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This paper summarizes the development and application of spatial statistical models in 18 
satellite optical remote sensing. The paper focuses on the development of a conceptual 19 
model that includes the measurement and sampling processes inherent in remote sensing.  20 
We organized this paper into five main sections: introducing the basis of remote sensing, 21 
including measurement and sampling; spatial variation, including variation through the 22 
object-based data model; advances in spatial statistical modelling; machine learning and 23 
explainable AI; a hierarchical ontological model of the nature of remotely sensed scenes. The 24 
paper finishes with a summary. We conclude that optical remote sensing provides an 25 
important source of data and information for the development of spatial statistical 26 
techniques that, in turn, serve as powerful tools to obtain important information from the 27 
images. 28 
 29 
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1. Introduction 33 
 34 
Remote sensing is a measurement-based discipline and as such it leads to the creation of 35 
data that have specific characteristics (Curran, 1985). The specific nature of these data has 36 
led to (or benefitted from) the development and application of many explicitly spatial 37 
statistical techniques. This paper serves to provide a historical look, over the last decade, at 38 
some key developments and applications of spatial statistical models in satellite optical 39 
remote sensing. Appendix 1 provides a classification of the references in this paper. However, 40 
more fundamentally, this paper focuses on the development of conceptual models of the 41 
measurement and sampling processes inherent in remote sensing, the nature of spatial 42 
information in remotely sensed images, and the nature of the real scenes that remotely 43 
sensed data are created from (Quattrochi and Goodchild, 1997; Stein et al., 1999; Atkinson 44 
and Tate, 2000; Goodchild, 2004; Miller, 2004; Ge et al., 2019). We also consider briefly some 45 
of the concepts underlying the spatial statistical techniques themselves. Thus, this paper 46 
seeks to question the nature of remotely sensed data and information, arguing that future 47 
research in spatial statistics for remote sensing should be guided by the concepts that 48 
emerge. This paper is not a review of methods that have emerged over the last decade. Such 49 
a task would be challenging given the volume of activity and production.  50 
 51 
We organized this paper into seven sections as follows. Following this introduction, we 52 
consider measurement and sampling processes in remote sensing after briefly introducing 53 
the basis of remote sensing as a tool. We then consider the spatial variation and potential 54 
information in these data, using the spatial covariance function as a very crude lens with 55 
which to analyze continuous variation. We also consider variation through the object-based 56 
data model. Advances in spatial statistical modelling are considered in section 4, with 57 
examples of key developments being multiple-point geostatistics, mixed (spatial) regression 58 
models using the Bayesian inference paradigm, and fuzzy objects. In section 5, we examine 59 
machine learning, deep learning and explainable AI, drawing out some key concepts from 60 
these methods that we use to assess the appropriateness of these approaches for certain 61 
tasks, and develop further our conceptual models. Section 6 extends the learning from earlier 62 
sections to develop a hierarchical ontological model of the nature of remotely sensed scenes 63 
of interest, which then allows us to reflect further on the appropriateness of techniques and 64 
gaps that may demand new spatial statistical modelling approaches. Section 7 provides a 65 
summary.  66 
 67 
 68 
2. Remote Sensing as a Source of Data 69 
 70 
In this section, we develop a conceptual model of remote sensing as a source of spatial (and 71 
space-time) environmental data. In so doing, we set the basis for subsequent chapters which 72 
aim to analyze the data produced. The basic tenet is that principled methods for handling 73 
remotely sensed data should consider the ways that the data were produced.  74 
 75 
2.1 The basic concept underlying remote sensing 76 
 77 



We start by reminding readers of Spatial Statistics of the basic concepts underlying satellite 78 
optical remote sensing (Curran, 1985). The material is rudimentary, but it serves to build the 79 
proposition that this paper majors on in later sections.  80 
 81 
In satellite optical remote sensing, light from the Sun traverses the atmosphere (where it is 82 
marginally scattered, refracted and so on), and eventually reaches the Earth’s surface. 83 
Depending on the surface material and its properties, the light is (i) absorbed, (ii) transmitted 84 
through to a subsequent layer and (iii) reflected in three proportions summing to one. Light 85 
exists across a continuum of wavelengths referred to as the electromagnetic spectrum (EMS), 86 
with optical light representing the visible and infrared wavelengths. Conditional upon the 87 
wavelength, the light may be absorbed, transmitted and reflected in different proportions, 88 
thus, producing spectra. The reflected light traverses through the atmosphere again, where it 89 
is scattered, refracted and so on, before exiting the Earth’s atmosphere. Satellite optical 90 
remote sensing is then the task of measuring from space the reflected light such as to 91 
inversely infer some properties of the material at the Earth’s surface. This inverse process is 92 
the fundamental basis of remote sensing. Thus, it can be seen that remote sensing is a tool 93 
for measurement, much like a telescope or microscope. As a measurement tool, it is 94 
important to consider the measurement properties of remote sensing devices as this will 95 
have a bearing on subsequent spatial statistical analysis of the data.  96 
 97 
Note: other types of remote sensing are common, including (i) in different wavelengths (e.g., 98 
microwave remote sensing, which focuses on extracting surface texture, di-electric 99 
properties of soil and polarization characters of various features using the microwave part of 100 
the electromagnetic spectrum) and (ii) with different platforms (e.g., the airborne and UAV 101 
platforms that can provide rich information about object shape, size, orientation, texture and 102 
contextual relationship). However, much of what is described here for optical remote sensing 103 
translates readily to these other types.  104 
 105 
2.2 Discretization and the measurement process 106 
 107 
In all cases of remote sensing, to measure one must discretize. This discretization occurs 108 
across the EMS, across space and across time, amongst others (e.g., numerical precision, 109 
angle of view). From the perspective of spatial statistics this amounts to an important 110 
sampling decision (and potentially a discretization of the actual space operated on) and so we 111 
review it briefly here.  112 
 113 
In optical remote sensing, it is common to measure the EMS in broad segments called 114 
‘wavebands’ (i.e., bounded integrals over the EMS). Satellite sensors such as Landsat operate 115 
a few broad wavebands, commonly referred to as multispectral remote sensing (Arvidson et 116 
al., 2006; Williams et al., 2006; Wulder et al., 2008, 2012; Yan and Roy, 2016). Variation 117 
between these wavebands can be used to infer properties of the material at the Earth’s 118 
surface. For example, a high reflectance in the green and near-infrared wavebands is 119 
characteristic of vegetation, whereas a relatively low reflectance in all wavebands is 120 
characteristic of water, which tends to absorb light across the EMS (Curran, 1985). In 121 
contrast, hyperspectral optical sensors measure reflected light in many hundreds of 122 
wavebands, leading to the possibility to make more nuanced inferences about the Earth’s 123 
surface materials.  124 



 125 
Across space, discretization occurs through the array of cells that constitute the ‘sensor’. 126 
Modern optical sensing devices generally involve a rectangular array of cells onto which the 127 
reflected light is projected via a lens. This discretization decision allows the production of an 128 
image, which has great utility from a spatial statistical modelling perspective. However, it also 129 
necessarily invokes the three concepts of support, spatial resolution and pixel (Atkinson and 130 
Tate, 2000). The difference between the first two is subtle, but essentially hinges on the fact 131 
that the support is a first-order concept (being defined for a single measurement) while the 132 
spatial resolution is a second-order concept (depending on more than one observation). The 133 
pixel of each remotely sensed image is neither of these, being rather, simply an element or 134 
cell (of the data array or image) to which a measurement value is allocated. The support is a 135 
geostatistical concept representing the space on which a measurement is made, or 136 
observation is defined, and it has three parameters; size, geometry and orientation (Atkinson 137 
and Tate, 2000; Ge et al., 2019). It represents one element of the spatial (space-time) 138 
sampling strategy, with the other elements being the pattern of observations and the extent.  139 
 140 
It is notable that the support of measurements in remote sensing is commonly represented 141 
by a 2D Gaussian function (or similar function) referred to as the ‘point spread function’ 142 
(PSF), with its tails extending far beyond the limits of a pixel (Wang et al., 2020). It is in this 143 
important regard that the support (PSF) is different to the way that most people imagine 144 
measurement on a pixel (which could be better described as having a ‘square wave 145 
response’). Far too little spatial statistics research in remote sensing has accommodated the 146 
spatial sampling effects of the PSF.  147 
 148 
In time, discretization occurs through individual images which represent cross-sections 149 
through time. Time-series of remotely sensed images (i.e., space-time cubes) can be 150 
constructed readily because some of the world’s most popular and long-standing satellite 151 
sensor series (e.g., NOAA-AVHRR, Terra/Aqua-MODIS, Landsat-TM/ETM/OLI, ) have been 152 
acquiring images for decades with a fixed revisit interval (e.g., 16 days for Landsat TM, 1-to-2 153 
days for AVHRR/MODIS) (Arvidson et al., 2006; Williams et al., 2006; Wulder et al., 2008, 154 
2012; Zhu and Woodcock, 2014; Yan and Roy, 2016). Unfortunately, the ubiquitous problem 155 
of cloud cover means that the frequency of useable images (or parts of images) is lower (i.e., 156 
longer) than the revisit intervals, but with appropriate statistical methods, complete times-157 
series of images can be constructed (Song and Huang, 2012; Mondal et al., 2017; Wang and 158 
Atkinson, 2018; Belgiu and Stein, 2019; Guo et al., 2020) (see section 4).  159 
 160 
It is interesting to consider that the above discretization processes in remote sensing 161 
determine to a large extent the nature of the spatial statistical models that might be applied 162 
to the data subsequently. The most obvious impact (i.e., constraint on subsequent statistical 163 
model choices) is that remotely sensed images are discretized across space into pixels. This 164 
means potentially that the Euclidean space itself is discretized into a regular grid of possible 165 
values. Operations that are made directly on that grid generally deny the underlying 166 
continuous space of the real world, an insight not dissimilar to that from aggregation in the 167 
so-called modifiable areal unit problem (MAUP; Openshaw, 1984; Fotheringham and Wong, 168 
1991).  169 
 170 



From a spatial statistical perspective it is useful to distinguish between continuous random 171 
fields or Random Functions (RFs) (also, in the specific case, termed Gaussian Processes, GPs) 172 
(that are stochastic in their attribute), and spatial objects (that could be stochastic in their 173 
geometry). Both stochastic models of the real world may be useful in different 174 
circumstances. In both cases, it is possible to fit such models to the image data directly, but 175 
this imposes the discretized space and constrains the solution to be on a a grid. For example, 176 
it is possible to define objects in remotely sensed images by grouping the labels of nearby 177 
clusters of pixels, but these objects will be blocky as a result and oriented in the same 178 
direction as the image overall (Aplin and Atkinson, 2001). Alternatives that escape the 179 
strictures of the pixel and image grid are possible and have gained much attention recently. 180 
The most obvious example of this comes from geostatistical change of support theory 181 
(Cressie, 1996; Kyriakidis, 2004; Atkinson, 2013). This is discussed further in section 4.  182 
 183 
2.3 Measurement error 184 
 185 
While describing the nature of remotely sensed data as a consequence of sampling decisions, 186 
it is worthwhile to make a philosophical statement about the nature of measurement error. 187 
Conceptually, we believe that all measurements about the real world are integrals over space 188 
and time; that is, they have a support in space-time, with a particular size, geometry and 189 
orientation. Measurement error is then added to this integral with a particular distribution 190 
(Atkinson and Tate, 2000). We have no evidence for this sequence of ‘integral-then-error’, 191 
but it is a useful, and rather natural, conceptual construct.  192 
 193 
The measurement error can arise from many different sources, including sensor noise, 194 
atmospheric attenuation and uncertainty in the PSF definition. Measurement error can 195 
involve random error, but it can also involve systematic error. Not enough attention has been 196 
paid to accommodating this important source of uncertainty in spatial statistical models 197 
applied to remotely sensed data.   198 
 199 
 200 
3. Information in Remotely Sensed Data 201 
 202 
In this section, we develop some concepts related to the extraction of information from 203 
remotely sensed data. We do this in two parts: by considering continuous spatial variation 204 
and by considering spatial objects. First, we define information crudely.  205 
 206 
3.1 Definition of information 207 
 208 
For the purposes of this paper, we define information (or at least potential information) as 209 
the difference between data, values or things. In a single waveband remotely sensed image, 210 
therefore, potential information exists in the differences between pixels. Since, 211 
mathematically, the difference between two pixels A and C separated by, and joined by, a 212 
third pixel B in-between them is already represented in the two relations A-B and B-C, it is 213 
clear that potential information in an image is local, existing only between neighbouring 214 
pixels that share a common boundary (edge) (specifically the King’s neighbourhood case).  215 
 216 



Differences also can exist with data outside the image, and differences can exist between the 217 
image and the expectations of the viewer, which are amassed as a function of experiences, 218 
and generalizations of these experiences, over time (to summarize the complex cognitive 219 
process of the human brain). Nevertheless, the definition of (potential) information as 220 
difference holds in all these three cases; the concept is general (Wang et al., 2019).  221 
 222 
It is in this context that the variance parameter of a Gaussian statistical distribution is useful 223 
as a diagnostic since it is based on difference and describes what is expected on average. It is 224 
particularly useful when extended spatially into the spatial covariance function that 225 
parameterizes a RF (or GP).  226 
 227 
3.2 Spatial variation on a grid 228 
 229 
Accepting that remotely sensed measurements are made generally on an image grid, let us 230 
start by considering the spatial variation that exists amongst the pixel values on that grid. We 231 
focus on the RF model for illustrative purposes; in particular, its parameterization through 232 
the spatial covariance, but many other approaches could be used in its place.   233 
 234 
It is possible to calculate the empirical spatial covariance and to fit a model to it using an 235 
appropriate method of inference. Common permissible (authorized) functions include the 236 
Matérn family of models, including the popular exponential covariance model. The 237 
exponential model has two parameters, the so-called sill variance and the range (or pseudo-238 
range). To a certain extent, the sill variance of the exponential model can be thought of as 239 
the spatial equivalent of the point variance, although strictly it is the a priori variance and not 240 
the sample variance (Journel and Huijbregts, 1978). The range on the other hand has no 241 
equivalent in the point distribution.  242 
 243 
The range parameter, as a simplifying representation, tells us a lot about the potential 244 
information content of the image. For example, if the range is long (large) relative to the 245 
extent of the image then there is much redundancy in the image (more data for little 246 
information); conversely if it is short (small) there is much potential information relative to 247 
the number of data. In a related sense, the range informs about the scale(s) of spatial 248 
variation present in the image. Useful references on scale in remote sensing and geography 249 
have been provided elsewhere (Atkinson and Tate, 2000; Wu and Li, 2009; Goodchild, 2011; 250 
Lloyd, 2014; Zhang et al., 2014a; Jiang and Brandt, 2016; Jiang, 2018).  251 
 252 
Beyond the range, which represents an upper limit on the extent of any correlation, the 253 
shape of the spatial covariance function also is informative. For example, one can think of the 254 
exponential model, which is asymptotic towards the sill variance, as representing a set of 255 
scales of variation, each with its own information-to-redundancy ratio. Put differently, and 256 
invoking briefly the object-based view of the world, if the image were comprised of objects, 257 
the objects would be of different sizes.  258 
 259 
Note: the above is a coarse statement to illustrate the concept only (e.g., the range is 260 
independent of the number of times that a pattern is repeated). Nevertheless, we contend 261 
that such insights are potentially useful. A recent trend in spatial statistics applied to remote 262 
sensing has been to no longer analyze spatial statistical functions such as the spatial 263 



covariance for what they tell us about the nature of the property of interest. This is discussed 264 
again in section 4.  265 
 266 
Despite the above insights about the scales of spatial variation and potential information 267 
(and redundancy), what is intelligible or interpretable (and pleasing) to a human being is not 268 
the same as ‘potential information’. An image that is rich with potential information can be 269 
difficult to ‘read’ by a human being. This is for two reasons: (i) human beings tend to 270 
naturally identify functional objects and invoke the simplifying object-based view of the world 271 
and (ii) it is easier to identify only a few things than many things. This is why we differentiated 272 
between potential information (with the underlying variation characterized on average by 273 
the spatial covariance) and what we would think of more naturally as information (e.g., the 274 
underlying variation collapsed down further into semantically meaningful, functional, object-275 
based representations).  276 
 277 
3.3 Spatial variation on a continuous space 278 
 279 
If one considers again the discretization process described in section 2.2, it is not difficult to 280 
see that the values in pixels are integrals (plus some measurement error). As such, the 281 
discussion in section 3.2 above relates to the differences between pixels in an image and 282 
nothing is said about the differences within pixels that have been obscured through the 283 
measurement process. Through measurement, all the variation (potential information) within 284 
the support (i.e., PSF) is reduced down to a single value and all that remains in terms of 285 
potential information lies in the differences between the pixel values (and differences with 286 
other data, and with the interpreter’s expectations). This statement is obvious, but it also has 287 
profound implications for the principled statistical handling of remotely sensed imagery.  288 
 289 
It is the intersection of the sampling strategy (spectral, spatial, temporal) implicit in the 290 
imaging sensor with the real world that determines the spatial variation and potential 291 
information content of remotely sensed imagery (noting, importantly, that spatial variation 292 
exists only in data after measurement and not before it). A major parameter of the sampling 293 
framework is the support, with its three sub-parameters. In terms of information (i.e., 294 
neglecting uncertainty momentarily), it is not whether the support is large or small that 295 
matters; it is whether the support is large or small relative to the spatial range (also 296 
frequency) of the variation that is produced in the data, and especially the variation due to 297 
the features of potential interest to the investigator. If the support is too large, the variation 298 
may not be resolvable. If the support is too small, there may be too much redundancy in the 299 
image. Interestingly, as alluded to above, the sweet spot for human interpretation generally 300 
involves a lot of redundancy. The human brain requires some redundancy in order to resolve 301 
structure, or to ‘see’ functional objects.  302 
 303 
The consequence of acknowledging that within-support variation is lost through 304 
measurement is to reconsider the nature of the data that spatial statisticians can operate on 305 
and the specification of the models that are appropriate to fit to the data. For example, 306 
downscaling and image fusion have become a very popular topics in geostatistics and spatial 307 
statistics applied to remote sensing (Song and Huang, 2012; Sales et al., 2013; Wang and 308 
Atkinson, 2018; Belgiu and Stein, 2019; Guo et al., 2020; He and Yokoya, 2020; Dadras Javan 309 
et al., 2021; Li et al., 2021). It is possible, conceptually, to define the stochastic model at the 310 



point support scale and to fit such point support models to data observed on a positive finite 311 
support. This insight is crucial and it is leading to spatial statistical models that try to escape 312 
the strictures of the measurement processes that created the data in the first place. This is 313 
important because, after all, in environmental and related sciences, our interest is not 314 
generally in the data; it is (or should be) in the real world.  315 
Geostatistical change of support (CoS) models do this in some respects (e.g., in that the RF is 316 
spatially continuous), but not in others (e.g., the spatial covariance is defined initially on a 317 
positive measurement support, and subsequent inference at a finer support is ill-posed) 318 
(Kyriakidis, 2004; Yoo and Kyriakidis, 2006; Liu et al., 2008; Yoo et al., 2010; Wang et al., 319 
2015; Jin et al., 2018). Despite their success and widespread adoption in recent years CoS 320 
models represent a ‘step along the way’. Thus, this paper makes a call to spatial statisticians 321 
to reconsider the remotely sensed image, not as the object of study, but as a partial window 322 
on the real world, and to design spatial statistical models that acknowledge this deficit. CoS 323 
models are described further in section 4.  324 
 325 
3.4 Spatial objects 326 
 327 
It is important to view the consequence of discretization across space in relation to the 328 
object-based model. As discussed above, humans naturally identify and label functional 329 
objects in their surroundings. They do this primarily to survive; an evolved ability. However, 330 
commonly these functional objects (e.g., car, telephone, desk) are human constructs only; 331 
strictly they do not exist in the real world. It can be reasonably argued that animals and 332 
plants are singular objects in the real world (in the sense that they are singularly integrated 333 
collections of biochemical processes), a view common in ecology (Forman, 1995), but it is 334 
also true that they are simultaneously collections of physical particles (i.e., not objects at all). 335 
Such a philosophical discussion is important, but beyond the present scope.   336 
 337 
Despite the above, if we can accept the legitimacy of the existence of spatial objects in the 338 
real world, then their intersection with a regular grid of measurement cells with a particular 339 
support creates spatial data on those objects. From these data, inversely, the objects may be 340 
identified and labelled. However, the ability to do this depends on the interaction between 341 
the support and those spatial objects in the real world, specifically the size of the support 342 
relative to the size of the objects. Too large a support and the object may not be sufficiently 343 
resolvable. Too small a support and the object may be identified, but at large data 344 
redundancy cost. If the objective is to resolve the variation in the geometry (boundary) of the 345 
object in detail then an even smaller support may be required.  346 
 347 
Lying between measurement and the ability to identify and label the original objects of 348 
interest is the concept of the ‘mixed pixel’ (Peng et al., in press). Mixed pixels occur when 349 
more than one object class contributes to the overall signal measured and allocated to a 350 
pixel. For example, if the interest is in identifying cars in a car park, the intersection of the 351 
support with the scene may lead to many pixels within the image that are partially car and 352 
partially car park. These so-called mixed pixels  occur along the boundaries of the spatial 353 
objects of interest. The existence of mixed pixels demands attention to the spatial support 354 
issue and the selection of statistical methods that address this problem head on. Since 355 
remotely sensed images commonly cover scenes that comprise multiple objects, the mixed 356 
pixel problem is fairly ubiquitous.  357 



 358 
The goal of spatial statistical analysis is not always focused on the segmentation and labelling 359 
of objects, of course (see section 3.2 and 3.3 above). However, it is important to consider 360 
that scenes comprised of objects (i.e., phenomena that humans would readily identify as 361 
functional objects with semantic meaning) are the norm in remote sensing. For example, in 362 
an urban area, an image may include data relating to buildings, gardens, garages, retail 363 
outlets, industrial buildings, car parks, roads, rivers, train lines, and so on.  In this context, it is 364 
interesting that the focus of much spatial statistical analysis in remote sensing has been 365 
based on the analysis of spatial continua (e.g., through application of regression models and 366 
geostatistical RFs) (Moran, 1950), and less so stochastic objects and their boundaries (e.g., 367 
Mandelbrot, 1967). We feel that application of RFs in remote sensing should be done 368 
acknowledging the spatial object-based nature of the variation in images, with attention also 369 
paid to the stochastic analysis of objects and the graphs that connect them. We discuss this 370 
problem further in Section 4.   371 
 372 
3.5 A note on sampling 373 
 374 
Developments in spatial sampling design have received much benefit from remote sensing 375 
(Wang et al. 2012). Spatial sampling design methods can be categorized into model-based 376 
and design-based sampling. Model based sampling requires the use of an optimization 377 
function, such as equal spreading or obtaining the minimized geostatistical Kriging variance, 378 
while design-based sampling requires a random component in the sampling design. A 379 
relatively straightforward procedure is to implement a design on the discrete pixels in an 380 
image. In such a case, it is straightforward to allocate a spatial statistical sampling design such 381 
as random or grid sampling, where the pixels to be sampled are identified. Similarly, a model-382 
based optimal sampling strategy can be implemented to optimize the classification of an 383 
image, for example, using the Kappa statistic.  384 
 385 
Of some interest in relation to sampling design is the variability within a pixel. Such variability 386 
is commonly ignored by averaging the within-block variability to create and allocate a single 387 
reflectance value to the pixel, the support of which is governed by the point spread function. 388 
Rulinda et al. (2011) undertook sampling within a pixel: field data were collected within single 389 
pixels of the MSG-Seviri NDVI product. Its spatial resolution of approximately 5 x 5 km at the 390 
latitude of the study area (Rwanda) was too coarse to provide reliable information for the 391 
purpose of properly studying NDVI variability, and a statistical design was implemented 392 
within five individual pixels. Two transects in the EW direction were allocated at random 393 
positions on the NS-axis within the area projected on the ground; similarly two transects 394 
were positioned at random positions on the EW axis to investigate the variability in the NS 395 
direction. It was, thus, possible to characterize the within-pixel spatial variability.  396 
 397 
More recently, Wang et al. (2020) suggested the spatial statistical trinity. In this generic 398 
framework a relation is presented between universe, sampling and inference. This 399 
conceptual integration is useful because it points to the utility of designing model-based 400 
approaches that are connected fully through this trinity, and which identify the best choice 401 
amongst various estimators for a universe or population under study. We suggest that more 402 
attention is required to develop this trinity further, for example, to generalize sampling to 403 
escape the strictures of spatial discretization and the spatial support, amongst others.  404 



 405 
Having introduced some fundamental concepts in relation to measurement and spatial 406 
information, we now review some recent developments in spatial statistics (Section 4) and in 407 
machine learning (Section 5) in remote sensing.  408 
 409 
 410 
4. Characterizing Imagery Using Spatial Statistics 411 
 412 
As introduced above, remote sensing images consist of data, commonly represented as 413 
‘digital numbers’ (Section 2), while the interest is generally in extracting information from 414 
these data (Section 3). The spatial statistical models that characterize the variation in spatial 415 
data, and which allow us to predict or forecast (predict in the future) some property of 416 
interest are, thus, critical.  417 
 418 
For spatial statistical modeling, we see major recent contributions as threefold: (i) 419 
developments in geostatistical change of support theory and multiple point geostatistics, that 420 
depend on higher-order moments; (ii) the development and application of explicitly spatial 421 
statistical regression models, which supersede traditional linear regression models by 422 
introducing a spatial dependence term between pixels, which plays a critical role, and which 423 
requires the Bayesian inference paradigm; and (iii) the handling of objects, such as by random 424 
sets and fuzzy objects, where the spatial variation of the content, and random delineations of 425 
object boundaries, are the major uncertainties to address. 426 
 427 
4.1 Geostatistics  428 
 429 
Geostatistics, emerging since the 1960s in mining (Cressie, 1993; Journel, 1993; Cressie and 430 
Wikle, 2015), has since the 1980s served as a spatial prediction engine in remote sensing. 431 
Geostatistics serves as a useful and important statistical model for (i) handling missing data 432 
(e.g., generated by the presence of clouds or cloud shadow, or by a failing sensor 433 
component); (ii) upscaling from a set of pixels to a homogeneous object; (iii) downscaling 434 
from a coarse pixel that covers a certain area on the ground to a finer spatial resolution; and 435 
(iv) fusion of images of a certain spatial resolution with other images of a different spatial 436 
resolution. Major contributions came from Atkinson et al. (1992, 1994) and Addink and Stein 437 
(1999). These concerned the absence of pixels and filled in the empty pixels by geostatistical 438 
interpolation. Many examples exist of the development of spatial statistical models for filling 439 
gaps due to clouds and cloud shadows (Chen et al., 2014, 2020, 2021) and due to sensor 440 
failures (dropped pixels) (Chen et al., 2011; Chen et al., 2012; Wang et al., 2021).  441 
 442 
At the beginning of the century, scaling issues became more prominent, and several groups 443 
advanced the field in the search to address the challenging issue of downscaling spatial 444 
continua (Cressie, 1996; Kyriakidis, 2004; Pardo-Igúzquiza et al., 2006; Goovaerts, 2006, 445 
2007; Atkinson et al, 2008; Atkinson, 2013; Huhtengs and Vohland, 2016; Wang et al., 2016; 446 
Jeganathan and Mondal, 2017). Even greater effort was paid to the challenge of downscaling 447 
reflectance to categories (referred to as sub-pixel mapping) (Atkinson, 1997; Tatem et al., 448 
2001, 2002; Atkinson, 2005; Khasetkasem et al., 2005; Thornton et al., 2007; Tolpekin and 449 
Stein, 2009; Ardila et al., 2011; Nguyen et al., 2011; Su et al., 2012; Ling et al., 2013; Ai et al., 450 
2014; Wang et al., 2014; Hu et al., 2015; Ge et al., 2016; Chen et al., 2018). Both change of 451 



support goals aim to escape the strictures of the pixel in remote sensing. As introduced 452 
above, the pixel is seen commonly as the average reflectance of light from a limited support 453 
on the terrain, and disentangling the reflectance into a set of finer supports representing the 454 
original reflectance or mapping to (e.g., land cover) categories is challenging (and ill-posed 455 
mathematically). This can be done if additional information is available. For example, a 456 
support of, say 30 m x 30 m (a common unit in Landsat images) in an agricultural area may 457 
consist of a building, pavement and agricultural fields. If we have some prior expectation of 458 
where the infrastructure elements may be located, than it is essentially possible to 459 
downscale the aggregated signal into more specific spatially resolved information.  460 
 461 
As introduced in Section 2, a key concept in geostatistical analysis is the spatial covariance 462 
function, or its related function, the semivariogram (Rossi et al., 1992). Both characterize the 463 
spatial variation and parameterize a RF. Under the condition of second-order stationarity of 464 
the RF, the two are related by a simple expression. With this in mind, remotely sensed 465 
images can be conceptualized as a realization from a RF. However, the appropriateness of 466 
this stationarity decision may be somewhat hard to maintain from a geographical point of 467 
view. It is more natural to consider that the pixel values as generated by the reflectance from 468 
crisply defined spatial objects on the ground, such as agricultural fields, buildings and water 469 
bodies. More reasonably, the spatial variation within the objects, can be considered as 470 
homogeneous and generated by a stochastic RF, while the variation between objects less so.  471 
 472 
A typical way ahead is as follows. One first identifies spatial units, usually related to land 473 
cover, that capture the major distinguishing elements in the scene. Such spatial units are 474 
obtained by segmentation and classification of, for example, multi-band images. Often, these 475 
units have a clear physical meaning. Next, the seemingly homogeneous units are further 476 
considered: variability exists within these units and such variability, traditionally expressed by 477 
the standard deviation, is currently better described by RFs. Such a stratified approach 478 
distinguishes the between-strata variability from the within-strata variability. While this 479 
approach seems comprehensive, we note that such integrated modelling is relatively rare 480 
and, further, there exists a scarcity of attempts to do this incorporating change of support 481 
theory. 482 
 483 
The last decade has seen the emergence of multiple-point geostatistics (MPG; Guardiano and 484 
Srivastava, 1993; Strebelle, 2002; Liu, 2006; Mariethoz et al., 2010; Ge and Bai, 2011; 485 
Straubhaar et al., 2011; Tahmessabi et al., 2012; Bai et al., 2013; Ge et al., 2013; Tang et al., 486 
2015). Geostatistics based on the stationary covariance-based RF model is limited because 487 
the spatial covariance function is a two-point statistic (Atkinson, 2004). This means that 488 
moments are limited to first and second-order and, thus, by definition such RF models can 489 
simulate only very simple images with variation that is smooth and continuous and that lack 490 
detail and information. MPG replaces the spatial covariance with a training image from which 491 
rich, higher-order moments can be obtained (Strebelle, 2002). There exist many concerns 492 
over the MPG approach, but it does bring the convincing advantage of being able to simulate 493 
more realistic remotely sensed images.  494 
 495 
In the above context, we argue two things: (i) researchers developing and applying stochastic 496 
RF models in remote sensing should pay more attention to the stochastic modelling of 497 
objects and their boundaries (as well as the combination of the object-based and RF models) 498 



and (ii) the geostatistical RF (or GP) is surprisingly limited in its ability to characterize data and 499 
it is curious to us that multiple-point geostatistics and related higher-order moment 500 
approaches do not seem to have found wide application outside of a few key research 501 
groups. Put differently, and notwithstanding their specific utilities, given that it is so obvious 502 
that stationary covariance-based RFs (GPs) are unrealistic and inappropriate representations, 503 
why are they still so ubiquitous in remote sensing?  504 
 505 
4.2 Mixed models and the Bayesian inference paradigm  506 
 507 
Spatial statistical modeling of remote sensing images is based commonly upon the linear 508 
model. Such models can be applied at the individual pixel level or at the object level. Often, 509 
the linear model falls short because of its assumptions of i.i.d. residuals. More commonly, the 510 
presence of spatial dependence in the residuals from the regression model needs to be 511 
acknowledged and taken into account. This has led to the development of mixed regression 512 
models or spatial regression models.  513 
 514 
An early example of a mixed regression model was the autologistic regression model 515 
(Augustin et al., 1996). This combined a generalized linear model (GLM; a linear regression 516 
model predicting continua augmented with a link function on the predictand mapping the 517 
prediction to some other data type; in the autologistic case a binary outcome). The 518 
autologistic model was fitted using the Gibbs sampler. Augustin et al. (1996) presented an 519 
interesting and relevant study on biodiversity where they developed the autologistic model 520 
based on the Gibbs sampler in a remote sensing context.  521 
 522 
A spatial regression model can be conceptualized as being an additive model that in the most 523 
simple case combines two effects; a linear fixed effect and a spatial random effect, plus an 524 
error term. The linear fixed effect term is the usual linear (or GLM) model, while the spatial 525 
random effect can be a geostatistical model as, for example, in regression kriging or a 526 
conditionally autoregressive (CAR) or simultaneous autoregressive (SAR) term, as in Augustin 527 
et al. (1996), amongst others.  528 
 529 
A major difference between the geostatistical and CAR/SAR spatial random effect that usually 530 
guides the choice of the most appropriate approach is the aggregation level of the data. 531 
Geostatistics commonly is used to deal with data on a grid or on a quasi-point support, while 532 
SAR and CAR models are most suited for data represented on irregular supports such as 533 
census Wards. 534 
 535 
Mixed regression models generally require inference using the Bayesian inference paradigm. 536 
In the seminal paper of Diggle et al. (1998) for the first time the term “model-based 537 
geostatistics” was coined as a major step forward to integrate geostatistics (and the mixed 538 
regression model approach) with Bayesian inference. This paper attracted major attention 539 
and put modern and computer-intensive geostatistical modeling of spatial data into a wider 540 
statistical context. In relation to classical geostatistics, the key gain of the “model-based 541 
geostatistics” approach was the important step to admit and model the uncertainty in the 542 
parameters of the RF. At the same time, the approach emphasized explanation through 543 
covariates over geostatistical prediction, which was relegated to operating on the linear 544 
model residuals. This shift in emphasis can be argued strongly from an inference and 545 



prediction perspective, but it has led to a reduction in attention on the characterization of 546 
spatial variation.  547 
  548 
4.3 Objects 549 
 550 
Spatial statistics is well developed when it comes to the identification of segments and 551 
allocation of classes. Based on image analysis, homogeneous spatial objects can be identified 552 
that are then assigned a class label. A key goal in remote sensing is to spatially segment 553 
imagery, and various methods have been developed. K-nearest neighbor classification and 554 
maximum likelihood classification are archetypal tools for classifying images consisting of 555 
multiple wavebands. Problems emerging in hyperspectral images where the number of bands 556 
(typically some hundreds) can be prohibitive for applying these image classification methods 557 
have largely been overcome, while segmentation and classification of single band images is of 558 
a simpler nature. However, the objects and their classes emerging from segmentation and 559 
classification have inherent uncertainties. On the one hand, objects are rarely homogeneous 560 
internally, and thresholds or processing adjustments have to be applied to overcome over-561 
segmentation and the emergence of anomaly classes. On the other hand, the spatial 562 
boundaries between classes are often far form crisp, even in the natural world. Fisher et al. 563 
(2004) recognized this most clearly when posing the question: Where is Helvellyn? The 564 
mountain clearly is somewhere, but the edges of the mountain are gradually there, and it is 565 
impossible to state with full confidence when, during a hike, one steps for the first time on 566 
the mountain.  567 

 568 
In a range of papers, attention was given to random sets as a methodology to represent 569 
uncertain objects. Zhao et al. (2010) studied the uncertainty of lake boundaries, Zhou et al. 570 
(2013) focused on traffic objects derived from LiDAR data, Sidiropoulou Velidou et al. (2015) 571 
investigated the occurrence of linear geological objects, while Kohli et al. (2016) studied the 572 
delineation of slum areas in different cities around the globe. Random sets are based on 573 
probabilistic functions, and specify the probability that an object is present at a location. 574 
Their application leads to identification of the core of an object (i.e., the area where the 575 
object exists with certainty, the support of an object), and intermediate areas where an 576 
object is present with different degrees of probability. As Figure 1 shows, the core set (C) is 577 
most certainly the object, and the region U ⊃ C represents an area where possibly the object 578 
exists as well, while the white area outside U, i.e. UC is outside the support, and does not 579 
include the object.  580 
 581 
In Kohli et al. (2016) the knowledge of 19 experts was used to delineate a slum area. In 582 
certain parts of the image, all experts agreed on the presence of a slum resulting in 583 
identifying C. In some other parts the experts agreed that there was no slum, hence 584 
identifying UC. In the remaining parts there was no consensus, resulting in intermediate 585 
interpretations. The fraction of agreeing experts then served as the probability of the 586 
presence of a slum. In Zhao et al. (2010) a spatio-temporal analysis was used, where the 587 
probability of a lake was identified as its presence in a time-series of 12 monthly periods over 588 
a time span of 10 years.  589 
 590 



 
 591 
 592 
 593 
Research and thinking on fuzzy set objects extends the conceptual model that we build in this 594 
paper, and the statements that we make in relation to this model, such as calls for more 595 
research on spatial objects, should include considerations of their often fuzzy definition in 596 
reality.  597 
 598 
5. The Rise and Rise of Machine Learning 599 
 600 
Machine learning and deep learning have seen considerable success and widespread 601 
application in remote sensing in recent years. This resurgence is interesting, not least 602 
because earlier in the careers of the authors of this paper, we saw the “rise-then-decline” of 603 
artificial neural networks (ANNs) in remote sensing in the 1990s (Atkinson and Tatnall, 1997). 604 
That decline over two decades ago occurred primarily as a result of the criticism of 605 
statisticians and scientists that ANNs were ‘black box’ models. That is, one could not easily 606 
interpret (or control) what was going on inside the box because the ANN comprised so many 607 
parameters (e.g., weights between nodes in the multiple layers of the ANN). This lack of 608 
interpretability remains a concern with modern machine learning approaches although 609 
progress is being made through ‘explainable AI’ (XAI). Nevertheless, the vast numbers of data 610 
associated with remotely sensed images, and with time-series of remotely sensed images, in 611 
particular, have meant that the data-led approaches of machine learning were destined to 612 
find their niche in remote sensing. 613 
 614 
The recent resurgence we see as occurring primarily in three phases, the first relating to 615 
machine learning, the second relating to deep learning and the third to explainable AI (XAI).  616 
 617 
5.1 Machine learning 618 
 619 
The first resurgence occurred through the development and adoption of specific techniques 620 
that were ‘game changers’ (i.e., which brought sufficient novelty to update the community’s 621 
thinking about what was possible). The archetypal example of machine learning in remote 622 
sensing was the feed-forward, back-propagation ANN. Essentially a flexible, nonlinear 623 
regression model, the ANN was applied widely with high accuracy in the 1990s (Atkinson and 624 
Tatnall, 1997).  625 
 626 
Focusing primarily on classification (as opposed to regression) of remotely sensed images, 627 
the techniques that brought paradigm shifts were, for example, the support vector machine 628 
(SVM; Yang et al., 2006; Zhang et al., 2014b) which demonstrated that training data (support 629 
vectors) near the (non-linear) boundaries in feature space between classes are more 630 
important (indeed all that is needed) relative to those further away, and they could be 631 

Figure 1. Random set representation of an uncertain 
object. 



identified through local kernels, and (ii) the Random Forest, a tree-based classifier that when 632 
fitted has the advantage of having an expression spatially as a non-stationary model, allowing 633 
generalization of parameters to local conditions, and which brings the added advantage of 634 
identifying the importance of each input feature (Brieman, 2001; Rodriguez-Galliano et al., 635 
2012; Huhtengs and Vohland, 2016). Such machine learning algorithms shifted the balance of 636 
attention from the model to the data and, thus, were ideal for taking advantage of the 637 
massive numbers of data produced by remote sensing satellites.  638 
 639 
At the same time, a disadvantage of machine learning algorithms arises for precisely the 640 
same reason as above; they generally focus on the data and, thus, miss the opportunity to 641 
focus on reality. This problem is irrelevant in relation to human choices expressed through 642 
the internet since such human choices lack a spatial support, but they matter in the 643 
environmental and related sciences. How can spatial statisticians integrate conceptually rich 644 
understandings, as presented in this paper, into such models?  645 
 646 
5.2 Deep learning 647 
 648 
More recently, deep learning has produced a sharp rise in interest from the remote sensing 649 
community, although that interest is now plateauing. The story of deep learning in remote 650 
sensing is interesting and we precis it here, focusing on how it works, what it can do and what 651 
it cannot do. The cardinal example of deep learning applied to remote sensing is the 652 
convolutional neural network (CNN), with many examples in the literature (Masi et al., 2016; 653 
Song et al., 2018; Zhang et al., 2018). Thus, we focus on the CNN, acknowledging that it is but 654 
one of many deep learning approaches (Das and Ghosh, 2016; Shao and Cai, 2018; Zhang et 655 
al., 2018; Yeh et al., 2019). The CNN was designed for the task of identifying or classifying 656 
“higher-order representations” that are generally (but not uniquely) object-based. This 657 
statement requires some unpacking.  658 
 659 
Prime among the concepts introduced above is that the task of the CNN is different than for 660 
standard classifiers. Standard classifiers in remote sensing are targeted on labelling low-order 661 
representations, primarily land cover; the first-order state of the land surface. In contrast, 662 
land use is a higher-order representation that relates to function. CNNs are able to predict 663 
such higher-order representations, whereas standard classifiers cannot. Through the 664 
research of the 1980s and 1990s, it is well known that while land cover can be inferred 665 
directly from remotely sensed reflectance on a per-pixel basis, land use cannot. In contrast, 666 
land use must be inferred through the relations between pixels or through the relations 667 
between objects defined on those pixels (or objects defined on a continuous space mapped 668 
to those pixels). It is for this reason that so-called texture classifiers of the 1980s and 1990s 669 
were applied successfully to classify land use. Texture classifiers first created texture “bands” 670 
by applying texture filters to the original broadband imagery and then discriminated between 671 
the classes of interest in the higher dimensional feature space created by the original-plus-672 
texture wavebands. The CNN exploits a similar principle through convolution (texture) and 673 
pooling layers within a deep neural network such that the features to extract and utilize are 674 
determined automatically based on processing of the input.  675 
 676 
This brings us to a second concept that defines CNNs in remote sensing. CNNs take as their 677 
input an image patch instead of an image pixel. Indeed, CNNs were designed originally for the 678 



identification of single representations within images (e.g. it is an agricultural field, it is a 679 
forest). Put simply, the CNN exploits second-order and higher-order relations (e.g., texture) in 680 
the input image patch to target the classification of higher-order representations such as (to 681 
give a simple case) land use. This focus on higher-order representations will be expanded on 682 
in section 6.  683 
 684 
A third interesting concept related to CNNs is that the representations that are targeted are 685 
commonly (albeit not ubiquitously) readily expressed as spatial objects. For example, an 686 
agricultural field or a forest patch can be thought of as a functional object. Hence, the land 687 
use classes of interest, such as field and forest, can be conceptualized as functional objects in 688 
a scene.  689 
 690 
The above conceptualization of what a CNN is can help us to determine what it can and 691 
cannot do. First, since CNNs are targeted on higher-order representations their utility is 692 
primarily in doing what standard classifiers cannot (e.g., identifying higher-order features 693 
such as ‘it’s a train station’, ‘it’s a golf course’), and they generally are not required for 694 
classifying land cover, even if they can do that accurately. A recent example concerns the 695 
sensitivity of areas for bush fires to start off (Bergado et al., 2021).  Second, the fact that the 696 
CNN takes a patch as input means that the prediction has a coarse spatial support, even if the 697 
result is allocated to a central pixel artificially. This is an unfortunate consequence when one 698 
is interested not in identifying something within an image, but labelling the multiple ‘objects’ 699 
that exist across an image (as is commonly the case in remote sensing). Third, the fact that 700 
CNNs generally target spatial objects is completely missed by the algorithm that is focused 701 
only on identification or labelling a feature and not at all on its geometry. These factors 702 
should guide application of CNNs in remote sensing, and also give clues as to where gaps 703 
exist for further development.  704 
 705 
There are many other exciting ANN developments in remote sensing presently, including in 706 
relation to generative adversarial networks (GANs; Bermudez et al., 2019; Fuentes Reyes et 707 
al., 2019) and U-Nets which aim to resolve the above issues to some extent. U-nets have 708 
contributed widely in remote sensing research. Their use requires careful selection of the 709 
involved parameters. See Persello and Stein (2017) for a general presentation in the remote 710 
sensing domain. The applications are useful in image segmentation, where clear advances 711 
have been gained in building outline detection (Zhao et al., 2021) and in detection of informal 712 
settlements (Mboga et al., 2017). This also includes the rather technical polarimetric SAR 713 
data that require complex arithmetic (Mullissa et al. 2019). The purpose of this paper is not 714 
to review these methods, but rather to draw attention to the underlying concepts.  715 
 716 
It is interesting to note that whereas much change of support research has focused on 717 
increasing the spatial resolution, deep learning methods such as the CNN decrease it 718 
implicitly by abstracting higher-order representations from patches. This gap should provide 719 
tangible foci for future methodological development.  720 
 721 
 722 
5.3 Explainable AI 723 
 724 



Explainable AI is currently a very hot topic in remote sensing. Whereas publications using 725 
deep learning have plateaued, explainable AI is on the rise. The goal of explainable AI is to 726 
render the inner mappings of AI approaches, predominantly machine and deep learning 727 
algorithms in the present remote sensing context, amenable to interpretation. There exist 728 
several different levels to this including access, intelligibility and so on. For recent reviews see 729 
Angelov et al. (2021) and Linardatos et al. (2021). An interesting example of the development 730 
of an XAI approach in remote sensing is Gu et al. (2020). In this approach, IF-THEN rules are 731 
encoded within the algorithm and the result of classification is presented to the user not only 732 
as a class allocation per image patch, but in terms of the IF-THEN rules that led to the 733 
allocation. This means that the user is easily able to understand why the decision was made 734 
and whether the decision makes sense. This closes the loop between prediction and user-735 
based validation and allows the investigator the opportunity to understand, most crucially, 736 
how to improve the model. We expect to see much research attention being paid to XAI 737 
approaches in remote sensing over the next few years.  738 
 739 
 740 
6. Semantic and Ontological Considerations 741 
 742 
The concepts introduced through the sections of this paper lead us to a more refined 743 
understanding of the nature of remotely sensed data and, thereby, the appropriateness of 744 
spatial statistical methods for application to these data. Perhaps most importantly it can 745 
reveal gaps in the capability of some methods that point to the need for model development. 746 
It is for this reason that we were motivated to write this paper, because we feel that it may 747 
motivate other researchers, in particular, spatial statisticians, to restate problems in remote 748 
sensing, and rethink the spatial statistical solutions that are appropriate for them. In this 749 
section we develop this conceptual model further by considering the choice of method for 750 
particular goals, and by introducing semantic and ontological considerations (Wang et al., 751 
2020).  752 
 753 
6.1 Choice of goal, method and spatial resolution 754 
 755 
Woodcock and Strahler (1987) first identified that the choice of spatial resolution in remote 756 
sensing is conditional not only on the goal of the analysis (which is fairly obvious), but also on 757 
the method and the frequency of spatial variation in the scene. In fact, as Woodcock and 758 
Strahler explain, more commonly, it is the choice of method and choice of spatial resolution, 759 
that is conditional on the goal and the interaction of the spatial resolution with the frequency 760 
of spatial variation. The same holds true today. Common goals in remote sensing for handling 761 
continuous spatial variation are the statistical prediction of continua (e.g., biomass per ha) 762 
based on regression-type models and the classification of land cover, both of which can be 763 
achieved operating on pixels directly. Invoking the object-based data model, a common goal 764 
is to segment (i.e., identify) and classify (label) objects in an image, again operating at the 765 
pixel level (on local connected groups of pixels). Whether these pixel-level goals are 766 
appropriate depends to a certain extent on the data, and more specifically the interaction of 767 
the spatial resolution with the frequency of spatial variation in the scene (in either 768 
continuous variation or implicit objects).  769 
 770 



Generally, but especially where the pixel size is large relative to the scales of variation of 771 
interest, the goal can be restated to focus on the punctual support (or quasi-point support) 772 
scene of interest (i.e., ultimately reality) rather than the image itself. The image is, after all, 773 
generally not the researcher’s interest. Indeed, the image is limited precisely by the sampling 774 
strategy decisions that were taken to achieve measurement, and it is in this sense an 775 
extremely partial representation of reality. Refocusing the goal outside of this limited 776 
sampled view of reality offers the possibility to escape the strictures of the pixel, and 777 
measurement and sampling processes. It offers the possibility to fit models defined on a 778 
punctual support that map to the data on a positive support, such that other mappings can 779 
be generated readily (e.g., to a coarser support, to a finer support or to a support with 780 
complex geometry such as a census Ward). This is important, because one of the most 781 
significant challenges in environmental data science today is the inability to allow datasets to 782 
speak to each other that were obtained with different supports (and other measurement 783 
characteristics) (Gotway and Young, 2002, 2007; Young and Gotway, 2007). We are thinking 784 
of data fusion as one example, but more generally we are thinking of interoperability as 785 
another. Such interoperability requires principled mappings that can transform data on one 786 
support to data on another support exchangeably. We are some way off from such a vision. 787 
Nevertheless, it is an important vision because environmental data come in a wide variety of 788 
shapes and sizes (property definitions, sampling frameworks, measurement characteristics, 789 
error characteristics), and we draw the attention of spatial statisticians to it. 790 
 791 
6.2 A hierarchical ontology for remote sensing 792 
 793 
This paper has highlighted that remotely sensed scenes are comprised of land covers (states) 794 
(e.g., Hansen and Loveland, 2012) and land uses (functional objects) (e.g., Chen et al., 2021). 795 
We now extend this thinking to develop a conceptual ontological model that is potentially of 796 
great use in considering the goals of spatial statistical modelling in remote sensing. We 797 
contend that land cover and land use are intimately linked in a coupled ontology, with land 798 
use sitting at a higher-order of representation above land cover (Zhang et al., 2019; Hong et 799 
al., 2019; Wang et al., 2020). This is fairly clear when one considers the classic case of the 800 
land use ‘urban’ which we know to be comprised of constituent land covers (grass, tarmac, 801 
concrete, roof tiles, water and so on) arranged in particular spatial patterns. In this sense, 802 
land use is ‘built on’ the constituent land cover states. Not only this, but we contend that 803 
whereas land cover exists as a pixel-based concept (it is meaningful to describe the land 804 
cover state in a pixel, e.g., grass), land use exists more meaningfully as an object-based 805 
concept (e.g., residential buildings, car park, roads). Note that the land use ‘urban’ is slightly 806 
different in that it is effectively higher-order than, say, its constituent buildings.  807 
 808 
Zhang et al. (2019) realized the above and developed a statistical joint distribution modelling 809 
approach that capitalized on the ontological connectedness between land cover and land use 810 
as a higher-order representation. To predict land use it was necessary to use a CNN (see 811 
above), making this joint distribution model unique in that it the coupled a low-order 812 
classifier (multi-layer perceptron) with a higher-order classifier (CNN); referred to as ‘joint 813 
deep learning’ (JDL). Moreover, the joint distribution model was fitted between land cover 814 
defined at the pixel level and land use defined as objects. Prediction of one was used to 815 
inform the other. The consequence of joint modelling was that the accuracy of classification 816 



of both land cover and land use increased greatly through iterative fitting, exploiting the joint 817 
dependence.  818 
 819 
In fact, as alluded to above in relation to the urban land use, a hierarchical ontology can be 820 
defined for land cover and land use, where functional higher-order representations sit above 821 
land use. Concepts such as ‘train station’ and ‘golf course’ are complex higher-order 822 
representations that lie at a higher level in a hierarchical ontology than land covers (lowest 823 
level) and land uses (the level above land cover). For example, in the case of a train station, 824 
the concept is predicated on both land covers (tarmac, roof tiles, gravel tracks) and land uses 825 
(long thin buildings, roads, car park, railway lines) arranged in specific identifiable patterns. 826 
Indeed, ‘urban’ is also a complex construct and sits above some more fundamental land 827 
covers and land uses, as suggested above. This conceptualization is important, not least 828 
because it helps to direct the application of techniques such as deep learning CNNs to 829 
appropriate goals, but also because it suggests new possibilities for the development of 830 
spatial statistics.  831 
 832 
What is the value, at least in a research context, of yet another pixel-based, standard 833 
classification method once the semantically and ontologically rich, and sampling framework-834 
free, conceptualization of reality presented here is considered?  835 
 836 
 837 
7. Summary 838 
 839 
The contribution of this paper is not to review the methods of recent years, but to review the 840 
conceptualizations and representations underlying these methods, and to offer some 841 
common themes. The foci of this paper are necessarily a small and biased (partial) sample of 842 
what may be important conceptually in relation to the development and application of 843 
spatial statistics in remote sensing. Nevertheless, it is hoped that readers of Spatial Statistics 844 
will find some inspiration for their future research ideas.  845 
 846 
The common themes drawn out through this paper focus on conceptualizations and 847 
representations, and can be summarized as follows:  848 
 849 

1. Measurement, sampling and data: remotely sensed images are a function of what is 850 
out there in reality and spatial (space-time) sampling processes. As a result of the 851 
harsh razor of the sampling framework, and particularly the spatial support, remotely 852 
sensed data represent an extremely limited window on the world. Methods that are 853 
applied directly to the data are hostage to the sampling framework, as though the 854 
image were reality. Spatial statistical methods that obviate the strictures of the 855 
support and pixel should be the focus of future research.  856 

2. Information and variation: geostatistical RF characterizations can be helpful in 857 
revealing the scales of spatial variation in spatial data and, thus, the potential 858 
information content and, conversely, redundancy in data. They can provide some 859 
insights about the data (and the scene) to experienced interpreters, and these 860 
insights have a range of uses, including guiding the researcher as to whether a 861 
particular method is appropriate for a task. The recent trend towards prediction 862 
(through mixed regression models) in place of characterization and interpretation is 863 



worthy of reflection as we feel that something has been lost. At the same time, it 864 
should be acknowledged that the geostatistical RF (GP) model is extremely limited as 865 
it is based on two-point statistics. In addition, we introduced the object-based data 866 
model as an alternative to spatial continua, noting that such representations are 867 
human constructs. More attention should be paid in remote sensing to object-based 868 
conceptualizations by those applying RF models, and to stochastic models of object 869 
geometry. 870 

3. Spatial statistical models: We discussed major recent developments in spatial 871 
statistics applied to remote sensing as geostatistical change of support theory and 872 
multiple point geostatistics, mixed (spatial) regression models using the Bayesian 873 
inference paradigm and fuzzy spatial objects. These are just a few of the key 874 
developments, but they serve to illustrate a trend towards increasingly complex 875 
modelling taking advantage of computer power, and the development of our 876 
conceptual understanding of both principled statistical models and the landscape to 877 
which those models are applied.  878 

4. Machine and deep learning: the key advantage underlying the recent success of deep 879 
learning is that it offers the possibility to predict something that was hardly 880 
achievable before. Unfortunately, not all applications of deep learning (primarily 881 
CNNs) in remote sensing have targeted higher-order representations. The message is: 882 
use the right model for the risk task and consider your goals carefully. We also 883 
showed that standard CNNs suffer the drawbacks of an induced patch-sized support 884 
and an inability to represent object boundaries directly (although alternative deep 885 
learning approaches do aim to tackle these).  886 

5. Ontologies and graphs: We suggested a hierarchical ontology of land cover and land 887 
use, coupled with yet higher-order representations, for remote sensing.  It seems to 888 
us that defining the appropriate conceptual ontology should come first, the selection 889 
of goals second and the selection of appropriate methods third. This is a gross over-890 
simplification, of course, but it is salutary to ask how often do we actually consider 891 
the ontological landscape on which we are operating? Probably rarely or at least not 892 
often enough. We certainly argue that a firm conceptual understanding from 893 
measurement and sampling through data models to statistical model 894 
characterizations is key to useful inference and prediction. Indeed, it is through 895 
careful construction of an appropriate conceptualization that inference can be made 896 
meaningful.  897 

 898 
It is interesting to reflect that the broad conceptual view of the landscape of remote sensing 899 
as introduced in this paper was developed over decades (see Atkinson and Tate, 2000). New 900 
spatial statistical methods and data science methods with novel capabilities were introduced 901 
over this time, and users of those methods were educated through their study and 902 
application, allowing them to enrich their own conceptual model and understanding of reality 903 
and remotely sensed data, as well as what a good spatial statistical model should be. This was 904 
certainly the case in our experiences.  905 
 906 
As remote sensing is a mature subject, we believe that the broad conceptual model that we 907 
have presented here for remote sensing is fairly advanced. It is possible that other subjects 908 
would benefit from similar, explicitly spatial, conceptual constructions.  909 
 910 
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Appendix 1 

Table A1. Classification of references cited in this paper, provided to support further search and review.   

Model Type Data Model Application Goal Reference 
Geostatistics Random Field (RF) 

stochastic model 
representing spatial 
continua applied to 
images 

Spatial prediction in mining Cressie, 1993; Journel, 1993; Cressie and 
Wikle, 2015. 

Spatial prediction in remote 
sensing 

Atkinson et al., 1992, 1994;   
Addink and Stein, 1999. 

Gap filling due to cloud and 
cloud shadow in remote 
sensing 

Chen et al., 2014, 2020, 2021. 
 

Error removal due to sensor 
failure in remote sensing 

Chen et al., 2011; Chen et al., 2012; Wang et 
al., 2021. 

Time-series image 
construction in remote 
sensing 

Song and Huang, 2012; Mondal et al., 2017; 
Wang and Atkinson, 2018; Belgiu and Stein, 
2019; Guo et al., 2020. 

Geostatistical change of 
support and downscaling 
continua 

Random Field (RF) 
stochastic model 
representing spatial 
continua applied to 
images 

Increase in spatial resolution 
in remote sensing above that 
of the input image 

Cressie, 1996; Kyriakidis, 2004; Pardo-
Igúzquiza et al., 2006; Goovaerts, 2006, 
2007; Atkinson et al, 2008; Atkinson, 2013; 
Huhtengs and Vohland, 2016; Wang et al., 
2015, 2016; Yoo and Kyriakidis, 2006; Liu et 
al., 2008; Yoo et al., 2010; Jin et al., 2018. 

Sub-pixel mapping Various solutions, but 
generally admits a 
solution space not limited 
to the discretized image 

Classification of land cover in 
in remote sensing at a finer 
spatial resolution than the 
input image 

Atkinson, 1997; Tatem et al., 2001, 2002; 
Atkinson, 2005; Khasetkasem et al., 2005; 
Thornton et al., 2007; Tolpekin and Stein, 
2009; Ardila et al., 2011; Nguyen et al., 2011; 
Su et al., 2012; Ling et al., 2013; Ai et al., 
2014; Wang et al., 2014; Hu et al., 2015; Ge 
et al., 2016; Chen et al., 2018. 

Multiple Point 
Geostatistics 

Data-based approach 
applied directly to the 

Image pattern recreation and 
simulation  

Guardiano and Srivastava, 1993; Strebelle, 
2002; Liu, 2006; Mariethoz et al., 2010; Ge 
and Bai, 2011; Straubhaar et al., 2011; 



discretized space of the 
image 

Tahmessabi et al., 2012; Bai et al., 2013; Ge 
et al., 2013; Tang et al., 2015. 

Model-Based Geostatistics 
using Bayesian Inference 

Random Field (RF) 
stochastic model 
representing spatial 
continua applied to 
images 

Prediction of continua based 
on covariates. Models the 
uncertainty in RF estimation 

Augustin et al. 1996; Diggle et al. 1998. 
 

Random Sets Object-based stochastic 
model commonly applied 
directly to images 

Segmentation and 
classification of images into 
objects, including object 
boundary delineation and 
uncertainty therein 

Zhao et al. 2010; Zhou et al. 2013; 
Sidiropoulou Velidou et al. 2015; Kohli et al. 
2016. 

Non-linear learning (i.e., 
Machine Learning 
methods, including ANNs, 
SVMs, Random Forest, 
GANs, etc.) for 
classification 

Data-based approach 
applied directly to the 
discretized space of the 
image 

Classification of remote 
sensing images, commonly to 
land cover 

Atkinson and Tatnall, 1997; Yang et al., 2006; 
Zhang et al., 2014b; Brieman, 2001; 
Rodriguez-Galliano et al., 2012; Huhtengs 
and Vohland, 2016; Bermudez et al., 2019; 
Fuentes Reyes et al., 2019; Persello and 
Stein, 2017; Zhao et al., 2021; Mboga et al., 
2017; Mullissa et al. 2019. 

Higher-order, non-linear 
learning (i.e, Deep 
Learning methods, 
including CNNs, U-Nets) 
for classification 

Data-based approach 
applied directly to the 
discretized space of the 
image (although see U-
Nets) 

Higher-order (spatial and 
functional) classification of 
remote sensing images, 
commonly to land use 

Masi et al., 2016; Song et al., 2018; Zhang et 
al., 2018; Das and Ghosh, 2016; Shao and 
Cai, 2018; Zhang et al., 2018; Yeh et al., 
2019; Bergado et al., 2021. 

Interpretable, non-linear 
learning (i.e., XAI -
Explainable Artificial 
Intelligence) for 
classification 

Data-based approach 
applied directly to the 
discretized space of the 
image 

Identification of the decisions 
underlying the classification 
of images 

Gu et al. 2020; Angelov et al., 2021; 
Linardatos et al., 2021. 
 

Ontological Models Commonly defined for 
spatial objects on a 
continuous space 

Conceptualization of remote 
sensing scenes such as to aid 
the design of stochastic 
models 

Hong et al., 2019; Wang et al., 2020. 
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