in 

general, if blue and brown both co-occur in this syntactic role in relation to eyes across language 
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experience, then one could expect the word blue to evoke the word brown on a paradigmatic 

basis. Paradigmatic relations therefore capture similarity of meaning and syntactic 

substitutability in a way that syntagmatic relations do not, and reflect semantic information that 

includes synonyms (e.g., blue–azure, run–sprint), antonyms (e.g., hot–cold, rise–fall), shared 

categories (e.g., dog–cat, happy–angry), and taxonomic classes (e.g., dog–animal, chair–

furniture). 

With a few exceptions (e.g., Jones & Mewhort, 2007; Padó & Lapata, 2007), LDMs tend 

to ignore syntactic structure entirely and concentrate instead on the unordered presence of words 

within a particular section of text (i.e., the “bag of words” approach: see Lapesa & Evert, 2017, 

for discussion). In this way, LDMs can capture other forms of linguistic distributional relations 

that do not rely on syntactic role and hence cannot be neatly fit into syntagmatic or paradigmatic 

relations. We term these relations, which are learned regardless of syntax, bag-of-words 

relations. For example, words that co-occur across sentence boundaries do not occupy syntactic 

positions in relation to one other, but the presence of these words in sequential sentences 

nonetheless makes it likely that they are broadly related. The sentences He stubbed his toe. 

‘Ow!’, he yelped. will not connect stubbed–ow or toe–ow in either a syntagmatic or paradigmatic 

sense, but an LDM that ignores sentence boundaries will pick up the relationship on the basis of 

their co-occurrence. Another case comes from words that frequently appear in the same context 

but across a wide variety of syntactic positions: strictly, each syntactic role should create a 

separate syntagmatic and/or paradigmatic relation, which in turn makes it very difficult to 

generalize a strong relationship across instances. For instance, the words Paris and France are 

clearly related but appear in a wide variety of syntactic roles in relation to one other: The capital 

of France is Paris; She lives in Paris, France; Paris is the largest city in France; Rural France 

and Paris are very different; They played at Stade de France in Paris. An LDM that ignores 
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syntax will count all these co-occurrences in the same way and generalize to form a strong 

Paris–France relationship. It remains unclear to what extent these bag-of-words relations 

provide systematically important semantic information, but since they appear to capture 

situational and thematic context, and are often spontaneously produced by participants in 

production tasks (where they tend to be coded as temporal or general associative relations: Wu & 

Barsalou, 2003; or remain as unclassified thematic relations: Jouravlev & McRae, 2015), it is 

plausible that they are useful in conceptual processing (e.g., Paris evokes France; stubbed 

evokes ow).  

Notably, the three distributional relations vary in their complexity and how easy they are 

to process. Semantic relations that can be learned paradigmatically (e.g., categorical relations, 

synonyms) tend to be regarded as relatively simple and low-level compared to relations that are 

learned syntagmatically (e.g., object properties, thematic roles: Chaffin & Hermann, 1987; 

Mudrik et al., 2014). For instance, paradigmatic relations drive the majority of responses in free 

association tasks (Cramer, 1968; Burke & Peters, 1986), particularly the first associates that 

come to mind (De Deyne & Storms, 2008). Syntagmatic relations are still important in free 

association, but are dispreferred, particularly for nouns (Burke & Peters, 1986; De Deyne & 

Storms, 2008), which represent the most frequent word class in English (e.g., van Heuven et al., 

2013). Such findings suggest that paradigmatically learned relations (e.g., synonyms error–

mistake; shared categories cat–dog; taxonomic classes cat–animal) are typically simpler and 

easier to process than syntagmatically learned relations (e.g., object properties honey–sweet; 

function bed–sleeping; agent action cat–miaow). Bag-of-words relations appear to be 

more complex again, in that they represent a form of semantic relation that cannot be learned 

either paradigmatically or syntagmatically but rather serve to link together concepts in an 

abstracted manner outside syntactic roles. For example, the concept pairs apple–gravity, ship–
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ahoy, and stubbed–ow are each related in some way, but the relation does not emerge from the 

syntactic structures that produce syntagmatic and paradigmatic relations; rather, it emerges from 

high-level thematic, situational, or other nebulous relations. As well as such differences in 

complexity at the level of the individual relation, the way in which different semantic relations 

are combined together also affects complexity at the collective level of the discourse or stimulus 

set. Processing a particular semantic relation facilitates processing other stimuli that use the same 

relation (i.e., relation priming: Estes & Jones, 2006; Hristova, 2009), which means that a 

sequence of diverse relations (e.g., superordinate category cat–mammal, synonym error–mistake, 

function bed–sleeping) will be overall more conceptually complex than a sequence of repeated 

relations (e.g., synonyms blue–azure, error–mistake, run–sprint). Thus, differential reliance on 

paradigmatic, syntagmatic, and/or bag-of-words relations allows one to estimate how 

conceptually complex a cognitive task might be; we return to this point later with reference to the 

current study. 

LDMs are therefore cognitively plausible in how they approximate human linguistic 

distributional knowledge, at least in terms of capturing syntagmatic, paradigmatic, and bag-of-

words relations that vary in conceptual complexity. Nonetheless, different types of LDM capture 

these relations to differing extents, as we discuss in the next section, which means that not all 

LDMs are necessarily equal in their approximation of linguistic distributional knowledge. 

Approaches to Modelling Linguistic Distributional Knowledge 

In recent years, research on LDMs has tended to fall into two broad camps that have 

pursued parallel but largely distinct areas of investigation: distributional semantics of text 

processing and linguistic–simulation accounts of concepts and cognition.  

Distributional semantics research has developed directly from the distributional 

hypothesis in linguistics (Firth, 1957; Harris, 1954) and is currently concentrated in the fields of 
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computational/corpus linguistics and machine learning, with applications in areas such as 

information retrieval, natural language processing, and data mining. A key feature of this work 

has been the continuous development of ever more sophisticated methods of modelling 

distributional information with a view to enhancing the state-of-the-art LDM performance in a 

given domain (i.e., which model does best across systematic comparisons: Baroni, Dinu, & 

Kruszewski, 2014; Bullinaria & Levy, 2007, 2012; Kiela & Clark, 2014). Systematic 

comparisons of LDMs in this area have tended to evaluate models based on their performance in 

benchmarking tasks that focus on paradigmatic relations, such as synonym and analogy 

detection, similarity and relatedness judgements, and semantic and syntactic categorization (e.g., 

Bullinaria & Levy, 2007; Lapesa & Evert, 2014). Performance is typically evaluated by 

comparing model data with objectively correct answers (e.g., multiple choice scoring in a 

vocabulary test) or with explicit human responses (e.g., ratings on a Likert scale). For instance, 

when tasked with selecting which out of bottle and cask is a better synonym for barrel, an LDM 

might select the candidate whose linguistic contexts most closely resemble those of barrel, 

indicating contextual substitutability (i.e., one word can substitute for another in many contexts 

when their meanings are similar). The best LDM would be the one which could most reliably 

select the correct response for any such task. Similarly, an LDM tasked with scoring the 

relatedness of word pairs such as boat:river and boat:cat can quantify the extent to which the 

words in each pair share similar linguistic contexts. The best LDM for this task would be one 

that can most successfully distinguish related from unrelated word pairs in a way that mirrors 

human ratings of semantic relatedness.  

Recent work in distributional semantics strongly favours predict models and very large 

corpora. Predict models, also known as word embedding models3, are neural networks that are 

trained to predict a given word from its context (or the context from a given word, as the case 
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may be), and have gained acceptance as the state of the art in distributional semantics by 

significantly outperforming alternatives in systematic comparisons (e.g., Baroni et al. 2014; 

Mikolov, Chen, Corrado et al., 2013; Pereira, Gershman, Ritter, & Botvinick, 2016; Zhang & 

LeCun, 2015; but see also J. Levy & Goldberg, 2014; Pennington et al., 2014; Sahlgren & Lenci, 

2016). The freely available word2vec tool (Mikolov et al., 2017; Mikolov, Chen, et al., 2013) is 

perhaps the most popular implementation of predict models, and has become the standard against 

which other LDMs are compared (e.g., FastText: Bojanowski et al., 2017; GloVe: Pennington et 

al., 2014). By using vector geometry to calculate the similarity between two words, predict 

models are capable of detecting similarity between words without direct co-occurrence (i.e., 

reflecting higher-order relations): for instance, even if cask and barrel never appear together in 

the same context, predict models will score them as highly similar because their respective 

contexts contain many overlapping words at similar frequencies (e.g., wine, beer, storage, 

cellar). Such models are typically trained on very large but noisy corpora that comprise billions 

of words scraped from the Web, such as UKWAC (2 billion words: Baroni et al., 2009) or 

Google News corpus (up to 100 billion words; e.g., 6 billion words: Mikolov, Chen, et al., 2013). 

Very large corpora have become the norm in distributional semantics research because, although 

corpus size is inversely related to corpus quality, LDM performance has been shown to increase 

with corpus size (e.g., Bullinaria & Levy, 2012; Recchia & Jones, 2009; De Deyne et al., 2015). 

Training predict models on very large corpora has therefore become the de-facto standard 

approach in distributional semantics research for representing word meaning (Chersoni et al., 

2020; Moreo et al., 2019; Naik et al., 2019). 

Linguistic–simulation accounts of the conceptual system, on the other hand, have arisen 

from theoretical and experimental cognitive psychology and thus follow a different tradition to 

distributional semantics research. These accounts propose that the human conceptual system 
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comprises two essential interlinked components: linguistic distributional knowledge of how 

words and phrases appear in statistical patterns one each other, and grounded simulations of 

sensorimotor-affective experience (Barsalou et al., 2008; Connell, 2019; Connell & Lynott, 

2014; Louwerse, 2011; Louwerse & Jeuniaux, 2008; Vigliocco et al., 2009). A critical feature of 

these accounts is that linguistic distributional information is assumed to have a flexible rather 

than a constant role in conceptual processing, and that reliance on such information depends on a 

number of factors including the nature of the task, surrounding context, and general processing 

goals (see Connell, 2019; Connell & Lynott, 2014). Empirical work in linguistic–simulation 

research built on the successes of early LDMs such as LSA and HAL in modelling human 

performance, and has tended to focus on testing whether humans use linguistic distributional 

information in particular conceptual tasks (i.e., whether or not LDM data can predict human 

performance independent of other related predictors). For example, when investigating 

conceptual combination—that is, the ability to generate a new composite concept from two 

existing concepts (e.g., octopus apartment)—Connell and Lynott (2013) found that the frequency 

with which two nouns co-occur in the same context can predict how easily they can be 

understood as a novel conceptual combination. In a very different paradigm on spatial cuing of 

attention, Goodhew, McGaw and Kidd (2014) presented a central cue word followed by an 

unrelated target letter at the top or bottom of the screen, and found that the spatial cuing effect 

was predicted by how often the cue word co-occurred with the spatial word for the target 

location (e.g., dream co-occurs with up more often than down and cues attention upward). When 

viewed collectively, most studies in linguistic–simulation research that use LDMs tend to model 

human data across a diverse range of tasks that rely on a broad variety of conceptual 

relationships rather than simply paradigmatic relations. Moreover, performance is typically 

evaluated by comparing model data with implicit measures of human processing effort in a given 
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task (e.g., response times: RT) rather than with explicit human responses (e.g., ratings or 

proportion of correct responses). In the above example from Goodhew et al. (2014), the words 

dream and up are not paradigmatically related (i.e., they do not occur in the same syntactic role 

across similar contexts), but their meanings are syntagmatically related in that they sometimes 

appear in the same syntactic frame (e.g., to dream up an idea). Others of their stimuli do not lend 

themselves to obvious syntagmatic relations and may instead rely on more abstracted bag-of-

words relations to connect the words (e.g., god–up, castle–up). The best LDM for capturing 

human performance in such tasks would be the one that can most reliably identify such 

relationships and predict response times for an upward target. 

There is also great diversity in the LDMs currently employed in linguistic–simulation 

research, with recent work successfully utilizing a variety of model families (i.e., predict, count 

vector, n-gram), with a variety of corpus sizes, to model conceptual processing. To date, predict 

models have only seen limited use in linguistic–simulation research, but have proven useful in 

predicting human concreteness and imageability ratings when trained on a relatively small but 

high quality corpus (Rotaru, Vigliocco, & Frank, 2016), and also have been employed in more 

general psycholinguistic research (e.g., Mandera, Keuleers, & Brysbaert, 2017; Troyer & Kutas, 

2020). In linguistic–simulation research, count vector and n-gram models are more common.  

Count vector models learn by counting the co-occurrences of words and context within a 

corpus, applying transformations to the word–context count matrix, and using vector geometry to 

calculate the similarity between two words (see Riordan & Jones, 2011; Bullinaria & Levy, 

2007; Turney & Pantel, 2010, for overview of differences within this model family). Like predict 

models, count vector models can detect higher-order relationships between words without direct 

co-occurrence (e.g., even if barrel and cask never appear in the same context, they will score as 

highly related if their contexts overlap). Their architectures are fundamentally different in their 
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approach to distributional learning, however: while predict models represent error-driven 

predictive learning, count vector models represent error-free Hebbian learning (Kumar, 2020). 

Several off-the-shelf LDMs, such as Latent Semantic Analysis (LSA: Landauer & Dumais, 

1997) and the hyperspace analogue to language (HAL: Lund & Burgess, 1996), are count vector 

models. There is no consistent approach to corpus size and quality in this model family, with 

training corpora varying from a few million words of high-quality text to billions of words of 

low-quality text. Nonetheless, data from count vector models have been found to be a good 

predictor of human performance in a number of conceptual tasks, from ratings of concept 

abstractness (Lenci et al., 2018) and typicality (Connell & Ramscar, 2001), to concrete/abstract 

semantic decision (Hargreaves & Pexman, 2014), geographic mapping (Louwerse & Zwaan, 

2009), and word–colour associations in synaesthetes (Goodhew & Kidd, 2017).  

N-gram models operate more simply: they count the co-occurrences of words up to a 

window of size n around the target word and compare two words by examining their 

(transformed) co-occurrence frequency. As such, n-gram models represent an error-free Hebbian 

approach to distributional learning (like count vector models) and reflect direct co-occurrences, 

also known as first-order relations (e.g., dream and up must appear together often to score as 

highly related). Despite its apparent simplicity, first-order co-occurrence is theoretically 

important both as the basis for statistical learning of semantic knowledge (e.g., Unger, Vales & 

Fisher, 2020), and as a means to determine whether human meaning induction in statistical 

learning can rely on the surface structure of language (as opposed to requiring a more complex 

algorithm to extrapolate higher-order relations: Louwerse, 2011). The n-gram model most often 

used in linguistic–simulation research is the Google Web1T 5-gram frequencies (Brants & Franz, 

2006), an off-the-shelf model that is based on an extremely large but low-quality corpus of one 

trillion tokens of web-scraped text. Data from n-gram models have proven a good predictor of 
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human data in conceptual tasks that include integrative semantic priming (Jones, Wurm, 

Calcaterra, & Ofen, 2017), rating affective valence and arousal (Recchia & Louwerse, 2014), 

conceptual combination (Connell & Lynott, 2013), geographic mapping (Louwerse & Zwaan, 

2009), and spatial cuing of attention (Goodhew et al., 2014). Indeed, despite the apparently 

limited scope of n-gram models in capturing only direct co-occurrences, they can replicate many 

of the key effects captured by the more complex count vector model LSA (Louwerse, 2011). 

One likely reason why linguistic–simulation research has successfully used such a 

diverse range of models to predict human performance is that all three model families can 

capture both syntagmatic and paradigmatic relations to differing extents. N-gram models, by 

indexing first-order co-occurrences, capture syntagmatic relations such as blue-eyes. However, 

there is some evidence that first-order co-occurrences simultaneously capture paradigmatic 

relationships (Melamud, Dagan, Goldberger, Szpektor, & Yuret, 2014; Rapp, 2002; Sahlgren, 

2006) because at least some paradigmatically related words frequently co-occur in their own 

right (e.g., a sentence like blue and brown eyes are common in Europe will allow an n-gram 

model to capture the blue-brown relation that would normally be characterized as paradigmatic). 

Similarly, antonyms often co-occur (e.g., hot and cold water), as do items from the same or 

superordinate category (e.g., adopt a cat or dog from an animal sanctuary). N-gram models also 

capture bag-of-words relations by indexing across sentence boundaries (e.g., stubbed and ow can 

be linked regardless of syntax). Count vector models—and predict models—index second-order 

co-occurrences in their use of vector geometry to compare contexts, and hence capture 

paradigmatic relations such as blue–brown on the basis of their shared context with eyes and 

other terms. There is some evidence that count vector models can also simultaneously capture 

syntagmatic relations, if not quite as effectively as paradigmatic relations (Lapesa, Evert, & 

Schulte im Walde, 2014) because at least some syntagmatically related words often share similar 
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contexts (e.g., blue and eyes will each appear in contexts concerning man, woman, child, face, 

etc.). That is, the fact that co-occurring words often separately appear in similar contexts across 

language means that count vector models can pick up at least some relations that are usually 

characterized as syntagmatic. However, the evidence is more limited for the ability of predict 

models to detect syntagmatic relations. The neural network architectures and training schemes of 

predict models in their conventional form are optimized for paradigmatic relations and generally 

perform poorly at capturing syntagmatic relations (Asr & Jones, 2017; O. Levy et al., 2015), but 

some studies have shown a limited ability to detect relations usually characterized as 

syntagmatic, such as concept properties like eyes–blue (Rubinstein, Levi, Schwartz, & 

Rappoport, 2015) and thematic relationships like boat–river (Kacmajor & Kelleher, 2019). Both 

count vector and predict model families can capture bag-of-words relations by generalizing 

across similar contexts (e.g., stubbed and ow can be linked regardless of syntax by a shared 

context involving pain). In short, although performance of the three model families varies by 

their exact instantiations and parameter settings, it is possible to characterize their form of 

linguistic distributional knowledge in broad terms. N-gram models specialize in capturing 

syntagmatic relations but also capture paradigmatic relations; count vector models capture both 

paradigmatic and syntagmatic relations, though the latter ability is weaker; and predict models 

specialize in paradigmatic relations but have a limited ability to capture syntagmatic relations. In 

addition, all models can capture bag-of-words relations, although it remains unclear whether 

each model family does so with equivalent effectiveness. All three model families can therefore 

approximate linguistic distributional knowledge that is useful to conceptual processing. 

To summarize, the specialization of distributional semantics and linguistic–simulation 

research into two parallel fields has resulted in a number of complementary strengths and 

weaknesses. Distributional semantics research has systematically tested a wide range of LDMs in 
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order to optimize performance, but has tended to focus on a restricted range of relatively simple 

conceptual tasks that rely on a limited variety of semantic relations and/or predominantly 

paradigmatic relations, and evaluate performance based on explicit dependent measures such as 

ratings or synonym choice. By contrast, linguistic–simulation cognitive research has tended to 

use off-the-shelf LDMs without systematic comparisons, but has examined a wide range of 

conceptual tasks that vary in conceptual complexity by their reliance on diverse semantic 

relations (including syntagmatic and bag-of-words), and evaluate performance based on both 

explicit and implicit dependent measures (e.g., both ratings and response times). There has been 

some, if limited, crossover between distributional semantics and linguistic–simulation research, 

particularly in computational cognitive modelling that attempts to integrate LDMs with some 

form of grounding in perceptual and/or action information (e.g., Andrews, Vigliocco, & Vinson, 

2009; Banks et al., 2021; Johns & Jones, 2012; Lazaridou et al., 2017). For example, Riordan 

and Jones (2011) examined a number of distributional semantics models, including the early 

models of LSA and HAL alongside more advanced models like Bound Encoding of the 

Aggregate Language Environment (BEAGLE: Jones & Mewhort, 2007), in combination with 

sensorimotor feature models in their ability to predict categorical clustering. In this sense, 

Riordan and Jones used a common distributional semantics methodology (i.e., the systematic 

comparison of multiple LDMs) from the theoretical perspective of linguistic–simulation research 

(i.e., conceptual knowledge comprises both linguistic distributional and sensorimotor 

information). In general, however, such multidisciplinary crossovers remain uncommon in the 

context of the wider literature. 

As a result, distributional semantics and linguistic–simulation research have developed 

some different theoretical assumptions on how linguistic distributional knowledge should be 

modelled. The predominant view in distributional semantics research is based on a tacit “one-
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size-fits-all” assumption for how distributional information should best fit human data: predict 

models trained on very large (and noisy) corpora are the de facto standard for forming 

distributional word representations, regardless of the semantic task being modelled (e.g., Baroni 

et al., 2014; Mikolov, Chen, et al., 2013; Naik et al., 2019). The implication of this assumption is 

that there exists an optimal LDM that is appropriate for modelling all forms of linguistic 

distributional knowledge in cognition. Such a one-size-fits-all assumption contrasts with the fact 

that there is no dominant view in linguistic–simulation research for how distributional 

information should be modelled. Empirical work in this area has successfully fit human data 

using a range of model families (count vector, n-gram, and predict models) and corpus sizes 

from small to very large. Moreover, because linguistic–simulation theories contain the explicit 

assumption that the use of linguistic distributional knowledge in conceptual processing is flexible 

and responsive to a range of factors including task demands, available processing resources, and 

processing goals (Connell, 2019; Connell & Lynott, 2014; see also Barsalou et al., 2008; 

Louwerse, 2011), it is not clear how a one-size-fits-all approach to linguistic distributional 

knowledge is consistent with the linguistic–simulation theoretical perspective. 

The Current Study 

In this paper, we address the following unanswered questions regarding the role of 

linguistic distributional knowledge in cognition. First, is the assumption of distributional 

semantics research regarding a one-size-fits-all approach for linguistic distributional knowledge 

correct? That is, does the common consensus—that predict models trained on very large corpora 

are the best approach—generalize to all conceptual processing in human cognition? Or 

alternatively, could the success of this approach be inherently restricted to the sorts of conceptual 

tasks that rely on similarity of meaning and other paradigmatic relations? If predict models 

trained on very large corpora are indeed the best approach for modelling human data in all tasks, 
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then it implies that paradigmatic relations learned from vast quantities of language experience 

underpin the linguistic distributional knowledge that people use in conceptual processing, and 

that syntagmatic relations, and quality of language experience, are of limited (if any) 

independent utility. 

Second, and in contrast to the first question, is the tenet of flexibility in linguistic–

simulation theories correct in how the use of linguistic distributional knowledge varies 

enormously by task and other factors? That is, do the empirical findings of linguistic–simulation 

research—that n-gram, count, and predict models, trained on corpora of varying size, all 

successfully predict some forms of human conceptual processing—mean that different 

conceptual tasks require different models and/or training corpora? Specifically, is there a 

systematic relationship between the appropriateness of a given model family and corpus, and the 

particular characteristics of the task in question? Such characteristics could include a task’s 

reliance on conceptually complex relations across the stimulus set, or its uses of implicit 

measures of processing effort (e.g., response times) over explicit judgements (e.g., ratings). If the 

best approach for modelling human data varies according to the characteristics of the task, then it 

implies that all forms of relation—syntagmatic, paradigmatic, and other—underpin the linguistic 

distributional knowledge that people use in conceptual processing, and that each is flexibly 

employed to suit task demands. Moreover, if smaller, high-quality corpora are best for modelling 

human data in certain tasks, it also implies that the quality of language experience is more 

important than quantity when it comes to developing the relevant linguistic distributional 

knowledge. 

To address these questions, we undertook what we believe to be the largest and most 

comprehensive examination of linguistic distributional knowledge in cognition to date. We 

systematically investigated three families of LDM that are commonly used in cognitive 
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psychology and psycholinguistic research (n-gram, count vector and predict vector models), 

using three corpora that vary in size (from 100 million to 2 billion words) and quality (from 

professionally collated to web-scraped), across a range of context window sizes (radii of 1 to 10 

around a target word), for a variety of model-specific parameter values (distance metric and 

embedding size). Critically, we evaluated each model by testing its ability to predict performance 

in a wide range of cognitive tasks that varied in conceptual complexity. 

The conceptual complexity of a task is determined by how many different forms of 

conceptual/semantic relation are featured in a set of stimuli, and whether each individual 

semantic relation can be learned syntagmatically, paradigmatically, or via bag-of-

words distributions. In this sense, it is important to distinguish it from cognitive complexity: 

whereas conceptual complexity is concerned with the complexity of the semantic relations in the 

specific set of stimuli used across a task, cognitive complexity is concerned with the intrinsic 

processing demands of executing a task from start to finish4. We therefore operationalised a 

task’s conceptual complexity according to how the following three criteria applied to its specific 

stimulus set: (a) diversity of semantic relations; (b) use of syntagmatic relations rather than 

paradigmatic; and (c) use of bag-of words distributional relations rather than paradigmatic or 

syntagmatic. Thus, an increase in conceptual complexity can be conferred by greater diversity of 

semantic relations featured across the task’s stimulus set, increased use of syntagmatic relations, 

and particularly increased use of high-level bag-of-words relations. 

These criteria allowed us to select a range of tasks that varied systematically in 

conceptual complexity. The conceptually simplest task was synonym selection (Study 1), which 

features the same paradigmatic relation (i.e., synonyms) across all stimuli. Slightly more 

complex was Study 2’s similarity judgement, which still relied on paradigmatic distributional 

relations, but this time featured some diversity of semantic relations across its stimulus set (e.g., 
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synonyms, antonyms, shared categories). Study 2’s relatedness judgement was more complex 

again because, although its stimuli were predominantly paradigmatic, it included a moderately 

diverse range of semantic relations that included some syntagmatic and bag-of-words relations 

(e.g., shared categories, compositional, thematic). Thematic relatedness production (Study 3) 

specifically sought to move away from relatively simple paradigmatic relations, and represented 

moderately high conceptual complexity by its reliance on a diverse range of syntagmatic 

relations (e.g., temporal, functional) with some bag-of-words relations included. In Study 4, we 

examined semantic priming in both lexical decision and word naming with a highly conceptually 

complex stimulus set that featured a very diverse range of semantic relations across all three 

distributional relations: paradigmatic (e.g., synonyms, antonyms, shared categories), syntagmatic 

(compositional, functional, object property), and a smaller number of bag-of-words relations 

(e.g., broad thematic or situational). Finally, the most conceptually complex task was abstract–

concrete semantic decision (Study 5), where the semantic relation in question could not be 

learned paradigmatically or syntagmatically, and instead—if linguistic distributional knowledge 

were to be at all useful to the task—relied entirely on high-level bag-of-words relations. Within 

these tasks, we also systematically varied the format of the dependent measure, where datasets 

reflected explicit semantic responses (Studies 1–3), implicit measures of processing effort (Study 

4), or a combination of both (Study 5). In total, we examined 540 different models on each of 13 

test datasets, using Bayesian model comparisons to make recommendations as to the optimal 

model, corpus type and parameter settings.  

This series of modelling studies allowed us to investigate whether there exists a one-size-

fits-all recommendation for which LDM is the most appropriate at modelling human cognitive 

processing, or whether model and corpus appropriateness varied systematically according to the 

conceptual complexity of the task and/or the implicit versus explicit nature of the dependent 
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measure. 

General Method 

All datasets, analysis code, and results are available online at https://osf.io/uj92m/. 

Linguistic Distributional Models 

We examine three families of LDM: count vector models, n-gram models, and predict 

models. While there exists an enormous number of LDMs in distributional semantic research, 

our goal for this paper is specifically not to perform a state-of-the-art comparison of all such 

models, both for reasons of relevance and cognitive plausibility. Rather, our explicit goal in this 

paper is to examine the off-the-shelf distributional models that are widely and currently used in 

cognitive and psycholinguistic research, which can be classified by their abilities to capture our 

distributional relations of interest (i.e., paradigmatic, syntagmatic, bag-of-words). We outline 

below a number of different instantiations of each model family, and a number of associated 

parameters per model; a summary of all LDMs examined in the present paper can be found in 

Table 1. 

Count vector models. Context-counting vector LDMs gained popularity in cognitive 

psychology with the introduction of LSA (Landauer & Dumais, 1997), which defined the context 

of a word as the document or paragraph in which it was found. While document-level contexts 

continue to be used for topic modelling in document retrieval (e.g., Griffiths, Steyvers, & 

Tenenbaum, 2007; Řehůřek & Sojka, 2010), the models we consider instead follow the HAL 

approach (Lund & Burgess, 1996), which defines a word’s context as the collection of other 

words found within a fixed distance of where that word is found (e.g., a window of five words on 

either side of the word of interest). We chose this approach both because of its superior 

performance in systematic comparisons with human data (Riordan & Jones, 2011), and because 

it allowed us to examine the impact of context window size systematically across all model 
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families. 

When it comes to defining co-occurrence windows, there are a number of variations in 

the literature. Some models (e.g. Lund & Burgess, 1996; Rohde, Gonnerman, & Plaut, 2006) use 

a centre-weighted counting method, where the contribution of context words closer to the target 

within the window is weighted with a flat, triangular or Gaussian kernel. Other variations include 

looking at only context words found to the left, only to the right, both left and right separately, or 

both left and right together (see Bullinaria & Levy, 2007; Patel et al., 1998, for systematic 

overviews of the effects of these parameters). While there may be psychological reasons to 

distinguish between left and right context (Jones & Mewhort, 2007; Dye et al., 2017), Bullinaria 

& Levy (2007) showed that the difference in performance between uniformly and linearly 

weighted windows, and between left, right, and combined contexts, is relatively small. Thus, in 

our analyses, we define co-occurrence using a uniformly weighted, symmetric window around 

the target word (left and right sides together) in accordance with the bag-of-words approach (i.e., 

we make no assumptions of structure in the text), in order to constrain our already-large number 

of models and tests and to avoid potentially arbitrary choices in the weighting kernel. 

Several sources use forms of dimensionality reduction on the target-context co-

occurrence matrix, such as singular-value decomposition (Landauer & Dumais, 1997; O. Levy et 

al., 2015), principal components analysis (Louwerse & Connell, 2011), or simply removing 

(Burgess, Livesay, & Lund, 1998; J. Levy & Bullinaria, 2001; Bullinaria & Levy, 2007) or 

reweighting (Bullinaria & Levy, 2012) columns corresponding to low-frequency or low-variance 

contexts. When surveying options of dimensionality reduction, Bullinaria and Levy (2007, 2012) 

did not find substantial improvement given the theoretical overhead involved (see also 

Louwerse, 2011). As such, because our motivation is to compare a broad range of models on a 

broad range of tasks rather than optimizing performance on any single task, we avoid using such 
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dimensionality-reduction strategies in the present paper. 

For the present research, given a large corpus of text, the context of a particular target 

word t is the collection of words within some fixed distance r of t. The co-occurrence frequency 

vector for t is a list, for each word c in the corpus vocabulary, of the number of times c is found 

in the context of t. Thus, for a context window of radius r, the co-occurrence frequency vector 

for t has entries 𝑛!(𝑐, 𝑡) indexed by the unique words in the corpus. Note that in this definition, 

the words order in the context does not affect the resultant values. Vectors are compiled over 

target words into a co-occurrence frequency matrix whose rows are indexed by the unique words 

in the corpus as targets and whose columns are indexed by unique words as context. For context 

windows which are symmetric around the target word, this matrix is symmetric when target and 

context words are arranged in the same order. See Figure 1 for an illustrative example of how a 

co-occurrence frequency matrix is computed. 

[Figure 1 about here] 

We considered four count vector models that differ in their transformation of the co-

occurrence frequency matrix. For each of these models, we let r take values 1, 3, 5 and 10. This 

choice spans the range of popular and high-performing window sizes (J. Levy, Bullinaria, & 

Patel, 1999; O. Levy et al., 2015; Mandera et al., 2017). 

• Log co-occurrence frequency:  Log frequency is often used in place of raw co-

occurrence-counts as a better-performing alternative that compensates for the skewed 

distribution of word frequencies in language (e.g. Louwerse & Connell, 2011). The 

log co-occurrence frequency model has word vectors defined as the log-transformed 

frequency count of finding a context word c and target word t together within a 

context window of radius r: 

𝑙!(𝑐, 𝑡) = 𝑙𝑜𝑔"#(𝑛!(𝑐, 𝑡) + 1) 
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The +1 is a smoothing term which lets the model be defined even where 𝑛!(𝑐, 𝑡) = 0 

(i.e., where the co-occurrence frequency is zero). 

• Conditional probability: The vector components of the conditional probability 

model are the probability of finding a particular context word c, given the target word 

t, within a context window of radius r: 

𝑝!( 𝑐 ∣ 𝑡 ) =
𝑝!(𝑐, 𝑡)
𝑝!(𝑡)

 

Here, 𝑝!(𝑐, 𝑡) 	= 	𝑛!(𝑐, 𝑡) 𝑘𝑟⁄  is the probability of finding a particular context–target 

pair, where k is the size of the corpus, and 𝑝!(𝑡) = ∑ 𝑛!(𝑐, 𝑡)$ 𝑘𝑟⁄  is the probability 

of finding a given target word. 

• Probability ratio:  The ratio of probabilities model compares the probability of 

finding a context c and target t together to the probabilities of finding c and t 

separately (Bullinaria & Levy, 2007): 

ratior(𝑐, 𝑡) =
𝑝!(𝑐, 𝑡)

𝑝!(𝑐)𝑝!(𝑡)
 

Here, the probability of the context 𝑝!(𝑐) is defined in the same way as the target 

word probability: 𝑝!(𝑐) = ∑ 𝑛!(𝑐, 𝑡)% 𝑘𝑟⁄ . 

• Positive pointwise mutual information (PPMI): Pointwise mutual information 

(PMI; Church & Hanks, 1990) is an information-theoretic measure defined as the log 

ratio of probabilities: 

PMIr(𝑐, 𝑡) = 𝑙𝑜𝑔& ratior (𝑐, 𝑡) 

PMI is sometimes used directly (e.g., Recchia & Jones, 2009). However, many 

sources (e.g. Bullinaria & Levy, 2007, 2012; Mandera et al., 2017; Baroni et al., 

2014) have found that superior results can be achieved by restricting PMI to positive 

values (positive PMI; PPMI), thereby only considering word co-occurrences which 
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are more frequent than expected: 

PPMIr(𝑐, 𝑡) = 𝑚𝑎𝑥80,	PMIr(𝑐, 𝑡)9 

PPMI is often selected as the de facto best count model for general tasks in 

distributional semantics research (e.g. Mandera et al., 2017; Bullinaria & Levy, 2012; 

Baroni et al., 2014; Kiela & Clark, 2014). 

N-gram models. N-gram models have long been employed in corpus analysis, 

computational linguistics, and cognitive psychology, with Google's Web 1T 5-gram corpus 

(Brants & Franz, 2006) being a popular recent example5. N-gram models are conceptually 

simpler versions of count-vector models in that they are based on the same underlying method of 

counting word-to-word co-occurrences. However, there are critical differences in word 

representation and comparison. Whereas a count vector model represents each word in the 

corpus as a fixed-length vector of ordered, unlabelled co-occurrences (one dimension for each 

unique word token in the corpus), an n-gram model represents a word as a labelled list of 

frequencies for each other word with which it co-occurs in the corpus (see Figure 2 for an 

illustration). It is important to note, therefore, that two words can only be meaningfully 

compared using an n-gram model if they have actually occurred at least once within the same 

context window; otherwise, the co-occurrence frequency is automatically zero (i.e., target word 

and context word never co-occurred). 

[Figure 2 about here] 

We consider three n-gram models that differ in their transformation of co-occurrence 

frequencies. In general, n-gram models use the same method for constructing the co-occurrence 

frequency matrix as count vector models; as with the count vector models, we let window radius 

r take values 1, 3, 5 and 10. Since the n in n-gram comprises a sequence of the target word plus 

its surrounding context words, these window radii correspond to 2-, 4-, 6-, and 11-grams. 
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• Log n-gram frequency: Based on the same calculations as the log co-occurrence 

frequency count vector model, this model defines the relationship between two words 

t and c as their log-transformed co-occurrence frequency within a context window of 

radius r.  

• Probability ratio n-gram: Based on the same calculations as the probability ratio 

count vector model, this model defines the relationship between two words t and c as 

the probability of finding them together within a context window of radius r 

compared to the probabilities of finding them separately within the corpus. 

• PPMI n-gram: Based on the same calculations as the PPMI count vector model, this 

model defines the relationship between two words t and c as their log-transformed 

probability ratio, with negative values treated as zero. 

Predict models. Many modern predict models are based on artificial neural network 

architectures, including those implemented in the popular software tool Word2vec (Mikolov, 

Chen, et al., 2013). These models are realized as neural networks that map between context and 

target words with a single hidden layer, illustrated schematically in Figure 1, where words are 

represented in input and output layers by Huffman codes. Predict models are also vector models, 

where the vector representation of a target word comprises the row of weights between the input 

layer and the hidden layer. 

We consider two predict models that differ in their direction of prediction6. As with the 

count vector models, we let r take values 1, 3, 5 and 10 during training; though as is usual for 

implementations of such models, the actual width of the window before and after the target word 

at each training step is randomly selected from {1, … , 𝑟}.  

• Continuous bag of words (CBOW): This model is trained to predict the target word 

from the unordered collection of the context words. The mean of the context words’ 
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codes is used as input (Mikolov, Chen, et al., 2013). 

• Skip-gram: This model is trained to predict each of the context words separately 

from the target word, and effectively reverses the learning direction of CBOW. 

There are a great many potential parameters available for predict models. The most 

obvious is the specific architecture of the neural network, namely the number of units in its 

hidden layer. This is the embedding size, denoted e. Unlike count vector models, neural net-

based predict models must implicitly perform dimensionality reduction whenever the hidden 

layer is smaller than the input layer, which will always be the case for the models we employ in 

this paper. For each of the models below, we trained with 𝑒	 = 	50, 100, 200, 300, 500, matching 

values used by Mandera et al. (2017). The Word2vec implementations of CBOW and skip-gram 

models have further optimization and regularization steps which have been found to improve 

performance (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Negative sampling involves 

updating only a randomly selected subset of network weights at each training step in the negative 

cases (i.e. words not found in the window), and sub-sampling involves randomly ignoring high-

frequency words with a fixed probability. Following the advice of Baroni et al. (2014) and 

Mandera et al. (2017), we used a fixed value of 10 for negative sampling, and sub-sampled with 

probability of 10'(. We constructed and trained our predict models in Python 3.7 using version 

2.2 of the Gensim package (Řehůřek & Sojka, 2010), which implements CBOW and skip-gram 

in a manner compatible with the original Word2vec. 

Distributional Measures Between Words 

Whereas n-gram models represent words as variable-length, labelled "look-up tables", 

count and predict vector models both represent words as unlabelled7, fixed-dimensionality 

vectors (see Figure 2). As such, calculating a distributional score or distance between two words 

requires a different process for vector and n-gram LDMs. 
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In an n-gram LDM, two words are compared simply by looking up one word's 

distributional score in the context of the other. For instance, the PPMI n-gram model represents a 

word such as cat by the collection of words that co-occur with cat within radius 𝑟, alongside 

their respective PPMI scores. The words cat and claws can then be compared directly using the 

value PPMI!(cat,	claws).  

By contrast, in a vector LDM, two words are compared by selecting their respective 

fixed-dimensionality vector representations in the model and calculating the distance between 

them using vector geometry. For example, the PPMI count vector model represents a word such 

as cat by the vector of PPMI values between cat and every other word in the corpus; and the 

word claws is similarly represented by the vector of all PPMI values between claws and every 

other word in the corpus. Comparing the words cat and claws involves comparing their 

respective vectors using some measure of distance in high-dimensional vector space. For count 

and predict vector models, we therefore use three popular distance measures to compare words' 

vector representations8: 

• Euclidean distance can be regarded as the “natural” straight-line distance measure in 

a vector space. It is defined as: 

𝑑Euclidean(𝑢, 𝑣) = DE (𝑢) − 𝑣))&
)

= |𝑢 − 𝑣| 

While Euclidean distance is widely used (e.g. Lund & Burgess, 1996; Patel et al., 

1998), it is affected by the overall magnitude of each word vector and is typically 

inferior to alternatives which are not affected by vector magnitude (Bullinaria & 

Levy, 2007, 2012). 

• Cosine distance is a widely used distance metric (e.g., Landauer & Dumais, 1997; 

Mandera et al., 2017; Recchia & Lowerse, 2014) that is normalized by overall vector 
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magnitude (and thus not affected by it). It is defined as: 

𝑑cos(𝑢, 𝑣) = 1 − cos 𝜃*,, = 1 −
𝑢 ∙ 𝑣
|𝑢||𝑣| 

where 𝜃*,, is the angle between the vectors u and v. For count vector models, cosine 

distance has often been found to be the best-performing distance metric across a 

range of tasks (e.g. Baroni et al., 2014; Bullinaria & Levy, 2007, 2012; Lapesa & 

Evert, 2014). It should be noted that cosine distance, thus defined, is not a true 

distance metric in the mathematical sense, since it violates the identity-of-

indiscernibles and triangle-inequality axioms (see Griffiths et al., 2007; Nematzadeh, 

Meylan, Griffiths, 2017, for discussion), and is perhaps better thought of as a measure 

of vector dissimilarity. Despite the technical inaccuracy, 𝑑cos(𝑢, 𝑣) is conventionally 

referred to as a distance, and we follow that convention in the present paper. We note, 

in addition, that human similarity judgements also may not conform to the axioms for 

a distance metric (Tversky, 1977; Yearsley et al., 2017). 

• Correlation distance is a version of cosine distance with mean centering: 

𝑑corr(𝑢, 𝑣) = 𝑑cos(𝑢 − 𝜇*, 𝑣 − 𝜇,) = 1 −
(𝑢 − 𝜇*) ∙ (𝑣 − 𝜇,)

|𝑢||𝑣|  

where 𝜇* and 𝜇* are the means of u and v respectively. In practice, we found that 

correlation distance gives almost identical results to the more widely used cosine 

distance in many scenarios. However, some authors including Kiela & Clark (2014) 

recommend correlation over cosine as a distance measure for LDMs. Like cosine 

distance, correlation distance is not a distance metric in the mathematical sense, but 

nonetheless is commonly used and provides a convenient way to express the 

dissimilarity of vectors. 

Corpora 
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The distributional properties of words and their contexts are estimated from large corpora 

of text which are representative of the language to varying extents. The size, quality and source 

(i.e., spoken or written language) of training corpora have been found to affect the performance 

of LDMs on various tasks (De Deyne et al., 2015; Recchia & Jones, 2009; Bullinaria & Levy, 

2012; Mandera et al., 2017). 

We trained LDMs on three corpora that varied in sizes, quality, and source9. Coming 

from different sources, each corpus required both individual and shared cleaning and pre-

processing steps (detailed below). All corpus processing was done using Python 3.7 and version 

3.2 of the Natural Language Toolkit software library (NLTK; Bird et al., 2009). 

• BNC: The British National Corpus (BNC; BNC Consortium, 2007) is a very high-

quality corpus of 100 million words of spoken and written language. It represents a 

collection of 4,049 documents of British English language from the early 1990s, 

collected from a variety of sources, and includes approximately 90 million words of 

written language and 10 million words of spoken language (both prepared and 

spontaneous speech). It is a professional corpus of a high quality that was designed to 

be representative of modern British English. It has been widely used to train LDMs 

(e.g. Landauer & Dumais, 1997; J. Levy & Bullinaria, 2001; Bullinaria & Levy, 

2007; McDonald, 2000; Patel et al., 1998). The BNC is provided as a collection of 

XML files, including document metadata and part-of-speech tagging. A schema for 

automatic removal of all non-textual tagging is also available from the Oxford Text 

Archive (2009), yielding a corpus of plain-text documents. 

• Subtitles: The Subtitles corpus is a reasonably high-quality corpus of 200 million 

words of spoken language, representing a collection of subtitles from 45,099 

television programs and films broadcast by the British Broadcasting Corporation 
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(BBC) channels in the period 2010–2012. A corpus of BBC subtitles was first used to 

compile the SUBTLEX-UK database of word frequencies, which outperformed BNC 

word frequencies in predicting word recognition performance (van Heuven et al., 

2014). The programs contain a mixture of scripted and unscripted (i.e., spontaneous) 

speech for audiences ranging from newborn to adult, across a wide range of topics 

and genres. It is a high-quality corpus, having been professionally transcribed, 

although it was not explicitly designed to be representative of British English. Raw 

subtitle files contain many elements apart from the words spoken during the 

broadcast, such as non-linguistic descriptions of events and sounds taking place, and 

numeric mark-up describing the order and timing of utterances. As well as removing 

all timestamps and associated formatting elements, we removed segments which were 

likely descriptions of sounds, events or metadata (e.g. LAUGHTER AND APPLAUSE 

or Subtitles by Red Bee Media Ltd). Two documents were excluded for containing 

invalid formatting. 

• UKWAC: The United Kingdom Web as Corpus (UKWAC; Baroni et al., 2009) is 

low-quality corpus of approximately 2 billion words of written language. It comprises 

text scraped from webpages with .uk domains between 2005 and 2007, where 

medium-frequency words from the BNC were used as seed words to select pages. It is 

provided as a collection of plain text files (without HTML markup) and associated 

source metadata. UKWAC is much larger than the other two corpora, but has been 

subjected to minimal quality control and therefore contains a much higher level of 

noise, including typos (e.g., htink instead of think), misspellings (e.g., dissapear 

instead of disappear), and run-together words (e.g., wantto instead of want to). It has 

previously been used to train LDMs, particularly predict models (e.g. Baroni et al., 
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2009; Mandera et al., 2017; Bullinaria & Levy, 2012; J.P. Levy et al., 2017; O. Levy 

et al., 2015; Pereira et al., 2016). We removed all source metadata prior to further 

processing. 

We processed all three corpora as consistently as possible. After the individual pre-

processing steps described above, all corpora were tokenized using the Penn Treebank word 

tokenizer in NLTK, modified to account for additional non-alphanumeric symbols found with 

high frequency in the corpora (e.g. £). Resulting tokens were converted to lower case, and most 

grammatical punctuation was removed. Further details of the tokenization procedure are 

available in supplementary materials. 

Other commonly used corpus pre-processing steps include the removal of low-frequency 

tokens (J. Levy & Bullinaria, 2001; Bullinaria & Levy, 2007; Lund & Burgess, 1996; Mikolov, 

Chen, et al., 2013; O. Levy et al., 2015), and the removal of high-frequency tokens or those 

appearing in a “stop list” (Rapp, 2003; Lowe & McDonald, 2000; Bullinaria & Levy, 2012; 

Riordan & Jones, 2011). This is often done to reduce computational cost, but after a thorough 

investigation, Bullinaria and Levy (2012) found that doing so led to little performance gain over 

several evaluation criteria. Since we were able to complete all computations without pruning 

linguistic tokens from the corpus, we did not use such approaches in order to retain maximum 

vocabulary coverage for the evaluation procedures, and to avoid making psychologically 

unmotivated alterations to the LDM algorithms. 

Evaluation Tasks  

Since our goal was to examine the efficacy of LDMs in fitting human data across a range 

of cognitive tasks, we required a suite of tasks which (a) used words as stimuli, (b) involved 

access to semantics (i.e., conceptual processing), and (c) varied in the complexity of their 

conceptual processing and use of implicit vs. explicit dependent measures. In order of increasing 
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conceptual complexity (i.e., operationalized as greater diversity of semantic relations in the 

stimulus set, greater reliance on syntagmatic over paradigmatic relations, and greater reliance on 

bag-of-words relations over syntagmatic and paradigmatic), we selected the following five tasks: 

synonym selection (Study 1), similarity and relatedness judgement (Study 2), thematic 

relatedness production (Study 3), semantic priming (Study 4), and semantic decision (Study 5). 

Studies 1-3 involve explicit task responses as dependent measures (e.g., ratings, word choice), 

Study 4 involves an implicit measure of processing effort (i.e., response times), and Study 5 

involves both. Table 2 summarizes the task characteristics, and each one is described in more 

detail in its relevant study below. 

Study 1: Synonym Selection 

Synonym-finding tests consist of multiple-choice questions where a seed word is 

presented (e.g. rusty), and the test-taker must select from a list of candidate synonyms the option 

which is closest in meaning to the seed (e.g., corroded, black, dirty, painted; in this case, 

corroded is the correct choice). LDM performance in these tasks is based on comparing the seed 

word to each candidate synonym, where the candidate with the best score is selected and 

evaluated according to its fit to objective accuracy (i.e., the correct synonym choice per seed: an 

explicit measure of semantic/conceptual processing) rather than to human data per se. As a task, 

synonym selection relies strongly on a single semantic relation (i.e., synonyms) that can be 

learned paradigmatically (e.g., the structures rusty metal and corroded metal allows the rusty–

corroded synonymic relation to form), which makes it a conceptually simple task.  

In this and the following studies, since each of our 540 candidate LDMs is tested on 

multiple datasets, there is a very large volume of results. As such, we concentrate in the results 

section on describing the best-performing models and summaries of overall trends. Full results 

are available in the online materials. 
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Method 

Materials and datasets. We modelled three separate synonym selection tests that differ 

in their construction and difficulty. 

TOEFL. The Test of English as a Foreign Language (TOEFL; Educational Testing 

Service, 1989) is a test undertaken by American college entrants to evaluate their English 

vocabulary. It includes 80 four-way multiple-choice questions comprising a mixture of low- and 

high-frequency words. It is widely used as a benchmark for LDMs (Bullinaria & Levy, 2007, 

2012; Kiela & Clark, 2014; Baroni et al., 2014; Rapp, 2003; Recchia & Jones, 2009; Mandera et 

al., 2017; Landauer & Dumais, 1997). For instance, when used by Landauer & Dumais (1997), 

LSA achieved a score of 64%, which was approximately the average score of non-native 

English-speaking university applicants taking the test. With a careful choice of parameters, 

Bullinaria & Levy (2012) later managed to achieve a perfect score. 

We used TOEFL as it was used by Landauer & Dumais (1997) and Bullinaria & Levy 

(2007; 2012), with a few American-English spellings replaced by their British-English 

counterparts (e.g., recognized replaced with recognised), since all three of our corpora are from 

predominantly British sources. 

ESL. The English as a Second Language test (ESL; Tatsuki, 1998) is a multiple-choice 

test for non-native speakers of English. It consists of 50 four-way multiple-choice questions 

comprising mainly higher-frequency and some lower-frequency words. It is used as an LDM 

benchmark (e.g. Turney, 2001; Jarmasz & Szpakowicz, 2004; Recchia & Jones, 2009; Terra & 

Clarke, 2003), though less widely than TOEFL. 

We altered one term of the ESL test to remove a function word (a hurry was replaced by 

hurry). We also omitted one question as containing a two-word term (unwanted plant as a 

synonym for weed). 
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LBM: Levy, Bullinaria, and McCormick’s (2017) test. J. Levy et al. (2017) have 

proposed a new multiple-choice synonym test for the evaluation of LDMs and other linguistic 

models, which improves on replication difficulties found with other synonym tests, and over-

reliance on a small collection of evaluation datasets in the literature. It consists of 200 four-way 

multiple-choice questions with a mixture of high- and low-frequency words (Bullinaria, n.d.).  

Evaluation procedure. For both count vector and predict models, we computed the 

distance between the vector representations of the seed word and each of the choice words, and 

selected the choice with the smallest distance. In any cases where a seed word was not found in 

the corpus, the question was marked as incorrect, and in any cases where a choice word was not 

found, it was assigned an infinite distance that guaranteed it would not be selected. Where there 

were ties between choice words for smallest distributional distance, we selected the last-found 

item as the model answer.  

For n-gram models, the choice word with the largest distributional score relative to the 

seed word was selected. In any cases where a seed word was not found in the corpus, the 

question was marked as incorrect. In any cases where a choice word was not found within the 

seed word’s collection of co-occurring words (i.e., either because it never co-occurred with the 

seed or because it was not in the corpus), it was assigned the minimum distributional score of 

zero for the model. Ties between choice words for largest distributional score were resolved as 

above. 

Performance for each LDM was calculated as the percentage score of correctly identified 

synonyms per dataset. For the score achieved by each LDM, we computed a Bayes factor BF10 

for the alternative hypothesis that the model was performing above chance against the null 

hypothesis that it was performing at chance level, by modelling the score as binomially 

distributed Binom(𝑛, 𝑝).	As each test set consisted of four-way multiple-choice questions, the 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 43 
 
 

 

null hypothesis H0 was that 𝑝	 = 	1/4	in each case, with the alternative hypothesis H1 being 𝑝	 >

	1/4, with an uninformative one-tailed beta distribution prior on p (Wagenmakers, 2007). In this 

and future studies, when determining optimal models, corpora, and parameters, we considered 

one LDM1 superior to another LDM2 if the data were at least 10 times more likely to occur under 

LDM1 (i.e., model comparison BF12 ≥ 10; see Jeffreys, 1998). Our key optimality criterion was 

robustness of performance: for example, a particular window radius r would only be considered 

optimal if it produced superior performance for a range of LDMs and corpora, and thus could 

reasonably be expected to generalize well. 

Results and Discussion 

[Figure 3 about here] 

LDM performance for synonym selection was overall at its best for a context window 

size of 1 (although of r = 3 was comparable or better for some of the best-performing LDMs). 

Cosine and correlation distance produced almost identical results in most instances, greatly out-

performing Euclidean distance, but cosine distance had the edge amongst the best-performing 

LDMs. Results for all models can be found in the online materials and are summarized in 

Figure 3; performance for each model using the optimal parameters (context window size 1, 

cosine distance) is shown in Figure 4 and forms the basis for the wider trends and 

recommendations reported below. 

[Figure 4 about here] 

LDM behaviour was relatively consistent across synonym datasets. At optimal parameter 

settings, scores were very high on TOEFL and LBM, while scores for ESL were generally much 

lower. Across all datasets, there was extremely strong evidence in favour of using the best LDMs 

to select synonyms (all BF10 > 1.0×1090). Not every parameter setting performed equally well, 

with some (e.g. log n-gram model trained on the BNC with radius 1 using cosine distance) 
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performing no better than chance on all datasets. 

In terms of model family, predict models generally outperformed count and n-gram 

models, with the best predict models at optimal parameters achieving up to 95% scores on 

TOEFL, 93% on LBM, and 60% on ESL. Of the predict models, both skip-gram (at r = 1) and 

CBOW (at r = 1 or 3) performed equally well overall, and while larger embedding sizes tended 

to achieve better results, in both cases the best performance was found at e = 300. Of the count 

models, PPMI generally performed the best, corroborating the findings of Bullinaria & Levy 

(2007; 2012). Notably, with optimal parameters, the PPMI count vector model was close to 

competitive with the best predict models for two datasets (achieving 85% on TOEFL, 89% on 

LBM) and competitive on one (achieving 60% on ESL). N-gram models were highly sensitive to 

parameters but overall tended to perform worst at synonym selection. However, n-gram models 

performed well when trained on UKWAC and at certain parameters occasionally beat the 

optimal predict model (e.g., probability ratio n-gram model using UKWAC at r = 3 achieved the 

top score of 68% on ESL). Nonetheless, this n-gram success was not representative of overall 

trends in synonym selection performance and it is therefore unlikely to generalize well.  

The UKWAC corpus overall produced the best performance for synonym selection. 

Although models trained on the different corpora yielded broadly similar patterns of results, 

UKWAC tended to do substantially better than BNC, a trend also observed by Bullinaria & Levy 

(2012). The Subtitles corpus performed a little better than the BNC, but still substantially worse 

than UKWAC. The advantage of UKWAC was particularly evident for the optimal family of 

predict models and for n-gram models. 

In summary, the optimal LDM for the relatively simple, explicit task of synonym 

selection appears to be either skip-gram or CBOW predict model at a large embedding size of 

300, trained on a very large but noisy UKWAC corpus of written language, with a small window 
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radius (either skip-gram at r = 1 or CBOW at r = 1 or 3), and using cosine distance between 

vectors. The next-best choice is the PPMI count vector model at the same parameters. In 

Bayesian terms, the optimal predict models were between BF = 1.00 to 1.48×1013 times better 

(depending on dataset) than this next-best choice10. In many ways, these findings are 

unsurprising: LDMs that are optimized to capture paradigmatic relations (i.e., predict models) 

excel at predicting data in a task that relies on paradigmatic relations (i.e., synonym selection). 

For the conceptually simple task of synonym selection, our findings support the most common 

recommendation in distributional semantic research: using predict models trained on a very large 

corpus of noisy written text. 

These recommendations are consistent with previous findings for synonym selection (e.g. 

Mandera et al., 2017; Bullinaria & Levy, 2007; 2012). Nonetheless, there are some instances 

where our findings differ from previous research for apparently the same LDM, parameter 

settings, and dataset. For instance, Bullinaria and Levy (2007) achieved accuracy of 83% on the 

TOEFL dataset using a radius-1 symmetric-window PPMI model trained on the BNC, for which 

we achieved 79% using the same parameters. The reason for this discrepancy in performance is 

due to differences in corpus pre-processing and tokenization steps: we use single-word 

tokenization (i.e., bag-of-words approach), whereas they used a more sophisticated tokenization 

strategy based on BNC part-of-speech tags11. As we wished to retain a consistent bag-of-words 

approach in order to examine how LDM appropriateness varied systematically across models, 

corpora, and tasks, we did not further explore tokenization strategies that could not be applied 

uniformly across all corpora. However, researchers interested in optimizing LDM performance 

for one particular task may be able to enhance performance by tweaking their corpus pre-

processing strategies. 
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Study 2: Similarity and Relatedness Judgements 

Datasets of direct human similarity judgements are another common way to evaluate 

LDMs. They typically consist of responses from human participants to the task of rating the 

similarity or relatedness of pairs of words, and as such represent an explicit measure of semantic 

or conceptual processing. In the context of such judgements, semantic similarity is a relatively 

specific measure of the degree to which two words or concepts resemble each other in meaning 

(e.g., student–pupil, old–new, king–queen), whereas semantic relatedness is a more general 

construct that reflects the degree to which two words or concepts are connected via a functional, 

thematic, or other relation (e.g., grapes–wine, river–water, physics–proton). LDM performance 

in these tasks is based on comparing each word pair (e.g., king–queen) to produce a distributional 

measure, and then evaluated by correlating these LDM measures with the corresponding human 

similarity or relatedness rating (see Wingfield & Connell, 2022, for an overview of alternative 

theories and measures of semantic similarity). 

Both tasks are more conceptually complex than the synonym selection task of Study 1. 

Although similarity judgements clearly rely on similarity of meaning, which is paradigmatically 

learned (e.g., the structures hard exam and difficult exam allow the hard–difficult synonymic 

relation to form), words are often rated as highly similar despite having distinctly different 

referents (e.g., king and queen; old and new). For example, the structures king’s palace and 

queen’s palace allow the king–queen categorical relation to form, or old hat and new hat allow 

the old–new antonym relation to form. Similarity judgement tasks are therefore a little more 

conceptually complex than the synonym selection task of Study 1 when they use a more diverse 

variety of paradigmatic relations. Relatedness judgements are more complex again due to their 

broader use of a variety of relations that go beyond paradigmatic alone. The stimuli of 

relatedness judgements sometimes overlap with similarity judgements in their use of 
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paradigmatic relations (e.g., king–queen are categorically related; money–wealth are 

synonymically related), but they also feature syntagmatic relations (e.g., river–water are 

compositionally related and comprise a noun-noun phrase), and other bag-of-words relations 

(e.g., physics–proton are thematically related but do not neatly fit paradigmatic or syntagmatic 

forms).  

Method 

Materials and datasets. We modelled four separate similarity and relatedness datasets 

tests that differ in their instruction to participants. 

Simlex-999. The Simlex-999 dataset (Hill, n.d.; Hill et al., 2016) consists of similarity 

ratings on 999 word pairs. Participants were instructed to rate word pairs on similarity only, and 

disregard relatedness (𝑁 = 50 per pair). Simlex-999 has previously been used to evaluate LDMs 

(O. Levy et al., 2015; Pereira et al., 2016; Mandera et al., 2017; Nematzadeh et al., 2017). 

WordSim-353. The WordSim-353 dataset (Gabrilovich, 2002; Finkelstein et al., 2002) 

consists of composite similarity/relatedness ratings from human participants on 353 word pairs 

(𝑁 = 13 or 𝑁 = 16 per pair). This set of word pairs was split post-hoc by Finkelstein et al. into 

subsets that were linked by either semantic similarity (WordSim-353-similarity: 203 pairs) or 

relatedness (WordSim-353-relatedness: 252 items; 102 pairs were included in both lists). 

WordSim-353 has previously been used to evaluate LDMs (Baroni et al., 2014; Kiela & Clark, 

2014; Pereira et al., 2016; Agirre et al., 2009; Mandera et al., 2017).  

RareWord. The RareWord dataset (Luong, n.d.; Luong et al., 2013) consists of 

participants’ similarity ratings on a Likert-style scale for 2034 word pairs (𝑁 = 10 per pair). The 

word pairs in the RareWord dataset were specifically chosen to focus on low-frequency words 

such as apocalyptical→prophetic, and were constructed based on WordNet synonym sets. It has 

previously been used to evaluate LDMs (Pennington et al., 2014; O. Levy et al., 2015).  
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MEN. The MEN dataset (Bruni, 2012; Bruni et al., 2014) consists of human similarity 

judgements on 3000 word pairs (N per pair not reported). It has been used to evaluate LDMs 

(Baroni et al., 2014; Kiela & Clark, 2014; Pereira et al., 2016). Unlike Simlex-999, WordSim-

353 and RareWord, which use Likert-style rating scales, MEN scores are computed from a 

forced-choice paradigm where participants picked the most closely related word pair from two 

possible options (e.g., wheels:car and dog:race). Nevertheless, the MEN dataset can be modelled 

in the same way as the others.  

Evaluation procedure. For both count vector and predict models, we correlated 

distributional distances between each word pair with mean participant similarity/relatedness 

ratings. For n-gram models, distributional scores between word pairs were correlated with 

participant similarity/relatedness ratings. In cases where a test word was not found in the corpus, 

we treated it as missing data for the purposes of the correlation. Since a better fit results in 

negative correlation for count vector and predict models (high similarity/relatedness 

corresponding to low distance) and positive correlation in the case of n-gram models (high 

similarity/relatedness corresponding to high distributional score), we report absolute Pearson’s 

correlation values for ease of cross-comparison. 

In addition to the correlation values, we computed Bayes information criterion (BIC, also 

known as the Schwarz criterion; Schwarz, 1978) values for a single-predictor linear regression of 

human ratings on each LDM predictor (alternative hypothesis) and an intercept-only baseline 

regression (null hypothesis). From BIC values, we estimated Bayes Factors for the inclusion of 

the LDM predictors (Wagenmakers, 2007, p. 796). 

Results and Discussion 

The optimal parameters for similarity judgements (Simlex-999, WordSim-353-similarity 

and RareWord) and relatedness judgements (WordSim-353-relatedness and MEN) differed 
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markedly so we report and discuss them separately. For similarity judgement datasets, LDM 

performance was best for smaller sizes of window radius r and overall optimal at r = 1, using 

either correlation or cosine distance (both of which greatly outperformed Euclidean distance). 

For relatedness judgement datasets, the best LDM performance was for larger sizes of window 

radius r and optimal at r = 10, using either correlation or cosine distance (both of which 

substantially outperformed Euclidean distance). Performance for each model using these optimal 

parameters is shown in Figure 5 and Figure 6, and forms the basis for the trends and 

recommendations reported below; results for all models can be found in the online materials and 

are summarized in Figure 3. 

[Figure 5 about here] 

[Figure 6 about here] 

LDM performance varied across datasets. With optimal parameter settings, all model 

families were able to predict human similarity and relatedness judgements with high accuracy, 

particularly for the WordSim-353-similarity and MEN datasets (largest magnitude Pearson’s 𝑟 = 

.72 and .80 respectively), and more moderately for the RareWord dataset (largest 𝑟 = .42). 

Across all datasets, there was extremely strong evidence in favour of using the best LDMs to 

predict human similarity (BF10 > 1.5 × 1047) and relatedness judgements (BF10 > 1.0 × 10303). 

Not every parameter setting was viable, however, with some (e.g., Conditional probability count 

vector model, trained on Subtitles corpus with radius 1, using Euclidean distance, on the Simlex-

999 dataset) providing strong evidence for the null hypothesis (BF"# = 	0.035). 

Predict models produced the best performance for both similarity and relatedness 

judgements. In particular, CBOW (at embedding size 300 for similarity judgements and 200 for 

relatedness judgements) consistently did better than other models, with skip-gram a close second. 

The next-best model family was n-gram models, where PPMI n-gram was often competitive with 
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skip-gram (particularly for relatedness judgements, and particularly when trained on UKWAC 

corpus). Log n-gram models also did well for relatedness judgements, if not as well as PPMI n-

gram. However, n-gram models did not perform consistently across datasets, with notably poor 

performance on Simlex-999 and RareWord at optimal parameters. For these datasets, the 

strongest count vector model (PPMI) greatly outperformed n-gram models, although that pattern 

did not occur in other datasets.  

In terms of corpus choice, similarity judgements overall favoured UKWAC (although 

both Subtitles and UKWAC corpora were jointly favoured in all but the RareWord dataset), 

whereas relatedness judgements favoured the Subtitles corpus (with UKWAC lagging some way 

behind). LDMs trained on the BNC consistently did worse than those trained on either UKWAC 

or Subtitles corpora. The pattern of LDM performance was generally consistent across corpora, 

even where it varied by dataset. 

In summary, the optimal LDM for relatively simple, explicit similarity judgements 

closely resembles that for synonym selection: CBOW predict model, at a large embedding size 

300, trained on either a very large but noisy corpus of written language (UKWAC), using a small 

window radius of 1 and correlation or cosine distance between vectors. Alternatively, where the 

dataset is not primarily composed of low-frequency words, a smaller higher-quality corpus of 

spoken language (Subtitles) is equally effective at these parameters. Low-frequency words 

appear to require a larger corpus to achieve adequate lexical coverage (e.g., UKWAC contained 

99.2% of words in the RareWord dataset, whereas the otherwise-effective Subtitles corpus 

contained only 79.7%) and contextual variety (e.g., the smallest corpus BNC contained 90.1% of 

RareWord items, but nonetheless produced the worst performance). These recommendations are 

consistent with previous findings for similarity judgements: for example, Mandera et al. (2017) 

achieved their best results using small context windows (r = 1 or 2), large corpora and CBOW 
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predict models. The consistency of LDM optimality between synonym selection and similarity 

judgement is unsurprising given that both tasks require a relatively simple form of conceptual 

processing (i.e., evaluating similarity of meaning). The optimal LDM for slightly more complex 

relatedness judgements, on the other hand, appears to be CBOW predict model, at a medium 

embedding size of 200, trained on a medium-sized high-quality corpus of spoken language 

(Subtitles), using a large window radius of 10 and either cosine or correlation distance between 

vectors. Bayesian comparisons at optimal parameters showed that these optimal predict LDMs 

were at least BF = 1.17×106 and 6.61×1011 times better than the top n-gram model (i.e., the 

second-best model family) for similarity and relatedness judgements, respectively. While 

similarity and relatedness judgements share many optimal parameter settings, there are some 

major differences, most notably the jump from a minimal (r = 1) to a maximal (r = 10) window 

size, and the move away from the large-but-noisy UKWAC corpus towards the higher-quality 

but smaller Subtitles corpus. These differences may reflect the slightly more complex nature of 

relatedness judgements compared to similarity judgements, where the paradigmatic link between 

two words goes beyond similarity of meaning (e.g., strange–odd) and may instead involve 

locative (e.g., egg–nest), integrative (family–planning), part–whole (flower–petal), or other 

relations. Many of the highly rated word pairs in relatedness datasets co-occur frequently in text, 

which is reflected by the competitive performance of PPMI n-gram models in capturing 

relatedness ratings. Indeed, the datasets where n-gram models perform worst are Simlex-999, the 

similarity judgement dataset where care was taken to exclude semantic relatedness, and 

RareWord, where the vast majority of word pairs (78%) are connected in WordNet via 

hypernymic or similar-to relations rather than broader semantic relations (Pilehvar et al., 2018).  

In short, as found for synonym selection in Study 1, semantic tasks that make extensive 

use of paradigmatic relations (i.e., similarity and relatedness judgements) are best predicted by 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 52 
 
 

 

LDMs that are optimized to capture paradigmatic relations (i.e., predict models). However, when 

it comes to corpus choice, the present findings diverge from those of Study 1 and are not fully 

consistent with the typical distributional semantics recommendation of predict models trained on 

large corpora. Similarity judgements have low conceptual complexity and both a large-and-noisy 

written corpus (UKWAC) and a medium-sized high-quality spoken corpus (Subtitles) performed 

equally well. Relatedness judgements have medium conceptual complexity and best served by a 

medium-sized high-quality spoken corpus (Subtitles). From Study 1 to 2, increasing conceptual 

complexity is accompanied by a diversification in corpus recommendations. 

However, it should be noted that the distinction between semantic similarity and 

relatedness is not as clear-cut as the datasets may suggest. In the case of WordSim-353, while the 

dataset was separated into similarity and relatedness judgements by Finkelstein et al. (2002), the 

distinction was post-hoc and was not part of instructions given to participants. Similarly, while 

MEN is described by Bruni et al. (2014) as a relatedness dataset, many of its top-scoring items 

are near-synonyms (e.g., cathedral–church, cat–feline), leaving the precise distinction between 

similarity and relatedness unclear. For these and related reasons, some researchers have been 

highly critical of using human similarity and relatedness judgement data to evaluate LDMs at all 

(Faruqui et al., 2016; Batchkarov et al., 2016). Nonetheless, given the different patterns of 

optimal parameters, we preserve the distinction as part of our broader overview of conceptual 

tasks in the present study. 

Study 3: Thematic Relatedness Production 

Thematic relatedness is a form of conceptual relation that is concerned with the 

complementary roles performed by concepts in a given situation (Estes, Golonka & Jones, 2011; 

Lin & Murphy, 2001). For instance, a fork and a knife perform complementary roles in the 

scenario of a meal or place setting; an apple and gravity perform complementary roles in the 
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event of Newton’s discovering the principle of universal gravitation. By focusing on how two 

concepts occupy distinct but complementary roles in a particular time and place, thematic 

relations include many common semantic relations (e.g., temporal beach–summer, spatial apple–

orchard, functional hammer–nail) but exclude others (e.g., synonyms shoes–sneakers, 

taxonomic flower–rose, and mere association of concepts that never appear in the same 

situation). Thematic relations therefore represent a form of conceptual information that is critical 

to many fundamental cognitive tasks, including language comprehension, inference and analogy 

making, and memory encoding and retrieval (see Estes et al., 2011, for review). 

Such conceptual thematic relations largely reflect syntagmatic relations, and in that sense 

can often overlap with the grammatical sense of thematic relation (i.e., the roles played by the 

arguments of a verb). For example, cat–mouse may be thematically and syntagmatically related 

in agent–patient roles (e.g., the cat chased the mouse), and boat–lake may be likewise related in 

agent–location roles (e.g., the boat floated on the lake). However, some conceptual thematic 

relations reflect more high-level, abstracted relations that are different to the grammatical roles 

outlined above. Both apple–gravity and castle–money, for instance, are thematically related in 

the conceptual sense and are unlikely to be linked paradigmatically or syntagmatically; instead, 

they constitute bag-of-words relations.  

While not typically used for evaluating LDMs (cf. Asr, Zinkov & McRae, 2018), we 

chose to examine thematic relatedness production as an example of a task that is more 

conceptually complex than was used in Studies 1 and 2 (by its reliance on a moderately diverse 

set of syntagmatic and to some extent bag-of-words relations, rather than paradigmatic relations) 

but is not quite as complex as some of our later tasks, while still representing an explicit measure 

of conceptual processing. In this task, participants are given a cue word and freely produce a list 

of target words that are thematically related, which allows each cue-target pair to be scored by 
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rank or frequency of production. Because two words will tend to co-occur in language if their 

referent concepts co-occur in the real world (Connell, 2019; Louwerse, 2011), we hoped that 

LDMs would be capable of detecting the thematic relations underlying the responses. LDM 

performance can then be evaluated by comparing each cue–target pair (e.g., beach–summer) to 

produce a distributional measure, and then correlating measures with the corresponding human 

production frequency. 

Method 

Materials and datasets. We modelled a single dataset of thematic relatedness production 

norms by Jouravlev and McRae (2016). This dataset consists of 1,174 related concept pairs, 

generated by asking participants (𝑁 = 200) to list thematically related target concepts for 100 

cue object concepts. For instance, participants saw the cue concept cat and were asked to write 

down at least three names of other thematically related objects (i.e., things that might interact 

with it or be related to it), while avoiding taxonomic responses (e.g., dog: animal). The dataset 

contains a list of thematically related concepts for each cue word (e.g., cat: dog, mouse, claws, 

pet), along with production frequency (i.e., the number of participants who produced each 

response), the rank order in which the responses were produced (i.e., first, second, or third), and 

a weighted production frequency that combined the two as an overall measure of strength of 

thematic relatedness (i.e., concepts produced first were weighted more heavily than those 

produced second, and so on). We used the weighted production frequency as our dependent 

variable.  

Evaluation procedure. For predict and count vector models, we calculated the distance 

between the vector representations of the cue concept and each of its thematically related 

concepts, and correlated these distances with the corresponding weighted production frequencies. 

For n-gram models, we calculated the distributional score between the cue concept and each of 
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its thematically related concepts, and correlated the scores with the corresponding weighted 

production frequencies. We used the dataset as published, having substituted words to account 

for typos, American-English and multi-word terms (e.g. cotton candy was not found in our 

British-English corpora, and was replaced by candyfloss). In cases where terms were not found 

in our corpora and appropriate substitutions could not be found, we omitted the data points. 

Since a better fit results in negative correlation for count vector and predict models (high 

relatedness corresponding to low distance) and positive correlation in the case of n-gram models 

(high relatedness corresponding to high distributional score), we report absolute Pearson’s 

correlation values for ease of cross-comparison. 

As with the similarity judgement datasets in Study 2, we estimated Bayes Factors from 

BIC in a single-predictor linear regression. 

Results and Discussion  

Overall, LDMs performed best with larger values of window radius r, where the optimal 

value varied between r = 5 and r = 10 depending on model choice (see below). Correlation and 

cosine distance produced very similar results, and again both substantially outperformed 

Euclidean distance. Performance for each model using these optimal parameters forms the basis 

for the trends and recommendations reported below; results for all models can be found in the 

online materials and are summarized in Figure 7. Model performance for 𝑟	 = 	5 using cosine 

distance is shown in Figure 3. In general, LDMs did well at modelling thematic relatedness, with 

the best LDM scores correlating with weighted production frequency at approximately Pearson’s 

r = .26, which constitutes extremely strong evidence in favour of using LDM scores to predict 

thematic relatedness production (BF10 > 2 × 1015). 

[Figure 7 about here] 

The best model family for thematic relatedness production was tied between predict and 
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n-gram models. With optimal parameters, skip-gram (at embedding size 300 or 500) and CBOW 

(at e = 500) performed equally well at a window radius of 10, as did log n-gram at r = 5. PPMI 

n-gram also achieved good results, but was overall not quite competitive with the optimal 

models. Count vector models (particularly probability ratio and PPMI) performed moderately 

well in capturing thematic relatedness but nonetheless lagged behind predict and n-gram models. 

The Subtitles corpus overall produced the best performance for thematic relatedness 

across all model families, with UKWAC in clear second place and BNC a distant third. While 

performance was similar across all corpora at optimal parameters, there were some differential 

trends in how each model family performed on each corpus. The Subtitles corpus followed 

general trends with predict models (CBOW and skip-gram) tied with n-gram models (log n-

gram) for best performance. When all models were trained on UKWAC, however, predict 

models did best, and when trained on the BNC, n-gram models did best (though in each case, not 

as well as when trained on the Subtitle corpus). 

In summary, the optimal LDM for a somewhat complex task of thematic relatedness 

production would appear to be a choice of three: log n-gram trained on a medium-large high-

quality corpus of spoken language (Subtitles) with window radius 5, or CBOW or skip-gram at 

large embedding size 500 (or 300 for skip-gram only), again trained on a medium-large high-

quality corpus of spoken language (Subtitles), with window radius 10 and cosine or correlation 

distance. Performance of these joint-optimal LDMs was indistinguishable in Bayesian terms, 

where evidence favoured the optimal predict models equally as strongly (BF = 0.44–1.29) as the 

optimal n-gram model. In some respects, specifically in the use of predict models trained on the 

Subtitle corpus with a large window radius, the optimal LDM for thematic relatedness 

production resembles that of semantic relatedness judgements in Study 2. However, this study is 

the first indication that something other than predict models emerges as the optimal LDM for a 
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given task: n-grams are also capable of detecting thematic relationships between concepts. Given 

the much simpler computational load of n-gram models (i.e., count co-occurrence frequencies 

and transform to distributional score, compare words by looking up score) compared to predict 

models (i.e., train neural network with supervised learning, compare words by calculating 

distance between hidden layer vectors), it is remarkable that log n-gram performs as well as 

CBOW and skip-gram models.  

In terms of linguistic distributional knowledge, the present findings show that a semantic 

task that makes extensive use of syntagmatic relations is best predicted by LDMs that specialize 

in syntagmatic relations (i.e., n-gram models). However, the task is also equally well predicted 

by LDMs that are optimized for paradigmatic relations (i.e., predict models). The success of 

predict models at predicting thematic relatedness, despite their limited capture of syntagmatic 

relations, has at least two possible explanations. We noted above that thematic relatedness also 

relies on bag-of-words relations (e.g., computer–internet) in addition to syntagmatic and 

paradigmatic relations; since both n-gram and predict models can detect these kinds of relations, 

they may have contributed to their performance in this task. However, count vector models can 

also detect bag-of-words relations but performed poorly in the task, which suggests that such 

relations were not a critical component of thematic relatedness production. A more likely 

alternative is that the success of predict models may be due to the fact that some thematically 

related words can be connected via similar contexts. For example, knife and fork are thematically 

related because they often appear together in complementary roles in a dining situation, where 

such co-occurrence allows n-gram models to score them as highly related, but each word also 

appears independently in contexts concerning food and dining, where the similarity of these 

contexts allows predict models to score knife–fork as highly related. 

Overall, the findings of this study diverge from the distributional semantics 
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recommendation of predict models trained on large corpora. For the first time, predict models 

were not the only optimal choice of model family, and—like we found for relatedness ratings in 

Study 2—a large but noisy corpus of written text (UKWAC) was not the optimal choice for 

training LDMs. Thematic relatedness production, as a task of moderate conceptual complexity, is 

best fit by either n-gram or predict models trained on a medium-sized high-quality spoken corpus 

(Subtitles). Increasing conceptual complexity appears to be accompanied by some degree of 

diversification in model family and corpus recommendations.  

Finally, it should be noted that this dataset is far less constrained than those of earlier 

studies. Unlike synonym selection in Study 1 and similarity and relatedness judgements in Study 

2, where the word pairs in the datasets were designed by researchers to fulfil certain 

characteristics, the word pairs in this thematic relatedness task were generated freely by 

participants. The ability of LDMs to predict such an unconstrained dataset from this moderately 

complex conceptual task, albeit less accurately than datasets from traditional benchmarking 

tasks, is testament to the power of linguistic distributional information in predicting a wide range 

conceptual behaviour. 

Study 4: Semantic Priming 

Semantic priming refers to the phenomenon whereby people are better able to recognize a 

target word when it is preceded by a word that is related in meaning (see McNamara, 2005; 

Neely, 1991, for reviews). For instance, people are faster to confirm that tiger is a valid word 

(lexical decision) or to read tiger aloud (word naming) when it is preceded by related word lion 

compared to when it is preceded by unrelated word room. In principle, both lexical decision and 

naming tasks can be performed without any access to semantics (e.g., knowing that “tiger” is a 

word but “tigen” is not does not necessarily require accessing the meaning of tiger) but in 

practice the meaning of a word affects how quickly it is processed. 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 59 
 
 

 

The conceptual complexity of semantic priming depends entirely on the stimulus set 

used. Synonyms can prime one another (e.g., Perea & Rosa, 2002), such as error→mistake, 

which indicates that some semantic priming emerges from the same paradigmatic relations that 

underlie the synonym selection task of Study 1 and the majority of similarity judgements in 

Study 2. However, semantic priming also includes priming via thematic relations (i.e., prime and 

target occupy complementary roles in a specific time and place: e.g., L. Jones & Golonka, 2012), 

such as pillow→blanket, which are syntagmatically or bag-of-words learned, and indicates that it 

can be as least as conceptually complex as the thematic production task in Study 3. Moreover, 

semantic priming effects also encompass other complex prime-target relations, including 

integrative priming (i.e., prime and target can be combined into a coherent whole, such as 

wool→coat), and taxonomic priming (i.e., prime and target belong to the same taxonomic 

category, such as lion→tiger), which suggests a level of conceptual complexity beyond that of 

thematic production. We therefore assume semantic priming in lexical decision and naming tasks 

has, in principle, a variable level of conceptual complexity that is determined by the stimuli 

involved. In the present study we chose to use a semantic priming dataset (the Semantic Priming 

Project: Hutchison et al., 2013) that was quite high in conceptual complexity because its stimulus 

set featured a diverse set of semantic relations that relied on paradigmatic relations (e.g., 

synonym error→mistake), syntagmatic relations (e.g., compositional porcelain→doll), as well as 

more general bag-of-words relations that do not neatly fit either paradigmatic or syntagmatic 

definitions (e.g., philosophy→thought, ahoy→ship).  

Many studies have shown that semantic priming effects can be predicted by the linguistic 

distributional relationship between prime and target words, both from the perspective of 

distributional semantics research (M. Jones, Kintsch, & Mewhort, 2006; Lund et al., 1995; 

Mandera et al., 2017) and with reference to linguistic–simulation theories of conceptual 
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processing (L. Jones et al., 2017). In the present study, we focus on semantic priming in lexical 

decision and naming tasks both because of their past history with LDM data and because it offers 

an opportunity to examine an implicit dependent variable (RT) in a task of reasonable conceptual 

complexity. Typically, LDM performance is based on comparing each prime→target pair to 

produce a distributional measure, and then evaluating how well these measures predict human 

response times to the target word (i.e., whether or not the distributional score can predict the 

priming effect on the target). 

Method 

Materials and datasets. We modelled two variables from a single dataset, the semantic 

priming project (Hutchison et al., 2013), which includes a database of response times to 1,611 

target words, each preceded by a four different primes, in lexical decision (𝑁 = 512) and word 

naming (𝑁 = 256) tasks. RT was measured from the onset of the target word to the task-specific 

response: keypress in lexical decision, or speech onset in word naming. We selected data for 200 

ms stimulus onset asynchrony (SOA), the point at which priming effects are elicited 

automatically, rather than the data for 1200 ms SOA data which incorporates intentional 

responses strategies (Hutchison et al., 2013). Specifically, we used the mean standardized RT 

(LDT_200ms_Z and NT_200ms_Z variables from the item-level data files) for each target word 

following one of four different prime types: first-associate related prime (e.g., lion→tiger) other-

associate related prime  (e.g., leopard→tiger), first-unrelated prime (e.g., pile→tiger), and other-

unrelated prime (plush→tiger). 

Evaluation procedure. For predict and count vector models, we calculated the distances 

from the vector of each prime word to the vector of each target word. For n-gram models, we 

calculated the distributional score between each prime word and each target word. Each LDM 

therefore produced a single measure for each prime→target pair, which formed the predictor of 
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interest in linear regression analyses (see below). We made five substitutions to words in the 

dataset: two from American-English to British-English spelling equivalents (e.g., tumor changed 

to tumour), two to correct typos (e.g., condfidence changed to confidence), and one to include 

hyphenation (e.g. bookbag changed to book-bag). 

To evaluate each LDM, we fit ordinary least-squares linear regressions to each dependent 

variable (lexical decision RT and naming RT) in two hierarchical steps. Step 1 comprised a set of 

baseline lexical predictors that affect visual recognition of the target word, extracted from the 

Elexicon database (Balota et al., 2007): length in letters, number of syllables, log word frequency 

LgSUBTLWF, orthographic Levenshtein distance OLD20, and phonological Levenshtein 

distance PLD2012. The latter two variables comprise mean Levenshtein distance (Levenshtein, 

1966) from the target word to its 20 closest neighbors (Yarkoni et al., 2008). 

Any words missing from either our corpora or Elexicon were excluded from the analysis 

in question (157 items, 2.4% of the total list of prime–target pairs). In addition, we included in 

Step 1 the orthographic Levenshtein distance (OLD) between prime and target word (e.g., OLD 

between lion→tiger = 4). Step 2 comprised the critical prime→target predictor for a given LDM 

(i.e., distributional distance or score from prime word to target word). We then examined the 

additional variance (𝑅& change) explained by the LDM predictor in Step 2 compared to Step 1, 

and estimated Bayes Factors for the Step 2 model over Step 1 using BIC, as in previous studies. 

Zero-order correlations among baseline predictors are available in online materials. 

Results and Discussion 

Overall, LDMs performed best in predicting semantic priming with a medium window of 

radius 5. In several of the best-performing models, window radius of 3 or 10 did at least as well 

as radius 5, but it was heavily dependent on corpus choice and task whereas optimal r = 5 

performed consistently strongly. Correlation and cosine distance substantially outperformed 
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Euclidean distance, and—although both did equally well in word naming—correlation distance 

outperformed cosine distance across the best-performing models of lexical decision and was 

therefore the optimal choice. Performance for each model using these optimal parameters is 

shown in Figure 8 and forms the basis for the trends and recommendations reported below; 

results for all models can be found in the online materials and are summarized in Figure 3. 

[Figure 8 about here] 

In general, LDMs did very well at modelling semantic priming effects. At optimal 

parameter settings, the best LDM scores explained up to 5.2% of variance in lexical decision RT 

(total 𝑅& = .377 including baseline model) and 2.4% of variance in word naming RT (total 𝑅& = 

.242), which constitutes extremely strong evidence in favour of using LDM scores to predict 

semantic priming effects (BF10 > 2.11 × 10112 and BF10 > 2.10 × 1042, respectively). The finding 

of larger semantic priming effects for lexical decision compared to naming is consistent with 

overall patterns in the dataset (Hutchison et al., 2013) and the wider literature (e.g., Balota et al., 

2004). By contrast, some parameter settings performed extremely poorly, with their LDMs 

predicting so little variance (i.e., 0.01% or less) that evidence instead favoured the null model.  

The best model family for semantic priming was count vector models, followed by n-

gram models, and lastly predict models, though performance varied somewhat by task and 

corpus. At optimal parameters, semantic priming in lexical decision RT was best modelled by the 

PPMI count vector model, whereas semantic priming in naming RT was best modelled by log 

co-occurrence count vector model. While the best LDM for one task still performed reasonably 

well in the other task—indeed, all count vector models bar probability ratio were good predictors 

of semantic priming—it was not competitive with the leading LDMs. The second-best LDM for 

each task tended to be the n-gram equivalent of the best performers (PPMI n-gram for lexical 

decision; log n-gram for naming), but all n-gram models except for probability ratio n-gram were 
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effective predictors of semantic priming. Predict models (particularly CBOW at embedding sizes 

from 100 to 500) did well at predicting semantic priming in lexical decision, providing a viable 

second choice at some parameter settings, but were mediocre at predicting semantic priming in 

word naming, and hence do not represent a reliable choice. 

The Subtitles corpus was the best choice for semantic priming, producing consistently 

strong performance across LDMs, with UKWAC edging ahead of the BNC for second place 

according to task and model. While model performance was similar across all corpora at optimal 

parameters, there were some differential trends in how each model family performed on each 

corpus. The Subtitles corpus and BNC followed general trends, with count vector models (PPMI 

for lexical decision, log co-occurrence for word naming) producing best performance. The same 

pattern appeared for UKWAC in the word naming task. However, when UKWAC was used for 

the lexical decision task, count vector models did unexpectedly poorly and n-gram models 

(PPMI n-gram) did best (though overall performance was still not as good as when trained on the 

Subtitles corpus). Overall, while both the BNC and UKWAC were occasionally competitive with 

optimal Subtitles corpus for certain LDMs, their performance was too variable to generalize 

well. 

In summary, the optimal LDM for semantic priming seems to be a count vector model 

trained on a medium-large high-quality corpus of spoken language (Subtitles) with a medium 

window radius of 5, using correlation distance between vectors. However, the optimal count 

vector model depends on the exact task used to elicit semantic priming effects. If participants are 

asked to perform lexical decision, then PPMI is the optimal choice, but if asked to perform word 

naming, then log co-occurrence is the optimal choice. In Bayesian terms, these optimal count-

vector LDMs were clear leaders, performing BF = 2.51×1018 and 1.23×1018 times better than the 

next-best model family (n-gram models at optimal parameters), for lexical decision and naming 
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times, respectively. These optimal models can explain up to 5.2% of lexical decision time 

variance and 2.4% of naming time variance, which is comparable to previous investigations of 

LDMs in semantic priming (e.g., M. Jones et al., 2006; Mandera et al., 2017)13. In the event that 

theoretical or practical reasons required using the same LDM for semantic priming effects in 

both lexical decision and word naming, then it is possible to use either optimal model but it 

comes at a cost of performance: the optimal mode for word naming (log co-occurrence) can still 

explain 2.1% of variance in lexical decision, and the optimal model for lexical decision (PPMI) 

can still explain 1.4% of variance in naming. Nonetheless, it remains the case that semantic 

priming, which reflects all three paradigmatic, syntagmatic, and bag-of-words relations, is best 

predicted by LDMs that capture all three paradigmatic, syntagmatic, and bag-of-words relations 

(i.e., count vector models). 

The optimal LDM for semantic priming is notably different from the relatively simpler 

tasks that preceded it in Studies 1–3. In particular, the count vector model family was the 

strongest performer for semantic priming, despite performing poorly for synonym selection, 

similarity and relatedness judgements, and thematic relatedness judgements. For the first time, 

predict models were not the optimal or joint-optimal choice, and in fact came last overall. The 

recommendations of this study therefore represent a significant departure from the distributional 

semantics recommendation of predict models trained on large corpora. Semantic priming in 

lexical decision or word naming—both of which involve variable but generally complex 

conceptual processing—is best served by count vector models trained on a medium-sized high-

quality spoken corpus (Subtitles). Based on the trends from Studies 1–4, increasing conceptual 

complexity is accompanied by a diversification in both model family and corpus 

recommendations. At this point in our investigation of linguistic distributional knowledge, our 

findings have cautiously started to support the tenet of flexibility in linguistic–simulation 
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theories rather than the one-size-fits-all approach of distributional semantics. That is, because 

both the model family and corpus recommendation have moved away from the original 

recommendations of Study 1 as conceptual complexity has increased, and because even in the 

present study the optimal count vector model varied by the task used to elicit semantic priming 

effects, our findings are consistent with the idea that different conceptual tasks use linguistic 

distributional knowledge differently and therefore require different LDMs.  

Nevertheless, since the present study was our first to use an implicit (RT) rather than 

explicit (ratings, etc.) measure of conceptual processing, it is possible that some of our 

recommendations rest on that distinction rather than on increasing conceptual complexity. We 

address this issue in the next study. 

Study 5: Abstract–Concrete Semantic Decision 

Semantic or categorical decision tasks have long been used across cognitive psychology, 

psycholinguistics, and neuropsychology in order to examine conceptual representation and 

processing (McRae, de Sa, & Seidenberg, 1997; Rosch & Mervis, 1975; Warrington, 1975). For 

instance, when presented with the word cat, participants might be asked to decide whether it 

refers to a concrete versus abstract concept, or a living versus non-living thing, and so on. In 

particular, the abstract-concrete distinction is arguably the most fundamental in the human 

conceptual system (e.g., Barsalou & Wiemer-Hastings, 2005; Borghi & Binkofski, 2014; Paivio, 

1986; Vigliocco et al., 2009), supported by evidence such as double dissociations in 

neuropsychological impairments (Breedin et al, 1994; Warrington, 1975).  

We chose to examine abstract/concrete semantic decisions for two main reasons. Firstly, 

it allows us to examine both explicit and implicit dependent variables as a function of the same 

task: the explicit semantic decision for a given word (i.e., abstract or concrete) and the implicit 

measure of processing effort in arriving at this decision (i.e., RT). Secondly, abstract/concrete 
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semantic decisions represent the type of conceptually complex task that is often the focus of 

linguistic–simulation research but rarely features in distributional semantics research. One 

particular theory from linguistic–simulation research, the linguistic shortcut hypothesis, states 

that if linguistic distributional information can usefully inform a response in a conceptual task 

before relatively slower sensorimotor simulation can do so, then people will frequently use it as a 

shortcut in order to avoid potentially more costly cognitive processing (Connell, 2019; Connell 

& Lynott, 2013). Hence, while participants could perform an abstract/concrete semantic decision 

via deep consideration of the ontological categories of “concrete things” and “abstract things” 

(e.g., degree of sensory information in the referent concept: Connell & Lynott, 2012; Vigliocco 

et al., 2009), the nature of the task means that participants could instead get away with the 

computationally cheaper heuristic of responding on the basis of the linguistic distributional 

relationship between the target word and the words used to label the forced-choice alternatives 

(i.e., “concrete” and “abstract”). That is, people could perform a semantic decision trial by 

choosing whichever of the category labels had a stronger linguistic distributional relationship 

with the target word (e.g., for the target word cat, examine the relationships cat–abstract and 

cat–concrete and select whichever is a closer fit). LDM performance in semantic decision can 

therefore be modelled by comparing each target word to concrete and abstract (i.e., target–

concrete; target–abstract) to produce two distributional measures per target, and then evaluating 

how well these measures predict human decisions and response times. 

The nature of the linguistic distributional relationship underlying semantic decision 

depends on the categories specified as choices, but abstract/concrete semantic decision relies on 

high-level bag-of-words relations and therefore represents a very high level of conceptual 

complexity beyond that of previous studies. Deciding whether cat is an abstract or concrete 

concept relies little on paradigmatic or syntagmatic relations. While paradigmatic relations can 
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help to cluster concepts into taxonomic classes (e.g., the structures he fed the cat and he fed the 

animal will help the cat–animal paradigmatic relation to form), such neat syntactic 

substitutability is still quite a step from supporting concrete or abstract category membership 

(i.e., cat and concrete, or cat and abstract, seldom occupy the same syntactic position across 

similar sentential contexts). Likewise, syntagmatic relations are of limited use unless a category 

name and target appear together regularly in the same syntactic structure, which is unlikely for 

cat and concrete (or indeed cat and abstract). Rather, bag-of-words relations in linguistic 

distributional knowledge (i.e., those that are neither syntagmatic nor paradigmatic and are 

instead learned regardless of syntax) will be more useful to abstract/concrete semantic decision: 

the generalized co-occurrence of cat–concrete (and cat–abstract) in the same or similar contexts, 

regardless of syntactic structure, informs their linguistic distributional relationship. 

Method 

Materials and datasets. We modelled two variables from a single dataset, the Calgary 

semantic decision project (Pexman et al., 2017), that comprises reaction times and accuracies for 

abstract/concrete semantic decision on 10,024 English words (𝑁 = 312). In the study, 

participants were instructed to decide whether each presented word represented a concrete or 

abstract concept in a two-alternative forced-choice (2AFC) task.  

For each word, Pexman and colleagues included a number of variables. We used the 

mean standardized RT (zRT_clean_mean variable from the item-level data file) as an implicit 

measure of conceptual processing. For an explicit measure, Pexman and colleagues had 

additionally coded each participant decision as correct or incorrect according to how the word 

was rated in Brysbaert et al.’s (2014) concreteness norms, and reported the mean proportion 

correct (ACC variable) per word. However, this coding led to the circumstance where some 

words were coded as ostensibly low accuracy (e.g., phantom accuracy = .129 as an abstract 
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word, meaning 87.1% of Pexman et al.’s participants thought phantom was concrete rather than 

abstract), which suggested the distinction between correct and incorrect may be somewhat 

arbitrary in ontological terms. We therefore opted to represent a more neutral explicit measure of 

response choice that did not reference a predetermined notion of correctness, and recoded the 

ACC variable to reflect the proportion of participants who decided each word was concrete. For 

words coded in the semantic decision dataset as concrete (according to Brysbaert et al.’s norms), 

we used the accuracy figure unaltered because it already reflected the proportion of participants 

that judged the item as concrete; for words coded as abstract, such as phantom, we used 1–

accuracy to ensure it reflected the proportion that judged the word as concrete. 

Evaluation procedure. For predict and count vector models, we calculated the distances 

from the vector of each target word to the vector of each category name “concrete” and 

“abstract”, and used these two distances as separate predictors in linear regressions (see below). 

For n-gram models, we calculated the distributional score between each target word and each 

category name “concrete” and “abstract”, and used these two scores as separate predictors in 

linear regressions. We used the dataset as published, with 153 words substituted: 118 from 

American English to British English spellings (e.g., flavor changed to flavour), 31 to include 

hyphenation (e.g. smalltime changed to small-time), and 3 synonyms for words which were not 

found in our corpora (barrette to hairclip, flaxseed to linseed, and teakwood to teak). 

To evaluate each LDM, we fit ordinary least-squares linear regressions to each dependent 

variable (RT and “concrete” response proportion) in two hierarchical steps. Step 1 comprised a 

baseline model of lexical predictors that affect visual recognition of the target word extracted 

from the Elexicon database (Balota et al., 2007); any words missing from either our corpora or 

Elexicon were excluded from analyses. Specifically, we entered the following predictors 

simultaneously: length in letters, number of syllables, log word frequency LgSUBTLWF, 
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orthographic Levenshtein distance OLD20, and phonological Levenshtein distance PLD20. 

Zero-order correlations amongst baseline predictors are available in online materials: there were 

no issues of multicollinearity (all VIFs < 7). Step 2 entered simultaneously the two critical 

predictors for a given LDM (i.e., distributional distance or score from target word to concrete 

and target word to abstract)14. We then examined the additional variance explained by the LDM 

predictors in Step 2 compared to the baseline model of lexical predictors in Step 1 (reported as 

𝑅& change). We also estimated Bayes Factors for the Step 2 model over Step 1 using BIC, as in 

previous studies. 

Results and Discussion 

Optimal parameters differed for implicit measures of semantic decision (RT) and explicit 

measures (proportion of “concrete” responses), and so we report them separately. For implicit 

semantic decision RT, the picture was quite straightforward: LDM performance was best at 

medium window radius r = 5 (although r = 3 also did well), and correlation and cosine both 

equally outperformed Euclidean distance. For explicit proportion of “concrete” responses, LDM 

performance was highly sensitive to fine tuning of model-corpus-parameter combinations. The 

absolute best performance came from skip-gram with maximal embedding size e = 500 (though 

all embedding sizes performed similarly), trained on the UKWAC corpus with a large window 

radius of r = 10 and using Euclidean distance between vectors, but few of these parameters 

(particularly the intersection of Euclidean distance and UKWAC) held true as optimal for other 

LDMs. The vast majority of other LDMs (including the other predict model, CBOW) tended to 

perform better with a medium window radius of r = 3 or r = 5, and using correlation or cosine 

distance, regardless of corpus. As such, we concluded the particular parameter settings of the 

top-scoring model were not representative of overall LDM behaviour and so were unlikely to 

generalize well. For proportion of “concrete” responses in semantic decisions, the optimal 
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parameters were therefore r = 3 (though r = 5 also did well), and correlation or cosine distance. 

Performance for each model using these optimal parameters (𝑟 = 5 for RT and 	𝑟 = 3 for 

response proportion, correlation or cosine distance) is shown in Figure 9 and forms the basis for 

the trends and recommendations reported below; results for all models can be found in the online 

materials and are summarized in Figure 3. 

[Figure 9 about here] 

In general, LDMs did well at modelling semantic decision. At optimal parameter settings, 

the best LDM scores explained up to 4.6% of variance in RTs (total 𝑅& = .198 including baseline 

model) and 20.1% of variance in the proportion of “concrete” responses (total 𝑅& = .374), which 

constitutes extremely strong evidence in favour of using LDM scores to predict semantic 

decision RT (BF10 > 2.15 × 10111) and responses (BF10 > 1.11 × 10570). Some parameter settings 

performed extremely poorly, with their LDMs predicting so little variance (i.e., 0.01% or less) 

that evidence instead favoured the null (baseline) model.  

The count vector model family was overall best for semantic decision at optimal 

parameters, with predict models in second place and n-gram models a distant third. All count 

vector models bar probability ratio explained meaningful variance in semantic decision, but the 

optimal model differed by measure. For implicit semantic decision RT, the conditional 

probability count vector model was best, with the next-best performer (log-co-occurrence count 

vector model) quite a distance behind. Predict models, particularly skip-gram (optimal 

embedding size e varied with corpus), performed reasonably well but not competitively, and n-

gram models performed poorly. For explicit proportion of “concrete” responses, the log co-

occurrence and conditional probability count vector models both performed strongly, with the 

leader varying by corpus choice (see below). At optimal parameters, however, the top-

performing LDM was log co-occurrence. Other strong performers included both skip-gram and 
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CBOW predict models (optimal embedding size varied with corpus), which sometimes beat 

count vector models depending on corpus, but were overall not competitive with the leading 

LDMs. As with RT, the n-gram model family tended to perform poorly for response proportion. 

In terms of corpus choice for semantic decision, the BNC outperformed other corpora by 

a clear margin. For both semantic decision RT and responses at optimal parameters, the BNC 

advantage was consistent across count vector models and across many of the best-performing 

predict models (note that n-gram models performed too poorly to enable meaningful cross-

corpus comparisons). UKWAC was generally in second place and tended to outperform models 

trained on the Subtitles corpus. However, performance for proportion of “concrete” responses 

was highly sensitive to model-corpus combinations. For instance, the leading count vector model 

was log co-occurrence when trained on the BNC or UKWAC, but conditional probability when 

trained on the Subtitles corpus. In addition, skip-gram predict models tended to perform worst 

for the BNC, instead favouring the Subtitle corpus at smaller embedding sizes (e = 50–100) and 

UKWAC at larger embedding sizes (particularly e = 500); however, none were competitive with 

the best count vector models trained on the BNC. 

In summary, the optimal LDM for the conceptually complex task of semantic decision is 

from the count vector model family, trained on a very high-quality corpus of spoken and written 

language (BNC) with a small-to-medium window radius, and using cosine or correlation distance 

between vectors. However, the precise LDM appears to depend on whether the focus of 

investigation is the explicit task response (i.e., the proportion of participants who selected 

“concrete” as opposed to “abstract” for a target word) or the implicit measure of processing 

effort (i.e., the average RT to make the decision). If one wishes to model explicit responses, then 

the optimal LDM is log co-occurrence count vector model, trained on the BNC with a fairly 

small window radius of r = 3, and using either cosine or correlation distance. On the other hand, 
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if one wishes to model RT as an implicit measure of processing effort, then the optimal LDM is 

the conditional probability count vector model, again trained on the BNC, with a medium 

window radius of r = 5, using either cosine or correlation distance. Other model families do not 

come close to the performance of these optimal count vector LDMs; at optimal parameters, they 

are at least BF = 5.50×1063 and 2.82×10151 times better than the most competitive predict models 

(i.e., the next-best option) for response proportion and RT dependent variables, respectively. In 

the event that it became important, for reasons of theory or practicality, to use the same LDM for 

both explicit and implicit measures of semantic decision, then the best compromise would be to 

use the optimal model for RT (conditional probability); this LDM still did an excellent job 

predicting response proportions, whereas the reverse was not true to the same extent.  

These findings also show that a task that makes extensive use of bag-of-words relations 

(semantic decision) is best predicted by LDMs that captures bag-of-words relations (count vector 

models). However, since predict and n-gram models also capture bag-of-words relations, why 

were they not equally successful at predicting semantic decision? One possible reason may lie in 

the fact that predict and n-gram models are specialists, with contrasting strengths in capturing 

paradigmatic and syntagmatic relations, respectively. Count vector models, on the other hand, do 

not specialize and can capture both paradigmatic and syntagmatic relations (the latter to a 

slightly lesser extent). We speculate that it may be this compromise of balance in count vector 

models that allows them to capture bag-of-words relations more effectively than do predict and 

n-gram models, and hence perform more strongly in predicting conceptual processing that 

exploits such relations.  

Overall, the findings of this study represent a further departure from the distributional 

semantics recommendation of predict models trained on large corpora. As a task of high 

conceptual complexity, semantic decision was the first task where the BNC—a relatively small 
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corpus by the standards of distributional semantics but one that is high quality, designed to be 

representative of language use with low levels of error and noise—was the optimal corpus on 

which to train LDMs. As in Study 4 on semantic priming, the count vector model family was the 

strongest performer for semantic decision, despite performing poorly for tasks of lower 

conceptual complexity. Moreover, these optimal recommendations of count vector model family 

trained on a small but very high-quality corpus are consistent for both explicit (response 

decision) and implicit (RT) measures of semantic decision. The trends from Studies 1 to 5 now 

show consistently that increasing conceptual complexity is accompanied by a diversification in 

both model family and corpus recommendations. Rather than a one-size-fits-all approach to 

modelling linguistic distributional knowledge in cognition, our findings support the idea that 

different conceptual tasks use linguistic distributional knowledge differently and therefore 

require different LDMs to capture behaviour.  

Finally, we note that the approach taken in this study represents a novel perspective on 

how linguistic distributional information affects semantic decision tasks. Some previous work 

had also observed an effect of linguistic distributional information on semantic decision RT, but 

using a very different method to the one we employed here. Hargreaves and Pexman (2014) used 

a single variable for each target word that represented the mean distance to all neighbours within 

a specified distance threshold of the target word (i.e., Shaoul & Westbury’s, 2010, ARC 

variable), which effectively reflects whether a word appears in a sparse (high score) or dense 

(low score) area of vector space. They found that semantic decision RT was slightly faster for 

words in denser vector space compared to sparser vector space. However, this linguistic 

distributional information pertained to the target word only; they did not examine the 

relationship between the target word and the words used to label the 2AFC choices (i.e., concrete 

and abstract) as we did in the present study. The findings we report here—that the distance in 
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vector space between a target word and the words used to label the semantic categories is an 

excellent predictor of both RT and response decision—suggest that the words used to label 

category choices in semantic decision tasks (and indeed, any 2AFC tasks with linguistic labels) 

are at least as important as the target words. 

General Discussion 

Our goal in the present paper was to investigate the role of linguistic distributional 

knowledge in cognition across a broad set of cognitive tasks, from conceptually simple tasks that 

rely on similarity of meaning to conceptually complex tasks that require sophisticated processing 

of diverse and/or abstracted semantic relations. To do so, we conducted the largest to date 

systematic comparison of linguistic distributional models (LDMs), training corpora, and 

parameters, and evaluated their ability to predict human data in a range of cognitive tasks that 

varied in their conceptual complexity. Overall, LDMs were excellent at modelling cognitive 

behaviour, from highly constrained forced-choice tasks (synonym selection; semantic decision) 

to highly unconstrained production tasks (thematic relatedness production), in terms of 

modelling both explicit behaviours such as ratings/decisions (similarity and relatedness ratings; 

synonym selection; semantic decision) and implicit measures of processing effort such as RT 

(semantic priming; semantic decision). 

However, the optimal LDM differed as conceptual complexity increased; see Table 3 for 

details of optimal LDM per task, and Figure 10 for a summary of trends. Tasks of low 

conceptual complexity (Study 1 synonym selection; Study 2 similarity ratings) were best fit by 

predict models trained on a large but low-quality corpus UKWAC. Tasks of medium conceptual 

complexity (Study 2 relatedness ratings; Study 3 thematic relatedness production) still found 

success with predict models but this time trained on a medium-sized, high-quality Subtitles 

corpus; notably, n-gram models were also competitive here. Tasks of high but variable 
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conceptual complexity (Study 4 semantic priming in lexical decision and naming) were best fit 

by count vector models rather than predict models, but again with the Subtitles corpus. Finally, a 

task of very high conceptual complexity (Study 5 abstract/concrete semantic decision) continued 

the choice of count vector models but this time the small but very high-quality BNC was the 

optimal training corpus, and these optimal choices held for both explicit (i.e., response 

proportion) and implicit (i.e., RT) dependent measures of the same task.  

[Figure 10 about here] 

By contrast, the optimal model family and corpus did not vary systematically according 

to the implicit versus explicit nature of the dependent measure. Tasks featuring explicit 

dependent measures that encoded the end result of conceptual processing in the response had no 

consistent optimal corpus or model family. All three corpora featured as optimal across explicit 

task measures, from the large but noisy UKWAC (Study 1 synonym selection; Study 2 similarity 

ratings), to the medium-sized but higher quality Subtitles corpus (Study 2 relatedness ratings; 

Study 3 thematic relatedness production), to the small but very high quality BNC (Study 5 

abstract/concrete semantic decision). All three model families were likewise optimal across 

explicit tasks: while some were best fit by predict models (Studies 1–2), others were fit equally 

by both predict and n-gram models (Study 3) or best fit by count vector models (Study 5). Tasks 

featuring implicit dependent measures of processing effort had no consistent optimal corpus, 

either continuing the trend started in Study 2 for the Subtitles corpus (Study 4 semantic priming 

RT) or opting for the BNC (Study 5 semantic decision RT). While implicit task measures shared 

the same optimal model family, count vector models, they were not alone in that choice. 

Critically, Study 5 favoured the same optimal model family and corpus (count vector models, 

BNC) for both its implicit and explicit measures of semantic decision, thus showing that it was a 

fundamental characteristic of the task (i.e., its conceptual complexity) rather than the explicit vs. 
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implicit dependent measure, that determined optimality. 

It is important to note that the selection of optimal model family and corpus were not co-

dependent: the optimal model family per task performed robustly across multiple corpora, and 

the optimal corpus per task performed robustly across multiple model families. Moreover, the 

changes in optimal choices were not abrupt. For instance, count vector models perform 

reasonably well throughout Studies 1–3 before dominating in Studies 4–5, and n-gram models 

perform strongly in Study 2’s relatedness ratings before becoming a joint-optimal choice in 

Study 3 and then declining to second choice in Study 4. Similarly, the Subtitles corpus first 

appeared as a joint-optimal choice alongside UKWAC for three out of four similarity datasets in 

Study 2 before dominating in Studies 3–4, and the BNC appeared as an occasional competitor in 

Study 4 before dominating in Study 5. Such gradual trends indicate sensitivity to incremental 

change across Studies 1–5 rather than disjoint model fitting of individual tasks, and suggest that 

the efficacy of model families and corpora wax and wane systematically according to the 

conceptual complexity of the task at hand. 

Theoretical Implications 

Our findings suggest that use of linguistic distributional knowledge appears to be 

ubiquitous in cognition and a vital part of conceptual processing, but it is not an amorphous or 

rigid resource. Rather, linguistic distributional knowledge is a rich source of information about 

the world that can be accessed flexibly according to cognitive need. In other words, our findings 

strongly support a task-dependent flexible approach to the use of linguistic distributional 

knowledge in cognition rather than a one-size-fits-all approach. Specifically, we found that 

different conceptual tasks make differential use of linguistic distributional knowledge and 

therefore require different LDMs to capture behaviour appropriately. No single model family 

was excellent at all tasks, nor was any single corpus. Rather, tasks of increasing conceptual 
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complexity across Studies 1–5 required increasingly non-specialist models that could capture a 

wide variety of more abstracted conceptual relations and increasingly high-quality corpora that 

were representative of human language experience. These patterns are consistent with the tenet 

of flexibility in linguistic–simulation research, which assumes that linguistic distributional 

knowledge has a flexible rather than a uniform role in conceptual processing, and that use of 

such knowledge depends on a number of factors including the nature of the task, surrounding 

context, and general processing goals (Barsalou et al., 2008; Connell, 2019; Connell & Lynott, 

2014; Louwerse, 2011). The present findings contribute to linguistic–simulation theories by 

showing that the conceptual complexity of a task—that is, whether it relies on a limited range of 

paradigmatic relations or more diverse and/or abstracted conceptual relations—is a major factor 

in how linguistic distributional knowledge is used in cognition. 

Moreover, our findings shed crucial light on the nature of linguistic distributional 

knowledge. The large differences in architecture between the model families (i.e., from Hebbian 

learning to error-driven learning; and from first-order to second-order co-occurrences) translate 

to large differences in model behaviour: the predictors produced by each LDM per task were 

poorly correlated between model families15. Such differences in distributional estimates indicate 

that the various model families are not capturing the same latent construct, and that their 

differences in performance are not simply due to noise. Rather, the relative specialisms of each 

model family in capturing paradigmatic versus syntagmatic versus bag-of-words relations means 

that their performance can inform our understanding of how the role of linguistic distributional 

knowledge varies across cognitive tasks.  

Firstly, our findings suggest that syntagmatic, paradigmatic, and bag-of-words relations 

all underpin the linguistic distributional knowledge that people use in conceptual processing. 

Many types of conceptual relations can be gleaned from regularities in language experience, 
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including syntagmatic relations (e.g., object properties like blue–eyes; agent actions like 

customer–pay), paradigmatic relations (e.g., synonyms like error–mistake, shared categories like 

dog–cat), and bag-of-words relations (e.g., broad thematic relations like philosophy–thought, 

high-level categories like infinity–abstract). We found that models that specialize in capturing 

paradigmatic relations (predict models) do best in tasks that rely heavily on paradigmatic 

relations, such as synonym selection (Study 1) and similarity ratings (Study 2). Conversely, 

models that specialize at capturing syntagmatic relations (n-gram models) are most useful in 

tasks that rely heavily on syntagmatic relations, such as thematic relatedness production (Study 

3). However, such specialist models are less useful as conceptual complexity increases, and 

balanced models that capture paradigmatic, syntagmatic, and bag-of-words relations (count 

vector models) are best for tasks of high conceptual complexity, such as semantic priming (Study 

4) and semantic decision (Study 5). In short, conceptual processing makes use of the kind of 

conceptual relations underpinning linguistic distributional knowledge, but different tasks use 

each type of relation to different extents. While previous work has argued that people make 

differential use of linguistic distributional information according to the task at hand (i.e., the 

tenet of flexibility: see Connell, 2019, for review), such differences are typically presented as 

quantitative: people make greater or lesser use of linguistic distributional knowledge according 

to task demands. What we show here is that such differences are also qualitative: as the 

conceptual complexity of a task increases, the diversity of relevant linguistic distributional 

knowledge also increases. 

Secondly, the present findings suggest that the quality of language experience is highly 

important to the linguistic distributional knowledge used in conceptual processing, particularly as 

the diversity of relevant conceptual relations increases. All the corpora we examined were 

plausible in terms of the quantity of adult language experience (i.e., between 200 million and 2 
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billion words: see introduction), with the exception of the BNC that was smaller than ideal at 100 

million words. Corpus quality, however, varied enormously. We found that large but low-quality 

corpora like UKWAC, which comprise written text scraped from the web, are most effective 

when the task to be modelled relies heavily on paradigmatic relations (Study 1 synonym 

selection, Study 2 similarity ratings). However, UKWAC was less effective than higher-quality 

corpora when tasks relied on syntagmatic and bag-of-words relations. Instead, the Subtitles 

corpus, which comprises high-quality transcriptions of scripted and spontaneous spoken 

language from television and film, was more effective when the tasks to be modelled relied on a 

mix of paradigmatic, syntagmatic, and bag-of-words relations (Study 3 relatedness ratings, Study 

4 thematic relatedness production, Study 5 semantic priming). The BNC, which comprises a very 

high quality, representative sample of British English across a range of spoken and written 

sources, was the most effective corpus when the task primarily relied on bag-of-words relations 

(Study 5 semantic decision), which suggests that the representative nature of the BNC may have 

compensated for its small size. In other words, it appears that paradigmatic relations can be 

learned from low-quality language experience that is not representative of the content humans 

encounter when using language. Syntagmatic relations, however, are better learned from high-

quality language experience that is representative to at least some extent of the content humans 

encounter. And bag-of-words relations, that do not rely on syntactic structures in the same way 

as syntagmatic or paradigmatic categories but nonetheless reflect broad conceptual themes, seem 

to have the strongest requirement for high-quality language experience that is most 

representative of the content humans encounter from a range of language sources. As conceptual 

complexity increases, the quality of language experience becomes more important than the 

quantity. 

Lastly, our findings suggest that linguistic distributional knowledge is a rich but 
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imperfect source of information about the world (see also Barsalou et al., 2005; Connell & 

Lynott, 2014; Louwerse, 2011). LDMs were successful at modelling all tasks we examined, 

but—even allowing for the fact that any LDM is only an approximation of linguistic 

distributional knowledge—no LDM was without error in modelling a given task. Such model 

behaviour is entirely consistent with human behaviour: people regularly make mistakes and 

disagree with one another. For instance, when Battig and Montague (1969) asked people to name 

as many birds as possible within 30 seconds in their classic category production norms, they 

found that people listed concepts such as bat, hate, jail, feathers, pterodactyl, scarecrow, and 

worm. While such responses may be incorrect—none are birds—they are meaningfully related to 

birds in a way that tends to be encoded by linguistic distributional knowledge (e.g., jail and bird 

are syntagmatically related as a compound word; bat and bird are paradigmatically related in 

terms of flying actions and possessing wings). Any LDM that considers a bat to be a kind of bird 

would be no more incorrect than some humans. 

Even semantic similarity, a mainstay of LDM evaluation, is subject to a high degree of 

variability in human judgements. For example, Simmons and Estes (2008) found large and 

robust individual differences in whether people base their similarity judgements on taxonomic or 

thematic information. When asked to rate the similarity of concept pairs, some participants 

consistently rated taxonomically related concepts as highly similar (e.g., river and lake) and 

thematically related concepts as much less similar (e.g., river and boat), whereas other 

participants consistently showed the reverse pattern, and a third group appeared to vary their 

preference from one item to the next. The same effects emerged even more strongly when 

participants were explicitly asked to choose which of two options (e.g., lake or boat) was most 

similar to a cue concept (e.g., river). Because similarity is a rather nebulous concept (e.g., 

Goodman, 1973; Medin, Goldstone & Gentner, 1993), neither answer is incorrect per se: river–
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boat can legitimately be considered more similar in some respects than river–lake, and vice 

versa. Moreover, both taxonomic and thematic answers reflect relationships that tend to be 

encoded in distributional knowledge (e.g., river and lake are paradigmatically related; river and 

boat are syntagmatically related). Any pattern of response a participant may produce—favouring 

lake, boat, or both equally—reflects a reasonable use of linguistic distributional knowledge. That 

is, any LDM that considers river–boat to be more similar than river–lake is not incorrect, but 

agrees perfectly with a subset of human participants. 

We should therefore expect linguistic distributional knowledge to contain errors, but 

many of these errors should systematically map onto the kind of errors that human make rather 

than reflecting mere noise. Moreover, we should expect a large degree of individual differences 

in how people make use of the conceptual relations encoded in linguistic distributional 

knowledge. Future research should examine more closely not only the ostensibly correct 

responses that people make in cognitive tasks, but also errors and individual differences, and 

their relationship to linguistic distributional knowledge (see e.g., Connell & Lynott, 2013). 

To summarize, the work we report here transforms our understanding of the role 

linguistic distributional knowledge plays in cognition. The key notion is flexibility: people use 

linguistic distributional knowledge in different ways in different conceptual tasks, and the 

conceptual complexity of the task—that is, whether semantic processing relies on diverse and/or 

abstracted conceptual relations rather than uniform or straightforward relations—is a powerful 

determiner of how linguistic distributional knowledge is used. Currently, our findings are 

agnostic as to whether this flexibility entails switching between separate distributional spaces 

or selecting from a range of operations on the same space. It seems plausible to conceive of 

linguistic distributional knowledge as multiple, interlinked semantic spaces, such as one per 

distributional relation (paradigmatic, syntagmatic, bag-of-words), where the nature of the 
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stimulus and task allows flexible switching to the most relevant space. Alternatively, it is also 

plausible to conceive of linguistic distributional knowledge as a single semantic space that 

encompasses all types of distributional relation useful to conceptual processing, where the nature 

of the stimulus and task allows flexible selection of the most appropriate operation on that space. 

Future research is needed to distinguish between these two possibilities, particularly since the 

training corpus—that is, the cognitively plausible approximation of human language 

experience—should ideally remain constant throughout. 

Methodological Implications and Recommendations 

The comprehensive cross-task and cross-model nature of the present paper allows us to 

make broad-ranging recommendations for how linguistic distributional knowledge should be 

computationally modelled, which in their turn have implications for work in both distributional 

semantics and linguistic–simulation research. 

Overall, we recommend basing model choice on the conceptual complexity of the task. 

Assuming there are no other constraints, conceptually simplistic tasks, where a limited range of 

paradigmatic relations underlies the stimulus set, are best served by predict models (CBOW with 

medium embedding size 300 is most consistent) with small window radius of 1 around the target 

word and cosine distance between vectors. For tasks of medium conceptual complexity, where 

paradigmatic relations are still relevant but no longer suffice because a broader variety of 

conceptual relationships (i.e., syntagmatic and potentially bag-of-words relations) come into 

play, predict models are still good (CBOW most consistent but with variable embedding size 

200-500), and large window radius of 10 with correlation or cosine distance. However, n-gram 

models should also be considered (particularly log n-gram and PPMI n-gram, with radius 5) 

because they are frequently competitive with predict models for these tasks. Finally, for high 

conceptual complexity, where the stimulus set features a highly diverse range of semantic 
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relations and/or relies heavily on abstracted bag-of-words relations, count vector models are the 

best option (but test for best individual model), with a medium window radius of 3-5 and 

correlation distance. The precise count vector model that performs best varies by task and 

measure, but we found that log co-occurrence, PPMI, and conditional probability models were 

all optimal at some point. Pending further research that develops theoretically motivated reasons 

for matching individual count vector models to particular task constraints, we recommend taking 

an empirical approach for tasks of high conceptual complexity and testing multiple models.  

We also recommend basing corpus choice on the conceptual complexity of the task, 

though with slightly different tipping points. For tasks of low conceptual complexity, we suggest 

using the largest possible corpus within the bounds of plausible human language experience (i.e., 

2 billion words), even if it is highly noisy and/or based on unrepresentative written texts. Smaller 

corpora do not appear to suffice. For medium to high conceptual complexity, the best option is a 

high-quality corpus containing spoken rather than purely written language (e.g., Subtitles 

corpus), sized at least at the lower bound of plausible human language experience (i.e., 200 

million words). The performance of large, noisy written corpora is far too variable across tasks to 

recommend with any reliability. Lastly, for very high conceptual complexity, we recommend 

considering the highest-quality corpus available (e.g., BNC), even if it is smaller than the 

alternatives. Indeed, it may well be a fruitful area for future research to collate a high-quality 

corpus that is deliberately designed both in size and content to be representative of cumulative 

human language experience over a lifetime, potentially localized to the ages and/or dialects of 

participants whose behaviour is being modelled (see Johns & Jamieson, 2019). Such a corpus 

might usefully include contemporary sources of text such as social media, which currently 

occupies relatively little of people’s language experience but is increasing annually in 

importance (e.g., approximately 70% of adults in the UK use social media for an average of 39 
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minutes each day: Ofcom, 2019).  

These findings and recommendations suggest that both distributional semantics and 

linguistic–simulation research would benefit from some adjustment in their respective 

approaches to modelling linguistic distributional knowledge. Since Baroni et al.’s (2014) 

exhortation “Don’t count, predict!”, distributional semantics research has overwhelmingly 

concentrated on predict models trained on very large corpora as the default approach to 

distributional modelling. We suggest that distributional semantics, as a field, should be more 

conservative in the assumption that predict models and very large corpora provide a one-size-

fits-all solution, and less dismissive of the value of count and n-gram models, and smaller high-

quality corpora, in capturing human performance. Some alternative models like GloVe 

(Pennington et al., 2014) combine elements of both count and predict architectures, but tend to 

rely on enormous corpora of 42–840 billion words, and do not necessarily perform better than 

predict models when trained on the same large corpus (e.g., O. Levy et al., 2015; Berardi, Esuli, 

& Marcheggiani, 2015; see also O. Levy & Goldberg, 2014a; Li et al., 2015). Nonetheless, it 

may be useful for future research to examine how hybrid architectures perform when trained on 

smaller, high-quality corpora that are plausibly representative of human language experience. In 

addition, the field should be more aware that the common reliance on similarity-based and other 

tasks that focus on a limited variety of predominantly paradigmatic relations is not representative 

of how linguistic distributional knowledge is used in cognition. If distributional semantics 

researchers aim to create a model of semantics that can be successfully applied across all of 

human cognition (e.g., Emerson, 2020), then it is important to use a benchmark set of cognitive 

tasks whose stimulus sets systematically span the range of conceptual complexity, from 

paradigmatic relations to syntagmatic to bag-of-words relations, and from a single type of 

semantic relation to a diverse variety. 
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 In addition, it may be useful to incorporate implicit measures of semantic processing 

effort (e.g., RT, electrophysiological response) in these benchmark tasks rather than continue to 

focus on explicit measures of human performance (e.g., ratings, choices). There is no one-size-

fits-all LDM that is appropriate to modelling all cognitive tasks, and even a given task may vary 

in its use of linguistic distributional knowledge according to the stimuli used (e.g., semantic 

priming relies on a range of conceptual relations). Moreover, when it comes to corpus choice, 

quantity is not more important than quality: modelling conceptually complex tasks, like 

concrete-abstract semantic decision, requires high-quality corpora that approximate human 

language experience. Both optimal model and optimal corpus vary with the conceptual 

complexity of the task, which is why it is critical to develop models that can flexibly use 

different distributional relations under different circumstances, and to test models against tasks 

that span the full range of conceptual complexity. 

Linguistic–simulation research, on the other hand, should be more discerning about using 

off-the-shelf LDMs, more willing to consider predict models when studying similarity-based or 

other paradigmatic tasks, and more conservative in their conclusions regarding null effects of 

LDM predictors. Failure of one LDM to predict human performance in a particular task does not 

mean linguistic distributional knowledge plays no role in cognitive processing: it might simply 

be than an unsuitable LDM was used. Similarly, comparing relative effect sizes of linguistic 

versus simulation information in a given task (see Louwerse, Hutchinson, Tillman, & Recchia, 

2015) should be treated with caution unless care has been taken to ensure the particular LDM 

(and indeed the particular model of simulation effects) is appropriate for the task. For instance, 

such is the popularity of word2vec as a cutting-edge LDM that its failures are sometimes 

interpreted as general failure of linguistic distributional knowledge to capture critical conceptual 

information. Lupyan and Lewis (2019) observe that word2vec, trained on Google News or 
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Wikipedia corpora, performs poorly when relating perceptual properties such as tire–round or 

pillow–soft, and conclude that distributional models “fail to capture some seemingly basic 

perceptual information” (p. 9). However, given that such concept properties can be learned via 

syntagmatic relations, and that other LDMs have previously been shown to capture quite detailed 

perceptual information such as distinguishing perceptual modalities from one another (Louwerse 

& Connell, 2011), it is arguably more likely that the problem is specific to this particular LDM 

rather than linguistic distributional knowledge in general. In other words, applying an unsuitable 

model of distributional information and/or training on an unsuitable corpus may lead to false 

generalizations about the utility of LDMs in modelling human cognition, and, more broadly, 

about the role of linguistic distributional knowledge in cognition. 

Nonetheless, some caveats are in order. The results and recommendations we present 

here are not based on trying to achieve absolute maximum performance on any particular task by 

state-of-the-art parameter optimization of LDMs. Rather, our intention was to derive general 

recommendations of how to model linguistic distributional knowledge, based on underlying 

features of the task in question, that we hope will be relatively robust to noise, changes in task 

design, and changes in corpus or model parameters. 

There are enormous researcher degrees of freedom (Simmons, Nelson, & Simonsohn, 

2011) in preparing LDMs: it is always possible to tweak model performance through careful 

selection of parameters or corpus pre-processing choices. For example, Bullinaria & Levy (2012) 

found that by transforming the matrix of a PPMI-based count vector model (i.e., by restricting 

the word-word matrix to the 50,509 most-frequent words, using singular value decomposition 

restricted to 5000 principal components, and down-weighting the larger component values), they 

were able to achieve a perfect 100% score on the TOEFL test of synonym selection. However, 

these parameters were not stable: with only slight modifications (e.g., using more than 5000 
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principle components, or using a lesser degree of down-weighting on large component values), 

performance quickly dropped to around 95%, which is comparable to that of our best predict 

model in Study 1. Bullinaria and Levy also note that the model with TOEFL-optimized 

parameter settings was far from the best model for other tasks, and warn against such potential 

overfitting when using LDMs; a caution with which we wholeheartedly agree. 

Indeed, model families differ systematically in the degrees of freedom involved in their 

architectures, and therefore differ in their risk of overfitting. The neural network architectures of 

predict models involves a far larger number of parameters than do count models (O. Levy et al., 

2015), which in turn involve more parameters than n-gram models. While the strong 

performance of predict models on certain tasks may make the risk of overfitting worthwhile, 

Johns et al. (2019) argue equivalent performance can be achieved via simpler architectures. They 

found that adapting a count model to learn from negative information (i.e., words that do not 

appear together in context) allowed it to match or exceed performance of the skip-gram predict 

model, even on tasks where predict models tends to excel (e.g. WordSim-353 similarity and 

relatedness ratings). Future research should consider the issue of model complexity when 

developing LDMs, with the goal of minimizing the degrees of freedom required to achieve 

optimal performance.   

There are also enormous researcher degrees of freedom in selecting stimuli to represent a 

cognitive task: it is always possible to optimize model performance by focusing on “good” cases 

(i.e., a dataset or group of items that are easy to predict) and avoiding the difficult cases that do 

not work so well. A selective focus on good cases can happen accidentally— note how well the 

TOEFL dataset is predicted in Study 1 (up to 95% correct) compared to the ESL dataset (up to 

68% correct), even though both are examples of a synonym selection task— but it is not possible 

to draw reliable conclusions about LDM capabilities from good cases alone. For example, some 
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early work with the word2vec tool—which provides the influential predict models CBOW and 

skip-gram— concentrated on its ability to predict verbal analogies (Mikolov et al., 2013; see also 

Pennington et al., 2014). Given the analogy problem man is to king as woman is to X, Mikolov et 

al. showed that simple vector offsets (X = king – man + woman) results in a vector close to 

queen. Such analogies appear to be an example of quite sophisticated semantic/conceptual 

processing and have been lauded in the cognitive literature as an example of how distributional 

semantics models can successfully learn high-level, abstract relations (e.g., Günther, Rinaldi, & 

Marelli, 2019; Lupyan & Lewis, 2019). However, other researchers have criticized the original 

dataset for its unrepresentative and unbalanced nature (e.g., while it contains nine 

morphosyntactic relations such as regular plurals, it contains only five semantic relations, and 

over half the semantic stimuli relate to a single country–capital relation) and showed that, when 

a more representative set of semantic relations was examined, model performance was much 

worse (Chen, Peterson, & Griffiths, 2017; Gladkova, Drozd, & Matsuoka, 2016). In particular, 

while distributional semantics models did best for country–capital analogies with accuracy 

between 78–98% (e.g., Athens is to Greece as Paris is to X), Gladkova et al. found that accuracy 

was extremely poor (<5%) for analogies using more conventional semantic relations such as 

group membership (e.g., player is to team as wolf is to X) or animal–young (e.g., cat is to kitten 

as bear is to X). These findings show that most of the early, headline successes regarding verbal 

analogies came from using a dataset with a preponderance of good cases that were easy for 

models to predict, which in turn led to overestimations of their abilities to perform analogical 

reasoning. Conclusions about the capabilities of particular LDMs should be made with caution 

unless—as we have attempted to do though our use of multiple datasets and/or measures per 

task—there is a systematic effort from the outset to select a representative range of stimuli. 

Finally, we earlier noted that linguistic distributional knowledge should contain errors 
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about the world that at least in part map systematically onto human errors and individual 

differences. The methodological impact of this point is that, rather than expecting LDMs to 

perfectly capture average human performance, it seems more reasonable to expect them to 

perform within the human range of performance about as well as a random human would. That 

is, perhaps a particular LDM should be regarded as analogous to a snapshot of the linguistic 

distributional knowledge an individual human participant on a given day, rather than analogous 

to an average of all human linguistic distributional knowledge. Such an approach may involve 

moving away from evaluating LDMs according to their fit to item-level averages (e.g., how well 

do model scores correlate with mean human similarity ratings across the set of all items?) and 

towards evaluating their fit to bounds of acceptable variability in human performance (e.g., how 

often across the item set is the model score for each item within M ± 1 SD of human similarity 

ratings? see Banks et al., 2021). Most datasets commonly used to evaluate LDMs are either 

based on notions of objectively correct performance (e.g., TOEFL synonym test) or do not 

contain sufficient data about participant variability to adopt this approach (e.g., MEN relatedness 

ratings). However, sufficient information is available in some cognitive datasets (e.g., Semantic 

Priming Project: Hutchison et al., 2013; Calgary Semantic Decision Project: Pexman et al., 

2017), and would of course be available to anyone collecting their own original participant data. 

Future research should investigate not only the ability of LDMs to predict what humans get right 

in conceptual processing, but also the ability to predict what they get wrong and how. 

Conclusions 

Linguistic distributional knowledge plays an important role in cognition. There is a long 

history of endeavours to understand how lexical semantic relations contribute to cognitive 

processing, but such work has tended to focus on specific subtypes of relations, such as 

syntagmatic versus paradigmatic, taxonomic versus thematic, concrete versus abstract, and so on 
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(e.g., de Saussure, 1916; Estes et al., 2011; Medin et al., 1993; Murphy, 2003). In its most 

general form, linguistic distributional knowledge encompasses all such relations but also the 

more nebulous bag-of-words relations (e.g., that linking physics and proton, or stubbed and ow) 

that do not neatly fit the traditional subtypes yet are plausibly useful in conceptual processing. 

LDMs are a powerful tool to help us understand the nature and scope of linguistic 

distributional knowledge, but they should not be used uncritically. Given the enormous 

flexibility of the human conceptual system, it should perhaps be unsurprising that there is no 

one-size-fits-all solution to how linguistic distributional knowledge is used across cognition. 

Different conceptual tasks use linguistic distributional knowledge differently and therefore 

require different LDMs to capture performance. Thus, researchers should carefully consider task 

characteristics—in particular, the complexity of the conceptual processing involved—when 

using LDMs to understand how linguistic distributional information contributes to a particular 

cognitive phenomenon. Future work should develop more detailed theoretical and computational 

models of how linguistic distributional knowledge is used across a range of specific cognitive 

tasks, including the time-course of activation of this knowledge. In this endeavour, distributional 

semantics and linguistic–simulation theories of cognition have a lot to learn from one another, 

and both would profit from more crosstalk between their largely parallel fields of research. The 

work reported here provides a framework for developing such models in terms of how the 

complexity of conceptual processing in the task influences the form of linguistic distributional 

knowledge that is most relevant. Language is full of latent structure and people consume 

hundreds of millions of words over a lifetime; while it is far from the whole picture, its 

contribution to cognition cannot be disregarded. 
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Table 1 

Summary of all models, corpora, and parameters tested, where total number of tested LDMs is 

540. 

Model 
family Model 

Window 
radius Corpus Distance 

Embedding 
size 

Number of 
LDMs 

Count Log co-
occurrence 
frequency 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

- 36 

Count Conditional 
probability 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

- 36 

Count Probability 
ratio 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

- 36 

Count PPMI 1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

- 36 

N-gram Log n-
gram 
frequency 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

- - 12 

N-gram Probability 
ratio n-
gram 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

- - 12 

N-gram PPMI n-
gram 

1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

- - 12 

Predict Skip-gram 1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

50, 100, 200, 
300, 500 

180 

Predict CBOW 1, 3, 5, 10 BNC, 
Subtitles, 
UKWAC 

Euclidean, 
Cosine, 
Correlation 

50, 100, 200, 
300, 500 

180 
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Table 2 

Overview of evaluation tasks. 

Task Conceptual 

complexity 

Processing measure 

Study 1: Synonym choice Very low Explicit 

Study 2: Similarity rating Low Explicit 

Study 2: Relatedness rating Medium Explicit 

Study 3: Thematic relatedness 

production 

Medium–high Explicit 

Study 4: Semantic priming High (but variable) Implicit 

Study 5: Semantic decision Very high Explicit and implicit 
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Table 3 

Optimal model, corpus and parameters for each task, selected by intersection of parameter 

settings with best performance quantified by Bayes Factor model comparisons. Where 

recommendations differ by task or processing measure within a study, we list them separately. 

Task Conceptual 
complexity 

Processing 
measure 

Optimal parameters 

Model 
family 

Model Corpus Window 
radius 

Distance 

Study 1: 
Synonym choice 

Very low Explicit Predict Skip-gram 
300 or 

CBOW 300 

UKWAC 1 or 3 Cosine 

Study 2: 
Similarity rating 

Low Explicit Predict CBOW 300 UKWAC 1 Correlation 
or Cosine 

Study 2: 
Relatedness 
rating 

Medium Explicit Predict CBOW 200 Subtitles 10 Correlation 
or Cosine 

Study 3: 
Thematic 
relatedness 
production 

Medium-
High 

Explicit N-gram 
or 

Predict 

Log n-gram 
or Skip-

gram 300-
500 or 

CBOW 500 

Subtitles 5 (N-
gram) or 

10 
(predict) 

Correlation 
or Cosine 

Study 4: 
Semantic 
priming in LDT  

High 
(variable) 

Implicit Count PPMI Subtitles 5 Correlation 

Study 4: 
Semantic 
priming in NT 

High 
(variable) 

Implicit Count Log co-
occurrence 

Subtitles 5 Correlation 

Study 5: 
Semantic 
decision 

Very high Explicit Count Log co-
occurrence 

BNC 3 Correlation 
or Cosine 

  Implicit Count Conditional 
probability 

BNC 5 Correlation 
or Cosine 

 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 119 
 
 

 

Figures 

 

 

Figure 1  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 120 
 
 

 

 

Figure 2  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 121 
 
 

 

 

Figure 3  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 122 
 
 

 

 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 123 
 
 

 

 

Figure 4  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 124 
 
 

 

 



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 125 
 
 

 

 

Figure 5  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 126 
 
 

 

 

Figure 6  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 127 
 
 

 

 

Figure 7  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 128 
 
 

 

 

Figure 8  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 129 
 
 

 

 

Figure 9  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 130 
 
 

 

 

Figure 10  



LINGUISTIC DISTRIBUTIONAL KNOWLEDGE 131 
 
 

 

Figure captions 

1. Schematic architectures of vector-based count and predict model families, trained 

on a small corpus with a context window of radius 2. In count vector models A–C, each word in 

the corpus is selected in turn as a target and words falling within a fixed radius of the target are 

selected as context words (A). The frequency of co-occurrences within the corpus of the target 

word and each context words are recorded in a vector (B), and vectors for each target word are 

compiled into a co-occurrence frequency matrix (C). In predict models D–E, either an aggregate 

of all context words is used to predict the target word (D: CBOW), or the target word is used to 

predict each context word (E: Skip-gram). Networks are feed-forward and fully connected; these 

schematic representations are a simplification of the implementation details of CBOW and skip-

gram in Word2vec (see Mikolov, Chen, et al., 2013). 

2. Word representation in each model family. A: In a count vector model, a word's 

representation is an unlabelled, sparse vector of length equal to the number of unique words in 

the corpus. B: In an n-gram model, a word's representation is a labelled, dense list of nonzero co-

occurrences whose length varies with the diversity of co-occurring words. C: In a predict vector 

model, a word's representation is an unlabelled, dense vector of length equal to the size of the 

neural network's hidden layer (i.e., its embedding size).  

3. Violin plots showing the performance of each LDM at modelling each dataset in 

Studies 1–5. One distribution is shown for each model type, summarising results of all corpora, 

window radii, and where relevant embedding sizes and distance types. Circular dots show LDMs 

whose performance was substantially preferred to the null model (BF10 ≥ 10: Jeffreys, 1998), and 

✕ marks show LDMs whose performance was equal to or worse than the null (BF10 < 10). Dots 

are filled black where the LDM had optimal parameter values (see Table 3), grey where one 

parameter has a non-optimal value, and unfilled where the LDM has 2 or more non-optimal 
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parameter values. Note that optimal LDMs are chosen for robustness across parameters so top-

performing outliers may not represent the optimal choice for a given task. Horizontal red lines 

(where visible) show performance at the level of chance. 

4. LDM performance per corpus and dataset in Study 1’s synonym selection task, 

for optimal parameters of window radius  𝑟 = 1 and cosine distance between vectors. Panel A 

shows scores as percentage accuracy, where horizontal red lines indicate chance performance. 

Panel B shows log Bayes Factors (Log10 BF10) for LDM performance; positive values indicate 

evidence favours the LDM over the null model, negative indicate evidence favours the null 

model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 (i.e., BF10 = 10) 

threshold for strong evidence (Jeffreys, 1998). 

5. LDM performance per corpus and dataset in Study 2’s similarity judgement task, 

for optimal parameters of window radius  r = 1 and correlation distance between vectors. Panel 

A shows Pearson's correlation between mean human ratings and LDM score (n-gram) or distance 

(predict or count vector) per item; absolute values are shown for ease of comparison between 

model families. Panel B shows log Bayes Factors (Log10 BF10) for LDM performance; positive 

values indicate evidence favours the LDM over the null model, negative indicate evidence 

favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 

(i.e., BF10 = 10) threshold for strong evidence (Jeffreys, 1998). 

6. LDM performance per corpus and dataset in Study 2’s relatedness judgement 

task, for optimal parameters of window radius  𝑟 = 10 and correlation distance between vectors. 

Panel A shows Pearson's correlation between mean human ratings and LDM score (n-gram) or 

distance (predict or count vector) per item; absolute values are shown for ease of comparison 

between model families. Panel B shows log Bayes Factors (Log10 BF10) for LDM; positive 

values indicate evidence favours the LDM over the null model, negative indicate evidence 
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favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 

(i.e., BF10 = 10) threshold for strong evidence (Jeffreys, 1998). Note that for the MEN dependent 

variable (bottom row), the magnitude of the scale means the dotted lines are so close to 0 as to be 

indistinguishable. 

7. LDM performance per corpus and dataset in Study 3’s thematic relatedness 

production task, for optimal parameters of window radius  𝑟 = 5 and cosine distance between 

vectors. Panel A shows Pearson's correlation between weighted production frequency and LDM 

score (n-gram) or distance (predict or count vector) per item; absolute values are shown for ease 

of comparison between model families. Panel B shows log Bayes Factors (Log10 BF10) for LDM 

performance; positive values indicate evidence favours the LDM over the null model, negative 

indicate evidence favours the null model over the LDM, and the dotted horizontal lines indicate 

the Log10 BF10 = 1 (i.e., BF10 = 10) threshold for strong evidence (Jeffreys, 1998). 

8. LDM performance per corpus and dataset in Study 4’s semantic priming task, for 

optimal parameters of window radius 𝑟 = 5 and correlation distance between vectors. Panel A 

shows the increase in 𝑅& achieved by adding a predictor of LDM score (n-gram) or distance 

(predict or count vector) to a null model containing lexical predictors, in a linear regression of 

response times per item. Panel B shows log Bayes Factors (Log10 BF10) for LDM performance; 

positive values indicate evidence favours the LDM over the null model, negative indicate 

evidence favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 

BF10 = 1 (i.e., BF10 = 10) threshold for strong evidence (Jeffreys, 1998). Note that for the lexical 

decision RT dependent variable (first row of Panel B), the magnitude of the scale means the 

dotted lines are so close to 0 as to be indistinguishable. 

9. LDM performance per corpus and dataset in Study 5’s abstract/concrete semantic 

decision task, for optimal parameters of window radius 𝑟 = 5 for response times (RT), and 
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radius 𝑟 = 3 for response proportion, and correlation distance between vectors. Panel A shows 

the increase in 𝑅& achieved by adding predictors of LDM scores (n-gram) or distances (predict or 

count vector) to a null model containing lexical predictors, in a linear regression of RT or 

response proportion. Panel B shows log Bayes Factors (Log10 BF10) for LDM performance; 

positive values indicate evidence favours the LDM over the null model, negative indicate 

evidence favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 

BF10 = 1 (i.e., BF10 = 10) threshold for strong evidence (Jeffreys, 1998). Note that for the 

Response decision dependent variable (bottom row), the magnitude of the scale means the dotted 

lines are so close to 0 as to be indistinguishable. 

10. Summary of optimal model family and corpus choice for each task in Studies 1–5, 

according to the conceptual complexity and relevant linguistic distributional relations of each 

task, and the nature of the dependent measures modelled. 
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Footnotes 

 
 
1 The term distributional semantic model (DSM) is commonly used in parts of the literature to 

describe predict and count vector models, which represent word meanings as vectors in a high-

dimensional space, but is not used to describe n-gram models due to their different construction. 

Since we examine all three families of model in the present paper, we have adopted linguistic 

distributional model (LDM) as an umbrella term. 

2 Some researchers in distributional semantics (e.g. Rapp, 2002; Sahlgren, 2006) have used the 

term syntagmatic to refer to words that appear in the same context regardless of syntax (i.e., first-

order co-occurrence in text), and the term paradigmatic to refer to words that appear in similar 

contexts regardless of syntax (i.e., second-order co-occurrence in text). However, we stick here 

to the original terminology because it reflects wider usage in psychology and linguistics (e.g., 

Murphy, 2003; Sloutsky et al., 2017) and allows us to characterise different forms of linguistic 

distributional knowledge independently of LDM workings. 

3 In principle, “word embedding” can refer to any model that represents a word as a point in a 

vector space. However, in computational linguistics, the label is used almost exclusively to refer 

to dense vector representations of neural-network-based prediction models (e.g. Levy & 

Goldberg, 2014b). We use the term following this convention. 

4 For example, lexical decision is a (relatively) cognitively simple task: people must 

judge whether or not a string of letters is a valid word. However, when lexical decision 

is embedded in a semantic priming paradigm, the semantic relation(s) between prime and target 

in the stimulus set determines the conceptual complexity of the task, which may range from low 

to high depending on the stimuli selected. 
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5 The term "n-gram model" can also be used in computational linguistics to refer to Markov 

models that use n-gram frequencies to predict upcoming words; these Markov models are 

separate to the LDMs we describe here, and our use of "n-gram model" does not concern them. 

6 We chose to implement word2vec LDMs as instantiations of predict models because they are 

the most widely used predict model in cognitive and psycholinguistic research, and because less 

widely used alternatives were either hybrid architectures that did not fit the classification (e.g., 

Pennington et al.’s, 2017, GloVe model combines elements of predict and count LDMs) or were 

cognitively implausible in some way (e.g., Bojanowski’s FastText model is trained on subword 

character strings rather than treating words as atomic entities). 

7 The dimensions of count vectors can be labelled by specific words, but such labels are 

redundant when comparing words because they play no role in distance calculations; hence, 

word representations in count vector models are functionally unlabelled.  

8 While other work has used alternative distance measures, such as city-block distance (e.g. Lund 

& Burgess, 1996; J. Levy et al., 1999) or Hellinger and Kullback–Leibler distances (used in 

Bullinaria & Levy, 2007, 2012; J. Levy et al., 1999; J. Levy & Bullinaria, 2001; Patel et al., 

1998), the measures we present here are amongst the most commonly used and include the most 

effective options. 

9 We opted not to combine corpora because we wanted to examine the impact of their particular 

characteristics on LDM performance, and because the scale differential (i.e., the largest corpus is 

20 times the size of the smallest) meant that any advantages of combined corpora were likely to 

be very small and not worth increasing our already-large set of models comparisons even further. 

10 Bayes Factors for next-best comparisons on all datasets are available in the supplementary 

materials. 
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11 A further difference between our processes was their use of only the textual portion of the 

BNC (comprising about 90% of the total corpus), though this did not contribute to the 

discrepancy in results. We thank John Bullinaria and Joe Levy for their assistance in getting to 

the bottom of this issue. 

12 All baseline predictors were correlated to some extent; however, all variance inflation factors 

(VIFs) were less than 7.7 so multicollinearity was not a concern (Hair et al., 1998, pp. 193). 

13 Mandera et al. (2017) modelled lexical decision RT data from the same semantic priming 

dataset using predict and count vector LDMs but found their models explained a higher 

proportions of variance: up to 6.8% for the best count vector model, and 6.6% for the best predict 

model. However, they also examined a smaller subset of items and used a different baseline set 

of lexical predictors. We therefore calculated prime-target distances for our items using Mandera 

et al.’s optimal LDM (available in Mandera, n.d.) and reanalysed the data using our baseline 

model and this Mandera-derived predictor. We found that Mandera et al.’s preferred predict 

LDM (CBOW, 𝑒 = 300, corpus = UKWAC + Subtitles combined, 𝑟 = 6, cosine distance) 

explained 3.0% of variance in semantic priming RT. Our closest equivalent LDM (as above but 

corpus = UKWAC, 𝑟 = 5) explained 3.6%. However, our optimal count vector LDM (PPMI, 

corpus = Subtitles, 𝑟 = 5, correlation distance) explained 5.2%. We conclude that the difference 

in variance explained between Mandera et al. and the present study is likely due to different item 

samples and/or baseline lexical models, rather than to substantive differences in LDM 

performance.  

14 The two critical predictors for a given LDM correlated to varying extents, depending on model 

family and parameters (range from r = -.01 to r = 1), which led to collinearity issues in some 
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regression analyses. Since we were concerned with maximising and comparing the variance 

explained per LDM, and multicollinearity does not affect R2 and goodness of fit measures such 

as BIC, we opted to include both predictors without selectively correcting for collinearity. 

Nonetheless, since multicollinearity does affect coefficients and their associated statistics, we 

also exercised caution when interpreting the regression coefficients. We did consider the 

possibility of including only one critical predictor (e.g., only concrete distance or only abstract 

distance), but model comparisons using Bayes Factors showed that models with both predictors 

performed substantially better than models containing a single predictor, and so we concluded 

that both predictors were needed to capture semantic decision performance.  

15 Pairwise correlations between all models on all task datasets are included in the supplementary 

materials. 


