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In thermodynamic equilibrium, current in metallic systems is carried by electronic states near the 

Fermi energy whereas the filled bands underneath contribute little to conduction. Here we describe a 

very different regime in which carrier distribution in graphene and its superlattices is shifted so far 

from equilibrium that the filled bands start playing an essential role, leading to a critical-current 

behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity. Key 

signatures of the out-of-equilibrium state are current-voltage characteristics resembling those of 

superconductors, sharp peaks in differential resistance, sign reversal of the Hall effect, and a marked 

anomaly caused by the Schwinger-like production of hot electron-hole plasma. The observed behavior 

is expected to be common to all graphene-based superlattices.  

The electric response of metallic systems is routinely described by a Fermi surface displacement in momentum 

space, established through a balance between acceleration of charge carriers and their relaxation caused by 

scattering (1). The displacement is usually small, such that the drift velocity vd is minute compared to the 

Fermi velocity vF. In theory, if inelastic scattering is sufficiently weak, it should be possible to shift the Fermi 

surface so far from equilibrium that all charge carriers within the topmost, partially filled bands start streaming 

along the applied electric field E. The field would then start producing extra carriers via interband transitions 

(2), allowing electronic bands under the Fermi energy to contribute to the charge flow. Such an extreme out-

of-equilibrium regime has never been achieved in metallic systems because Ohmic heating, phonon emission 

and other mechanisms greatly limit vd (3–5).  

A rare exception is semi-metallic graphene. At high carrier densities n, the drift velocity in graphene is limited 

by phonon emission (6, 7), similar to other metallic systems. However, at low n, thermal excitations can create 

a relativistic plasma of massless electrons and holes, the ‘Dirac fluid’. Its properties in thermodynamic 

equilibrium were in the focus of recent research (8–12) but the behavior at high biases represents an uncharted 

territory. Yet, close to the Dirac point even a small E can shift the entire Fermi surface and tap into a supply 
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of carriers from another band (13, 14). This can trigger processes analogous to the vacuum breakdown and 

Schwinger particle-antiparticle production in quantum electrodynamics where they are predicted to occur at 

enormous fields of 1018 V m-1 (15). Because such E are inaccessible, it is enticing to mimic the Schwinger 

effect and access the resulting out-of-equilibrium plasma in a condensed matter experiment (13, 14, 16). 

Certain nonlinearities observed near graphene’s neutrality point (NP) were previously attributed to the creation 

of electron-hole (e-h) pairs by a Schwinger-like mechanism (13, 14) but the expected intrinsic behavior was 

obscured by low mobility, charge inhomogeneity and self-gating effects (6, 17).  

 

Fig. 1. Linear and nonlinear transport in graphene superlattices. (A-C) (n) in the linear regime (j = 50 

nA/m) for G/hBN with   0 (A), and TBG with   1.23 (B) and   0.77 (C). Micrographs of the studied 

devices are provided in (29). (D) Band structures of G/hBN and TBG 1.23 superlattices (see 29). Colors 

denote different energy bands. The bands are shown for the energy range of 340 and 80 meV for G/hBN 

and TBG 1.23, respectively. (E-G) IV characteristics for the devices in panels (A-C), respectively. The doping 

levels for the curves are marked by the arrows in A-C. The dependence (j- jc)  V3/2 expected above jc is shown 

by the dotted curves and the corresponding dV/dI  (j- jc)
–1/3 by the dashed curves. All V and dV/dI are 

normalized according to devices’ aspect ratios.  

Here we use graphene-based superlattices to identify an out-of-equilibrium state that sharply develops above 

a well-defined critical current jc. The current marks an onset of the Schwinger pair production and a transition 

from a weakly-dissipative fluid-like flow to a strongly dissipative e-h plasma regime. The out-of-equilibrium 

Dirac fluid is realized at surprisingly small E, thanks to the narrow electronic bands and low vF characteristic 

of graphene superlattices (18, 19). The resulting dual-band transport leads to striking anomalies in longitudinal 

and Hall resistivities. Counterintuitively, an apparent drift velocity in this regime exceeds vF. With hindsight, 

we show that the current-induced critical state can be reached even in standard graphene, using extra-high 

currents allowed by the point contact geometry.  

The studied superlattices were of two types: graphene crystallographically aligned on top of hexagonal boron 

nitride (G/hBN) (20–23) and small-angle twisted bilayer graphene (TBG) (24–28). The superlattices were 

encapsulated in hBN, to ensure high electronic quality, and shaped into multiterminal Hall bar devices using 

the standard fabrication procedures (29). The devices were first characterized by measuring their longitudinal 

resistivity  as a function of n as shown in Figs. 1, A-C, for three representative devices. The twist angles  

were determined from measurements of Brown-Zak oscillations (30); for TBG,   was intentionally chosen 

away from the magic angle to avoid many-body states (27, 28). Aside from the familiar peak in  at zero 

doping, satellite peaks indicating secondary NPs were observed at n that agreed well with the  values (20–

22, 26). For G/hBN superlattices, the low-energy electronic spectrum is practically identical to that of 
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monolayer graphene (18), and the spectral reconstruction occurs only near and above the edge of the first 

miniband (Fig. 1D, top). In contrast, all minibands in TBG are strongly reconstructed (19) (Fig. 1D, bottom). 

At low biases (Figs. 1, A-C; fig. S1), our devices exhibited transport characteristics similar to those reported 

previously for G/hBN and TBG superlattices (20–22, 26).  

Next, we studied high-bias transport using current densities j up to 0.1 mA/m, limited only to avoid device 

damage. Unless stated otherwise, all the reported measurements were carried out at the bath temperature T = 

2 K. The superlattices exhibited qualitatively similar current-voltage (IV) characteristics (Figs. 1, E-G), which 

were nearly linear at j < 0.01 mA/m and then rapidly switched into a high-resistance state so that the 

differential resistivity dV/dI showed a pronounced peak at a certain critical current jc. The behavior was 

universal, found in all our devices (>10) (see figs. S3, S6), if the Fermi energy was tuned inside narrow 

minibands (that is, away from the main NP in the case of G/hBN). The I-V characteristics in Figs. 1, E-G, 

strikingly resemble the superconducting response, despite electron transport being ballistic at low j and viscous 

at moderate currents (31);  always remained finite although could be as low as <0.01 k, a few orders of 

magnitude smaller than dV/dI above jc. Figure 2 provides further details by showing dV/dI as a function of n, 

where the narrow white arcs correspond to peaks in dV/dI. Considerable similarities are clearly seen across 

different superlattice types. One interesting feature shared by all the maps was the rapidly decreasing jc as n 

approached NPs (Figs. 2, A-C; figs. S2, S6). The only exception was the main NP in G/hBN superlattices 

where the resistivity in its vicinity increased monotonically for all accessible j (fig. S2).  

 

Fig. 2. Switching into the high-bias regime. (A-C) dV/dI as a function of j and n for the superlattices in 

Figs. 1, A-C, respectively. Bright arcs signify the critical current. Yellow arrows: NPs as found from low-bias 

measurements (29). (D) Hall voltage (red curve) and the corresponding differential resistivity (black) 

measured at n indicated by the dashed line in (E). (E-G) Maps of dVxy/dI for the superlattices in (A-C), 

respectively. B = 30 mT; T = 2 K. The black arrows mark positions of van Hove singularities. 
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To gain more insight, we studied the Hall effect in small (non-quantizing) magnetic fields B. Figure 2D shows 

an example of such measurements for G/hBN near the hole-side NP. At small j, the Hall voltage Vxy increased 

linearly with j and dVxy/dI was positive, reflecting the hole doping. However, dVxy/dI abruptly turned negative 

above jc, revealing a change in the dominant-carrier type. Figures 2, E-G, show dVxy/dI maps for the G/hBN 

and TBG superlattices. One can see clear correlations between the longitudinal and Hall maps such that the 

peaks in dV/dI and the Hall effect’s reversal occurred at same jc. The observed nonlinearities were robust 

against T up to 50 K, above which the peaks in dV/dI became gradually smeared (fig. S4). This shows that 

Ohmic heating – generally expected at high j (14, 31, 32) – was not the reason for the critical-current behavior 

(29).  

The rapid decrease in jc near all secondary NPs prompts the question why such a critical-current behavior was 

not observed in graphene (13, 14) or near the main NP of G/hBN (Fig. 2A) and whether it can be achieved at 

some higher j. With this in mind, we employed a point contact geometry that funneled the current through a 

short constriction whereas wide adjacent regions provided a thermal bath for electron cooling. This allowed 

us to reach j an order of magnitude higher than those achievable in the standard geometry. At these j, IV 

characteristics near the main NP of G/hBN superlattices became similar to those near its secondary NPs (fig. 

S3), although they were more smeared because of Ohmic heating and, possibly, edge irregularities in the 

superlattice periodicity within narrow constrictions. To circumvent the latter problems and demonstrate the 

universality of the critical behavior at all NPs, we made constrictions from non-superlatticed graphene 

(monolayer graphene encapsulated in hBN but nonaligned). These devices also displayed a clear critical 

behavior although peaks at jc were notably broader because of heating (Fig. 3A).  

To understand the criticalities, let us first discuss the conceptually simplest case of the Dirac spectrum, as in 

non-superlatticed graphene. We consistently observed that the transition between the low and high resistance 

states occurred at jc  nevF (e is the electron charge), that is, at vd  vF, independently of n (Fig. 3B). This 

condition means that the Fermi surface is shifted from equilibrium by the entire Fermi momentum and, as 

illustrated in Fig. 3C, all electrons in the conduction band move along E with a drift velocity of about vF. If 

the spectrum were fully gapped, j could not increase any further because all available carriers already move 

at maximum speed. This should result in saturation of j as a function of V, in agreement with the observations 

at j ≲ jc. Simulations of this intraband-only transport corroborate our conclusions (Fig. 3A, dashed curves). 

To explain the supercritical behavior at j > jc, we note that, for a gapless spectrum, E can move electrons up 

in energy from the valence band into the conduction band, leaving empty states (holes) behind (Fig. 3C, bottom 

panel). The extra electrons and holes created by the interband transitions allow the current to exceed jc. 

Accordingly, the apparent vd = j/ne seemingly exceeds the maximum possible group velocity, vF (because n is 

fixed by gate voltage, but the actual concentration of carriers increases by n). Quantitatively, the e-h 

production at j > jc can be described by the Schwinger (or Zener-Klein tunneling) mechanism. It can generate 

interband carriers at a rate  E3/2 (13, 16) but at small biases the production is forbidden by the Pauli exclusion 

principle. Above jc the Fermi distribution is shifted sufficiently far from equilibrium so that E depletes the 

states near the NP, which eliminates the Pauli blocking and enable the e-h pair production (Fig. 3C). 

Accounting for e-h annihilation (recombination processes bring the electronic system back into the 

equilibrium), we find the stationary concentration of extra carriers n to be  E3/2  V3/2, if n ≪ n (29). This 

translates into extra current nevF  V3/2 and dV/dI  j–1/3. As dV/dI decreases for j > jc but increases for j < 

jc, a peak is expected at jc, in agreement with Fig. 3A.   
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Fig. 3. Nonlinear transport in non-superlatticed graphene near the Dirac point. (A) Voltage and 

differential resistance (red and black curves, respectively) for a constriction of 0.4 m in width; n = 0.41016 

m-2. Inset: Optical micrograph of the graphene device and its measurement geometry. Scale bar, 2 m. The 

small bump at zero bias is caused by electron-electron scattering (34). Dashed curves: IV characteristics 

calculated for the Dirac spectrum at j < jc (29). The vertical arrows indicate j with vd = vF = 1106 m s-1. (B) 

Example of dV/dI maps for graphene constrictions. Red lines: j = nevF. (C) Schematic of graphene’s spectrum 

and its occupancy in equilibrium (top) and out-of-equilibrium for j = jc = nevF (middle) and j > jc (bottom). 

Blue and red circles: electrons and holes, respectively. The red arrow illustrates e-h pair production. (D) 

dV/dI at the NP for a 0.6 μm wide constriction. The arrows mark minima.  

 

The above analysis can also be applied to graphene superlattices. Their narrow minibands display low vF and, 

therefore, the onset of interband transitions is expected at small j. Indeed, the switching transition in our 

superlattices occurred at vd typically >10 times smaller than in non-superlatticed graphene (fig. S5). This yields 

a characteristic vF of several 104 m s-1, which translates into minibands’ widths of 10 meV, as expected from 

band structure calculations (19). For the relatively small jc, superlattices were much less affected by heating 

than graphene and, accordingly, exhibited sharper transitions (cf. Figs. 2 & 3A). Figures 1, E-G, compare the 

experimental IV curves with the above predictions for Schwinger-like carrier generation. Good agreement is 

found for j ≳ jc. Notable deviations seen at highest j are expected because n is no longer small compared to 

n, the assumption used to derive the plotted dependences (29). Furthermore, jc in graphene evolved  n as 

expected for the Dirac spectrum (Fig. 3B). In contrast, superlattices exhibited clear deviations from the linear 

dependence (Figs. 2, A-C). This is attributed to the fact that the group velocity of charge carriers rapidly 

decreases away from secondary NPs, dropping to zero at van Hove singularities (VHS). If nonequilibrium 

carriers reside near VHS, they move at low speed and contribute little to the current (fig. S5C), leading to the 

sublinear jc(n) as observed experimentally.  

Extending the described physics onto the Hall effect, it is straightforward to understand the sign changes in 

Figs. 2, D-G. With reference to Fig. 3C, interband transitions result in extra holes near the NP plus extra 

electrons that effectively appear at higher energies in the out-of-equilibrium Fermi distribution (Fig. 3C). For 

superlattices, contributions of these e-h pairs into Vxy do not cancel each other because of the broken e-h 

symmetry, which results in different masses and mobilities of the extra carriers. The effect is particularly 

strong on approaching VHS. For example, if the dominant carriers are electrons, their distribution would be 

shifted by E upwards towards a VHS (fig. S5C), and they should have heavy masses. In contrast, the reciprocal 

holes generated near the NP should be light (fig. S5C). These higher-mobility holes are expected to provide a 

dominant contribution into the Hall signal and, therefore, dVxy/dI should change its sign from electron to hole 

near j  jc, as observed experimentally. If the asymmetry is sufficiently strong, even Vxy can reverse its sign 
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(Fig. 2D). The observed changes in the Hall effect can qualitatively be described using the two-carrier model 

with different mobilities of out-of-equilibrium electrons and holes (fig. S7).  

Finally, we discuss the interband carrier generation at the main NP in graphene (Fig. 3), which closely mimics 

the Schwinger effect in quantum electrodynamics. Consequences of the Schwinger-like effect at the Dirac 

point are qualitatively different from those described by Zener-Klein tunneling at finite doping (29). Figure 

3D shows that, in contrast to the latter case, there is no low-to-high resistance switching at n = 0, and dV/dI 

rapidly drops with increasing j, reaches a minimum and then gradually increases. This behavior was highly 

reproducible for all graphene constrictions (fig. S8) but, because of self-gating and heating effects, could not 

be observed in the standard geometry where IV curves were similar to those in the literature (6). The initial 

drop is attributed to e-h puddles present at NPs wherein small E starts generating interband carriers along 

puddles’ boundaries and enhances conductivity (13). Indeed, minima in dV/dI typically occurred at jm 0.05 

mA m-1 (Fig. 3D) which translates into n = jm/evF 31010 cm-2, in agreement with the charge 

inhomogeneity  found in our devices. In principle, the initial dV/dI drop could be fitted again by  j–1/3 but 

such fits were inconclusive because of the involved inhomogeneity. For higher j such that n ≫ , the 

Schwinger production fills graphene with a plasma of electrons and holes in equal concentrations, ne  nh = 

n. Because the annihilation rate of e-h pairs scales with nenh = n2, theory predicts (29) that the Schwinger 

production rate ( E3/2) leads to n  E3/4, resulting in dV/dI  j+1/3. This contrasts the reported Zener-Klein 

behavior at graphene’s NP (13) but is in quantitative agreement with our experiment (Fig. 3D, fig. S8). For 

highest j, the hot e-h plasma inside graphene constrictions is expected to approach the quantum critical limit 

(8–12), in which e-h scattering is governed by the uncertainty principle and  is predicted to become rather 

universal, 1.32(h/e2) where  is the interaction constant and h/e2 the resistance quantum (8, 9). For 

encapsulated graphene,   0.3 whereas the constriction geometry results in resistance of 1.8 (29). 

Accordingly, the quantum-critical resistance for our constrictions is expected to be 5 k, in a qualitative 

agreement with Fig. 3D and fig. S8 where the curves approach this value. We do not expect better agreement 

because E strongly disturbs the electron-hole plasma making it anisotropic, rather different from the Dirac 

fluids in thermal equilibrium, which were discussed previously (8–12). This anisotropic regime requires 

further theoretical analysis and would be interesting to probe by other experimental techniques. 

To conclude, at high biases, Fermi liquids in graphene-based systems can be turned into Dirac-like fluids 

characterized by intense interband carrier generation. The transition between the weakly and strongly 

dissipative electronic states is marked by peculiar superconducting-like dV/dI. Such IV characteristics, while 

of interest on their own right as a signature of out-of-equilibrium criticalities, also serve as a warning that they 

alone - without other essential attributes (e.g., zero resistance) – do not constitute a proof of ‘emerging/fragile’ 

superconductivity. It is possible that the nonlinear response reported in some graphene-based flat-band 

systems (e.g., (33)) was governed by the out-of-equilibrium physics rather than superconductivity. Other 

attributes of nonequilibrium behavior such as Bloch oscillations and associated THz radiation are likely to 

accompany the reported criticalities, an appealing opportunity for further investigation.  
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Supplementary Information. 

#1 Device fabrication and electrical measurements 

The van der Waals (vdW) heterostructures studied in our work were assembled by the dry transfer method 

(36, 37) using stamps made from poly-bisphenol A carbonate (PC) and polydimethylsiloxane (PDMS). To 

fabricate G/hBN superlattices, first an hBN crystal (30-80 nm thick) was picked up by such a polymer stamp. 

The crystal would eventually serve as the top hBN layer of the heterostructure. This was followed by picking 

up monolayer graphene and then the bottom hBN layer (20-50 nm thick). During the trilayer assembly the 

substrate temperature was kept at 80-90 C. Graphene and hBN crystals chosen for the vdW assembly had 

straight edges so that their crystallographic axes could be aligned (20). Only one of the hBN crystals (either 

top or bottom) was aligned while the other was intentionally misaligned by 15 with respect to graphene 

axes. Both hBN crystals were misaligned in the case of non-superlatticed graphene. The trilayer stacks were 

released on top of an oxidized Si wafer (300 nm of SiO2) at a temperature of 170-180 C. The resulting vdW 

heterostructure were checked by Raman spectroscopy to verify the presence (or absence) of crystallographic 

alignment between graphene and hBN (38, 39).  

Similar stacking procedures were used to create TBG superlattices but, instead of monolayer graphene, twisted 

bilayer graphene was encapsulated between top and bottom hBN. Twisted bilayers were prepared by the cut 

and stack technique (40). To this end, a single crystal of monolayer graphene was cut in halves using a sharp 

tip of an atomic force microscope. After picking up one of the halves, the assembly stage was rotated by 1o 

and the second half was subsequently picked up onto the same PC/PDMS stamp.  

After the described vdW heterostructures were finally placed on top of a Si wafer, we defined contacts regions 

using electron beam lithography and reactive ion etching. Cr/Au (3 nm/60 nm) films were deposited into the 

etched regions to provide quasi-1D electrical contacts to graphene (36). As the final step, the same lithography 

and etching procedures were employed to shape the vdW assembly into devices having either Hall bar or 

constriction geometry (figs. S1, A-C). 

To vary doping in our devices, we applied DC voltage between graphene and the silicon wafer. The standard 

low-frequency lock-in technique was employed to characterize the devices in the linear response regime using 

small excitation currents of 0.1-1 µA. To study high-bias response, we mixed AC and DC currents using the 

standard scheme of applying AC and DC voltages through large resistors. Both DC and AC voltages were 

measured using the 4-probe configurations whilst the applied DC current was monitored by a separate current 

meter.  

 

#2 Hall effect at low biases 

Figures S1, D-F show Hall resistivity Rxy as a function of the carrier density n induced by gate voltage for the 

three superlattice devices reported in the main text. In these and all the other studied superlattices, Rxy changed 

its sign multiple times. The change occurred each time when the Fermi energy passed through inflection points 

in the electronic spectrum. Detailed behavior of Rxy near inflection points depended on whether those were 

van Hove singularities (VHS) or neutrality points (NPs). For NPs, Rxy switched its sign abruptly, tending to 

diverge at either side of the NP, which indicated a change from small electron to small hole doping. This 

divergence was accompanied by pronounced maxima in resistivity  as seen in Figs. 1A-C of the main text. 

In contrast, Rxy changed smoothly through zero at VHS, indicating a high density of states for both electrons 

and holes residing near VHS. Peaks in  were either absent or minor at VHS. This qualitatively different 

behavior near NPs and VHS allowed us to identify their positions in all our devices as illustrated in figs. S1, 

D-F.  
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Fig. S1. Hall Effect measurements in the linear response regime. (A-C) Optical micrographs of the 

superlattice devices used in Figs. 1 and 2 of the main text. (A) G/hBN superlattice. Scale bar, 4 µm. Contact 

resistances at 2 K: 5 kΩ at zero back gate voltage and about 1 kΩ between NPs. (B) TBG 1.23°; scale bar, 

1.5 µm. Contact resistances: 4-7 kΩ at the main NP and down to 1-2 kΩ at higher n. (C) TBG 0.77°; scale 

bar, 3.5 µm. Contact resistances of narrow contacts were 5-7 kΩ at zero back gate voltage. (D) Rxy(n) for a 

G/hBN superlattice. The gate-to-graphene capacitance was determined from Rxy measurements around the 

main NP. The red arrows and black lines mark NPs and VHS, respectively. (E-F) Same as in (D) but for TBG 

1.23o and TBG 0.77o devices, respectively. T = 2 K; B = 30 mT for all the panels. 

 

 

#3 Critical-current behavior near all neutrality points in G/hBN superlattices 

Figure 2A of the main text provided the differential resistivity map for hole doping of one of our G/hBN 

superlattice devices. This dV/dI map is extended into the electron doping regime in fig. S2A. While one can 

see a sharp transition from low to high dissipation transport for the case of hole doping, the map shows blank 

for electron doping. Nonetheless, if the map resolution is increased by a factor of 10, somewhat similar critical 

behavior could be resolved near the secondary NP in the conduction band, too (fig. S2B). In this figure, the 

transition between low- and high- resistance states occurred at approximately the same jc and n as in the 

valence band, and the critical current also rapidly converged to zero as the Fermi energy approached the 

electron-side NP. This suggests that the critical behavior observed around both secondary NPs were governed 

by the same mechanism as discussed in the main text. The difference is that the transition for electron doping 

was much less sharp, so that no peak in dV/dI appeared at jc (fig. S2C). This smeared behavior can be attributed 

to the presence of another electron energy band in the spectrum, which overlaps with the secondary NP (see 

Fig. 1D of the main text). The extra band is expected to provide a parallel conduction channel, obscuring the 

transition from a viscous flow to e-h plasma transport. Fig. S2D also shows that no switching transition could 

be observed in our Hall-bar G/hBN devices near the main NP for all accessible j and, instead, dV/dI gradually 

increased with increasing j.  

To check for possible critical-current behavior near the main NP at higher j, we made G/hBN devices in the 

point contact geometry, similar to that shown in the inset of Fig. 3A. The constrictions allowed us to reach an 

order of magnitude higher j and observe the low-to-high dissipation transition near the main NP, too (figs. S3 

B,C). The required jc were close to those in non-superlatticed graphene (that is, vd  1106 m s-1), as expected 

because spectra of G/hBN superlattices at low doping are practically identical to graphene’s spectrum (Fig. 

1D of the main text).  
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Fig. S2. High bias transport in G/hBN superlattices. (A) Map of differential resistivity for the device in Fig. 

2A of the main text, which now includes positive n (electron doping). (B) Zoom-in for the area indicated by 

the red box in (A). (C) Cross section of the map in (B) at the fixed electron density marked by the blue arrow. 

(D) Similar to (C) but for n near the main NP as indicated by the green arrow in (A).  

 

 

Fig. S3.  Critical-current behavior in G/hBN constrictions. (A) Resistance of a 0.4 µm wide constriction 

in the linear response regime. Inset: Optical micrograph of the G/hBN device with several constrictions. Scale 

bar, 2 µm. Characteristic contact resistance at zero gate voltage, 2-6 kΩ. (B) Differential resistance for the 

same device near the main NP; n = -0.31016 m-2. (C) dV/dI maps for the same constriction. Note that the 

switching transition near the hole-side NP occurred at notably higher jc (5 times) than those found in our 

Hall-bar devices made from same G/hBN superlattices (Fig. 2A, fig. S6). This seeming inconsistency is 

attributed to dominant contributions from wider contact regions on either side of the constrictions, where the 

switching transition near the secondary NP occurred earlier, at j lower than those calculated within the 

constriction itself. T = 2 K for all the panels. 
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#4 Temperature dependence of the switching transition 

The observed sharp transition from Fermi-liquid to e-h plasma transport was smeared with increasing T, but 

this happened well above liquid-helium temperatures. Examples of our measurements of dV/dI at different T 

are shown in fig. S4. One can see that the peaks in differential resistivity did not shift but became increasingly 

broader with increasing T.  

For G/hBN, the sharp transition between low and high resistance states became completely invisible above 

liquid-nitrogen T and, instead, dV/dI gradually increased with j (fig. S4A). On the other hand, constrictions 

made from non-superlatticed graphene exhibited pronounced peaks and step-like changes, even at T close to 

room temperature (fig. S4B). As discussed in the main text and explained in further detail below, the peak in 

dV/dI is expected only if the amount of generated interband carriers is sufficiently small (n ≪ n). In this case, 

dV/dI above but close to jc should decrease with increasing j as  j–1/3, in contrast to the two adjacent regimes 

of low j < jc and high j >> jc where the differential resistivities are expected to increase with j. If the 

concentration n of additional carriers created by T is no longer small compared to n, e-h annihilation changes 

the dV/dI dependence qualitatively. Therefore, the narrow region with dV/dI  j–1/3 should vanish at high T, 

leading to disappearance of the peak in dV/dI, as observed experimentally and expected in theory (see the next 

section).  

 

 

Fig. S4.  IV characteristics at higher temperatures. (A) Differential resistivity at different T measured for 

a G/hBN Hall bar device near the hole-side secondary NP; n = -1.21016 m-2 and   0. (B) Same as (A) but 

for a non-superlatticed graphene constriction with W  0.4 µm; n = 0.341016 m-2. The vertical black arrows 

indicate jc. 

 

#5 Single band electron transport simulations in graphene 

Below we explain our simulations of I-V characteristics for monolayer graphene at current densities j < jc, 

which are shown by the dashed curves in Fig. 3A of the main text. 

First, assuming that our system is in the diffusive regime, we calculate the drift velocity 𝑣d from 𝑗 and the 

carrier density n induced by gate doping as 

 

𝑣d = 𝑗/𝑛𝑒      (S1) 

 

Then, we determine the voltage drop produced by the current as a function of the drift velocity using the 

kinetic equation 

 

𝜕t𝑓 + 𝑣x𝜕x𝑓 + 𝑒𝐸𝜕px
𝑓 = 𝑆𝑡[𝑓] + 𝑆𝑡e−e[𝑓]    (S2) 
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𝑆𝑡[𝑓] = ∫
𝑑2𝑝1

(2𝜋ℏ)2 [−𝑓(𝒑)(1 − 𝑓(𝒑1))𝑊𝐩→𝐩𝟏
+ 𝑓(𝒑𝟏)(1 − 𝑓(𝒑))𝑊𝐩𝟏→𝐩]   (S3) 

 

where 𝑆𝑡[𝑓](𝒑) is the collision integral due to phonons and impurities, and 𝑆𝑡e−e is the collision integral due 

to e-e scattering. We integrate Eq. (S2) over the phase space with the weight 𝑝x. Assuming the stationary and 

homogeneous solution (𝜕t𝑓 = 0; 𝜕x𝑓 = 0) and using the fact that e-e collisions conserve the total momentum 

(∫ 𝑑2𝑝 𝑝x𝑆𝑡e−e[𝑓](𝒑) = 0) we get 

 

𝑒𝐸𝑛 = ∫
𝑑2𝑝1𝑑2𝑝

(2𝜋ℏ)4 (𝑝x − 𝑝1x)𝑓(𝒑)(1 − 𝑓(𝒑1)) 𝑊𝐩→𝐩1
   (S4) 

 

where 𝑒𝐸 is the voltage drop per unit length.  

To calculate the integral in eq. (S4) we take the scattering rate in the form 𝑊𝐩→𝐩𝟏
= 𝐶 cos [(𝜃 − 𝜃1)/2]2, as 

dictated by the structure of graphene wavefunctions (41), where 𝐶 is the numerical constant that characterizes 

the number of scatterers inside the channel. Additionally, we assume that e-e interactions sufficiently 

equilibrate the carrier distribution so that carriers have the stationary thermal distribution in a frame moving 

with the velocity 𝑣d along the electric field  

 

𝑓(𝒑, 𝑥) = 𝑛F(𝜖p − 𝑝x𝑣d − 𝐸F, 𝑇) =
1

𝑒(𝜖p−𝑝x𝑣d−𝐸F)/𝑘B𝑇+1
     (S5) 

 

where 𝜖p = 𝑝𝑣F, 𝑣F is the Fermi velocity in graphene and 𝑘B is the Boltzmann constant. To obtain 𝐸F for a 

moving frame we assume 𝐸F ≫ 𝑇 and normalize the distribution function (S5) using the initial doping 

condition  

 

(𝜋ℏ)−2 ∫ 𝑑2𝑝 𝑛F(𝜖p − 𝑝x𝑣d − 𝐸F, 𝑇) = 𝑛     (S6) 

 

This leads to  

 

𝐸F
2 = 𝑛𝜋ℏ2𝑣F

2(1 − 𝑣d
2/𝑣F

2)3/2    (S7) 

 

From equation (S7) we find 𝐸F. Next, we use distribution function (S5) to calculate integral (S4) for each 

current density value. We adjust constant 𝐶 in the scattering rate to match the measured resistivity around zero 

current and then use the same 𝐶 for all j. The resulting I-V curve and dV/dI are shown in Fig. 3A of the main 

text. 

It is important to note, that if 𝑣d approaches 𝑣F, the Fermi energy 𝐸F calculated from Eq. (S7) decreases and 

can become smaller than T. In this case, temperature smearing of the Fermi surface is expected to introduce 

additional electrons and holes. Integrating the shifted Fermi distribution (S6) over the conduction and valance 

bands one can get 

 

𝑛e/h = (𝜋ℏ)−2 ∫ 𝑑2𝑝 𝑛F(𝜖p − 𝑝x𝑣d ± 𝐸F, 𝑇) = −
2𝑇2𝑘B

2 𝐿𝑖2(−𝑒±𝐸F/𝑇)

𝜋ℏ2𝑣F
2(1−𝑣d

2/𝑣F
2)3/2   (S8) 

 

where 𝐿𝑖 is the polylogarithm function, 𝑛e and 𝑛h are the electron and hole densities, respectively. Also, the 

total charge density 𝑛 controlled by electrostatic gating should be conserved as  

 

𝑛 = 𝑛e − 𝑛h      (S9) 
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From equations (S8) and (S9) we can find the Fermi energy and the number of additional carriers created by 

temperature in the case of a strongly shifted Fermi surface. This effect becomes stronger with increasing T. It 

smoothens the critical transition and suppresses the peak in dV/dI at elevated temperatures as seen in fig. S4. 

 

#6 Generating electron-hole plasma by a Schwinger-like mechanism 

In this section we describe I-V characteristics at supercritical currents exceeding jc. For simplicity, we assume 

a one-dimensional model such that electrons and holes propagate parallel or antiparallel to the applied electric 

field E. Assuming a diffusive flow, the current can be written as 

𝑗 = 𝑒𝑣F(𝑛e + 𝑛h)     (S10) 

 

where 𝑛e and 𝑛h are the total concentrations of electrons and holes, respectively, including the carriers induced 

by gate voltage (n) and e-h pairs generated in interband transitions (n). Because all the carriers in our 1D 

model propagate along E, the drift velocity 𝑣d should be equal to 𝑣F. Any increase in j beyond jc can only 

happen due to extra carriers that are added to the system. To calculate I-V characteristics, we therefore need 

to understand how n changes with bias.  

The equilibrium concentration of e-h pairs (n) is governed by a balance between creation and annihilation of 

extra carriers. Their creation rate in graphene is described by interband tunneling as 𝐴𝐸3/2, according to the 

Schwinger or Zener-Klein mechanism where 𝐴 is a dimensional constant (16). On the other hand, newly 

created carriers can also annihilate through e-h recombination at a rate of 𝐵𝑛e𝑛h (5) where 𝐵 is another 

dimensional constant. Changes in the carrier density can then be written as 

 

  
𝑑𝑛e

𝑑𝑡
= 𝐴𝐸3/2 − 𝐵𝑛e𝑛h             (S11) 

𝑑𝑛h

𝑑𝑡
= 𝐴𝐸3/2 − 𝐵𝑛e𝑛h            (S12) 

 

Here we assume 𝑛e/h are spatially uniform and exclude any net flux due to charge-density gradients. For the 

steady-state regime (
𝑑𝑛e

𝑑𝑡
=

𝑑𝑛h

𝑑𝑡
= 0), equations (S11) and (S12) are reduced to 

 

𝐴𝐸3/2 = 𝐵𝑛e𝑛h     (S13) 

 

Let us consider two opposite limits, 
𝑗−𝑗c

𝑗c
≪ 1 and 

𝑗−𝑗c

𝑗c
≫ 1. Without loss of generality, we assume that 

graphene is initially doped with electrons and write 

 

{
𝑛e = 𝑛 + 𝑛

𝑛h = 𝑛
      (S14) 

 

Considering that 𝑗c ≈ 𝑛𝑒𝑣F (see the main text) and using equations (S8) and (S13), we find that the limit 
𝑗−𝑗c

𝑗c
≪ 1 corresponds to 𝑛 ≪ 𝑛. In this limit, E generates a relatively small concentration of e-h pairs so that 

we can use 𝑛e ≈ 𝑛 = const, whilst E strongly alters the hole concentration, 𝑛h = 𝑛. By placing these 𝑛e and 

𝑛h into equation (S13), we obtain 

 

𝑛 =
𝐴

𝐵
𝑛−1𝐸3/2 ∝ 𝐸3/2     (S15) 

 

Equations (S10), (S14) and (S15) yield the following current-voltage relation: ∆𝑗 = 𝑗 − 𝑗c ≈ 2𝑛𝑒𝑣F ∝

𝐸3/2 ∝ 𝑉3/2 where V is the voltage drop along our channels. Rearranging this equation as 𝑉 ∝ ∆𝑗2/3 and 

taking the derivative, we find the differential resistivity in this limit as 
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𝑑𝑉

𝑑∆𝑗
∝ ∆𝑗−1/3      (S16) 

 

The negative power in equation (S16) comes from the fact that at supercritical currents the electric field starts 

generating new charge carriers at a rate 𝐸 with  > 1, which results in the differential resistivity decreasing 

with increasing j. 

In the opposite limit of very high currents, 
𝑗−𝑗c

𝑗c
≫ 1, we obtain 𝑛 ≫ 𝑛, as expected. This is the regime of a 

compensated e-h plasma, 𝑛h ≈ 𝑛e ≈ 𝑛. Using equations (S13) and (S10), we then find 𝑛 =
𝐴

𝐵
𝐸3/4 ∝ 𝐸3/4 

and 𝑗 = 2𝑛𝑒𝑣F ∝ 𝐸3/4 ∝ 𝑉3/4 or 𝑉 ∝ 𝑗4/3. Taking the derivative, we obtain 

 
𝑑𝑉

𝑑𝑗
∝ 𝑗1/3      (S17) 

 

This equation shows that, in the high-bias regime such that 𝑛h ≈ 𝑛e ≈ 𝑛, the differential resistance should 

increase with increasing j. If graphene is doped with n > 1011 cm-2, it is hard to achieve this regime because of 

very large j required to reach 𝑛 >> n. Such j normally damage graphene devices. However, close to the 

NP, 𝑛 needs only to exceed the charge inhomogeneity level and, therefore, much smaller j are sufficient to 

create a compensated e-h plasma, as seen in Fig. 3D of the main text. 

 

 

#7 Critical drift velocity in graphene superlattices 

To gain more information about the critical-current behavior in our superlattice devices, we evaluated drift 

velocities at which the switching transition occurred. Similar to our analysis for non-superlatticed graphene in 

the main text, we used the expression vd = jc/nSe where nS is the carrier density within different minibands. It 

is different from the total doping n induced by gate voltage (Figs. 1A-C of the main text). To find nS, we 

followed the procedure described in (42). Briefly, we first used Hall measurements in small magnetic fields 

(section #2) to extract the geometrical capacitance Cg to the back gate and to find gate voltages Vg for NPs 

and VHS (VNP and VVHS, respectively). Next, assuming that different electronic minibands did not overlap so 

that nS should be zero at NPs, we calculated nS around them as nS = Cg(Vg – VNP)/e. The resulting linear 

dependences nS(Vg) were separated by VHS where nS abruptly changed its sign (42).  

The found vd are shown in figs. S5A,B for two TBG and three G/hBN devices. In contrast to the behavior in 

non-superlatticed graphene, where vd at the critical current was close to vF and independent of n (Fig. 3B), 

superlattices exhibited profound changes in vd as a function of band filling. The drift velocity was highest near 

NPs, rapidly decreased away from them and became smallest around VHS. For the TBG 1.23o device, the 

observed vd close to the main NP was about 4-5104 m s-1, in good agreement with the Fermi velocity of 3104 

m s-1 which we found from band structure calculations for this twist angle. Note that elastic reconstructions 

of the superlattice structure at this   are expected to be small (unlike for   0.77o), which makes the 

calculations reliable (19). The agreement indicate that the switching transition in graphene superlattices is due 

to the same mechanisms as suggested for monolayer graphene (Fig. 3), except for the fact that its observation 

requires smaller j because of lower Fermi velocities in the superlattices. This also explains the absence of the 

transition around the main NP in G/hBN superlattices where the Fermi velocity  106 m s-1 is more than 10 

times higher than that near secondary NPs (fig. S5) and, accordingly, the required critical currents were not 

reachable near the main NP in the standard Hall bar geometry.  

For all the studied superlattice devices, we found vd to rapidly decrease away from NPs. To explain this very 

general observation, we note that the group velocity of charge carriers changes with the Fermi energy. It is 

normally highest near NPs and drops to zero at VHS as schematically shown in fig. S5C. Only for the linear 

part of superlattice spectra the drift velocity is expected to coincide with vF. Indeed, as the nonequilibrium 

distribution shifts away from a NP, electronic states near a neighboring VHS start contributing to the charge 

flow (fig. S5C). Those states have low group velocities, approaching zero at VHS, which leads to reduction 
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in the average group velocity. This consideration qualitatively explains the experimental behavior in figs. 

S5A,B. Nonetheless, let us notice that the effect of nonlinear electronic spectra becomes pronounced already 

very close to NPs (that is, far away from VHS). It requires numerical simulations of 2D quantum transport for 

specific electronic spectra to explain this rapid decrease in vd quantitatively. The curves in Fig. S5 or maps in 

Fig. 2 of the main text could then be used to reconstruct superlattice spectra.  

 

 

 

 

Fig. S5.  Drift velocities at the critical current values in various graphene superlattices. (A) Drift velocity 

𝑣𝑑 at the peak in differential resistivity for our TBG devices. To show different superlattices on the same 

graph, we use the filling factor  of the first miniband as the common x-axis. The black arrows mark NPs and 

the vertical dashed lines VHS. For TBG 0.77°, peaks in dV/dI were poorly resolved, and we defined jc using 

Hall effect measurements. (B) Same as (A) for three G/hBN superlattices (also, see fig. S6). (C) Schematics 

of the out-of-equilibrium carrier distribution in the valence band of G/hBN superlattices for j = jc (left) and j 

> jc (right). The blue circles show electronic states occupied by electrons and the red ones those occupied by 

holes. 

 

 

#8 Reproducibility for different G/hBN devices 

Further examples of the switching transition between Fermi-liquid and e-h plasma transport regimes are shown 

in fig. S6 for G/hBN superlattices with non-zero twist angles   0.38o and 0.53o (nonperfect alignment 

between graphene and hBN axes). The low-bias resistivities show the behavior standard for graphene 

superlattices (figs. S6A,D). Moving into the high-bias regime, both devices exhibited the critical behavior 

qualitatively similar to that reported for G/hBN 0o in the main text. Indeed, as seen in figs. S6B,E, the small-

 superlattices showed same switch-like increases from low to high resistance and pronounced peaks in dV/dI. 

The differential resistivity maps were also similar (figs. S6C,F) with the critical-current transition moving to 

progressively lower j as n approached the secondary NPs. The peak in dV/dI was progressively smeared and 

gradually disappeared towards lower hole concentrations, in agreement with the map shown in Fig. 2A of the 

main text. 
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Fig. S6. Critical-current behavior in other G/hBN superlattices. (A) Low-bias resistivity for a G/hBN 

superlattice with   0.53o. (B) Its differential resistivity dV/dI for the doping indicated by the black arrow in 

(A). (C) Map of the differential resistivity as a function of n and j. Grey scale: black-to-white, 10 to 2000 Ω. 

The transition is somewhat distorted just above the secondary NP, which is attributed to either charge or 

twist-angle inhomogeneity. (D-F) Same as in panels (A-C) for another G/hBN superlattice with   0.38o. 

 

#9 Nonlinear dual-band Hall effect 

The generation of e-h pairs above the critical current jc resulted in the nonlinear Hall response as reported in 

the main text (Fig. 2). Here we show that the observed behavior can qualitatively be describes by the standard 

two-carrier model. In small (non-quantizing) magnetic fields B, the Hall voltage Vxy is given by   

 

𝑉xy = 𝑅xy[𝐼]𝐼      (S18) 

 

𝑅xy =
𝜎xy

𝜎xy
2 +𝜎xx

2       (S19) 

 

𝜎xx =
𝑒𝑛e[𝐼]𝜇e

1+(𝜇e𝐵)2 +
𝑒𝑛h[𝐼]𝜇h

1+(𝜇h𝐵)2     (S20) 

 

𝜎xy =
𝑒𝑛h[𝐼]𝜇h

2𝐵

1+(𝜇h𝐵)2 −
𝑒𝑛e[𝐼]𝜇e

2𝐵

1+(𝜇e𝐵)2      (S21) 

 

where 𝜇e and 𝜇h are the electron and hole mobilities, respectively, and 𝐼 is the applied current. Nonlinearities 

in this model arise because of extra charge carriers generated above the critical current Ic (corresponding to 

the critical current density jc). To model the Hall effect as a function of I, we assume 𝑛e/h to be constant below 

Ic whereas, above Ic, all the additional current (I = I – Ic) is carried by the newly created electrons and holes, 

both having densities ∆𝑛. This is formally described as  

𝑛h = 𝑛h0 + ∆𝑛 



16 
 

𝑛e = 𝑛e0 + ∆𝑛 

 

∆𝑛 = {
0,              𝐼 < 𝐼c

≈
(𝐼−𝐼c)

2𝑊𝑒𝑣F
,   𝐼 > 𝐼c

     (S22) 

 

where 𝑛e0 and 𝑛h0 are the carrier densities of electrons and holes in the linear response regime, and 𝑣F is the 

Fermi velocity near relevant NPs where the generation of new charge carriers takes place. For simplicity, we 

again assume transport to be 1D such that carriers propagate only along the electric field and their drift 

velocities are equal to 𝑣F for 𝐼 > 𝐼c. Note that, in the 2D case, the average drift velocity of the generated charge 

carriers is expected to be less than 𝑣F and, therefore, ∆𝑛 should be somewhat larger than that given by equation 

(S22).  

An example of the nonlinear Hall behavior was provided in Fig. 2D of the main text and is now replotted in 

fig. S7 (solid red curve). The dashed curves in the same figure show three different fits using equations (S18-

S22). The fitting parameter required to describe the unusual shape of experimental curves is the ratio between 

electron and hole mobilities (𝜇e/𝜇h), and only the amplitude of Hall signals depends on absolute values of 𝜇e 

and 𝜇h. If newly created electrons and holes had same 𝜇, our modelling shows that Hall curves could not 

exhibit sharp changes with increasing I above Ic. However, for strongly different 𝜇e and 𝜇h, I-V characteristics 

start exhibiting clear turning points at Ic, in agreement with the experimental behavior (fig. S7). This can be 

understood as follows. The low-bias Hall signal produced by initial (low-mobility) holes near the VHS (see 

Fig. 2) becomes rapidly compensated by a contribution from high-mobility electrons generated by interband 

tunnelling near the secondary NP. With further increase of I, more and more high mobility electrons are added 

to the system, and they eventually dominate the Hall effect causing its sign reversal.   

The inferred large difference in 𝜇 for newly created electrons and holes is expected because of the nonlinear 

spectrum of graphene superlattices near the secondary NPs, as already discussed in the main text and section 

#7. The difference could be understood using the sketch in fig. S5C, which represents the case of initial 

electron doping with the Fermi level lying between the secondary NP and a VHS (opposite initial doping to 

that in fig. S7). In the case of fig. S5C, interband transitions generate holes near the NP. These holes appear 

in the region of the linear spectrum and should have high mobilities, like generally happens in graphene-based 

systems with Dirac spectra. On the other hand, we expect low mobility for extra electrons. As seen in the 

sketch, the original electron distribution gets shifted towards higher energies for I > Ic, and extra electrons 

effectively appear close to the VHS and have high masses. Therefore, the electron mobility averaged over all 

electrons contributing into the current should be lower than 𝜇 for initial electrons near the NP and the generated 

holes. 

  

#10 Further examples of I-V characteristics at the Dirac point in graphene 

When studying I-V characteristics at the NP, it is essential to account for so-called self-gating. This 

phenomenon refers to the situation where a voltage drop induced by applied current becomes so large that it 

notably changes local carrier concentrations along the device. Therefore, at high biases, n is no longer defined 

only by applied gate voltage but also depends on a voltage drop across the device. The main contribution into 

self-gating for our constrictions came from a voltage drop in the contact regions whereas the constriction itself 

experienced a small voltage drop (< 1V) that resulted in a relatively small charge inhomogeneity inside the 

constriction. Therefore, the main effect of high bias was a shift of n within the constriction with respect to 

initial doping. To properly evaluate differential resistivity at the NP, this shift has to be carefully monitored, 

especially in high-quality devices with very sharp peaks in low-bias resistivity. To this end, rather than 

sweeping j at a fixed back-gate voltage Vg, we measured dV/dI at fixed j and varied Vg. Then, j was increased 

in small steps as illustrated in fig. S8A. One can see that the NP - normally seen as a resistance maximum - 

shifted with increasing j. The direction of this shift changed with reversing the applied DC current, as expected. 

By tracing NP positions, we reconstructed the dV/dI dependence at the NP. Fig. 3D of the main text shows 
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one set of such measurements, and further examples are provided in fig. S8B. One can see that all the curves 

exhibited critical behavior similar to that discussed in the main text.  

 

 

Fig. S7. Modelling of the dual-band Hall effect. The solid curve is the Hall voltage measured at 30 mT 

(same as in Fig. 2D of the main text). Dashed curves: modelling using the mobilities shown in the color-coded 

legend. B = 30 mT; W = 4 m; Ic = 41 A; 𝑛ℎ0 = 0.25 × 1016 𝑚−2; 𝑛𝑒0 = 0; 𝑣𝐹 = 0.4 × 106 m s-1. The 

latter is the Fermi velocity expected at the secondary NP of G/hBN superlattices (46). The shadow region 

indicates the regime |I| < Ic. 

 

 

#11 Quantum-critical resistivity of the Dirac fluid 

To evaluate resistivity  of the hot e-h plasma from our measurements on graphene constrictions at the Dirac 

point, we need to take into account that the resistance R measured in the quasi-4-probe geometry involves 

contributions of not only the constriction itself but also nearby regions leading to voltage contacts (inset of 

Fig. 3A of the main text). First, it is instructive to consider this geometry in the linear response regime where 

graphene’s resistivity  is independent of j. Approximating the areas near the constriction as semicircles, their 

contribution can be written as 2 ∫ 𝜌(𝑗 = 0)
𝑑𝑟

𝜋𝑟

𝐻

𝑊/2
 where r is the distance from the constriction center, W is the 

constriction width, and the factor of 2 accounts for the areas left and right from the constriction. Here H is the 

cutoff at long distances which depends on geometry and determines the effective area contributing to the 

measured R. The constriction has a physical length L but, considering that the same current density persists 

over an area of size W around the constriction (see below), we approximate the central channel as a square, 

that is, the effective length L = W/2 from the constriction center. The total resistance of the constriction can 

then be written as  

 

𝑅 = 2 ∫ 𝜌
𝑑𝑟

𝜋𝑟
+ 𝜌

2𝑊/2

𝑊

𝐻

𝑊/2
= 𝜌 (

2

𝜋
ln

2𝐻

𝑊
+ 1)     (S23) 

 

The lower cutoff in the integral is given by L whereas the higher cutoff H is of the order of devices’ width 

away from the constriction, which in our case was 10W. This imposes the following upper and lower bounds 

on R 

 

1.4𝜌 < 𝑅 < 2.9𝜌     (S24) 

 

which translates into  of about 2.5 k ( 50%) for our typical R  5 k in fig. S8B.  
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In the supercritical regime, a more careful estimate for the relation between R and   is required because the 

differential resistance becomes a function of j (Fig. 3D and fig. S8) and, therefore, a function of r. To account 

for these dependences, we use Eq. (S17) and model (j) as  j1/3 or    

 

𝜌(𝑟) = 𝜌0 (
𝑗(𝑟)

𝑗0
)

1/3

     (S25) 

 

where 𝜌0 and 𝑗0 are some dimensional constants. In the 2D case, the current density decreases away from the 

constriction as 

 

𝑗(𝑟) =
𝐼

𝜋𝑟
     (S26) 

 

The current density inside the constriction is given by jMAX = I/W. According to Eq. (S26), j reaches the same 

maximum value at r = W/. The latter distance serves as a cutoff for the applicability of the above formula at 

short r. We therefore assume the constant current density j = jMAX within the central area of the constriction, 

which has the width W and half-length W/, whereas outside of this rectangle j decays as prescribed by Eq. 

(S25). We are interested in finding the hot e-h plasma’s resistivity inside the constriction 𝜌(𝑟 = 0), which 

within our formalism is the same as 𝜌(𝑟 = 𝑊/𝜋).  

As for a cutoff at long distances, we note that the e-h plasma fully develops only for 𝑗 > 𝑗m (see the main 

text). This condition yields the size H of the area in which the high-resistivity e-h plasma is created as 

 
𝐼

𝜋𝐻
= 𝑗m and, hence, 𝐻 =

𝑊𝑗MAX

𝜋𝑗m
     (S27) 

 

In our experiments, typical 𝑗m ≈ 0.05 mA/m whereas 𝑗MAX reaches 0.7 mA/m (Fig. 3D and fig. S8). This 

means H  4.5W. Using the above cutoffs at short and long distances, we evaluate the high-bias resistance for 

our constrictions as  

 

𝑅 = 2 ∫ 𝜌(𝑟)
𝑑𝑟

𝜋𝑟
+ 𝜌(𝑟 = 𝑊/𝜋)2/𝜋

𝐻

𝑊/𝜋
     (S28) 

 

where the second term is the approximation for the resistance of the central rectangular region. The integration 

yields 

 

𝑅 ≈ 1.76𝜌(𝑟 = 0)     (S29) 

 

For our maximum applied j, the resistance measured across the constrictions was 4.5 – 5 k (fig. S8) which 

yields resistivity of the hot e-h plasma as 𝜌 ≈ 2.7 k (10%). The fact that this value is close to that found in 

the low-bias regime indicates that geometrical factors in translating 𝜌 into R depend only logarithmically on 

current distribution, which ensures the reliability of our analysis. 

Finally, we compare the found 𝜌 of the compensated e-h plasma with theory (8, 9, 41, 43). The scattering rate 

𝜈 between electrons and holes in such an e-h plasma (Dirac fluid) is expected to approach the quantum critical 

limit 

 

𝜈 = 𝐶
𝑘B𝑇

ℏ
     (S30) 

 

where 𝐶 is the numerical constant of the order of 1. As the carrier density in the Dirac fluid is also proportional 

to its temperature T, one finds the quantum critical resistivity (43) 
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𝑞

=
ℎ

𝑒2

1

2 𝑙𝑛 2

ℏ𝜈

𝑘𝐵𝑇
=

ℎ

𝑒2

𝐶

2 𝑙𝑛 2
= 𝐶 × 18.6 (𝑘Ω)    (S31) 

 

The value of 2.7 k  found above is in reasonable agreement with a recent experiment (11) that suggested 

𝐶 ≈ 0.2 for the Dirac fluid and, therefore, eq. (S31) would yield 
q

≈ 3.7 𝑘Ω. More accurate theory analyses 

of 
q
 have found (8, 9) 

 


q

=
ℎ

𝑒2

𝛼2

0.764
      (S32) 

 

where  is the interaction constant that, importantly, depends on the dielectric constant 𝜀 of the media 

surrounding graphene. Accounting for screening (8), 𝛼 = 𝛼0 (1 + 𝜋𝛼0/2)⁄  where 𝛼0 ≈ 2.1/𝜀 is the effective 

fine structure constant in graphene. As  of encapsulating hBN is 4.0, we obtain   0.3 and, accordingly, 


q

≈ 3 𝑘Ω. This is in excellent agreement with our experiment yielding 
q

≈ 2.7 𝑘Ω, especially because the 

curves in fig. S8 continue to saturate with increasing j to a somewhat higher value.  

 

 

Fig. S8. High-bias response at the NP in non-superlatticed graphene. (A) Differential resistance as a 

function of back-gate voltage for different current densities inside a 0.4 µm wide constriction (color coded). 

The arrows mark positions of the NP for different j. (B) Differential resistance at the NP measured for several 

graphene constrictions.  

 

 

#12 Calculations of superlattice spectra 

To calculate the electronic spectrum of G/hBN superlattice in Fig. 1D of the main text, we used the technique 

described in (18) where, for simplicity, only the inversion-symmetric coupling parameters were included [see 

Eq. 2 of (18)]. Following (44), we set the parameters as 𝑢0𝑣F𝑏 = 8.5 𝑚𝑒𝑉, 𝑢1𝑣F𝑏 = −17 𝑚𝑒𝑉, 𝑢3𝑣F𝑏 =

−14.7 𝑚𝑒𝑉. 

For the spectrum of TBG shown also in Fig. 1D, we used the approach described in (19) with the hopping 

energy set to 𝑤 = 110 𝑚𝑒𝑉. A Mathematica code for these calculations is provided in (45). 
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