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Abstract: Chemical industry is considered to be one of the largest consumers of energy in the 9 

manufacturing sector. As the cost of energy is rising rapidly, coupled with the increasingly strin- 10 

gent standards for the release of harmful chemicals and gases into the environment, more attention 11 

is now focused on developing energy efficient chemical processes that could significantly reduce 12 

both operational costs and greenhouse gases emission. Alkene epoxidation is an important chem- 13 

ical process as the resultant epoxides are highly reactive compounds that are used as platform 14 

chemicals for the production of commercially important products for flavours, fragrances, paints 15 

and pharmaceuticals. A number of epoxidation methods have been developed over the past 16 

decade with the ultimate aim of minimising waste generation and energy consumption. In this 17 

review paper, some of the recent advances in epoxides synthesis using energy efficient processes 18 

have been discussed. The epoxidation methods could provide sustainability in terms of environ- 19 

mental impact and energy consumption. 20 

Keywords: Alkene epoxidation; epoxides; continuous reactors; energy efficient process; catalytic 21 

process. 22 

 23 

1. Introduction 24 

The rate of energy consumption either for electricity, steam or heating purposes has been 25 

increasing rapidly during the past decades due to rapid developments being experienced 26 

globally in the transportation, industrial, agricultural, residential, commercial and other 27 

related sectors [1]. Fossil fuels including coal, oil, and natural gas are currently the largest 28 

sources of energy worldwide. However, the use of carbon based fossil fuels has contrib- 29 

uted significantly to an increase in the concentration of CO2 and related greenhouse gases 30 

in the atmosphere with negative impact on the environment [2–4]. Consequently, highly 31 

industrialized nations popularly known as the G8 have been promulgating measures 32 

aimed at cutting greenhouse gases emissions associated with energy exploration and 33 

utilisation to prevent further deterioration of the environment [5,6]. In this respect, min- 34 

iaturisation of chemical processes through intensification and integration of multiple 35 

operations play a significant role by providing means of reducing energy consumption 36 

and waste generation [7–10]. 37 

Epoxides, also known as oxiranes, are mainly products of alkene epoxidation. They are 38 

key raw materials or intermediates in organic synthesis, particularly for the functionali- 39 

sation of substrates and production of a wide variety of chemicals such as pharmaceuti- 40 

cals, plastics, paints and adhesives [11–15]. The highest consumption of ethylene oxide 41 

(C2H4O) worldwide is in the production of ethylene glycol (C2H6O2), which is a building 42 

block in the production of pharmaceuticals, textiles, automobiles and detergents [16]. 43 

Similarly, propylene oxide (C3H6O) has found applications in the production of cosmet- 44 

 



 

 

ics, drugs, plasticisers as well as in the manufacture of unsaturated polyester resins used 45 

in the textile and construction industries [17]. Furthermore, epichlorohydrin (C3H5ClO) is 46 

an important epoxide that is widely employed in the manufacture of epoxy resins, glyc- 47 

erols, plastics and elastomers [18]. Epoxidation of limonene and α-pinene yields the cor- 48 

responding 1,2-limonene oxide and α-pinene oxide, which are both vital intermediates 49 

for the production of fragrances, perfumes, food additives and pharmaceuticals [19].  50 

The conventional epoxidation methods in the fine chemicals industries employ in situ 51 

generated peracids such as peracetic (C₂H₄O₃) or performic acid (CH2O3) as oxidising 52 

reagent in liquid phase batch reactions in the presence of a mineral acid as a catalyst 53 

[20,21]. However, the employment of peracid for alkene epoxidation is not an environ- 54 

mentally benign method as equivalent amount of acid waste is produced. In addition, 55 

there are safety issues associated with handling and storage of peracid [21]. Molecular 56 

oxygen is probably the most suitable oxidant for alkene epoxidation from environmental 57 

and economic considerations due to its high oxygen content and its ability to produce 58 

water as the only by-product. However, one of the major limitations of epoxidation with 59 

molecular oxygen is low product selectivity [22]. Similarly, hydrogen peroxide (H2O2) is 60 

another eco-friendly reagent for epoxidation since it also gives water as the only waste 61 

product [23]. As in the case with molecular oxygen, epoxidation with H2O2 could result in 62 

poor product selectivity [24]; although researchers in recent years have developed cata- 63 

lytic systems that could activate the oxidant to give up to 98% epoxide selectivity [25]. On 64 

the other hand, there are limited applications of hypochlorites as oxygen sources for 65 

epoxidation due to their serious health and environmental hazards that include the re- 66 

lease of toxic gases such as chlorine when acidified or heated, and their reaction with 67 

ammonia or with substances that generate ammonia to yield chloramines which are also 68 

toxic and have explosive potential [26,27]. Alkyl hydroperoxides including tert-butyl 69 

hydroperoxide (C4H10O2) (TBHP), cumene hydroperoxide (C9H12O2) and ethylbenzyl 70 

hydroperoxide (C9H12O2) are commonly used as oxygen sources in epoxidation reaction 71 

since the reagents are readily available and inexpensive [28–30]. However, tert-butyl hy- 72 

droperoxide (TBHP) has received considerable attention in recent times as an oxidant of 73 

choice for the reaction due to its numerous advantages including high thermal conduc- 74 

tivity, good solubility in polar solvents and neutral pH [31–33]. In addition, the oxidant is 75 

atom efficient since it yields tert-butanol, a major industrial feedstock as a by-product 76 

[34–36].  77 

There are numerous examples of epoxidation reactions carried out with broad range of 78 

heterogeneous catalysts based on either transition metals or main group elements. Some 79 

of the catalysts tend to be more active on certain alkene substrates than others and the 80 

selectivity of a particular catalyst for epoxidation depends on the properties of the active 81 

component, a combination of ligands and the oxidant used. For instance, a number of 82 

heterogeneous catalysts have been developed for epoxidation reaction by immobilisation 83 

of catalytically active metal species on organic or inorganic materials such as alumina 84 

[37,38], silica [39,40], zeolites [41,42], polymers [43], ion-exchange resins [44,45] and metal 85 

organic frameworks [46]. However, polymers have gained more attention as a suitable 86 

support for transition metal catalysts as they are inert, non-toxic, insoluble and often re- 87 

cyclable [11–13,31,34,47]. 88 

The main purpose of this review paper is to highlight some of the techniques being de- 89 

veloped to achieve intensification of alkene epoxidation process by reducing the volume 90 

of hazardous material and replacing large, energy-intensive equipment and stages with 91 

the ones that are smaller, less expensive and energy efficient. 92 

 93 

2. Important Reactions of Epoxides 94 

Epoxides are highly reactive cyclic ethers having a three-membered ring structure with 95 

an oxygen atom connected to two neighbouring carbon atoms by single bonds. The high 96 

reactivity of epoxides is due to their polarity and strain of the three-membered ring, 97 

which weakens the carbon-oxygen (C-O) bond [48]. As shown in Scheme 1, epoxides can 98 

readily undergo ring-opening reactions and form a variety of products that could serve 99 



 

 

as starting material or intermediate in the production of commercially important prod- 100 

ucts for flavours, adhesives, fragrances, paints and pharmaceuticals [14,48,49]. The reac- 101 

tions involving epoxides are usually catalyzed by many acidic and basic substances, as 102 

well as by acceptor-donor compounds [50,51]. 103 

The reaction of epoxides and CO2 yields carbonates and polycarbonates as two major 104 

valuable products [52]. However, the selectivity toward either of the products depends 105 

on the reaction conditions and the type of catalysts used [53,54]. A number of transition 106 

metal-based catalysts have shown good activity in the solvent-free synthesis of propylene 107 

carbonate by cycloaddition reaction of propylene oxide and CO2 under mild reaction 108 

conditions [55,56]. 109 

Epoxides could be cleaved on hydrolysis by either aqueous base (NaOH/H2O) or acid 110 

(H2SO4/H2O) to form vicinal diol in SN2 or SN1 mechanism [57,58]. In the presence of an 111 

aqueous base, the nucleophile (H2O) attack the least substituted carbon atom based on an 112 

SN2 like reaction leading to ring-opening of the epoxide, while in the aqueous acid solu- 113 

tion, the more substituted carbon is the site of nucleophilic attack according to the SN1 114 

displacement mechanism [59]. Similarly, epoxides undergo cleavage of the ether bond in 115 

the presence of anhydrous acids including HCl, HI, HBr to form halohydrin in the SN1 or 116 

SN2 like reactions depending on whether the carbon attacked by the halogen anion is a 117 

primary, secondary or tertiary carbon [60,61]. 118 

Epoxides are capable of undergoing intramolecular rearrangement often initiated by 119 

Lewis or Brꝋnsted acids to form aldehydes or ketones [62–64]. Ring-opening of epoxide 120 

with Ketene Silyl Acetals is regarded as the best choice approach for the preparation of an 121 

important class of extensive biologically active compounds, γ-lactones [65–68]. Fur- 122 

thermore, the reduction of epoxide by lithium aluminum hydride (LiAlH4) occurs at the 123 

least sterically hindered side of the epoxide to give the corresponding alcohol [69,70]. The 124 

nucleophilic addition reaction of epoxides with carboxylic acids such as pivalic acid 125 

(C5H10O2) results in acidolysis ring-opening to form hydroxyalkyl esters [71]. However, 126 

when epichlorohydrin (C3H5ClO) is used as the epoxy compound, the hydroxyalkyl ester 127 

formed can further undergo the ring-closure reaction with alkali by dehydrochlorination 128 

to yield vital intermediates for the coating and polymer industries such as glycidyl 129 

methacrylate [72,73] and glycidyl neodecanoate [74,75]. The reaction schemes of the no- 130 

table reactions of epoxides and their products are presented in Scheme 1. 131 

 132 
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Scheme 1. Schemes of some important reactions of epoxide 136 

 137 

3. Energy Efficient Alkene Epoxidation Processes 138 

The search for an energy efficient method for the preparation of epoxide has been an ac- 139 

tive research area in recent years due to the significance of the compound not only as a 140 

synthetic end product but as a versatile intermediate in organic synthesis. To date, sev- 141 

eral methods of epoxide synthesis have been developed and most of these methods em- 142 

ploy alkene as a starting material, which is subsequently oxidised by a suitable reagent to 143 

give the desired product. However, some alternative methods that utilise aldehydes and 144 

imines for the production of epoxides have also been reported. 145 

 146 

3.1. Continuous Flow Epoxidation Process 147 

The development of a continuous flow approach to synthetic organic chemistry has 148 

received considerable interests over the last few decades [76–78]. The inherently closed 149 

nature of continuous flow reactors enhanced the reaction safety due to proper 150 

containment of harmful or toxic reagents and allows rapid optimization of reaction 151 

conditions from a small quantity of reactants under different reaction conditions with 152 

minimal energy consumption. FlowSyn reactor (supplied by Uniqsis Ltd) is one of the 153 

energy efficient continuous flow reactors currently employed for laboratory-scale 154 

synthesis of various organic products [79]. We had earlier employed the Flowsyn reactor 155 

for continuous epoxidation of 1-hexene (C6H12) and 4-vinyl-1-cyclohexene (C8H12) using 156 

tert-butyl hydroperoxide (TBHP) and a polystyrene 2-(aminomethyl)pyridine supported 157 

molybdenum(VI) complex (Ps.AMP.Mo) as a catalyst (Scheme 2) [12,31]. The catalyst was 158 

prepared by immobilizing the molybdenum metal species derived from molybdenyl 159 

acetylacetonate (MoO2(acac)2) on an already synthesized cross-linked polystyrene-based 160 

resin code-named as polystyrene 2-aminomethyl(pyridine) (Ps.AMP) as shown in 161 

Schemes (3–5). 162 
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Scheme 2. Reaction schemes for epoxidation of (a) 1-hexene; (b) 4-vinyl-1-cyclohexene 165 

with TBHP catalysed by Ps.AMP.Mo complex 166 
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 169 

Scheme 3. Synthesis of poly (divinylbenzene-co-vinylbenzyl chloride-co-styrene) 170 

(Ps.VBC) resin. 171 
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Scheme 4. Synthesis of polystyrene 2-(aminomethyl)pyridine (Ps.AMP) beads. 175 
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Scheme 5. Loading of Mo(VI) into polystyrene 2-(aminomethyl)pyridine (Ps.AMP) beads 178 

to produce polystyrene 2-(aminomethyl)pyridine supported Mo(VI) (Ps.AMP.Mo) com- 179 

plex. 180 

 181 

The continuous flow epoxidation has enabled rapid evaluation of the catalytic perfor- 182 

mance of Ps.AMP.Mo from a small quantity of reactants under different reaction condi- 183 

tions. For instance, the catalyst has demonstrated high catalytic performance in the con- 184 

tinuous epoxidation of 4-vinyl-1-cyclohexene (C8H12) as compared to 1-hexene (C6H12). 185 

+ +
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Experiment carried out at a feed molar ratio of 4-vinyl-1-cyclohexene (C8H12) to TBHP of 186 

5:1, reaction temperature of 353 K and feed flow rate of 0.1 mL/min resulted in ~95% 187 

conversion of TBHP and ~82% yield of 4-vinyl-1-cyclohexane 1,2-epoxide (C8H12O) at 188 

steady state. However, continuous epoxidation of 1-hexene (C6H12) at similar conditions 189 

gave ~79% conversion of TBHP and ~64% yield of 1,2-epoxyhexane. The continuous 190 

epoxidation in a FlowSyn reactor has shown considerable time savings, high reproduci- 191 

bility and selectivity along with remarkable improvements in catalyst stability compared 192 

with the reactions carried out in a batch reactor [13,80]. The schematic of the experimental 193 

set-up for the continuous epoxidation process in the FlowSyn reactor is shown in Figure 194 

1. 195 

 196 

 197 
 198 

Figure 1. Schematic representation of continuous epoxidation of 4-vinyl-1-cyclohexene 199 

with TBHP using a FlowSyn reactor. 200 

 201 

3.2. Epoxidation in a Reactive Distillation Column (RDC) 202 

Reactive distillation (RD) is a unit operation that combines chemical reaction and distil- 203 

lation in the same vessel in a single step. By conducting chemical reaction and product 204 

separation simultaneously, equilibrium could be shifted to achieve almost complete 205 

conversion of the feedstock [81–87]. Thus RD technology has many key advantages such 206 

as reduced investment and operating costs and significant energy savings, as it can sim- 207 

plify complex separation and purification processes [88]. Saha and co-workers [81–87] 208 

have designed an RDC for the continuous epoxidation process using molybdenum-based 209 

complexes as catalysts for the epoxidation of alkenes/terpenes using tert-butyl hydrop- 210 

eroxide (TBHP) as an oxidant. The RDC consists of three distinct parts: a catalytic section 211 

containing the catalyst, packed in a well-structured “rolled belt” type catalyst packing. 212 

The catalytic section is enclosed in between a non-reactive enriching section and a 213 

non-reactive stripping section, both packed with ceramic raschig rings as shown in Fig- 214 

ure 2. 215 
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Figure 2. Schematic of an RDC set-up 218 

 219 

The epoxidation process developed by Saha and co-workers [81–87] could be termed as 220 

atom efficient since it forms tert-butanol, which is a valuable industrial feedstock as a 221 

co-product of the reaction. In addition, the process achieved nearly 100% conversion of 222 

cyclohexene [81–87] and 4-vinyl-1-cyclohexene (C8H12) [31] to cyclohexene oxide 223 

(C6H10O) and 4-vinyl-1-cyclohexane, 1-2-epoxide (C8H12O) respectively, under mild reac- 224 

tion conditions. . 225 

The conventional method for the production of epichlorohydrin (C3H5ClO) uses ener- 226 

gy-intensive multistep processes involving the addition of chlorine to propene (C3H6) at 227 

high temperatures to give allyl chloride (C3H5Cl) and subsequently, reacting the product 228 

with hypochlorous acid (HOCl) to form two dichlorohydrins isomers. Finally, dichloro- 229 

hydrins are reacted with sodium hydroxide (NaOH) to yield epichlorohydrin (C3H5ClO) 230 

[89,90]. In addition to the high energy requirements, this method has major drawbacks 231 

including, the application of hazardous chlorine, low atom efficiency of the chlorine as 232 

well as a large number of by-products for disposal [91]. However, a more energy efficient 233 

and sustainable process for the production of epichlorohydrin (C3H5ClO) could be 234 

achieved by utilizing glycerol (C3H8O3) based on two reaction steps; catalytic chlorination 235 

of liquid glycerol (C3H8O3) with gaseous hydrochloric acid (HCl), and then, reacting the 236 

dichlorinated compounds formed with an inorganic base in an RDC to form the product 237 

(Scheme 6) [92,93]. Although the stoichiometric bases used in the second step of the re- 238 

action could be soluble in the reaction mixture, thus, increasing the difficulty in product 239 

isolation and purification, this problem could be surmounted when a heterogeneous 240 

catalyst is applied in the first step, it can be recovered from the reaction easily by filtra- 241 

tion [94]. 242 
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Scheme 6. Reaction scheme for the conversion of glycerol into epichlorohydrin [93] 245 

 246 

3.3. Microwave-assisted epoxidation 247 

Microwave offers energy efficient heating by the interaction of the generated electro- 248 

magnetic radiations with the molecules (polar) thereby generating heat for the reaction 249 

without direct contact with the reaction mixture. The microwave provides substantial 250 

energy savings due to rapid and uniform heating during the chemical reaction in contrast 251 



 

 

to conventional heating by the conduction and convection mechanisms [95–97]. 252 

The epoxidation of oleic acid (C18H34O2) by peracetic acid carried out using microwave 253 

heating has recorded significant energy savings by enhancing the perhydrolysis step in 254 

the aqueous phase (Scheme 7) and reducing the reaction time by up to 50% compared 255 

with the reaction carried out using conventional heating with a heat exchanger [98]. The 256 

combination of microwave-induced heating and catalytic monolithic reactors has rec- 257 

orded higher energy efficiencies in the ethylene (C2H4) epoxidation to ethylene oxide 258 

(C2H4O) due to selective heating of the catalyst by the microwave than in conventional 259 

electrically induced heating [99]. It was observed that the catalyst was heated rapidly 260 

under microwave irradiation, while the gas stream remains at a lower temperature. Thus, 261 

the gas temperature in the case of microwave heating was ~150°C, about 70°C lower in 262 

comparison with conventional heating conditions for conversion of 9% [99]. Epoxidation 263 

of α-pinene with molecular oxygen yields three products (Scheme 8) and the selectivity 264 

to the epoxide depends on the catalyst used and operating conditions [100]. 265 
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Scheme 7. Epoxidation of oleic acid using acetic acid by the Prilezhaev method [98] 268 
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Scheme 8. Possible products of α-pinene epoxidation with air 271 

 272 

Cobalt(II) acetate tetrahydrate (C4H6CoO4.4H2O) catalyst supported on Mordenite (zeo- 273 

lite), prepared by impregnation with microwave heating gave up to 92.7 mol% conver- 274 

sion of α-pinene in 4 h at 90°C in the epoxidation with air, which is about 1.5 times higher 275 

than the conversion obtained using the catalyst prepared by conventional impregnation 276 

heating [101]. . The higher activity and selectivity recorded by the catalysts was at- 277 

tributed to the ability of the microwave heating to produce and uniformly disperse the 278 

CoOx nanoparticles in the mordenite support [101]. A comparison of microwave-assisted 279 

epoxidation of α-pinene and styrene with air and traditional heating method under at- 280 

mospheric pressure showed that using a microwave heating method could obtain an 281 

excellent efficiency of epoxidation. For instance, when using microwaves to heat the 282 

epoxidation reaction, the conversion of α-pinene and styrene reaches 85.3% and 86.5%, 283 

respectively. However, under the same conditions, the reaction conducted using the tra- 284 

ditional heating method shows that the substrates were substantially unreacted, resulting 285 

in only 5.2% and 3.4% conversion of α-pinene and styrene respectively [102]. 286 

 287 

 288 



 

 

3.4. Epoxidation in Microreactors 289 

Microreactors are chemical reactors of extremely small dimensions made from silicon, 290 

polymers, glass, metal and other materials, employing a variety of fabrication techniques 291 

often requiring special equipment and skills to fit the intended reaction [103,104]. The 292 

small channel sizes provide a high surface area to volume ratio, which results in uniform 293 

heating across the reaction site as well as efficient heat and mass transfer characteristics 294 

[105,106]. Microreactors have helped to minimize reagent and energy consumption in 295 

chemical synthesis due to their small dimensions and allow safe handling of hazardous 296 

or highly exothermic reactions [107,108]. 297 

A microreactor coated with a catalytic TiO2 layer has achieved higher oxirane selectivity 298 

(92%) in the epoxidation of methyl oleate (C19H36O2) with H2O2 as oxidant and recorded a 299 

higher reaction rate of epoxide production (23 times) compared with the reaction carried 300 

out in a conventional batch reactor with an average yield of 75% (Scheme 9) [109]. The 301 

higher epoxide selectivity obtained in the microreactor was attributed to the efficient 302 

mixing of reactants, high surface to volume ratio and accurate control of the substrate to 303 

oxidant ratio [109]. Moreover, a microfluidic device that generates dielectric barrier dis- 304 

charge (DBD) plasma at the gas-liquid interface has efficiently diffused the reactive ox- 305 

ygen species (ROS) to the liquid phase via microbubbles in trans-stilbene (C14H12) epox- 306 

idation to a trans-stilbene epoxide (C14H12O) [106]. The highest epoxide yield of ~94% was 307 

obtained at the optimum operating conditions of short bubble-liquid contact times (~2 s) 308 

with frequent exposure to freshly generated microbubbles containing reactive oxygen 309 

species by continuous liquid recirculation [106]. 310 
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 314 

Monolithic microreactors are continuous unitary structures consisting of parallel chan- 315 

nels, with catalyst either incorporated into a thin layer of a porous oxide deposited on the 316 

channel wall (acting as support for the catalyst) or into the wall of the reactor itself 317 

[110,111]. Catalytic monolith reactor offers high catalytic efficiency in the chemical reac- 318 

tion due to high concentrations of active sites per unit volume, and provides better heat 319 

and mass transfer, and very low pressure drop along the channels [112–114]. A flow re- 320 

actor used for the continuous epoxidation of styrene (C8H8) with TBHP as an oxidant in 321 

the presence of a monolith catalyst gave a good conversion (55%) and excellent selectivity 322 

(74%) towards styrene oxide (C8H8O) within 50 min residence time and allowed easy 323 

separation of the catalyst and recyclability of more than 7 cycles without a significant loss 324 

in catalytic activity [115]. A comparison of a monolith reactor and a Confined Taylor 325 

Flow (CTF) reactor in the heterogeneous catalytic epoxidation of propene (C3H6) to pro- 326 

pene oxide (C3H6O) with hydrogen peroxide revealed that the production rate of propene 327 

oxide (C3H6O) was higher in the monolith reactor in the entire range of operating pres- 328 

sures due to its larger catalyst coating area, larger mass-transfer surface area and more 329 

frequent recycling of liquid flow [116]. 330 

 331 

 332 

3.5. Sonochemical Synthesis of Epoxides 333 



 

 

Sonochemical synthesis (sonochemistry) involves chemical reactions between molecules 334 

due the application of powerful ultrasound radiation usually in the range of 20 kHz–10 335 

MHz [117]. The chemical reaction is derived from a physical phenomenon referred to as 336 

acoustic cavitation, which is responsible for the formation, growth, and collapse of tiny 337 

acoustic bubbles inside a liquid, thereby inducing high temperatures (up to 5000 K) and 338 

very high pressures (up to 1000 atm) inside such cavities as well as a shock wave at the 339 

interface and bulk liquids leading to enhanced heat and mass transfer, reduced reaction 340 

times and lower energy consumption [118–121]. 341 

A catalytic system consisting of a combination of mild mixing brought by high-frequency 342 

ultrasonic irradiation (800 kHz) with precise temperature regulation of the double jack- 343 

eted sonochemical reactor has achieved a higher yield of cyclooctene oxide (C8H14O) 344 

(96%) and selectivity (98%) within 30 min in the epoxidation of 1-octene mediated by 345 

H2O2 and H2WO4 compared with silent conditions (Scheme 10) [122]. Similarly, ultra- 346 

sonic-assisted limonene epoxidation using in-situ generated dimethyl dioxirane, C3H6O2 347 

(DMDO) as the oxidizing agent achieved 100% yield of the limonene dioxide product 348 

within 4.5 min as compared to 97% yield obtained in the reaction conducted using con- 349 

ventional agitation with magnetic stirrer after 1.5 h [123]. A proposed two steps mecha- 350 

nism for the reaction is presented in Scheme 11. Furthermore, epoxidation of α-pinene 351 

(C10H16) to α-pinene oxide (C10H16O) under ultrasound conditions by DMDO gave 100% 352 

after 4 min, and takes 60 min to achieve similar yield with the traditional method [123]. 353 
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Scheme 10. Epoxidation of 1-octene with H2O2 356 
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Scheme 11. Epoxidation mechanism of limonene to limonene dioxide by dimethyl diox- 359 

irane (DMDO) [123] 360 

 361 

Chavan and co-workers [124] observed a substantial reduction in the reaction time for 362 

soybean oil epoxidation using the ultrasonic horn in the presence of tetra-n-butyl am- 363 

monium bromide as a phase transfer catalyst for similar levels of conversion compared 364 

with the conventional stirring approach. It was found that the relative percentage con- 365 

version to epoxide using the conventional method was about 87% in 10 h while the reac- 366 

tion carried out in ultrasound horn under optimised conditions (20 kHz with pulse of 5 s 367 

ON and 5 s OFF ) achieved almost 83% in 4 h of reaction time. 368 



 

 

 369 

4. Conclusions 370 

It can be deduced from the foregoing that the technologies used for the synthesis of 371 

epoxides are continuously being improved with a view to reducing the environmental 372 

impact, energy consumption and overall costs. The recent advances in this respect are 373 

geared towards the process intensification approaches, by utilizing equipment and pro- 374 

cesses that are smaller, safer, less expensive and more energy efficient. Thus, industrial 375 

application of the energy efficient epoxidation techniques could significantly reduce the 376 

cost associated with energy consumption, waste generation and product purification in 377 

epoxide production. For instance, the continuous flow epoxidation we had carried out in 378 

a FlowSyn reactor shows substantial benefits that include fast heat and mass transfer, 379 

short setup and reaction times, the flexibility of scaling-up reactions, complete non at- 380 

tended operation and remarkable catalyst stability compared with the experiments car- 381 

ried out in a classical batch reactor at similar reaction conditions. 382 

Although epoxidation processes described in this review have been successfully carried 383 

out at the laboratory scale, the development of scaled-up processes is recommended first 384 

of all to move the chemistry on from small-scale laboratory reactions to large-scale in- 385 

dustrial production. The energy efficient epoxidation techniques including continuous 386 

flow chemistry, reactive distillation as well as microwave, microreactor and sonochemi- 387 

cal syntheses could significantly reduce the cost associated with energy consumption, 388 

waste generation and product purification in epoxide production. 389 
 390 
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