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ABSTRACT 
Physicalizations represent data through their tangible and mate-
rial properties. In contrast to screen-based visualizations, there 
is currently very limited understanding of how to label or anno-
tate physicalizations to support people in interpreting the data 
encoded by the physicalization. Because of its spatiality, contextu-
alization through labeling or annotation is crucial to communicate 
data across diferent orientations. In this paper, we study labeling 
approaches as part of the overall construction process of bar chart 
physicalizations. We designed a toolkit of physical tokens and paper 
data labels and asked 16 participants to construct and contextualize 
their own data physicalizations. We found that (i) the construction 
and contextualization of physicalizations is a highly intertwined 
process, (ii) data labels are integrated with physical constructs in 
the fnal design, and (iii) these are both infuenced by orientation 
changes. We contribute with an understanding of the role of data 
labeling in the creation and contextualization of physicalizations. 
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• Human-centered computing → Empirical studies in visu-
alization. 
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1 INTRODUCTION 
Physical data visualizations or physicalizations are tangible and 
three-dimensional artifacts that represent or encode data in their 
material and physical form [30]. These physical data representa-
tions are useful tools to support collaborative scenarios and the 
exploration of data, but also open up new ways to interact with, 
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transform, and inspect data [14]. For physicalizations – as with 2D 
visualizations – the inclusion of data labels, axes values, legends 
and annotations are in many cases fundamental to contextualizing 
the presented data. They provide people with context, frame of 
references, and visual guides on how to interpret the data. Particu-
larly because of the challenges associated with multi-orientation 
interpretation of data to groups of people [40], such labels and 
annotations are instrumental in helping people make sense of the 
presented data. We refer to this as the contextualization of physical-
izations, which is the inclusion of contextual elements such as data 
labels, axes, legends, and annotations to support the extraction of 
information from physical representations of data. 

Despite the obvious importance of providing guiding context to 
visualizations, related work on physicalizations [13, 14, 30], does 
not actively consider the labeling of physical data points and struc-
tures. Work that does consider labeling of physicalizations in some 
form (e.g., [38, 45, 47]), often use very diferent approaches that are 
not systematic or even consistent with each other. From a concep-
tual viewpoint, the current defnition of physicalization [30] indeed 
focuses on materiality and does not highlight ‘data labeling’1 as an 
explicit part of the physicalization itself. However, a physicaliza-
tion cannot do without context; the physicality and spatiality of 
physicalizations explicitly opens up questions such as (i) where to 
locate diferent kinds of labels (i.e. title, axes labels, and data values) 
in relation to the canvas and/or other data points, and (ii) how 
this is afected by user orientation (e.g. when multiple people are 
looking at the physicalization from diferent perspectives). More 
fundamentally: why, how, and when should ‘data labels’ be included 
in the design, construction of, and interaction with physicalizations? 

Research on Constructive Visualization [26] focuses on explicitly 
understanding the translation process from raw data to physical 
form. While this approach has provided detailed insights into the 
construction of data points and structures of the physicalization, 
they similarly do not actively include data labeling in the authoring 
of physicalizations. For example Fan et al. [17] provide ready-made 
braille labels but leave contextualization of data open to partici-
pant’s choice, and both Huron et al. [27], and Wun et al. [52] include 
the annotation of data as a subsequent task to the construction task. 
As observed by Wun et al. [52], the creation of physical data repre-
sentations results in an interrelation principle: the placement and 
rearrangement of physical data objects in space – loading data – 
simultaneously infuences the visual mapping and presentation map-
ping of a visualization. In line with this observation, we propose 
and argue that the act of ‘data labeling’ should be an active part of 

1Not to be mistaken with the term ‘data labeling’ as used in Machine Learning to 
describe the annotation of raw data to train a classifer. 
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this process, further intertwining the construction and contextual-
ization of physical data visualizations. 

In this paper, we aim to answer the question: how does data label-
ing play a role in the physicalization creation process, visualization 
design, and when viewed from diferent orientations? As studying 
data labels in isolation is artifcial, our research explores the role of 
‘data labeling’ in the entire construction process of barchart-type 
3D physicalizations [27]. We follow the approach from Constructive 
Visualization research, and “study human behavior independently 
from the design of specifc software tools” [27] to inform the design of 
future physical visualizations. To study this process, we designed a 
toolkit that allows for the creation of data visualizations in 3D space 
and includes data labeling as ‘building block’ alongside the use of 
physical 3D tokens. We conducted a study with 16 participants who 
completed a total of 32 construction tasks. We contribute (i) an 
understanding of the role of data labeling in the construction and 
contextualization of physical visualizations, (ii) an overview of how 
textual and physical constructs coexist in visualization designs, and 
(iii) refections on coping strategies for contextualizing bar chart 
physicalizations across orientations in physical space. 

2 RELATED WORK 
Herein, we discuss (i) existing concepts and knowledge on labeling 
from 2D Information Visualization (InfoVis), (ii) current use of 
data labels in existing physicalizations, and (iii) approaches from 
Constructive Visualization. 

2.1 Labeling in Information visualization 
Information visualization [3, 7, 8, 35, 50] has a long standing tra-
dition, rooted in a history of cartography and later in Computer 
Graphics, of labeling and annotating visual representations of data. 
Many of these labeling practices have now been operationalized 
into toolkits, default visualizations, and best practices [e.g. 19, 23]. 
As described by the ‘Data Design Standards’ [23]: “Labels make it 
easier for users to understand data visualizations by using text to 
reinforce visual concepts. Labels are traditionally used to label axes 
and legends, however, they can also be used inside of data visualiza-
tions to communicate categorical, sequential, or value attributes”. In 
recent years, labeling research has mainly focused on novel forms 
of graphic algorithms and approaches to handle label placement in 
complex visualizations [1, 9, 15, 31] including a focus on automa-
tion [32], 2D graph layout techniques [20], or best practices for 
‘good’ label placement [49]. Nonetheless, as suggested by Brath [5] 
“3D InfoVis is here to stay”, meaning work has also looked at labeling 
Interactive 3D visualizations [2] or 3D geo-referencing [11]. 

With the move to a more interactive ‘human-data interaction’ 
approach, new insights around semantic or interactive versions of 
information visualization labels have been introduced [48], opening 
new possibilities for touch-based or even physical data visualiza-
tions. A recent concept in the feld of information visualization 
that operationalizes this increased interactivity is the extended in-
fovis pipeline model [28]. This model explains the translation from 
raw data to a visualization that can be rendered in the physical 
world. It distinguishes between data transformation, visual mapping, 
presentation mapping, and rendering. Especially visual and presen-
tation mapping are of importance to discuss here, as it explains 

the diference between creating the initial abstract physical form 
and the fully-specifed visual presentation [28]. According to the 
infovis pipeline, elements such as axis labels, grid lines, legends and 
captions are decoration operations as part of presentation mapping. 
However, the precise way in which these grids, legends or captions 
should be designed in physical 3D space is not specifed nor defned. 

2.2 Labeling in Physicalization 
Looking at the use of data labels in existing physicalization research, 
we observed that state of the art (summary in [14, 30]) pays little 
attention to data labeling. Therefore, other means are often required 
to contextualize the data represented, such as prior knowledge, the 
use of an external device to reveal data, or no means to extract 
details (i.e. because the intention is purely aesthetic and/or by es-
timation). Particularly exploratory physicalizations such as data 
sculptures [4, 34, 44, 54] or data installations with complex ecosys-
tems [25, 33, 38, 39] do not provide on-physicalization labeling. 

Physicalizations that do use labeling in some form, do so in a 
myriad of diferent ways. Examples of interactive systems are work 
from Veldhuis et al. [47] that presented textual information in a 
single direction, or Taher et al. [45] that used multiple displays 
to provide two duplicates for x-axis and y-axis (and only shows 
categorical/sequential data but no values or legend for values). Ex-
amples of static physicalizations are work from Jansen et al. [29] 
that compared on-screen 3D bar charts with labels foating in space 
in the reading direction of the viewer, with physical 3D bar charts 
that represent the same labels sideways in a counterclockwise direc-
tion (with the addition of an engraved transparent acrylic back wall 
to show scale); and Danyluk at el. [10] that used similar physical 
3D models but then with alternating reading directions on diferent 
sides of the base. Gourlet et al. [22] built a physicalization where the 
reading direction was aligned in 4 diferent directions, oriented by 
each side of the table. Stusak et al.’s [43] work on physicalizations 
used numeric values on the physical bar-charts, labels for countries 
on the fat surface, and a transparent background panel with scales. 
Finally, recently Ren et al. [37] explored physicalizations that were 
annotated with a basic legend on one side of the visualization. 

While these labeling approaches are generally well designed, 
they are very diferent and inconsistent with each other, opening 
up questions around what strategies or approaches can be used for 
labeling of physicalizations? Furthermore, because of the intrinsic 
three-dimensionality and physical nature of physicalizations, they 
can be used, observed, perceived and approached from diferent 
directions, making the process of labeling even more challenging. 
From a conceptual and theoretical perspective, we also observe that 
labeling is never explicitly included in the defnition and scope of 
physicalization [30], the rendering process [12], or a recent refec-
tion on the research domain of physicalization [14]. Hence, there is 
currently no principles or standard ways to label in physical space 
when it comes to reading direction, text orientation, and location 
in relation to physical data points and the canvas. 

Text orientation and readability of labels is also a concern for 
work on virtual reality [6, 42]. While a full review of this work is 
beyond the scope of this paper, previous work has combined phys-
icalization or visualization with VR environments. For example, 
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Ren and Hornecker [37] explored the diferences between physi-
calization and VR simulation and use basic text labels next to the 
bar-chart in both approaches. Ulusoy et al. [46] explored VR-models 
of bar-chart physicalizations that were annotated with labels and 
presented on diferent scale (i.e. hand-size versus room-size) in 
virtual space. Finally, Danyluk et al. [10] compared physical and VR 
visualizations, again leveraging data annotations and labels around 
3D bar-charts. 

Lastly, outside the context of physicalization, work has explored 
how to position and orientate text, illustrating that there are dif-
ferent ways in which text can be represented in 2D and 3D space. 
These studies discuss for instance text orientation [24], horizontal 
versus vertical reading [36], left-to-right versus top-to-down read-
ing [21], and the infuence of 3D rotations on reading speed [51]. 
These fndings from HCI studies agree with literature from the 
vision community that also demonstrates the impact orientation 
has on reading speed [53]. 

2.3 Constructive Visualization 
Within the research space of Physicalization, ‘Constructive Visual-
ization’ work explored how to author and construct physical data 
presentations [27, 52]. This work is concerned with describing and 
exploring the methods, strategies and tools that help people trans-
form data into physical representations. However, currently these 
models and approaches for constructive visualization do not include 
data labeling as an active component in the construction process 
(visualization mapping), but rather treat annotation of data (presen-
tation mapping) as a secondary process after the construction of 
the physical form factor. Both Huron et al. [27] and Wun et al. [52] 
included annotation as a subsequent task to the construction task, 
while Fan et al. [17] left it up to the participant to use pre-made 
braille labels in their visualization. 

Wun et al. [52] observed that the construction of physicalizations 
results in an interrelation principle [52], as moving physical elements 
infuences multiple parameters of the visualization pipeline at once. 
For example, when loading data (placing data objects in the canvas), 
one simultaneously has to consider the visual mapping (where to 
place the object in relation to other data objects), and presentation 
mapping (object placement within the canvas). We suspect that be-
cause of this interrelation principle, the labeling of physicalizations 
will similarly be intertwined into the overall process. 

Hence, for validity we do not want to and/or cannot investigate 
the labeling of data in isolation. Our methodology is, thus, based on 
constructive visualization work, with the diference that we treat 
labeling as an active component in the authoring process. 

3 STUDY RATIONALE 
The focus of this study is to build a better understanding of the 
role of labels in physicalizations. With data labels or data label-
ing we refer to annotations that, like visualizations on a screen, 
highlight axes, data points, legends, and other visual structures 
that support people in reading and interpreting data efectively. 
While prior work has considered the labeling of physicalizations 
in various forms, these have almost always been post-hoc activ-
ities from a necessity to counter some of the open challenges or 
common problems in physicalizations. Therefore, there are no real 

insights or principled approaches into how, if, and when to label 
physicalizations. While we can borrow initial insights from screen-
based visualizations [2, 15, 23, 35], many of these do not translate 
directly to the context of physicalizations. Because of their physical-
ity, people have very diferent strategies to perceiving, using, and 
interacting with physicalizations. This implies that more systematic 
research into labeling strategies and practices is needed to explore 
how physicalizations can be labeled efectively – taking into ac-
count their specifc challenges around spatiality, user orientation, 
and perception. 

As labeling is difcult and artifcial to understand in isolation, 
we specifcally examine labeling as part of the general construc-
tion process of physicalizations. Because the interrelation princi-
ple [52] suggests that constructing physicalizations is a highly in-
tertwined process that combines various aspects of the extended 
infovis pipeline model [28], we argue that it cannot be understood 
or studied in isolation. By studying and documenting the strategies 
that people take for labeling of data, axes, clusters and entire phys-
icalizations, we can learn more about the role of labeling in the 
overall construction process, but also about how non-experts view 
physical structures and data points in relation to a given dataset. 
While studying the labeling of existing physicalizations might help 
build some insights into how data labeling works, we argue that this 
would also be a post-hoc activity that reduces labeling to a second 
class aspect of physicalization – where we suggest it should be a 
fundamental and inherent part of the overall physicalization design. 
As such, our study methodology studies labeling in combination 
with other constructive visualization processes [27, 52]. 

4 METHODOLOGY 
The goal of this study is to investigate the role of data labeling (i) 
during the creation process of a physical visualization, (ii) within 
the resulting visualization design, and (iii) when viewing the visu-
alization from diferent orientations and perspectives. Our study 
is designed to document and highlight strategies and approaches 
towards constructing a 3D bar chart physicalization and anno-
tate them with contextual labels using a custom design toolkit and 
methodology. We designed a task that required participants to build 
two physical visualizations given a toolkit including a set of physi-
cal colored blocks and textual labels. During the task, the researcher 
presented the participant with one dataset at a time and prompted 
them to build the resulting data using the toolkit. After the creation 
process, participants were asked to refect on their visualization 
design during an integrative process, as the canvas was rotated 
in increments of 90 degrees. On each rotation, participants were 
required to observe their visualization from the new viewing angle, 
and (if desired) make changes to their labeling. 

4.1 Apparatus 
We created a custom-made toolkit including plastic building blocks 
and paper labels inside a storage box. The toolkit follows [27, 52] 
in providing a set of custom tools aiming to avoid the artifcial 
constraints introduced by existing systems, as they are often limited 
by the technologies used. We discuss each of the components below: 
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4.1.1 Building blocks. The design of the building blocks is inspired 
by interlocking maths learning cubes such as Snap Cubes®2 and
Edx Education Linking Cubes3. Each block has three diferent types
of faces: 1 square stud, 3 square holes, and 2 regular faces (Figure 1). 
The goal of this design is to allow for enough freedom of the creation 
in 3D space – the set of diferent faces per block supports attachment 
in multiple directions – but also keep them simple and consistent 
in appearance. Each block is 2x2x2cm in size and is made of 3D 
printed plastic. The storage box contained 25 blocks of each out of 
5 colors (red, orange, yellow, green, blue), totally 125 blocks. 

Figure 1: A 3D rendering of the block design, 3D-printed 
plastic blocks, and the study setup. 

4.1.2 Data labels. The set of paper data labels included: a title label, 
a label for each categorical (i.e., seasons, countries) and sequential 
attribute (i.e., years), and a label for each single value attribute. We 
purposely provided a minimal set of data labels with no duplicates 
and no inclusion of axis labels (i.e., ‘X’, ‘Y’, ‘Country’, ‘Season’, 
‘Year’) to reduce the possibility for redundancies. Lastly, we pro-
vided participants with some sticky tack to allow for freedom in 
placing labels, i.e., sideways on blocks or other midair placements. 

4.1.3 Canvas. We designed a building area made of a white plastic 
40x40cm canvas with square holes at every 2cm so that the building 
blocks could be snapped in. Figure 1 shows the experimental setup 
for all tasks. The participant was seated in front of the white square 
canvas with the toolkit on their left. 

4.2 Datasets 
We used two datasets of similar structure and complexity as Huron 
et al. [17] (included in supplementary material). The frst dataset4
represented CO2 emissions in tons per person for fve diferent
countries, across three years. The second dataset5 represented rain-
fall in the United Kingdom in millimeters for four seasons, across 
four years. All values are rounded derivatives from the raw data. 
The datasets were selected so that they are understandable, inter-
pretable and transferable for non-expert participants. 

4.3 Participants 
We recruited 16 participants (8 identifed as male, 7 as female, and 
1 as non-binary), of which 5 were 18-24 years, 4 were 25-34 years, 6 
were 35-44 years, and 1 was between 45-54 years old. Participation 
was voluntary and without compensation. There were no particular 
2https://www.learningresources.co.uk/snap-cubesr-set-of-100
3https://edxeducation.com/portfolio-item/2cm-linking-cubes-1000pcs-12012/
4https://www.gapminder.org/data/
5https://www.metofce.gov.uk/research/climate/maps-and-data/uk-and-regional-
series 

requirements for participation other than that participants were 
(corrected to) fully sighted and physically able to construct a visu-
alization with objects. Of all participants, 12 were familiar with the 
concept of data visualization, 13 were experienced in reading data 
visualizations, and 10 experienced in creating data visualizations. 

4.4 Procedure 
At the start of the study, we introduced participants to the study, 
asked them to sign a consent form, and collected their demograph-
ics. We explained the goal of the study: to understand how peo-
ple construct and label physical visualizations using an exemplar 
toolkit. We gave participants a set of general instructions and in 
total asked them to visualize two datasets using the toolkit. Partici-
pants were asked to think out loud during the creation process. If 
participants indicated to have fnished but forgot to contextualize 
their physical constructs they were prompted by the researcher, 
for example about the topic “how would someone else know what
your visualization is about?” or the created encoding “how would
they know what one block represents?”. When fnished with the frst
task (T1), the researcher would ask them to take two pictures of the 
end result and explain their visualization design. Afterward, the 
participant was asked to rotate the canvas either 90 degrees clock-
wise or counterclockwise, and indicate if they would like to make 
any changes to the labeling of the visualization and if so, they were 
requested to perform these changes, and take two pictures (from 
diferent angles) to capture the current state of the visualization. 
We repeated this process twice so eventually the participant had 
seen all 4 orientations of the square canvas. This whole process was 
repeated during task 2 (T2) with a second dataset. The mapping 
between the two datasets and two directions was counterbalanced 
across participants using a balanced Latin square (yielding 4 partici-
pant groups). The whole experiment lasted between approximately 
60 to 90 minutes, depending on the participants’ performance. 

4.5 Data Collection 
During the study, we collected three diferent types of data: 

4.5.1 Video. With participants’ consent we took video and audio 
recordings of their interactions using two GoPro’s: from a top-down 
viewing angle and a view from the side. We used these videos to 
capture participants’ actions during the creation process. 

4.5.2 Pictures. After each task, and after the changes made upon 
each rotation of the canvas we asked participants to take two pic-
tures from diferent viewing angles to capture the current state of 
the visualization. The frst picture was a representation of their 
viewing angle while seated, and the second picture from any angle 
they preferred to view their visualization most comfortably and/or 
efectively. We used these pictures to extract (i) the properties of 
their visualization design, and (ii) any changes to the labeling across 
diferent orientations. 

4.5.3 Participant Observations. During the task, the researcher 
made notes of participant comments while thinking out loud. After 
each task we asked participants to (i) elaborate on the dataset using 
their visualization, (ii) explain the visualization they created, and 
(iii) if there was anything they struggled with while creating it. This
was to understand participants’ creation process and the properties

https://www.gapminder.org/data
https://edxeducation.com/portfolio-item/2cm-linking-cubes-1000pcs-12012
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series
https://www.learningresources.co.uk/snap-cubesr-set-of-100
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of their visualization design. After both tasks, we asked them about 
their overall experience with the toolkit. 

4.6 Method of Analysis 
To be able to extract information on (i) the construction and contex-
tualization process and (ii) the properties of the fnal visualization 
designs we developed coding schemes for the videos and pictures: 

4.6.1 Analysis of the Creation Process. We analyzed the videos, us-
ing a qualitative and iterative approach, inspired by the approaches 
of Wun et al. [52] and Huron et al. [27]. We used the ethogram as 
created by Wun et al. [52] as a reference, but refned it to meet our 
apparatus (3D blocks instead of 2D tiles and the inclusion of labels) 
and study aim (role of labeling in the creation of physicalizations). 

The frst pass involved two researchers performing open coding 
to identify the behaviors of interest. Once the coding scheme was 
established, there was primarily one coder, with random checks to 
verify researcher agreement. 

In total, we coded 13 types of actions across 3 activity categories 
(Table 1). Additionally, we captured when which out of 4 label types 
(title, sequential, categorical, and value) was interacted with. 

Activity category Action Description
Read Read the data table.
Verify Verification of visualization, i.e. compare 

with data table and/or count blocks.
Correct error Correct an error.
Collect Collect (and count) blocks in hand, canvas 

or workspace.
Organize Organize (constructs of) blocks spatially in 

the canvas, without placing.
Build in hand Build block constructs in hand.
Build in canvas Build block constructs in the canvas, 

without placing.
Place in canvas Place block constructs in the canvas.
Rearrange Rearrange and place block(s) in the canvas.
Placeholder Place placeholder block(s) in canvas for 

labeling purposes.
Order Order labels in the workspace.
Label Place labels in canvas.
Relabel Rearrange label(s) in canvas.

Data activities

Label activities

Block activities

Table 1: Ethogram of activity categories and actions identi-
fed in the video data. 

4.6.2 Analysis of Visualization Design. We analyzed the pictures 
taken by participants after the completion of the physicalization 
creation process to identify (i) the visualization type; (ii) compo-
sition; (iii) color association; (iv) axis mapping; (v) data labeling 
position; and (vi) labels’ reading direction. These codes emerged 
during an iterative process of analysis of the resulting physicaliza-
tions and aim to describe how the blocks and labels were mapped 
and distributed on the canvas to visualize the provided dataset. 

Visualization type describes the distribution of blocks and the 
use of the multi-direction stacking afordance of the toolkit in the 
canvas. 3D visualizations utilize multiple levels of stacked blocks 
to distribute data values using height (z-axis) within the 3D space. 
On the other hand, planar visualizations were constructed using a 

single level of blocks, thus distributing them only in the 2D space 
(fat surface, x and y-axis). For instance, blocks organized in towers 
(stacked) are described as 3D, whereas visualizations that do not 
stack more than one block in the canvas are planar. 

Composition refers to visualization archetypes based on the dis-
tribution, dispersion, organization, and/or positioning (location) of 
blocks and groups of blocks within the canvas space. Composition 
archetypes emerged from the analysis of all the resulting physical-
izations, grouping them by look-alike block distributions as new 
archetypes appeared. For instance, blocks organized equidistantly 
and dispersed across the canvas belong to a diferent archetype 
than those not organized equidistantly; or those clustered in one 
corner of the canvas. 

Color association describes how participants use color afordance 
of the toolkit. Generally, the color of blocks could be used to map 
sequential or categorical attributes from the dataset into the canvas 
space. In contrast, the number of stacked/grouped blocks is used to 
represent values. 

Axis mapping refers to the use of the canvas space to map se-
quential and categorical attributes into the x and y-axis (from the 
viewer’s point). For instance, a physicalization that utilizes the hor-
izontal direction (x-axis) to spread year values (sequence), whereas 
the canvas depth (y-axis) is used to map seasonal values (categories). 

Data labeling position provides information about the location 
of each of the 4 label types: title, sequential, categorical, and value 
labels. For instance, whether a label is located on the canvas, next 
to a block, on top of a value block or a placeholder block, or onto 
one of its faces (in the z-axis). 

Labels’ reading direction registers the orientation of each label 
type from the participant’s point of view. This describes if the label 
can be read from their perspective (in a default direction), it is 
upside down, or rotated on an approximately 90 degrees angle; and 
whether all labels follow a consistent direction pattern or are in 
mixed directions. 

4.6.3 Analysis of Influence of Orientation. We analyzed the changes 
participants made to the physicalization’s labels after each shift in 
orientation (three instances) using the pictures they took at the end 
of each iteration. We followed the analysis of visualization design 
and registered the changes in data labeling position and reading 
direction for each of the four types of labels (title, sequential, cat-
egorical, and values). In addition, we compiled a list of actions as 
descriptors of the changes in position or tweaks and their occur-
rence per participant. For instance, a title label moved from the back 
of the canvas to the front, or value labels moved from the canvas 
to the top of towers of blocks were described as a “relocation”. Sim-
ilarly, changes in orientation of labels or placeholders to preserve 
their reading direction were described as “rotations”. Finally, we 
refned the list of actions as new ones emerged and organized the 
resulting dictionary in clusters when appropriate, e.g., grouping 
actions of low occurrence. 

5 FINDINGS 
To answer our research question we structured the fndings in three 
sections. The frst section presents an overview of the construction 
and contextualization process when creating a physical visualiza-
tion. The second section elaborates on the relation between the 
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Figure 2: Activity categories over time for each participant for tasks 1 and 2: data (■), block (■), and label activities (■). 

physical and textual properties of the visualization design. The last 
section shows the infuence of orientation on the changes to the 
textual properties of the physicalization. 

Overall, we found that (i) the creation of physicalizations is an 
intertwined process of label and block activities and unique per 
participant, (ii) the fnal visualization design is an integration of 
data labels and physical constructs, and (iii) the relations between 
these labels and constructs are infuenced by orientation changes. 

5.1 Construction & Contextualization Process 
Herein, we discuss the role of labeling during the physicalization 
creation process. We frst discuss the actions observed in general, af-
ter which we go into further detail on behavioral patterns observed 
within the label and block activities, and across activity categories. 

5.1.1 Overall creation process. Across all 32 tasks (16 participants 
× 2 tasks), participants spent on average 13 minutes to complete the 
task (σ = 4.5 minutes). 9 participants performed task 2 (T2) faster 
than task 1 (T1) on average by 4 minutes, whereas 7 participants 
performed T2 slower than T1, on average by 3.5 minutes. 

Looking at the occurrence of activities over time, we observed 
that the construction and contextualization of physicalizations is 
an intertwined process, as illustrated in Figure 2. This means that 

Figure 3: Diferent approaches to ordering labels (■): at the 
very beginning of the task (P14-T2), after block activity (■) 
took place (P1-T2), or at the very end of the task (P10-T2). 

labeling happens throughout the creation process rather than at 
the end. Across all participants and tasks, on average 53.5% of their 
time was spent on any type of block activities, 22.7% on any type 
of labeling activities, and 23.7% on any type of data activities. 

Data activities such as looking at the data table generally hap-
pened throughout the process, as can be seen from the short time 
periods throughout the task (Figure 2). Block activities appear in 
longer periods of time clustered together. Lastly, label activities 
vary from short time periods throughout to clusters of longer time 
periods spread across the task, for example at the very beginning of 
a task to plan out the visualization design or at the end to complete 
the block constructs. Figure 4 provides a further detailing of the 
activities observed and the average time spent on each. 

Following the overall process observations, we zoom in on the 
behavioral patterns within and between the diferent activity cat-
egories. For example, some participants built all constructs frst 
(block activities), and then labeled the whole visualization (label 
activities), whereas others applied a more parallel process in which 
block and label activities alternated and/or intertwined. For an 
overview of the timelines per participant per task please refer to 
the supplementary material. 

5.1.2 Label activity paterns and label types over time. For each task, 
we extracted when which out of 4 label types was handled, and 
analyzed the relation between ordering, labeling, and relabeling. 

Ordering. For 16 tasks (50%) we observed the ordering of labels 
at the beginning of the creation process (before any block activities). 
For example, P14-T2 in Figure 3 and as illustrated in Figure 4 by 
‘Ordering labels’. In contrast, we found that for 7 tasks (21.9%) 
ordering happened either along the creation process – such as P1-
T2 in Figure 3 – or at the end (after block activities took place) – 
see P10-T2 in Figure 3. Lastly, the 9 remaining tasks (28.1%) did not 
involve any ordering of labels at all. 

Labeling. Looking at the use of each label type over time we 
observed diferent strategies: 

• Title labels: For more than half of the tasks the title label was 
placed at the very end (f = 19; 59.4%), whereas for 13 tasks (40.6%), 
the title label was placed at the beginning or frst half of the task. 
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Figure 4: Illustrations of the observed Block and Label actions, and the percentage of the average time spent on each action 
that appeared during the creation process. 

• Sequential & Categorical labels: We observed the placement of 
sequential labels was performed (i) throughout the task whilst 
building sequential block constructs (f = 12; 37.5%), or (ii) at 
the beginning or frst half of the task (f = 12; 37.5%). For the 
remaining tasks, this happened at the end of the process (f = 
8; 25%). For categorical labels, we observed that they are placed 
either at the beginning (f = 9; 28.1% ) or frst half of the task (f 
= 8; 25%); during the fnal half (f = 3; 9.4%) or at the end of the 
task (f = 9; 28.1%); or spread out during the task (f = 3; 9.4%). 
When we cross-referenced the placing of sequential and categor-
ical labels, we observed some participants placed both of them at 
the beginning of the task to plan the visualization (f = 9; 28.1%); 
whereas others preferred to place both at the end (f = 6; 18.8%). 
Moreover, some participants chose to place categorical labels in 
the beginning (f = 6; 18.8%) or the end of the task (f = 5; 15.6%) 
whilst sequential labeling was spread across the task, placing 
them either before or after a sequential construct was created. 

• Value labels: For the majority of tasks, the labeling of values 
happened at the end of the task (f = 25; 78.1%), after the physical 
constructs were created. Of these tasks, 7 spent a longer period of 
time on placing all value labels, 5 spent a shorter period of time 
on creating a single key, and 2 involved the placement of value 
labels at frst after which a key is created as well (P4, P9). For 
2 tasks (6.3%) a longer period of time is spent on value labeling 
at the beginning or frst half of the task. For instance, P14 spent 
time placing labels to plan out their visualization design, whereas 
P3 did the same to create a ‘legend tower’ (Figure 6). Lastly, for 5 
tasks (15.6%) the value labeling happened throughout the task. 
Relabeling. We observed that relabeling generally occurred for 

categorical and sequential labels rather than for value and title 
labels. To give an example, P8 placed categorical labels on the frst 
bar charts they build, but as they got occluded by the subsequent 
constructs, they updated the categorical labeling after all physical 
constructs were fnished. In contrast, P14-T1 relabeled each value 
label as they built physical constructs, after they had placed all labels 
at the beginning of the creation process to plan their visualization. 

5.1.3 Block activity paterns. For each task we extracted which 
block action(s) involved the largest percentage of time and whether 

or not they occurred in a chain of actions. To give an example, 
Figure 5 shows that for P6-T2 the most occurring chain of actions 
is collect, build in hand, and place in canvas. Overall, we observed 
four general strategies: 

• Collect – build in hand – place in canvas (f = 10; 31.3%). 
• Place in canvas (f = 9; 28.1%). 
• Collect – place in canvas (f = 8; 25%). 
• Build in hand – place in canvas (f = 5; 15.6%). 

The occurrence of these diferent strategies to build and place 
constructs can be explained by the afordances of the apparatus. The 
physical blocks allow for the construction and ‘clicking’ together 
in multiple ways (in contrast to stackable tiles). 

Figure 5: P6-T2 illustrates the block activity pattern collect 
(■) – build in hand (■) – place in canvas (■). 

Organization. We observed diferent strategies in the organi-
zation of blocks. For instance, P5-T1 organized multiple block con-
structs on the canvas before placing them (see Figure 6). Moreover, 
P13-T2 frst repeats the collection and organization of blocks within 
the canvas (Figure 4; ‘Organizing blocks’), after which they start 
placing all of them. 

Rearrangement. For 4 tasks (12.5%), we observed that a longer 
period of creation time was dedicated to the rearrangement of one 
or more blocks after their placement, for instance halfway through 
and/or at the end of the task. 

5.1.4 Paterns across block and label activities. If we look at the 
relation between block and label activities, generally, we observed 
that for 6 tasks (18.8%) all block activities were performed frst, 
after which label activities were done (for example Figure 7; P16-
T1). For the remaining 26 tasks (81.3%) we observed an alternating 
and/or intertwined process of block and label activities; meaning 
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Figure 6: P3-T1 showing their ‘legend tower’, P5-T1 organizing block constructs on the canvas before placing them, P7-T1 
simplifying construction through rotation of the canvas, and P15-T1 using a label to assist in reading the data table. 

that participants were alternating between longer periods of time 
spent on label or block activities (Figure 7; P4-T2) or spent shorter 
periods of time on label and block activities subsequently, resulting 
in a more intertwined process (Figure 7; P14-T1). 

Other examples show longer time periods of isolated label or 
block activities at frst, that become shorter and more intertwined 
over time (Figure 7; P1-T1), or vice versa, planning out the visu-
alization using an intertwined process, after which isolated block 
and label activities are performed (Figure 7; P5-T2). 

Figure 7: Diferent patterns across block (■) and label (■) 
activities: performed subsequently (P16-T1), in alternation 
(P4-T2), labeling after which block and label activities are 
intertwined (P14-T1), from alternation towards intertwined 
(P1-T1), and from intertwined towards alternation (P5-T2). 

Figure 8: Examples of intertwined patterns across block and 
label activities: P3-T2 developed a pattern of collect (■), 
build in hand (■), place (■), and label (■). P8-T1 used place-
holders (■) while labeling each sequence label. 

An example of a fully intertwined process of block and label 
activities is P3-T2 (Figure 8). They mentioned that they frst used 
the sequential and categorical labels to plan out the canvas, and 
placed each value label as they build constructs for each data point. 

Lastly, looking at the placement of placeholder blocks meant for 
labeling, we observed that this often occurs in parallel or in close 
proximity of label activities (Figure 8; P8-T1). 

5.1.5 Paterns across data and label activities. Looking at the rela-
tion between data and label activities, we observed that when block 
activities occur before label activities, this can infuence the need 
for data activities, as physical constructs can be used as reference 
and/or means of verifcation. 

For the 6 tasks that participants frst performed all block activi-
ties and then labeling, we found that they did not look at the data 
table while labeling, as they could use their physical constructs 
as reference for extracting values. Similarly, we observed this for 
time periods throughout the alternating and/or intertwined pro-
cesses, and especially at the end of a task when placing value labels. 
The placement of value labels at the end of a task was regularly 
accompanied by verifcation before, during, or after the labeling. 

5.1.6 Other activities. We observed that participants sometimes 
used creative methods to support the creation process. For example, 
P7 rotated the canvas repeatedly to bring the area of interest closer 
to them and simplify construction (Figure 6; P7-T1), whereas other 
participants used the storage box or other attributes to cover up 
parts of the paper data table to guide reading (Figure 6; P15-T1). 

Regarding the use of the diferent block faces, we observed that 
participants either cared much or not at all about the direction of 
the open and closed block faces. Participants that paid close atten-
tion to the order of block faces tended to build slower and/or more 
carefully as precision was required. Lastly, P4 and P8 regularly 
clicked the wrong block faces together and had to correct them-
selves. They are the only two participants that showed some minor 
struggles when constructing the blocks in 3D space, due to their 
afordance of being attachable in multiple directions. Participants 
identifed diferent advantages for the open and closed faces: they 
mentioned that closed faces could create more “neat” or “peaceful” 
visualizations, whereas the open faces could simplify comparison 
through counting. P16 mentioned the potential of the block faces 
(open and closed) to encode further information/detail, i.e., meaning 
(“to communicate a food item with or without sugar”). 
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Figure 9: Overview of all visualization designs created by participants. An enlargement is available in supplementary material. 

5.2 Visualization Design 
In this section, we elaborate on the visualization type and composi-
tion, color association, axis mapping, and use of data labels as part 
of the fnal visualization designs created by the participants. 

5.2.1 Visualization type and composition. Overall, we observed 5 
diferent visualization archetypes across all 32 tasks. Figure 9 shows 
an overview of the visualization designs created by the participants 
and their corresponding archetypes, including: 

• Grid: Equidistant blocks dispersed across the canvas (f = 11; 
34.4%), for example, P2-T1. 

• Line: Blocks placed subsequently in a single direction (f = 8; 
25%), for example, P10-T1. 

• Clusters: Blocks systematically organized in multiple graphs 
(f = 6; 18.8%), for example, P1-T1. 

• Collection: Blocks randomly organized in multiple graphs (f 
= 4; 12.5%) for example, P6-T1. 

• Compact: Blocks ‘clumped together’ with no dispersion across 
the canvas (f = 3; 9.4%), for example, P4-T1. 

Out of all 32 physicalizations created, 27 physicalizations used 
the physical 3D space to visualize data in an upward direction 
(height). Only 5 physicalizations were created within the plane, 
by 4 diferent participants (Figure 9; indicated by ‘planar’). 4 of 
these physicalizations were of the line archetype, either horizontal 
or vertical within the canvas, whereas outlier P13-T2 created a 
collection of wafe charts in the canvas (Figure 9; P13-T2). 

We observed that for 6 physicalizations diagonal spacing was 
introduced into the x and/or the y-axis (Figure 9; indicated by 
‘diagonal’). P10-T2 created a complete diagonal line visualization, 

P6-T2 created a collection of diagonal graphs, P9-T2 and P14-T1 
created a grid with a diagonal ofset in the x-axis, and P16 created 
a line of diagonal graphs (T1) and diagonally spaced clusters (T2). 

Lastly, P12-T2 created a special case of a collection, as the spatial-
ity in the canvas was used to represent a geographical map of the 
countries, to create a more “impactful” visualization to represent 
carbon emissions (Figure 9; P12-T2). 

5.2.2 Color association. For 28 tasks (87.5%) the color of blocks 
was associated with categorical attributes. Hence, participants used 
color to diferentiate between countries or seasons. In the other 4 
tasks (12.5%) color was used to diferentiate between years (sequen-
tial attributes). Looking at the exact colors that were allocated to 
categories of the datasets, we observed more consistency in color as-
sociation with seasons than with countries. Participants explained 
diferent approaches to the color mapping, which were either (i) as 
a utility to separate data (f = 12; 37.5%), or (ii) to create a conceptual 
mapping to familiar concepts (f = 20; 62.5%). 

For the 16 tasks that involved the dataset on UK rainfall, the 
most common color allocations were green for spring (f = 13), blue 
for winter (f = 12), orange for autumn (f = 12), and yellow (f = 
8) or red (f = 5) for summer. For 13 tasks participants consciously 
allocated color to seasons, based on associations between color and 
temperature (i.e. blue for a cold winter temperature), or seasonal 
landscape (i.e. yellow for a “dry climate” during summer). As an 
outlier, P14-T2 strategically kept the color red aside to highlight 
extremums in rainfall per year (see Figure 9; P14-T2). 

For the 16 tasks that involved the dataset on CO2 emissions, the 
most common color associations were orange for Netherlands (f = 
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7), red for Spain (f = 6), red (f = 4) or blue (f = 4) for the United 
Kingdom, yellow (f = 5) or green (f = 4) for Belgium, and blue (f 
= 5) or green (f = 4) for Norway. For 6 tasks participants tried to 
allocate color to countries, based on the colors of their fag (red 
for Spain) or other colors of national importance (orange for the 
Netherlands), followed by a process of elimination. 

Overall, participants’ strategy in the use of color association is 
dependent on the topic of the dataset. Accordingly, results suggest 
the adoption of a pragmatic approach to relate colors to familiar 
concepts frst (e.g., color hue with the temperature of seasons, or 
fags), followed by the association or allocation of the remaining 
color resources by process of elimination. 

5.2.3 Axis mapping. The most common mapping of axes we ob-
served was that both sequential and categorical attributes were 
represented from left to right (f = 7; 21.9%). For instance, we ob-
served 6 line and 1 line (diagonal) archetype displaying this pattern. 
Besides that, we observed equal occurrences of physicalizations that 
represented (i) sequential data from left to right, and categorical 
data from either front to back or back to front, and (ii) categorical 
data from left to right and sequential data from front to back or vice 
versa (f = 4; 12.5% for each occurrence). Lastly, we observed for 4 
physicalizations that one data attribute was represented from left 
to right, while the other attribute was represented through spatial-
ity. For example, for 3 physicalizations of the collection archetype, 
categorical data was represented from left to right and sequential 
data was represented using dispersed positioning in the plane. 

Although participants generally followed the structure of the 
data table while constructing their physicalization, the only times a 
randomization of categorical data took place was for the emissions 
dataset, for which participants randomized the order of countries, 
consciously or not (f = 6; 18.8%). This also happened a single time 
for the rainfall dataset, which was adapted by choosing a diferent 
season as the starting point for each year. 

Hence, we conclude that generally for two data attributes (table 
top to bottom), if one attribute is represented left to right, the other 
is represented either back to front or vice versa, with no particular 
preference for categorical or sequential data in either axis. 

5.2.4 Data labeling position and reading direction. Overall, for the 
majority of tasks (f = 28; 87.5%) participants placed all labels in 
their default reading direction (left to right, labels legible from the 
viewing point). However, we observed diferent approaches in the 
positioning and orientation for each label type: 

Figure 10: Diferent approaches to reference labels: P4-T1 
placed labels for each distinct value on top of the physical 
bar charts, whereas P5-T2 placed labels on three diferent 
sides of the physical constructs to anticipate viewing from 
multiple orientations. 

Title: For the majority of tasks the title label was placed on 
the canvas (f = 28; 87.5%) and for 4 (12.5%) on the side or top 
of placeholder blocks (Figure 9; P1 & P8). Looking at the relative 
location of the title, for 14 tasks it was placed in the front of the 
canvas (of which 6 in the center), for 11 tasks in the back (of which 
7 in the center), and for 7 tasks in the middle area (of which 3 on 
the left). Lastly, we observed that 2 participants placed title labels 
in counterclockwise reading direction (f = 3; 9.4%, Figure 9; P1-T1, 
P11-T1/2) or clockwise direction (f = 1; 3.1%, Figure 9; P1-T2). 

Sequential attribute: For the majority of tasks (f = 28; 87.5%) 
the sequence labels were placed on the canvas alongside the physi-
calization. For 2 tasks they were placed as a key in the back center 
of the canvas, either with (Figure 9; P11-T2) or without placeholder 
blocks to communicate the color mapping (Figure 9; P12-T2). P8-T1 
placed the sequence labels on yellow placeholder blocks alongside 
the physicalization and P10-T2 placed them against the physical 
data points of the physicalization. Lastly, we observed that 1 par-
ticipant placed sequential labels in a counterclockwise reading 
direction (f = 2; 6.3%, see Figure 9; P1-T1/2). 

Categorical attribute: For 18 tasks (56.3%) the category labels 
were placed on the canvas alongside the physicalization. For 11 
tasks they were placed as a key, either on the canvas alongside 
placeholder blocks (f = 6; 18.8%, for example, Figure 9 P2-T2), or 
on top of the placeholder blocks (f = 5; 15.6%, for example, Figure 9 
P6-T1). Looking at the relative location of the category key within 
the canvas, the majority (f = 7; 21.9%) was placed in the front of 
the canvas (of which 4 on the right). For 3 tasks the category labels 
were placed or attached against data points of the physicalization 
(Figure 9; P8-T1, P10-T1, and P13-T1). P13 mentioned that for each 
country bar chart, they placed the country label on the bar with the 
highest value for visibility. Lastly, we observed that 1 participant 
placed categorical labels in counterclockwise reading direction (f 
= 2; 6.3%, Figure 9; P1-T1/2). 

Data values: For 15 tasks (46.9%) all value labels were used to 
indicate each individual data point, either by placing them on top of 
each bar chart (f = 13; for example Figure 9; P1-T1), or on the canvas 
in front of each bar chart (f = 2; for example Figure 9; P12-T1). For 
11 tasks (34.4%) a single value label was used to create a key, either 
by placing it on the canvas by itself (Figure 9; P10-T1), alongside 
a placeholder block (Figure 9; P5-T1), or on the top (Figure 9; P2-
T2) or the side (Figure 9; P8-T1) of the placeholder. Lastly, there 
were 6 tasks in which multiple value labels were used to create 
reference points for data extraction. For example, P3-T1 created a 
‘legend tower’ for sideways height comparison with the bar charts 
(Figure 6; P3-T1). Likewise, P4 included reference labels for each 
distinct value on top of the bar charts, as well as included a key at 
the right side of the physicalizations. However, they explained that 
when viewed from above, the reference labels allowed for value 
estimation of bars of similar height (Figure 10; P4-T1). P9-T1 placed 
reference labels on the canvas in front of the frst row of data points 
(Figure 9; P9-T1), and P13-T1 placed them against the frst row of 
data points (Figure 9; P13-T1). Lastly, in addition to a key, P5-T2 
provided reference labels on 3 sides of the bar charts to anticipate 
for viewing from diferent orientations (Figure 10; P5-T2). Moreover, 
we observed that 2 participants placed data value labels in mixed 
reading directions (f = 1; 3.1%, see Figure 9 P1-T1). 
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In sum, participants placed title labels in a central location on the 
canvas. Similarly, sequence labels were placed on the canvas, but 
then alongside one of the sides of the physicalization. In contrast, 
category labels were placed on the canvas alongside the physical-
ization, as well as a key separate from the physicalization to encode 
color mapping. Lastly, for almost half of the tasks all value labels 
were used to indicate each individual data point, whereas, for a 
third, a single value was used to create a key. 

5.3 Infuence of Orientation 
Herein, we discuss the role of labeling when viewing physical-
izations from diferent orientations. Participants were asked to 
rotate the canvas with 90 degrees increments and assess their labels 
(whether they wanted to change the labels to read them efectively 
and comfortably). We elaborate on the challenges encountered with 
the physical constructs within the canvas and the coping strategies 
participants adopted when manipulating labels to more efectively 
convey the information presented in their physicalizations. 

5.3.1 Challenges of orientation. The rotation of the canvas intro-
duces viewing perspective challenges that afect the digestion of 
the presented labels. Taking as the starting point the most common 
physicalization construction, we will unfold the potential issues 
encountered during the iterative change of orientation. 

We take as a reference a 3D grid of data points with value la-
bels on top of the bars; categorical and sequence labels placed on 
top of the canvas alongside the bars’ rows/columns, and the title 
label located on the canvas at the front (all labels legible from the 
viewing point). For instance, after a 90 degrees rotation, all labels 
are read sideways and categorical/sequential labels are hidden be-
hind stacked blocks. After a second 90 degrees change, labels are 
displayed upside down and the title label is pushed to the far end 
of the canvas. As such, each orientation change introduces (i) a 
change in viewing position afecting label legibility and salience, 
and (ii) a change in characters/numbers reading direction. These 
factors introduce the following challenges: 
• Reading Direction occurs when text is not displayed in the de-
fault/legible orientation (characters displayed upwards for ease 
of reading), but is rotated clockwise, counterclockwise, or is pre-
sented upside down, thus introducing higher cognitive demand. 

• Occlusion occurs when labels are hidden behind block constructs, 
making viewing from all directions more difcult. 

• Proximity and Organization occurs when labels are relocated, 
increasing their distance from the viewing point, and therefore 
afecting the salience of information and the users’ predefned 
mental model of the physicalization. 

• Ordering and Direction occurs when the order of labels alters their 
meaning, hindering the digestion of the information displayed. 
For example, a sequence of year labels that loses chronological 
order upon multiple orientation changes. 

5.3.2 Changes to data labeling as a coping strategy. In our study, 
participants were invited to modify (as they wished) the display of 
labels after each viewing orientation iteration. Herein, we elaborate 
on the changes participants made to the data labeling across the 
orientation conditions. In total, there were 96 conditions (16 partic-
ipants × 2 tasks × 3 orientations). We did not fnd any signifcant 

diferences between the orientation conditions (clockwise or coun-
terclockwise). Overall, we observed 4 diferent types of changes 
made to the data labels (Table 2) listed in order of most occurrence: 

Table 2: Changes made to each label type – title (■), sequence 
(■), category (■), and value (■) – across the 3 orientations. 

Rotation in a (counter)clockwise direction to set the reading 
direction back to the original default after the orientation change (f 
= 61-72; 63.5-75%). Although some participants changed the reading 
direction of all label types (P2, P3, P4), others prioritized changes 
to the orientation of categorical and sequential labels over title and 
value labels, specifcally when these were upside down after the 
second orientation change (P6, P13). However, some participants 
reported not caring about reading direction at all (P1, P5). 

Relocation of labels within the canvas to avoid occlusion, in-
crease proximity, or preserve organization (f = 26-41; 27.1-42.7%). 
Generally, participants preferred to relocate title labels over the 
other types across orientation changes. This could be caused by a 
desire to maintain the original presentation of the title (P4, P10) or 
to place the label in a position that is salient and avoids occlusion. 

Introduction of an Ofset in relation to the physicalization to 
compensate for the occlusion of labels (f = 5-6; 5.2-6.25%). Ofset 
strategies occur when modifying sequential and categorical labels 
(found alongside the block constructs) as they might get occluded 
after each change of orientation. 

Other outlier changes (f = 1-2; 1-2%), such as the Re-purposing 
of blocks to use them as a key to two diferent data attributes (e.g., 
P5-T1 reused the block representing the scale to create a legend for 
categorical attributes). Moreover, we observed the Addition of new 
blocks to create a category legend and avoid occlusion (P5-T1), or 
of unused value labels to add detail (P13-T1). 

5.3.3 Changes to physical constructs as a coping strategy. In addi-
tion to the changes to the data labeling during the diferent orien-
tation iterations, we observed participants’ strategies to try and 
anticipate orientation challenges during the creation process. These 
strategies emerged from the accumulation of participants’ out-loud 
rationalization of “improvements” across tasks as a response to the 
changes of orientation experienced and/or anticipated. 

The following strategies are a refection of isolated instances of 
behaviors observed during the study to provide further evidence of 
coping mechanisms adopted at the creation level that we aim to be 
illustrative as much as they could be guiding for future work. 

Space Dispersion and Organization: 7 participants played with the 
use of the canvas space (e.g., distancing blocks, centering the physi-
calization). This afected the organization of data blocks to facilitate 
the digestion of information and avoid occlusion. For instance, P1-
T2 and P2-T2 reported increasing the space between bar charts 
(dispersion), whereas P4-T2 mentioned placing their data blocks in 
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the middle (centering) of the canvas to make it “look good” and have 
space around them. Similarly, P6-T2 indicated they decided to add 
space between bar charts so the visualization looked less “messy”, 
but they were concerned the use of space could convey meaning (e.g. 
separate diferent categories) when they aimed to solely improve 
readability. On the other hand, P9-T2 reported deciding to spread 
out bar charts so they do not visually block each other, whereas 
P13-T2 pushed groups of bars as far away possible so they would 
not “distract” each other. Moreover, P16-T2 described organizing 
their bar charts so the smallest values (e.g. countries with lower 
CO2 emissions) were placed on the outskirts of the canvas, whereas 
the highest values (e.g. countries with higher CO2 emissions) were 
placed at the center so they would not be occluding. 

Introducing Diagonal Ofset: 3 participants experimented with 
the addition of a diagonal ofset between data values. For instance, 
P10-T2 increased the separation in both the x and y-axis to cre-
ate a “diagonal” line rather than mapping values on a single axis. 
Moreover, P9-T2 introduced a diagonal ofset to display their grid 
as a rhomboid rather than a square, whereas P6-T2 introduced a 
diagonal ofset for each bar chart in a collection archetype. 

Addition of Key Placeholder: 5 participants introduced the use of 
blocks as key placeholders or legends. This was aimed to avoid the 
occlusion of labels behind blocks as legends were pulled away from 
the location of the physicalization structure. For instance, P8-T2 
discussed their addition of a key aimed to facilitate looking at it 
from any possible angle. Additionally, P5-T2 mentioned placing 
a legend centered within the canvas to anticipate “hidden” labels 
after a 90 degrees turn, whereas P13-T2 wanted to use the free space 
available in the middle of the canvas to place all the information 
necessary to read their visualization (a legend for categories’ color 
mapping and sequential labels to indicate organization). 

Experimenting with Archetypes: 3 participants experimented with 
the use of the canvas space, thus changing the composition of their 
physicalization and creating a diferent archetype (e.g., moving from 
a 3D visualization to a planar one). For instance, P13-T2 mentioned 
“making it fat” and avoid building diferent stories to facilitate 
understanding the data from every angle (and tackle occlusion). 
P2-T2 discussed the trade-of of the use of planar visualization as 
it introduces directionality (i.e., once rotated 90 degrees it looks 
“sideways”), which P15-T2 felt was limiting even though a planar 
visualization could remove occlusion problems. 

Highlighting: 1 participant (P14-T2) decided to highlight the ex-
tremums of the data values with diferent colored blocks to improve 
the visualization of minimum and maximum values at a glance with-
out necessitating to estimate height diferences in the 3D space. 

6 DISCUSSION 
We investigated the role of data labeling in the physicalization 
creation process, the visualization design, and the resilience of data 
labels across orientations. Our fndings show that (i) label activities 
are alternated and/or intertwined with block activities during the 
creation process, (ii) labels are integrated with physical constructs 
in the fnal visualization design, and (iii) this relation between data 
labels and physical constructs is infuenced by orientation changes. 
Overall, our results suggest that the use of data labels is fundamental 
to consider for future physicalization designs. 

6.1 Towards A Principled Use of Data Labels in 
Physicalization Design 

Although physicalizations embody data in their material and physi-
cal form [30], they still beneft from the inclusion of contextualizing 
elements (i.e. data labels, axes, legend, and annotations) to support 
the extraction of information from the physical representation. 
However, despite the evident importance of providing context to 
visualizations, most related work on physicalization is not labeled 
at all [e.g. 25, 39, 54]. Physicalizations that do use contextual ele-
ments are often inconsistent or specifc to that individual design [e.g. 
22, 29, 45]. As the current defnition of physicalization [29] suggests, 
the focus is on physicality and not on ‘data labeling’ or other contex-
tual elements of the physicalization in use. Moreover, the physical 
and spatial nature of physicalizations introduces additional chal-
lenges, as it remains unclear where to locate diferent kinds of 
labels and how they accommodate multi-user scenarios. Hence, 
there is currently no principled way of contextualizing physical 
representations of data. 

The feld of Information Visualization has established ways to 
discuss and implement the contextualization of digital data repre-
sentations [19, 23]. However, it remains unclear how this translates 
to the feld of physicalization. Implementations of 2D visualizations 
in the feld of InfoVis are more homogeneous than 3D representa-
tions of data. Hence, some variance will always exist in the data 
labeling of 3D physical constructs. Nonetheless, it would be useful 
to aim for the development of a collection of ‘best practices’, guide-
lines, or at least illustrative work to, as a research feld, become 
more strategic at contextualizing physicalization design. 

It is apparent that our specifc apparatus aids in the creation of 
physicalizations of the ‘bar chart aesthetic’. However, it still allowed 
participants to create a variety of visualization archetypes going 
beyond the traditional use of bar charts. We observed that across 
these diferent archetypes, the use of data labels was consistent: the 
majority of data labels were placed in default reading direction and 
were paired and/or integrated with physical constructs (i.e. value 
labels on top of data points). Moreover, labeling was used in combi-
nation with other visualization components such as color encoding 
and axis mapping. As such, future work could investigate whether 
similar use of data labels, and similar integration of data labels with 
physical constructs will occur for a variety of physicalizations. 

6.2 Utility of Labeling in the Physicalization 
Creation Process 

Constructive Visualization work [17] previously explored how the 
use of physical tokens can support the authoring of physical data 
representations. However, these approaches focus on the construc-
tion of visual mappings, and thus far did not actively include the use 
of data labels in the authoring process. Instead, the labeling or anno-
tation of data is treated as a subsequent process to the construction 
process [27, 52], or their use is left up to participant preference [17]. 
As a result, it remains unclear what role data labeling can and/or 
should have in the creation process of physicalizations. 

As the act of data labeling is part of a larger process of construc-
tion and contextualization, we decided to study it in the context of 
a constructive visualization process. Hence, we designed a toolkit 
that follows state of the art methodology [27, 52], with the inclusion 
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of both physical tokens as well as textual labels to investigate the 
use of data labels during the creation process. Our fndings show 
that this allowed participants to alternate and/or intertwine label 
and block activities during the creation process. This illustrates the 
utility of active inclusion of data labels for physicalization creation. 
Moreover, we observed that the use of data labels can serve diferent 
purposes: to plan the visualization before including physical con-
structs, to guide the creation of subsequent physical constructs, and 
to verify constructs afterward. Thus, the use of data labels allows 
verifying physical constructs ad hoc, in particular when the label 
and block activities are heavily intertwined. Hence, the inclusion 
of data labels could provide people with more agency within the 
creation process of physicalizations. 

The extended infovis pipeline model [46] describes the contextu-
alization of physicalizations as ‘decoration’ operations as part of 
presentation mapping. However, we observed that labeling activities 
can occur across diferent pipeline operations, such as the loading 
of data by ordering data labels in the workspace, or as part of visual 
mapping as they are organized as elements in the canvas alongside 
block constructs, before the fnal presentation mapping takes place. 

To explain this, we take interest in the interrelation principle. 
Wun et al. [52] described this principle as the intertwined nature of 
operations due to the physical nature of the authoring tool. How-
ever, as they did not actively include data labels in the toolkits 
discussed, no refections are provided on how labeling fts within 
this principle. We argue that similar interrelated processes occur 
for data labels as for physical tokens. To give an example, order-
ing data in the workspace outside the canvas is loading data [46]. 
However, the moment data labels are introduced in the canvas, 
relations are created between the data label and (i) other data la-
bels, (ii) other block constructs, and (iii) relative position within the 
canvas. As such, data labels could be considered as building blocks 
in themselves, not just complementary to physical constructs. 

Although Huron et al. [27] provide a conceptual fow diagram 
of common construction behaviors, this does not include the act of 
annotation as it happened as a secondary task after construction. 
Arguably, the act of appropriating data labels within the canvas 
and in relation to physical constructs can be described through 
those diagram elements as well (i.e. organize, arrange, merge, align) 
and should be considered alongside physical tokens in the process. 
Hence, it might be necessary to expand existing conceptual models 
and/or introduce new models as data labeling is an interrelated 
process within itself, and in relation to construction activities. 

6.3 Data Label Resilience across Orientations 
Prior work has demonstrated the infuence of orientation, introduc-
ing ambiguity when extracting information from physical represen-
tations of data [40], and discusses the diferent types of occlusion 
that can occur due to user orientation. In line with this work, we 
observed challenges for efective use of data labels due to orien-
tation changes: the correction of reading direction, prevention of 
occlusion, and maintenance of proximity and organization. 

We argue that the introduction of data labels can mitigate the 
challenges introduced by physical 3D space, such as directionality, 
occlusion, and user multiplicity. Whereas the use of duplicate data 
labels might seem a straightforward solution, the necessity for 

duplicates would ‘clutter’ the visualization. To simplify cognitive 
digestion, we argue for the use of reactive and resilient data labels. 

Reactive data labels can accommodate the point of view of the 
user, and solve occlusions created through physical constructs. To 
acquire this, two parallel processes would need to happen: (i) data 
labels follow the point of view of the user to maintain reading di-
rection and proximity (user-label relation), but are also reactive to 
(ii) the physical composition or layout of the physicalization, to pre-
vent occlusion and maintain efective ofsets (label-layout relation). 
If this is done successfully, it results in a user-label-layout relation 
that supports efective extraction of information from physical data 
representations for any orientation. Our results on coping strate-
gies through a change in data labels (and to some level physical 
constructs) are illustrative for ways in which future physicaliza-
tion designs could counteract orientation infuences (such as the 
rotation, relocation, and ofset of labels). Depending on the system 
implementation, these strategies can be informative for the design 
of reactive data labels and/or adaptable physical constructs: 

For static physicalizations [e.g. 29, 43] data label resilience needs 
to be high, as the physical construct is rigid and cannot adapt to 
viewing angle and/or perspective changes. Hence, accommodation 
for orientation infuences is fully dependent on data label design 
and adaptability. To give an example, data labels follow the viewer 
orientation to adapt reading direction, and if a physical construct 
gets occluded in a particular orientation, the label can ‘foat’ above 
or aside the construct to notify the viewer of its existence. 

For dynamic and interactive physicalizations [e.g. 16, 18, 45] 
data label resilience can interplay with the specifc actuation tech-
nologies implemented. Hence, data label design and/or physical 
construct actuation counteract orientation infuences in parallel. For 
instance, if a physical construct gets occluded, actuation can ‘move’ 
it aside to maintain the line of sight and the data label follows. 

Moreover, on top of the interplay of data labels and actuation, 
interaction could also play a role. For instance, users could indicate 
ad hoc what information they require and manipulate the data 
labels and/or physical constructs accordingly. Our observation of 
isolated instances of strategies to cope with orientation through 
the change of physical constructs resonates with prior work on 
reconfguration strategies [41]. Herein, they found that proximity 
change was generally the most used strategy to rearrange physical 
constructs, which relates to the organization and dispersion of 
physical constructs we observed. 

Lastly, the introduction of multiple users and/or a collaborative 
context creates new challenges for data labeling as well. For efec-
tive information extraction by collaborators, there is a necessity for 
either maintaining a shared view versus the introduction of individ-
ual viewports. For example, a shared view could be accomplished 
through top-down projection or display integration in each physical 
data points, whereas individual viewports could be accomplished 
through an AR overlay or VR environment. 

6.4 Opportunities for Future Work 
In our study, we focused on a subset of physicalizations – 3D bar 
charts – that are well-established in the feld (i.e. [18, 45]). Hence, we 
can not make conclusive statements on the labeling of other types 
of physicalizations or even other implementations of 3D bar charts. 
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Additionally, other label designs (i.e. curved, embossed, transparent, 
3D), diferent ways of attaching labels and construction strategies, 
and/or more participants’ agency in designing their own labels 
could generate diverse outcomes. Hence, future work is needed to 
expand on our initial fndings for these particular conditions, to fur-
ther investigate the role of data labeling in the creation, design, and 
mitigation of physicalizations with orientation challenges. Lastly, 
in the present study, we did not record further demographics (i.e. 
occupation, cultural background, native language) that could have 
been of infuence on the observed labeling behaviors. 

First, future work could further compare the diferent strate-
gies for labeling we observed in the creation process. It could be 
valuable to compare the design outcomes of post-hoc, pre-hoc, and 
interrelated labeling activities. Moreover, we observed that data 
labeling can serve diferent purposes (i.e. to plan, guide, or verify a 
physicalization), hence, it could be further investigated what other 
purposes labeling can have beyond the creation process, such as 
self-refection or as part of the presentation to others. 

Second, although our apparatus allowed for the creation of dif-
ferent visualization archetypes, further investigation would be nec-
essary to explore the data labeling of physicalizations beyond the 
bar chart aesthetic. Subsequently, our study is illustrative of coping 
strategies through a change in data labels (and to some level physi-
cal constructs), but is not an exhaustive list of how to contextualize 
physicalizations in general. Hence, future work could investigate 
the labeling of other types of physicalizations, and expand on cop-
ing strategies for challenges due to physical space. 

Third, there are some biases introduced by the characteristics 
of our apparatus: the structure of the data table could infuence 
participants order of creating constructs, and the use of an actual 
dataset introduces recognition bias for the ones familiar with the 
specifc topics. Moreover, the current dataset was two-dimensional 
(1 sequential and 1 categorical attribute), hence, we cannot postulate 
results for other datasets that are more or less complex, i.e. a more 
complex dataset with multi-dimensional data, requiring creation in 
multiple axes. Hence, future work would need to investigate how 
our fndings translate for other datasets and toolkits. 

Lastly, as our focus was on the use of data labels for contextu-
alization, the methodology was designed to allow for data label 
alterations but not for changes to physical constructs. Hence, future 
work is needed to develop further understanding of the interplay 
between label resilience and adaptability of physical constructs. 

7 CONCLUSION 
In this paper, we investigated the role of labeling in the creation pro-
cess, fnal physicalization design, and when viewed from diferent 
orientations. We designed a custom toolkit including physical to-
kens and textual labels, and asked 16 participants to complete a total 
of 32 construction tasks. Our fndings show that (i) the creation of 
physicalizations is an intertwined process of labeling and construc-
tion activities, (ii) resulting in an integrated visualization design of 
data labels and physical constructs, and (iii) these integrated labels 
and constructs are infuenced by orientation changes. Hence, we 
argue for further development of contextualization methods for 
future physicalizations, and propose the introduction of reactive 
data labels to counteract challenges of orientation. 
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