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Abstract

Particulate composite materials have a broad range of potential applications in engineering and other disciplines.

Accurate modeling of their microstructures and fast generation of the finite element meshes play a vital role in

investigating many micromechanical phenomena and improving understanding of the underlying failure mecha-

nisms. Due to the exceedingly intricate multiscale internal structures that they possess, the modeling and meshing

of their microstructures still remain difficult in general. In this work, we present a computational framework and

methodology for the representation, simulation, and mesh generation of 3D stochastic microstructures of particulate

composites. Towards this goal, we propose a multi-level multiscale scheme that allows for capturing the multiscale

structures of particulate composite materials at both the coarse and fine scales. A briging scale approach based on

heat kernel smoothing is also presented to seamlessly link the coarse and fine scales. In addition to the microstruc-

tural modeling of particulate composite materials, we also develop an adaptive curvature-based surface and volume

mesh generation algorithm for particulate composite microstructures with complex surface texture. Following the

implementation of the morphology and mesh generation algorithm, a series of numerical examples are presented to

demonstrate the capability and potential of the proposed method.

Keywords: Particulate Composite Materials, Microstructure, Surface Texture, Heat Kernel Smoothing

1. Introduction

Particulate composites are composed of particles that are embedded in a matrix material. Typical examples of

particulate composites include cementitious composites, metal matrix composites, and ceramic matrix composites.

Particulate composites are ubiquitous in many engineering applications. For instance, particulate composites play
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an important part in bio-implants, magnets, and dental fillings. Furthermore, particulate composites are also

involved in recent applications such as circuit boards with conductive composites and soft actuators with stretchable

piezoelectrical composites. In particulate composites, the matrix material serves as the structural support, while

the particulate inclusions are added to the matrix to improve the material properties including strength, thermal

resistivity, magnetic permeability, and electrical conductivity. Through adjusting the proportions of the particles and

the matrix material, particulate composites are capable of offering improved and tailored printability, functionality,

and manufacturing flexibility.

In unlocking the tremendous potential of particulate composite materials as well as analyzing the complex

micromechanical behaviors that they exhibit, a critical step is the accurate simulation of their microstructural

geometries as well as the generation of the corresponding finite element meshes. In this context, a variety of

numerical techniques have been conceived to simulate the random microstructures of particulate composites. Along

this line, simplified approaches for the modeling of geo-microstructures have been developed in a number of research

works (e.g., [1–13]). In addition, more advanced and sophisticated modeling approaches have also been reported

(e.g., [14–30]). It is however noted that, in the aforementioned studies, interest has been placed in the simulation

of the coarse-scale microstructures. Rarely, the more complex fine-scale microstructures, i.e., the surface texture,

are considered in the simulation procedure. Apparently, a more realistic approach is needed to capture the complex

morphological and topographical details of the fine-scale microstructures.

Parallel to the development of computational methods for the morphology modeling of realistic particulate

composite microstructures, diverse mesh generation techniques have also been developed. In the context of surface

mesh generation procedures, two major techniques exist, i.e., mesh adaptation schemes (e.g., [31–33]) and surface

parametrization methods (e.g., [34–40]). A plethora of volume mesh generation schemes have also been proposed in

the literature (e.g., [41–46]). It should be however noted that due to the extremely sophisticated geometric shape

and surface texture of particulate composites, constructing surface and volume meshes of particulate composite

microstructures can be challenging and time-consuming, which has placed increasing demands on developing more

efficient and robust mesh generation algorithms.

In this work, we propose a numerical framework and methodology for the morphology simulation and mesh

generation of high-quality 3D particulate composite microstructures with complex surface texture. The remainder

of this paper is organized as follows. In Section 2, a computational approach is developed for multiscale simulation
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of particulate composite microstructures. After that, Section 3 proposes a numerical procedure for the mesh

generation of particulate composite microstructures. Following Section 3, Section 4 discusses the key issues in the

implementation of the proposed mesh generation procedure. On the basis of Sections 2-4, numerical examples are

then provided to illustrate the proposed algorithm. In closure, Section 6 presents a summary of the conclusions

drawn from this research work and the recommendations for future research.

2. Morphology Generation of Particulate Composite Microstructures

2.1. Multiscale Simulation of Microstructural Inclusions of Particulate Composites

As shown in Figure 1, we exploit a multi-level multiscale approach to simulate the microstructural inclusions of

particulate composites. In particular, the coarse-scale microstructure is represented by stationary Gaussian random

fields, while the fine-scale microstructure is described by fractional Brownian random fields. A computational

scheme based on heat kernel smoothing is proposed to ensure the smooth transition across different scales. As

exhibited in Figure 1, in addition to the aforementioned multiscale approach, we also adopt a multi-level scheme for

the representation of the microstructure of the particulate inclusion. At the first level, the microstructural inclusion

is represented by a surface. At the second level, the microstructural inclusion is described by a triangular mesh. At

the third level, the inclusion is characterized by a point cloud. We adopt such a continuous-discrete representation

scheme because it will be useful in the subsequent surface and volume mesh generation process. Additionally, this

representation scheme provides a natural way of simulating microstructures with both smooth and sharp features.

2.1.1. Simulation of the Coarse-scale Microstructures of Particulate Inclusions

To achieve fast generation of the coarse-scale microstructures of particulate inclusions, we adopt the approach

proposed by Huang and Peng [22] and consider a real-valued two dimensional stationary Gaussian random field

F (x) with zero mean and the following exponential stationary covariance (see, for example, [22, 47, 48])

c(x) = e−|x1|/β1−|x2|/β2 (1)

in which β1 and β2 are constant.

After that, we construct a 2D rectangular grid over [0, π]× [0, 2π], i.e.,

D =
{
x = (i∆x1, j∆x2)

T
, i = 0, · · · , n1 − 1, j = 0, · · · , n2 − 1

}
(2)

in which the spacings are set to be uniform in both directions with ∆x1 = π/(n1 − 1) and ∆x2 = 2π/(n2 − 1).
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As a result, a zero-mean stationary Gaussian field associated with the covariance function given in Equation 1

on D is reduced to sampling Gaussian random field F (x) on D. Suppose that the resulting covariance matrix for

the Gaussian random field F (x) is M , the next step is to generate samples from N(0,M), i.e.,

F = [F (x0), F (x1), · · · , F (xN−1)]T ∼ N(0,M) (3)

where N = n1 × n2.

After straightforward manipulations, it can be shown that the covariance matrix M̂ for the stationary Gaussian

field F sampled on D is a symmetric Block Circulant with Circulant Blocks (BCCB) matrix of the form

M̂ =



M̂0 M̂−1 · · · M̂1−n2 0̂ M̂n2−1 · · · M̂1

M̂1 M̂0
. . .

. . .
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

M̂n2−1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0̂ M̂n2−1
. . .

. . .
. . .

. . .
. . .

. . .

M̂1−n2 0̂
. . .

. . .
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

. . . M̂−1

M̂−1 M̂−2
. . .

. . .
. . .

. . . M̂1 M̂0



∈ R4N×4N (4)

in which 0̂ is the 2n1 × 2n1 zero matrix; and M̂k is the circulant matrix expanded from the Toeplitz matrix Mk

using the following reduced form

Mk = [m1−n1
, · · · ,m−1,m0,m1, · · · ,mn1−1]

T ∈ R2n1−1 (5)

Similar to the Toeplitz matrix Mk, the BCCB matrix M̂ in Equation 4 can also be represented using its reduced

form

M̂ = [m̂0, m̂1, · · · , m̂n2−1, 0̂, m̂1−n2
, · · · , m̂−1]

T ∈ R2n1×2n2 (6)

With the reduced form given in Equation 6, the BCCB covariance matrix M̂ can be further decomposed as

M̂ = F ∗Λ̂F (7)

where Λ̂ denotes the diagonal matrix with diagonal containing the eigenvalues of M̂ ; and F represents the 2D

Fourier matrix.
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The eigenvalues of M̂ can then be computed using the diagonal matrix Λ̂ and the 2D Fourier matrix F

W = F Λ̂1/2η, η ∼ CN(0, 2I2N ′ ). (8)

where N
′

= 2N ; and CN denotes the complex Gaussian distribution.

It follows from Equation 8 that the real and imaginary parts of Ŵ result in two independent samples. Figure 2

shows the coarse-scale granular microstructure of a particulate inclusion generated using the approach presented in

Section 2.1.1.

2.1.2. Simulation of the Fine-scale Microstructures of Particulate Inclusions

As shown in Figure 3a, a simple approach to simulate the fine-scale surface texture of the particulate inclusion

is to add random noise to the coarse-scale microstructure. In order to represent the fine-scale microstructure in a

more realistic manner, as shown in Figure 3b, the fractional Brownian random field is employed to simulate the

more complex surface texture of the particulate microstructure at the fine scale, which is based on the approach

proposed by Huang and Peng [22].

The fractional Brownian random field B(x) is a Gaussian random field characterized by a zero mean function

and the following nonstationary covariance function (see, for example, [22, 49, 50])

cov(B(x), B(y)) = ‖ x ‖µ + ‖ y ‖µ − ‖ x− y ‖µ (9)

where H = µ/2 is the Hurst parameter.

To generate the aforementioned Gaussian random field, we first simulate a stationary Gaussian random field

over [0, π]× [0, 2π] with the following covariance function

cov(B(x),B(y)) = c0 + c2‖x− y‖2 − ‖x− y‖µ (10)

where c0 and c2 are constant.

Then, we modify the simulated random field in the following way

B̃(x) = B(x)−B(0) +
√

2c2x
TZ, Z = (Z1, Z2)T , Z1, Z2 ∼ N(0, I) (11)

It can be shown that the covariance of the aforementioned Gaussian field cov
(
B̃(x), B̃(y)

)
is equivalent to the

nonstationary covariance of the fractional Brownian field cov (B(x),B(y)) [22, 50].

To illustrate the generation of fine-scale microstructures using the fractional Brownian random fields, Figure 3b

shows the generated fine-scale microstructure that corresponds to the coarse-scale particulate inclusion of Figure 2.
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2.1.3. Coupling of the Coarse-scale and Fine-scale Microstructures of Particulate Inclusions

To bridge the gap between coarse-scale and fine-scale microstructures, as illustrated in Figure 4, we present a

multiscale heat kernel smoothing scheme that allows for smooth transition between the coarse scale and the fine

scale, which can be formulated as a Cauchy problem, i.e.,

∂tg + Lg = 0, g(p, t = 0) = f(p) (12)

where f(p) is the initial functional data that can be randomly simulated as

f(p) = ν(p) + ε(p) (13)

where ν denotes the unknown signal; ε signifies the random noise characterized by a mean zero Gaussian random

field; L is a self-adjoint linear partial differential operator with the following property

〈
g1,Lg2

〉
=
〈
Lg1, g2

〉
(14)

for all g1, g2 ∈ L2(M), in whichM denotes a compact differential manifold and
〈
g1, g2

〉
stands for the inner product

〈
g1, g2

〉
=

∫
M

g1(p)g2(p)dµ(p) (15)

The eigenvalues λj and eigenfunctions ψj of L can be acquired by solving

Lψj = λjψj (16)

Upon mapping M to a unit sphere S2, the operator L becomes the spherical Laplacian operator, i.e., L = ∆.

As a result, the Cauchy problem is reduced to the following isotropic heat diffusion equation

∂g

∂t
= ∆g, g(p, t = 0) = f(p) (17)

where ∆ is the spherical Laplacian operator given by

∆ =
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂2φ
(18)

Correspondingly, the eigenvalues and eigenfunctions of the spherical Laplacian ∆ are given by

∆Ylm = λlYlm (19)
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where λl = l(l + 1) and Ylm(−l ≤ m ≤ l) are termed as the spherical harmonic of degree l and order m that take

the form

Ylm =



clmP
|m|
l (cosθ)sin(|m|φ) −l ≤ m ≤ l,

clm√
2
P
|m|
l (cosθ) m = 0,

clmP
|m|
l (cosθ)cos(|m|φ) 1 ≤ m ≤ l,

(20)

in which clm =
√

((2l+1)/2π)((l−|m|)!/(l+|m|)!) and Pml is the associated Legendre polynomials of order m.

The solution of the isotropic heat diffusion equation, i.e., Equation 17, can be constructed by using the weighted

Fourier series [52–54]

g(p, t) =

∞∑
j=0

bje
−λjtψj(p) =

∞∑
j=0

e−λjt
〈
f, ψj

〉
ψj(p) (21)

where the coefficients bj =
〈
f, ψj

〉
are the Fourier coefficients.

The finite truncation of the infinite weighted Fourier series leads to

Fkt [f ](p) =

k∑
j=0

e−λjt
〈
f, ψj

〉
ψj(p) (22)

It follows from Equations 21 and 22 that the weighted Fourier series differ from the traditional Fourier series

in the exponential term e−λjt. This exponential term, however, has advantages. More importantly, with this

exponential term, the finite weighted Fourer series can be reformulated in the framework of heat kernel smoothing,

which will also be utilized in the noise diffusion and mesh generation of microstructures with complex geometric

shape and surface texture discussed later in Section 3. This can be shown by rewriting the finite weighted Fourier

series as

Fkt [f ](p) =

k∑
j=0

e−λjtψj(p)

∫
S2

f(q)ψj(q)dµ(q) =

∫
S2

f(q)Kk
t (p, q)dµ(q) (23)

in which Kk
t (p, q) is the symmetric positive definite kernel defined as

Kk
t (p, q) =

k∑
j=0

e−λjtψj(p)ψj(q) (24)

Utilizing the eigenvalues and eigenfunctions in Equation 19, the heat kernel Kk
t (p, q) can be recast as

Kk
t (p, q) =

k∑
l=0

l∑
m=−l

e−l(l+1)tYlm(p)Ylm(q) (25)

in which the ordered eigenvalues λ00 ≤ λ1m1
≤ λ1m2

≤ · · · ≤ 0 satisfy

∫
S2

Kk
t (p, q)Ylm(p)dµ(q) = λlmYlm(p) (26)
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Substituting Equation 25 into Equation 23 leads to

Fkt [f ](p) =

k∑
l=0

l∑
m=−l

e−l(l+1)tflmYlm(p) (27)

where flm is the Fourier coefficient flm =
〈
f, Ylm

〉
Equation 27 implies that the weighted spherical harmonics are the finite expansion of heat kernel smoothing. The

heat kernel smoothing technique in combination with the associated weighted spherical harmonic representation

scheme permits coupling of the coarse and fine scales in a smooth and gradual way. Figure 4 illustrates the

evolution of the coarse and fine scales of the particulate microstructures in Figures 2 and 3b realized by the heat

kernel smoothing technique.

2.2. Multiscale Simulation of Representative Volume Elements of Particulate Composites

In addition to the simulation of the microstructural inclusions of particulate composites, another important

consideration is to place the generated microstructural inclusions into the Representative Volume Element (RVE).

Typically, there are two major strategies for generating microstructural RVEs, i.e., the ”take-and-place” approach

and the ”divide-and-fill” approach. In the ”take-and-place” approach, inclusions are first generated and then packed,

on a one-by-one basis, into a given RVE domain. In the packing process, the newly placed inclusions are not allowed

to touch any other inclusions that have been placed in the RVE box. Alternatively, the RVE can be generated by

the ”divide-and-fill” approach. In this approach, the RVE is first divided into smaller cells. The inclusions are then

filled into these cells.

In view of the pros and cons of the two microstructural RVE generation approaches, we propose a hybrid

method that combines the merits of the two approaches. As shown in Figure 5, we first apply the ”take-and-place”

approach and generate non-intersecting spheres that are randomly distributed in the RVE. By using the centers of

the random sphere particles as the seeds, we then use these seeds to decompose the RVE into 3D Voronoi cells. In

a 3D tessellated domain with N seed points, the i-th Voronoi cell can be mathematically expressed as

{Rpi} = {x ∈ R3 : ‖Pi − x‖ ≤ ‖Pj − x‖, j = 1, · · · , N, j 6= i} (28)

where N is the total number of seed points; Pj stands for the j-th seed point; Rpi represents the cell corresponding

to the i-th seed point Pi; and x denotes a generic point in R3.

With the RVE divided into 3D Voronoi cells, we now proceed to place the generated microstructural inclusions

into the cells. As shown in Figures 6-8, to ensure that an inclusion of complex shape can be properly placed into
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a given cell, we concoct scaling, subdivision, and fusion in the cell filling process. More specifically, in the scaling

operation, the generated inclusion is scaled with respect to its geometric center so that it can be completely fit

into the cell, which is shown in Figure 6. As shown in Figure 7, in the subdivision operation, the cell is further

subdivided into smaller cells so that the smaller microstructural inclusions can be placed into these smaller cells.

Different from scaling and subdivision, we also propose a fusion operation, which is shown in Figure 8. To perform

the fusion operation, the set of points of the inclusion that lies outside the cell is first detected and discarded. After

that, a new point cloud that combines the inclusion and the cell is formed.

3. Mesh Generation of Particulate Composite Microstructures

As mentioned earlier, particulate composite microstructures typically have a complex geometric shape and

surface texture, the mesh generation of which could be challenging and time-consuming. In this research, we

propose a two-step mesh generation procedure for meshing particulate composite microstructures. As the first

step, an initial surface mesh is generated. We then evaluate the initial surface mesh and determine if further mesh

refinement and smoothing will be needed. It is noted that the quality of the generated and smoothed surface

mesh is of paramount importance as it provides the basis for the subsequent volume mesh generation. In addition,

the random noise present in the complex fine-scale surface texture of a particulate microstructure may pose a

significant challenge to the generation of the volume mesh. Thus, special care needs to be taken during the surface

mesh generation process. To address this issue, we propose an adaptive curvature-based surface mesh generation

procedure that is based on heat kernel smoothing. On the basis of the surface mesh generated in the first step, a

3D volume mesh is then generated using the Delaunay meshing method. After that, we evaluate the quality of the

generated volume mesh using a proposed element shape quality metric to see if the generated volume mesh needs

additional local mesh refinement.

3.1. Surface Parametrization

As mentioned earlier, one of the most salient features of particulate composites is the random and complex

microstructure. Meshing such a complicated microstructure may cause substantial computational difficulties. To

address this issue, we first utilize surface parametrization to simplify the computation. In this way, the computations

are done on S2. To achieve this goal, we consider a closed 3D microstructural surfaceM and a surface N embedded

in S2. It is assumed that M and N are smooth 2-D Riemannian manifolds. The parametrization of surface M is

9

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



defined through a surface map U(x) as

x ∈M ⊂ R3 7→ U(x) ∈ N ⊂ R2 (29)

The map U between M and N is conformal if a positive scalar function g that satisfies U ∗ ds2M = g ∗ ds2N

exists. A number of surface parametrization methods are present in the literature (e.g., [38–40]). In this research,

we adopt the approach proposed by Choi et al. [51]. Specifically, suppose that surface N is a unit sphere. The

spherical conformal parametrization of U : M 7→ N can be achieved by the solution of the following Laplace

equation

∆T
MU = 0 (30)

where ∆T
MU is the tangential component of ∆MU on the tangent plane of N .

It is noted that because the operator ∆T
M is nonlinear, solving Equation 30 may be time-consuming. Instead,

we can formulate the spherical parametrization problem to a planar conformal parametrization problem, i.e.,

∆MU = 0 (31)

However, this may induce conformality distortions near the puncture. To overcome this, Choi et al. [51]

suggested using a quasi-conformal map Ū : S2 → S2. The next step is to compute Ū on R2. To linearize the

problem and further improve the computational efficiency, Choi et al. [51] also exploited projecting S conformally

onto the complex plane through the south pole stereographic projection PS defined on a big triangle on C. As

a result, the parametrization is reduced to finding a quasi-conformal map Ū : C → C with Beltrami differential

µ̃, where µ̃ is the Beltrami differential of (PS ◦ φi)−1. The required quasi-conformal map can then be obtained

by U = P−1S ◦ Ū ◦ PS . Figure 9 shows the parametrization of a cortical surface using the surface parametrization

procedure adopted in the present study.

3.2. Curvature-based Surface and Volume Mesh Generation

Once the initial surface mesh is parametrized using the procedure presented in Section 3.1, we then evaluate

the curvature of the surface mesh. For fast computation of the curvature, we exploit the multi-level point-based

representation scheme presented in Section 2 and adopt a point-based algorithm to compute the local surface

properties using sampled points in the local neighborhood of the local surface. More specifically, we consider a

smooth, two-manifold boundary surface S of a 3D microstructure that is represented by a point cloud P = {pi ∈ R3}.

Further, we denote Np as the set of k-nearest neighbors of a sample p ∈ P .
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By using the following covariance matrix C for the local neighborhood Np and the sample point p, the local

surface properties can be computed as [55]

C =



pi1 − p̄

· · ·

pik − p̄



T

·



pi1 − p̄

· · ·

pik − p̄



, ij ∈ Np (32)

in which p̄ is the centroid of the neighbors pij of p.

Given the following eigenvector problem

C · vj = λj · vj , j ∈ {0, 1, 2}, (33)

where λ0 ≤ λ1 ≤ λ2, it can be shown that v0 in the plane

T (x) : (x− p̄) · v0 = 0 (34)

approximates the surface normal np at p [55].

In addition to the estimation of the normal of the surface, the eigenvalues λj of the covariance matrix C can

also be used to estimate the surface curvature. If we denote λ0 = min(λj), the variation of a point p along the

surface normal np can be formulated as

σp =
λ0

λ0 + λ1 + λ2
(35)

Pauly et al. [55] showed that this ratio reflects the change of curvature in a neighborhood centered around p

and is an approximate measure of surface curvature.

Upon utilizing Equation 35, the curvature of the surface mesh can be computed. It is noted that as the point-

sampled surface could be rather noisy, proper smoothing of the initial surface mesh may be needed. Additionally,

as the surface mesh serves as the input for the subsequent volume mesh, the quality of the surface mesh could have

a significant effect on the generation of the volume mesh. In order to evaluate the quality of the surface mesh,

we propose an iterative smoothing procedure. To achieve the goal, we use the heat kernel smoothing procedure

introduced earlier in Section 2.1.3 in combination with a stopping criterion based on relative curvature variance

ratio. In particular, suppose that V i+1
c and V ic are the variance of the curvature of the surface mesh after iteration
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i + 1 and the variance of the curvature of the mesh after iteration i, respectively. We then compute the relative

curvature variance ratio rc of the two meshes as follows

rc =
|V i+1
c − V ic |
|V ic |

(36)

If the computed relative curvature variance ratio is high, we then smooth the surface mesh and generate an

updated surface mesh. This iterative smoothing process goes on until the computed relative curvature variance

ratio is smaller than a predefined tolerance. Once the surface mesh is obtained, Delaunay-based meshing algorithm

is then utilized to generate the volume mesh for the given surface mesh. Figure 10 illustrates the smoothing of the

cortical surface mesh that is performed using the curvature-based surface mesh generation procedure proposed in

this study. It is noted that in Figure 10a, random noise has been added to the outer cortical surface. The smoothed

cortical surface is displayed in Figures 10b-10e. The volume mesh of the smoothed cortical surface shown in Figure

10e is presented in Figure 11.

4. Implementation Aspects

In implementing the computational framework presented in Sections 2 and 3, there are a number of issues that

need particular attention. In this section, we sketch the outline that summarizes how the proposed numerical

procedure works. We also discuss the major issues in the implementation of the proposed methodology.

4.1. Overview of the Implementation of the Proposed Methodology

As discussed in Sections 2 and 3, the proposed methodology is basically divided into three main steps, namely

inclusion generation step, RVE generation step, and mesh generation step. As the first step, we generate the

coarse-scale and fine-scale microstructures of particulate inclusions. After that, the generated microstructures are

placed into the RVE using the proposed cell-filling method. Following the generation of the RVE microstructure,

the surface and volume meshes are then generated. For the sake of clarity, Figure 12 presents the flowchart of the

complete computational framework proposed in the present study for generating and meshing particulate composite

microstructures. The detailed steps of the proposed procedure are provided in Algorithm 1. The essential issues

concerning the implementation of the procedure are discussed shortly in the next subsection.
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4.2. Key Issues in the RVE Morphology and Mesh Generation Procedure

As mentioned in Section 3, the coarse-scale and fine-scale particulate inclusions are realized by the stationary

Gaussian and fractional Brownian random fields, respectively, which are constructed on 2D rectangular grids. Sim-

ply converting the initially generated random fields on these 2D rectangular grids into 3D Cartesian or spherical

coordinates may not yield a naturally closed 3D surface. As a result, appropriate postprocessing of the connected

interface of the converted 3D surface may be needed to enforce the continuity conditions at the interface. This

problem could be easily resolved using the surface smoothing procedure presented in this study. Instead of taking a

local approach and smoothing the neighborhood area of the connected interface (e.g., [22]), we apply the proposed

heat kernel smoothing procedure to polish the generated particulate inclusion at a global scale. This global ap-

proach ensures a smoother transition across the connected interface, leading to a more natural and realistic shape.

Furthermore, as the initially generated surface mesh may contain noisy and sharp features, direct generation of

the corresponding volume mesh from the initial surface mesh may fail. Thus, noise removal and surface smoothing

may be needed, which is implemented in two steps. As the first step, we integrate the heat diffusion equation to

reduce the noise. If further surface remeshing is needed, weighted spherical harmonic smoothing is then utilized

to perform surface flattening, which is shown in Figure 13. In both cases mentioned earlier, an important issue

in performing the heat kernel smoothing operation is the construction of the Fourier coefficients flm =
{
f, Ylm

}
in the weighted spherical harmonic expansions, which is done via the Iterative Residual Fitting (IRF) algorithm

developed in [52–54].

The basic idea of the the IRF algorithm is to evaluate the Fourier coefficients iteratively by solving the problem

in the subspace Hk, i.e.,

Hk =

{ k∑
l=0

l∑
m=−l

βlmYlm : βlm ∈ R
}
⊂ L2(S2) (37)

The subspace Hk is then further decomposed as

Hk = I0 ⊕ I1 ⊕ · · · ⊕ Ik (38)

in which subspace Il is given by

Il =

{ l∑
m=−l

βlmYlm(p) : βlm ∈ R
}

(39)

As a result, constructing the WFS Fourier coefficients is reduced to the minimization of the following problem

‖f − h‖2 =

n∑
i=1

[
f(pi)− βlmYlm(pi)

]2
(40)
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in which

h =

k∑
l=0

l∑
m=−l

βlmYlm(p) ∈ Hk (41)

Equation 40 can be recast in the following matrix form

f = Yβ (42)

in which f = (f(p1), · · · , f(pn))′, βl = (βl,−l, · · · , βl,l)′, and

Yl =


Yl,−l(p1) · · · Yl,l(p1)

...
. . .

...

Yl,−l(pn) · · · Yl,l(pn)

 (43)

is a n× (2l + 1) submatrix consisting of the l-th degree spherical harmonics evaluated at each node pi.

It follows from Equation 42 that β can be obtained as

β = (Y
′
Y)−1Y

′
f (44)

Instead of directly computing the Fourier coefficients βl, the IRF algorithm calculates βl in each subspace Il

using the following residual vector in an iterative fashion, i.e.,

rl−1 = f −
l−1∑
j=0

e−j(j+1)tYjβj (45)

When the residual becomes reasonably small, βl is then updated as

βl = (YlYl)
−1Y

′

lrl−1 (46)

After the particulate inclusions are generated, the next issue is to optimize their shapes and make them look

more realistic. Commonly, this is accomplished by using the shape descriptor (e.g., [15, 16, 19, 20]). In this work,

we adopt a hybrid numerical-experimental approach to improve the shape of the generated microstructure, which is

realized by integrating the computationally generated microstructures and the experimentally determined particle

shapes. To this end, a database containing real particulate inclusions of different sizes and shapes is first built.

On the basis of the developed real particle database, we then use the image processing technique developed in [23]

to extract the morphological information of the particles. To do this, we first convert the original color image to

a black and white binary image, which is shown in Figure 14. After that, we apply the Moore-Neighbor tracing

algorithm modified by Jacob’s stopping criteria [56] to determine the shape profile and centroid of the particle.
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Once the shape profile and centroid of the particle is obtained, we can plot the curve of the periphery radius versus

the angle, which is typically coined as the signature curve r(θ). After the shape profiles and signature curves of the

particle database are obtained, the morphological and spectral characteristics can then be analyzed. Specifically,

for a better visualization of the shape profile and surface texture of the particle, we differentiate the signature

curve and decompose the differentiated signature curve into the high-frequency part and the low-frequency part,

i.e., r
′
(θ) = r

′

l(θ) + r
′

h(θ). The low frequency component r
′

l(θ) is associated with the fundamental shape of the

particle, while the high frequency component r
′

h(θ) represents the surface texture of the particle. Following the

work of Huang et al. [23], the total energy of the shape profile of the particle can be defined as

E =

∫ ∞
−∞

∣∣∣r′
(θ)
∣∣∣2dθ (47)

Similarly, the energy of the low-frequency component of the particle shape profile is given by

El =

∫ ∞
−∞

∣∣∣r′

l (θ)
∣∣∣2dθ (48)

Accordingly, the ratio of the energy of the low-frequency component to the total energy of the shape profile can

be constructed as

El
E

=

∫∞
−∞

∣∣∣r′

l (θ)
∣∣∣2dθ∫∞

−∞ |r
′ (θ)|2dθ

(49)

In addition to the aforementioned energy ratio, other important shape parameters including the number of sig-

nificant half cycles, the ratio of the maximum periphery radius to the minimum periphery radius, standard deviation

of the periphery radii can also be acquired [23]. With the shape and texture information obtained from the previous

steps, the shape of a computationally generated microstructure can be optimized in the following way. As shown

in Figure 15a, we first make a plane cut of the generated microstructure. Based on the intersected shape profile,

we then evaluate if the computed morphological and spectral parameters of the intersected shape profile fall within

the range of the established real particle database. If the generated microstructure is deemed to be unsatisfactory,

the initially generated particulate microstructure is discarded. A new microstructure will be generated. The pro-

cess is repeated until the newly generated microstructure is acceptable. It is worth mentioning that to generate

a more realistic microstructure, instead of making one cut, multiple cuts are suggested for microstructural shape

optimization, which is shown in Figure 15b.

Apart from the evaluation of the weighted Fourier coefficients and the morphological optimization of the gen-

erated microstructure, another significant consideration in the implementation of the proposed procedure is the

15
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evaluation of the normal and curvature of the surface mesh of the generated microstructure. As the first step, given

a set P of n points, we use k-nearest neighbor (kNN) search to find the k closest points in P to a query point p,

denoted as Np. After that, the normal n can be determined by the eigenvalues and eigenvectors of the covariance

matrix C

C · vj = λj · vj , j ∈ {0, 1, 2} (50)

in which C is the covariance matrix given by

C =
1

k

k∑
i=1

ξi · (pi − p̄) · (pi − p̄)T (51)

in which ξi is a weight coefficient; and p̄ denotes the centroid of Np, i.e.,

p̄ =
1

k
·
k∑
i=1

pi (52)

As mentioned earlier in Section 3.2, if 0 ≤ λ0 ≤ λ1 ≤ λ2, the normal np can be approximated by the eigenvector

v0. With λ0, λ1, and λ2, the surface curvature variation measure σp can then be computed using Equation 35.

A further note on the implementation of the proposed methodology is that for particulate microstructures with

complex geometries, finer meshes are typically required to capture the local geometric features. A number of

adaptive mesh refinement methods have been developed in the literature. Among the available refinement methods,

two popular frameworks are the h-adaptive approaches (e.g., [57–59]) and the locally adaptive multi-grid (or multi-

level) methods (e.g., [60–62]). In particular, the multi-grid methods have gained widespread success in physics

and engineering. It is however noted that due to the very complex surface texture of the fine-scale microstructure

involved in the present study, the computation with the multigrid methods could be very demanding. In this

work, we take advantage of the curvature computation procedure in Section 3 and exploit a curvature-based mesh

refinement strategy for optimizing the volume meshes in the critical regions. Specifically, we first identify the

locations of the regions with high curvature. Meanwhile, we also compute the aspect ratios of the elements in these

local areas. Based on the computed curvature and aspect ratio, we then evaluate the quality of the mesh using

an element quality metric Me that is defined as the product of the relative curvature ratio and the element aspect

ratio. If the element quality metric Me is larger than a predefined tolerance δe, i.e., Me > δe, the quality of the mesh

is unsatisfactory. We then refine the mesh using the approach proposed by Shirman [63]. The mesh refinement

process repeats until the element quality metric indicates a sufficiently fine mesh. A detailed study of this mesh

refinement strategy will be provided in Section 5.3.
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5. Numerical Applications

We have implemented the proposed numerical procedure and developed a program for the stochastic modeling

and mesh generation of particulate composite microstructures. A number of numerical examples are provided to

illustrate the performance and capability of the proposed procedure. To validate the proposed procedure, we also

compare the proposed procedure to those obtained from existing experimental results and computational methods.

In this section, the computation is performed on a Dell PC with Intel Core i7-8850H CPU (2.60 GHz) processor

and 16.0 GB random-access memory. It is noted that in the examples, the volume meshes are generated using 3D

tetrahedral elements.

5.1. Generation of Particulate Microstructures

In this subsection, the proposed approach is applied to generate concrete aggregate microstructure. Figure

16 presents a generated aggregate microstructure with different surface texture. Following the work of Huang

and Peng [22], in generating the coarse-scale stationary Gaussian random field, the correlation length parameter

is taken to be β1 = β2 = 1/5 to ensure a realistic representation of the coarse-scale microstructure. A more

detailed study of the correlation length parameter will be provided in Section 5.2. The Hurst parameters for

generating the fine-scale fractional Brownian random field are µ = 0.8 for the mild surface texture case, µ = 0.4

for the medium surface texture case, and µ = 0.1 for the strong surface texture case. The grid spacing of the

rectangular 2D grid over [0, π] × [0, 2π] utilized in constructing the coarse-scale and fine-scale random fields is set

to be ∆1 = ∆2 = π/512. Figure 17 shows the volume mesh for the smoothed aggregate microstructure, which is

generated using 3D tetrahedral elements. It is shown that the proposed procedure has done a good job in generating

concrete aggregate microstructure as well as the relevant mesh.

5.2. Effects of Critical Numerical Parameters on Particulate Microstructure Generation

As mentioned in Section 5.1, a number of numerical parameters are present in the modeling of aggregate

microstructures, which may affect the simulated aggregate microstructures in different ways. In this subsection, the

effects of critical numerical parameters on the simulated aggregate microstructures are discussed.

In simulating the coarse-scale microstructure, one of the critical parameters is the correlation length parameter

in the covariance function of the stationary Gaussian random field, i.e., β1 and β2 in Equation 1. Figure 18

shows the simulated stationary Gaussian random fields for different correlation length parameters β1 and β2. In
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particular, Figure 18a has the highest correlation length parameter (β1 = β2 = 1/5), whereas Figure 18c has the

lowest correlation length parameter (β1 = β2 = 1/50). It is shown that the correlation length parameters have a

substantial impact on the frequency contents of the generated random fields. We can see that as the correlation

length parameter gets lower, the topographic variation of the surface becomes more significant. In contrast to the

coarse-scale microstructure, the fine-scale microstructure is influenced by the Hurst parameter, i.e., µ in Equation 9.

Figure 19 plots the generated fractional Brownian random fields for different Hurst parameters. It is observed that

the surface roughness of the generated fractional Brownian random field is highly affected by the Hurst parameter.

Specifically, the fractional Brownian surface appears to be rougher when the Hurst parameter is smaller. It also

follows from Figure 19 that the varying Hurst parameter allows for the representation of a wide range of surface

textures ranging from the very simple to the very complex. This capability is in part attributed to the particular

nature of the covariance function of the fractional Brownian random field, i.e., the undefined first derivative of the

nonstationary covariance in Equation 9. In contrast, as the first and second derivatives of the covariance of function

of the stationary Gaussian random field are well defined, the simulated random field seems to have a smoother

surface pattern. Thus, the stationary Gaussian random field is better suited to representing the fundamental shape

of a particulate microstructure, while the fractional Brownian random field has a better performance in simulating

the surface texture of the microstructure.

In constructing the coarse-scale and the fine-scale microstructures, another important consideration is the num-

ber of data points that are utilized to sample the coarse-scale and the fine-scale random fields. For instance, if we

sample the random field on a uniformly spaced grid on [0, π] × [0, 2π] with the number of sampled points n1 = 19

and n2 = 37, the grid spacings ∆1 and ∆2 become identically π/18 in both directions. Figure 20 depicts the

generated microstructures for the example shown in Section 5.1 (Figure 16) using different grid spacings. It is

clearly shown that to ensure a realistic simulation of aggregate microstructure, a sufficiently small grid size should

be used. On the basis of the numerical results obtained from the present study, it is recommended that a grid size

of ∆1 = ∆2 ≤ π/512 should be considered in the simulation of the coarse-scale and fine-scale random fields in order

to capture the complex morphological shape and surface texture effects.

5.3. Mesh Refinement Analysis for Particulate Microstructures

As mentioned in Section 4.2, the generation of the finite element mesh for the particulate microstructure may

need some degree of refinement, especially in the regions of complex geometric shape. In this subsection, we examine

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

JUNJIE
高亮

JUNJIE
高亮

JUNJIE
高亮



the performance of the proposed approach for handling local mesh refinement. In concert with the discussions in

Section 4.2, we proposed to use a multi-criterion-based shape quality metric that incorporates the curvature and

element aspect ratio of the mesh. The value of the metric may vary between 0 and 1. A higher value indicates a

better shape quality of the element. On the other hand, a value close to zero represents a poor element shape. In

order to identify the elements that need further refinement, we first compute the curvature of the mesh. Figure 21

shows the different surface meshes and the corresponding curvature plots of the aggregate microstructure presented

in Section 5.1. It is shown that the high curvature areas in the coarse mesh are mostly distributed around the

regions with sharp features, which is indicated by the magenta color shown in Figure 21a2. Upon refining the

coarse mesh, we obtain the medium mesh, which is shown in Figure 21b1. As shown in Figure 21b2, after mesh

refinement, the high curvature areas in the medium mesh are significantly reduced. When the surface mesh is further

refined (Figure 21c1), the morphological and topographical details of the microstructure appear to be clearer. The

variation of the curvature of the surface mesh is also observed to be smoother (Figure 21c2). Similar variation

patterns are also observed in the volume mesh plots shown in Figure 22. In Figure 22, Subplots a1, b1, and c1

exhibit the volumetric meshes of the aggregate microstructure presented in Section 5.1. It is noted that in Figure

22, the elements with poor quality are highlighted in red on the mesh Subplots a1, b1, and c1. It follows from Figure

22 that the elements with poor quality mostly occur in the region involving change of curvature, indicating that

additional mesh refinement may be needed in these local regions. It is also seen that the element shape becomes

increasingly better as the mesh is further refined. This is also reflected in the element quality histogram Subplots

a2, b2, and c2 of Figure 22. It is shown that as the mesh gets finer, the element shape quality gets better.

Depending on the type of problem encountered, the selection of the mesh refinement method is based on the

nature of the particular problem. Special care should be taken when meshing problems involving time-varying

loadings. For instance, time-adaptive mesh refinement methods are typically utilized to handle models involving

material nonlinearities and arbitrary time-varying excitations. In these methods, the remeshing process is solution-

dependent and performed at discrete time instances, which is based on the error estimate of the solution at each

time instance. In contrast, wavelength-adaptive mesh refinement methods are favored for linear models with applied

loadings consisting of a single frequency or a range of known frequencies. In this linear case, it is important that

the element size should be chosen sufficiently lower than the wavelength in order to make sure that the polynomial

basis functions used for the element resolve the waves.
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Another point worth noting is that the aforementioned refinement techniques will converge towards the solution

at different rate. Under certain circumstances, some mesh refinement strategy may converge much faster than others.

To achieve optimal convergence rates, a different strategy would be to exploit the unfitted or non-conforming finite

element method. In this method, the description of the geometry is decoupled from the representation of the solution.

As a result, the boundary of the computational domain is represented on a background grid, which significantly

alleviates the meshing burden in the standard finite element method. In the context of the unfitted finite element

method, a notable approach is the Cut Finite Element Method (CutFEM) [64–68], which enriches the solution space

by overlaying cut elements. For instance, Susanne and Kerfriden developed CutFEM algorithms for the modeling

of two-phase flow problems [66] as well as the simulation of multiple unilateral contact problems [67]. Following the

methodology presented in [66, 67], Kerfriden, Susanne, and Mihai [68] also proposed a mix-dimensional CutFEM

solver for fiber-reinforced composites. It would be interesting to combine the CutFEM method and the present

approach, which will be addressed in a future study.

5.4. Generation of Mesostructural RVEs of Cementitious Composites

Following the examples presented in the previous subsections, this subsection illustrates and verifies the ca-

pability of the proposed approach for the morphology and mesh generation of mesoscopic RVEs of cementitious

composites, which are shown in Figures 23-30. It is noted that the numerical parameters utilized in this subsection

are identical to those presented in Section 5.1. Four different scenarios are considered in this illustration problem,

i.e., Scenario 1 (Figures 23-24), Scenario 2 (Figures 25-26), Scenario 3 (Figures 27-28), Scenario 4 (Figures 29-30).

These four scenarios can be further classified into two groups, i.e., Group 1 (Figures 23-26) and Group 2 (Figures

27-30). Specifically, the shape of Group 1 is more rounded and regular. On the other hand, in Group 2, the

microstructural inclusions look sharper and more irregular. It is also noted that for both groups, RVEs with both

low and high packing densities are provided. Meanwhile, for each group, four different cases of surface texture are

generated, i.e., no surface texture, mild surface texture, medium surface texture, and strong surface texture. The

RVE microstructures for the four scenarios are shown in Figures 23, 25, 27, and 29. The corresponding volume

meshes for the four scenarios are displayed in Figures 24, 26, 28, and 30. It is shown that the proposed method

is capable of realistically simulating the complex geometric shape and surface texture of cementitious composite

microstructures as well as generating high-quality finite element meshes of cementitious composite microstructures.
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5.5. Comparison of the Proposed Procedure to Existing Experimental Results and Computational Models

To validate and exemplify the proposed procedure, in this subsection, we compare the particulate microstructures

generated by the proposed procedure and those obtained from experimental and numerical studies reported in the

literature. To this aim, we first compare the aggregates generated using the present approach to real concrete

aggregates. In generating the virtual aggregate microstructural samples, the numerical parameters utilized in

Section 5.1 are adopted. Figures 31 and 33 present a number of selected natural gravels and crushed rocks of

different shapes and sizes, which are the two main types of concrete aggregates used in construction and building

materials. Figures 32 and 34 present the two types of aggregates generated using the present procedure. It is shown

that the present procedure is capable of simulating the morphological shape for aggregates of natural gravels and

crushed rocks.

To better illustrate the surface texture effects of aggregate microstructures, Figure 35 presents the image of

a selected aggregate with a rough surface texture and the magnified view of the surface texture. It follows from

Figure 35 that if we zoom in and take a closer look at the magnified view of the aggregate microstructure, the

more sophisticated surface texture emerges. Similar surface texture effects are also observed in the laser scanned

3D aggregate microstructure shown in Figure 36. As shown earlier in Figures 4 and 16, such intricate surface

details can be well captured by the present procedure. To further illustrate the capability of the present approach,

in addition to the two cases shown in Figures 4 and 16, an additional case with more complex surface texture

is provided in Figure 37. It follows from the aforementioned generated microstructural samples that the present

methodology is capable of representing the very fine details of surface texture across different length scales in a

realistic manner, which yields distinct advantages over conventional morphology generation methods and algorithms.

Since surface roughness may exert substantial impact on the mechanical properties of the inclusion-matrix interface,

it should be considered in the simulation procedure. It is however noted that due to the complexities involved, such

surface texture effects are normally neglected in most of the existing simulation approaches, which will be discussed

shortly in this subsection.

Following the comparison of the real and virtual particle shapes, we further verify the performance of the present

procedure to generate RVE microstructures by comparing the computationally generated and the experimentally

determined cement-based RVE microstructures. To this aim, Figures 38b1 and 38b2 show the 2D cross sections

of computationally generated 3D cementitious composite RVEs with different types of aggregates. For comparison
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purposes, typical 2D cross sections obtained from experimental RVE samples are shown in Figures 38a1 and 38a2. It

follows from Figure 38 that the proposed procedure is capable of simulating the RVE microstructures of cementitious

composites in a fairly realistic fashion.

In addition to the aforementioned comparison, we also compare our proposed approach to contemporary compu-

tational models for generating granular geo-microstructures. Table 1 summarizes the important articles regarding

the advanced modeling approaches developed for simulating granular geo-microstructures. As shown in Table 1, a

commonly utilized approach for the simulation of geo-microstructures is the approach using spherical harmonics.

Figures 39a-c show the microstructure regenerated from the aggregate example shown in Figure 37 using the spher-

ical harmonic representation scheme. Upon comparing Figures 39a-c to Figures 39e-f, we first notice that the shape

of the aggregate microstructure looks more realistic as the number of terms used in the spherical harmonic series

expansion is increased. However, we can also see that although the spherical harmonic approach generally does a

good job in representing the overall shape of the microstructure, it is not capable of representing the complex surface

roughness and topographical details for any desired level of satisfaction. In addition, one of the major limitations of

the conventional spherical harmonics is the property of the spherical harmonic series near discontinuities, i.e., the

Gibbs Phenomenon (e.g., [52–54]). In general, spherical harmonics can be used to approximate smooth geometric

shapes reasonably well. However, for complex geometries with distinct local features and strong discontinuities

such as the surface texture of a particulate microstructure considered in the present study, even a large number of

spherical harmonics may not be sufficient to represent the surface topographic details. An alternative is to rely on

surface reconstruction of 3D microstructural point clouds (e.g., [23]). Figure 39d shows the reproduced 3D aggregate

microstructure using the alpha shape approach in [23]. It is clearly seen that the microstructure generated using

the alpha shape approach shows a poor performance in capturing the fundamental shape and surface detail of the

aggregate. Thus, the alpha shape approach is probably a better fit for representing crushed-rock-type aggregate

microstructures that possess sharp and irregular geometric characteristics. It is also worth mentioning that in

these aforementioned contemporary research works, focus is placed on the generation of the morphological shape of

granular geo-microstructures. The mesh generation of these granular geo-microstructures has not been discussed.
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6. Closure

6.1. Concluding Remarks

In this work, a computational framework and methodology is proposed for the morphology simulation and mesh

generation of particulate composite microstructures. After that, a hybrid computational-experimental approach

is introduced for the shape optimization of the generated microstructure. In addition, the solution technique for

local mesh refinement is also presented. The developed numerical approach is implemented and applied to generate

microstructures of particulate composite materials as well as the corresponding surface and volume meshes. A

number of illustration and verification examples are presented to showcase the proposed method. It is shown

that the proposed methodology is capable of simulating high-quality particulate composite microstructures. The

proposed method also demonstrates its performance in parameterizing and smoothing surface meshes and generating

volume meshes, opening up new ways for probing into many complex micromechanical phenomena and mechanisms

of particulate composite materials.

At this point, it should be noted that the focus of the present study is to present a computational framework for

morphology simulation and mesh generation of high-quality particulate composite microstructures with complex

surface texture, in the hope of reducing the difficulties associated with meshing complex geometries. Clearly, there

are alternative options for handling complex geometries. One of such methods is the implicit representation scheme

that relies on the Level Set Method [69] to describe the geometric features of domain interfaces and boundaries.

Instead of utilizing a conforming mesh to represent complex geometries, the implicit representation scheme defines

the geometrical features on a fixed background mesh, thus simplifying the mesh generation process. Along this

line, Moumnassi et al. [70, 71] developed parametric and implicit level set representation of arbitrary objects with

complex geometrical features. It is however noted that only the coarse-scale geometric surface is considered in

their studies. The robust and accurate implicit representation of the fine-scale particulate microstructural surface

still poses a challenge. To capture the extremely intricate surface texture of the fine-scale surface, the Gradient-

enhanced Level Set Method (GeLSM) (e.g., [72]) may be the way to go. The coupling of the present morphology

simulation approach and the Gradient-enhanced Level Set implicit representation scheme will be presented in a

future communication.
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6.2. Recommendations for Future Research

Following the morphology and mesh generation of particulate composite microstructures, the next step is to

apply the proposed algorithm to investigate the multiscale behaviors of particulate composite materials. To achieve

this goal, special attention should be paid to the simulation of problems involving discontinuities such as interface

and fracture. When it comes to solving partial differential equations with discontinuous solutions, there is a suite

of numerical approaches that have been developed in the literature. Within the framework of the finite element

method, two typical numerical methods could be used to represent cracks and fractures: the methods based on

continuum damage mechanics (e.g., [73–75]) and the phase field method (e.g., [76–78]). The continuum damage

mechanics-based approaches provide a general capability for modeling inelastic mechanical behaviors of particulate

composite materials. For instance, Nguyen et al. [75] conducted 3D mesoscopic analysis of foamed concrete using the

damage plasticity model and X-ray Computed Tomography. However, the major drawback of this type of approach

is that it suffers from the problem of mesh dependency of the results. The issue of mesh sensitivity can be remedied

through the use of numerical techniques such as viscoplastic regularization schemes or nonlocal damage models.

Alternatively, an emerging family of methods for modeling cracks and fractures is the phase field method. The

phase field method belongs to the category of diffusive interface methods. However, since the phase field method is

based on using a smoothing region to represent the interface, a comparatively large number of elements are required

to capture the interface region. On the other hand, one may employ sharp interface methods (e.g., the XFEM

[79–81] and the CutFEM [64–68]) to represent cracks and fractures, in which less elements are needed to represent

the interface region. In particular, by coupling the FEM and the Partition of Unity Method (PUM), the XFEM

incorporates discontinuities and singularities into the solution space by using special enrichment functions along

with additional degrees of freedom. For instance, Menk and Bordas [82] presented a XFEM methodology to model

crack propagation in solder joints considering microstructural phenomena. To represent multiple discontinuities

present in an enriched element, Bansal et al. [83] developed a multi-split XFEM approach for the analysis of

heterogeneous materials including pores and reinforcement particles. As an extension of the conventional XFEM,

the Smoothed Extended Finite Element Method (SmXFEM) [84–87] combined the notion of strain smoothing with

the XFEM to account for the effects of interfaces. On the other hand, the CutFEM [64–68] enriches the solution

through the introduction of overlapping fictitious domains. In both methods, as the computation is performed on a

fixed background mesh, the finite element mesh does not need to conform to the geometry of the crack and inclusion
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boundary, thus significantly reducing the difficulties in mesh generation and refinement. The research on coupling

the present algorithm with the PFM and the XFEM is currently underway and, hopefully, will be presented in

subsequent studies.

Future research can also be directed towards microstructure optimization and material design of particulate

composite materials. Generally, two main types of numerical schemes have been developed in the literature to

solve optimization problems, i.e., deterministic optimization algorithms and stochastic optimization algorithms.

Depending on whether the objective function is differentiable or not, the optimization algorithms using deterministic

methods can be further divided into two groups: algorithms relying on derivative information and algorithms

without considering derivative information. On the other hand, due to the exploitation of randomness in the search

procedure, stochastic optimization algorithms increase the probability of the procedure finding the global optima of

the objective function. The commonly utilized approaches in this category include the Genetic Algorithm and the

Particle Swarm Optimization Algorithm. For instance, the Operator-Split Genetic Algorithm proposed in [24] can be

employed to optimize the particulate microstructure generated by the present procedure. Additionally, optimization

algorithms also provide an effective means of designing and optimizing materials. For instance, Hoang [88] proposed

a concurrent topology optimization method for porous materials using the principle of linear superposition and the

projection technique of adaptive geometric components. Generally, the major division in topology optimization for

porous material design is how the loading is treated in the model. Through the combination of moving morphable

bars and the consideration of loading uncertainties, the proposed algorithm is capable of simultaneously optimizing

both the macroscale and microscale structures by minimizing the weighted sum of the expected compliance and

standard deviation. It would be interesting to integrate the optimization algorithm and the present method for

the design and optimization of cementitious materials, which will be presented in a future research work. In order

to achieve an improved optimization performance, the optimization procedure presented in Section 4 could also be

paired with machine learning algorithms. More specifically, the image processing procedure, the multi-cut method,

and the real aggregate database presented in Section 4 can be used to train the machine learning model. Once the

model is trained, it can be used to tell whether the simulated particle morphology is good or not. In addition, the

machine learning algorithms developed in [89, 90] can also be utilized to predict the strength, damage, and fracture

behaviors of particle composite materials.

An additional point worth mentioning is that the material behaviors and mechanical properties at higher scales
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are closely related to the microstructure geometries at lower scales. For instance, at the nanometer scale, cement-

based particle composite materials such as concrete are composed of Calcium-Silicate-Hydrate (C-S-H) gels, which

is the main product of cement hydration. At the micrometer scale, concrete is characterized by the cement paste

consisting of individual cement grains. At the mesoscale, concrete can be viewed as a three-phase composite of

the cement paste, the aggregates, and the Interfacial Transition Zone (ITZ). As a result of the multiscale internal

structure of concrete, the pore structure of concrete at the mesoscopic and microscopic levels is strongly influenced by

the hydration process that takes place at the nanoscale level. A thorough and systematic investigation of these cross-

scale behaviors could be realized by using multiscale methods that couples nanoscale models to continuum models.

Computational homogenization is then used to bridge the gap between the multiscale models. In general, such

models can be classified into three groups, i.e., hierarchical models, semiconcurrent models, and concurrent models.

The interested reader is referred to [91, 92] for a detailed description of these methods. It is also noted that because

different numerical methods are developed in different software frameworks, the implementation of multiscale models

may also require the coupling of different software packages, which poses an additional challenge. A number of

open-source software frameworks have been reported in the literature. In these open-source software frameworks,

computing platforms developed based on continuum-based methods include, but not limited to FEAPPV [93],

FEniCS [94, 95], and KRATOS [96–98]. For the software packages using discrete methods, YADE [99], LAMMPS

[100], and PERMIX [92] could be used. A review of these open-source software frameworks can be found in [91, 92].
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Algorithm 1. Algorithm for morphology simulation and mesh generation of particulate composite microstructures

(i) Step 1: Initialize

(i.a) Set β1, β2, µ, ∆1, ∆2, and RVE size

(ii) Step 2: Generate inclusion microstructure

(ii.a) Construct 2D rectangular grids over [0, π]× [0, 2π]

(ii.b) Generate stationary Gaussian random field for the coarse-scale inclusion microstructure

(ii.c) Generate fractional Brownian random field for the fine-scale inclusion microstructure

(ii.d) Smooth the coupled coarse-scale and fine-scale inclusion microstructures

(ii.e) Extract morphological parameters from real particulate inclusion database

(ii.f) Utilize the proposed multi-cut method to obtain 2D shape profiles of the generated inclusion microstructure

(ii.g) Check the morphological parameters of computed inclusion shape profiles. IF the parameters are satisfied,

THEN go to Step 3, ELSE go to Substep ii.b

(iii) Step 3: Generate RVE microstructure

(iii.a) Generate non-intersecting spheres

(iii.b) Extract the centers of the spheres generated in Substep iii.a

(iii.c) Use the sphere centers in Substep iii.b as the initial seeds to generate Voronoi cells for the RVE

(iii.d) Use scaling, subdivision, and fusion to place the generated inclusions in the RVE cells

(iii.e) Check the cell filling condition. IF all the generated inclusions have been successfully placed in the RVE,

THEN go to Step 4, ELSE go to Substep iii.d

(iv) Step 4: Generate RVE mesh

(iv.a) Compute the initial curvature of the generated inclusion microstructure in the RVE cell

(iv.b) Perform surface smoothing and compute the curvature of the smoothed inclusion microstructure

(iv.c) Check the surface mesh smoothing criterion. IF the surface mesh is satisfied, THEN go to Substep iv.d,

ELSE go to Substep iv.b.

(iv.d) Generate the volume mesh based on the surface mesh generated in Substep iv.c

(iv.e) Check the volume mesh local refinement criterion. IF the volume mesh is satisfied, THEN go to Substep

iv.b, ELSE go to Step 5.

(v) Step 5: Return the generated RVE microstructure and the relevant mesh
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Table 1. Summary of important articles relating to the advanced modeling approaches for generating 3D particulate

geo-microstructures

Article [Ref. No.] Approach for 3D geo-microstructure generation Comments

Mollon and Zhao [16] Fourier descriptors based on Fourier series Mesh generation is not discussed.

Garboczi et al. [17, 18] Spherical harmonics Mesh generation is not discussed.

Zhou et al. [19, 20] Spherical harmonics Mesh generation is not discussed.

Huang et al. [23] Alpha shape Mesh generation is not discussed.
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Figure 1: Schematic illustration of the proposed multiscale multi-level representation scheme.
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Figure 2: Illustration of the proposed coarse-scale simulation procedure.
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(a) approach by using random noise

(b) approach by using fractional Brownian random field

Figure 3: Illustration of the proposed fine-scale simulation procedure: (a) approach by using random noise; (b)

approach by using fractional Brownian random field.
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Coarser Scale Finer Scale 

Figure 4: Illustration of the proposed multiscale heat kernel smoothing scheme for bridging the coarse and fine

scales.
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Initial seed generation Voronoi cell generation Cell filling 

Sphere center  
extraction 

Figure 5: Illustration of the proposed RVE generation procedure.
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Voronoi cell Scaling and placing of particulate inclusion in the Voronoi cell 

Scaling Scaling 

Figure 6: Illustration of the proposed scaling operation in the cell filling process.
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Voronoi cell Cell subdivision Subdivided cell filling 

Figure 7: Illustration of the proposed subdivision operation in the cell filling process.
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Before fusion Forming new inclusion Preprocessing for fusion After fusion 

Figure 8: Illustration of the proposed fusion operation in the cell filling process.

44

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) cortical surface

(b) parametrized surface

Figure 9: Illustration of the surface parametrization procedure adopted in the present study: (a) cortical surface;

(b) parametrized surface.
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Figure 10: Illustration of the proposed curvature-based surface mesh generation procedure for the smoothing and

generation of the cortical surface mesh: (a) cortical surface with random noise; (b) cortical surface after the first

smoothing operation; (c) cortical surface after the second smoothing operation; (d) cortical surface after the third

smoothing operation; (e) cortical surface after the fourth smoothing operation.
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(a) volume mesh

(b) cut volume mesh

Figure 11: Illustration of the generation of the volume mesh for the cortical surface in Figure 10e: (a) volume mesh;

(b) cut volume mesh.
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Inclusion generation step 

Start 

Generate particulate inclusion microstructure 
Proposed stationary Gaussian random field for coarse-scale microstructure simulation 
Proposed fractional Brownian random field for fine-scale microstructure simulation 
Proposed heat kernel smoothing for bridging-scale coupling 

Perform microstructure shape optimization 
Proposed hybrid experimental-computational optimization approach 
Proposed image processing technique for extracting real particle shape profiles 
Proposed multi-cut method for constructing computed shape profiles 

RVE generation step 

Are the generated particulate inclusion microstructures satisfied? 

Generate RVE microstructure 
Proposed hybrid method for 3D Voronoi cell generation 
Proposed scaling, subdivision, and fusion operations for placing generated particle inclusions in the RVE 

Are all the generated particulate inclusions placed in the RVE? 

Mesh generation step 

Generate RVE surface mesh 
Proposed curvature-based surface smoothing procedure 
Proposed surface  mesh generation procedure 

Is the generated RVE volume mesh satisfied? 

Generate RVE volume mesh 
Proposed volume mesh generation procedure 
Proposed volume mesh refinement scheme 

Is the generated RVE surface mesh satisfied? 

End 

No 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Figure 12: Flowchart of the complete computational framework proposed in the present study.
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(a) cortical surface smoothed using t=0

(b) cortical surface smoothed using t=0.001

(c) cortical surface smoothed using t=0.01

Figure 13: Illustration of the weighted spherical harmonic smoothing and surface flattening of the cortical surface:

(a) cortical surface smoothed using t=0; (b) cortical surface smoothed using t=0.001; (c) cortical surface smoothed

using t=0.01.
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Original aggregate image Aggregate binary image Aggregate boundary detection Aggregate centroid computation 

Aggregate signature curve extraction Differentiated signature curve 

Low-frequency component of differentiated 

signature curve (shape profile) 

High-frequency component of differentiated 

signature curve (surface texture) 

centroid 

Figure 14: Illustration of the image processing procedure for extracting particle shape profile.
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(a) method for obtaining intersected particle shape profile

Initially generated aggregate microstructure Initially generated aggregate microstructure cut by one plane Intersected shape profile 

(b) shape optimization procedure using multiple plane cuts

Initially generate aggregate microstructure Intersected shape profile cut by multiple planes Optimized aggregate microstructure 

Figure 15: Illustration of the proposed microstructural shape optimization procedure: (a) method for obtaining

intersected particle shape profile; (b) shape optimization procedure using multiple plane cuts.
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(a) no surface texture

(b) mild surface texture

(c) medium surface texture

(d) strong surface texture

Figure 16: Generation of aggregate microstructures with different surface texture: (a) no surface texture; (b) mild

surface texture; (c) medium surface texture; (d) strong surface texture.
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(a) volume mesh

(b) cut volume mesh

Figure 17: Volume Mesh for smoothed aggregate microstructure of Figure 16: (a) volume mesh; (b) cut volume

mesh.
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(a) stationary Gaussian random field generated with parameter β1 = β2 = 1/5

(b) stationary Gaussian random field generated with parameter β1 = β2 = 1/10

(c) stationary Gaussian random field generated with parameter β1 = β2 = 1/50

Figure 18: Effects of the correlation length parameter on the generated random field: (a) stationary Gaussian

random field generated with parameter β1 = β2 = 1/5; (b) stationary Gaussian random field generated with

parameter β1 = β2 = 1/10; (c) stationary Gaussian random field generated with parameter β1 = β2 = 1/50.
54

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) fractional Brownian random field generated with the Hurst parameter µ = 0.8

(b) fractional Brownian random field generated with the Hurst parameter µ = 0.4

(c) fractional Brownian random field generated with the Hurst parameter µ = 0.1

Figure 19: Effects of the Hurst parameter on the generated random field: (a) fractional Brownian random field

generated with the Hurst parameter µ = 0.8; (b) fractional Brownian random field generated with the Hurst

parameter µ = 0.4; (c) fractional Brownian random field generated with the Hurst parameter µ = 0.1.
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(a) grid spacing ∆1 = ∆2 = π/18 (b) grid spacing ∆1 = ∆2 = π/36

(c) grid spacing ∆1 = ∆2 = π/72 (d) grid spacing ∆1 = ∆2 = π/144

(e) grid spacing ∆1 = ∆2 = π/288 (f) grid spacing ∆1 = ∆2 = π/512

Figure 20: Effects of grid spacing on the generated microstructure: (a) grid spacing ∆1 = ∆2 = π/18; (b) grid

spacing ∆1 = ∆2 = π/36; (c) grid spacing ∆1 = ∆2 = π/72; (d) grid spacing ∆1 = ∆2 = π/144; (e) grid spacing

∆1 = ∆2 = π/288; (f) grid spacing ∆1 = ∆2 = π/512.
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(a1) coarse mesh (a2) curvature plot of subplot a1

(b1) medium mesh (b2) curvature plot of subplot b1

(c1) dense mesh (c2) curvature plot of subplot c1

Figure 21: Refined surface meshes of the aggregate microstructure: (a1) coarse mesh; (a2) curvature plot of subplot

a1; (b1) medium mesh; (b2) curvature plot of subplot b1; (c1) dense mesh; (c2) curvature plot of subplot c1.
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(a1) initial mesh (a2) element shape quality for subplot a1
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(b1) mesh refined from subplot a1 (b2) element shape quality for subplot b1
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(c1) mesh refined from subplot b1 (c2) element shape quality for subplot c1
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Figure 22: Refined volume meshes and element quality statistics of the aggregate microstructure: (a1) initial mesh;

(a2) element shape quality for subplot a1; (b1) mesh refined from subplot a1; (b2) element shape quality for

subplot b1; (c1) mesh refined from subplot b1; (a2) element shape quality for subplot c1. Note that in the figure,

the elements with poor quality are highlighted in red.
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(a) no surface texture

(b) mild surface texture

(c) medium surface texture

(d) strong surface texture

Figure 23: Generation of cementitious composite microstructures with different surface texture (scenario with low

packing density and regular shape): (a) no surface texture; (b) mild surface texture; (c) medium surface texture;

(d) strong surface texture. 59
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(a) RVE

(b) aggregate

(c) cut aggregate

(d) cut matrix

Figure 24: Volume mesh for smoothed cementitious composite microstructures for the RVE shown in Figure 23:

(a) RVE; (b) aggregate; (c) cut aggregate; (d) cut matrix.
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(a) no surface texture

(b) mild surface texture

(c) medium surface texture

(d) strong surface texture

Figure 25: Generation of cementitious composite microstructures with different surface texture (scenario with high

packing density and regular shape): (a) no surface texture; (b) mild surface texture; (c) medium surface texture;

(d) strong surface texture. 61
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(a) RVE

(b) aggregate

(c) cut aggregate

(d) cut matrix

Figure 26: Volume mesh for smoothed cementitious composite microstructures for the RVE shown in Figure 25:

(a) RVE; (b) aggregate; (c) cut aggregate; (d) cut matrix.
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(a) no surface texture

(b) mild surface texture

(c) medium surface texture

(d) strong surface texture

Figure 27: Generation of cementitious composite microstructures with different surface texture (scenario with low

packing density and irregular shape): (a) no surface texture; (b) mild surface texture; (c) medium surface texture;

(d) strong surface texture. 63
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(a) RVE

(b) aggregate

(c) cut aggregate

(d) cut matrix

Figure 28: Volume mesh for smoothed cementitious composite microstructures for the RVE shown in Figure 27:

(a) RVE; (b) aggregate; (c) cut aggregate; (d) cut matrix.
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(a) no surface texture

(b) mild surface texture

(c) medium surface texture

(d) strong surface texture

Figure 29: Generation of cementitious composite microstructures with different surface texture (scenario with high

packing density and irregular shape): (a) no surface texture; (b) mild surface texture; (c) medium surface texture;

(d) strong surface texture. 65
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(a) RVE

(b) aggregate

(c) cut aggregate

(d) cut matrix

Figure 30: Volume mesh for smoothed cementitious composite microstructures for the RVE shown in Figure 29:

(a) RVE; (b) aggregate; (c) cut aggregate; (d) cut matrix.
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(a) natural gravel No. 1 (b) natural gravel No. 2 

(c) natural gravel No. 3 (d) natural gravel No. 4 

(e) natural gravel No. 5 (f) natural gravel No. 6 

Figure 31: Real natural-gravel-type aggregates: (a) natural gravel No. 1; (b) natural gravel No. 2; (c) natural

gravel No. 3; (d) natural gravel No. 4; (e) natural gravel No. 5; (f) natural gravel No. 6.
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(a) simulated natural gravel No. 1 (b) simulated natural gravel No. 2 

(c) simulated natural gravel No. 3 (d) simulated natural gravel No. 4 

(e) simulated natural gravel No. 5 (f) simulated natural gravel No. 6 

Figure 32: Simulated natural-gravel-type aggregates: (a) simulated natural gravel No. 1; (b) simulated natural

gravel No. 2; (c) simulated natural gravel No. 3; (d) simulated natural gravel No. 4; (e) simulated natural gravel

No. 5; (f) simulated natural gravel No. 6.

68

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) crushed rock No. 1 (b) crushed rock No. 2 

(c) crushed rock No. 3 (d) crushed rock No. 4 

(e) crushed rock No. 5 (f) crushed rock No. 6 

Figure 33: Real crushed-rock-type aggregates: (a) crushed rock No. 1; (b) crushed rock No. 2; (c) crushed rock

No. 3; (d) crushed rock No. 4; (e) crushed rock No. 5; (f) crushed rock No. 6.
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(a) simulated crushed rock No. 1 (b) simulated crushed rock No. 2 

(c) simulated crushed rock No. 3 (d) simulated crushed rock No. 4 

(e) simulated crushed rock No. 5 (f) simulated crushed rock No. 6 

Figure 34: Simulated crushed-rock-type aggregates: (a) simulated crushed rock No. 1; (b) simulated crushed rock

No. 2; (c) simulated crushed rock No. 3; (d) simulated crushed rock No. 4; (e) simulated crushed rock No. 5; (f)

simulated crushed rock No. 6.
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Figure 35: Magnified view of illustrative aggregate microstructure and surface texture.
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Figure 36: Laser scanned 3D aggregate microstructure with surface texture.
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(a) coarse-scale microstructure

(b) fine-scale microstructure

Figure 37: Coarse-scale and fine-scale aggregate microstructure samples with complex surface texture generated by

the present approach: (a) coarse-scale microstructure; (b) fine-scale microstructure.
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(a1) real RVE with natural gravel (a2) real RVE with crushed rock

(b1) generated RVE with natural gravel (b2) generated RVE with crushed rock

Figure 38: Comparison of computationally generated cementitous RVE microstructures to real cementitious RVE

microstructures: (a1) real RVE with natural gravel; (a2) real RVE with crushed rock; (b1) generated RVE with

natural gravel; (b2) generated RVE with crushed rock.
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(a) the approach in [16–20] (5 terms of SH series) (b) the approach in [16–20] (10 terms of SH series)

(c) the approach in [16–20] (50 terms of SH series) (d) the alpha shape approach [23]

(e) coarse-scale microstructure by the present approach (f) fine-scale microstructure by the present approach

Figure 39: Comparison of the aggregate microstructure generated by the present method and other important

contemporary methods: (a) the approach in [16–20] (5 terms of spherical harmonic series); (b) the approach in [16–

20] (10 terms of spherical harmonic series); (c) the approach in [16–20] (50 terms of spherical harmonic series); (d)

the alpha shape approach [23]; (e) coarse-scale microstructure by the present approach; (f) fine-scale microstructure

by the present approach. Note that in the subtitles of the figure, SH stands for Spherical Harmonic.
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