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Abstract

Safety stock is necessary for firms in order to manage the uncertainty of demand. A key

component in its determination is the estimation of the variance of the forecast error over

lead time. Given the multitude of demand processes that lack analytical expressions of the

variance of forecast error, an approximation is needed. It is common to resort to finding

the one-step ahead forecast errors variance and scaling it by the lead time. However,

this approximation is flawed for many processes as it overlooks the autocorrelations that

arise between forecasts made at different lead times. This research addresses the issue of

these correlations first by demonstrating their existence for some fundamental demand

processes, and second by showing through an inventory simulation the inadequacy of the

approximation. We propose to monitor the empirical variance of the lead time errors,

instead of estimating the point forecast error variance and extending it over the lead time

interval. The simulation findings indicate that this approach provides superior results

to other approximations in terms of cycle-service level. Given its lack of assumptions

and computational simplicity, it can be easily implemented in any software, making it

appealing to both practitioners and academics.

Keywords: Forecasting, lead time demand variance, demand uncertainty, safety stock,

forecast errors correlations

1. Introduction

With an increase in competitiveness, meeting customer demand has become a target

that businesses strive to achieve. Maintaining a balance between excess inventory and

lost sales is a necessity for better performance. Safety stock plays a pivotal role in this,

as it allows buffering against demand uncertainty. In practice, safety stock is determined

by multiplying the standard deviation of forecast error over lead time by the inverse of

the distribution function that represents these errors at the desired level of coverage. The

forecast error over lead time implies knowledge of the cumulative forecast over the same
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period for which variance expressions are not readily available. This leads researchers

and practitioners to either impose severe assumptions or use approximations to arrive

at the desired variance by using the point forecast errors. Textbooks often prescribe

scaling the variance for the one-step ahead forecast errors by the lead time as an approx-

imation (Axsäter, 2015). Due to its simplicity and ease of application, this formula is

employed frequently, requiring only the calculation of the one-step-ahead forecast errors

variance as an input. This method suffers from a serious drawback as it fails to cap-

ture the correlations between forecast errors (Johnston and Harrison, 1986; Barrow and

Kourentzes, 2016). Not accounting for these correlations leads to the variance of errors

being under-estimated, which in turn results in inappropriate safety stocks levels being

determined.

This research acknowledges the existence of these correlations and provides some new

insights on their effect on forecasts, service levels and inventory holdings. While these

correlations are the motivation for this paper, the research aims at examining the perfor-

mance of three different forecasting methods for the variance of lead time forecast error

on stock control levels under various types of forecasting uncertainty. Second, within

an AutoRegressive Integrated Moving Average (ARIMA) framework, we examine ana-

lytically simple fundamental Normal demand processes and use the variance-covariance

matrix to illustrate the validity of the traditional approximation for an ARIMA(0,0,0)

model but highlight the approximation’s inadequacy for other commonly applied models

due to the appearance of these correlations. This occurs even when the demand model

and parameters are assumed to be fully known, as they appear in the variance-covariance

matrix of the forecast errors, irrespective of the assumptions on the distribution of the

latter, one of which is typically independence. The form of these correlations depends on

the model structure and its parameters. Third, we also recommend the use of a simple

yet intuitive heuristic for approximating the forecast errors variance, which consists of

monitoring the forecast errors distribution over the lead time, rather than resorting to the

approximation discussed before. While this approach has appeared before in the litera-

ture, the underlying motivation behind its choice has not been discussed, and this paper

seeks to justify its use and advantage over other approximations. The heuristic relies on

the empirical cumulative forecast errors over lead time directly, instead of building on

the one (or multiple) step ahead forecast errors.

In contrast with existing research (e.g. Prak et al., 2017), we do not seek to deter-

mine remedies for specific demand processes where the forecasting model is mis-specified;

rather we aim at studying the performance of approximations for estimating the lead

time variance of forecast errors. Since knowledge of the underlying process is impossible

in practice, we proceed to examine three competing approximations, explaining the ra-

tionale behind them and linking them to the analytical insights we provide. This paper

contributes to the existing literature by evaluating the inventory implications of these
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approximations, under different forecasting uncertainty settings and data generating pro-

cesses, including both stationary and non-stationary ones, discussing the conditions under

which each approximation is viable. We validate our analytical and simulation results

on a real case study, using data from a US retailer. Our empirical findings indicate

that this method achieves superior cycle-service level results compared to alternatives,

which coupled with its ease of implementation, underlines its usefulness for research and

practice.

The rest of this paper is organised as follows: Section 2 first discusses demand un-

certainty and the approaches to model it; second, it covers the correlations between

forecast errors over a lead time and how these impact the estimation of the variance

of lead time forecast errors. Section 3 shows the existence of these correlations from a

theoretical standpoint for simple yet fundamental demand processes. Section 4 examines

the different approximations in estimating lead time forecast errors variance, while Sec-

tion 5 reports the findings drawn from an inventory simulation on the adequacy of these

approximations, followed by the results gained from using real data in Section 6.

2. Background Literature

2.1. Demand Uncertainty and Variability

Demand uncertainty refers to the unpredictability that arises in forecasting future

demand, as opposed to variability which is defined as the fluctuations of demand around

its mean. It is represented by the distribution of the forecast errors, and its impact

on safety stocks is quantified by the variance of the latter. Failure to acknowledge this

difference results in setting inappropriate safety stocks. The forecast uncertainty can be

split into three types, which are reviewed subsequently. We show in the next section that

these uncertainties appear in the calculation of the variance of lead time demand forecast

errors.

In modeling demand, we are confronted with three types of uncertainty, endemic

to any forecasting problem: model, parameter and sample size (Chatfield, 1995). Any

forecasting task faces model uncertainty, as in reality the underlying Data Generating

Process (DGP) is unknown and it is impossible to diagnose how closely this is approx-

imated by a specified model. Many forecasters and inventory researchers overlook this

and fail to account for this uncertainty, which is reflected in an inadequate estimation

of the variance of forecast error. As a result, inappropriate safety stocks are set and

higher inventory costs are incurred (Badinelli, 1990; Kim and Ryan, 2003; Dong and Lee,

2003). Even if the form of the true DGP is assumed to be known, it is questionable

whether the parameters can be perfectly known. Parameter Uncertainty refers to this,

where the parameters are misspecified, which can affect the performance of demand pre-

diction intervals (Lee and Scholtes, 2014) as well as safety stocks (Ritchken and Sankar,
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1984). Sample Size Uncertainty refers to the case where both model and parameters are

known, and the uncertainty is from sampling issues, which results in a disparity between

the asymptotic properties of the model and the finite sample properties of the underlying

data. In practice, it is often difficult to distinguish between the three types of uncertainty.

For example, a misspecified parameter can make a model term insignificant, and change

the specified model as well.

In a stock control context, quantiles are required in addition to point forecasts in

order to model forecast uncertainty. Uncertainties, which generate biases, are not always

unfavourable, as a parameter being optimal in terms of Mean Squared Error (MSE) is not

optimal in an inventory context (Janssen et al., 2009), due to the difference in objective

functions (Strijbosch et al., 2011). For safety stock purposes, the variance of the forecast

errors is required as an input, despite many different procedures being proposed in the

literature (a comprehensive review can be found in Gonçalves et al., 2020). Since the

error distribution is part of the forecasting model, the uncertainty surrounding the size of

its standard deviation should be factored in, as it is estimated rather than determined a

priori. Thus, all three uncertainties include this estimation uncertainty. While the impact

of these uncertainties has featured separately in stock control papers, they have not been

compared in terms of inventory performance. In this research, these uncertainties will be

considered, in order to assess the effect of the safety stock approximations under these

different uncertainty scenarios.

The uncertainty surrounding demand is quantified by constructing demand predic-

tion intervals to confine the possible regions between which future demand might lie.

The first step consists of determining the variance of the forecast errors. However, since

many of the tasks consist of finite and limited data, the conditional variance of the i-th

step ahead forecast error is employed (σ2
t+i|t), as opposed to the unconditional one (σ2

t+i)

which provides the asymptotic value. Henceforth, the variance calculated is conditional

on the data made available up until the estimation time t. This is the theoretical vari-

ance; nevertheless, when forecasting, the variance component of the forecast errors needs

to be calculated, and thus σ̂2
t+1|t replaces σ2

t+1|t for estimation purposes. After determin-

ing the variance component, the intervals are built with the use of the corresponding

percentile of the assumed error distribution. The construction of demand or prediction

intervals falls into three categories. The parametric stream of the research assumes that

the underlying DGP can be modeled by a forecasting model (Lee, 2014), which depends

on the researcher having adequately approximated the true model. For example, the

Exponential Smoothing family of models can be used to manage SKUs with different

patterns (Snyder et al., 2002), while knowing that it might not be optimal for all (if any)

the time series; nevertheless its lead time expressions are derived for inventory purposes

(Snyder et al., 2004). The non-parametric stream refrains from imposing any assumption

on the demand process; and instead exploits the observed properties of the forecasting
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error density function. Examples consist of Chebyshev’s Inequality (Gardner, 1988) or

bootstrapping methods, with the latter finding successful use in approximating the inter-

vals of a known demand process (Thombs and Schucany, 1990), and also performing well

in setting reorder points (Wang and Rao, 1992) and meeting service levels (Fricker and

Goodhart, 2000). A bootstrapping procedure for estimating safety stocks under skewed

or multimodal distributions is proposed by Saldanha et al. (2020) as a remedy for de-

mand processes that exhibit these departures from the typical assumptions surrounding

demand. Similarly, Kernel Density Estimation has been used to directly estimate quan-

tiles from the forecast error distribution to inform the calculation of safety stock (Trapero

et al., 2018). The semi-parametric stream uses a mixture of the first two to model the

intervals, such as those found in Taylor and Bunn (1999) and Lee and Scholtes (2014).

While demand prediction intervals have been studied in a forecasting context, they bear

similarities to safety stocks, with the stark difference between them being that the latter

requires an estimate of the variance of forecast errors over lead time.

2.2. Safety Stock Estimation

The estimation of safety stocks requires the variance of forecast errors as input, as

typically captured by the Mean Squared Error (MSE). Underlying this are two implicit

assumptions. First, the forecasts are unbiased or have very little bias, which allows the

variance of the errors to be approximated by the MSE (Wagner, 2002). This problem has

been addressed by Lee and Scholtes (2014) for estimating better prediction intervals, and

featured at the heart of the studies by Manary and Willems (2008) and Manary et al.

(2009), who examined its impact on reorder points for Intel’s inventories. The other

assumption is that the errors are homoscedastic, which has been challenged as industrial

data has exhibited some evidence of heteroscedasticity (Zhang, 2007; Stößlein et al., 2014;

Trapero et al., 2019a,b).

There is another problem in estimating the forecast error variance over lead time.

Indeed, forecasts are produced for several consecutive horizons in the future, akin to an

overlapping temporal aggregation of demand itself over a window equal to the lead time

(Boylan and Babai, 2016). This implies that the variance of the errors should cover

the lead time window as well, and this brings forth a new issue which is the correlation

of errors over lead times or horizons (up until this point, the terms ”lead times” and

”forecasting horizons” have been employed interchangeably. In this paper, the term

”horizon” is used to denote the protection interval for the safety stocks, and the exact

relationship between these two in a periodic review context is Horizon = Lead Time +

Review Period, while in a continuous review context, Horizon = Lead Time).

In the literature there are lead time forecast errors variance expressions for the well-

known models; however with the multitude of possible demand processes, the majority

of cases remain uncharacterised, and therefore a heuristic is required to circumvent this
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limitation. Standard textbooks recommend calculating the one-step-ahead forecast errors

variance and multiplying it by the lead time, or in its more familiar form: Lσ̂2
t+1|t. This

approximation depends only on the estimated variance of the one-step ahead forecast

errors, which under perfect information of the demand pattern, reduces to the model

innovations. No other parameters are required, such as the demand DGP autoregressive

or moving average parameters. At first sight, its simplicity and lack of assumption of

DGP makes its use appealing. Chatfield and Koehler (1991) criticised this method, with

their main line of attack being that the concept of lead time forecasts is often confounded

with that of forecasting for a horizon. Chatfield (1993) warns against the use of this ap-

proximation, stating that it possesses no theoretical basis and does not accommodate the

different properties of the prediction intervals. Koehler (1990) challenges the robustness

of this method, pointing out that this equation holds in the presence of the Random Walk

model for multiple-steps-ahead point forecast errors. This approximation however is the

cumulative L-steps-ahead conditional variance for an independent and identical demand

(i.i.d) process, and it hinges on the crucial assumption that the demand being studied can

be approximated in that fashion, thus ignoring other time series patterns such as auto-

correlation, trend, moving averages or seasonal patterns. Furthermore, it is questionable

whether the estimated MSE in-sample errors approximates well the out-of-sample vari-

ance of the forecast errors, an important distinction that is lost if the conditionality of

errors is not considered (Barrow and Kourentzes, 2016).

An important distinction must be made between model errors (i.e. the process under-

lying the data) and forecast method errors, as these two terms are sometimes confused.

The model errors or innovations at time t, εt are those found in the DGP; they form

the stochastic component of the demand process. The forecasting or method residuals

or errors at time t, et, measure the difference between actuals and forecasts. Under per-

fect knowledge of the demand, the forecast method errors are a function of the model

structure, its errors and the set of parameters Θ, i.e. et+i|t = f(εt+1, ...εt+i,Θ), and this

causes the correlations between multiple-steps-ahead errors to appear for several demand

models (this is elaborated further in Section 3). Indeed, the main caveat of the current

procedure for estimating variance is that it fails to capture two sources of correlations: (i)

correlations between errors at different forecasting horizons and (ii) correlations between

forecasts over cumulative lead time (Barrow and Kourentzes, 2016). The first refers to the

correlations due to mis-specifying the forecasting model as i.i.d, while the second refers

to those that arise due to the forecast errors at different lead times being correlated with

each other. These correlations are the emphasis of the discussion in this paper, as they

are often overlooked in many of the estimation procedures, which ensues in inaccurate

safety stocks levels.

For the first source of correlation, an implicit assumption being made is that the

multiple-steps-ahead forecast errors all possess equal variance, with σ2
t+i|t = σ2

t+1|t. This
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assertion holds for the i.i.d process, yt = µ+εt, where εt ∼ N(0, σ2) and Cov(εt+i, εt+j) =

0 for i 6= j. For other processes, σ2
t+i|t 6= σ2

t+1|t, as can be seen for the multiple-steps-ahead

error equation for many DGPs. This already renders the approximation inappropriate.

Kourentzes (2013) suggests a simple remedy to overcome this issue; namely to sum up

the variance of forecast errors at different steps-ahead. Indeed, this approach consists

of first estimating the conditional variance of the forecasting errors at each until the

desired lead time L, and then adding them up to determine the variance at L, to give∑L
i=1 σ

2
t+i|t. This approach is independent of any model assumptions, as it retrieves all

the multiple-steps-ahead errors until the lead time and adds them up, and hence tackles

the first issue posed by the Lσ̂2
t+1|t approximation. This however does not address the

correlation of forecasts at different lead times, as summing up the individual components

implies automatically that the covariance terms between errors is 0.

The second source of correlation was acknowledged by Box et al. (2015) who proved its

existence for ARIMA processes. The confusion between model innovations and forecast

errors has partly led to these correlations being overlooked in the literature. Since the

forecasts are produced for several steps-ahead and then summed, they are likely to be

correlated as they share some of the information from previous periods, irrespective of

whether the correct model has been identified or not. Johnston and Harrison (1986) used a

Dynamic Linear Model formulation to show that ignoring these correlations could lead to

an understatement of the variance of lead-time demand. They noted that this correlation

existed, and they highlighted its omission from the ordinary methods of estimating the

cumulative variance, attributing this correlation partly due to the need to estimate the

level of the series, as well as the parameters. Prak et al. (2017) showed its existence under

i.i.d demand, and provided correction terms for fitting both Simple Moving Average and

Simple Exponential Smoothing procedures for this particular process, which delivered

better safety stocks and service levels. While their correction terms focused on the i.i.d

case and cannot be extended to other demand processes, their work showed the impact of

fitting a wrong model to a specific demand (i.e. the presence of correlations between errors

due to model uncertainty). Nonetheless, even under perfect knowledge of the demand,

and for different processes, the correlations may still exist, due to the model structure

and parameters, and this is detailed further in Section 3. More recent contributions have

explored additional demand models (Prak and Teunter, 2019; Prak et al., 2021, with a

focus on estimation issues) expanding the cases that we can resolve. In Section 4 we

discuss general approximations of the lead time variance, complimenting these.

3. Theoretical Derivations of the Variance and Covariance Terms

In this section, we examine the conditional variance of the lead time forecast errors

analytically for certain fundamental demand processes and compare it to the typical

Lσ̂2
t+1|t approximation, with the objective of demonstrating the inadequacy of the latter
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and quantifying any ensuing losses from its use. This entails extracting the variance

over lead time of these errors, as well as the covariance term between the errors, thus

providing a unifying framework for the expressions of the demand processes studied. The

covariance terms can then be used to form the Error Variance-Covariance matrix (Σ),

which can display all these terms as well as demonstrate the impact of the accrual of

these correlations and highlight how existing approximations capture or overlook these.

We focus on DGPs that stem from the ARIMA(p,d,q) family of linear time series model,

propounded by (Box et al., 2015). Its general expression is ∇dyt = εtΘ(B)/Φ(B) + c,

where yt and εt represent the demand and the model innovations at time t, B the backshift

operator, ∇, the difference operator defined as ∇ = (1 − B), c the level or constant

term, and Θ(B) and Φ(B) connote respectively the moving average and autoregressive

operators in their polynomial form. The innovations εt adhere to an independent white

noise process N(0, σ2). The ARIMA family encompasses many demand models studied in

the literature and is common in the context of inventory control (Aviv, 2003), supporting

our selection for this analysis.

While many textbooks cover the variance of point forecast errors for these processes,

the cumulative aspect has received much less treatment. Nevertheless, while some of

the cumulative variance expressions can be found in the literature (e.g., Ray, 1982),

the core of the discussion here revolves around the covariance terms and the resulting

Error Variance-Covariance matrix. We restrict our attention to basic ARIMA models,

where the parameter order is fairly low, enabling relatively neat derivation of the ex-

pressions. Nonetheless, if the results hold for the basic ARIMA models, then they can

be extended to more complex processes from the same family. Consequently, the follow-

ing models are studied: ARIMA(0,0,0), ARIMA(0,1,0), ARIMA(0,0,1), ARIMA(0,1,1)

and ARIMA(1,0,0). The inclusion of the first process, also known as i.i.d demand, will

help explain the origin of the standard safety stock approximation and thus point to

the inadequacy of its use for other processes differing from it. With the exception of

ARIMA(0,1,1), these demand processes are the most basic i.i.d, Random Walk, Moving

Average and Autoregressive processes that can be chosen; while ARIMA(0,1,1) underpins

the Simple Exponential Smoothing process.

For each process, it is presumed that the correct model and parameters are known

a priori, implying that all forecasts are unbiased. We show that the correlation terms

are present in these cases with no model mis-specification. If the results hold under this

premise, then we postulate that they hold more generally. All forecasts are conditional

on the information available at t. For ease of notation, yt will represent demand at time t,

and Yt+L =
∑L

i=1 yt+i, where L is the lead time. The same logic applies for the conditional

forecasts, Ŷt+L|t =
∑L

i=1 ŷt+i|t and the forecast errors are denoted by et+i|t = yt− ŷt+i|t. It

should be noted that since the assumption of perfect demand knowledge is imposed here,

then all forecasts are unbiased, and thus Ŷt+L|t = E[Ŷt+L|t]. The cumulative errors, Et+L|t,
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which is the sum of errors up to lead time L, can be expressed as Et+L|t = Yt+L− Ŷt+L|t =∑L
i=1 et+i|t. The conditional variance of the cumulative errors may be written as

Var
(
Et+L|t

)
=

L∑
i=1

Var
(
et+i|t

)
+ 2

L∑
i=1,i<j

Cov
(
et+i|t, et+j|t

)
. (1)

If the errors are independent, then Cov
(
et+i|t, et+j|t

)
= 0 for i 6= j, so the variance

of the cumulative errors would just reduce to the sum of the individual variances and

Var
(
Et+L|t

)
=
∑L

i=1 Var
(
et+i|t

)
. However, despite the disturbances εt being independent,

the forecasting errors et may display a correlation over time (Johnston and Harrison, 1986;

Barrow and Kourentzes, 2016; Box et al., 2015), and this is demonstrated later in this

section.∑L
i=1,i<j 2Cov(et+i|t, et+j|t), denotes the sum of all the covariances between the errors.

This term differs for each process, depending on the DGP and on the forecast error

structure. The conditional variance expressions for the forecast error in their variance-

covariance matrix will be provided, which takes the form:

Σ
(L×L)

=


Var(et+1|t) Cov(et+1|t, et+2|t) Cov(et+1|t, et+3|t) ... Cov(et+1|t, et+L|t)

Cov(et+2|t, et+1|t) Var(et+2|t) Cov(et+2|t, et+3|t) ... Cov(et+2|t, et+L|t)

Cov(et+3|t, et+1|t) Cov(et+2|t, et+3|t) Var(et+3|t) ... Cov(et+3|t, et+L|t)

... ... ... ... ...

Cov(et+L|t, et+1|t) Cov(et+L|t+2|t) Cov(et+L|t+3|t) ... Var(et+L|t)


The Variance-Covariance Matrix Σ encompasses all the information required for the

computation of the conditional variance of the errors for safety stocks. For example,

the Lσ2
t+1|t approach consists of using one element from the matrix, the top entry which

corresponds to the one-step-ahead conditional variance, and multiplying it by the lead

time. Given that the matrix is square, the sum of variances estimation method is its

trace, tr(Σ). The true conditional variance of the cumulative errors at lead time L is the

entry-wise sum of the Variance-Covariance matrix terms.

3.1. ARIMA(0,0,0)

The i.i.d demand model is a simple process and quite commonly assumed in the

supply chain literature. This model is the ARIMA(0,0,0) with constant: yt = µ + εt.

For a lead time of L, its t + L actual value, forecast and forecast error expressions are

yt+L|t = µ + εt+L, ŷt+L|t = µ and et+L|t = εt+L, which gives Var(et+L|t) = σ2. The term

σ2 refers to variance of the innovations. Usually, the variance of the forecast errors is

not available before hand, and it has to be estimated conditionally on the data used.

This estimated variance, σ̂2
t+1|t, is different from the theoretical one, σ2, and serves as a

proxy for it. Nevertheless, in this section, since the focus is on theoretical derivations,

the estimated variance is not needed and the variance of the innovations is used instead.

The above equations for the ARIMA(0,0,0) have no parameters apart from σ, nor do
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they include a recursive component on yt, and as a result, no covariance terms appear.

The forecast error term et+L|t is always equated with the model innovation term εt+L,

and so for this case the distribution of the forecast errors is equal to the distribution of

the disturbances. For cumulative demand, Yt+L|t = Lµ+
∑L

i=1 et+i|t and Ŷt+L = Lµ, and

Et+L|t =
∑L

i=1 et+i|t and Var(Et+L|t) = Lσ2. For any two integers J < K, the covariance

between two errors is Cov(et+J |t, et+K|t) = Cov(εt+J , εt+K) = 0. The Variance-Covariance

Matrix is

Σ =


σ2 0 0 ... 0

0 σ2 0 ... 0

0 0 σ2 ... 0

... ... ... ... ...

0 0 0 ... σ2


Given that et+i|t = εt+i (assuming known parameters), the Lσ2

t+1|t approximation is

valid here. However, as we demonstrate next, the conditional variance of the cumulative

errors adopts a different form for other DGPs, rendering the approximation inappropriate.

3.2. ARIMA(0,1,0)

The next model to be studied consists of the Random Walk model, ARIMA(0,1,0),

or I(1); its demand is given by yt = yt−1 + εt. A recursive term exists, inducing the

appearance of the covariance terms, and a difference from the results pertaining to the

i.i.d model. The L-steps-ahead actual values are given by yt+L = yt +
∑L

i=1 εt+i, and the

forecast ŷt+L|t = yt. The corresponding error is et+L|t =
∑L

i=1 εt+i, and its L-steps-ahead

variance of the errors is Var(et+L|t) = Lσ2. For a specified lead time L, the cumulative

actuals, forecasts and errors are given as Yt+L|t =
∑L

i=1 yt+i = Lyt +
∑L

i=1(L− i+ 1)εt+i,

and Ŷt+L|t = Et+L|t =
∑L

i=1(L− i + 1)εt+i. Their conditional variance of the cumulative

errors is:

Var(Et+L|t) = Var

(
L∑
i=1

(L− i+ 1)εt+i

)
=

[
L∑
i=1

i2

]
σ2 = σ2

[
L(L+ 1)(2L+ 1)

6

]
. (2)

For any integers J < K, the covariance term is Cov(et+J |t, et+K|t) = Jσ2 (proof in Ap-

pendix A.1). Thus, the covariance of two terms is equal to the variance of the error

with the smallest time index. The Variance-Covariance matrix for the error terms can be

written as:

Σ =


σ2 σ2 σ2 ... σ2

σ2 2σ2 2σ2 ... 2σ2

σ2 2σ2 3σ2 ... 3σ2

... ... ... ... ...

σ2 2σ2 3σ2 ... Lσ2


The Variance-Covariance matrix reveals that no entry is zero, and that they are all integer

multiples of σ2 for this process.
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3.3. ARIMA(0,0,1)

The ARIMA(0,0,1) or MA(1) is written as yt = εt + θεt−1. It has short memory,

retaining information from the previous shock only. To ensure the invertibility condition,

we impose |θ| < 1. Its L-steps-ahead actual value and forecasts are yt+L = εt+L+θεt+L−1,

and ŷt+L|t = 0. Its errors are et+L|t = εt+L + θεt+L−1, and its variance is V ar(et+L|t) =

(1+θ2)σ2. For the L-steps-ahead cumulative demand, Yt+L = θεt+
∑L−1

i=1 (1+θ)εt+i+εt+L,

and the forecast is Ŷt+L|t = θεt. The error term is Et+L|t =
∑L−1

i=1 (1+θ)εt+i+εt+L, and its

variance Var(Et+L|t) = [(L− 1)(1 + θ)2 + 1]σ2. If J < K , then: Cov(et+J |t, et+K|t) = θσ2

if K = J + 1 and 0 otherwise (see Appendix A.2). For this demand, only the consecutive

errors are correlated, while the non-consecutive ones are uncorrelated. The Variance-

Covariance Matrix is:

Σ =


(1 + θ2)σ2 θσ2 0 ... 0

θσ2 (1 + θ2)σ2 θσ2 ... 0

0 θσ2 (1 + θ2)σ2 ... 0

... ... ... ... ...

0 0 0 ... (1 + θ2)σ2


In this case, the covariance terms can be negative and so can their sum, depending on

the sign of θ.

3.4. ARIMA(0,1,1)

The ARIMA(0,1,1) is the well-known model underpinning Simple Exponential Smooth-

ing, which is commonly applied in practical inventory management (e.g. Graves, 1999;

Babai et al., 2013; Snyder et al., 2002, 2004). It is represented by yt = yt−1 + εt + θεt−1.

Similarly to the MA(1) process, the invertibility condition is imposed. The L-step-ahead

actuals and forecasts are:

yt+L = yt + θεt +
L−1∑
i=1

(1 + θ)εt+i + εt+L, (3)

and ŷt+L|t = yt. The L-steps-ahead forecast error is

et+L|t = θεt +
L−1∑
i=1

(1 + θ)εt+i + εt+L, (4)

and its conditional variance of is Var(et+L|t) = [1 + (L− 1)(1 + θ)2]σ2. The L-step-ahead

cumulative error is:

Et+L|t = εt+L +
L−1∑
i=1

[1 + (L− i+ 1)(1 + θ)] εt+i =
L−1∑
i=0

[1 + i(1 + θ)] εt+i+1 (5)
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with a conditional variance of

Var(Et+L|t) = Var

(
L−1∑
i=0

[1 + i(1 + θ)]εt+i+1

)

= σ2L

[
1 + (1 + θ)(L− 1)(

(2L− 1)(1 + θ)

6
+ 1)

] (6)

(proof in Graves (1999) or Babai et al. (2013)). For J < K, the covariance between two

errors at different lead time is Cov(et+J |t, et+K|t) = σ2(1 + θ)[1 + (J − 1)(1 + θ)] (proof

in Appendix A.3). Only the J term appears in the equation, while K is absent. The

Variance-Covariance matrix can be written as

Σ =


σ2 σ2(1 + θ) σ2(1 + θ) ... σ2(1 + θ)

σ2(1 + θ) [1 + (1 + θ)2]σ2 σ2(1 + θ)[1 + (1 + θ)] ... σ2(1 + θ)[1 + (1 + θ)]

σ2(1 + θ) σ2(1 + θ)[1 + (1 + θ)] [1 + 2(1 + θ)2]σ2 ... σ2(1 + θ)[1 + 2(1 + θ)]

... ... ... ... ...

σ2(1 + θ) σ2(1 + θ)[1 + (1 + θ)] σ2(1 + θ)[1 + 2(1 + θ)] ... [1 + (L− 1)(1 + θ)2]σ2


3.5. ARIMA(1,0,0)

The ARIMA(1,0,0) or AR(1) model is a well-known demand process. Due to its

simplicity, this model features in many inventory and supply chain research papers (e.g.,

Lee et al., 1997; Chen et al., 2000; Urban, 2005; Kahn, 1987). Its equation is yt =

φyt−1 + εt. The stationarity condition is imposed on the demand process to prevent such

case, with |φ| < 1. The t + L expressions for the actuals and conditional forecasts are

yt+L = φhyt +
∑L

i=1 φ
(L−i)εt+i, and ŷt+L|t = φhyt. The L-step-ahead error is et+L|t =∑L

i=1 φ
L−iεt+i, and its variance Var(et+L|t) = σ2 (1−φ2L)

1−φ2 . The L-steps-ahead cumulative

actuals and forecasts are Yt+L =
∑L

i=1 yt+i =
∑L

i=1

∑L−i
j=1

[
φhyt + φ(L−j)εt+i

]
, and Ŷt+L|t =

φhyt. The error over lead time is Et+L|t =
∑L−1

i=1

∑L−i
j=1

[
(1 + φ(L−j))εt+i + εt+L

]
, with a

variance of

Var(Et+L|t) = Var

(
L−1∑
i=1

L−i∑
j=1

(1 + φ(L−j))εt+i + εt+L

)

=
σ2

(1− φ)2

L∑
i=1

(1− φi)2

=
σ2

(1− φ)2

[
L+

1− φ2L

1− φ2
− 2

(
1− φL

1− φ

)]
(7)

For J < K, the covariance between these the errors at these lead times is Cov(et+J |t, et+K|t) =

σ2φ(K−J)
[
1−φ2J
1−φ2

]
(proof in Appendix A.4). Unlike the previous processes, Cov(et+J |t, et+K|t)

depends on both J and K, as opposed to solely on J , and this arises due to the inclusion

of the autoregressive parameter. The Variance-Covariance Matrix can be expressed as
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Σ =



σ2 σ2φ σ2φ2 ... σ2φL−1

σ2φ σ2
[
1−φ4
1−φ2

]
σ2φ

[
1−φ4
1−φ2

]
... σ2φL−2

[
1−φ4
1−φ2

]
σ2φ2 σ2φ

[
1−φ4
1−φ2

]
σ2
[
1−φ6
1−φ2

]
... σ2φL−3

[
1−φ6
1−φ2

]
... ... ... ... ...

σ2φL−1 σ2φL−2
[
1−φ4
1−φ2

]
σ2φL−3

[
1−φ6
1−φ2

]
... σ2

[
1−φ2L
1−φ2

]


3.6. Discussion of Variance-Covariance Expressions

The Variance-Covariance matrix derived for the DGPs encapsulate all the elements

required for estimating the true lead time variance of the forecast errors. For processes

other than the ARIMA(0,0,0), the Lσ2
t+1|t is an inadequate mathematical expression for

the lead time variance, and this can be seen from the L-steps-ahead variance expres-

sions being greater than it (with the exception of the ARIMA(0,0,1) with a negative

θ). Indeed, inspecting the Variance-Covariance Matrix for these DGPs reveals that the

parameters also appear in the lead time variance, which are omitted nevertheless in the

approximation. As mentioned earlier, this approximation only utilises the first entry of

the matrix to scale the variance, and this proves to be insufficient for the estimation.

The sum of variance approximation is inadequate as well, as it consists of summing up

the diagonal entries of the matrix, assuming that the off-diagonal entries are zero. While

it makes use of more elements from the matrix and thus an improvement over the pre-

vious approximation, it nevertheless is not enough. As can be seen from the different

Variance-Covariance matrices, the off-diagonal entries are not necessarily zero, and these

also render this approximation inappropriate, as the pairwise covariances are discarded

from the estimation under the assumption that they are equal to zero. Both approxi-

mations will generally understate the true lead time variance for the forecast errors, as

they ignore many components from the matrix that enter in its calculation. The sources

of variance inflation are the pairwise covariance elements, which adopt a different form

based on the model structure and are usually non-zero, as well as the different variance

estimates at different lead times.

4. Approximations of Lead Time Error Variance

This paper seeks to compare different approaches to approximating the variance of

forecast errors over lead time. On a theoretical level the previous section showed that each

demand model results in different covariance structures, and different values for the vari-

ance of errors, which depends on the demand process and its parameters. Additionally,

if the parameters were estimated or the model was mis-specified, then we would expect

the value of the covariance terms to be inflated as well. From a pragmatic viewpoint, the

underlying DGP can assume many forms, and thus a parametric approach is not always

possible. As a result, empirical approximations, independent of any assumptions of the
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demand process, are required. These methods approximate the lead time variance of

errors from the observed forecasting errors only and do not rely on the forecasting model

and its parameter. This section aims at introducing and discussing these approximations,

and how they differ from each other.

4.1. Standard Approximation

As discussed in Section 2, the typical approximation is Lσ̂2
t+1|t, where σ̂2

t+1|t is often

approximated by the in-sample MSE. This approximation has the limitations highlighted

in section 2.2, but also is problematic due to the calculation of MSE, which may not

represent the out-of-sample MSE, which is relevant to the inventory decisions being taken

(Barrow and Kourentzes, 2016). The argument for this is that in-sample errors are

naturally smaller than the forecast errors, as the forecasting method was fitted on that

data and as such underestimates the observed conditional variance and ergo the future

uncertainty (Makridakis and Winkler, 1989). Barrow and Kourentzes (2016) show that

by switching to an out-of-sample estimate, using the MSE calculated on an appropriate

validation set, the approximation becomes superior. Note that when a forecasting model

is employed and estimated using Maximum Likelihood, the standard deviation of the

innovation terms is an output of the estimation, which can differ from the least squares

estimated value.

Alternatively, the one-step-ahead error can also be updated by a smoothing procedure

(see for e.g. Syntetos and Boylan, 2006; Trapero et al., 2019a). In this work, the variance

of the one-step-ahead forecast errors is calculated as:

σ̂2
t+1|t =

∑n
t=1

(
yt+1 − ŷt+1|t

)2
n

(8)

with yt+1 and ŷt+1|t referring respectively to the realised demand and one-step-ahead

conditional point forecasts.

4.2. Sum of Variances Approximation

Under this approximation, we calculate σ̂2
t+1|t, σ̂

2
t+2|t,..., σ̂

2
t+L|t, with:

σ̂2
t+i|t =

∑n
t=1

(
yt+i − ŷt+i|t

)2
(n− i+ 1)

, (9)

and L is the desired lead time, and then sum them up to obtain the variance esti-

mate
∑L

i=1 σ̂
2
t+i|t. This approximation falsely assumes that the errors at different steps-

ahead are uncorrelated, but also suffers from a drawback due to the estimation of the

multiple-steps-ahead MSE or σ̂2
t+i|t. Given that multiple-steps-ahead errors are required,

the forecasting model is fit on the in-sample data, and forecasts are generated using

the rolling-origins procedure (Tashman, 2000). Subsequently, σ̂2
t+i|t is calculated on the
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multiple-step errors. Akin to the standard approximation, if only the training set is

used, then the estimated variances may underestimate the future uncertainty, and out-

of-sample data should be used as well. This can be achieved by using an appropriate

validation set or recursively updating the estimates as new data points become available

(Kourentzes, 2013). If the available sample is limited, an additional issue is that longer

horizon error variance calculations may be based on very few errors, thus harming the

quality of the estimation.

4.3. Cumulative Errors Approximation

While the ongoing discussion addresses the issues that are missed by the standard

Lσ̂2
t+1|t (and sum of variance approximation), it should be noted that it is not the norm

for all researchers. For instance, Hyndman et al. (2008) provides the expression for

the lead time variance of the exponential smoothing family of models, which can be

used when fitting it to forecast demand in an inventory setting. Another method would

consist of measuring the variance of errors over lead time, instead of calculating them

at a horizon, and then aggregating them over lead time (Syntetos and Boylan, 2006;

Trapero et al., 2019a). This empirical approximation is intuitive and computationally

inexpensive, as it only entails calculating the cumulative forecast errors over lead time L,

and then calculating its variance, or Var
(∑L

i=1 et+i|t

)
= Var

(∑L
i=1[yt+i − ŷt+i|t]

)
, where

yt+i denotes the actual value of demand at time t + i, and ŷt+i|t its conditional forecast

generated with information up until time t. Unlike the other two estimation methods, the

cumulative errors approximation truly considers the variance of the lead time forecasting

errors, rather than inferring for one- or multiple-steps ahead point forecasts, and this can

easily be noticed when inspecting the Variance-Covariance matrices in Section 3. This

approximation is not new; for instance, Eppen and Martin (1988) employ this heuristic

when calculating the variance of errors, but do not provide the rationale behind its use.

Lee (2014) uses this method for estimating the variance of the errors, justifying the choice

as it captures the uncertainty in lead time demand, but not explaining how. More recently,

Babai et al. (2021) compare the cumulative errors approach with two different lead-time

variance estimation strategies involving temporal aggregation for an ARMA(1,1) demand

process. Trapero et al. (2019a) also argue that using this approach offers the benefits of

not needing to specify a model or its parameters. This method of tracking forecast errors

seems a natural path to follow as it covers all the errors made during L; furthermore, since

it contains all the information of the distribution of cumulative errors, it should mitigate

the impact of the above mentioned correlations. Nevertheless, the motivation behind

it has not been clearly defined in the literature. The variance-covariance matrix shown

in section 3 exhibits all the components of the total variance of errors over lead time,

which are featured in the cumulative error approximation. Given that the cumulative

errors are comprised of the forecast errors aggregated over lead time L, we expect this
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approach to smooth out the errors, similarly to any other aggregation process. Finally,

with the aggregation over L, we also expect the Central Limit Theorem will render the

errors distributions closer to Normal, especially with higher values of the lead time (Silver

et al., 2016).

The three approximations for estimating the error variance, which were elaborated in

this section, will be compared via simulation in the next section, to assess their perfor-

mance in an inventory context.

5. Inventory Simulation

So far, the theoretical discussion implies that even with perfect knowledge of the

demand process, the errors at different lead times are correlated, and these correlations

accrue in the computation of the conditional variance of the aggregate errors over lead

time. Any effect on the safety stock has to account for the inventory policy. To evaluate

the losses due to omitting the aforementioned covariances and the performance of the

various approximations, we employ an inventory simulation.

5.1. Experimental Setup

The objective of the simulation is to compare the inventory performance of the three

alternatives, outlined in section 4, namely: (i) the regular method that uses the Lσ̂2
t+1|t;

(ii) the sum of error variances; and (iii) the cumulative error variance.

Following the theoretical discussion, we consider six DGPs, as shown in table 2. Three

are stationary patterns (AR, MA and ARMA) and three are non-stationary so as to

investigate both cases. While four of the above processes featured in the analytical

discussion in section 3, the ARMA and ARIMA models allow the inclusion of processes

with both autoregressive and moving average features of low order. The model innovations

εt are assumed to be normally distributed, with their variance, σ, taking the values:

{1, 5, 10, 25}, to represent different levels of demand volatility, and the parameters for

each model are drawn from a Uniform distribution, with 0 < φ, θ < 1 to impose the

condition of stationarity and invertibility for each process (Box et al., 2015). We do not

include the ARIMA (0,0,0) which corresponds to an i.i.d demand model, as the Variance-

Covariance matrix for this process under the assumption of known DGP (i.e. SSU) in

Section 3.1 shows that all three methods return the same expression for the variance of

forecast errors over lead-time. Furthermore, as there are no parameters to estimate apart

from the variance of the forecast errors, PU is thus equated with SSU, and the results

for the effect of fitting different forecasting methods when demand is i.i.d (i.e. MU) have

been studied elsewhere(see for e.g., Prak et al., 2017). For all processes we add a constant

level to guarantee positive values of demand. The full set of control parameters for the

experimental design are listed in the table below.
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Variable Values Options

Variance Approximations Regular, Cumulative, Sum 3
Forecasting Models (Uncertainty Type) Sample Size (SSU), Parameter (PU), Model (MU) 3

Demand Process (Stationary) AR(1), MA(1), ARMA(1,1,) 3
Demand Process (Nonstationary) I(1), IMA(1,1), ARIMA(1,1,1) 3

Demand Noise Level 1, 5, 10, 25 4
Retailer Horizon 3, 6 2

Retailer Service Level 85%, 90%, 95% 3

Table 1: Experimental Design Control Parameters

Table 2: Simulation DGPs

DGP Formula

Stationary
AR(1) Yt = φYt−1 + εt
MA(1) Yt = εt + θεt−1
ARMA(1,1) Yt = φYt−1 + εt + θεt−1

Non-stationary
I(1) Yt = Yt−1 + εt
IMA(1,1) Yt = Yt−1 + εt + θεt−1
ARIMA(1,1,1) Yt = (1 + φ)Yt−1 − φYt−2 + εt + θεt−1

For each series we generate 400 observations and split it into three subsets: the first 100

points are used as training set, where the forecasting model is fitted and the parameters

are estimated; the following 200 observations are used as ”burn-in”, i.e. the inventory

policy is allowed to run over these to eliminate the impact of any initial inventory settings

(Kourentzes, 2013); and the last 100 observations constitute the test set, where the

experiment outputs are recorded and results are computed. For each combination of

DGP and model innovations, 500 replications were generated.

We consider the three aforementioned uncertainties: (i) Sample Size Uncertainty

(SSU), where the demand model and parameters are known a priori and only σ is un-

known; (ii) Parameter Uncertainty (PU) where the DGP formula is known but the param-

eters need to be estimated via Maximum Likelihood Estimation (MLE), and (iii) Model

Uncertainty (MU), where nothing is known about the DGP and an incorrect forecasting

model is deliberately fit. MU is achieved by fitting an automated ARIMA model, based

on Hyndman and Khandakar (2008), and not allowing the choice of the correct DGP form

for each demand type in the model identification process. Each of the three uncertainty

scenarios magnifies potential problems in the estimation of the variance and therefore we

can assess the impact on the inventory outcome. These are reflected in three forecasting

models being fitted to each DGP, each corresponding to an uncertainty scenario.

An Order-Up-To (R,S) periodic inventory policy is considered, with a review period

R = 1 and the measured horizons are L + R = {3, 6}. The horizons are assumed to be

deterministic in order to isolate any of their variability on the total variability of safety

stocks. We do not consider the one-step ahead case, as none of the discussed covariances
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will appear. The assumption of L>R is imposed, which is fairly typical in the literature.

When an out-of-stock occurs any sales are lost; we assume that they are satisfied by a

competitor. Given the difficulty in calculating the costs associated with stock-outs and

lost sales, this paper will focus on setting safety stocks based on a customer service level.

We track the performance at 85%, 90% and 95% target service levels, to better understand

the impact of the latter on the inventory implications of each approximation. This is done

by means of trade-off curves between lost sales and inventory-on-hand (Gardner, 1990),

as well as realised α-cycle service level.

For each forecasting model representing an uncertainty scenario, the multiple-steps

ahead point forecasts are produced following a rolling-origins scheme, and then aggregated

over L+R to obtain the cumulative forecasts. The safety stocks are calculated according

to the estimation methods explained in section 4 for each type of approximation as:

SSt = kασ̂
M
t (10)

where SSt denotes the safety stocks at time t, k the the inverse of the normal distri-

bution associated with the desired cycle service level α, and σ̂Mt the standard deviation

of the forecast errors over R + L for approximation M . The appropriate quantiles are

constructed based on an empirical estimation of the conditional variance of the errors for

all forecasting models, since the goal of this simulation is to evaluate the performance of

the approximations. To determine the conditional variance of the error term, equation

9 is employed, where we use the errors in the out-of-sample subset (”burn-in” and ”test”

sets in our case) as it becomes available, instead of the in-sample errors, for the reasons

discussed in section 4. The cumulative variance over lead time estimate, σ̂Mt , is calcu-

lated as a rolling average over the previous forecasting errors. As the inventory simulation

progresses, any new forecast errors are included in the calculation. The simulation was

conducted using the R statistical language (R Core Team, 2019).

5.2. Simulation Results

5.2.1. Comparison of the three approximations

Analysing the results reveals that different σ values for the model innovations do

not affect the findings greatly, and therefore we report only for σ = 10. We group the

presentation of the results into the stationary and the non-stationary cases (see Table 2),

as they exhibit similar behaviour. Table 3 reports the deviations of service level between

realised and target, for the different horizons L + R, across simulation replications and

DGPs. We calculate the difference from the realised service levels so that the direction

of the deviations stays the same as the observed service levels, i.e. positive deviations

imply larger than the target service levels. It should be noted that since service level

deviations are a relative metric rather than an absolute one, we are interested in how

close its magnitude is with respect to 0.
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Uncertainty Safety Stock
α = 85% α = 90% α = 95%

L = 3 L = 6 L = 3 L = 6 L = 3 L = 6

SSU
Regular -2.76% -0.24% -5.18% -3.31% -6.89% -5.74%

Sum -1.15% 1.36% -3.31% -1.45% -4.87% -3.64%
Cumulative 2.48% 5.32% 0.55% 2.76% -0.92% 0.65%

PU
Regular -2.84% -0.49% -5.18% -3.57% -6.95% -6.01%

Sum -1.20% 1.11% -3.36% -1.73% -4.81% -3.79%
Cumulative 2.56% 5.35% 0.68% 2.93% -0.79% 0.72%

MU
Regular -4.31% -1.91% -6.94% -5.30% -8.77% -8.14%

Sum -3.78% -1.16% -6.35% -4.48% -8.09% -7.17%
Cumulative 2.19% 5.25% 0.29% 2.72% -1.09% 0.56%

Table 3: Achieved α service level deviations for stationary demand processes

Consistently across target service levels and types of uncertainty the cumulative es-

timation returns the highest service levels, followed by the sums and finally the regular.

This is due to the underlying estimate of the error variance, which is ranked in the same

order. Although this follows from the theoretical discussion, in section 3, for the sta-

tionary processes the higher service levels do not necessarily result in lower service levels

deviations. At L + R = 3, the cumulative estimation has overall the lowest deviation

from the target. Notably, as the uncertainty increases (with MU having the maximum),

the deviations of the cumulative do not suffer, in contrast to the other approaches. For

the regular and sum approaches, while for SSU and PU any differences in the results are

minimal, the performance worsens rapidly for the MU case. Note that given the adequate

estimation sample size, it is expected that there will be only small errors in the estimation

of the model parameters, therefore making SSU and PU exhibit similar results. As the

lead time increases (L+R = 6) the error variance increases as well. This is to be expected,

as forecasting longer horizons is more challenging. However, when this is translated to

service levels, it causes a global shift of the realised service levels upwards. This causes

the cumulative approach to overshoot its target, resulting in additional stock holding

than what was targeted. Noticeably, the regular approach typically under-performs in

terms of meeting the cycle service level, and either sum of variances or the cumulative

approaches are always preferable for achieving this end. A final useful observation is

that in all cases, for the stationary time series the range of service level deviations is

[−8.77%, 5.35%], with the overshoots by the cumulative approach being quite small.

Shifting our attention to the service level deviations for the non-stationary process,

provided in Table 4.The results are ordered in the same fashion. However, now in all

cases the deviations are negative. The cumulative approach, for both L + R = 3 and

L + R = 6, results in the minimal deviations, ranging from [−8.24%,−0.79%] that al-

though consistently negative, are of similar scale to the deviations observed for the sta-

tionary series. This performance is followed by the sum of variances, which again exhibits
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Uncertainty Safety Stock
α = 85% α = 90% α = 95%

L = 3 L = 6 L = 3 L = 6 L = 3 L = 6

SSU
Regular -11.86% -9.01% -15.67% -13.54% -19.03% -17.81%

Sum of Variances -8.38% -5.96% -11.55% -9.80% -13.88% -13.13%
Cumulative -4.32% -0.84% -6.71% -3.80% -8.24% -6.09%

PU
Regular -11.82% -9.01% -15.62% -13.51% -18.97% -17.77%

Sum of Variances -8.37% -5.93% -11.52% -9.76% -13.86% -13.11%
Cumulative -4.29% -0.79% -6.67% -3.74% -8.22% -6.04%

MU
Regular -16.06% -15.56% -19.95% -19.99% -23.27% -24.09%

Sum of Variances -14.92% -14.14% -18.66% -18.19% -21.77% -21.89%
Cumulative -6.77% -4.76% -8.03% -6.22% -7.93% -6.35%

Table 4: Achieved α service level deviations for non-stationary demand processes

large drops under full model uncertainty, that is the typical case in practice. The regular

approach always performs worse, following our understanding from the theoretical discus-

sion. Note that the deviations for the non-stationary processes, for the sum and regular

approaches range between [−24.09%,−5.93%], which is interesting to contrast with the

observed range for the cumulative and the results for the stationary processes. The latter

comparison demonstrates that even if in the stationary case the cumulative approach

demonstrated a tendency to overshoot its target, that deviation was comparatively very

small.

The service levels deviations tell only part of the full story. We refer to Figures 1 and

2 for the trade-off curves. In both stationary and non-stationary cases we observe that in

terms of lost sales the regular approach returns the highest value, while the cumulative

has the lowest. Furthermore, the excess inventory follows the expected outcomes, with

approaches that exhibit the least lost sales naturally retaining more stock. It is interesting

to observe that for a given type of uncertainty and lead time, no approach results in a

trade-off curve that clearly dominates the others, only shifting the curves to a different

balance point between lost sales and excess stock. Pairing this with the service levels

deviations values discussed above, the better performance of the cumulative approach

becomes evident. When the horizon increases from 3 to 6 periods, all trade-off curves

are shifted to the right, i.e. a higher stock position. Under model uncertainty the good

performance of the cumulative approach is further highlighted, as it is the only one that

does not incur a substantial increase in lost sales, irrespective of the target service level.

Considering the non-stationary time series (Figure 2), we get a similar insight in the

performance of the competing approaches. However, the scale of both lost sales and

excess stock is increased, reflecting the difficulty in forecasting these processes. As the

modeling uncertainty increases, both the regular and the sum of variances approaches

deteriorate rapidly, echoing the results provided for the service levels. Comparing the

curves for L + R = 3 and L + R = 6, we observe that the latter lies further on the
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Figure 1: Trade-off curves for stationary demand processes (by lead time and uncertainty type). The
values displayed on the vertical axis denote the total lost sales over the test set, while those on the
horizontal axis represent the total excess inventory for the same period. The correspondence of the
curves to the target service levels (85%, 90% and 95%) is provided for one instance for the curve on the
right, corresponding to cumulative approach with lead time 6.

right, which implies that more excess inventory is incurred (which is to be expected as

the lead time increases). In addition, we also notice an upward shift from L + R = 3

to L+R = 6 in lost sales, which leads us to conclude that both approximations display

a poor performance. On the other hand, the cumulative approach does not exhibit a

substantial increase in lost sales, demonstrating the need to account for the covariances

discussed in the theoretical part.

Overall, we find that across all cases, i.e. process type, uncertainty type and lead

time, on average the cumulative approach performs best, followed by the sum of variance

and the regular ranking the worst. The sum of variances captures better the long-term

forecast error variances, but ignores the additional covariance terms that are reflected in

the calculation procedure of the cumulative approach. The latter exhibits the minimal

deviation from the target service level, which are consistently small, across all cases.
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Figure 2: Trade-off curves for non-stationary demand processes (by lead time and uncertainty type).
The correspondence of the curves to the target service levels (85%, 90% and 95%) is provided for one
instance.

This is achieved without shifting to a dominated trade-off curve, that is it does not need

to accumulate unreasonably excess stock and simply results in an appropriate balance

between lost sales and excess stock. The other approaches do not achieve this due to

the omitted covariances. Its superior performance becomes even more attractive given

its implementation simplicity.

6. Real Data Study

We validate the simulation insights by testing the competing variance approximation

methods on a real dataset. We use sales data of dairy and cheese products from an

American retailer, containing 111 daily series ranging from 521 to 2860 observations.1

1The dataset used is that of Dominick’s Finer Food, made publicly available by the University of
Chicago at : http://research.chicagogsb.edu/marketing/databases/dominicks/
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Compared to the simulated DGPs, many of these time series exhibit promotional effects

and seasonality, which would be particularly prone to Model Uncertainty. Similar to

before, we use an (R, S) inventory policy, with the same service levels and lead times,

such as L > R, and a threefold partitioning of the data. The ”burn-in” period and test

sets consist of 75 observations each, and the remainder is used to estimate the forecast-

ing model parameters. This can be any exponential smoothing model, as selected by

minimising the AICc criterion (for details see Hyndman and Khandakar, 2008). Nat-

urally, even with model selection, this setting falls under the model uncertainty case,

as the true underlying data process is unknown. We acknowledge that in practice the

retailer might employ a different inventory policy, given software limitations, the nature

of the product and the sampling frequency of the data collected; however the use of this

dataset is dictated by our experimental requirements rather than mirroring the retailing

environment.
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Figure 3: α-Service levels deviations (left) and trade-off curves (right) for the case study data

The results are presented in Figure 3 that plots the service level deviations and trade-

off curves. The service level deviations range lies between [−7.55%, 7.1%]. A tendency

to over-cover can be observed, especially for the lowest service level of 85% or high lead

times, which can be attributed to the presence of promotions that result in higher forecast

error variance estimates, thus further exacerbating the model uncertainty component.

Overall, the performance of the cumulative errors is better than the other methods. This

is particularly evident for the 95% service level, where its deviations lie very closely to the

optimal deviation line, as opposed to the other two methods that return higher deviations.

The trade-off curves in Figure 3 reveal a similar story to those of the simulated data,

as the cumulative errors return lower levels of lost sales at the cost of more stock on hand.

Again, similarly to the simulation findings, no approximation dominates both aspects of
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minimising lost sales and excess inventory. But the important result from the graph is

the progression of the deviations as the service level increases. Indeed, at higher service

levels (which are the norm in practice), the cumulative approach tends to get close to the

dashed horizontal line corresponding to zero deviations, which is the ideal scenario, while

the other two methods, as they have negative deviations, further diverge from the zero

line. The regular approximation, on the other hand, displays the highest level of stock-

outs. No set of curves is clearly dominated by others, and when this is paired with the

service level deviations, we conclude that the cumulative variance approximation achieves

a preferable trade-off between lost sales and stock on hand.

7. Conclusion

Safety stocks are a key element for many business operations, as they allow decision

makers to alleviate the effect of demand uncertainty on order levels. A critical component

of safety stocks lies in the estimation of the variance of forecast errors, which is used to

quantify the uncertainty surrounding it. When computing this variance, the correlation

between forecast errors at different lead times is often ignored, which results in lower

estimates, which in turn generate sub-par ordering decisions. The existence of these cor-

relations stems from the underlying demand model structure and was demonstrated for

simple demand processes even under full knowledge of the generating scheme. This paper

has examined this issue in a twofold fashion by: (i) pointing out the shortcomings of the

standard heuristic employed by many, and (ii) arguing for the use of cumulative errors, an

easy and straightforward empirical approximation, which takes advantage of the distribu-

tion of the forecast errors over lead time. The theoretical expressions demonstrated that

for the demand processes investigated, the Lσ̂2
t+1|t method is not suited to approximate

the variance of demand, as it will understate it. This was investigated by deriving the

exact lead time forecast error variances of simple ARIMA models, and comparing these

expressions with the standard approximation. The Monte Carlo simulation indicated the

superiority of the proposed heuristic over the traditional one for an Order-Up-To inven-

tory policy with deterministic lead times. These results held for three types of demand

uncertainty. Furthermore, cumulative errors seemed to handle model uncertainty, the

typical case in practice, better than its counterparts. These findings were supported by

similar ones for a case study using a real dataset from a retailer.

We argue that the recommendations of the paper are directly relevant to practice. Any

benefits observed did not come from changes in the forecasting models, or the inventory

policy, but rather from how the existing information on forecast errors was used. This

is a relatively easy change for existing systems, requiring limited effort with observable

results in the outcomes of inventory management. Irrespective of the quality of the fore-

casts, using cumulative errors will provide benefits, and does not assume unrealistically
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knowledge of the underlying demand process. Naturally, if this is paired with improving

forecasting, we anticipate additional benefits.

There are cases we anticipate this will not perform well, or potentially have no impact.

Constructing a distribution of cumulative errors requires more sample than the cruder

alternative approximations discussed here. The amount of additional data depends on

the relevant lead times, but it is safe to say that when there is a very limited sample

the estimation error of the recommended approach can exceed any benefits. This can be

relevant for new products that do not have sufficient sample yet. In Section 3 we also

showed cases where the impact of the covariances was minimal. Although in these cases

one could argue that the effort of switching to cumulative errors may outweigh any bene-

fits, we question how realistic this is. Real time series typically seem to follow sufficiently

complex data generating processes, which are further contaminated by disruptions and

special events. Nonetheless, the clear disadvantage of all empirical approaches is that

they may introduce difficulties to operationalise that theoretical ones can avoid. We call

for further research on this, in particular as there is an increasing use of machine learning

to generate forecasts that makes a theoretical treatment very difficult.

This paper has shown that using cumulative errors, while being an empirical approxi-

mation, is appropriate for finding the variance of forecast errors over lead time. While not

being a new method, this work provides the motivation to prefer it over more common

approaches and provides an inventory based evaluation of its performance. Nonetheless,

in our evaluation we considered the simple Order-Up-To policy. Further research should

investigate the effects of the discussed covariances with more involved inventory policies.

A. Derivation of the Covariance Expressions

Recall that Cov(aU + bV, cY + dZ) = acCov(U, Y ) + bcCov(U, Y ) + adCov(V, Y ) +

bdCov(V,Z), with a, b, c, d constants, and U, V, Y, Z variables. GivenCov(εt+i, εt+i) = Var(εt+i) = σ2

Cov(εt+i, εt+j) = 0, i 6= j,

and since the error et+L|t is a linear function of the model innovations up to lead time L,

the covariances can be computed by expanding the former in order for the innovations

terms to appear in the estimation.

A.1. ARIMA(0,1,0)

For any integers J and K, such that J < K, we have

et+K|t =
K∑
i=1

εt+i =
J∑
i=1

εt+i +
K∑

i=J+1

εt+i = et+J |t +
K∑

i=J+1

εt+i. (A.1)
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Because of the model structure, et+K|t can be written as a sum of et+J |t and other suc-

ceeding innovations. For J < K, we have

Cov
(
et+J |t, et+K|t

)
= Cov

(
et+J |t, et+J |t +

K∑
i=J+1

εt+i

)

= Cov
(
et+J |t, et+J |t

)
+

L∑
i=J+1

Cov
(
et+J |t, εt+i

)
= V ar

(
et+J |t

)
+ 0

= Var

(
J∑
i=1

εt+i

)
= Jσ2

(A.2)

A.2. ARIMA(0,0,1)

For two integers J < K , we have:

Cov(et+J |t, et+K|t) = Cov(εt+J + θεt+J−1, εt+K + θεt+K−1)

= Cov(εt+J , εt+K) + θCov(εt+J−1, εt+K)

+ θCov(εt+K−1, εt+J) + θ2Cov(εt+K−1, εt+J−1).

(A.3)

If K 6= J + 1 then the covariance terms all reduce to 0. If however K = J + 1, then

Cov(et+J+1|t, et+J |t) = Cov(εt+J+1, εt+J) + θCov(εt+J+1, εt+J−1)

+ θCov(εt+J+1−1, εt+J) + θ2Cov(εt+J−1, εt+J−1)

= θVar(εt+J+1−1)

= θVar(εt+J)

= θσ2

(A.4)

A.3. ARIMA(0,1,1)

For two integers J < K, et+K|t = θεt+
∑K−1

i=1 (1+θ)εt+i+εt+K et+J |t = θεt+
∑J−1

i=1 (1+

θ)εt+i + εt+J , and et+K|t = θεt +
∑K−1

i=1 (1 + θ)εt+i + εt+K . This implies that

et+K|t = θεt +
J∑
i=1

(1 + θ)εt+i +
K−1∑
i=J+1

(1 + θ)εt+i + εt+K

= θεt +
J−1∑
i=1

(1 + θ)εt+i + (1 + θ)εt+J +
K−1∑
i=J+1

(1 + θ)εt+i + εt+K

= et+J |t + θεt+J +
K−1∑
i=J+1

(1 + θ)εt+i + εt+K

(A.5)

26



The covariance between the errors at these lead times is

Cov(et+J |t, et+K|t) = Cov

(
et+J |t, et+J |t + θεt+J +

K−1∑
i=J+1

εt+i + εt+K

)
. (A.6)

Since et+J |t is a combination of εt+i terms up until J , and J < K, then Cov(et+J |t,
∑K−1

i=J+1 εt+i) =

0. The same applies for Cov(et+J |t, εt+K) = 0. Therefore, the covariance becomes

Cov(et+J |t, et+K|t) = Cov(et+J |t, et+J |t + θεt+J)

= Cov(et+J |t, et+J |t) + θCov(et+J |t, εt+J).
(A.7)

The second term in the equation amounts to

Cov(et+J |t, εt+J) = Cov

(
θεt +

J−1∑
i=1

(1 + θ)εt+i + εt+J , εt+J

)
= Cov(εt+J , εt+J)

= σ2.

(A.8)

And
Cov(et+J |t, et+J |t) = Var(et+J |t)

= σ2[(J − 1)(1 + θ)2 + 1],
(A.9)

Implying

Cov(et+J |t, et+K|t) = Var(et+J |t) + θσ2

= σ2[1 + (J − 1)(1 + θ)2 + θ]

= σ2
[
(1 + θ) + (J − 1)(1 + θ)2

]
= σ2(1 + θ) [1 + (J − 1)(1 + θ)]

(A.10)

This is the covariance between the errors at different lead times.

A.4. ARIMA(1,0,0)

For J < K, the error at lead time J is et+J |t =
∑J

i=1 φ
(J−i)εt+i, while that at lead

time K is

et+K|t =
K∑
i=1

φ(K−i)εt+i =
K∑
i=1

φ(K−J+J−i)εt+i

= φ(K−J)et+J |t +
K∑

i=J+1

φ(K−i)εt+i.

(A.11)

27



The covariance between the errors at these lead times is

Cov(et+K|t, et+J |t) = Cov

(
et+J |t, φ

(K−J)et+J |t +
K∑

i=J+1

φ(J−i)εt+i

)
= Cov

(
φ(K−J)et+J |t, et+J |t

)
+ Cov

(
φ(K−J)et+J |t,

K∑
i=J+1

φ(J−i)εt+i

)
= φ(K−J)Var(et+J |t)

= σ2φ(K−J)
[

1− φ2J

1− φ2

]
(A.12)
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