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Abstract:

Laser beam welding manufacturing (LBW), being a promising joining
technology with superior capabilities of high-precision, good-flexibility and deep
penetration, has attracted considerable attention over the academic and industry
circles. To date, the lack of repeatability and stability are still regarded as the critical
technological barrier that hinders its broader applications especially for high-value
products with demanding requirements. One significant approach to overcome this
formidable challenge is in-situ monitoring combined with artificial intelligence (Al)
techniques, which has been explored by great research efforts. The main goal of
monitoring is to gather essential information on the process and to improve the
understanding of the occurring complicated weld phenomena. This review firstly
describes ongoing work on the in-situ optical sensing, behavior characterization and
process modeling during dynamic LBW process. Then, much emphasis has been
placed on the optical radiation techniques, such as multi-spectral photodiode,
spectrometer, pyrometer and high-speed camera for observing the laser physical
phenomenon including melt pool, keyhole and vapor plume. In particular, the
advanced image/signal processing techniques and machine-learning models are
addressed, in order to identify the correlations between process parameters, process
signatures and product qualities. Finally, the major challenges and potential solutions
are discussed to provide an insight on what still needs to be achieved in the field of
process monitoring for metal-based LBW processes. This comprehensive review is
intended to provide a reference of the state-of-the-art for those seeking to introduce
intelligent welding capabilities as they improve and control the welding quality.

Keywords: Laser beam welding; Optical monitoring; Behavior characterization;
Machine learning; Weld quality; Process model

* Corresponding author:
Email address: wudi@sues.edu.cn (Di Wu), hbchen@sjtu.edu.cn (Huabin Chen)



1. Introduction

Compared with traditional arc welding techniques, laser beam welding (LBW)
shows significant superiority in realizing automatic manufacturing processing,
high-efficiency production and accessing high-quality weld joints [1]. Also, LBW has
gained great popularity as a promising joining technology with deep penetration depth,
high precision, less distortion and good flexibility [2]. As an advanced manufacturing
technique, LBW has been widely applied to various industry fields, ranging from
small-scale manual welding to fully-automatic welding in the automotive, aerospace,
shipbuilding and electronic manufacturing fields[3]. However, LBW involves a lot of
complicated physical processes including metal melting/solidification, keyhole
formation and laser-metal interaction, which results in very complex transport
phenomena, thus the resultant weld quality is easily affected by some process
variables and defects including high-level of porosity [4], instabilities [5] and metal
spatters [6]. The potential weld defects significantly weaken the mechanical properties
of the welded parts and increased the risks of part fatigue, which resulting in a
non-acceptable welding product.

In order to improve the product quality and restrain the weld defects, and further
to better understand the in-process complex phenomena occurring in welding process,
a series of in-situ monitoring approaches have been proposed to provide valuable
information to characterize the process and control quality. The design idea of
mainstream monitoring solutions mainly depend on the utilization of the consequent
laser physical phenomena including melt pool, keyhole and plume within laser-metal
interactions. These physical phenomena carries various types of welding information
e.g. acoustic-emission [7]-[9], electrical [10]-[11], thermal radiation [12]-[13] and
visual signals [14]-[16], which are closely linked to the welding process and joint
quality. Therefore, the proper utilization of various monitoring sensors and systems is
a crucial issue for exactly describing the laser welding process. For example, a
microphone or piezoelectric element are used to collect the airborne and structure
acoustic-emission (AE) signals. Vision sensors including charge-coupled device
(CCD), complementary metal-oxide semiconductor (CMOS) and high-speed camera
with special filters are applied to capture the images of the molten pool, plume and
spatters. Spectrometer and photodiode-based sensors are utilized to collect the optical
signals include visible light (VIS), infrared light (IR) and ultraviolet light (UV)
wavelengths. The near-infrared (NIR) camera and pyrometer can be exploited to
gather the thermal signals emitting from the welding zone [22]. Complex monitoring
system usually consists of the above-mentioned sensors and various types of welding
information will be more comprehensively collected.

In recent years, some published reviews [17]-[20] introduced the effective
applications of various advanced sensing technology (i.e., vision camera, acoustic
emissions, ultrasonic testing and eddy current technique) to laser welding detection
and summarized the attempts to use artificial-intelligence (Al) technology for welding
quality recognition. In addition, the University of Kentucky Welding Research
Laboratory [21] systematically analyzed the advanced welding manufacturing as a



three-step approaches: i) pre-design that selects process and joint design based on
available processes; ii) design that uses models to predict the results from a given set
of welding parameters; and iii) real-time sensing and control that overcome the
deviations of welding conditions by adjusting the parameters based on in-situ
monitoring and adaptive control. As a matter of fact, most of the mentioned studies
mainly demonstrated the capability of measuring relevant signatures and investigated
the influences of the welding parameters on those measured quantities. Moreover, it is
predominantly the optical sensing techniques have been selected for in-situ, real-time
monitoring the LBW process due to a series of advantages of non-contact, intuitive,
integrated, flexible and multifunctional [22]. Indeed, in the mainstream literature, the
key term “monitoring” is applied to indicate the in-situ data gathering, feature
extraction and dynamic process modeling. From a statistical perspective, the term
“monitoring” refers not only to the data gathering but also to the process/defects
identification through automated alarm rules [23]. This kind of monitoring
methodology is needed to actually improve the intelligent capabilities of
next-generation LBW system. Therefore, the scope of this review mainly focuses on
the optical in-process monitoring with respect to observing, experimenting and
systematic gathering of information, special attention is given to discussions on:
in-situ sensing technology, multi-feature characterization and process modeling.

Fig. 1 shows the content structure of this review, which consists of two
mainstream processes. In forward-process (Sec. 2-Sec. 4), it begins with a detailed
introduction about the basics of laser welding and monitoring methodology, and
provided the common and advanced optical sensing techniques for observing the laser
physical phenomenon in Sec 3. Then, to achieve a quantitative characterization of
welding process, the optical feature extraction based on imaging/signal processing
methods were presented respectively in Sec 4. In feedback-process from Sec. 5, the
data-driven modeling based on machine learning techniques were summarized for
predicting and controlling the weld quality. Finally, Sec. 6 depicts the potential and
challenges about the intelligent monitoring of laser welding process and Sec. 7
concludes this review.
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2. Fundamentals of LBW and process monitoring
2.1 Physical characteristics of LBW process

Contrary to arc welding processes, the laser-based manufacturing technique
greatly enhances the processing flexibility with the contactless nature of laser light.
As a high-power-density heat source, the laser beam quickly heats up the metallic
plate surface to a certain temperature, at which the hot melt metal starts to vaporize at
the position of laser beam focus [1]. As shown in Fig. 2, two different operational
regimes of LBW process including heat-conduction type and keyhole type exist
governed by the laser power density [24]. During the conduction welding process, the
focused laser beam spot heats up the material to its melting temperature and then
quickly creates a stable melt pool on the surface of metal, but the laser power density
is not large enough to create boiling metal pool (see Fig. 2a). When the power density
increases to evaporate the material, the laser beam then drills a deep and narrow
capillary (keyhole) inside the melt pool. The keyhole will remain open and stable as
the laser welding process takes place due to the increasing evaporation recoil pressure.
In a stable keyhole, almost all the laser energy in the beam will be absorbed due to the
beam entering into the hole and reflecting inside it before it is able to escape, as
shown in Fig. 2b. Since the laser absorption is extremely high due to multi-reflection
inwards in the case of a keyhole formation, a keyhole type-based deep penetration
welding is regarded as an efficient joining process.

During laser welding process, a laser-induced plume (i.e., metallic vapour and
plasma) comprising a bright plume of evaporated metallic atoms and vapors is ejected
from laser-irradiated zone (especially a keyhole). The plume has a negative effect on
the laser welding process. It ejects at high speeds of 20-250m/s from the keyhole
opening and strongly depends on laser power applied [25]. At high laser beam powers,
the attenuation occurs due to scattering and absorption of incident laser beam, which
called the plasma-blocking effect. This leads to a lower penetration depth and process
instabilities. Meantime, the spattering of melt droplets caused by a strong stream of
the ejected plume, sometimes occurs from the inlet of a keyhole [26].
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Fig. 2 Schematic drawing of laser beam physics in laser beam welding in case of

(a) conduction welding and (b) keyhole welding modes [24].



2.2 Categories of laser welding defects

During LBW process, the weld characteristics including weld appearance and
defects play an important role in deciding the mechanical properties, creep properties
and weld quality [27]. In general, the weld appearance including penetration depth
and bead width are the external manifestation of quality. The instability and regular
collapse of keyhole can result in a series of weld defects including porosity, spatter or
humping in deep penetration laser welding, which leading to a fracture or a disaster of
manufactured goods under improper conditions [28].

Prior to further investigation into the in-process monitoring approach, a
description of the weld defects is cited below aiming to provide a view as to the way
the process parameters affect the formation of weld defects and what kinds of physical
phenomena need to be monitored for the defect detection. Understanding the causes
that lead to the creation of abnormalities and examining the relationship of sensing
data with the creation of weld defects are paramount to achieving a high-quality weld
product. The laser welding defects are often classified into two characteristic groups: 1)
geometrical/appearance defects and ii) internal/invisible defects, as shown in Fig. 3.
Some important welding defects and their physical origin are summarized in Table. 1.
From the above, it can be concluded that the formation of common defects in a weld
is strongly related to the stability of keyhole, melt pool and plume. Therefore, it is
vital of importance to monitor the occurring process phenomenon in order to prevent
the weld defects, further to achieve the real-time controlling of the weld quality.

Table 1 Classification of laser welding defects and explanation of their physical causes.

Category Defect Type Explanation Physical causes
Melt in a molten pool drops down to Too high heat input, excessively
Burn-through
form an underfilled bead severe melt flow, unstable keyhole
) Metal spattering from the internal
Geometrical/ Undercut A groove along the toe of the weld bead
keyhole
appearance
Backward flow of the melt pool
defects Underfill A concave surface of a weld bead .
around the blind keyhole
. The pushed molten metal from the rear Narrow and long molten pool,
Humping . .
keyhole wall towards the back collision of fluid flow
P . Blowhole, pore, wormhole or bubble The instability of the keyhole
orosi
ty inside the workpiece and melt pool
Internal/ ]
o Incomplete- . Low heat input and not
invisible . Joint not completely penetrated
penetration fully-penetrated keyhole
defects
Cracki Solidification crack was often found in Rapid cooling rate and large
rackin
8 the vicinity of vulnerable zone temperature gradient ofmelt pool
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Fig. 3. Schematic illustration (a) of laser beam keyhole welding during full-penetration [24]

and (b) examples of common welding defects.

2.3 Basics and challenges of in-situ monitoring

To obtain a solid understanding of the formation mechanisms of laser welding
process and related defects, it is crucial to explore the causal relationships between the
process parameters, process signatures and welding qualities, as depicted in Fig. 4.
The process parameters referring to key input characteristics (KICs) are the “model
inputs” and primarily determine the laser energy delivered to the surface of the
worrkpiece and how that laser energy interacts with metallic materials. The process
parameters can be categorized into either controllable variables (laser power, scan
speed and defocusing, etc.) or predefined variables (material properties, laser types
and workpiece conditions, etc.). The process signatures referring to key measurement
characteristics (KMCs) are dynamic characteristics of the workpiece heating, melting
and solidification processes as they occur during the laser welding. These signatures
are often the morphology of melt pool/plume and optical radiation intensity, which
depending on the physical phenomenon emitted from laser-metal interaction. In
addition, the process qualities defining as key performance characteristics (KPCs),
mainly includes the welding defects, penetration depth/status and bead widths, which
directly determine the resultant weld quality.



Due to the high-dynamic and complex characteristics of laser-metal interaction,
there exists some significant challenges in the process monitoring: 1) how to achieve
the high-quality and fast-speed gathering of various optical signals under
the lower SNR (signal-noise ratio) and strong metallic vapor/spatter circumstances; 2)
how to reveal the internal relationship between the large amounts of optical
information with random fluctuation (especially the radiation signals) and welding
process/stability; 3) how to accurately predict/identify the final welding qualities
(KPCs) under a time-varying and non-linearity process with many interacting factors
(KIC:s).

To identify and overcome these critical challenges above, this paper presents a
detailed review to introduce various monitoring methods in literature to make
fundamental progress. It mainly consists of three successive steps: i) in-situ optical
sensing that gather multi-dimensionality, multi-type and multi-scale data deriving
from laser radiation; ii) quantitative behavior characterization that analyze and extract
the optical signatures from the raw data for representing the physical phenomenon
(melt pool, plume and spatters), iii) process modeling that apply machine learning
algorithms to comprehensively identify the parameter-signature-quality relationship,
further to facilitate the development of the in-process monitoring and develop towards
real-time process control. The following sections will comprehensively review the
recent research and development of each of these steps.
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3. Optical in-situ sensing technology

In Sec. 3, we reviews previous research efforts on multi-wave optical radiation
sensing techniques for observing the melt pool and plume characteristics. The detailed
classification of optical monitoring techniques are displayed in Fig.5, and the
advantages and limitations of different techniques are summarized in Table 2.
Except for conventional optical monitoring methods, some novel optical sensing
methods including X-ray imaging and optical coherence imaging are depicted to
directly observe the internal physical characteristics (keyhole depth and porosity).
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Fig. 5 In-situ optical sensing techniques in multi-wavelength during LBW process.

3.1 Optical radiation sensing
3.1.1 Photodiode-based sensor

Optical radiation signal mainly comes from the laser beam and welding area. The
molten pool, spatters and plume can emit strong optical radiation ranging from
various spectrum bands. In general, the optical sensors are distrubuted in multi-wave
light emission: i) ultraviolet (UV) and visible (VIS) waveband (400-850nm), ii)
laser-reflection waveband (1000-1100nm); iii) near-infrared (NIR) waveband
(1100-1800nm) and medium-infrared (MIR) waveband (>4000nm) [22]. Particularly,
the UV/VIS radiation comes from the atomic transitions and the bremsstrahlung
within the plasma plume, and IR thermal radiation is emitted from hot melt pool [30].

Deduced from the amount of reported studies, the photodiode-based sensors are
widely applied for real-time measuring vapor plume, reflected laser energy and
thermal radiation. Photodiode sensors within UV/VIS, NIR and MIR ranges are
commonly accepted in manufacturing industry due to a series of advantages of



flexible configuration, simple structure and low cost. During laser overlap welding,
three photodiode sensors were utilized to obtain independent information about the
thermal (T-signal) condition of the molten pool, the radiation from plume (P-signal)
and the back-reflected (R-signal) radiation of laser beam itself [29]. Fig. 6 shows the
schematic of optical monitoring system and detailed optical radiation bands. They
also suggested that the correlation between the T and P-signals is so strong that a T-P
signal would be more useful than the raw T-signal in identifying the fluctuations in
infrared radiation from the melt pool.

Table 2 Characteristics of different techniques applied for process monitoring

Sensor Monitoring Sampling Facility Technique Technique
techniques objects frequency cost advantages Limitations
Plasma plume Flexible configuration, Abstract one-dimensional
Photodiode i Simple structure, signals,
Reflective | JookHz ~ Low | ommpe o
laser energy High sampling frequency Low efficiency in
Thermal High processing speed detecting slight defects
Plasma Abundance intuitionistic Easy to disturb by the
plume, 0.55KH Medium~ information about the plume and spatters,
.5~5kHz
Camera Melt pool, High process, Low sampling speed,
Keyhole Easy to understand the High computing
Melt pool 0.1-0.5 High complicated process demands
Flexible sampling Susceptible to interference
Spectrum of Medium~  Wider measuring spectrum of plume behavior,
Spectrometer 0.1-1kHz . .
plasma plume High range, Poor real-time
High sampling resolution performance
Temperature ) .
Hard to determine object
contactless measurement, L
Temperature . . emissivity,
Pyrometer 1-50kHz Low Good capability of detecting o .
of melt pool o Limited capability of
radiation, . .
) weld defects inspection
High accuracy and speed
< High spatial-temporal Extreme cost equipment,
-ra
. Y Inner keyhole Extreme resolved information, Harmful to human,
high-speed 1~10kHz ] . o . .
. . and melt pool high Visualization of the process Difficult to apply in
imagin
gine dynamics industrial field
Direct measurements of the Extreme cost equipment,
Optical Denth of keyhole depth, Limited to the depth
epth o
coherence N ph ) 1~300kHz High Suitable for industrial field, information of keyhole,
eyhole
tomography Y Strong anti-interference, Unstable measurement
fast response and robustness accuracy
Low-cost and flexible Approximately
Metal-glass configuration, observation of inner
) Inner keyhole T
“sandwich” 0.5~5kHz Low Visualization of the process keyhole and melt pool,
) . and melt pool . . .
imaging dynamics Difficult to apply in

High sampling resolution

industrial field
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Fig.6 The schematic of optical monitoring system and different optical radiation bands [28].

According to recent studies [30]-[31], the effect of power density on the weld
quality during laser welding process was considered. The co-axial back reflected and
emitted light from the process zone was also measured using three optical sensors,
each one measures the light emission in different spectral region (450-850, 1000-1200
and 1250-1700nm). From these optical sensors, the acquired signals were first applied
as benchmarks to correlate with the weld quality and defects. By using photodiodes
responsive to either visible or near-infrared emissions, a low-cost optical-based
monitoring system was developed to relate the photodiode signals to various weld
features, imperfections and process anomalies, in order to in-situ detect the
high-power laser welding quality [35]-[36].

Considering the metal evaporation depends on weld penetration depth and bead
width, it is suggested to apply the signals coming from the visible photodiode sensor
to detect the variation of penetration depth and bead width. Accordingly, researchers
attempted to adopt a multiple-sensor approach to make a more accurate identification
on the spatial position of the plasma plume. For instance, Brocka’ research team
[33]-[34] have devised a photodiode sensing system that can help to detect plume
position. Four same photodiodes were fixed at concentric positions to acquire the light
radiation signals coming from different positions. They investigated the correlation
between spatial light radiation and composite signals, and then determined the flow
direction of metallic vapour plume. Due to the advantages of contact-free
measurement principle and high sample rate, the photodiode-based optical sensing
system has been commercialized for several years. As shown in Fig. 7, a laser welding
monitor (LWM) system developed by Precitec company [32] can be easily installed
on the laser head, and the detected radiation is guided through a beamsplitter to the
optical sensor. When a high-quality weld is produced, the LWM system use a template
to set threshold values for typical signal features (such as mean value) and then accept
a pass or fail decision based on the given threshold values. However, this approach
requires large amounts of high-quality welds to be produced and used as a template
for each specific case, which might be a problem in low-volume production.
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3.1.2 Spectroscopic Sensor

As is well-known, the spectroscopic sensor can monitor the emission spectra
generated from laser-induced plasma for recognizing some welding defects because
the plasma behavior contains a wealth of information about the laser welding process
[38]. In order to infer the large amount of information deriving from the weld zone
and enhance the possibility of distinguishing the source of welding defects, extensive
researches attempted to adopt a spectroscopic sensor instead of a single photodiode.
They applied the high-resolution monitoring solution to detect the laser-induced
plasma and further investigate the relationship between the process parameters and
radiation intensity of plasma plume.

In [37]-[40], by using the spectrometer equipping with a CCD detector array, the
acquired spectrum signals emitting from the plasma plume were acquired analyzed to
relate the temperature of the plasma electron and the weld penetration depth, and the
research findings could provide a solid foundation for the development of a
closed-loop control system. In an effort by Zhang et al. [32], the spectroscopic sensor
was applied to gain a better understanding of the emission formation of plasma plume
and in-situ detect the welding defects (i.e., blow out, undercut and humping) during
the high-power disk laser welding process. In addition, Fig.8 [42] proposed a
spectroscopic monitoring system to study the relationship between laser energy
transmission and plasma plume during vacuum laser welding process of aluminum
alloy, and then calculated the electron temperature/density of plasma plume based on
the spectroscopic analysis algorithm.
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Fig. 8 The schematic diagram of the spectroscope measuring system (a) and plasma plume
spectrums (b) during laser vacuum welding [42].
3.1.3 Optical pyrometer sensor

It is worth noting that the laser welding is fundamentally a thermal
manufacturing process and the metallic material is melted by the high-energy laser
beam. Thus, the thermal radiation signal is significantly strong in the welding zone,
especially in the keyhole, molten pool and metallic vapor. Any variation of heat input
should lead to a distinguishable conversion in the thermal radiation [43]. For the
purpose of utilizing the transient temperature field in on-line monitoring and control,
a fast-processing, cost-effective, steady and credible approach should aim to reduce
the errors in temperature measurements. In current literatures, various types of
detection sensors and systems such as thermocouples [44]-[46], photodiodes [47]-[48]
and infrared cameras [49]-[51] have been proposed and compared. Unfortunately,
they are generally not suitable for laser processing in a complicated industrial
environment, since fast and precise measurements at each location are difficult to
obtain in real-time. Moreover, the acquisition may be significantly affected by laser
radiation and plume dynamics, depending on the fast heating and cooling rates of
melted metal during the laser processing [54]. Instead, a valuable temperature
monitoring technique referring to optical pyrometry is a non-contact measurement of
a body based upon its emitted thermal radiation compared to a black body.
Specifically, all objects above absolute zero emit thermal radiation, and the emissivity
of the detected object needs to be obtained for a precis temperature measurement [52].
The spectral radiance of an ideal black body at different temperatures as well as the
wavelength sensitivity range follows Planck’s law [53], as shown in Fig. 9(a).
Compared to the thermocouples at a fixed measuring point, the pyrometer have two
excellent merits of temperature contactless measurement and good capability of
detecting radiation emitted by moving melt pool, which helps overcome many
obstacles.

Fig.9(b) [54] adapted a coaxial two-color pyrometer to monitor the laser welding
process and discussed the dependence of the coaxial infrared temperature signal on
penetration depth and weld width. The results indicated that the use of infrared
radiation could be a promising tool for the temperature detection and weld quality
control. Another work [55] has been reported a 3D-scanner with integrated pyrometer
was designed to real-time monitor the temperature during quasi-simultaneous laser
transmission welding of polyamide 6. By changing the laser power, the laser beam
diameter and carbon black content in the lower polymer, the temperature information
was acquired under different welding conditions. In addition, a two-dimensional ratio
pyrometry [56] was combined to measure the thermal signal. It is proved that the
emissivity and attenuation of thermal radiation were independent of two-dimensional
temperature information. The proposed technique could be applied for calculating the
melt pool diameter and latent heat, and validating the simulation based on FEM
method. Although the optical pyrometer sensor has been widely applied in
temperature monitoring, there exists some significant drawbacks such as the slow
response time of measurement system and the intense interfere from hot plasma inside



the keyhole.
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3.2 Camera-based vision sensing

As mentioned above, the optical radiation sensing technique is only an indirect
measure of the process dynamics with a very limited field of view. A direct
camera-based observation of the interaction between laser beam and metal material
does not suffer from these drawbacks. Nowadays, the camera-based monitoring
technique is suggested to be one of the most intuitive methods due to the advantages
of higher spatial measurement and yielding more detailed information [57]-[59].
Furthermore, it can in-situ monitor the dynamic behaviors of the melt pool and plume
and accurately locate/identify the weld defects. Therefore, extensive research attempts
have been made to utilize different visual sensors to obtain the in-process information
during laser welding.

The mainstream sensors and in-situ data collection devices proposed in the
literature can be grouped into three major categories: i) UV/VIS-camera, ii) NIR-
camera and iii)) MWIR-camera, which can capture the images of plume or molten pool
based on optical radiation range during laser welding. A further categorization regards
the sensor mounting strategy involving co-axial and off-axial systems. In co-axial
configurations, the sensors exploit the optical path of the power source, whereas in
off-axial configurations, the sensors are installed outside the optical path, with a
suitable angle-of-view with respect to the region of interest. Table 3 summarized
some reported work on the different types of visual sensing techniques for in-process
monitoring of the physical phenomenon.



Table 3 Main set-up parameters proposed by authors for camera-based monitoring of LBW

process (Melt pool: MP, Keyhole: KH, Vapor plume: VP, Spatter: SP)

Type Target Camera Type Auxiliary Light Resolution  Frame/fps  Year/Ref.
High-speed camera Semiconductor
MP, KH 512x384 50,0000  2020/[63]
(Photon FASTCAM ) (808nm)
CCD camera (Kodak Green LED light
MP, KH 648x488 210 2013/[60]
KAI-0340) source (540nm)
CCD camera Green LED light
MP o 644%239 30 2012/[65]
(KP-F2A, Hitachi) source (532nm)
High-speed CMOS
MP None 64x64 7915 2009/[66]
camera
. CMOS camera Green LED light
Co-axial KH 1280x720 33 2015/[67]
(DFK42BUCO03) source (530nm)
Pulsed laser diodes
MP, KH CMOS camera 1312x1082 200 2019/[68]
(840nm)
CMOS camera .
MP None 7.7um/pixel 172 2020/[69]
(MQO013MG-ON)
CMOS VIS-camera and
MP None 320%256 160 2013/[71]
NIR-camera
High-speed Tachyon 1024
MP None 32x32 - 2015/[72]
MWIR-camera
MP, KH CCD Camera None 659%x493 200 2020/[73]
NAC high-speed
MP, KH None - 1000 2014/[82]
NIR- camera
NAC high-speed CMOS Diode laser light 2014/[83]
MP, KH 512x500 5000
camera source (980nm) 2015/[84]
MP, KH High dvid Diode laser light 5000 2013/[90]
: igh-speed video camera -
Off-axial VP, SP ghrspeed v source (808nm)
MP, VP NAC high-speed
None 512x512 2000 2014/[89]
and SP camera
Photons A4 high- Semi-conductor laser
KH, VP - 20000 2018/[92]
speed camera source (808nm)
High-speed camera Diode laser light
KH, VP ) - 1500 2021/[91]
(Olympus, i-SPEED 3) (808nm)

3.2.1 Co-axial visual sensing

Over the past decade, many scholars have designed and developed a co-axial

visual setup system to monitor the dynamic behaviors of the melt pool and keyhole in
laser welding. In [60]-[65], a co-axial monitoring system including a high-speed
CMOS camera and auxiliary illuminant system was built to obtain the keyhole and
molten pool images during conventional/remote lap laser welding, and then the melt

pool width was calculated to identify the weld surface width and penetration status.

Other reported studies [66]-[69] also applied the co-axial VIS-camera systems with



external illumination to acquire the visual images and extract geometrical features
from the auxiliary illuminated process zone, including keyhole area, weld pool area,
weld width and background area.

Except for the laser keyhole welding, the work by Tang et al. [70] developed a
real-time visual monitoring system comprising a CMOS camera and a coaxial assisted
module of the laser head, and captured the the images of the molten pool in the
passive illumination condition during laser surface melting (LSM) process. Fig. 10
[71]-[72] developed a coaxial monitoring system integrating VIS and NIR-camera
without auxiliary illumination, and a real-time image processing system analyzes the
camera images regarding welding irregularities and delivers information to
characterize the weld process and its result. In laser lap welding, Lapido et al. [73]
presented a novel approach for real-time monitoring evolution of the melt pool under
several welding procedures by utilizing uncooled PbSe image sensors in the
mid-wavelength infrared range.

welding optics

| - IS-camera
- —‘— I 1
i \

NIR-camera

pseudo colors

pseudo colors

capillary

weld pool

{—— feed direction

Fig. 10. The welding zone at deep-penetration welding consists basically of three areas: the capillary at the
location of the welding spot, the liquid weld pool and the solidified seam [71]-[72].

3.2.2 Off-axial visual sensing

In contrast to the co-axial camera system, off-axial cameras with a more flexible
angle can be developed to gather information about the keyhole and melt pool, as well
as plume and spatters during LBW process. For instance, our research team have
performed a series of long-term studies on the process monitoring of laser-based
manufacturing, such as remote laser welding [74], pulsed laser spot/seam welding
[75]-[76],[124],[202], laser-arc hybrid welding [77]-[79] and laser melting deposition
[80]. By establishing an off-axial visual sensing platform consisting of the high-speed
camera and laser illumination system, we can clearly capture the images of
keyhole/melt pool and vapor plumes, and further investigate the metal melting/
solidification phenomena and the underlying mechanisms of the occurrence of
welding defects (cracks and porosity), which as shown in Fig. 11.
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Fig. 11. The developed off-axial visual sensing platforms for capturing the images of keyhole,
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pulsed laser spot welding [75]-[76],[202]; (c) laser-arc hybrid welding [77]-[79]; (d) pulsed laser
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Recently, the researchers [82]-[85] applied a high-speed NIR-camera with a
narrow-band pass filter to capture the morphology of molten pool and its shadow
behavior during laser welding. By analyzing the geometrical characteristics of molten
pool shadow, the relationship between the morphology of molten pool and the LBW
stability was investigated quantitatively. Another reported studies [88]-[90], [209]
used two high-speed cameras in different wavelength to capture the vapor plume and
spatters in high-power disk laser welding, the result shows that the measurement of
UV/VIS-camera light was more appropriate for plume and spatter detection.
Meantime, the high-speed NIR-camera was setup at the position of 60° to the
horizontal direction to clearly monitor the behaviors of keyhole and melt pool. It has
been found that the vapor plume/spatter and keyhole/melt pool characteristics have a
close relationship with the laser power and the actual welding quality.



During the high-power fiber laser welding, a high-speed camera positioning
laterally was adopted to observe the spatter and vapor plume behaviors, in order to
better analyze the spatter formation mechanism[86]. Further, two high-speed cameras
were synchronously utilized to investigate the 3D vapor plume fluctuations in
overlap-joint of LBW. The results indicate that the position of the vapor plume
contains the abundant information on the welding process [87]. To better observe the
dynamic melt pool and vapor plume during laser oscillation welding, Li et al. [91]
employed a off-axial visual sensing system. The width of plume is acquired in front of
welding direction, while the height, area, and inclination angle are observed on the
side of welding direction. Meantime, the high-speed camera and the diode laser
source (808nm) are presented 70° in front of welding direction to clearly acquire the
images of the melt pool images by eliminating the interferences of plume and spatter
light. However, the camera-based sensors often suffer from heavy specular reflection
and interference from laser-induced plasma plume. Thus, the external illumination
system is required to heighten image quality, and the complex image processing
algorithms hinder its further development in automatic welding manufacturing.

As an emerging monitoring method based on the Faraday magneto-optic effect,
the magneto-optical imaging (MOI) is an integrative nondestructive method by using
the magnetic-field information of the workpiece to visually test its surface/inner
quality. Some reported works by Gao et al. [205]-[207] analyzed the principle of MOI
technique for defect detection, which converts the magnetic field distribution into a
MO visual image of natural weld defect during laser welding process. Further, Gao et
al. [208] proposed a multi-directional MOI technique based on induced rotating
magnetic field to solve the problem of directional detection of MO imaging under
alternating magnetic field excitation. Multi-directional defect detection experiments
clearly demonstrate the performance of the monitoring system under the rotating
magnetic field excitation.

3.3 Multi-sensor fusion of optical radiation and vision

Typically, one single sensor is not sufficient to describe the complete and
complex welding process, it has a rather low detection precision and can only identity
a few kinds of welding defects. Therefore, multiple sensors and systems should be
utilized to to gain overall knowledge of the welding process. The integration of visual,
photodiode and spectrometer sensing method has become the research focus of laser
welding monitoring in recent years, as it has the advantages of high sampling speed
and great information capacity that help to provide comprehensive feature information
of process detection. In previous research, Fig.12 [90] set up a four-signals detecting
system that combines two visual sensors and two photodiode-based sensors. With an
auxiliary illumination diode laser source (wavelength of 976nm), a visual sensor was
applied for observing the geometrical shapes of keyhole and molten pool. Another
visual sensor observed the formation of metallic vapor on top and bottom of
workpiece. In addition, the two photodiodes were adopted for detecting the intensity
of visible light emission and laser reflection. The proposed multiple-optics sensing
system can help provide a comprehensive understanding and accurate diagnosis on
high-brightness disk laser welding process. Wang et al. [93] combined an industrial



CCD camera and a spectrometer to simultaneously monitor the ARM laser welding of
stainless steels. The process characteristics of the keyhole entrance was observed by
the CCD camera, and the length, width and area also were quantified by the selected
image processing method. Furthermore, the intensity of metallic vapor and plasma
was obtained with the aid of the proposed spectrometer system, and then the
relationship between the keyhole entrance geometry and the plasma intensity was
analyzed correspondingly. The work by Kong et al. [94] also developed a real-time
monitoring system integrating with a high-speed CCD camera and Ocean-Optics
spectrometer to visualize the dynamics of the molten pool and plasma plume in laser
lap welding of galvanized high strength steel.
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Fig.12. Schematic of multiple optics sensing of disk laser welding [90].

The Kaplan’ team [95]-[96] have focused their research on the multi-feature
analysis of weld defects by combining a photodiode sensor (developed by Precitec
LWM) with a visual sensor. The results concluded that the photodiode sensor is more
efficient in identifying weld penetration, while the camera yields more accurate
results for detecting some typical defects of blowout, undercut and humping.
Furthermore, the intensity of metallic vapor and plasma was obtained with the aid of
the proposed spectrometer system, and then the relationship between the keyhole
entrance geometry and the plasma intensity was analyzed correspondingly.

3.4 Novel optical sensing methods

As mentioned previously, the optical radiation and vision sensing techniques
mainly focus on monitoring the dynamic behaviors of the keyhole, melt pool and
vapor plume in the top view. However, it is not possible to directly observe the
internal keyhole and melt pool inside the metal which essentially determine the final
welding quality. Furthermore, the conventional optical-sensing techniques can provide
only minimal depth information and may be blinded by the intense emission of
metallic plasma and spatters. To gain insight into the process dynamics phenomena
including the shape and geometry of the capillary (keyhole) in the weld bead, some



novel monitoring methods including X-ray imaging technique [97]-[110], inline
coherent imaging [111]-[117] and metal-glass “sandwich” imaging [118]-[123] have
been proposed and achieved excellent results in laser beam welding. Next sections,
we summarize and analyse the research progress of the novel monitoring techniques.
3.4.1 X-ray high-speed imaging

The inline x-ray imaging is a well-established methodology for observing the
keyhole behavior with side view through the material. It can help acquire the high
spatial-temporal resolved information of the keyhole behavior and inner defects (e.g.
porosity) during the welding process. In earlier years, Katayama et al. from JWRI
[97]-[98] carried out the X-ray in-situ observation during laser welding to reveal the
mechanisms of the keyhole behaviour, bubble formation and melt flow inside the
molten pool. Meantime, Matsunawa's [99]-[104] group carried out other experimental
investigations to observe the dynamic keyhole shapes in deep penetration laser
welding by X-ray transmission imaging systems with a high-speed video camera.
Unfortunately, most of the obtained inner keyholes were not clear enough for further
quantitative analysis.

Recently, the Institut fiir Stahlwerkzeuge (IFSW) designed a X-Ray high-speed
imaging system to in-situ monitor the laser welding process at a high frame rate (up to
10kHz) [106]-[108]. As shown in Fig. 13(a), it consists of three main parts: the
processing area including the sample and processing-optics, the X-Ray tube and the
imaging system. The typical X-Ray image of a capillary (keyhole) in laser welding
can be acquired, as shown in Fig. 13(b). The X-ray system was successfully applied to
in-process measure the keyhole shape in laser welding of stainless steel. Shevchik et
al. [109]-[110] also used a high-speed hard X-ray radiography to directly visualize the
dynamical behavior of the melt pool inside the metal workpiece during LBW process.
The observation results are crucial to establish the ground truth of the events that were
adopted to define the different types of welding quality.

Fig. 13 (a) Facility for welding experiments with online X-Ray observation and (b) Typical X-Ray
image of a capillary laser welding process [106].



3.4.2 Optical coherence imaging

As noted above, the X-ray imaging system is capable to gain intuitive
information about the keyhole geometry such as size and shape. However, the laser
welding process is a highly dynamic process with obvious changes in a
very short time (less than 0.1ms). Since the keyhole is believed to be filled with metal
vapor, its optical extend can be measured by applying the optical measurement system.
Recently, the optical coherence tomography (OCT) proved to be a good choice in
laser processing due to a tiny measuring intensity [111]. Therefore, the Precitec
GmbH successfully developed an In-process Depth Meter (IDM) system to real-time
measure the capillary depths [113]. It operates at a wavelength of 1540nm with an
output power and the measurement rate is up to 70kHz with an axial precision of
10um. Also, the OCT technique with a IDM sensor could achieve the adaptive
penetration depth control in fillet lap joint during remote laser welding (RLW)
according to [115]. To further improve the sampling frequency and temporal
resolution, Queen’s University have developed a Laser Depth Dynamics (LDD)
monitoring system based on inline coherent imaging (ICI) [116]-[117] which provides
direct geometrical measurements of the keyhole depth and associated dynamics at
rates>300kHz in comparison to the X-ray frame-rate at 1 to 10kHz. The technique is
closely related to spectral-domain optical coherence tomography (SD-OCT) and is
delivered through a camera port and combined co-axially with the process beam. ICI
simultaneously resolves backscatter from multiple depths along the laser processing
beam path, and is robust to all other optical signals (machining light, plasma,
black-body radiation, and so on) due to its inherent spectral filtering and coherent
time gating.
3.4.3 Metal-glass “sandwich” imaging

In general, the X-ray imaging technique is costly and harmful, and the OCT
technique is also expensive and only obtain the keyhole depth information. Therefore,
Zhang’ research group firstly [118] developed a low-cost and flexible sandwich
method which is an aluminum workpiece clamped in between two pieces of
transparent glass. It can clearly observe the inner keyhole in deep-penetration laser
welding and help provide an effective way to analyze two main absorption
mechanisms of Fresnel absorption and Inverse-Bremsstrahlung absorption exist in the
keyhole. Then a modified sandwich was proposed specimen including one sheet of
stainless steel and one piece of GG17 glass, in order to intuitively observe the keyhole
during laser welding with a 10-kW fiber laser [119]. In addition, Wu et al.[120]-[122]
both applied a steel-glass sandwich method to clearly observe the keyhole behavior,
spatter, and keyhole-induced bubble formation in laser welding. The observation
results revealed the the formation mechanisms of the spatter and bubble and then
discussed the relationship between the spatter and bubble formation. Zou et al. [123]
used the metal-glass sandwich imaging method to observe the laser-induced intense
evaporation vapor on the keyhole wall, in order to analysis the interaction processes
between the laser beam and keyhole wall.

The above-mentioned works mainly sought to elucidate the interaction
mechanism between the laser beam and keyhole wall, keyhole instability and weld



defects in continuous-wave (CW) laser welding of thick-plates. In pulsed-wave (PW)
laser welding of thin-sheet, our research group [123] have applied a high-speed
imaging (HSI) system for directly monitoring the dynamic behavior of inner keyhole
with the aid of a transparent glass under different parameters. The observation results
indicate that the weld penetration depth is determined primarily by the variation of the
keyhole depth/inclination angle and partly by the molten pool flow around the
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4. Behavior characterization technology

According to Section 3, the application of multiple sensors has provided large
amount of original data (signals or images) for laser welding monitoring. In order to
quantitatively characterize the laser physical phenomenon (keyhole, melt pool or
plume), it is necessary to extract the key measurement characteristics (KMCs) by
means of the advanced image/signal processing algorithms. These extracted features
that describe the significant characteristics of occurring phenomenon are required for
classical supervised learning algorithms and are often manually designed and depend
on signal types. The extraction of the meaningful features, such as spatial, temporal or
spatial-temporal features is the foundation of new non-destructive quality inspection
methods, which has been and remains a growing interest in manufacturing industry.
This section provides a literature review of the advanced processing algorithms based
on optical radiation and vision sensing techniques, and the detailed classification is
depicted in Fig. 15.
4.1 Optical Imaging processing

In the visual monitoring system for laser welding process, the imaging
processing plays an important role in obtaining the key visual features of welding
phenomenon accurately. The literature devoted to optical imaging processing is
summarized in Table 4 with respect to the geometric and statistical features.
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Fig. 15 Overall classification of behavior characterization techniques during LBW process.
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Table 4 Feature extraction based on imaging processing methods of laser welding

Original data Extraction technique Extracted features (KMCs) Year/Ref.
UV/visible images Image segmentation and gray-scale Plume size, plume growing direction,
of plume and processing and Karhunen-Loeve spatter radius, ejected direction 2014/[89]
spatters transform and velocity
Hybrid adaptive keyhole detection Average gray value, area, and
Y pHve Rey £ gy 2020/[62]
algorithm perimeter of keyhole
Image enhancement, edge detection and Area, maximal width and 2014/[83],
morphology segmentation the tilt of the molten pool shadow 2015/[84]
Visible images of Otsu’s method, Canny edge detection, Area of keyhole and width of 2020/[125]
melt pool binarization melt pool 2020/[81]
Gray projection distribution and the Shape characteristics and area size of 2012/[65]
Poisson extinction method keyhole and full penetration hole 2020/[127]
Image segmentation based on Keyhole area, weld
) 2019/[69]
CNN model pool area and weld width
Infrared images of Improved homomorphic filtering )
. . Melt pool width 2014/[82]
melt pool algorithm based on Fourier transform
e . 2009/[66]
o Principal components analysis (PCA) ) o
Visible images of Salient statistical features 2015/[73]
melt pool Deep neural network (DNN) of melt pool 2016/[128]
Convolutional Neural Networks (CNN) 2020/[129]




4.1.1 Geometrical features extraction

Typically, feature extraction in LBW applications is firstly performed by using
geometric information about the physical phenomenon. Conventional image
processing techniques including threshold segmentation, morphological operations
and masking are generally applied to extract the geometric features of melt pool or
vapor plume. Fig.16 [125] acquired the laser welding images of molten pool through
the coaxial monitoring system and adopted the gray-scale processing and binarization
to extract the geometric features of molten pool including the length, width, trailing
angle and area.

By applying the same coaxial observing system, a hybrid adaptive detection
algorithm was developed to segment the keyhole region and then extract/select ten
key geometrical features for describing the weld penetration status based on the
wrapper algorithm [62]. To improve the capacity of resisting disturbances (i.e., strong
plume and spatters), an improved homomorphic filtering algorithm based on Fourier
transform can be applied to analyze the infrared image characteristics and calculate
the melt pool width [82]. In addition, a conventional image-processing method was
proposed to extract the visual features of laser-induced plume and spatter including
the plume size, plume growing direction, spatter radius and spatter ejected direction,
which are closely related to the final laser welding quality [89].
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Fig.16 The image process procedures of the molten pool and keyhole [125].

4.1.2 Statistical features exaction

As described earlier, the advantage of geometric features in industrial
applications are meaningful and easily interpretable, which can directly reflect the
physical characteristics of melt pool and plasma plume. Nevertheless, it is inevitable
to reduce the huge amount of theoretically possible features (e.g. shape and moment
based features) with expert knowledge. In contrast to the geometrical features
extraction, a principle component imagery (PCA) was firstly to extract
appearance-based features from the raw images, which can be considered as a
high-dimensional feature vector while every single pixel represents a feature [66]. The
proposed machine-learning algorithm can reduce the feature space by removing
redundant information based on a statistical approach compared to geometrical feature
extraction. Lapido et al. [73] also used the PCA algorithm for decomposing the
high-dimensional space of the MWIR images in a subspace of orthogonal components
of maximum variance, which is closely related with the melt pool geometry in laser
welding. However, the disadvantage of PCA method for feature extraction is less
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generally valid and more sensitive to variations of the experimental set up than
geometry-based features. Recently, an auto-encoder based on deep neural networks
was applied to extract salient, low-dimensional features from the high-dimensional
laser welding data, which are used as input to a temporal-difference learning
algorithm to acquire important real-time information about the process of laser
welding [128]. Moreover, the study work by Gonzalez-Val et al.[129] presented a
novel approach ConvLBM to monitor Laser welding processes in real-time.
ConvLBM uses a convolutional neural network (CNN) model to extract meaningful
features and quality indicators from raw MWIR coaxial images.

4.2 Optical signal processing

Except for the imaging process techniques, this section also reviews the
recent research and development of optical signal processing. Generally, the signal
processing includes three types: i) time domain analysis, ii) frequency domain
analysis, iii) time-frequency domain analysis, which are summarized in Table 5.

4.2.1 Time domain analysis

Considering the acquired optical signal itself is a time evolution of
non-stationary signal, the feature extraction in time-domain is the most nature and
direct method of analyzing the physical phenomenon which is to take time ¢ as
independent variable [130]. Any signal evolution or local transition in the time
domain can be related respectively to process variation or to local macro/micro weld
defects. Thus, a fault detection algorithm is proposed and analyzed based on the time
domain comparison between the acquired signals and the reference signals, in order to
real-time monitor the laser welding process and diagnose the potential defects.

In earlier years, Park et al. [131] applied the UV and IR photodiodes to measure
the variation of plasma and spatter in CO> laser welding and obtained the data number
deviating from the reference signals in time-domain analysis method, in order to
provide the key performance indicators for identifying the actual welding quality.
With the same photodiode (UV and IR) based monitoring system, Bardin et al. [132]
calculated the statistical feature of spike amplitude, which shows a more limited
correspondence with the imminent opening of the keyhole in full-penetration laser
welding. According to the studies from Lee et al. [133], an approach using
Al-algorithms was adopted for efficiently extracted the time-domain features of the
spectral information. The zinc and iron emission lines were pre-processed using
statistical features including the mean, root mean square, standard deviation, peak,
skewness and kurtosis. Based on the process data, the Fisher’s criterion was then
applied to rank several features for selecting the most valuable features. During
remote laser welding (RLW), the commercial LWM 4.0 system was applied to acquire
three types of photodiode-based signals (plasma plume, thermal radiation and
reflected laser light). The signal processing methodology is based on the evaluation of
the energy intensity and scatter level of the acquired signals, which can provide key
information about optical radiation emission and the inherent process variation [134].



Table 5 Feature extraction based on signal processing methods of laser welding

Analysis method Optical signal Extraction technique Extracted features (KMCs) Year/Ref.
E intensit
nerey Tienstty 2021/[134]
and local signal scatter
) o Data number deviated from
Optical emission in o . .
Statistic energy analysis reference signals and 2002/[131]
UV/VIS and IR o
) ) standard deviations
Time domain . .
) Spike, Pearson correlation,
analysis . 2005/[132]
mean value and variance
o ) Electron temperature and its 2007/[135]
Statistic analysis o
standard deviation 2012/[136]
Plasma spectroscopy — -
Statistic analysis o
) . Ranked statistic features 2020/[133]
and Fisher’s criterion
) ) 1997/[137]
Discrete Fourier Frequency spectrum
. 2012/[138]
Transform characteristic
Frequency . o 2013/[139]
) Optical emission in ; ; ;
domain Fast Fourier Maximum frequencies
) UV/VIS ) 2009/[140]
analysis Transform (FFT) per time
Number of peaks and peak
Power spectrum . 2021/[142]
frequencies
Laser back reflection Relative energies of narrow
] o M-band wavelets 2019/[143]
and optical emission frequency bands
Optical emission in Discrete wavelet 2010/[144]
Frequency Components
UV/VIS transform (DWT) 2021/[147]
Orthogonal Empirical
Time-Frequency Optical emission in Mode Decomposition Amplitude and frequency of 2008/[149]
domain analysis UV/VIS And Teager-Kaiser IMF components
Energy Operator
Optical emission in Short-Time Fourier The high frequency
2009/[148]
UV/VIS Transform component
Optical emission in ) ) o Amplitude and frequency of
Winer-Ville distribution 2019/[150]
UV/VIS components

4.2.2 Frequency domain analysis

Although the time-domain characteristics of optical signals can describe the
changes of welding process to some extent, it is not enough to fully reveal the
intrinsic features of optical signals. Since the frequency-domain analysis is a more
accurate and efficient analytical approach, lots of research has been carried out on the
frequency features of optical signals in order to specify the correlation between signal
frequency and the periodical changes of the molten pool. Once the correlation is
specified, the frequency features of the characteristic signals can be easily identified
when some welding defects occurred.

Earlier study [137] applied the Fourier Transform (FT) method to investigate an



oscillatory intensity modulation of the optical signals, which mainly originates from
the oscillation behavior of keyhole and melt pool during laser welding process. The
analysis results indicate that the spectral content of acquired signals could be applied
to detect a fully open keyhole and to determine the weld penetration depth in real-time.
The reported work by Mrna et al. [138]-[139] presented new findings about the
correlation between the keyhole depth and the frequency characteristics of light
intensity oscillation by using a discrete Fourier transform algorithm. The results
revealed that the lower frequency components correspond to melt pool oscillation of
the melt pool while the higher frequency components correspond to the plasma plume
oscillation. By applying the same FT algorithm, Schmidt and his research staff [140]
have pointed out that the frequency of melt pool oscillation is within the range of
300-500Hz, while that of the keyhole oscillation is within the range of 2000-2500Hz
in case of a 3.6kW laser lap welding process. In addition, Colombo et al. [141]
investigated the optical monitoring of the laser welding on titanium alloy workpiece.
It has been concluded that the time-domain features of the visible and infrared light
signals mainly reflect the welding defects (e.g. lack of penetration, undercut and
humping). Also, the strong keyhole fluctuation easily occur when the frequency of
visible light signals is within the 160-2400Hz range.
4.2.3 Time-frequency domain analysis

As is well-known, most of the acquired optical signals in manufacturing industry
are represented in the time or frequency domain. For stationary signals there is no
need to go beyond the time or frequency domain. However, the mono-dimensional
solutions (time or frequency) are not sufficient in dealing with the non-stationary
signals during the fluctuating laser welding process. Therefore, some common
time-frequency analysis techniques including Short-Time Fourier Transform (STFT) ,
Wavelet Transform (WT), Wigner-Ville Distribution (WVD) are suitable to analyze
the non-stationary and nonlinear optical signals. Fig.17 [148] has investigated the
frequency characteristic along the time axes by using short-time Fourier transform
method. The higher frequency component (4.8-12kHz) of the optical radiation signals
increases greatly when welding defects occur. This provides a reliable basis for
accurately detecting and positioning the welding defects, which as shown in Fig. 17.

Researches carried out by Giuseppe D’ et al. [149]-[150] proved that the
time-domain analytical approach based on the Winer-Ville distribution (WVD),
orthogonal empirical mode decomposition (OEMD) and Teager-Huang Transform
(THT) are more effective than traditional time or frequency domain processing
methods when used for locating welding defects such as the incomplete penetration
(0.5-2mm) and porosity (0.2-1lmm). As it mentioned above, the signals generated
during the changing welding process are non-stationary, an important time-frequency
method based on wavelet transform (WT) algorithm is suitable for investigating the
time-varying phenomenon, which decomposes the signals into different frequency
bands and allows consequent easier extraction of key features related to weld quality.



Good Welding Defect

Fig.17 Defects detection in time-frequency analysis during laser welding [148].

Fang et al. [146]studied the spectra of the optical signals emitted by plasma
during CO; laser welding by using wavelet analysis. The results show that the wavelet
analysis can decompose the optical signals, extract the signal characteristics and
diagnose the defects location accurately. Sibillano et al. [144] applied the discrete
wavelet transform (DWT) to decompose the optical signal into various discrete series
of sequences over different frequency bands. The proposed DWT method is capable
of providing the time-frequency information simultaneously, in order to reveal a
correlation between the optical frequency components of the plasma plume oscillation
and the weld penetration depth. In [152], the same DWT method was also proposed to
analyze the signals within the time-frequency domain. The detail signals at different
decomposition levels disclosed the essential information with regard to the modes of
laser welding process. Accordingly, the deep penetration welding (keyhole) was
clearly distinguished from the shallow (conduction) welding mode. In addition, the
wavelet packet decomposition and principal component analysis (WPD-PCA) were
carried out to extract feature parameters of both high-frequency photodiode signals
and low-frequency spectrometer signals, which could perform laser welding process
monitoring and welded defect diagnosis [153].
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Fig.18 Wavelet decomposition of the optical signal acquired by the different sensors for several
decomposition levels [152].

5. Machine-learning model technology

As it mentioned earlier, the gathered signatures of the melt pool and plume can
be observed and correlated with quality-related phenomena occurred during the laser
welding process. Unfortunately, the correlations of these signatures to certain quality
criteria (referring to KPCs in Sec 2.3) are often ambiguous and they are not sufficient
to directly measure addressed KPCs as an indicator of weld quality, so that statistical
proof of welding quality by a series of destructive tests is necessary [159].

Due to high dynamics of melt pool and plume, an approach based on precise
physical modeling of the welding process is not suitable for real-time quality
diagnosis. To date, almost predictions for LBW process are based on multi-physics
numerical simulation that are very difficult to solve and represent high computational
burden. In contrast, the use of machine learning techniques can reduce the dependence
on in-depth understanding of the LBW process and make extracting valuable
information from measurables easier. As such, recent development led to advanced
process monitoring systems which integrate the machine learning (ML) techniques for
weld formation prediction and defect diagnosis, in order to optimize/control the weld
quality. In this section, we mainly review the comparison of classical machine
learning methods and modern deep learning architectures with respect to prediction
performance. Table 6 outlines the machine learning techniques for obtaining KPCs
with classical ML and deep learning methods in laser welding process.



Table 6 Machine learning techniques for obtaining KPCs during laser welding

(RSE: Relative standard error, Acc: Classification Accuracy R?: Adjusted R Square)

Method Input (KICs/KMCs) Output (KPCs) ML techniques Performance Year/Ref.
Welding parameters and Penetration depth RSE
. RBF neural network 2015/[67]
keyhole geometry and keyhole tilting angle (0.08~0.15)
Keyhole geometric ) Wrapper and Acc (98.53%)
Weld Penetration status 2020/[63]
features Random Forest AUC (0.999)
. Good weld, weld width
Melt pool geometric . Random Forest
exceeded, lack of fusion, . Acc (99.9%) 2018/[166]
features classifier
and undercut
Keyhole geometric Good weld,lack of fusion, Hidden Markov
. Acc (93.27%) 2020/[127]
Classical features burn through,porosity Model
ML . ) No illumination,
The relative energies of . . Support Vector Acc
conduction welding, . 2019/[143]
frequency bands ) Machine (85.9%~99.9%)
porosity
DC/AC components of Penetration depth and Artificial Neural RZ?(0.929) 1999/170]
radiation intensity bead width Network RSE (0.137)
Process parameters and Artificial Neural
Poor and good welds Acc (81.8%) 2020/[172]
OCT data Network
Intensity of three Fuzzy Logic .
. Poor and good welds Not mentioned | 2001/[171]
photodiodes pattern
Good, lack of fusion,
MWIR/NIR Images of . CNN+GRU F1-Score (0.938)
Sagging, lack of . . 2021/[188]
melt pool and keyhole . (Classification) Acc (93%)
penetration
Time-frequency spectrum )
Porosity defects Acc (90%) 2021/[190]
graphs . CNN
I f melt pool and categonies (Classification)
mages of melt pool an
& P (No and Yes) Acc (96.1%) 2020/[191]
keyhole
Keyhole ResNet R2 accuracy of
. Laser absorptance . 2021/[192]
aperture image (Regression) 99.76%
Modern -
Images of melt pool and Penetration status CNN
deep ) ) Acc (94.6%) 2020/[185]
. keyhole (PP, MP, FP, EP) (Classification)
learning
Conduction welding, stable
Wavelet spectrograms CNN
. i keyhole, unstable keyhole, : ) Acc (71-99%) 2020/[193]
image of LBR signal (Classification)
blowout and pores
MWIR images of melt . CNN Acc (96.8%)
Good or defective welds . . 2020/[129]
pool (Classification) F1-score(0.975)
Features from Sound, blowout, humping DBN
) ) ) ) : i Acc (96.93%) 2019/[194]
multi-sensor information and undercutting (Classification)
Quality categories CNN with PSO Acc (100%)
Images of melt pool . ) o 2021/[195]
(Humping, no-humping ) (Classification) R2 (0.957)




5.1 Classical machine learning method

In laser-based manufacturing field, such data-driven approaches have been
extensively studied in the past and are based on autoregressive exogenous (ARX)
model [154]-[155], cluster analysis [156], fuzzy logic (FL) [156]-[161] or on
supervised learning algorithms including multivariate regression (MR) [162]-[163],
multi-layer perceptron (MLP) [164]-[165], and decision trees (DT) [166]-[167], as
well as K-nearest neighbors (KNN) [168]-[169]. Once the eigenvector has been
established, effective identification and classification of different welding status or
defects can be realized by using advanced modeling technology. In general, fuzzy
logic technology is considered one of the most widely applied technologies for
welding detection. Based on the different photodiode signals (UV and IR), Park et al.
[171] has proposed a fuzzy pattern recognition system, which can help to distinguish
desirable weld seam from the bad one and recognize the causes of weld defects, such
as low heat input, focus misalignment, gap mismatch and nozzle deviation. Meantime,
they also proposed and compared the multiple regression analysis and neural network
algorithms in estimating the penetration depth and bead width with the acquired
photodiode signals [170].

In keyhole laser welding, Luo et al. [67] used a coaxial monitoring system to
observe/calculate the keyhole geometry from the top side, and then adopted a radial
basis function neural network for estimating the penetration depth and keyhole
inclination angle under the changing welding parameters. In addition, a feedforward
neural network (FNN) model was established to concern the optical features and
geometrical parameters (keyhole and melt pool) and also a support vector machine
(SVM) model was built to relate optical features and welded defects including
blowout, humping and undercut [153]. Deriving from the the collected keyhole
images, a sequential forward searching algorithm was combined with a random forest
classifier to select ten penetration status features (PSFs). It is found that the weld
penetration prediction model based on the PSFs has higher prediction performance in
identifying the weld penetration status [63]. Recently, Fig.19 used the optical
coherence tomography (OCT) to measure the capillary depth of the keyhole during
deep penetration welding. An artificial neural network (ANN) approach could be
utilized to reveal correlations between the weld depth signal and the weld seam
surface quality, underlining the high level of information contained in the OCT signal
about characteristic process phenomena that affect the weld seam quality [172].
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Fig. 19 Prediction of the weld quality based on OCT data and ANN model [172].




5.2 Modern deep learning method

As noted above, the classical machine learning method mainly integrate the
process of feature extraction within the data-driven model to predict the weld quality
and defects. However, the feature extraction methods through handcrafted processing
algorithms often require much prior knowledge and are always specific to the task. In
addition, the limited handcrafted features of melt pool with conventional image
processing techniques may not be enough to describe the laser welding characteristics
[178]. Consequently, it is necessary to design an efficient deep Learning (DL)
approach to realize automatic feature learning and improve the weld quality. The deep
learning models are capable of extracting more refined and complex characteristics,
which providing higher classification accuracies than conventional approaches based
on feature engineering and traditional classifiers. Therefore, more researchers have
attempted to introduce deep learning to analyze the raw monitoring information
deriving from the LBW process.

5.2.1 Convolutional neural network (CNN)

As a dominant DL architecture, the state-of-the-art convolutional neural network
(CNN) exhibits brilliant abilities of high-level feature learning with the multiple
levels of hierarchical non-linear information processing. More recently, the CNN
model has gained increasing attention in the area of weld manufacturing field, which
is employed to undertake many tasks including welding defects detection [173]-[176],
penetration monitoring [177]-[181] and quality diagnosis [182]-[186].

For example, Giinther et al. [128] suggested a deep learning scheme for
extracting relevant features from in-process laser welding data. They used a deep
learning-based auto-encoder with fully connected layers to create a new latent feature
space of 16 features that describe the welding images. With the help of these features
they used an SVM to predict the photodiode welding signal in the near feature based
on image features. Higher prediction accuracies were achieved compared to an
approach using PCA. In 2019, the work by Zhang et al. [176] presented a
CNNe-architecture that uses features extracted from image and photodiode signals
recorded during laser welding to detect welding imperfections. The approach shows
promising results compared to a traditional ANN model, although it was not used to
extract features from raw sensor signals.

In addition, a typical CNN-based classification model was proposed for
identifying the different welding defects (under penetration or burn-through) in pulsed
GTAW with the three-way pool images, which demonstrates a better performance
with a higher classification accuracy of 99.38 % [173]. The University of
Kentucky[178]-[181] developed an end-to-end CNN approach to extract the visual
features automatically from top-side GTAW pool images and predict the resultant
penetration status. Gonzalez-Val et al. [186] presented ConvLBM, a novel approach to
monitor laser-based manufacturing processes in real-time. The ConvLBM uses a CNN
model to extract features and quality indicators from raw medium-wavelength
infrared coaxial images. The results demonstrate the ability of ConvLBM to represent
process dynamics and predict quality indicators in two scenarios: dilution estimation
in laser metal deposition and location of defects in laser welding processes. Moreover,



Fig. 20 applied a deep CNN model to reveal the unique signatures of the wavelet
spectrograms from the laser back-refection and acoustic-emission signals. The
autonomous classification of the revealed signatures is tested on reallife data, and the
confidence of the quality classification ranges between 71% and 99%, with a temporal
resolution down to 2ms [182].
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Fig. 20 Supervised deep learning for realtime quality monitoring of laser welding [182].
5.2.2 Ensemble deep learning method

Considering the laser welding process is quite dynamic along with the plume and
spatter orientation vibration driven by the melt pool variation, the proposed CNN
architecture can only deal with the static information in the images/signals. Therefore,
using the standard CNN architecture may be not accurate enough for high-precision
defect identification during high dynamic laser welding process. To deal with the
issue above, a hybrid convolutional neural networks (CNNs) was proposed for
powder-bed fusion (PBF) process monitoring [187]. The hybrid models can learn both
the spatial and temporal representative features from the raw images automatically,
which demonstrates the superior performance of the proposed method compared with
the traditional methods with handcrafted features. Also, a hybrid network model
namely CNN and LSTM (long short-term memory) was developed to learn/extract the
nonlinear features of time series signals [196]. The CNN-LSTM ensemble method can
fuse the multi-sensor information of dynamic welding process and implement the
prediction of welding quality characteristics during pulsed GTAW process of
aluminum alloy including normal penetration, lack of fusion, sag depression, burn
through and misalignment.

In addition, Knaak et al. [188]-[189]developed a novel ensemble deep learning
architecture based on CNN-GRU (gated recurrent units), which uses spatio-temporal
features extracted from infrared image sequences to locate critical laser welding
defects including lack of fusion, sagging and weld deviation. The proposed method is
finally validated on previously unknown welding trials, achieving the highest
detection rates and the most robust weld defect recognition accuracy. In order to
improve the feasibility and generalisation ability of CNN-based laser welding
penetration recognition method, a label semantic attention (LSA) mechanism was
designed to guide CNN to learn the discriminative visual features in the raw melt pool
images [197]. The proposed knowledge-data hybrid driven method has not only fast
convergence speed and high accuracy, but also low dependence on model complexity
and data size. Moreover, it does not add too many parameters and test time, and can
meet the industrial needs in real-time monitoring the laser welding process.



To sum up, it should be noted that processing this data can require significant
computational power and thus there may be a need to filter the available input data for
these ML algorithms to be successfully deployed for real-time applications.
Furthermore, the volume and complexity of process factors and responses in laser
welding process may result in a large volume of coincidental correlations, making the
identification of causal relationships difficult by using ML solely. Despite this, the
ML algorithms especially for deep learning may be useful in identifying the
correlations and developing the process maps which are needed for real-time process
control, especially when conventional analytical approaches are insufficient.

6. Major challenges and potential solutions

Generally, the main object of in-situ monitoring is the improvement of
reproducibility and assurance of process reliability/quality during metal-based LBW
manufacturing. However, welding quality assurance is not the only aspect concerning
monitoring of laser manufacturing process, and the other significant uses for in-situ
monitoring is observing, experimenting, gathering of information and understanding
the process and related laser phenomena, and finally developing adaptability of the
process. Despite significant progress made in optical monitoring of the LBW process,
there are still many challenges towards applying these sensing approaches and
predicting the welding quality in industry, which as follows:
1) Physical realizability of multi-sensor fusion

The first challenge is to develop the in-situ sensing ability to capture the
abundant and valuable information of the laser physical phenomenon with sufficient
precision. During LBW process, strong brightness and high temperature of metal
plume and spatters increase the difficulty to clearly observe the laser interaction zone.
Moreover, the dynamic process involves a series of consequent phenomena including
melt pool, keyhole, plume and metal spatters, which carries various types of welding
information that directly determining the final welding quality. One single sensor or
system may be not sufficient to describe the complete and complex welding process.
As such, it has a rather low detection precision and can only identity a few kinds of
welding defects. Thus, more investigation needs to be geared toward in-situ
monitoring of LBW process by means of multiple sensors such as multi-wave optical
radiation, acoustic, thermal and visual signals. Very few efforts such as refs.
[90],[93]-[94] have designed a multi-sensor monitoring and analysis platform to gain
overall knowledge of the welding process, the scope and depth regarding
multi-information fusion technology is still limited and thorough study is needed.

When two or more sensors are applied with different acquisition resolutions, data
fusion techniques are urgently needed to combine the large-scale data and to match
the co-ordinate systems of the sensors, and further developments in identifying
multiple laser welding events within a single framework is required [198]. To make
full use of all the available information, it is promising to utilize the intelligent
sampling and compressed sensing techniques [199]. In addition, unified fusion theory
and data fusion architecture need to be developed for implementing large-scale data
mining in a statistical-analysis framework. It is believed that sensor fusion system in
conjunction with latest advance in artificial intelligence techniques would play an



important role in laser welding monitoring and quality inspection.

2) Accurate characterization of melt pool behavior
The application of multiple sensors has provided large amount of original data

(signals/images) for laser welding monitoring. In order to quantitatively characterize

the laser physical phenomenon, it is necessary to extract the key measurement

characteristics (KMCs) by means of the advanced image/signal processing algorithms.

Unfortunately, the very high sampling frequency for process monitoring, together

with the large dimensionality of the obtained data makes real-time feature extraction a

challenging task that motivates the research of novel and computationally efficient

techniques.

® For image processing field, the feature extraction in laser welding applications is
generally performed using geometric or statistical information about the detected
keyhole, melt pool or plume. Although it is possible to obtain the abundant visual
features (i.e., shape, dimension or textural information) with image processing
algorithms and select relevant features by automatic feature selection [127], it is
still a great challenge to determine the most essential features for characterizing
the complicated dynamic process. Moreover, it is also difficult to adaptively
extract the distinctive features of the highly dynamic melt pool/keyhole with
common image processing algorithms [129]. One potential solution to the image
processing challenge is the combination of the low-level handcrafted features
(based on prior knowledge) and high-level discriminative features (deep learning
model) [200], which could comprehensively characterize the behaviors of melt
pool and plume during LBW process;

® For signal processing field, the optical radiation signals from the photodiodes,
spectrometer, pyrometer etc. carry valuable information about the LBW process.
It is possible to develop many signal analysis methods (fast Fourier transform,
power spectrum) to find out the relationship between emission characteristics and
weld quality characteristics, in order to evaluate laser process quality. However,
these methods are based on the assumption of stationarity and linearity of the
detected signals. Unfortunately, the laser welding defects by their nature are
time-localized transient events. To deal with non-stationary and nonlinear time
series signals, one potential solution to the signal processing is to develop some
advanced time-frequency analysis techniques such as the Short-Time Fourier
Transform (STFT) [148], Wavelet Transform (WT) [147], Wigner-Ville
distribution (WVD) [150], in order to interpret and visualize the key information
about the weld quality. In addition, the optical measurement techniques could not
detect microstructural defects, such as porosity or cracks formed within the metal
materials, since these types of defects are hardly detectable by the only use of the
optical sensors. Therefore, additional detection techniques (i.e., acoustic emission
[201]-[202]) as well as the fusion sensing will be the next challenge for the
authors to investigate.



3) Reliability and generalizability of machine learning-based model

Due to the extreme complexity of the laser-material interaction, it is very
difficult to build a suitable physical model for real-time quality diagnosis and process
control. Under such circumstances, the machine learning (ML) methodology allows
developing the data-driven models rather than complex physical ones. The major
challenge in the development of ML algorithms is to establish an accurate
internal relationship between the welding parameters, process characteristics and the
actual quality. The challenges associated with data-driven in-process monitoring
techniques are: (i) not directly observe the welding defects/appearance but acquire
intermediate signals correlating to the corresponding quality, (ii) the interpretability
and feature-learning ability of the ML model need to be clearly elucidated, especially
for the deep learning model (i.e., convolutional neural network), which is usually
considered as a black box [200]; iii) the training samples shortage should be taken
into account. In actual welding environment, obtaining a large amount of effective
samples, especially the defect samples often requires time-consuming and
expends great cost. Moreover, the samples shortage problem not only affects the
model predicting performance, but also weakens the model generalizability
considering that there would be more data under other welding conditions that have
not been discovered yet [173].

An alternative solution for meet these challenges is the full integration of
physics-driven (process mechanism) and data-driven (machine learning) models,
which is becoming the latest trends and research focus of the intelligent welding field
[204]. Combining both approaches will allow the physics-driven approaches to
support the interpretability of results deriving from data-driven techniques, revealing
the hidden contents of the so-called “black-box”. Meantime, the outputs from the
physics-driven models applied as inputs to the data-driven models may provide a
larger set of input data for training, which could further increase the reliability and
generalizability performances of the ML methods in predicting and controlling the
welding quality.

7. Conclusions

There is a rapidly increasing number of studies in the literature aimed at
understanding the nature and process of LBW, their effects on the product quality and
how they can be mitigated or avoided by acting on several controllable parameters.
Indeed, the lack of robustness and stability of metal LBW processes has been widely
pointed out as one major issue that deserves considerable research efforts and
technological advances. The development and implementation of in-situ monitoring
solution represents a priority to push forward the industrial breakthrough of LBW
systems. This review summarized some conclusions as follows:

1) In-situ sensing has been proposed for different observable signatures,
including the melt pool, plasma plume and spatters. Other in situ non destructive
inspection systems are currently under development, e.g., optical coherence
tomography, X-ray and may be implemented and tested in the near future;

2) Based on the optical radiation and visual sensing technology, extensive
advanced image/signal processing algorithms have been widely applied to extract the



key feature and describe the significant characteristics of the laser physical
phenomenon;

3) Recent development led to advanced process monitoring systems which
integrate the machine learning techniques for weld formation prediction and defect
diagnosis, in order to control the weld quality. More researchers started to introduce
deep learning to analyze the raw information and extracting complex characteristics
of the laser welding process;

While these are all areas currently under investigation, there remains significant
scope for the development of new process monitoring approaches. As this field
matures further, we will no doubt see combination of in-situ sensing approaches being
developed and further advances towards characterization and process model. Each
development shows promise to increase reliability and stability for LBW processes,
thus unlocking the full potential of intelligent and sustainable manufacturing
technologies in various industry fields.
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