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We study the ground-state properties of ferromagnetic quasi-one-dimensional quantum wires using
the quantum Monte Carlo (QMC) method for various wire widths b and density parameters rs. The
correlation energy, pair-correlation function, static structure factor, and momentum density are
calculated at high density. It is observed that the peak in the static structure factor at k = 2kF
grows as the wire width decreases. We obtain the Tomonaga-Luttinger liquid parameter Kρ from
the momentum density. It is found that Kρ increases by about 10% between wire widths b = 0.01
and b = 0.5. We also obtain ground-state properties of finite thickness wires theoretically using
the first-order random phase approximation (RPA) with exchange and self-energy contributions,
which is exact in the high-density limit. Analytical expressions for the static structure factor and
correlation energy are derived for b� rs < 1. It is found that the correlation energy varies as b2 for
b� rs from its value for an infinitely thin wire. It is observed that the correlation energy depends
significantly on the wire model used (harmonic versus cylindrical confinement). The first-order RPA
expressions for the structure factor, pair-correlation function, and correlation energy are numerically
evaluated for several values of b and rs ≤ 1. These are compared with the QMC results in the range
of applicability of the theory.

I. INTRODUCTION

One-dimensional (1D) homogeneous electron gases
(HEGs) are known to behave as strongly correlated sys-
tems at all densities [1, 2]. The present work studies the
ground-state properties of quasi-1D electron fluids using
quantum Monte Carlo (QMC) methods and an analytical
theory valid in the high-density range.

An infinitely thin wire cannot be realized experimen-
tally. As the channel width is reduced, the electrons oc-
cupy the lowest energy subband for their transverse mo-
tion, leading to a realization of a quasi-1D electron sys-
tem. The transverse confinement of an electron fluid af-
fects the electron-electron interaction potential and thus
the properties of the quasi-1D electron system. The
recent advancement of fabrication technology and pur-
suit of obtaining narrower wires has given impetus to
intense experimental and theoretical research in 1D sys-
tems. The experimental formation of 1D nanowires on
surfaces makes use of the symmetry of the substrate,
which can produce 1D topographic structures. In an
early work by Wang et al. [3], a nanowire structure was
obtained by depositing a monolayer of Au on a Ge (001)
surface [4]. More recently, nanowires with well-defined
long-range order and on large scale have been obtained
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[5, 6]. In particular, the high-density 1D HEG can be re-
alized experimentally in zigzag carbon nanotubes formed
on SrTiO3 substrates with high dielectric constant [7, 8].
The semiconductor industry is expecting to achieve the
building of single-digit nanometer chips. Therefore, it is
relevant to study the thickness-dependent properties of
1D wires for different confinement models. In this paper,
we use a harmonic confinement model for QMC simula-
tions and we study both harmonic and cylindrical hard-
wall confinement models with the theoretical approach.

We report QMC calculations of the ground-state en-
ergy, static structure factor (SSF), pair-correlation func-
tion (PCF), and momentum density (MD) at various
wire widths at high density for fully spin-polarized (fer-
romagnetic) 1D HEGs. The Tomonaga-Luttinger (TL)
parameters are key parameters describing a TL liquid
[9–12]. The MD data were fitted with appropriate func-
tions around k ∼ kF to obtain the TL parameter Kρ.
The dependence of Kρ on wire width b reveals the im-
portance of electron confinement effects in a 1D HEG.
In addition, we study the wire width dependence of var-
ious ground-state properties of the interacting HEG at
high densities using the first-order random phase ap-
proximation (RPA) with exchange and self energy con-
tributions [13, 14]. We present suitable expressions for
b-dependent SSFs, PCFs, and correlation energies for
cylindrical and harmonic-potential models of transverse
confinement. The high-density first-order RPA theory is
found to be in good agreement with QMC results. An-
alytical expressions for the SSF and correlation energy
have been obtained for both confinement models in the
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limit b� rs < 1. The b-dependent analytical expression
for the correlation energy in the limit b→ 0 at high den-
sity reduces to −π2/360 [15]. In this work, we take rs
and the wire width b to be in units of the Bohr radius
(aB).

The outline of this paper is as follows. In Sec. II, we
briefly describe the QMC method and report the ground-
state properties such as the PCF, SSF, correlation energy,
and MD for several values of b. The effect of the confin-
ing potential on the TL parameter Kρ is also studied. In
Sec. III, the confinement models and the dynamic density
response function in first-order RPA with exchange and
self energy contributions are described. Wire width de-
pendent expressions for the SSF and correlation energy
are given in this section. The SSF, PCF, and correlation
energy are calculated numerically for several wire widths
for b < rs < 1 and compared with QMC simulations.
The overall conclusions are given in Sec. IV.

II. QUANTUM MONTE CARLO SIMULATIONS

The form of Hamiltonian which is used for simulating a
fully spin-polarized (ferromagnetic) N -electron 1D HEGs
is

Ĥ = −1

2

N∑
i=1

∂2

∂x2i
+
∑
i<j

Ṽ (xij) +
N

2
VMad, (1)

where Ṽ (xij) and VMad denote the Ewald interaction
and Madelung energy, respectively. Throughout we use
Hartree atomic units (a.u.), in which ~ = |e| = me =
4πε0 = 1 a.u.

The confinement model that we have studied is a har-
monically regularized Coulomb potential in which the
electrons are confined to 1D by a harmonic potential of
form V⊥ (r⊥) = r2⊥/8b

4, where b is a wire width parame-
ter and r⊥ is the distance perpendicular to the wire. Fur-
ther, we follow the single-subband approximation which
states that the intersubband energy must be greater than
Fermi energy for electrons to occupy the lowest subband.
This condition requires rs > πb/4. Integrating over the
transverse degree of freedom, one obtains the effective
potential in real space as [16]

V (x) =

√
π

2b
e

x2

4b2 erfc

(
|x|
2b

)
. (2)

For a harmonic wire, the Ewald-like interaction is calcu-
lated as [17, 18]

Ṽ (xij) =

∞∑
m=−∞

[
π

2b
e(xij−mL)2/(4b)2erfc

(
|xij −mL|

2b

)
− 1

|xij −mL|
erf

(
|xij −mL|

2b

)]
+

2

L

∞∑
n=1

E1[(bGn)2] cos(Gnxij), (3)
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FIG. 1. PCFs for harmonic wires with N = 99 and rs = 0.5
at various wire widths b = 0.1 to b = 0.5 a.u. (top to bottom).
The inset shows a zoomed-in view of the peak at r = 1. The
data shown are extrapolated estimates [2gDMC(r)− gVMC(r)],
where gDMC and gVMC are the DMC and VMC PCFs, respec-
tively.

where b is the wire width, G = 2π/L, and E1 is the
exponential integral function. The electrostatic potential
at one electron due to its interaction with all its periodic
images (excluding itself) is the Madelung constant

VMad = lim
x→0

[
Ṽ (x)− V (0)

]
. (4)

The variational and diffusion quantum Monte Carlo
(VMC and DMC) techniques as implemented in the
casino code [19] are used for the computation of ground-
state properties of the 1D HEG at high density. A Slater-
Jastrow-backflow trial wave function [20, 21] is used in
the calculations. We computed expectation values of
quantities other than the energy by combining VMC and
DMC results to form extrapolated estimates [22]. Errors
in the VMC and DMC expectation values of operators
that do not commute with the Hamiltonian are linear in
the error in the trial wave function; however, the errors
in the extrapolated estimates of the PCF and SSF are
quadratic in the error in the trial wave function. The
simulation details of Ref. 23 are followed.

The ground-state energy is calculated for electron
numbers N = 37, 55, 77, and 99 for harmonic wires at
high densities. The thermodynamic limit for the ground-
state energy per particle is obtained by extrapolating
the energies per particle E(N) using the fitting func-
tion E(N) = E∞ + BN−2 [18], where B and E∞ are
fitting parameters. Further, the correlation energies are
calculated using the DMC energies. Both are reported in
Table I.

The parallel-spin PCF is

g(r) =
1

Nρ

〈 N∑
i>j

δ(|xi − xj | − r)
〉
, (5)
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FIG. 2. SSFs for harmonic wires with rs = 0.5 for various
wire widths b. The inset shows the b dependence of the 2kF
peak. The data shown are for N = 99 and are extrapolated
estimates [2SDMC(k)− SVMC(k)], where SDMC and SVMC are
the DMC and VMC SSFs, respectively.

TABLE I. DMC ground-state energies per particle extrapo-
lated to the thermodynamic limit E∞ and correlation energies
εc for fully spin-polarized (ferromagnetic) harmonic wires in
the thermodynamic limit at density parameter rs = 0.5.

b E∞ εc
(a.u.) (a.u./elec.) (a.u./elec.)
0.01 −2.35955(6) −0.02345(6)
0.1 −0.135195(2) −0.013913(2)
0.2 0.434211(3) −0.007769(3)
0.3 0.715752(3) −0.004768(3)
0.4 0.887735(4) −0.003168(4)
0.5 1.004636(4) −0.002239(4)
0.6 1.089589(4) −0.001659(4)

where ρ is the electron density and xi is the position
of the ith electron. The angular brackets 〈· · · 〉 denote
an average over configurations distributed as the square
modulus of the wave function. The PCF of a harmonic
wire at density rs = 0.5 for several wire widths b is plotted
in Fig. 1.

The SSF is defined as

S(k) =
1

N

[〈
ρ̂(−k)ρ̂(k)

〉
− 〈ρ̂(−k)〉 〈ρ̂(k)〉

]
, (6)

where ρ̂(k) =
∑
i e
ikxi . The SSF is studied to analyze

the charge ordering in the system. In Fig. 2, the SSF is
plotted for several wire widths. It shows that the peak
height decreases with increasing wire width.

The MD is computed using

n(k) =
1

2π

〈∫
ψT(r)

ψT(x1)
exp[ik(x1 − r)] dr

〉
, (7)

where the trial wave function ψT(r) is evaluated at
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FIG. 3. MDs for harmonic wires with N = 99 at rs = 0.5
for various wire widths. The data shown are extrapolated
estimates [2nDMC(k)− nVMC(k)], where nDMC and nVMC are
DMC and VMC MDs, respectively. It is observed that as
b → 0, the harmonic wire MD agrees with the infinitely thin
wire MD. The statistical error bars are omitted for clarity as
they are smaller than the symbols.

0 0.1 0.2 0.3 0.4 0.5
b (a.u.)

0.6

0.7

0.8

0.9

1
T

L
 P

ar
am

et
er

 K
ρ

0 0.1 0.2 0.3 0.4 0.5
b

0

0.02

0.04

0.06

0.08

0.1

E
x

p
o

n
en

t 
α

FIG. 4. TL parameter Kρ as a function of b, obtained from
QMC calculations. The exponent α is plotted against b in
the inset. The corresponding values for infinitely thin wires
at rs = 0.5 are indicated on the vertical axes by the symbol
‘4’.

(r, x2, . . . , xN ). The angular brackets represent an av-
erage over electron configurations.

In 1D, the MD has a peculiar power-law behavior: it is
continuous at k = kF although its derivative is singular
at k = kF. TL theory suggests that the MD takes the
form [10, 24]

n(k) = n(kF) +A[sign(k − kF)]|k − kF|α (8)

near k = kF, where n(kF), A, and α are fitting parame-
ters. TL theory describes the relationship between expo-
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nent α and TL parameter Kρ as [25, 26],

α =
1

4

(
Kρ +

1

Kρ
− 2

)
, (9)

which can be rewritten as Kρ = 1 + 2α − 2
√
α+ α2.

In Fig. 3, the MD obtained using the extrapolated es-
timator 2nDMC(k)− nVMC(k) for the harmonic wire is
plotted for N = 99 at rs = 0.5 for several values of the
wire width b. It is interesting to note that in the limit
b→ 0, the harmonic wire MD approaches the MD for an
infinitely thin wire [23]. The interaction exponent α is
calculated by fitting Eq. (8) to MD data. However, we
cannot use the full range of MD data for extracting α as
Eq. (8) is valid only for k → kF. So, we calculate α by
choosing MD data in the range defined by |k−kF| < εkF,
where ε > 0.075. The exponent α is then calculated by
extrapolating α to ε = 0. In this work, we report the
thermodynamic value of α calculated by extrapolating it
using α(N) = α∞ + B/N where α∞ and B are fitting
parameters. Further, we calculate Kρ in thermodynamic
limit. Both α and Kρ are plotted against b in Fig. 4. It
shows that the TL parameter Kρ depends significantly
on the width of the wire.

III. THEORY

A. Confinement models

We consider a softened Coulomb potential of the form
V (x) = 1/

√
x2 + b2, where b is the transverse width pa-

rameter of the cylindrical wire. The Fourier transform of
this potential is 2K0(bq) and its series expansion in b is
given as

V (q) = −2

[
ln

(
bq

2

)
+ γ

]
−b

2q2

2

[
ln

(
bq

2

)
+ γ − 1

]
+O

(
b3
)
, (10)

where K0 is the modified Bessel function of 2nd kind and
γ is the Euler constant.

The second model that we have studied is a harmonic
potential which is discussed in detail in Sec. II. The
Fourier transform of the potential as in Eq. (2) is V (q) =

E1(b2q2) eb
2q2 . Its series expansion in b reads

V (q) = −2
[
ln(bq) +

γ

2

]
−b2q2 [2 ln(bq) + γ − 1] +O

(
b3
)
, (11)

where E1 is the exponential integral. The series given in
Eqs. (10) and (11) are useful only for b < rs.

B. Density response function

In this section, the static properties of the 1D HEG
have been obtained using the density response function

and the fluctuation-dissipation theorem. The density re-
sponse function is defined as [1, 13, 14]

χ(q, ω) =
χ0(q, ω) + λχ1(q, ω)

1− λV (q) [χ0(q, ω) + λχ1(q, ω)]
, (12)

where λ indicates the order of the potential and
χ1(q, ω) = χse

1 (q, ω) + χex
1 (q, ω) is the first-order correc-

tion to the polarizability with exchange and self-energy
contributions. The first-order approximation of Eq. (12),
valid for the high-density limit, is given as

χ(q, ω) ≈ χ0(q, ω) + λ v(q)χ2
0(q, ω)

+λ χse
1 (q, ω) + λ χex

1 (q, ω), (13)

where the parameter λ indicates the order of the expan-
sion. The noninteracting polarizability is explicitly given
as

χ0(q, ω) =
gsm

2πq
ln

[
ω2 − ( q

2

2m −
qkF
m )2

ω2 − ( q
2

2m + qkF
m )2

]
, (14)

and the self-energy and exchange contributions respec-
tively read after simplification [14]

χse
1 (q, ω) = 2gs

∑
k,p

nknp[v(k − p)− v(k − p+ q)]

×
Ω2
k,q + ω2

(Ω2
k,q − ω2)2

(15)

and

χex
1 (q, ω) = −2gs

∑
k,p

{
v(k−p)[nk− q

2
np− q

2
−nk− q

2
np+ q

2
]

×
(Ωk− q

2 ,q
Ωp− q

2 ,q
+ ω2)

(Ω2
k− q

2 ,q
− ω2)(Ω2

p− q
2 ,q
− ω2)

}
. (16)

Here Ωk,q = ωk − ωk+q, Ωp,q = ωp − ωp+q, gs is the
spin degeneracy factor, and nk denotes the Fermi-Dirac
distribution function. The expressions above are directly
used in our calculation.

C. Structure factor

The SSF is defined as

S(q) = − 1

π ρ

∫ ∞
0

dω χ′′(q, ω), (17)

where χ′′(q, ω) is the imaginary part of the density re-
sponse function. The integral in Eq. (17) can be rewrit-
ten using the contour integration method [1] as

S(q) = − 1

π ρ

∫ ∞
0

dω χ(q, i ω). (18)

Substituting Eq. (13) into Eq. (18), the total SSF can be
written as

S(q) = S0(q) + Sd
1 (q) + Sse

1 (q) + Sex
1 (q). (19)
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FIG. 5. SSF difference ∆S(k) = SHr.
1 (x, b) − SHr.

1 (x) as a
function of k/kF for several harmonic wire widths b = 0.01–
0.09 for rs = 0.5, evaluated using the first-order RPA. The
greatest value of |∆S(k)| is for b = 0.09 in this plot.

The noninteracting SSF is given as S0(q) = x for x < 1
and S0(q) = 1 for x > 1 with x = q/2kF. The first-order
SSF is defined as S1(x) = Sd

1 (x)+Sse
1 (x)+Sex

1 (x). The ω
integration of the self-energy term turns out to be zero so
that there is no contribution of Sse

1 (x) to the SSF. The
sum of both corrections, Sd

1 (x) and Sex
1 (x) for small b,

and next term in series expansion are denoted SHr.
1 (x)

and SHr.
1 (x, b), respectively, for harmonic wires and sim-

ilarly as SCy.
1 (x) and SCy.

1 (x, b) for cylindrical wires.
The exchange contribution to the SSF [14] for x < 1 is

Sex
1 (q) =

g2s rs
π2x

[(1 + x)

1+x∫
1

−(1− x)

1∫
1−x

 dx̄

x̄
v(x̄)

+

 1∫
1−x

−
1+x∫
1

 dx̄v(x̄)

]
(20)

and similarly for x > 1 it is

Sex
1 (q) =

g2s rs
π2x

[(1 + x)

1+x∫
x

−(x− 1)

x∫
x−1

 dx̄

x̄
v(x̄)

+

 x∫
x−1

−
1+x∫
x

 dx̄ v(x̄)

]
. (21)

The explicit integrals in Eqs. (20) and (21) can be solved
analytically for a given potential to calculate the ex-
change term. The direct term contribution [27, 28] is
obtained in the small-b limit for x < 1 as

Sd
1 (x) = −g

2
s rs
π2x

[(
(1− x) ln(1− x)

+ (x+ 1) ln(x+ 1)

)
v(x)

]
(22)
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FIG. 6. First-order RPA SSF as a function of k/kF for
various harmonic wire widths b = 0.01–1 (top to bottom) at
rs = 1. The inset shows a zoomed-in view of the 2kF peak.

and for x > 1 as

Sd
1 (x) =− g2s rs

π2x

[(
(x− 1) ln(x− 1)− 2x ln(x)

+ (x+ 1) ln(x+ 1)

)
v(x)

]
. (23)

On including the next term of the series expansion
O
(
b2
)

of the harmonic potential [Eq. (11)], the analyti-

cal expression for the sum of Sex
1 (q) and Sd

1 (x) is derived
for x < 1 as

SHr.
1 (x, b) =SHr.

1 (x) +
g2s rsb

2

3π2x

{
3x2(2 ln(bx) + γ − 1)

×[(x− 1) ln |x− 1|+ (x+ 1) ln(x+ 1))]

−6x2 ln(b) + x2(−3γ + 8)

−|(x− 1)3| ln |x− 1| − (x+ 1)3 ln(x+ 1)

}
(24)

and for x > 1,

SHr.
1 (x, b) =SHr.

1 (x) +
g2s rsb

2

3π2x

{
3x2(2 ln(bx) + γ − 1)

×[(x− 1) ln(x− 1) + (x+ 1) ln(x+ 1)

−2x ln(x)]− 18x3 ln b+ x
(
2x2 ln(x)− 3γ + 8

)
−(x− 1)3 ln(x− 1)− (x+ 1)3 ln(x+ 1)

}
.

(25)

We plot the difference ∆S(k) = SHr.
1 (x, b) − SHr.

1 (x) in
Fig. 5 at rs = 0.5 for a harmonic wire. It shows that in
the limit b → 0, the b-dependent correction reduces to
zero.
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FIG. 7. First-order RPA for harmonic wires (solid line) com-
pared with extrapolated estimates [2SDMC(k)− SVMC(k)] of
SSFs for N = 99 at rs = 0.5. The main plot shows the SSF
for b = 0.01, and the inset is for b = 0.6.

The expression for SCy.
1 (x, b) for the next term of series

expansion O
(
b2
)

of the cylindrical potential (10) is given
for x < 1 as,

SCy.
1 (x, b) =SCy.

1 (x) +
g2s rsb

2

12π2x

{
6x2[|x− 1| ln |x− 1|

−(x+ 1) ln(x+ 1)]
[

ln

(
bx

2

)
+ γ − 1

]
+6x2 ln

(
2

b

)
+ (11− 6γ)x2

−|(x− 1)3| ln |x− 1| − (x+ 1)3 ln(x+ 1)

}
(26)

and for x > 1,

SCy.
1 (x, b) =SCy.

1 (x) +
g2s rsb

2

12π2x

{
6x2[(x− 1) ln(x− 1)

−2x ln(x) + (x+ 1) ln(x+ 1)]
[

ln

(
bx

2

)
+ γ

−1
]

+ 6x ln

(
2

b

)
+ x

[
2x2 ln(x)− 6γ + 11

]
−(x− 1)3 ln(x− 1)− (x+ 1)3 ln(x+ 1)

}
,

(27)

where the expressions for SHr.
1 (x) and SCy.

1 (x) for x < 1
and x > 1 are presented in Appendix A.

The SSF of Eq. (19) for a harmonic wire is calculated
numerically and plotted in Fig. 6 for various wire widths.
The SSF shows a peak at 2kF, which is illustrated in
greater detail in the inset of the figure. The peak height
is seen to increase in the limit b → 0. Further, in Fig.

0 2 4 6 8 10
r (a.u.)

0

0.2

0.4

0.6

0.8

1

g
(r

) b = 0.01 a.u.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

b = 0.6 a.u.

First-order RPA

}QMC

FIG. 8. Theoretical PCF compared with extrapolated esti-
mates of PCFs [2gDMC(r)− gVMC(r)] for harmonic wires with
N = 99 at rs = 0.5. The main plot is for b = 0.01 and the
inset is for b = 0.6.

7, we compare the SSF with our QMC data. The wire
width dependence of the SSF shows excellent agreement
with our first-order RPA results.

D. Pair-correlation function

The PCF g(r) is obtained from the SSF S(q) as

g(r) = 1− 1

2πρ

∫ ∞
−∞

dq eiqr[1− S(q)]. (28)

In Fig. 8, the PCF evaluated using Eq. (28) is plotted for
a finite-width harmonic wire. The confinement effect of
correlations in the PCF is compared with the QMC sim-
ulation results and found to be in very good agreement.

E. Ground-state energy

The ground-state energy in terms of the density-
density response function can be written using the
fluctuation-dissipation theorem [27] as

Eg = E0 +
ρ

2

∑
q 6=0

V (q)

×
(
− 1

ρπ

∫ 1

0

dλ

∫ ∞
0

χ(q, ιω;λ) dω − 1

)
, (29)

where ρ = (kF gs)/π is the linear electron number density
and kF is the Fermi wave vector. Using Eq. (13) in Eq.
(29), the ground-state energy can be written as a sum
of the kinetic energy of the noninteracting HEG E0, the
exchange energy εx, and the correlation energy εc as

Eg = E0 + Ex + Ec, (30)
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where the kinetic energy is given by E0 = π2/24r2s for
the fully spin-polarized HEG. The exchange energy con-
tribution is given by

Ex =
ρ

2

∑
q 6=0

V (q)

(
− 1

ρπ

∫ 1

0

dλ

∫ ∞
0

χ0(q, ιω)dω − 1

)
=
ρ

2

∑
q 6=0

V (q)[S0(q)− 1)], (31)

and the correlation energy is

Ec =
ρ

2

∑
q 6=0

V (q)

(
− 1

ρπ

∫ 1

0

dλ

∫ ∞
0

{
λ V (q)χ2

0(q, ιω)

+ λ χse
1 (q, ιω) + λ χex

1 (q, ιω)

}
dω

)
=
ρ

4

∑
q 6=0

V (q)[Sd
1 (q) + Sse

1 (q) + Sex
1 (q)]

εc =
1

4π

∫ ∞
0

V (q)[Sd
1 (q) + Sse

1 (q) + Sex
1 (q)]dq. (32)

We calculate the correlation energy as in Eq. (32) nu-
merically within the range of applicability of our theory
for both harmonic and cylindrical wires. The results are
shown in Fig. 9. In this figure, we also present result for
rs = 0.1 in the inset. It is seen that the difference be-
tween QMC and theoretically calculated values decreases
as rs is made smaller. The difference in the two val-
ues for rs = 0.5 at b = 0.01 is about 10%. The QMC
data obtained for a harmonic potential are also shown
as symbols. There is a significant difference between the
correlation energies of harmonic and cylindrical wires as
b increases. The difference of the correlation energy from
its value for the infinitely thin wire is plotted against the
wire width in Fig. 10.

An analytical expression for the wire-width-dependent
correlation energy is derived using the next term of the
series expansion O

(
b2
)

of the potential [Eq. (11)] for a
harmonic wire and the SSF as in Eqs. (A1) and (A2) for
x < 1 and x > 1, respectively. The correlation energy
per particle reads

εHr.
c (b, rs) =

1

4rs

{
Λ1 + Λ2

}
, (33)

where Λ1, the contribution for x < 1, is

Λ1 =

∫ 1

0

v(x)[SHr.
1 (x)]x<1 dx

=
rsg

2
s

π2

[
α0 + α1b

′2 + (α2 + α3b
′2) ln b′

]
. (34)

0 0.1 0.2 0.3 0.4 0.5
 b (a.u.)

-0.04

-0.03

-0.02
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0

ε
c
 (
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u

. 
p
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 p

ar
ti

cl
e)

Harmonic Wire
Cylindrical Wire

DMC
VMC 

0 0.1 0.2 0.3 0.4 0.5

-0.03

-0.02

-0.01

0

}First-order RPA

 r
s
 = 0.5 

 r
s
 = 0.1 

FIG. 9. Correlation energy per particle for a harmonic wire
and a cylindrical wire calculated using first-order RPA (shown
as solid and dashed lines) valid in the high-density limit, com-
pared with VMC and DMC data obtained for a harmonic
wire. The main plot shows the comparison for rs = 0.5 and
the inset is for rs = 0.1. The value of the first-order RPA
correlation energy for an infinitely thin wire is represented by
‘4’. The disagreement of the QMC data with first-order RPA
at smaller values of b is due to the approximation used in Eq.
(13), which restricts its applicability to the high-density limit.

With η = γ − 1− 3 ln 2 we have

α0 = 6 ln3 2− 1

3
ln4 2 + ln2 2

(
π2

3
− 14

)
− 8 Li4

(
1

2

)
+
π4

12
− 7

4
(1 + ln 2)ζ(3) + 4 ln(2)

+η

(
2 ln 2(ln 2− 2) +

7

4
ζ(3)

)
α1 =

11

18
+

π2

108
+

ln 2

36

(
3π2 − 74 + 8 ln 2(9 ln 2− 11)

)
+

5

12
ζ(3) + η

(
π2

36
− 1

6
+

2 ln 2

3
(ln 2− 1)

)
α2 = 4 ln 2(ln 2− 2) +

7ζ(3)

2

α3 =

(
π2

18
− 1

3
+

4 ln 2

3
(ln 2− 1)

)
.

Λ2, the contribution for x > 1, is

Λ2 =

∫ ∞
1

v(x)[SCy.
1 (x)]x>1 dx

=
rsg

2
s

π2

[
β0 + β1b

′2 + (β2 + β3b
′2) ln b′

]
(35)
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Cylindrical Wire

FIG. 10. Change in the first-order RPA correlation energy
per particle from its value for the infinitely thin wire as a
function of b for a harmonic wire (upper) and cylindrical wire
(lower) for various rs values (0.1–1) from top to bottom.

with

β0 = −α0 −
π4

90

β1 = −π
2

36
+

ln 2

36

(
24 ln 2(2− 3 ln 2)− 9π2 + 48 ln 2 + 56

)
−7

4
ζ(3)− η

(
2 ln 2

3
(ln 2− 1) +

π2

12

)
β2 = −α2

β3 = −4 ln 2

3
(ln 2− 1)− π2

6

where b′ = b2kF, Lin(z) is the polylogarithm function
[29], and ζ(s) is the Riemann zeta function. Equations
(34) and (35) can be expressed in simpler form by writing

0.1 0.2 0.3 0.4
 b (a.u.)

-π
2

360

-0.6

-0.4

-0.2

ε
c

H
r.

(C
y.

)  (
a.

u
. 
p
er

 p
ar

ti
cl

e)

Harmonic Wire
Cylindrical Wire

Harmonic wire
Cylindrical wire

}

First-order RPA

Analytical
valid for small b

}Numerical

FIG. 11. Analytical expressions for the wire-width depen-
dent correlation energy [Eqs. (38) and (39)], which are valid
only for small b, plotted as a function of wire width b for
rs = 0.5. The solid curves are for analytical results and
dashed curves are result of numerical calculations of corre-
lation energy as in Eq. (32). The plot shows the applicability
of the analytical results in the range b < 0.1.

the values of the constants as

Λ1 = −g
2
s rs
π2

[
0.766477 + 0.073906 b′

2

+(−0.583834 + 0.068614 b′
2
) ln(b′)

]
, (36)

Λ2 = −g
2
s rs
π2

[
0.315846 + 0.798215 b′

2

+(0.583834 + 1.361340 b′
2
) ln(b′)

]
. (37)

On adding Eqs. (34) and (35), major cancellations oc-
cur and the analytical form of the correlation energy per
particle for a harmonic wire simplifies as

εHr.
c (b, rs) =− π2

360
− b2

216rs2

[
6
(
3 + π2

)
ln

(
πb

rs

)
+ 72ζ(3) + 3γ

(
3 + π2

)
− 2π2 − 42

]
. (38)

Similarly, the correlation energy per particle for a
cylindrical wire is calculated. The details are given in
Appendix B. The final expression for the correlation en-
ergy per particle is

εCy.
c (b, rs) =− π2

360
− b2

864rs2

[
6
(
3 + π2

)
ln

(
πb

rs

)
+ 72ζ(3) + 6γ

(
3 + π2

)
− 5π2 − 51

− π2 ln(64)− 18 ln(2)

]
. (39)

The first term of Eqs. (38) and (39) has been found pre-
viously using conventional perturbation theory [15, 30],
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FIG. 12. Total ground-state energy Eg as a function of
wire width b. In the main plot, the first-order RPA for rs =
0.5 is compared with DMC simulations and in the inset the
analytical first-order RPA results are plotted for rs = 0.2–1
in steps of 0.1 (top to bottom). The statistical error bars on
the DMC results are omitted as they are much smaller than
the symbols used.

variant RPA [14], and QMC [23]. Here, we report the
next term in the expansion. The b and rs dependence
enables one to study correlation effects for a finite thick-
ness wire. The expressions for the correlation energy per
particle in Eqs. (38) and (39) are plotted against the wire
width b at rs = 0.5, and compared with exact numerical
results for both wires in Fig. 11. The plot shows that
the derived expressions are applicable only in the limit
b� rs < 1.

Having found all the components of the ground-state
energy [Eq. (30)], one can obtain the ground state en-
ergy. In Fig. 12, the ground state energy as a function
of wire width for various values of rs is plotted. It shows
that, as the wire width is reduced, the ground state en-
ergy decreases and becomes negative for smaller b values,
signifying that the 1D HEG is energetically more stable.
This stabilization is only for an ideal HEG with a neu-
tralizing background, and neglects the transverse con-
finement energy. Further, we study the rs dependence
of the ground state energy and compare it with our re-
cent VMC calculations [23] in Fig. 13 (upper), finding
excellent agreement. The first-order RPA correlation en-
ergy as a function of rs is also compared with VMC and
lattice-regularized diffusion Monte Carlo (LRDMC) data
[31–33] in Fig. 13 (lower). The correlation energy as a
function of rs for a given fixed thickness b is in good
agreement with previous LRDMC simulations. The RPA
correlation energy deviates from the QMC correlation en-
ergy for smaller values of b and larger values of rs. The
RPA used in the present work is a good approximation
for rs < 1. It can be seen from Eq. (2) that for wires
of finite thickness, the effective coupling depends on two
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FIG. 13. Top panel: total ground-state energy (Eg) as a
function of density parameter rs. In the main plot, analytical
first-order RPA results are plotted for b = 0.1, 0.3, 0.5, 0.7,
and 0.9 (bottom to top), and in the inset the first-order RPA
results for b = 0.5 are compared with VMC simulations. Bot-
tom panel: correlation energy per particle for a harmonic wire
calculated using first-order RPA (shown as solid lines) com-
pared with the available QMC simulation data. The LRDMC
data shown are taken from Ref. [31]

length scales, rs and b. For rs < 1, the coupling increases
as b decreases and hence the accuracy of the RPA expan-
sion decreases, leading to the observed deviation from the
QMC results.

IV. CONCLUSIONS

In this paper, we have performed VMC and DMC sim-
ulations of the ground-state properties of a finite-width
harmonic wire in the high-density regime. The MD data
have been used to find the TL parameter Kρ for sev-
eral wire widths at high densities. The TL parameter is
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found to change around 10% from its value for thin wires.
We have also obtained analytical expressions for the wire
width-dependent SSF and correlation energy for cylin-
drical and harmonic models of transverse confinement at
high density. Further, we provide numerical results for
the wire-width-dependent PCF, SSF, and correlation en-
ergy. First-order RPA correlation energies are found to
deviate from QMC data for smaller values of b < rs due
to the fact that the effective electron-electron coupling
increases as b decreases in the high density limit.
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Appendix A

For reference, we provide here the small-b SSF S1(x) for harmonic and cylindrical wires, where x = q/(2kF). For
the harmonic wire, it reads for x < 1 as,

SHr.
1 (x) =

g2s rs
π2x

{
− (x+ 1) ln2(x+ 1) + 2(x+ 1)[ln(x) + 1] ln(x+ 1) + (x− 1) ln(1− x)[ln(1− x)− 2(ln(x) + 1)]

}
(A1)

and for x > 1 as

SHr.
1 (x) =− g2s rs

π2x

{
− 2x[ln(x) + 1] ln

(
x2 − 1

)
+ (x− 1) ln2(x− 1) + ln2(x+ 1)

+ x
[
ln2(x+ 1) + 2 ln(x)(ln(x) + 2)

]
− 4[ln(x) + 1] coth−1(x)

}
. (A2)

Similarly, for the cylindrical wire,

SCy.
1 (x) =

g2s rs
π2x

{
ζ(x) if x < 1
ζ(x)− 2x lnx ln e2x if x > 1

(A3)

with

ζ(x) = (x+ 1) ln(x+ 1) ln

(
x2e2

x+ 1

)
+ |x− 1| ln |x− 1| ln

(
x2e2

|x− 1|

)
(A4)

The first-order SSF in the small b limit comes out to be independent of the width parameter for both the wires.

Appendix B

The correlation energy per particle up to second order
in b for a cylindrical wire is given by

εCy.
c =

1

4rs

{
Λ1 + Λ2

}
, (B1)

where Λ1, the contribution for x < 1, is

Λ1 =

∫ 1

0

v(x)[SCy.
1 (x)]x<1 dx

=
rsg

2
s

π2

[
α0 + α1b

′2 + (α2 + α3b
′2) ln b′

]
. (B2)

With η = γ − 1− 3 ln 2 we have

α0 = 8 ln3 2− ln4 2

3
+ ln2 2

(
π2

3
− 16

)
− 8 Li4

(
1

2

)
+
π4

12
+ η

(
4 ln 2(ln 2− 2) +

7

2
ζ(3)

)
α1 =

11

72
+

π2

432
+

ln 2

9

(
π2

4
− 5 + ln 2(6 ln 2− 7)

)
+

5

48
ζ(3) + η

(
π2

72
− 1

12
+

ln 2

3
(ln 2− 1)

)
α2 = 4 ln 2(ln 2− 2) +

7ζ(3)

2

α3 =

(
π2

72
− 1

12
+

ln 2

3
(ln 2− 1)

)
.
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For Λ2, the contribution for x > 1, is

Λ2 =

∫ ∞
1

v(x)[SCy.
1 (x)]x>1 dx

=
rsg

2
s

π2

[
β0 + β1b

′2 + (β2 + β3b
′2) ln b′

]
(B3)

with

β0 = −α0 −
π4

90

β1 = − π2

144
+

ln 2

36

(
14− 3π2 + 4 ln 2(7− 6 ln 2)

)
− 7

16
ζ(3)− η

(
ln 2

3
(ln 2− 1) +

π2

24

)
β2 = −α2

β3 = − ln 2

3
(ln 2− 1)− π2

24
.

Numerically, Eqs. (B2) and (B3) read

Λ1 = −g
2
s rs
π2

[
1.00266 + 0.00296037 b′

2

−(0.583834− 0.0171535 b′
2
) ln(b′)

]
, (B4)

Λ2 = −g
2
s rs
π2

[
0.079662− 0.108293 b′

2

+(0.583834 + 0.340335 b′
2
) ln(b′)

]
. (B5)
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