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Abstract: Fused deposition modelling popularity is attributed to equipment 
affordability, materials availability and open-source software. Given the variety 
of optimisation combinations, process parameters can be elaborate. This paper 
provides methods for optimisation of mass calculation using multivariable 
regression analysis. Layer thickness, extrusion temperature and speed were 
considered independent variables for a two-level factorial experiment. DOE 
was used for 12 sets of programs and analysis (two stages) undertaken using 
Design-Expert® V11 Software. In stage-1, four models were found to be 
significant. Stage-2 involved redesigning the remaining eight models, 
iteratively increasing the number of replicates and blocks. Adequacy of models 
was analysed, demonstrating that: model is significant, F-value is large,  
p < 0.05; lack of fit is insignificant; adequate precision >4.00; residuals are well 
behaved; R2 is as close as possible to 1.00 or for models with multiple 
replicates, the adjusted R2 and predicted R2 differential <0.2. All models were 
validated through measured, calculated responses. 
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1 Introduction 

Material extrusion (MEX) is the most widespread additive manufacturing (AM) 
technology, followed by selective laser sintering (SLS) and stereolithography (SLA) 
(Moreau, 2018; 3D Hubs, https://www.3dhubs.com/trends). Fused deposition modelling 
(FDM) adoption has known a consistent increase over the last few years, using PLA as 
the most common material, followed by ABS (3D Hubs, https://www.3dhubs.com/ 
trends). As FDM application areas expand (Moreau, 2018) the need arises to optimise 
printing process parameters in relation to certain goals, amongst which can be mentioned: 
print time, final part quality and costs. Some of the most significant process parameters 
considered as influencing FDM are the layer thickness, printing temperature and printing 
speed (Li et al., 2017; Chacón et al., 2017; Gordon et al., 2016). Print orientation, infill 
and raster angle have also been shown to highly influence final part properties (Gordon  
et al., 2016; Nancharaiah, 2011; Kohad and Dalu, 2017; Hernandez et al., 2016).  
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Optimisation of process parameters specific to certain goals is quite complex, given the 
large variety of possible combinations provided by slicing software. Using design of 
experiments (DOE) the current research optimises the calculation of mass for natural 
PLA 3D printed specimens, considering the variation of three process parameters. 

Most available slicing software offer a rough estimate on the final mass of the 3D 
printed parts, making it hard to use as an input variable into other processes. The results 
of the paper can be useful in AM areas where material costs are quite high and final part 
mass is important in overall fit and evaluation of the corresponding assemblies. 
Researchers previously pursued methods for volume conservation in 3D printed models 
(Hidalgo and Goodman, 2013) using FDM technology. Their results included a new 
computationally efficient method which allows geometry simulation of 3D printed 
filaments. Although the method is validated with printed specimens, the experiments 
were chosen and run in a random order, without any predefined scientific criteria. 

Considering the abovementioned, the aim of the paper is to find a more accurate 
relationship between the final mass of a 3D printed product and a selection of printing 
parameters. Due to the nature of the physical process, one identified dependent variable 
and multiple independent variables, multivariable regression analysis (MRA) was 
proposed as a scientific method of statistical calculation. MRA refers to statistical models 
in which there are multiple independent or response variables (Katz, 2003; Kundra et al., 
2018). This type of statistical model has been previously used to attempt to assess the 
relationship between number of variables, especially in the medical field for statistical 
processing of large volume data (Sanatgar et al., 2017). 

A variety of researchers use statistical analysis to validate behaviour predictions of 
3D printed parts in a wide range of applications. Sanatgar et al. (2017) used statistical 
design to investigate the adhesion properties of direct FDM 3D printing of polymers and 
nanocomposites on textiles. ANOVA was used to design fitted plots for investigated 
parameters (extruder temperature, platform temperature and printing speed) in relation to 
adhesion force. Also, in the textile industry, Mpofu et al. (2019) used first and  
second-order polynomial regression models to study the effect of fabric parameters on the 
adhesion of 3D printed PLA polymer onto woven fabrics (Beniak et al., 2017). Beniak  
et al. (2017) used linear regression models to assess the influence of model infill, infill 
shape, layer thickness and orientation on the tensile strength of PLA 3D printed 
specimens (Gleadall et al., 2018). 

2 Methods and materials 

The goal of the present research is to determine a more accurate method for mass 
calculation of FDM 3D printed parts, using MRA to establish the relation of mass as a 
function of printing parameters. MRA entails several stages, as follows: 

1 establish the form of the regression function 

2 establish the structure of the experimental program using DOE 

3 calculate the regression coefficients 

4 verify the regression functions’ form suitability and the significance of the regression 
coefficients 
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5 determine the statistical errors 

6 determine the confidence intervals. 

MRA was undertaken using Design-Expert® V11 Software by defining the form of the 
function and the experimental program type. By running the software, a mathematical 
expression was determined, in order to define the dependency between the final mass of 
3D printed specimens and three process parameters: layer thickness (s, mm), printing 
temperature (t, degrees) and printing speed (v, mm/min). In this case, the mass is 
considered the main dependent variable and the three process parameters are the input 
independent natural variables. Due to the combination between the independent variables 
in relation to the dependent variable, a factorial experimental program was defined, with 
two variation levels (23 type), with the medium values determined as the arithmetic 
average of the minimum and maximum limits. Three control experiments were used, 
leading to a base experimental plan of 11 experiments. Four PLA filament type materials 
were considered for DOE, from four different manufacturers. Natural filaments were 
chosen in order to exclude changes in material properties due to various pigments. Three 
ISO test standards were used to print the specimens in one direction, as follows: 

ISO 527 tensile test specimens printed horizontally 

ISO 179 flexural test specimens printed normal 

ISO 178 Charpy impact test specimens printed normal. 

Table 1 Variation levels for the independent natural variables 

No. crt. Independent variable Minimum Medium Maximum 

1 Layer thickness – s [mm] 0.10 0.15 0.20 

2 Printing temperature – t [°C] 200°C 210°C 220°C 

3 Printing speed – v [mm/min] 40 mm/min 60 mm/min 80 mm/min 

Table 2 DOE for three variables – base experimental plan 

Natural variables  Coded variables 
Experiment no. 

s [mm] t [°C] v [mm/min]  A B C 

E1 0.15 210 60  0 0 0 

E2 0.10 200 40  –1 –1 –1 

E3 0.10 200 80  –1 –1 +1 

E4 0.10 220 40  –1 +1 –1 

E5 0.10 220 80  –1 +1 +1 

E6 0.15 210 60  0 0 0 

E7 0.20 220 80  +1 +1 +1 

E8 0.20 220 40  +1 +1 –1 

E9 0.20 200 80  +1 –1 +1 

E10 0.20 200 40  +1 –1 –1 

E11 0.15 210 60  0 0 0 
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Considering four material types, three specimen test standards, one orientation and a 
factorial experimental program with three controls, the final number of undertaken 
experiments was set to 132. The variation levels for the three aforementioned process 
parameters are listed in Table 1. The limit values were set in accordance with the four 
different manufacturers’ requirements. MRA was run by coding the natural variables, as 
presented in Table 2. 

The base experimental plan is repeated for four PLA material types and three types of 
specimens, namely the standard tensile (ISO 527), flexural (ISO 179) and Charpy impact 
(ISO 178) strength test specimens. 

Manufacturing of the 132 specimens needed 12 process data sheets following the 
encoding proposed in Table 3. Each batch of 11 specimens are printed on the same 3D 
printer in order to ensure the repeatability of the process parameters. 

Table 3 Coding of 132 PLA specimens 

Program 
no. 

Specimen 
test type 

Material 
type 

Orientation 
type 

Experiment 
no. 

Specimen code 

P1 Material 1 
(CodeM1) 

E1 ÷ E11 T1M1O1E1 ÷ T1M1O1E11 

P2 Material 2 
(CodeM2) 

E1 ÷ E11 T1M2O1E1 ÷ T1M2O1E11 

P3 Material 3 
(CodeM3) 

E1 ÷ E11 T1M3O1E1 ÷ T1M3O1E11 

P4 

Test 1 – ISO 
527  

(Code T1) 

Material 4 
(CodeM4) 

Orientation 
1 – 

horizontal 
(Code O1) 

E1 ÷ E11 T1M4O1E1 ÷ T1M4O1E11 

P5 Material 1 
(CodeM1) 

E1 ÷ E11 T2M1O1E1 ÷ T2M1O1E11 

P6 Material 2 
(CodeM2) 

E1 ÷ E11 T2M2O1E1 ÷ T2M2O1E11 

P7 Material 3 
(CodeM3) 

E1 ÷ E11 T2M3O1E1 ÷ T2M3O1E11 

P8 

Test 2 – ISO 
179  

(Code T2) 

Material 4 
(CodeM4) 

Orientation 
1 – normal 
(Code O1) 

E1 ÷ E11 T2M4O1E1 ÷ T2M4O1E11 

P9 Material 1 
(CodeM1) 

E1 ÷ E11 T3M1O1E1 ÷ T3M1O1E11 

P10 Material 2 
(CodeM2) 

E1 ÷ E11 T3M2O1E1 ÷ T3M2O1E11 

P11 Material 3 
(CodeM3) 

E1 ÷ E11 T3M3O1E1 ÷ T3M3O1E11 

P12 

Test 3 – ISO 
178  

(Code T3) 

Material 4 
(CodeM4) 

Orientation 
1 – normal 
(Code O1) 

E1 ÷ E11 T3M4O1E1 ÷ T3M4O1E11 

For a significant evaluation of the three selected independent variables, a series of other 
process parameters were maintained constant. In order to establish the values of these 
constants, a series of repeatability tests were conducted on the FDM equipment, before 
running the proposed base experimental plan. Specimens were randomly selected and a 
batch of five parts was 3D printed under various conditions. The most commonly 
observed 3D printing defects were delamination of layers, inadequate build plate 
adhesion and under extrusion of the filament, as shown in Figure 1. 



   

 

   

   
 

   

   

 

   

   6 C-V. Doicin et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Main observed defects at repeatability tests, (a) specimen T1M2O1E2, run 1  
(b) specimen T2M2O1E9, run 1 (see online version for colours) 

  

(a) (b) 

Initial tests led to the following constant values of printing parameters: diameter of 
filament – 1.75mm; nozzle size – 0.4 mm; infill – 100%; printing platform temperature – 
60°C; support structures – none; build plate adhesion – blue tape; wall thickness – 2 mm; 
top/bottom thickness – 0.8 mm; material flow – 100%; overlap – 0 mm; enable retraction 
– yes; fan: on. 

Infill speed, wall speed and travel speed were considered equal with the printing 
speed independent variable, for each individual build job of one specimen. The 132 PLA 
specimens were printed one at a time in the same position of the build plate. 

Gcodes for all specimens were prepared using Cura 3.4 software, which gave a mass 
estimation of 10 g for the tensile test specimens and 4 g for both flexural and Charpy 
impact test specimens (Table 4). Mass estimations are given by the Cura 3.4 software 
considering the filament diameter and a standard material type density. As, all PLA 
materials have the same material density input, the mass calculation will always be the 
same, regardless of the chemical composition of each material batch. Printing time varies 
between 36 minutes and 132 minutes for the standard tensile specimens. For flexural and 
Charpy impact test specimens the printing time varies between a minimum of 13 minutes 
and a maximum of 49 minutes. The high variations of the printing time are directly 
dependent on the printing speed and layer thickness. 

Figure 2 Example of coded specimens, (a) tensile test specimens printed horizontally from M1 
(b) flexural test specimens printed normal from M2 (c) Charpy impact test specimens 
printed normal from M3 (d) weighing of tensile test specimen printed horizontally from 
M4 (see online version for colours) 

            

(a) (b) (c) (d) 

Layer height also influences the number of layers (and consequently the printing time), 
varying between 38 layers for a layer thickness of 0.1 mm, 26 layers for a layer thickness 
of 0.15 mm and 20 layers for a layer thickness of 0.2 mm. Regardless of the changes in 
printing parameters, according to Table 2, the same two mass values were estimated by 
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the software, as shown in Table 4. Thus, it can be stated that the mass estimation is not 
accurate and in correspondence with the variation of other printing parameters. 

132 PLA material specimens were 3D printed and weighted individually using an 
analytical scale with a 0.0001 g precision (Figure 2). 

Table 4 Estimated values of 3D printing parameters undertaken with Cura 4.0 for 132 PLA 
specimens 

T1M1O1E1 ÷ 11; T1M2O1E1 ÷ 11; T1M3O1E1 ÷ 11; T1M4O1E1 ÷ 11 

Parameter E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

Printing 
time [min] 

65 132 68 132 68 65 36 70 36 70 65 

Filament 
length [m] 

3.42 3.38 3.38 3.38 3.38 3.42 3.46 3.46 3.46 3.46 3.42 

Mass [g] 10 10 10 10 10 10 10 10 10 10 10 

T2M1O1E1 ÷ 11 and T3M1O1E1 ÷ 11; T2M2O1E1 ÷ 11 and T3M2O1E1 ÷ 11;  
T2M3O1E1 ÷ 11 and T3M3O1E1 ÷ 11; T2M4O1E1 ÷ 11 and T3M4O1E1 ÷ 11 

Parameter E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 

Printing 
time [min] 

24 49 26 49 26 24 13 26 13 26 24 

Filament 
length [m] 

1.36 1.34 1.34 1.34 1.34 1.34 1.37 1.37 1.37 1.37 1.37 

Mass [g] 4 4 4 4 4 4 4 4 4 4 4 

3 Results and discussion 

Standard deviation for each set of parameters (E1 ÷ E11) was calculated, regardless the 
used material (Figure 3). Linear trends show that the geometry of the 3D printed part 
highly influences the mass of the final part in specific combinations of the independent 
variables. From Figure 2 we can conclude that the most stable (smallest standard 
deviation for all tests) combination of printing parameters is achieved in experiment  
no. 2, namely: a layer thickness of s = 0.10 mm; a printing temperature of t = 200°C; a 
printing speed of v = 40 mm/min. 

Figure 3 Average mass for 132 specimens for 11 experiment types 
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In order to accurately express the dependency of the printed parts’ mass to the three 
independent variables, each of the 12 previously defined programs (Table 3) were 
subjected to a MRA using Design-Expert® V11 Software in two stages. 

3.1 First stage in DOE 

In the first stage of DOE all 12 programs were run with identical steps in designing the 
experiments. The first step is to select the type of design, in this case, due to the three 
independent variables and one dependent variable, the selected design was a factorial 
randomised regular two-level design. The analysis required one replicate, one block and 
three centre points per block (Figure 4). Delta (the ‘signal’) was set to a value of 3 and 
sigma (the ‘noise’) to a value of 1, resulting a ratio of 1. DOE was undertaken so as the 
factor power for each of the 12 programs, was over 80% in order to be able to detect the 
targeted effects. 

After defining the characteristics of the DOE, the responses are registered for each of 
the 132 experiments. A summary of the statistical analysis input information for program 
P3 is presented in Figure 5. 

Figure 4 DOE for 12 programs using Design-Expert® V11 Software (see online version  
for colours) 

 

 

Figure 5 Input data for program P3 using Design-Expert® V11 Software (see online version  
for colours) 
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Figure 6 Evaluation of model and factor selection for program P3 (see online version for colours) 

 

Figure 7 Pareto charts with selected effects for programs, (a) P1 – not significant  
(b) P3 – significant (see online version for colours) 

  

(a)     (b) 

Each run of the software registers standard summary data, which is further used in the 
statistical analysis. Amongst the most important are the minimum and maximum values 
of the defined response, which in this case is the specimens’ mass, an average mean of 
these registered values and a standard deviation. A natural logarithmic transformation 
was used to process all 132 responses. Analysis was run under a factorial study type with 
three centre points of analysis. For all 12 programs, the base experimental plan is 
identical, for both natural and coded variables, only the response values are varied 
according to the obtained results of the physical testing. The simulation is run from the 
evaluation section, by verifying the fx model and selecting the results tab (Figure 6). 
Simulation results are shown in analysis section under R1:m (Analyzed) tab. 

Before running ANOVA and determining the significance of the proposed models, 
the individual effects should be selected from the Pareto diagram. Effects should be 
selected hierarchically, from left to right (largest to smallest), taking into consideration 
their relation to the Bonferroni and/or t-value limit (Figure 7). Only selected effects will 
be compounded in the final model. 
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Table 5 Computation of regression coefficients for coded factors and their probability (p) 
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Table 5 Computation of regression coefficients for coded factors and their probability (p) 
(continued) 
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Table 6 Regression coefficients for non-coded factors in significant models 
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Table 7 Function validation for significant models 
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The final equations in terms of coded factors have the following general form: 

0 1 2 3 12

13 23 123

ln( )m a a A a B a C a A

B a A C a B C a A B C

        
          

 (1) 

All eight regression coefficients for the 12 programs are listed in Table 5. 
Regression coefficients are significant if they have a probability p < 0.05. The model 

is significant relative to the noise if the majority of the coefficients have a probability 
value under 0.05 and the confidence is above the standard value. The analysis was run 
with a two-sided interval and a standard confidence of 95%. Model inadequacies arise 
from too scattered central point values. As shown in Table 4 only four models are 
significant, with the following general p values: P3 – p = 0.0092; P7 – p = 0.0030;  
P10 – p = 0.0045; P11 – p = 0.0200. For insignificant models the statistical analysis is 
repeated with a higher number of replicates and blocks and is detailed later in the chapter. 

Figure 8 Response surfaces for adequate models of programs, (a) P3 (b) P7 (c) P10 (d) P11  
(see online version for colours) 

 

  

Note: Where, C:v = 60 mm/min. 

The final equation in terms of actual factors has the general form set by relation (2). 
Using expression (2) and the coefficient values provided in Table 6, the calculated 
responses are summarised in Table 7 for the four significant programs. 

0 1 2 3 12

13 23 123

ln( )m b b s b t b v b

s t b s v b t v b s t v

       
           

 (2) 

The proposed significant models have been validated with a precision of 0.0001 g in 
relation to the measured response values. Response surfaces have been constructed for 
the validated models and are presented in Figure 8. 
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Table 8 Regression coefficients for coded factors, probability and significance of models in 
second stage of DOE 
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Table 9 Regression coefficients for coded factors, probability and significance of models in 
third and fourth stage of DOE 
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Table 10 Regression coefficients for non-coded factors in redesigned significant models 
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3.2 Second stage DOE – redesign of models 

Second stage DOE involved the optimisation of the eight remaining programs. A new 
analysis was designed, with 33 experiment numbers for each of the eight programs which 
resulted not significant from the previous step. For safety reasons, three replicates, three 
blocks and three centre points were used for all redesigned experiments. In this case, the 
power of each factor is now set at 99.9%. From Table 8 it can be observed that out of 
eight programs, six were significant and two remained not significant, namely P1 and P9. 
For these two, the process of MRA is repeated by increasing the number of replicates, 
blocks and, consequently, the number of experiments per software run. Third stage of 
DOE involved testing of not significant programs with four replicas and the fourth stage 
tested the programs by running five replicas. P1 was found to be significant in a MRA 
with four replicates, four blocks and 44 experiments, whilst P9 was found to be 
significant in a MRA with five replicates, five blocks and 55 experiments. The obtained 
results are compounded in Table 9. 

Actual factors of the models are calculated using equation (2) and for the redesigned 
models are presented in Table 10. 

The mass of the samples was calculated using equation (2) and the non-coded factors 
for the redesigned models and compared with the measured response. The redesigned 
models have been validated with a precision of 0.0001 g. 

The fitted surface adequately represents the analysed process if the following 
conditions are met (Table 11): 

a designed model is significant – the model F-value should be large, with p < 0.05 

b for programs with more than one replicates the lack of fit is insignificant – the  
F-value should be near one with p > 0.10 

c the models’ precision should be adequate – parameter adeq precision should register 
a value greater than 4.00 

d the residuals are well behaved 

e the coefficient of determination is relevant – R2 is as close as possible to 1.00 or for 
models with multiple replicates, the difference between adjusted R2 and predicted R2 
is less than 0.2. 

These criteria are evaluated hierarchically and iteratively. Redesign of models should 
lead to meeting all the above-mentioned criteria. 

Adequate precision measures the signal to noise ratio, the desirable value being a 
ratio greater than 4. All designed models with an adequate precision above 4 can be used 
to navigate the design space, which is the case for all 12 proposed programs. For all 
redesigned models the lack of fit was registered as not significant, with an F-value of 0.00 
and a p-value of 1.00. The lack of fit f-value of 0.00 implies the lack of fit is not 
significant relative to the pure error. There is a 100.00% chance that a lack of fit F-value 
this large could occur due to noise. Non-significant lack of fit is good, as the target is that 
the model fits to the prediction. 

MRA was undertaken using ANOVA. In this case, residual analysis is necessary to 
confirm that the assumptions for the ANOVA are met. The Design-Expert® V11 
Software uses a variety of residual plots and tools in order to offer appropriate 
diagnostics of the designed model. For the current research, the following have been used 
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to validate the designed models: predicted vs. actual; residuals vs. predicted; residuals vs. 
run; residual vs. factor; cook’s distance; leverage vs. run; DFFITS (difference in fits); 
DFBETAS (difference in beta coefficients). All residual plots were generated using 
externally studentised residuals. 

Figure 9 Residual plots for program P9 (see online version for colours) 
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The predicted vs. actual plot is used to analyse if points are scattered along a  
45-degree line. For all 12 programs this type of plot did not show any groups of points 
above or below the line, which could indicate areas of over or under prediction. Models 
were accurate by predicted vs. actual plot. Residuals vs. predicted plot showed a random 
scatter arrangement of registered points for all designed models, which was the target. 
Residuals vs. run plot also showed a random scatter of points for all 12 models and no 
trends were registered. Externally studentised residuals outside limits were not registered 
when analysing these plots. Residual vs. factor plots are very useful for the models 
designed with more than one block. All plots are split by the zero-line at either end of the 
range and no obvious main effect (up or down) was registered in any analysed model. 
Only large differences were sought out. Cook’s Distance is a tool which helped with 
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identifying more than one residual outside the limits. No significant distances were 
observed in all runs. Leverage vs. run plot is significant when observing values at or 
beyond twice the average. These runs will excessively influence at least one model 
parameter. It was not the case for the proposed designed models, all runs were well 
within the average. The DFFITS evaluates the difference in fits which helps identify 
influential runs. No significant difference in fits was identified for the analysed models. 
The DFBETAS helps identify the difference in beta coefficients, breaking down the 
impact of any given run on a particular model item. No excessive values were observed, 
and all designed models were found to be significant. 

An example of all analysed plots is given in Figure 9, for program P9. 

Table 11 Significance parameters for 12 designed models 

Program 
no. 

Model  
p-value 

Model  
F-value 

Adeq. 
precision 

R2 Adjusted 
R2 

Predicted 
R2 

P1 0.0087 3.34 4.5230 0.4220 0.2955 0.1971 

P2 0.0001 7.67 7.6107 0.7093 0.6168 0.5763 

P3 0.0092 107.71 34.2404 0.9974 - - 

P4 3.36ꞏ10–9 25.77 12.9278 0.8913 0.8567 0.8415 

P5 2.30ꞏ10–15 103.79 33.1199 0.9706 0.9613 0.9572 

P6 1.29ꞏ10–10 35.98 17.4983 0.9197 0.8941 0.8829 

P7 0.0030 330.12 58.8921 0.9991 - - 

P8 8.03ꞏ10–6 10.70 10.4723 0.7730 0.7007 0.6691 

P9 0.0124 2.98 4.0052 0.3319 0.2206 0.0980 

P10 0.0045 223.92 48.2689 0.9987 - - 

P11 0.0200 49.32 25.0397 0.9942 - - 

P12 7.89ꞏ10–13 59.46 22.0011 0.9498 0.9338 0.9268 

Considering the aforementioned, all 12 proposed models have been validated as 
significant and can be used to undertake optimised mass calculation for FDM 3D printed 
parts, using the guidelines presented in this research. 

4 Conclusions 

The paper presents an accurate method for mass calculation of PLA 3D printed parts, 
using MRA. Dependency between the final mass of 3D printed specimens and three  
process parameters was expressed through a series of mathematical equations, based on a 
factorial type DOE. A set of 132 specimens were 3D printed using PLA materials from 
four different manufacturers. Natural filaments were chosen in order to exclude changes 
in material properties due to various pigments. Three ISO test standards were used to 
print the specimens in one direction, as follows: 

ISO 527 tensile test specimens printed horizontally 

ISO 179 flexural test specimens printed normal 

ISO 178 Charpy impact test specimens printed normal. 
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In the first stage of DOE four programs were initially validated as their equation models 
resulted significant. Eight programs were improved by re-running a second stage DOE 
with a higher number of replicates and blocks. Each of the 12 designed models was 
evaluated for adequacy using the following criteria: significance of the model (large 
model F-value and model p-value < 0.05); insignificant lack of fit; adequate precision of 
model, with registered values larger than 4.00; well behaved residuals; relevant 
coefficient of determination. The applicability of the method includes medium to  
large-scale production of parts, especially in industries where materials are quite 
expensive and mass variation has an important influence on final costs. Jewellery and 
medical/dental applications are some of the most appropriate for further development of 
the optimisation method, due to relatively reduced overall weight of the finished parts 
and high costs of the materials. 

Further research includes validation of the method by manufacturing parts with 
various geometries using printing parameter values set in all significant programs. 
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