
Natural Language Engineering 1 (1): 1–45. Printed in the United Kingdom

© 1998 Cambridge University Press

1

UNLT: Urdu Natural Language Toolkit

J A W A D S H A F I1,2, H A F I Z R I Z W A N

I Q B A L3, R A O M U H A M M A D A D E E L

N A W A B2, and P A U L R A Y S O N1

1Lancaster University, Lancaster, U.K.
2COMSATS University Islamabad, Lahore Campus, Pakistan

3Information Technology University, Lahore, Pakistan
E-mails: p.rayson,j.shafi@lancaster.ac.uk, adeelnawab,jawadshafi@cuilahore.edu.pk,

rizwan.iqbal@itu.edu.pk

( Received 31 December 2017; revised 15 November 2021 )

Abstract

This study describes a Natural Language Processing (NLP) toolkit, as the first contri-
bution of a larger project, for an under-resourced language - Urdu. In previous studies,
standard NLP toolkits have been developed for English and many other languages. There
is also a dire need for standard text processing tools and methods for Urdu, despite it
being widely spoken in different parts of the world with a large amount of digital text
being readily available. This study presents the first version of the UNLT (Urdu Natural
Language Toolkit) which contains three key text processing tools required for an Urdu
NLP pipeline; word tokenizer, sentence tokenizer and Part-Of-Speech (POS) tagger. The
UNLT word tokenizer employs a morpheme matching algorithm coupled with a state-of-
the-art stochastic n-gram language model with back-off and smoothing characteristics for
the space omission problem. The space insertion problem for compound words is tack-
led using a dictionary look-up technique. The UNLT sentence tokenizer is a combination
of various machine learning, rule-based, regular-expressions and dictionary look-up tech-
niques. Finally, the UNLT part-of-speech taggers are based on Hidden Markov Model and
Maximum Entropy based stochastic techniques. In addition, we have developed large gold
standard training and testing datasets to improve and evaluate the performance of new
techniques for Urdu word tokenization, sentence tokenization and POS tagging. For com-
parison purposes we have compared the proposed approaches with several methods. Our
proposed UNLT, the training and testing datasets, and supporting resources are all free
and publicly available for academic use.

1 Introduction

A natural language toolkit is a library or framework used to analyse human language

in a statistical, rule-based or hybrid Natural Language Processing (NLP). These

toolkits have been used in the development of a range of applications from various

domains. For instance, life sciences and medicine (Cunningham et al., 2013), bio-

informatics (Ferrucci and Lally, 2004), computer science (Maynard et al., 2015;



2 Shafi, J. et al.

Rush et al., 2015), linguistics (Gries and John, 2014), Machine Learning (ML)

(Bird et al., 2008), and the analysis of social media (Dietzel and Maynard, 2015).

The majority of existing NLP toolkits are for English with many other languages

supported (Cunningham et al., 2002; Bird et al., 2009; Kwartler, 2017; Manning

et al., 2014). However, there is a lack of standard text processing tools and meth-

ods for South Asian languages, particularly Urdu, which has 300 million speakers

around the world (Riaz, 2009) for which a large amount of digital text is available

through online repositories. Urdu is an Indo-Aryan1 (or Indic) language derived

from Sanskrit/Hindustani language (Bögel et al., 2007), has been heavily influenced

by Arabic, Persian (Bögel et al., 2007) and less by Turkic (Chagatai2) languages for

literary and technical vocabulary (Sharjeel et al., 2017), and is written from right to

left in Nastaliq style (Shafi, 2020). Urdu is a morphologically rich language (Saeed

et al., 2012), including many multi-word expressions and letters which may change

their shape based on context, which makes the tokenization task very complex and

challenging. Moreover, it is a free word order language (Daud et al., 2016; Mukund

et al., 2010; Riaz, 2012).

In the previous literature, a small amount of work has been carried out to propose

systematic text processing NLP approaches for Urdu including word tokenization

(Rashid and Latif, 2012; Durrani and Hussain, 2010; Lehal, 2010; Rehman and

Anwar, 2012), sentence tokenization (Raj et al., 2015; Rehman and Anwar, 2012),

and POS tagging (Hardie, 2004; Anwar et al., 2007b,a; Sajjad and Schmid, 2009;

Muaz et al., 2009; Ahmed et al., 2014) (see Section 2 for details). However, there

are a number of limitations of these existing Urdu NLP studies: (i) most of them

are not formed into NLP tools, and the ones that are implemented are not publicly

and freely available, (ii) training/testing datasets along with developed resources

are not always freely and publicly available to improve, compare, and evaluate new

and existing methods (Daud et al., 2016), (iii) they have been trained and tested

on very small datasets (Durrani and Hussain, 2010; Anwar et al., 2007a; Rehman

and Anwar, 2012), (iv) the efficiency of dictionary based word tokenization ap-

proach (Rashid and Latif, 2012) is entirely dependent on a dictionary of complete

Urdu words, which is not practically possible to produce for the Urdu language,

(v) statistical n-gram based word tokenizers (Durrani and Hussain, 2010; Rehman

et al., 2013) cannot handle unknown words or back off to a lesser contextual mod-

els, (vi) sentence tokenization methods require datasets to train machine learning

algorithms and these are unavailable (Raj et al., 2015; Rehman and Anwar, 2012),

(vii) current rule-based POS tagging methods (Hardie, 2004) are closely tailored to

a particular dataset, therefore, not portable across different domains, (viii) smooth-

ing and other features to handle unknown words in statistical POS taggers have not

been thoroughly explored, (ix) less contextual POS tagging techniques have been

proposed, and (x) POS tagsets which have been used to train/test statistical POS

1 https://en.wikipedia.org/wiki/Indo-Aryan_languages#cite_note-ethnologue-4
- Last checked: 20-March-2019

2 https://en.wikipedia.org/wiki/Urdu - Last checked: 15-September-2020

https://en.wikipedia.org/wiki/Indo-Aryan_languages#cite_note-ethnologue-4
https://en.wikipedia.org/wiki/Urdu


UNLT-Urdu Natural Language Toolkit 3

taggers (Anwar et al., 2007b; Hardie, 2004; Sajjad and Schmid, 2009) have several

shortcomings (see Section 4.3.1).

To overcome the limitations of existing Urdu NLP studies, this study presents

the UNLT (Urdu Natural Language Toolkit), initially with text processing methods

and three NLP tools including a word tokenizer, sentence tokenizer, and POS tag-

ger. Our proposed Urdu word tokenizer is based on a novel algorithm which makes

use of rule-based morpheme matching, n-gram statistical model with backoff and

smoothing characteristics, and dictionary look-up. It is trained on our proposed

dataset of 1,361K tokens and evaluated on our proposed test dataset containing

59K tokens. The UNLT sentence tokenizer is a combination of rule-based, regular

expressions, and dictionary lookup techniques which are evaluated on our proposed

test dataset of 8K sentences. Furthermore, we have also proposed a ML based sen-

tence tokenizer. Finally, the UNLT POS tagger is mainly based on Hidden Markov

and Maximum Entropy models, with multiple variations based on smoothing, suf-

fix length, context window, word number, lexical and morphological features. The

set of UNLT POS taggers were trained on our proposed training dataset of 180K

tokens and evaluated on our proposed test dataset of 20K tokens.

The UNLT and our training/testing datasets will be crucial in: (i) fostering re-

search in an under-resourced language i.e. Urdu, (ii) the development and evalua-

tion of Urdu word tokenizers, sentence tokenizers and POS taggers, (iii) facilitating

comparative evaluations of existing and future methods for Urdu word tokeniza-

tion, sentence tokenization and POS tagging, (iv) the development of various NLP

tools and applications in other areas such as information retrieval, corpus linguis-

tics, plagiarism detection, semantic annotation etc. and (v) providing a framework

in which other Urdu NLP tools can be integrated.

The rest of the article is organised as follows: Section 2 describes related work

and Section 3 presents challenges for word tokenization, sentence tokenization, and

POS tagging methods. Section 4 explain the proposed UNLT modules. Whereas,

Section 5 present the proposed datasets. Section 6 introduces evaluation measures,

results and their analysis. Section 7 presents a summary and future directions of

our research.

2 Related work

2.1 Existing Urdu word tokenization approaches

In the existing literature, we find only a few studies which have addressed the

problem of word tokenization for the Urdu language, these are (Rashid and Latif,

2012; Durrani and Hussain, 2010; Lehal, 2010; Rehman and Anwar, 2012). The

study in (Rashid and Latif, 2012) performs Urdu word tokenization in three phases.

First, Urdu words are tokenized based on spaces, thus returning the cluster(s) of

valid (single word) and invalid (merged word(s)3) Urdu words. Next, a dictionary is

checked against valid/invalid words to assure the robustness of the word(s). If the

3 Combination of many words



4 Shafi, J. et al.

word is present in the dictionary then it will be considered as a valid Urdu word,

returning all single words. However, if the word is not matched in the dictionary

then it is considered as a merged word, hence, needing further segmentation. In

the second phase, the merged words are divided into all possible combinations, to

check the validity of each produced combination through dictionary lookup. If it is

present in the dictionary it will be considered as a valid word. The first two phases

solve the problem of space omission (see Section 4.1), the third phase addresses the

space insertion problem by combining two consecutive words and checking them

in the dictionary. If the compound word is found in the dictionary, then it will

be considered as a single word. This technique of word tokenization was tested on

11,995 words with a reported error rate of 2.8%. However, the efficiency of this

algorithm is totally dependent on the dictionary (used to check whether a word

is valid or not) and it is practically not possible to have a complete dictionary of

Urdu words. Furthermore, if a valid word is not present in the dictionary then this

technique will mark it as invalid, which will be wrong.

Durrani and Hussain (2010) proposed a hybrid Urdu word tokenizer which works

in three phases. In the first phase, words are segmented based on space, thus, re-

turning a set of an orthographic word(s)4. Further, a rule-based maximum matching

technique is used to generate all possible word segmentations of the orthographic

words. In the second phase, the resulting words are ranked using minimum word

heuristics, uni, and bi -grams based sequence probabilities. In the first two phases,

the authors solved the space omission problem (see Section 4.1). In the third phase,

the space insertion problem is solved to identify compound words by combining

words using different algorithms. The proposed Urdu word tokenizer is trained on

70K words, whereas it is tested on a very small dataset of 2,367 words reporting

an overall error rate of 4.2%. Although the authors have reported a very low error

rate, this study has some serious limitations: (i) the evaluation is carried out on a

very small dataset, which makes the reported results less reliable in terms of how

good the word tokenizer will perform on real-world data, (ii) using a statistical

n-gram technique which may ultimately lead to data sparseness, and (iii) it does

not tokenize Urdu text correctly even for short texts.

Another online CLE Urdu word tokenizer is available through a website5, which

allows tokenization of up to 100 words. Its implementation details are not provided.

It reports an accuracy of 97.9%. However, the link is not always available6, and its

API is not freely available7. We applied the CLE online Urdu work tokenizer on

three randomly selected input short texts and they all were incorrectly tokenized

with many mistakes.

The research cited in (Lehal, 2010) takes an approach to Urdu word tokenization,

based on the Hindi language. The authors tokenized Urdu words after transliterat-

4 One orthographic word may eventually give multiple words and multiple orthographic
words may combine to give a single word.

5 http://182.180.102.251:8080/segment/ - Last checked: 24-June-2018
6 See: http://182.180.102.251:8080/segment/ - As on: 11-April-2018
7 http://www.cle.org.pk/clestore/segmentation.htm - Last checked: 24-June-2018

http://182.180.102.251:8080/segment/
http://182.180.102.251:8080/segment/
http://www.cle.org.pk/clestore/segmentation.htm


UNLT-Urdu Natural Language Toolkit 5

ing them from Hindi, as the Hindi language uses spaces consistently as compared to

its counterpart Urdu. They also addressed and resolved the space omission problem

for Urdu in two phases. In the first phase, Urdu grammar rules have been applied

to decide if the Urdu adjacent words have to be merged or not. If the grammatical

rules analyser provides a definite answer that two adjacent words can be joined or

not, then no further processing is required. However, if the rule-based analyser is

not confident about two words either it can be joined or not, then the second phase

is invoked. In the second phase, Urdu and Hindi uni -gram and bi -gram bilingual

lexical resources are used to make the final decision i.e. either we need to join the

two adjacent words or not. This technique of Urdu word tokenization used 2.6 mil-

lion words as training data, whereas, it was tested on 1.8 million tokens. The results

show an error rate of 1.44%. The limitations of this study are: (i) the problem of

space insertion has not been addressed, (ii) this approach requires large bilingual

corpus which is difficult to create particularly for under-resourced languages like

Urdu and Hindi.

Rehman et al. (2013) proposed an Urdu word tokenizer by using rule-based (max-

imum matching) with n-gram statistical approach. This approach to Urdu word to-

kenization uses several different algorithms to solve the problem of space omission

and insertion. Firstly, the forward maximum matching algorithm is used to return

the list of individual tokens of Urdu text. Secondly, the Dynamic Maximum Match-

ing (DMM) algorithm returns all the possible tokenized sequences of the Urdu text,

segments are ranked and the best one is accepted. Thirdly, DMM is combined with

the bi -gram statistical language model. These three algorithms are used to solve

the space omission problem, whereas, for the space insertion problem, six different

algorithms were used. The authors used 6,400 tokens for training and 57,000 tokens

for testing. This approach has produced up to 95.46% F1 score. Furthermore, the

algorithms are based on probabilities which may result in zero probability being

assigned to some unknown words. The authors have not handled such cases with

either back off or other smoothing estimators.

To overcome the limitations of the existing studies, our study proposes a novel

Urdu word tokenization algorithm using a rule-based morpheme matching ap-

proach, with off-the-shelf statistical tri -gram language model with back-off and

smoothing characteristics for the space omission problem, whereas, the space inser-

tion problem has been solved using dictionary lookup technique (see Section 4.1.2).

To train and test our proposed word tokenizer we developed benchmark training

(contains 1.65 million tokens) and testing (contains 59K tokens) datasets. Our word

tokenizer and training/testing datasets are freely and publicly available for down-

load (see Section 7 for details).

2.2 Sentence tokenization approaches

The problem of Urdu sentence tokenization has not been thoroughly explored and

we found only two studies (Rehman and Anwar, 2012; Raj et al., 2015) which

address the issue. Rehman and Anwar (2012) used a hybrid approach that works in

two stages. First, a uni -gram statistical model was trained on annotated data. The



6 Shafi, J. et al.

trained model was used to identify word boundaries on a test dataset. In the second

step, the authors used heuristic rules to identify sentence boundaries. This study

achieved up to 99.48% precision, 86.35% recall, 92.45% F1, and 14% error rate,

when trained on 3,928 sentences, however, the authors did not mention any testing

data. Although this study reports an acceptable score, it has some limitations; (1)

the error rate is high (14%), (2) the evaluation is carried out on a very small dataset,

which makes the reported results less reliable and it is difficult to tell how well the

sentence tokenizer will perform on real test data, and (3) the trained model along

with training/testing data are not publicly available.

In another study, Raj et al. (2015) used an Artificial Neural Network along with

POS tags for sentence tokenization in two stages. In the first phase, a POS tagged

dataset is used to calculate the word-tag probability (P) based on the general

likelihood ranking. Furthermore, the POS tagged dataset along with probabilities

was converted to bipolar descriptor arrays8, to reduce the error as well as training

time. In the next step, these arrays along with frequencies were then used to train

feed forward Artificial Neural Network using back propagation algorithm and delta

learning rules. The training and testing data used in this study are 2,688 and

1,600 sentences, respectively. The results show 90.15% precision, 97.29% recall and

95.08% F1-measure with 0.1 threshold values. The limitations of this study are that

the evaluation is carried out on a small set of test data, and the trained model, as

well as the developed resources, are not publicly available.

Again, similar to the Urdu word tokenization problem (see Section 2.1), the de-

veloped Urdu sentence tokenizers along with training/testing datasets are not pub-

licly available. To fill this gap, our contribution here is an Urdu sentence tokenizer

which is a combination of rule-based, regular expressions and dictionary lookup

techniques, along with training (contain 12K sentences) and testing (containing

8K sentences) datasets, all of which are free and publicly available for research

purposes. Moreover, we have also proposed a novel supervised ML based sentence

tokenizer by extracting various features.

2.3 Part-Of-Speech tagging approaches

Similar to Urdu word (see Section 2.1) and sentence tokenization (see Section 2.2),

the problem of Urdu POS tagging has not been thoroughly explored. We found only

six studies (Hardie, 2004; Anwar et al., 2007b,a; Sajjad and Schmid, 2009; Muaz

et al., 2009; Ahmed et al., 2014) which addressed the issue.

A pioneering piece of research on Urdu POS tagging is described in Hardie (2004).

This work focused on the development of a uni-rule POS tagger, which consists of

270 manual crafted rules. The author used a POS tagset with 350 tags (Hardie,

2003). The training data consists of 49K tokens, whereas, testing was carried out on

two different datasets containing 42K and 7K tokens. The reported average accuracy

for the 42K tokens is 91.66%, whereas, for the 7K corpus the average accuracy is

8 If P >0.1 =⇒ P≡ −1, If P == 0.1 =⇒ P≡ 0, If P <0.1 =⇒ P≡ +1.



UNLT-Urdu Natural Language Toolkit 7

89.26% with a very high ambiguity level (3.09 tags per word). However, the POS

tagset used in this study has several limitations (see Section 4.3), and therefore,

cannot be used for a grammatical tagging task, and having a large number of POS

tags with a relatively small training data will affect the accuracy, and manually

deducing rules is a laborious and expensive task.

The first stochastic POS tagger for the Urdu language was developed in 2007 (An-

war et al., 2007a). They have proposed a POS tagger based on a bi -gram Hidden

Markov Model with back off to uni -gram model. Two9 different POS tagsets were

used. The reported average accuracies for the 250 POS tagset and 90 POS tagset

are 88.82% and 92.60% respectively. Both were trained on a dataset of 1,000 words,

however, the authors have not provided any information about the test dataset.

As before, this study has several limitations; the POS tagset of 250 tags has sev-

eral grammatical deficiencies (see Section 4.3), the information about the proposed

tagset of 90 tags is not available, the system was trained and tested on a very small

dataset, which shows that it is not feasible for morphological rich and free word

order language i.e. Urdu, and used less contextual bi/uni -gram statistical models.

Anwar et al. (2007b) have developed an Urdu POS tagger using bi -gram Hid-

den Markov Model. The authors proposed six bi -gram Hidden Markov based POS

taggers with different smoothing techniques to resolve data sparseness. The accu-

racy of these six models varies from 90% to 96%. For each model, they used a POS

tagset of 90 tags. However, the authors have not mentioned the size of training/test

datasets. This study has several limitations as, like the one in (Anwar et al., 2007a)

the authors have used a 350 POS tagset, which has several misclassifications (see

Section 4.3), the training/testing data split is unknown to readers, and limited

smoothing estimators have been used, it used bi -gram language model (i.e. less

contextual), and suffix information has not been explored.

The authors in (Sajjad and Schmid, 2009) trained Trigrams-and-Tag (TnT)

(Brants, 2000), Tree Tagger (TT) (Schmid, 1994b), Random Forest (RF) (Schmid

and Laws, 2008) and Support Vector Machine (SVM) (Giménez and Marquez, 2004)

POS taggers, using a tagset containing 42 POS tags. All these stochastic Urdu POS

taggers were trained on a 100K word dataset, whereas for testing only 9K words

were used. The reported accuracy for TnT, TT, RF, and SVM are 93.40%, 93.02%,

93.28% and 94.15% respectively. In terms of limitations, they used a POS tagset of

42 tags which has several grammatical irregularities (see Section 4.3).

In another study (Muaz et al., 2009), stochastic Urdu POS taggers are presented

i.e. TnT and TT tagger. These taggers are trained and tested on two different

datasets with the following statistics: (i) First dataset consists of 101,428 tokens

(4,584 sentences) and, 8,670 tokens (404 sentences) for training and testing respec-

tively, and (ii) the second dataset consists of 102,454 tokens (3,509 sentences) and

21,181 tokens (755 sentences) for training and testing respectively. The reported

accuracy for the first dataset is 93.01% for TnT tagger, whereas 93.37% for TT

tagger. For the second dataset, TnT tagger produced 88.13% accuracy and TT had

9 The first POS tagset contains 250 POS tags (Hardie, 2003), whereas, the second one
consists of 90 tags (details are not given)



8 Shafi, J. et al.

90.49% accuracy. Similar to other studies, it employed a POS tagset which has sev-

eral grammatical problems (see Section 4.3), meaning that it is no longer practical

for Urdu text.

The authors in (Ahmed et al., 2014) have proposed an Urdu POS tagger10 which

is based on Decision Trees and smoothing technique of Class Equivalence, using a

tagset of 35 POS tags. It is trained and tested on the CLE Urdu Digest corpus11,

training and test data split is 80K and 20K tokens, respectively. However, this POS

tagger is only available through an online interface, which allows tagging of 100

words. It is trained on a relatively small dataset that is not freely available. The

Decision Tree statistical models are less accurate for Urdu text as compared to

HMM etc. Sajjad and Schmid (2009) (see Section 6.3).

In contrast, our study contributes a set of Urdu POS taggers along with large

training (containing 180K POS tagged tokens) and testing (containing 20K POS

tagged tokens) datasets. Our proposed POS taggers are based on two machine learn-

ing techniques, tri -gram Hidden Markov Model (HMM), and Maximum Entropy

(MaEn) based models. Each of our proposed HMM and MaEn models is a combi-

nation of different backoff, smoothing estimators, suffix and other types of binary

valued features. To the best of our knowledge, these models along with smoothing,

backoff, suffix and binary valued features have not been explored previously for the

Urdu language.

3 Challenges of Urdu NLP tools

3.1 Challenges for word tokenization

Is a challenging and complex task for the Urdu language due to three main problems

(Durrani and Hussain, 2010): (i) the space omission problem - Urdu uses Nastalique

writing style and cursive script, in which Urdu text does not often contain spaces

between words, (ii) the space insertion problem - irregular use of spaces within two

or more words and (iii) ambiguity in defining Urdu words - in some cases Urdu

words lead to an ambiguity problem because there is no clear agreement to classify

them as a single word or multiple words.

The first two problems stated above, mostly arise due to the nature of Urdu

characters, which are divided into: (i) joiner (non-separators), and (ii) non-joiner

(separators). Non-joiner characters,12 only merge themselves with their preceding

character(s). Therefore, there is no need to insert space or Zero Width Non Joiner

(ZWNJ; an Urdu character which is used to keep the word separate from their

following) if a word ends with such characters. These can form isolated shapes

besides final shape, whereas, joiner characters13 can form all shapes (isolated, initial,

10 http://182.180.102.251:8080/tag/ - Last checked: 09-July-2018
11 http://www.cle.org.pk/clestore/urdudigestcorpus100k.htm - Last checked: 09-

July-2018
12

þ



, ð , �P , �P , 	P ,P ,
	
X ,

�
X , X , @ ,

�
@ (Transliteration: alif mad, alif, daal, ddaal, Zaal, ray, zay, rray, jay, wao,

bari ye). All Urdu characters and word are transliterated as given in (Tafseer, 2009).
13

ø , è , Z , è
f

,
	
à , Ð , È , À , ¸ ,

�
� ,

	
¬ ,

	
¨ , ¨ ,

	
  ,   ,

	
� , � ,

�
� , � , p , h , h� , h. ,

�
H ,

�
H ,

�
H , H� , H. ” (Translitera-

http://182.180.102.251:8080/tag/
http://www.cle.org.pk/clestore/urdudigestcorpus100k.htm


UNLT-Urdu Natural Language Toolkit 9

medial and final) (Bhat et al., 2012) with respect to their neighbouring letter(s). For

instance, the Urdu character p (khay) is a joiner and has four shapes: (i) isolated

p (khay) e.g. pñ
	

k (KHOKH ‘peach’) i.e. it can be seen that at the end of a word,

if the character is a joiner and its preceding character is non-joiner, it will form

an isolated shape, (ii) final q� (khay) e.g.
�

q�Ó (MKH ‘brain’), it can be observed

that at the end of a word, if the character is a joiner, it acquires the final shape

when leading a joiner, (iii) medial �
	

j� (khay) e.g. PA�
�	

j�K. (BKHAR ‘fever’), in other

words, it shows that in the middle of a word, if the character is a joiner, it will form

the medial shape when the preceding character is a joiner, (iv) initial �
	

k (khey)

e.g.
	

¬ñ
	

k (KHOF ‘fear’), it shows that at the start of a word, if the character is a

joiner, it acquires the initial shape when following a non-joiner. Furthermore, the

Urdu character
	
X (zaal) is a non-joiner, thus has only two shapes: (i) isolated

	
X

(zaal) e.g. Q» @
	
X (‘Zakir’), it can be noticed that at the beginning of a word, if the

character is a non-joiner, it acquires isolated shape when following a joiner, (ii)

final
	
Y� (zaal) e.g.

�	
Y��K


�	
Y�Ë (LZYZ ‘delicious’), it can be examined that at the end of a

word, if the character is non-joiner, it acquires final shape when preceding a joiner

character. The shapes that these characters (joiner or non-joiners) acquire totally

depend upon the context.

A reader can understand a text if a word which ends on a joiner character is sepa-

rated by a space Qî
f
D
�
� è

f
ð (OH SHHR, ‘that city’) or ZWNJ character14

ù



ï
f

É¾J


KA� ú



æ

	
K

(NYY SAYYKL HE, ‘is new bicycle’). Likewise, the dropping of either of them

(space or ZWNJ) will result in a visual incorrect15 text, Qî
f
D
�
�ï
f
ð (OH SHHR, ‘that

city’) and ù


ì
f
Î¾J



KA��



J
	
K (NYY SAYYKL HE, ‘is new bicycle’), thus being perceived as

a single word even though they are two and three different words, respectively. On

the other hand, a word which ends on a non-joiner character does not merge itself

with other words, for instance, �
I�

	
KQ

�
�
	
K @ Q

�
KñJJ�Ò» (KMPYOTR ANTRNYT, ‘computer

internet’) and ðQ»XYÓ (MDDKRO, ‘help him’), even if we remove space or ZWNJ

character. Note that the �
I�

	
KQ

�
�
	
K @Q

�
KñJJ�Ò» (KMPYOTR ANTRNYT, ‘computer inter-

net’) and ðQ»XYÓ (MDDKRO, ‘do help’) are also incorrect text, each of them is a

combination of two words. As, ðQ»XYÓ (MDDKRO, ‘do help’) is XYÓ (MDD, ‘help’)

and ðQ» (KRO, ‘do’), whereas, �
I�

	
KQ

�
�
	
K @Q

�
KñJJ�Ò» (KMPYOTR ANTRNYT, ‘computer

internet’) have Q
�
KñJJ�Ò» (KMPYOTR, ‘computer’) and �

I�
	
KQ

�
�
	
K @ (ANTRNYT, ‘inter-

net’) words. However, omitted space(s) between all ambiguous text results in a

space omission problem, which can be overcome by inserting a space at the end of

tion: bay, pay, tay, ttay, say, jeem, chay, hay, khay, seen, sheen, suad, zuaad, tuay, zuay, ain, ghain,
fay, qaaf, kaaf, laam, meem, noon, hay gol, hamza, hey dochasmi, chooti-ye) for such characters, it is
needed to insert a space between words or ZWNJ at the end of the first word, otherwise it will join
itself with the following word.

14 Non-printing character (U+200C) is used for computer writing systems.
15 Human readable but words that are merged into a single token.



10 Shafi, J. et al.

the first word so that two or three distinct words can be detected. For example,

ù


ì
f
Î¾J



KA��



J
	
K (NYY SAYYKL HE, ‘is new bicycle) are three distinct words, written

without spaces, in order to tokenize them properly we need to insert spaces at the

end of ú


æ

	
K (NYY, ‘new’) , and É¾J



KA� (SAYYKL ‘bicycle’) so that three different

tokens can be generated: (i) ú


æ

	
K (NYY, ‘new’), (ii) É¾J



KA� (SAYYKL, ‘bicycle’),

and (iii) ù


ï
f
(HY, ‘is’). As it can be noted from the above discussion, space omission

problems are complex thus making the Urdu word tokenization task particularly

challenging.

In the space insertion problem, if the first word ends either on a joiner or non-

joiner, a space at the end of the first word (see Table 1, Correct column– incorrect

multiple tokens with space (-), but correct shape) can be inserted for several rea-

sons: (i) affixes can be separated from their root, (ii) to keep separate Urdu abbre-

viations when transliterated, (iii) increase readability for Urdu proper nouns and

English/foreign words are transliterated, (iv) compound words and reduplication

morphemes do not visually merge and form a correct shape and (v) to avoid making

words written incorrectly or from combining (see Table 1, incorrect column– single

token but incorrect shape). For example,
�

�C
	

g@
�

�ñ
	

k (KHOSH AKHLAK, ‘polite’)

is a compound word of type affixation, however, space was inserted between �
�ñ

	
k

(KHOSH, ‘happy’) i.e. a prefix (literally ‘happy’) and
�

�C
	

g@ (AKHLAK, ‘ethical’)

i.e. root to increase the readability and understandability. To identify
�

�C
	

g@
�

�ñ
	

k

(KHOSH AKHLAK, ‘polite’) as a single word/token the tokenizer will need to

ignore the space between them. This also serves to emphasise the fact that the

space insertion problem is also a very challenging and complex task in Urdu word

tokenization.

As discussed earlier, in some cases Urdu words are harder to disambiguate. There

is no clear agreement on word boundaries in a few cases (sometimes they are con-

sidered as a single word even by a native speaker). For example the compound

word, úÎ«@ QK 	Pð (OZYR AALY, ‘chief minister’), ù


KAîE.

	áî
f
E. (BHN BHAYY, ‘sibling’,

literally ‘brother sister’). The same is the case for reduplications, Q
	
¯ Q

	
¯ (FR FR, ‘flu-

ent’) and affixation,
�

�C
	

g@ YK. (BD AKLAK, ‘depravedly’). Certain function words

(normally case markers, postpositions, and auxiliaries) can be written jointly e.g.
á�ÖÞ� @ (ASMYN, ‘herein’), �

I
�
¯ñî

f
E (YHOKT, ‘this time’) or úÃñï

f
(Ho GEE). Alter-

natively, the same function words can be written separately such as á�Ó �@ (AS

MYN, ‘herein’), �
I

�
¯ð í

f
K (YH OKT, ‘this time’) and úÃ ñï

f
(HO GEE) (i.e two aux-

iliaries) respectively. These distinct forms of the same word(s) are visually correct

and may be perceived as single or multiple words. These types of cases are am-

biguous i.e. can be written with or without spaces and can be treated as a single

unit or two different words. Consequently, this changes the perception of where the

word boundary should sit. A possible solution to handle such words is to use a

knowledge base. To conclude, the space insertion problem, space omission problem

and ambiguity in tokenizing multi-words makes the Urdu word boundary detection



UNLT-Urdu Natural Language Toolkit 11

Table 1. Example text for various types of space omission problems

Type Correct Incorrect Translation

Affixation
�

�C
	

g@ -
�

�ñ
	

k
�

�C
	

gA
�

�ñ
	

k Polite

KHOSH AKHLAK KHOSHAKHLAK

Abbreviations ø@ - ÉK@ - 	áK@ øCKA
	
JK @ NLE

AYN AYL AY AYNAYLAY

Compound word QK
	
YK� - Q�

	
ª

�
K QK

	
YK�

Q�
	
ª

�
K Variable

TGHYR PZYR TGHYR PZYR

English word P̧ð -
�

I�
	
K P̧ñ

�
J�

	
K Network

NYT ORK NYTORK

Proper noun 	QK
�
Y

	
K @ -

�
I��ð 	QK

�
Y

	
KA

�
J��ð West Indies

OYST ANDYZ OYSTANDYZ

Reduplication 	á
	
KA

	
¯ - 	á

	
K
�
@ 	á

	
KA

	
®

	
J
	
K
�
@ Quickly

AANN FANN AANNFANN

a complex and challenging task. This may be a possible explanation for the fact

that no standard efficient Urdu word tokenizer is publicly available. An efficient

Urdu word tokenization system would be needed to deal with these issues and to

properly tokenize Urdu text.

To conclude, the space insertion problem, space omission problem and ambiguity

in tokenizing multi-words makes the Urdu word boundary detection a complex

and challenging task. This may be a possible explanation for the fact that no

standard efficient Urdu word tokenizer is publicly available. An efficient Urdu word

tokenization system would be needed to deal with these issues and to properly

tokenize Urdu text.

3.2 Challenges for Sentence boundary detection

Sentence boundary detection is a non-trivial task for Urdu text because: (i) it does

not use any special distinguishing characters between upper and lower case, (ii)

punctuation markers are not always used as sentence separators, (iii) sentences

are written without any punctuation markers, and (iv) there is a lack of standard

evaluation and supporting resources. For English and other languages, the difference

in upper and lower case is helpful in identifying sentence boundaries. Furthermore,

in English language there is a convention that if a period is followed by a word

starting with a capital letter then it is more likely to be a sentence marker, whereas,

in Urdu, there are no upper and lower-case distinctions. Punctuation such as “-”,

“.”, “?” and “!”’ are used as sentence terminators and these can also be used inside

the sentence.

The Table 2 shows example Sentence Boundary Markers (SBM) (such as sen-



12 Shafi, J. et al.

tences at index i, ii, iii, and iv, in all these sentences question, period, exclamation,

and double quotes marker are used at the end of sentences to represent a sentence

boundary) and Non-Sentence Boundary Markers (NSBM) for Urdu text. It can be

observed from these examples that the NSBM are also frequent because they are

being used between dates (such as sentence at index vii, in this sentence a period

mark is used with in a sentence which is actually not a sentence boundary), ab-

breviations (index v, this sentence is composed of several period markers, however

first two are not indicating a sentence boundary marker), emphatic declaration

(index vi, here exclamation marker is used with in a sentence i.e. not a sentence

boundary mark), names and range (index viii i.e. a first period and double quote

marker is used within a sentence but both are not a sentence ending marker), and

sentences without any SBM (index ix). Consequently, these kind of examples makes

the sentence tokenization of Urdu text a challenging task.

3.3 Challenges for POS Tagging

POS tagging for the Urdu language is also challenging and difficult task due to

four main problems (Naz et al., 2012; Mukund et al., 2010): (i) free word order

(general word order is SOV), (ii) polysemous words, (iii) Urdu is highly inflected and

morphologically rich, and (iv) the unavailability of gold-standard training/testing

dataset(s). We briefly discuss these issues here.

Firstly, Urdu sentences have a relatively complex syntactic structure compared

to English. Anwar et al. (2007b) have shown examples of the free word order and its

semantic meaningfulness in the Urdu language. Secondly, as with other languages,

Urdu also has many polysemous words, where a word changes it meaning according

to its context. For example, the word úæ�AK. (BASY) means ‘stale’ if it is an adjective

and ‘resident’ when it is a noun. Thirdly, Urdu is also a highly inflected and a

morphologically rich language because gender, case, number and forms of verbs are

expressed by the morphology (Hardie, 2003; Sajjad and Schmid, 2009). Moreover,

Urdu language represents case with a separate character after the head noun of

the noun phrase (Sajjad and Schmid, 2009). They are sometimes considered as

postpositions in Urdu due to their place of occurrence and separate occurrence. If

we consider them as case markers, then Urdu has accusative, dative, instrumental,

genitive, locative, nominative, and ergative cases (Butt, 1995: Pg 10). Usually, a

verb phrase contains a main verb, a light verb (which is used to describe the aspect)

and a tense verb (describes the tense of the phrase) (Hardie, 2003; Sajjad and

Schmid, 2009). Finally, there is a lack of benchmark training/testing datasets that

can be used for the development and evaluation of Urdu POS taggers.

4 Urdu natural language toolkit

This study aims to develop a natural language toolkit for the Urdu language. The

UNLT consists of word tokenization, sentence tokenization, and POS tagging mod-

ules. The following sections discuss these modules in more detail.



UNLT-Urdu Natural Language Toolkit 13

Table 2. Examples showing Sentence Boundary Markers (SBM) and Non-Sentence

Boundary Markers (NSBM) for Urdu text

index Markera Text

i QM-SBM ? AJÃ AKX ú



	
GAg. àñJ» Qï

f
AK. ñ»

	
¬Qå

�
�Ó

?GYA DYA JANE KYON BAHR KO MSHRF

Why was Musharraf let to go abroad?

ii PM-SBM -
	
XA

	
«

�
@ A¿ 02 ú

�
G

�
YËPð úæ� úæ� ù



K
�
@ á�Ó AK

�
Y

	
K @

-AAGHAZ KA 20 TY ORLD SY SY AAYY MY ANDYA

Inauguration ceremony of ICC world T 20 held in India.

iii EM-SBM ! ñ
�
K ú



æêj. ÖÞ� í

f
	
K Ð@ñ« úæîE. QK� �@

! TO SMJHY NH AOAM BHY PR IS

Even then if public do not understand then!

iv DQ-SBM " á�ï
f

ù


ï
f
P
�
@ ñ»

�
I�Ã @ 21 í

f
k. PA

	
g QK 	Pð ú



»

	
à@ á�Ó ÈAJ

	
k ø



Q�Ó \

”HYN RHY AA KO AGST 21 KHARJH OZYR KE AN MY KHYAL MYRE”

“In my opinion the foreign minister is visiting on August 21st”

v PM-NSBM - á�
ïf
ú



�
æ��. ú

	
GA

�
J�» AK� ú

	
¯A¿ á�
Ó ù�@ � ø



@ �ñK


HYN BSTE PAKSTANY KAFY MY AY- AE -YO

Many Pakistanis are living in U.A.E.

vi EM-NSBM - á�ï
f

è
f
A

�
�XAK. ú



» ¹ÊÓ ø



PñK� H�

�
@ ! B@ð Pñ

	
�k

- HYN BADSHH KE MLK PORE AAP ! OALA HZOR

My lord! You are the king of this country.

vii PM-NSBM - ù


ï
f

3 - 6 - 5102 h.

�
@

- HYN 3-6-2016 AAJ

Today is 3rd of May 2015.

viii PM-NSBM - ù


ï
f

Aï
f
P

�
IJ
k. ú



æ� 4 - 2 "

	
àA

�
J�» AK�" "

DQ-NSBM - HE RHA JET SE 3 - 2 ”PAKSTAN”

”Pakistan” is winning by 2-4.

ix SBM AÇ ú


ÆË

�
I

�
¯ð A¿ ÈA� Y

	
Jk� úæîE. @

Missing - ABHEY CHAND SAL KA WAQET LAGEY GA

Still this will take few years

a
QM: Question Mark, PM: Period Mark, EM: Exclamation Mark, DQ: Double Quotes

4.1 Urdu word tokenizer

4.1.1 Generating supporting resources for Urdu word tokenizer

For our proposed Urdu word tokenizer, we have developed two dictionaries: (i) a

complex words dictionary - to address space insertion problem and (ii) a morpheme

dictionary - to address the problem of space omission.

Complex words dictionary: To address the space insertion problem, a

large complex words dictionary was created using the UMC Urdu dataset (Jawaid



14 Shafi, J. et al.

et al., 2014), which contains data from various domains including Sports, Poli-

tics, Blogs, Education, Literature, Entertainment, Science, Technology, Commerce,

Health, Law, Business, Showbiz, Fiction and Weather. From each domain, at least

1,000 sentences were randomly selected and pre-processed to remove noise (see Sec-

tion 5.4). After noise removal, to speed up the dictionary creation process a basic

space-based tokenization approach was implemented in Java to split sentences into

words. Space based tokenization resulted in some incorrect word generation, e.g.,

complex words such as the prefix �
I

	
JÃ

	
à@ (AN GNT‘countless’) is incorrectly split

into a morpheme, 	
à@ (AN, literally ‘this’) and a stem, �

I
	
JÃ (GNT, literally ‘count’),

postfix Pð
�
@ í

f
ÊÔg (HMLH AAOR, ‘assailant’) is incorrectly split as í

f
ÊÔg (HMLH, ‘at-

tack’) i.e. a root and Pð
�
@ (AAOR, literally ‘hour’) i.e. a morpheme

Compound words which can be categorised into three types with respect to their

formation: (i) AB formation– two roots and stems join together, (ii) A-o-B for-

mation– two stems or roots are linked to each other with the help of ð (wao) (a

linking morpheme), and (iii) A-e-B formation– ‘e’ is the linking morpheme which

shows relation between A and B. (for more detailed discussion see (Rehman et al.,

2011)). In this research all three types have been used without any classification

e.g. A-o-B formation type of compound word Qº
	
¯ ð Pñ

	
« (GHOR O FKR, ‘con-

templation’) is incorrectly split as Pñ
	
« (GHOR, literally ‘ponder’) a root, ð (O) a

linking morpheme, and a stem Qº
	
¯ (FKR, literally ‘worry’). Reduplication which

have two types: (i) full reduplicated word– two duplicate words are used to form

a word and (ii) echo reduplication– the onset of the content word is replaced with

another consonant (detailed information can be found in (Bögel et al., 2007)). Echo

reduplication word, 	
àYK.

	
àX (DN BDN, ‘day by day’) is incorrectly split as 	

àX (DN,

literally ‘day’) i.e. content word and 	
àYK. (BDN, literally ‘body’), a consonant. One

million space-based tokenized words list (henceforth UMC-Words) has been used

to form a large complex words dictionary containing: (i) affixes, (ii) reduplications,

(iii) proper nouns, (iv) English words, and (v) compound words.

To collect affixes (prefixes and postfixes) complex words from the UMC-Words

list (Jawaid et al., 2014), a two-step approach is used. In the first step, a list of

prefixes and postfixes are manually generated. In the second step, an automatic

routine is used to extract words containing affixes from the large UMC-Words list.

Using prefixes and postfixes, the previous and next words are extracted respectively

from the UMC-Words list.

Reduplications complex words are collected using two methods: (i) full extraction

and (ii) partial extraction. The full extraction method is used to extract the full

reduplicated words such as ú


æ�Jk. ú



æ�Jk. (JYSY JYSY, ‘as’). To extract such full

reduplicated words, we compared each word in the UMC-Words list to the next

word, if both are the same then concatenate both to form a full reduplicated com-

pound word. The partial extraction method is used to collect the words of echo

reduplication i.e. in which a consonant word is a single edit distance away from the



UNLT-Urdu Natural Language Toolkit 15

first content word. The echo reduplication words can be further collected using two

methods: (i) one insertion extraction and (ii) single substitution extraction.

One insertion extraction method extracts the one insertion reduplicated words,

in which the consonant word has one insertion in its content word e.g. 	
àYK.

	
àX (DN

BDN, ‘day by day’). It can be noted that the consonant word 	
àYK. (BDN, literally

meaning ‘body’) has one more character (three) as compared to the content word
	
àX (DN, literally ‘day’) (which have two characters). Furthermore, the last two

characters of the consonant word are identical to the content word. To extract one

insertion reduplicated words, we used the UMC-Words list. The extraction process

works as follows: after excluding the first character, if the remaining characters of

consonant word are identical as well as having the same character count to the

content word, they are one insertion reduplicated word(s) we concatenated them

to form a single word.

The single substitution extraction method extracts the single substituted redu-

plicated word(s) - here the consonant word has single substitution in its content

word e.g. ¡ÊÓ ¡Ê
	

g (KHLT MLT, ‘intermixed’). It is worth noting that both words

content ¡Ê
	

g (KHLT, literally ‘bad’) and consonant ¡ÊÓ (transliteration: MLT) has

three characters and the final two characters are overlapping. To extract one sub-

stituted reduplicated word(s) we used automatic routine and applied the following

process over the UMC-Words list as: if the length of the content word is matched

with the length of the consonant word and the length of content word is greater

than two16 characters, and if one character is dissimilar after comparing character

by character, then it will form a single substitution reduplicated complex word.

To automatically extract abbreviations (91) and proper nouns (2K), regular ex-

pressions are used and further supplemented by manual checking to increase the

size of the proper nouns (3K) and abbreviations lists (187). The remaining 65K

proper noun list was generated in another NLP project and are used in this study

for Urdu word tokenization. In addition to this, manual work17 was also carried

out to remove noisy affix entries. Moreover, compound words (of formation AB

and A-e-B) and English words are added to increase the size of the complex words

dictionary. However, to collect words of A-o-B formation automatically, a linking

morpheme (ð, O) has been used. While using a linking morpheme both previous

and next words are extracted from the UMC-Words list to form a A-o-B compound

words.

The complete statistics of the complex words dictionary are as follows: there are

16 To make sure the two character words or auxiliaries could not be erroneously identified
as reduplication such as ú



» Q» (KR KE, literally ‘by doing’)

17 Five undergraduate NLP students have been employed to carry out manual tasks, all
are native Urdu speakers and have an interest in Urdu NLP and literature. Furthermore,
each student undertook a practical training session on annotation tasks. Each student
was given an annotation assignment of 80 random sentences from the UPC dataset and
requested to extract affixes, compound words, abbreviations and English words. These
assignments were marked and each student was awarded with a score. Students having
scored 85% or above were thus selected for annotation tasks.



16 Shafi, J. et al.

in total 80,278 complex words (7,820 are affixes, 278 are abbreviations, 10,000 are

MWEs, 1,480 are English words, 60,000 are proper nouns and 700 are reduplication

words).

Morpheme segmentation process: To address the space omission

problem (see Section 4.1.2), a large-scale morpheme dictionary is automatically

compiled from the HC dataset (Christensen, 2014). Before we proceed further to-

wards the approach used to generate the morphemes dictionary, it is worth describ-

ing the morpheme types. Urdu language morphemes can be categorized into: (i)

free and (ii) bound morphemes. Proposed word tokenizer has to rely on both cat-

egories. The bound or functional morphemes such as affixes include prefixes, e.g.,

“ AÇ , B , ñ»” (GA, LA, KO), linking morphemes, for e.g., @ ,ð (A, O) or suffixes,

for e.g., è
f
Y

�
� , è

f
X 	P (transliteration: SHDH, ZDH), can only expose their meanings

if they are attached to other words, i.e. they cannot stand alone. Whereas, free or

lexical morphemes can stand alone, for example, Ñ
	
« , ÕÎ«,

�
I�k� , ÈñJ.

�
®Ó (MKBOL,

CHST, ALM, GHM, ‘grief, knowledge, clever, famous’).

There are two further categories of free morphemes: (i) true free morphemes and

(ii) pseudo-free morphemes. True free morphemes can be either standalone (for

e.g., ÈX (DL, ‘heart’)) or form part of other words (e.g. ÈX XPX (DRD DL, ‘angina

pectoris’)). Pseudo-free morphemes can be a character, affix or word.

The preceding discussion summarizes the various types of morphemes. However,

from a computational linguistics view, free and bound morphemes play a vital role

in Urdu word formations (Khan et al., 2012), hence, they will be used without any

further classification in our proposed UNLT word tokenizer module.

In order to generate the morpheme dictionary, the 1,000 most frequent words

which have more than 20 occurrences in the HC dataset are used (Christensen,

2014); the selected words were split to form a morpheme dictionary. The whole

chopping process is completed in two steps: (i) Crude-Morphemes (CM) chopping

and (ii) Ultra-Crude-Morphemes (UCM) chopping.

In the first step, the first n character(s) of each word are kept while the rest

are discarded. For example, in case of n = 1, we kept only the first character and

discarded all others, thus words such as �
IJ

	
®

�
¯@ð (OAKFYT, ‘awareness’) will re-

turn ð (wao). Such single character morphemes are helpful to formulate compound

words, for instance ÐQ
	

k ð
�

�ñ
	

k (KHSH O KHRM, ‘canty’). Furthermore, we keep

chopping all the words repeatedly with the following values of n = 2, 3.4, 5, 618.

This process returns �
IJ

	
®

�
¯@ð , ù

	
®

�
¯@ð ,

	
­

�
¯@ð ,

�
�@ð , @ð (transliterations are: OA, OAK,

OAKF, OAKFY, OAKFYT) morphemes for the word �
IJ

	
®

�
¯@ð (OAKFYT, ‘aware-

ness’). There may be a situation where we may lose several valuable morpheme(s),

if the length of n > 6. Nevertheless, this is a rare case. Henceforth, we will call this

method Crude-Morpheme chopping.

18 An assumption made by us after analysing Urdu text that a word is formed of a maxi-
mum of six morphemes



UNLT-Urdu Natural Language Toolkit 17

To generate entirely different morphemes from the same word, we further ap-

plied a modified version of CM chopping, i.e. UCM. In which, we skipped the first

character and then applied the CM chopping with length n = 2, 3, 4. Thus, UCM

chopping resulted with these morphemes, �
IJ

	
®

�
¯@ , ù

	
®

�
¯@ ,

	
­

�
¯@ ,

�
�@ (transliterations are:

AK, AKF, AKFY, AKFYT) for the word �
IJ

	
®

�
¯@ð (OAKFYT, ‘awareness’). Further-

more, we iterate the UCM chopping method by skipping the first two characters (as

well as three, four etc.), until we meet the last two characters. Thus, the following

morphemes are returned by UCM, in the third �
IJ

	
®

�
¯ , ù

	
®

�
¯ ,

	
­

�
¯ (transliterations are:

KF, KFY, KFYT), in the fourth �
IJ

	
¯ , ú

	
¯ (transliterations are: FY, FYT) and in

the last �
IK (transliteration, YT) iterations.

Repeating CM and UCM chopping on the entire list of words will return all

possible morphemes. The two chopping methods used in this study will result in

erroneous morphemes. However, we manually examined the morpheme dictionary

and removed these. The number of morphemes generated by the CM and UCM

chopping methods were 5,089 and 7,376 respectively.

It can be observed from the above discussion that two different large-scale dic-

tionaries i.e. the complex words dictionary and the morphemes dictionary are gen-

erated with distinct approaches and with various statistics. These dictionaries will

be used to solve the space omission and space insertion problems with the word

tokenizer module of UNLT. To the best of our knowledge, no such large complex

words (a study (Hautli and Sulger, 2009) just proposed a scheme to extract loca-

tion and person name) and morpheme dictionaries have been previously compiled

semi-automatically for Urdu, to perform Urdu word tokenization.

4.1.2 Proposed Urdu word tokenizer

To investigate an effective approach for UNLT Word Tokenization (henceforth

UNLT-WT approach), our method (see Algorithm 1) is a combination of state-of-

the-art approaches: rule-based maximum matching, dictionary lookup, statistical

tri -gram Maximum Likelihood Estimation (MLE) with back-off to bi -gram MLE.

Furthermore, smoothing is applied to avoid data sparseness. A step by step work-

ing example of the proposed algorithm can be seen at19. However, this section just

presents the statistical approach used to solve space omission problem.

Maximum likelihood and smoothing estimation: In our proposed

UNLT-WT approach (see Algorithm 1) at step 11.1, we used tri -gram MLE and

smoothing estimations, because there can be multiple tokenized sequences for which

flag bit=false and word count are equal. For instance, there are two given texts, (i)

ðX ú



	
æë �QK� ú



» Ag. Qï

f
AK. ú



æ� @ (transliteration: ASE BAHR JA KE PRHNE DO, ‘let him

go abroad for higher studies’), and (ii) ðX ú



	
æë �QK� ú



» úk

.
Qï

f
AK. ú



æ� @ (transliteration:

ASE BAHR JY KE PRHNE DO, literally meaning ‘let him yes abroad for higher

19 https://doi.org/10.17635/lancaster/thesis/831- Page 88 - 98

https://doi.org/10.17635/lancaster/thesis/831


18 Shafi, J. et al.

Algorithm 1 UNLT-WT approach

Step 1: Initialize flag bit=false, row=1, column=1, word counter=0;
Step 2: Create array words list[row][column], array morphemes list, array com-
pound words list;
Step 3: Remove all white spaces and ZWNJ, to form a space free input text.
Step 4: Read bi-gram of input text.
Step 5: Match this bi-gram with each word of morphemes list
Step 6: Extract all those morphemes from morphemes list, which matched with bi-
gram.
Step 7: Store each extracted morpheme on a separate row/column of words list
Step 7.1: For each row, copy the flag bit, word counter++
Step 8: If no match is found in morphemes list, split bi-gram into uni-gram.
Step 8.1: Store the first uni-gram with previous morpheme (column) except ð (char-

acter O) and @ (character A) (use in compound words) and turn the flag bit=true.

For ð and @, store it on separate column of arraywords list [row][column] and increment

word counter.
Step 9: Repeat the steps 4 to 8, until sentence ending marker, and for each row of
words list.
Step 10: Select the row having minimum word counter value and flag bit=false.
Step 11: If multiple rows are qualified in step 10 then
Step 11.1: Calculate tri-gram MLE for each row.
Step 11.1.1: Select the one having highest value of tri-gram MLE.
Step 11.2: If in step 11.1.1, any row having tri-gram MLE value equal to Zero, then
calculate bi-gram MLE for each row.
Step 11.2.1: Select the one having highest value of bi-gram MLE.
Step 11.3: If in step 11.2.1, any row having bi-gram MLE value equal to Zero then,
calculate bi-gram smoothing for each row.
Step 11.3.1: Select the one having highest value of smoothing.
Step 12: For final selected row, read each column and match in the compound word
dictionary.
Step 12.1: If a match is found then read the next column of selected row in step 12
and repeat step 12 for the remaining part of selected row.
Step 12.1.1: If complete match is found then concatenate with the columns in step
12.1.
Step 12.1.2: Move each element of final selected row in step 12, decrease the array
index.
Step 13: Finally, list of tokenized word will be produced.

studies’). Both have six tokens with flag bit= false, but only the first text is seman-

tically correct and meaningful. For such ambiguous cases, we calculate an N -gram

language model with MLE for parameter and Laplace for smoothing estimation.

The goal of these estimations is to find an optimized segmented sequence with

the highest probability. This can be shown by a given mathematical expression, a

general statistical model of our proposed UNLT-WT approach.

P̂ (mj |m1−N+1mn−N+2...mj−1) = arg max
M∈ς(I|D)

P (M) (1)

Here, ς(I|D) denotes all possible tokenized words of the input string i.e. I = i1i2...il
with l characters, and M denotes string concatenation of all possible tokenized se-

quences i.e. M = m1m2...mn, in terms of morphemes dictionary D. Theoretically,

it is assumed that the n-gram model outperforms with a high value of N . However,

practically the data sparseness restricts better performance with high order N .

Therefore, in our UNLT-WT approach, we opted for tri -gram (N = 3) or bi -gram

(N = 2) MLE. These have proved to be successful in several tasks for resolving



UNLT-Urdu Natural Language Toolkit 19

ambiguity (e.g. POS tagging (Brants, 2000), automatic speech recognition (Abdel-

hamid et al., 2012) and word tokenization (Fu et al., 2008)).

The task of resolving similar sequence ambiguities for the above two texts is

accomplished by using tri -gram MLE (Jurafsky and Martin, 2014) as:

P (tj |tj−2, tj−1) =
C (tj−2, tj−1, t)

C (tj−2, tj−1)
(2)

Where t represents the individual token, C is a count of three (tj−2tj−1t) and two

(tj−2tj−1) consecutive words in the dataset and P is the tri -gram contestant MLE

value of each of the possible segmented sequences. The calculated probability for

the first sequence is 3.2e-08 while for the second it is 0.

As tri -grams take account of more context, if this specific context is not found

in the training data (see Section 5.1), we back-off to a narrower contextual bi -gram

language model. Bi -gram cumulative probability values have been calculated as

given by Jurafsky and Martin (2014):

P (tj |tj−1) =
C (tj−1t)

C (tj−1)
(3)

Where t represents the individual token, C is a count of two (tj−1t) and one (tj−1)

consecutive word(s) in the dataset and P is the bi -gram contestant MLE value of

each of the possible segmented sequences. The calculated probability for the first

sequence is 2.7e-6 for the former sequence and 0 for the latter one.

These zero probabilities are again an underestimation of the input string, ul-

timately a cause for the data sparseness. Even if a statistical language model is

trained on a very large dataset, it will remain sparse in some cases. However, there

is always a possibility that the input text occurs in the test dataset (Chen and Good-

man, 1999), thus assigning them to zero made this an unstable, frail and specific

estimator. Therefore, to overcome this, different smoothing techniques have been

proposed in previous literature (Jurafsky and Martin, 2014) with different char-

acteristics (such as smoothing the probability etc.). Hence, it is primarily aimed

at making a robust and generalize language model by re-evaluating lower or zero

probability upwards and vice-versa for high probabilities.

For this study, we employed Laplace (add-one) smoothing (Jeffreys, 1998), as

one of the oldest, simplest and baseline estimations. This estimation adds one to all

frequency counts, i.e. that all bi -gram probability counts have been seen one more

time than actually exists in the training data as:

Padd:1 (tj |tj−1) =
1 + C (tj−1, t)

V + C (tj−1)
(4)

Where v represents the unique words (types), added to the total number of words

C(tj−1) in order to keep the probability normalized (Jurafsky and Martin, 2014).

We have used Laplace smoothing to estimate the parameters required for data

sparseness in order to increase the bi -gram MLE value for ðX ú



	
æë �QK� ú



» úk

.
Qï

f
AK. ú



æ� @

(transliteration: ASE BAHR JY KE PRHNE DO, ‘let him go abroad for higher

studies’), from 0 to 1.9e-14, and decreased value for ðX ú



	
æë �QK� ú



» Ag. Qï

f
AK. ú



æ� @

(transliteration: ASE BAHR JA KE PRHNE DO, literally meaning ‘let him yes



20 Shafi, J. et al.

abroad for higher studies’), from 2.7e-6 to 3.8e-7. As the latter tokenized sequence

has the highest smoothing MLE. Therefore, it will be selected by UNLT-WT as the

best tokenized sequence, which is correct.

4.2 Urdu sentence tokenizer

4.2.1 Rule based approach

For our proposed rule-based approach, to manually extract rules for the sentence

tokenization task, initially, a subset of the UMC dataset (Jawaid et al., 2014) com-

prised of 13K sentences is selected, which contains Urdu text from various domains

or genres including News, Religion, Blogs, Literature, Science and Education. Af-

ter pre-processing (see Section 5.4) we retained 10K sentences, which were used

to extract rules to develop our proposed Urdu sentence tokenizer. The rules were

devised to include sentence termination markers (-, ?, \ and !), regular expres-

sions and supplementary dictionary lookup20 (henceforth UNLT-ST-RB approach).

These heuristics are applied as follows:

1. If the current character is a period marker (-) AND the same mark appears

after two or three characters, then consider it as an abbreviation and match

it in the abbreviation list.

2. If within the next 9 characters (from any previous SBM marker), an excla-

mation mark (!) is found, then this is not a sentence boundary marker.

3. If the character before a double quote (\) is a period (-) or question (?) mark,

then it is a sentence boundary marker.

4. Apply regular expressions for detecting the date and hyphenated numeric

values.

5. In addition to this all the above rules from 1 to 4, split sentences based on

the question (?), period (-) and exclamation (!) markers.

4.2.2 ML based approach

In this approach, we are exploiting a Support Vector Machines (SVM) classifier

(Hearst et al., 1998) to detect the sentence boundaries of the Urdu text - using the

features described below another approach is formed i.e. UNLT-ST-ML. SVMs offer

robust classification even with sparse vectors of large dimension (Akita et al., 2006),

its good performance results on textual data and its suitability for binary classi-

fication (Kreuzthaler et al., 2015) task make this a suitable classifier for sentence

boundary detection. Moreover, SVMs use a function (see Equation 5) for classifying

sentence boundary label pairs (xj , yj), j = 1, ...,m for all xj ∈ Rn to a target value

y ∈ {1,−1}. Where w ∈ Rn a weight coefficient and b ∈ R is a bias. We are using

a Polynomial kernel implemented in Weka21.

20 We used the same dictionary compiled for the word tokenization task (see Section 4.1.1)
21 http://www.cs.waikato.ac.nz/ml/weka/ - last checked: 22-September-2020

http://www.cs.waikato.ac.nz/ml/weka/


UNLT-Urdu Natural Language Toolkit 21

f(X) = sgn(wT ø(x) + b) (5)

Features for ML approach:

• Probability (UMC dataset22 (Jawaid et al., 2014) is used) that a word with

“?, - and !” occurs at the end of a sentence

• Probability (UMC dataset23 is used (Jawaid et al., 2014)) that a word with

“?, - and !” occurs at the beginning of a sentence

• Length of a word with “?, - and !”

• Length of a word after “?, - and !”

• Is a sentence contains an abbreviation

• Is a sentence contains a date/numeration

• Bi - and tri -grams words information (preceding “?, - and !”) are used

• If a word before “?, - and !” markers contains any one of the tag (NN, NNP,

JJ, SC, PDM, PRS, CD, OD, FR, Q, and CC. See Section 4.3.1 for POS tags)

is not a sentence boundary

4.3 Urdu part of speech tagging

4.3.1 Existing Urdu POS tagset

The tagging accuracy of a POS tagger is not only dependent on the quality and

amount of training dataset but also on the POS tagset used for annotation. In the

prior literature, we found three commonly used POS tagsets for the Urdu language:

(i) Hardie’s POS tagset (Hardie, 2004), (ii) Sajjad’s POS tagset (Sajjad, 2007) and

(iii) Centre for Language Engineering (CLE) Urdu POS tagset (Ahmed et al., 2014).

Hardie’s POS tagset (Hardie, 2004) was an early attempt to resolve the gram-

matical tag disambiguation problem for the Urdu language. This tagset follows the

EAGLES24 guidelines and consists of 350 morphosyntatic tags, which are divided

into 13 main categories. Some grammarians (Platts, 1909) propose only three main

categories whereas (Schmidt, 1999) used 10 main categories for Urdu text. There

were a number of shortcomings observed in Hardie’s POS tagset (Hardie, 2004). For

example, the possessive pronouns like @Q�Ó (MYRA ‘my’), @PAî
f
Ö
�
ß (TMHARA ‘your’)

and @PAÒï
f
(HMARA ‘our’) are assigned to the category of possessive adjective, which

is incorrect. Many grammarians marked them as pronouns (Platts, 1909; Javed,

1985). Moreover, the Urdu language has no articles but this tagset defined articles.

Another issue with the tagset is the use of locative and temporal adverbs such as

àAî
f
E (YHAN ‘here’), àAï

f
ð (OHAN ‘there’), and H. @ (AB ‘now’), which are treated

as pronouns. The locative and temporal nouns such as iJ.� (SBH ‘morning’), ÐA
�

�

22 To calculate that a certain word occurs before a sentence boundary
23 To calculate that a certain word occurs after a sentence boundary
24 http://www.ilc.cnr.it/EAGLES96/home.html - Last checked: 07-December-2016

http://www.ilc.cnr.it/EAGLES96/home.html


22 Shafi, J. et al.

(SHAM ‘evening’), and QêÃ (GHR ‘home’) appear in a very similar syntactic con-

text. To conclude, these grammatical misclassifications as well as the large number

of POS tags with relatively small training data will affect the accuracy of POS

taggers developed for the Urdu language.

Another POS tagset (henceforth Sajjad’s POS tagset) (Sajjad and Schmid, 2009),

consists of 42 POS tags with finer grained categories for pronouns and demonstra-

tives. However, it is lacking in terms of Urdu verb, tense and aspect.

A recently released CLE Urdu POS tagset (Ahmed et al., 2014) contains 35

tags and addresses most of the issues reported above. It is based on the critical

analysis of several previous iterations of Urdu POS tagsets. Furthermore, it is built

on the guidelines of the Penn Treebank25 and a POS tagset for common Indian

languages26. In the CLE Urdu POS tagset, a verb category has multiple tags based

on the morphology of the verbs. Furthermore, it has shown promising results on

Urdu text see Section2.3).

For this study, we selected the CLE Urdu POS tagset (Ahmed et al., 2014) for the

following reasons: (i) it provides correct grammatical classifications, (ii) it provides

purely syntactic categories for major word classes and (iii) provides reasonable

performance on a small size test dataset.

4.3.2 Proposed Urdu POS tagging approaches

For this study, we applied two stochastic approaches for Urdu POS tagging: (i) tri -

gram Hidden Markov Model and (ii) Maximum Entropy-based model. The reason

for selecting these two methods for Urdu POS tagging is many fold, (a) they have

proven to be effective for POS tagging not just for English (Yi, 2015) but also for

other languages which are closely related to Urdu such as Hindi (Joshi et al., 2013;

Dandapat, 2008), (b) both are well established stochastic models for automatic

POS tagging task (Wicaksono and Purwarianti, 2010), (c) these methods have

been primarily investigated for when dealing with languages with limited resources

(Azimizadehet et al., 2008; Ekbal et al., 2008), and (d) these models have not been

previously compared for the Urdu language.

Hidden Markov Model (HMM) for POS tagging: In general, the

Urdu POS tagging task can be formulated as: given a sequence of words w1, ..., wn,

find the sequence of POS tags t1, ..., tn from a POS tagset T 27 using some statistical

model. In this section we have used HMM stochastic learning model described by

(Rabiner, 1989), while Thede and Harper (1999) redefined it for the POS disam-

biguation task. This model was implemented in Garside and Smith (1997); Bird

et al. (2009) for POS tagging. For our experiments, we used a third order HMM

learning model, also referred to as a tri -gram POS tagging. This model is composed

25 https://www.cis.upenn.edu/treebank/ - Last checked: 13-June-2017
26 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/

I08-7013.pdf - Last checked: 24-September-2016
27 35 tags as in CLE Urdu POS tagset: http://www.cle.org.pk/software/langproc/

POStagset.htm - Last checked: 20-November-2016

https://www.cis.upenn.edu/treebank/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I08-7013.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I08-7013.pdf
http://www.cle.org.pk/software/langproc/POStagset.htm
http://www.cle.org.pk/software/langproc/POStagset.htm


UNLT-Urdu Natural Language Toolkit 23

of transitional (contextual) and lexical (emission) probabilities as:

T̂ = arg max
t∈T

P (t1, ..., tn)|(w1, ..., wn) (6)

Using Bayes’ theorem, the above equation can be rewritten as for 3rd order model

as:

P (t1, ..., tn|w1, ..., wn) = arg max
t1,...,tn

n∏
j=3

(P (tj |tj−1, tj−2︸ ︷︷ ︸)
TransitionProbability

∗
n∏
i=1

P (wi|ti︸ ︷︷ ︸))
LexicalProbability

(7)

During the training process, the above tri -gram HMM language model computes

two probability factors for the sequences: (i) emission probabilities, aimed at de-

termining the probability of a particular tag conditioned on particular word, and

(ii) transitional probabilities, used to find the probability of a particular tag on

the basis of given preceding tag(s). Given a sentence, the aim of the HMM lan-

guage model is to search the tagging sequence and choose the most likely sequence

that maximises the dot product of lexical and transition probabilities. That can be

computed by using a Viterbi algorithm (Viterbi, 1967).

Parameter estimation: We can estimate the HMM parameters by applying the

simplest tri -gram MLE (see Section 4.1.2), used for computing relative frequencies.

We have used a training dataset (see Section 5.3) to find tag frequency counts (C)

for two or three consecutive tag pairs (tj−2, tj−1, tj), (tj−2, tj−1). Where, tj is the

jth tag of annotated dataset used during training process. The following equation

requires frequencies count of witi, where wi is the word and ti is the tag assigned

to ith word. The tri -gram language model (see Section 4.1.2) and the following

equation is used with these parameter settings, 1 ≤ (i, j) ≤ n.

P (wi|ti) =
C(witi)

C(ti)
(8)

Smoothing: We have used the MLE for parameter estimation (see Sec-

tion 4.3.2), consequently, such models may come across a situation where unseen

events do not occur or have quite low frequencies in the trained model. Therefore,

the zero probability of such occurrences produces problems in the multiplication of

probabilities, eventually, leading to a data sparseness.

To avoid data sparseness, we need some estimators that automatically assign a

part of the probability mass to unknown words and tag sequences, thus yielding an

improvement for unseen events and overall accuracy improvement for the POS tag-

ger. For this, different smoothing techniques have been cited in the literature with

an objective to decrease the probability of seen events and assigning appropriate

non-zero probability mass to unseen events. In this study, five different smoothing

techniques were adopted including: (i) linear interpolation, (ii) Laplace, (iii) Lid-

stone’s, (iv) Good-Turing, and (v) Kneser-Ney estimations. Adopting them with an

HMM model thus alleviates sparse data issues.

Linear interpolation: A well-practised smoothing technique consists of linearly

combined estimation for different order n-grams as:

P (ti|ti−1, ti−2) = λ1ρ(ti) + λ2ρ(ti|ti−1) + λ3ρ(ti|ti−1, ti−2) (9)

Where P is a valid probability distribution, ρ are maximum likelihood estimates of



24 Shafi, J. et al.

the probabilities and λ1 +λ2 +λ3 = 1 to normalise the probability. Although, there

are different ways to estimate λs, for our experiments we adopted deleted linear

interpolation, cited in (Brants, 2000).

The deleted linear interpolation successively removes each tri -gram from the

training dataset. Moreover, this technique estimates the best value for the λs from

all other n-grams in the dataset, making sure that the value of λ does not depend

upon the particular n-gram. Further, it computes the weights depending on the

counts of each i-gram, involved in the interpolation. Thus, our first HMM based

proposed model is a combination of linear interpolation smoothing technique along

with tri -gram HMM model (henceforth T-HMM-LI).

Laplace and Lidstone’s estimation: Laplace estimation (one of the oldest and

simplest smoothing techniques) updates the count by one of each bi -gram occurs

compared to the actual frequency in training data (Jurafsky and Martin, 2014) (see

Section 4.1.2). Whereas, Lidstone’s smoothing estimation (Manning and Schütze,

1999) generalizes Laplace, by adding an arbitrary value to all (seen or unseen) the

events. Although the values for λ can be calculated using different methods, for

our experiments we used the same value cited in the research article (Manning and

Schütze, 1999), i.e. a well-known Expected Likelihood Estimation (ELE). Thus,

Lidstone’s estimation (Manning and Schütze, 1999) can be calculated as:

Plidstone(x,λ) =
λ+ C(X)

V λ+N
λ = 0.5 (10)

Where V represents the unique words (vocabulary) against the total number of

words N to keep probabilities normalized (Jurafsky and Martin, 2014). The gen-

eralized formulation of Lidstone’s and Laplace estimation in an HMM-based Urdu

tagger is as follow:

πi =
C(si(t = 0)) + λ

C(tokens) + Vtagλ
(11)

aij =
C(si → sj) + λ

C(tokens) + Vtagλ
(12)

P (sj) =
C(sj) + λ

C(tokens) + Vtagλ
(13)

P (wk) =
C(wk) + λ

C(tokens) + Vwλ
(14)

Here, Vtag is the number of possible tags and Vw is the size of the approximated

vocabulary. Our second POS tagging model is a combination of Laplace and tri -

gram HMM model (henceforth T-HMM-LaE). The third POS tagger makes use of

Lidstone’s estimation and supervised tri -gram HMM model parameters (we shall

call this T-HMM-LiE).

Good-Turing estimation: Uses the probability mass of n-grams (that occur

c+ 1 times) which is seen once to re-estimate the count of n-grams (that are seen

exactly c times) that were never seen. This can be described as:

c∗ = (c+ 1)
nc+1

nc
(15)



UNLT-Urdu Natural Language Toolkit 25

The fourth POS tagger makes use of Good-Turing estimation and supervised

tri -gram HMM model parameters (hereafter, T-HMM-GT).

Kneser-Ney smoothing: This outperforms all other smoothing techniques. In

this paper we have used the modified version of this smoothing (Christer, 1996),

which is an interpolated variation of Kneser–Ney smoothing with an augmented

version of absolute discounting, thus the transition probabilities p(tj |tj−1) are cal-

culated as:

P (tj |tj−1) =
f(tj−1tj)−D(f(tj−1tj))∑

tj
f(tj−1tj)

+ γ(tj−1).
N1+(·, ti)
N1+(··) (16)

Here D is estimated value and D(f) = {0 if f = 0, D1 if f = 1, D2 if f = 2,}.
Another POS tagger is formed using supervised tri -gram HMM model and and

Kneser-Ney smoothing (henceforth T-HMM-KN).

Maximum Entropy (MaEn) model for POS tagging: The other

adopted stochastic learning model is MaEn, and we aimed to compare this to the

above described tri -gram HMM based models, to find the most optimal POS tag-

ger for Urdu. The MaEn statistical assumption is a simplistic model, it assigns a

probability distribution for every tag, given a word and its context as:

P (t1, ..., tn|w1, ..., wn) =

n∏
j=1

P (tj |cj) (17)

Where, t is the individual tag in the set T of all possible tags i.e. t1, ..., tn for a

given a sentence, c is defined as the context, usually defined as the sequence of words

w1, ..., wn and the tag preceding the word. The maximum likelihood tag sequence

is used for assigning probabilities to a string of input words.

The principle of estimating probabilities in MaEn model is to make as few as-

sumptions as possible, other than the constraint imposed. Furthermore, these con-

straints are learned from the training data, which express some relation between

features extracted and outcome. The probability distribution which satisfies the

above property has the highest entropy, thus, it agrees with the maximum likeli-

hood distribution, and has a general form as cited in (Ratnaparkhi, 1996):

P (t|c) =
1

N
exp

k∑
j=1

αjfj(c, t) (18)

Where N is the total number of training samples (normalization constant), fj
is feature function on the event (c, t). Feature functions used by MaEn model are

binary valued and defined to capture relevant aspects of language. The αj is a model

parameter with k features, which is determined through the Generalize Iterative

Scaling (GIS) algorithm (Curran and Clark, 2003). However, these model values

and features, are primary ingredients of MaEn learning model.

Features selection in MaEn model: As described previously the MaEn is

feature based probabilistic model, to obtain high accuracy we used two binary

valued features that might be helpful for predicting POS tag, these are determined

empirically for Urdu POS tagging along with MaEn model as: (i) context window,

and (ii) word number. The best context window with five words has been identified,

which is comprised of n-gram (Wi−2, Wi−1, Wi, Wi+1, Wi+2) and n-POS (ti−2, ti−1,



26 Shafi, J. et al.

and ti) information. If the current word is a number such as “25031”, another

feature can be created:

fj(c, t) =

{
1 if WordReadIsNumber (wj) = true and tj = CD

else 0

}
(19)

Using the above mentioned features with MaEn we formulated another Urdu POS

tagging model (henceforth MEn). However, these suitable binary valued features

are the same for other languages. We examine some other important feature sets

for the Urdu language below.

Morphological information for HMM and MaEn models: To improve

the tagging accuracy of the unknown words in the above models, we have devel-

oped an exclusive feature set after detailed analysis of the UNLT-POS training

dataset (see Section 5.3). This feature set is intended to have the capability to cap-

ture lexical and morphological characteristics (features) of the Urdu language. The

captured morphological features are based on information retrieved from a stem-

mer28 and dictionary29, assuming that information is complete30. Thus, we boosted

the lexical probability of assigning restricted lexical (POS) tag to a word. Conse-

quently, the integrated models are expected to perform better with such artificial

weight (reduced set of possibilities) for a given word. All the above models (T-

HMM-LI, T-HMM-LaE, T-HMM-LiE, T-HMM-GT-MA, T-HMM-KN, and MEn)

are incorporated with such restricted POS tags features, henceforth, T-HMM-LI-

MA, T-HMM-LaE-MA, T-HMM-LIE-MA, T-HMM-GT-MA, T-HMM-KN-MA and

MEn-MA.

The above mentioned MA information is helpful to restrict the possible choice of

POS tags for a given word, on the other hand, suffix and prefix (of current word)

information can also help us to further improve the POS models. For HMM based

POS models, suffix information has been used during the smoothing of emission

probabilities. Whereas, for the MEn model the suffix and prefix information are

used as another type of feature. It is extended using a prefix and suffix up to

a length of four. It is also important to note, using prefix and suffixes of length

<= 4 for all words in MEn gives better results instead of using only rare words as

described by Ratnaparkhi (1996). The primary reason for much improved results

based on prefix and suffix is that, a significant number of instances are not found

for most of the word of the language vocabulary, with a small amount of annotated

data. HMM based (T-HMM-LI, T-HMM-LaE, T-HMM-LiE, T-HMM-GT, and T-

HMM-KN) and MEn models are incorporated with suffix information, we shall

call them T-HMM-LI-Suf, T-HMM-LaE-Suf, T-HMM-LiE-Suf, T-HMM-GT-Suf,

T-HMM-KN-Suf, and MEn-Suf POS taggers.

The last six POS models represent combinations of various statistical, smooth-

ing and features as described above. The T-HMM-LI-Suf-MA is a combination of

28 http://www.cle.org.pk/software/langproc/UrduStemmer.htm - Last checked: 17-
November-2016

29 http://182.180.102.251:8081/oud/default.aspx - Last checked: 09-October-2016
30 If a word is unknown then it belongs to one of the open class lexical categories, i.e. all

classes of Noun, Adjective, Verb, Adverb, and Interjection.

http://www.cle.org.pk/software/langproc/UrduStemmer.htm
http://182.180.102.251:8081/oud/default.aspx


UNLT-Urdu Natural Language Toolkit 27

tri -gram HMM along with Linear interpolation, restricted POS tags feature and suf-

fix information. T-HMM-LaE-Suf-MA is based on the tri -gram HMM model with

further incorporation of Laplace smoothing, suffix and restricted POS tags. In T-

HMM-LiE-Suf-MA, we have used tri -gram HMM along with Lidstone’s estimation,

with suffix and restricted POS tags. The T-HMM-GT-Suf-MA is a combination of

tri -gram HMM along with Good-Turing, restricted POS tags and suffix informa-

tion. In T-HMM-KN-Suf-MA, tri -gram HMM, Kneser-Ney estimation, suffix and

restricted POS tags are used. MEn-Suf-MA POS tagging model is a collection of,

MaEn, contextual window, suffix and restricted POS tags.

4.4 Deep learning approaches for comparison

We have performed an empirical comparison of our proposed word/sentence tok-

enizers and POS tagger, with the recently proposed Trankit NLP Toolkit (Nguyen

et al., 2021). We have selected this deep learning toolkit for the evaluation pro-

cess as this has reported good results as compared to other deep learning methods.

This is a light-weight transformers-based (a deep neural network based new SOTA

architecture in NLP (Vaswani et al., 2017)) tool for multi/mono-lingual text pro-

cessing, with trainable and pre-trained pipelines for NLP tasks for 100 languages

including Urdu. Trankit’s recent version31 NLP tools are built upon the transformer

XLM-RoBERTa (Conneau et al., 2020) (a cross-lingual transformers based masked

language model, trained on more than 2 terabytes of pre-processed Common Crawl

data for 100 languages), extends the state-of-the-art in word/sentence tokenization,

dependency parsing, part-of-speech tagging, and tagging of morphological features.

It also attained high performance in various other basic NLP tasks including word

tokenization, multi-word expansion, and lemmatization of the 90 treebanks.

Trankit’s word and sentence tokenizers are based on word parts rather than

character-based to exploit the contextual information (Kudo, 2018). It begins on

a given input text t, by splitting it into sub-strings on the basis of space. Fur-

thermore, a multi-lingual sentence splitter (Kudo and Richardson, 2018) further

breaks each sub-string into word pieces, concatenated to obtain an overall se-

quence of word-parts w = [w1, w2, w3, ....., wn] for t. In the next step, a pre-

trained transformer takes w as input to produce corresponding representation vec-

tors v = [v1, v2, v3, ....., vn] for each word-parts in the sequence w. Each vector from

v will be fed to a feed forward neural network with a softmax at the end to predict

whether the wi is the end of a single word, multi-word, or a sentence. Finally, all of

the predictions for all word-parts w are accumulated to decide a single-word token,

multi-word token, and sentence boundaries for the given input text t. Word and sen-

tence tokenization using this approach is denoted by Trankit-WT and Trankit-ST,

respectively.

Trankit uses the detected words/tokens and sentences for POS tagging at

sentence-level. For a given input sentence s, the transformers-generated representa-

tion of each of its words is computed by aggregating the representation of its word

31 https://trankit.readthedocs.io/en/latest/ - Last visited: 21-October-2021

https://trankit.readthedocs.io/en/latest/


28 Shafi, J. et al.

pieces. These distributed representational vectors are further fed to a softmax layer

to predict the most probable POS tag for each word in the input sentence s. POS

tagging using this approach is denoted by using Trankit-POST.

5 Proposed dataset for UNLT

5.1 Dataset for Urdu word tokenization

Testing data: Another key element of our research is to develop a large benchmark

dataset, for the evaluation of our proposed UNLT-WT approach (see Section 4.1.2).

The process of developing a benchmark test dataset is divided into three steps: (i)

raw text collection, (ii) cleaning and (iii) annotation.

In the first phase, raw data is collected from various online sources (BBC Urdu32,

Express news33, Urdu Library34, Urdu Point35, Minhaj Library36, Awaz-e-Dost37

and Wikipedia38) by using a Web crawler39. The collected raw data is free and pub-

licly available for research purposes, and belongs to following genres: Commerce,

Entertainment, Health, Weather, Science and Technology, Sports, Politics and Re-

ligion. This collected text contains 61,152 tokens.

In the next phase of the test dataset creation process, the collected raw text was

pre-processed (see Section 5.4), which resulted in the removal of 2,152 tokens. The

remaining cleaned data is composed of 59,000 tokens (3,583 sentences).

The quality of evaluation of an Urdu word tokenization approach depends on the

annotation quality of the test dataset because inconsistent and noisy annotations

deteriorate the model’s performance. Thus, the annotations were performed by

three different annotators (D, E and F). All the annotators are native speakers of

Urdu. The annotation process is further divided into three phases: (i) training, (ii)

annotation, and (iii) inter-rater agreement calculation and conflict resolution.

In the training phase, two annotators (D and E) annotated a subset of 58 sen-

tences. After that, the inter-annotator agreement was computed for these sentences

and conflicting tokens were discussed to further improve the annotation quality.

In the annotation phase, the remaining test dataset comprising of 3,525 sentences

was annotated by annotators D and E. After the annotation phase, the inter-rater

reliability score was computed for the entire test dataset of 59,000 tokens. We ob-

tained the inter-annotator agreement of 86.3% as the annotators had agreement

on 50,917 pairs. The Kappa Coefficient was computed to be 78.09%, which is con-

sidered as good, considering the levels of difficulty for classifying the merge (space

32 http://www.bbc.com/urdu terms of use: https://www.bbc.com/urdu/
institutional-37588278 - Last checked: 29-June-2019

33 http://www.express.pk/ - Last checked: 28-October-2016
34 http://www.urdulibrary.org/ - Last checked: 02-November-2016
35 http://www.urduweb.org/planet/ - Last checked: 08-November-2016
36 http://www.minhajbooks.com/urdu/control/ - Last checked: 08-November-2016
37 http://awaz-e-dost.blogspot.co.uk/ - Last checked: 08-November-2016
38 https://ur.wikipedia.org/wiki/ - Last checked: 08-November-2016
39 https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/

00-097C-0000-0023-65A9-5 - Last Checked: 18-December-2016

http://www.bbc.com/urdu
https://www.bbc.com/urdu/institutional-37588278
https://www.bbc.com/urdu/institutional-37588278
http://www.express.pk/
http://www.urdulibrary.org/
http://www.urduweb.org/planet/
http://www.minhajbooks.com/urdu/control/
http://awaz-e-dost.blogspot.co.uk/
https://ur.wikipedia.org/wiki/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5


UNLT-Urdu Natural Language Toolkit 29

omission) and compound words (space insertion) into single or multiple tokens (see

Section 3.1). Furthermore, the conflicting tokens were annotated, and decisions re-

solved by the third annotator F, which resulted in a gold standard UNLT-Word

Tokenizer-Test (UNLT-WT-Test) dataset.

The Table 3 shows the type-token ratio of the UNLT-WT-Test dataset, that have

a total of 59,000 tokens and 5,849 types. The UNLT-WT-Test dataset is stored in

the standard “txt” format and is free and publicly available for research purposes

(for license and URL see Section 7).

Table 3. Domain wise statistics of the UNLT-WT-Test dataset

Domain Tokens Types Domain Tokens Types

Commerce 7,254 663 Sports 6,868 691

Entertainment 8,578 937 Politics 9,627 777

Health 6,765 651 Religion 5,553 556

Weather 6,606 756 S&Ta 7,749 823

a Science and Technology

Training data: The training dataset for our proposed Urdu word tokenizer

was created by using a subset of the HC Corpus (Christensen, 2014). To develop a

gold standard training dataset, two million tokens were randomly selected from the

following domains: Politics, Culture, Crime & Law, Fashion, Religion, Business &

Economy, Science & Technology, Sports, Weather, Education, Health, Entertain-

ment.

After pre-processing (see Section 5.4) the collected raw data, the resulting dataset

contained 1.65 million tokens. The pre-processed text is used to create the gold

standard training dataset. In the first step, the text is tokenized on the basis of

space. After that, a human annotator manually corrected the improperly tokenized

words generated in the first step. The final benchmark training dataset (hereafter

called UNLT-WT-Train dataset) is comprised of 1.65 million tokens.

The UNLT-WT-Train dataset was used to generate N -grams using the approach

described in (Jurafsky and Martin, 2014). Furthermore, we count the occurrences

of each unique N -gram type, resulting in a total of 1,335,263 N -gram pairs with

the following statistics: tri -grams: 636,765, bi -grams: 494,988 and uni -grams:

203,510.

5.2 Dataset for Urdu sentence tokenization

For the evaluation of our proposed Urdu sentence tokenizer, we created a bench-

mark dataset (hereafter called UNLT-ST dataset) by following three steps: (i) raw

Urdu text collection, (ii) pre-processing of raw data and (iii) annotation. To con-



30 Shafi, J. et al.

struct the UNLT-ST dataset, in the first step, we used a Web crawler40 to extract

raw Urdu text of 12.5K sentences from online sources (see Section 5.1) including:

BBC Urdu, Express news, Urdu Library, Urdu Point, Minhaj Library, Awaz-e-Dost

and Wikipedia. These sources allow their text (content) to be freely used for re-

search purposes. To make the dataset more realistic, we extracted the raw text

of different domains and genres including Sports, Politics, Blogs, Education, Lit-

erature, Entertainment, Science, Religion, Fashion, Weather, Entertainment, Fic-

tion, Health, Law and Business. BBC Urdu is our largest source of text collection,

which contains 3,358 sentences, while the Urdu Point is the smallest one, containing

1,157 sentences. Statistics of sentences collected from other sources are: Awaze-e-

Dost: 1,457, Express news: 1,557, Minhaj library: 1,657, Urdu library: 1,357, and

Wikipedia: 1,957 sentences.

In the second step, the raw data was pre-processed (see Section 5.4), which re-

sulted in the removal of 2,500 sentences. The remainder of the 10,000 clean sentences

are distributed as follows: Awaz-e-Dost: 1,200, BBC Urdu: 2,606, and Express News:

1,297, Minhaj Library: 1,303, Urdu Library: 1,119, Urdu Point: 948 and Wikipedia:

1,527 sentences.

In the third step, the pre-processed text containing 10,000 cleaned sentences was

manually tokenized by three annotators (G, H and I). All the annotators are native

speakers of Urdu and have good knowledge about Urdu sentence tokenization task.

Furthermore, the annotation process was split into three phases: (i) training, (ii)

annotation and (iii) inter-rater agreement and conflict resolution.

During the training phase, two annotators (G and H) annotated 1,500 sentences.

Subsequently, the inter-annotator agreement was computed for these sentences and

conflicting sentences were discussed to further improve the annotation quality. Fur-

ther, during the annotation phase, the remaining 8,500 sentences were manually

annotated by annotators (G and H). In the third phase, the inter-rater agreement

score was computed for all 10,000 sentences. We achieved an inter-rater agreement

of 89.34%, as the annotators agreed upon 8,934 sentences. Moreover, the Kappa Co-

efficient was computed to be 81.83% (Cohen, 1968). The conflicting 1,066 sentences

were annotated by the third annotator (I) for conflict resolution and this judgement

was considered as decisive, resulting in the gold standard UNLT-ST Training/Test

dataset.

The UNLT-ST Training/Test dataset consists of 10,000 sentences. In our pro-

posed test dataset, 6,469 period markers are SBM, while 536 are NSBM; 531 ex-

clamation marks are SBM and 198 are NSBM; 421 question marks are SBM and

17 are NSBM; 197 double quotes, are SBM and 9 are NSBM; 382 SBM markers

are #, @, $, *; the remaining 2,000 sentence are without any SBM. As can be

noted from these statistics, our proposed UNLT-ST Training/Test dataset contains

both SBM and NSBM for different characters as well as sentences without any

SBM, which makes the dataset much more realistic and challenging. The UNLT-

40 https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last checked: 19-October-2016

https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5


UNLT-Urdu Natural Language Toolkit 31

ST Training/Test dataset is saved in standard “txt” format (for licensing and URL

see Section 7)

5.3 Dataset for Urdu POS tagging

This section describes the creation of a large dataset (hereafter called UNLT-POS

dataset) for the training and testing of the Urdu POS taggers. The dataset creation

process was accomplished in three steps: (i) raw text collection, (ii) cleaning process

and (iii) annotation process.

To construct a gold-standard Urdu POS tagging dataset, in the first step, a

Web crawler (see Section 5.1) was used to extract Urdu text of 239,834 words

(14,137 sentences) from various online sources (see Section 5.1) including BBC

Urdu, Express news, Urdu library, Urdu point, Minhaj library, Awaz-e-Dost and

Wikipedia. To make the dataset more realistic the raw data is from various do-

mains: Sports (23,153), Politics (33,944), Blogs (10,976), Education (12,845), Lit-

erature (9,045), Entertainment (13,946), Science and Technology (17,683), Fash-

ion (10,463), Weather (9,459), Business (17,328) and Commerce (10,496), Showbiz

(19,503), Fictions (8,678), Health (12,783), Law (8,185), and Religion (21,347).

The raw data was pre-processed (see Section 5.4), which resulted in 200,000

words. The domain and genre distribution of these words is: Sports (20,128), Poli-

tics (26,145), Blogs (9,428), Education (10,742), Literature (8,756), Entertainment

(10,560), Science and Technology (13,143), Fashion (9,758), Weather (8,996), Busi-

ness (14,418) and Commerce (9,710), Showbiz (16,228), Fictions (8,084), Health

(11,584), Law (6,952), and Religion (15,368).

The UNLT-POS dataset was created using a manual approach. In the first step, a

total of 2,000 tokens were POS tagged using the CLE online POS tagger41 to train

annotators. Manual inspection of the tagged data showed that a reasonable number

of words are incorrectly tagged, particularly proper nouns, common nouns, verbs,

auxiliaries, pronouns, adjectives, cardinal nominal modifiers, adverbs, conjunctions,

participles, interjections and foreign fragment. In the second training step, three

annotators (A, B and C) manually annotated42 the automatically tagged data.

Annotators A and B initially annotated 2,000 tokens. An inter-annotator agree-

ment was calculated for these tokens and conflicting tagged tokens were discussed

to further improve the annotation quality. After the training phase, the 200,000

words was manually annotated by annotators A and B and the inter-annotator

agreement was computed on the entire dataset. An inter-annotator agreement of

85.7% was obtained. The Kappa Coefficient was computed to be 77.41% (Cohen,

1968). The conflicting tokens were annotated by the third annotator, resulting in a

gold-standard UNLT-POS training/testing dataset saved in “txt” format. As far as

we are aware, our UNLT-POS training/testing dataset is the largest manually POS

41 http://182.180.102.251:8080/tag/ - Last checked: 06-August-2016
42 In the training annotation process, the tag assigned by the CLE online POS tagger is

retained if the annotator determines that it is correct, otherwise the annotator replaces
it with the correct POS tag.

http://182.180.102.251:8080/tag/


32 Shafi, J. et al.

tagged Urdu dataset, free and publicly available for research purposes (for license

and URL see Section 7).

For experiments presented in this study, the UNLT-POST gold-standard dataset

is randomly divided into two different datasets: (i) consisting of 60K training and

20K of test data (henceforth UNLT-POS-Small training/testing dataset respec-

tively), (ii) consisting of 120K training and 20K for testing (henceforth UNLT-

POS-Moderate training/testing dataset respectively).

The detailed statistics of different train/test datasets are shown in Table 4. The

rows “Unknown Tokens” and “Unknown Types” of the Table 4 represent the count

of total tokens and types (unique tokens) respectively, not seen in the different

UNLT-POS training/testing datasets. It has been observed that each test dataset

holds 9% to 11% words that are unknown with respect to the training data. These

figures are a little higher as compared to the several European languages (Evangelos

and George, 1995). However, Table 5 shows the detailed statistics of most frequent

POS tags of the UNLT-POS testing dataset.

Table 4. Statistics of three different training/testing datasets for evaluating the

performance of Urdu POS taggers

Dataset Training set Testing set

Tokens 180,000 20,000

UNLT-POS Types 16,742 2,124

Unknown Tokens – 1,948

Unknown Types – 246

Tokens 120,000 20,000

UNLT-POS-Moderate Types 14,843 2,457

Unknown Tokens – 2,078

Unknown Types – 273

Tokens 60,000 20,000

UNLT-POS-Small Types 9,538 2,801

Unknown Tokens – 3,024

Unknown Types – 311

5.4 Pre-processing

In this study, various datasets have been used, all these datasets (see Sec-

tion 5.1 5.2 5.3) are pre-processed as follows. Text in a dataset is cleaned by

removing multiple spaces, duplicated text, diacritics as they are optional (only

used for altering pronunciation (Mukund et al., 2010)) and HTML tags. Moreover,

noise from the data is removed by discarding ASCII and invalid UTF-8 characters,

emoticons, asterisks, bullets, right and left arrows (Jawaid et al., 2014). Further,



UNLT-Urdu Natural Language Toolkit 33

Table 5. Statistics of most frequent POS tags of UNLT-POS testing dataset

POS Taga TCb UTc POS Tag TC UT

NN 1,764 123 AUXA 1,023 0

PSP 1,572 0 NNP 1,243 398

VBF 1,129 192 RB 826 63

JJ 1,315 91 AUXT 639 3

a
NN: Common Noun, PSP: Postposition, VBF: Main Verb Finite, JJ: Adjective, AUXA: Aspectual Auxiliary, NNP:
Proper Noun, RB: Common Adverb, AUXT: Tense Auxiliary

b
Token Count

c
Unknown tokens

only sentences with three or more words were kept43. A language detection tool44

is used to discard foreign words and a text normalization tool45.

6 Results and analysis of proposed UNLT tools

6.1 Results of Word tokenizer

Table 6 presents precision, recall, F1 and accuracy results when training on UNLT-

WT-Train dataset, and testing on the UNLT-WT-Test (see Section 5.1) for Urdu

word tokenization task by using various approaches. UNLT-WT-SP refers to results

obtained using the space-based tokenization approach. UNLT-WT refers to results

obtained using our proposed approach (see Section 4.1.2) for Urdu word tokeniza-

tion. Duranni’s word tokenizer (see Section 2.1). Whereas, CLE’s word tokenizer

refers to an online tokenizer46. The Trankit-WT is a deep learning model which

implements a light-weight XLM-Roberta transformer (see Section 4.4).

Overall, the best results are obtained by using our proposed UNLT-WT approach

(precision = 0.91, recall = 0.87, F1 = 0.89, and accuracy = 0.92). These results show

that UNLT-WT is the most appropriate method for Urdu word tokenization on the

UNLT-WT-Test dataset. Furthermore, this also shows that combining maximum

matching, dictionary lookup and statistical N -gram MLE along with smoothing

estimation are helpful in getting good performance on UNLT-WT-Test dataset for

Urdu word tokenization task. However, the highest F1 score of 0.89 for the word

43 This is calculated by dividing the total words in dataset by the total number of sentence
disambiguation markers.

44 https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last checked: 15-October-2016

45 Text normalization tool can be downloaded from http://www.cle.org.pk/software/
langproc/urdunormalization.htm-Lastchecked:15-October-2016 is used to keep the
Unicode of the characters consistent.

46 http://www.cle.org.pk/clestore/segmentation.htm - Last visited: 18-Dec-2019. To-
kenized up-to 100 words at one time and implementation details are not available. The
online link refers three papers but does not describe which one of them is used for the
creation of CLE Urdu word tokenizer.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
http://www.cle.org.pk/software/langproc/urdunormalization.htm - Last checked: 15-October-2016
http://www.cle.org.pk/software/langproc/urdunormalization.htm - Last checked: 15-October-2016
http://www.cle.org.pk/clestore/segmentation.htm


34 Shafi, J. et al.

tokenization task indicates that Urdu word tokenization is a challenging task leaving

room for further improvement.

As expected, the overall results are lower for the baseline space-based tokenization

UNLT-WT-SP (precision = 0.55, recall = 0.52, F1 = 0.54, and accuracy = 0.61) and

approach, on UNLT-WT-Test dataset. Durani’s word tokenizer reports an accuracy

of 0.49, precision of 0.18, recall of 0.20, and F1 = 0.19. Furthermore, the CLE’s Urdu

word tokenizer has shown precision = 0.58, recall = 0.56, F1 = 0.57, and accuracy

= 0.73. Whereas, the Trankit-WT has produced the following results: precision

= 0.73, recall = 0.69, F1 = 0.71, and accuracy = 0.80. This highlights the fact that

the UNLT-WT-SP, Durrani’s, CLE’s approaches are not appropriate for Urdu word

tokenization tasks.

The comparison of our proposed methods significantly outperformed the recently

reported deep neural network based word-piece based tokenization (Trankit-WT).

There could be various possible reasons for this notable difference in the scores

including: simple space-based splitting of the raw input text as a pre-processing

step in Trankit-WT, seems to be a major contributor in producing low scores for

word tokenization. This pre-process space-splitting could be efficient for many lan-

guages like English, Spanish, etc. but not suitable for the Urdu language. As has

been described previously that spaces play a major role in word tokenization (see

Section 3.1). We have further observed that Trankit-W is very poor in capturing

multi-words.

Table 6. Results obtained on UNLT-WT-Test dataset using various techniques

Technique Precision Recall F1 Accuracy

UNLT-WT-SP 0.55 0.52 0.54 0.61

UNLT-WT 0.91 0.87 0.89 0.92

Durani’s 0.18 0.20 0.19 0.49

CLE’s 0.58 0.56 0.57 0.73

Trankit-WT 0.73 0.69 0.71 0.80

While analysing the errors of the proposed UNLT-WT approach, we observed

that it does not explicitly handle unknown words for space omission, and this

resulted in splitting an unknown Urdu morpheme into smaller morphemes. For

instance, the word 	
àA�ÊË@Q�

�
J» (KSYR ALLSAN, ‘multilingual’) erroneously split into

ú
�
æ» (KSY), @P, (RA) �ÊË (LLS), and 	

à@ (AN). Likewise, it might be less appropriate

when a word is a combination of known and unknown morphemes, for instance,

ðYJ

	
KAg. ñ» 	PAJ. î

f
D
�
� (SHBAZ KO JANE DO, ‘let the Shahbaz go’). For space insertion,

some compound words were not present in compound words dictionary, another

major cause of incorrect word tokenization.



UNLT-Urdu Natural Language Toolkit 35

6.2 Results of Sentence tokenizer

Table 7 presents precision, recall, F1 and error rate results47 on the UNLT-ST

Train/Test dataset48 (see Section 5.2) for various Urdu sentence tokenization ap-

proaches49 (for other two, see Section 4.2.2). Trankit-ST is is a light-weight XLM-

Roberta transformer for sentence tokenization. (see Section 4.4)

Overall, the best results are obtained using our proposed UNLT-ST-ML approach,

precision = 0.90, recall = 0.92, F1 = 0.91, error rate = 0.09. The lowest results are

obtained using a baseline UNLT-ST-PQEQM (precision = 0.89, recall = 0.19, F1

= 0.31, error rate = 0.83). Whereas, another proposed rule based UNLT-ST-RB

approach shows a precision of 0.81, recall of 0.74, F1 of 0.77 and error rate of

0.29. This shows that combining various features in SVM is helpful in producing a

good performance on the UNLT-ST Train/Test dataset. Trankit-ST a deep learning

based approach has produced results as follows: precision = 0.86, recall = 0.83, F1

= 0.85, error rate = 0.14. It is worth mentioning here that Trankit-S has produced

more accurate results than two other sentence tokenization approaches i.e. UNLT-

ST-RB / PQEQM. However, the highest F1 score of 0.91 for sentence tokenization

task indicates that Urdu sentence tokenization is a challenging task and there is

still room for further improvement.

For the UNLT-ST-PQEQM approach, which uses different characters as sentence

boundary indicators, the performance is high in term of precision of 0.89. The likely

reason for this is the majority of sentences in Urdu text are terminated using these

characters. However, other evaluation measures show very low results. This high-

lights the fact that these characters alone are not suitable for the Urdu sentence

tokenization task. As far as the rule base (UNLT-ST-RB) approach is concerned it

shows good results as compared to the baseline approach. This shows that combin-

ing various heuristics, regular expressions and dictionary lookup is helpful in pro-

ducing a good performance on the UNLT-ST Test dataset. However, this method

also fails to detect sentence boundary where sentences are ended with out any SBM.

While manually analysing the errors of the proposed UNLT-ST-RB approach, we

came across some scenarios where our proposed approach failed to accurately to-

kenize sentences. It was found that NSBM including: ’:’, ’||’, ’$’, ’∗’, ’@’ and ’#’

are the major reasons for incorrect tokenization of sentences. Moreover, the period

used between different abbreviations also caused misclassification. Finally, all those

sentences which end without any sentence boundary marker are also declassified.

47 For ML approach we have used 10-fold cross-validation.
48 For baseline and rule based approaches we have used the entire UNLT-ST Train/Test

dataset as a test dataset.
49 Baseline UNLT-ST-PQEQM– tokenization on the basis of “period”, “question mark”,

“exclamation mark”, and “double quotes” characters.



36 Shafi, J. et al.

Table 7. Results obtained by using various sentence tokenization approaches on

UNLT-ST-Train/Test dataset

Technique Precision Recall F1 Error rate

UNLT-ST-PQEQM 0.89 0.19 0.31 0.83

UNLT-ST-RB 0.81 0.74 0.77 0.29

UNLT-ST-ML 0.90 0.92 0.91 0.09

Trankit-ST 0.86 0.83 0.85 0.14

6.3 Results of POS tagger

Table 8 presents accuracy results when trained and tested on the UNLT-POS-Small,

UNLT-POS-Moderate, UNLT-POS test datasets (see Section 5.3) for the Urdu POS

tagging tasks by using different models (see Sections 4.3.2 and 4.4).

Overall best results are obtained using our proposed T-HMM-GT-Suf-MA fol-

lowed by T-HMM-GT-Suf-MA, and MEn-Suf-MA POS tagging models, 95.59%,

95.14% and 94.20% respectively. This shows that combining various stochastic and

smoothing techniques with language dependent features are helpful in producing

a very good performance on the UNLT-POS test dataset. The highest accuracy

score of 95.59% indicates that the Urdu POS tagging task is challenging and there

is still room for improvement. It can also be noted from these results that our

proposed POS tagging approach (T-HMM-GT-Suf-MA) outperforms both baseline

approaches BL-MFT50 (accuracy = 84.72%) and BL-CLE51 (Ahmed et al., 2014)

(which uses Decision Trees along with a smoothing technique of Class Equivalence)

(accuracy = 88.45%) on UNLT-POS test dataset. Furthermore, Trainkit-POST has

produced an accuracy of 92.67%. This has good accuracy as compared to baseline

and several other approaches. The reason for using the BL-CLE model as a baseline

approach is that, currently, this is the only POS tagger available for Urdu which

uses CLE Urdu POS tagset (see Section 4.3.1). Therefore, we can compare the

results of CLE Urdu POS tagger with our proposed UNLT-POS tagger.

We can further observe that the tri -gram HMM based models can produce good

results if incorporated with linear interpolation, suffix as well as Morphological In-

formation (MI). Certainly, using MI along with linear interpolation gives better

results as compared to suffix, but what is significant to note, using all the informa-

tion together improved the accuracy of the models, T-HMM-LI-Suf-MA: 95.14%, T-

HMM-LaE-Suf-MA: 93.74%, T-HMM-LiE-Suf-MA: 93.97%, T-HMM-GT-Suf-MA:

94.48%, T-HMM-KN-Suf-MA: 95.59% and MEn-Suf-MA: 94.20%. Furthermore, it

can be observed, T-HMM-LI, T-HMM-LaE, T-HMM-LiE, T-HMM-GT, and T-

HMM-KN produce accuracies of 87.34%, 85.92%, 86.89%, 87.01%, and 87.51% re-

50 In this each word in the test data will be assigned the POS tag based on the most
frequent POS tag in the training data.

51 http://182.180.102.251:8080/tag/ - Last checked: 17-July-2018

http://182.180.102.251:8080/tag/


UNLT-Urdu Natural Language Toolkit 37

Table 8. Results obtained using various POS tagging models based on several

approaches on different POS test datasets

Approachesa Model
Accuracyb

D1 D2 D3

Most frequent tag BL-MFT - - 84.72

Decision Tree BL-CLE - - 88.45

Trankit-POST T-DL - - 92.67

tri-gram HMM, LI T-HMM-LI 67.14 80.34 87.34

tri-gram HMM, LI, suffix T-HMM-LI-Suf 83.23 87.91 91.53

tri-gram HMM, LI, MI T-HMM-LI-MA 88.37 90.39 92.27

tri-gram HMM, LI, suffix, MI T-HMM-LI-Suf-MA 90.87 93.76 95.14

tri-gram HMM, LaE T-HMM-LaE 65.97 79.14 85.92

tri-gram HMM, LaE, suffix T-HMM-LaE-Suf 80.42 86.39 89.98

tri-gram HMM, LaE, MI T-HMM-LaE-MA 87.88 89.74 90.19

tri-gram HMM, LaE, suffix, MI T-HMM-LaE-Suf-MA 89.04 91.64 93.74

tri-gram HMM, LiE T-HMM-LiE 66.98 80.02 86.89

tri-gram HMM, LiE, suffix T-HMM-LiE-Suf 82.78 87.13 90.93

tri-gram HMM, LiE, MI T-HMM-LiE-MA 88.13 90.02 91.69

tri-gram HMM, LiE, suffix, MI T-HMM-LiE-Suf-MA 90.23 92.59 93.97

tri-gram HMM, GT T-HMM-GT 67.02 80.10 87.01

tri-gram HMM, GT, suffix T-HMM-GT-Suf 82.98 87.27 91.05

tri-gram HMM, GT, MI T-HMM-GT-MA 88.19 90.07 91.90

tri-gram HMM, GT, suffix, MI T-HMM-GT-Suf-MA 90.57 93.03 94.48

tri-gram HMM, KN T-HMM-LiE 67.24 80.36 87.51

tri-gram HMM, KN, suffix T-HMM-LiE-Suf 83.23 87.98 91.70

tri-gram HMM, KN, MI T-HMM-LiE-MA 88.42 90.52 92.39

tri-gram HMM, KN, suffix, MI T-HMM-LiE-Suf-MA 91.02 93.99 95.59

MaEn, CW, WN MEn 80.59 84.92 88.31

MaEn, CW, WN, suffix MEn-Suf 84.43 88.06 92.56

MaEn, CW, WN, MI MEn-MA 88.32 89.49 93.11

MaEn, CW, WN, suffix, MI MEn-Suf-MA 90.26 93.31 94.20

a
LI: Linear Interpolation, MI: Morphological Information, LaE: Laplace Estimation, LiE: Lidstone’s
Estimation, GT: Good-Turing, KN-Kneser-Ney MaEn: Maximum Entropy, CW: Context Window,
WN: Word Number

b
D1: UNLT-POS-Small training/testing dataset, D2: UNLT-POS-Moderate training/testing dataset,
D3: UNLT-POS training/testing dataset



38 Shafi, J. et al.

spectively, on the UNLT-POS dataset. For the case of MEn, the reported accuracy

is 88.31%. One important observation here is that by using smoothing and language

dependent features, the proposed Urdu POS tagging accuracies can be improved

as compared to BL-MFT and BL-CLE models.

It can also be observed from the Table, that T-HMM-GT performs better than

the other four models T-HMM-LI, T-HMM-LaE, T-HMM-LiE, T-HMM-GT, and

T-HMM-KN on UNLT-POS, UNLT-POS-Small, and UNLT-POS-Moderate test

datasets. Moreover, the accuracy of T-HMM-LaE model is slightly poorer than the

other HMM based models (T-HMM-LI, T-HMM-LiE, T-HMM-GT, and T-HMM-

KN), with UNLT-POS-Small data due to model overfitting. However, such discrep-

ancies are alleviated with the increase of training data (UNLT-POS-Moderate and

UNLT-POS training datasets).

It has been further observed that language dependent features increased the ac-

curacy of the models to a certain extent, even if trained on a UNLT-POS-Moderate

training dataset. However, with different features along with smoothing, the in-

crease in the model accuracy is higher when training data is smaller. For instance,

T-HMM-LI-MA and T-HMM-LI-Suf models improved around 16%, 7% and 4%,

and 21%, 10% and 5% respectively over the T-HMM-LI models, for UNLT-POS,

UNLT-POS-Small, and UNLT-POS-Moderate test datasets.

From the above observations, it can be concluded that using MI and suffix, in-

creases in the model accuracy are higher for UNLT-POS-Small and UNLT-POS-

Moderate training datasets. It is also important to note, the T-HMM-KN-MA

models give an approximate improvement of around 5%, 7% and 1% over the T-

HMM-KN-Suf model for UNLT-POS-Small, UNLT-POS-Moderate and UNLT-POS

training dataset respectively. However, integrating all of them, an improvement has

been observed in T-HMM-KN-Suf-MA models which are 8%, 6%, and 3% improved

with respect to T-HMM-KN-Suf model in case of UNLT-POS-Small, UNLT-POS-

Moderate and UNLT-POS training dataset. It can also be noticed that similar

results have been observed for the other two (T-HMM-LaE, T-HMM-LiE, T-HMM-

GT and T-HMM-LI) HMM based models. However, T-HMM-LiE performed better

than the T-HMM-LaE model, but with the higher training data, the performance

of these models are somewhat comparable.

MEn models outperform all others with smaller training data but contrasting re-

sults have been observed with large training data. It is worth noting that MEn along

with suffix and morphological information has positive effects with poor resources.

Our results show the T-HMM-GT-Suf-MA and MEn-Suf-MA are more accurate

than others, providing support for our further analysis based on such models.

Table 9 shows cases where the MEn-Suf-MA model performs better than T-

HMM-KN-Suf-MA, by comparing the accuracies of open class tags for known and

unknown words on the UNLT-POS testing dataset. Our results show that the

T-HMM-KN-Suf-MA model shows poor accuracy while predicting proper nouns

(NNP) over the MEn-Suf-MA model. Mostly the proper nouns (NNP) in T-HMM-

KN-Suf-MA model are erroneously classified as an adjective (JJ). Furthermore, it

is worth noting again that in Urdu, there is no discrimination between upper and

lower-case characters, also using an adjective as a proper noun is frequent in Urdu



UNLT-Urdu Natural Language Toolkit 39

e.g. Q�J.» (KBYR, ‘big’) and Q�
	
ª� (SGHYR, ‘small’). Another reason for misclassi-

fication in tagging of the proper nouns is that many of them end with negation

marker or pronoun e.g. the í
f
	
JJÃ A

	
K (‘Nagyna’) end with the í

f
	
K (NH, ‘no’) or the NNP

í
f
K

	
XA

	
K (‘Nazyh’) which end with the í

f
K (YH, ‘this’), a pronoun. These errors needs

further investigation.

Table 9. Accuracies of open class tags on UNLT-POS testing dataset using

T-HMM-KN-Suf-MA and MEn-Suf-MA

Tag
T-HMM-KN-Suf-MA MEn-Suf-MA

Known Unknown Known Unknown

NN 95.10 80.34 92.32 78.23

NNP 73.98 56.09 76.56 70.74

JJ 92.02 63.58 89.54 61.97

RB 81.98 57.98 84.45 64.33

VBF 93.14 73.01 92.47 72.03

Similarly, in the case of common adverb (RB), the accuracy of the MEn-Suf-

MA model is approximately 2% and 6% higher for known and unknown words

respectively. However, the performance of MEn-Suf-MA for all other open class

tags did not improve over the T-HMM-KN-Suf-MA. It is further observed that

with the increase of unknown words, the accuracy of the MEn model has reduced.

The most prominent causes for Urdu POS tag misclassification are that there

is no clear distinction between noun and proper noun, dropping of words is also

frequent, if a noun in a noun phrase is dropped the adjective becomes a noun in

that phrase, the highly inflected nature of Urdu, and ambiguity between noun and

verb is due to verbal nouns.

7 Conclusion and future directions

In this paper, we have described a novel Urdu Natural Language Toolkit by inte-

grating word and sentence tokenizers as well as a POS tagger. Words are tokenized

by coupling a rule-based morpheme matching method with a tri -gram stochastic

language model, backed-off to bi -gram Maximum Likelihood Estimation supple-

mented by smoothing technique for unseen words. We also developed large com-

pound word and morpheme dictionaries, which were used in our proposed Urdu

word tokenizer. A large benchmark training and testing datasets are also created.

The training dataset comprises 1,361,179 N -grams (1.65 million tokens) whereas,

test dataset contains 59,000 manually tokenized words. Moreover, we have com-

pared our results with state-of-the-art deep learning methods for comparison pur-

poses. The results show that our proposed Urdu word tokenizer obtained precision



40 Shafi, J. et al.

of 0.96, recall of 0.92, F1 of 0.94, and accuracy of 0.97. The sentence tokeniza-

tion approach is formed by using rules extracted from a large raw Urdu corpus,

regular expressions and dictionary lookup. Our proposed Urdu sentence tokenizer

obtained promising results on a large and new generated gold-standard test dataset

(precision = 91.08%, recall = 94.14%, F1 = 92.59%, and error rate = 6.85%).

We have described 24 different stochastic models (and two baseline models) for

the Urdu POS tagging task. Each of these models has a unique stochastic scheme

supplemented with various language features and smoothing estimations. In addi-

tion, a large gold-standard training/testing dataset was generated. Results show

that the best performance is achieved by the T-HMM-KN-Suf-MA POS tagger

which is a combination of tri -gram HMM, Kneser-Ney, suffix, and morphological

information, achieving an accuracy of 95.59%. These resources have been made

publicly available to the research community at https://github.com/UCREL/UNLT

and https://doi.org/10.17635/lancaster/researchdata/494 under the terms

of the Creative Commons Attribution 4.0 International License52 and GNU General

Public License v3.053.

Our next primary target for follow-up research work will be to extend the toolkit

by developing and integrating various NLP tools. As far as the word tokenization is

concerned we aim to adopt machine learning approaches (conditional random field,

maximum entropy etc.) to learn the morphological pattern of the valid morphemes

(instead of morphemes lookup) and to handle out-of-vocabulary words in morpheme

matching process of space omission problem. For the sentence tokenizer we plan to

develop a hybrid approach for Urdu sentence tokenization task i.e. rule-based along

with artificial neural network. Finally, in the future, we aim to deal with unknown

words and will adopt further statistical methods (CRF, deep learning etc.) along

with heuristic rules to increase the POS tagging accuracy for Urdu text.

Acknowledgements

This work has been supported by the COMSATS University Islamabad, Lahore

Campus, Pakistan and Lancaster University, U.K. under the Split-Site Ph.D. pro-

gramme.

References

Abdelhamid, A. A., Abdulla, W. H., and MacDonald, B. 2012. WFST-based large vo-
cabulary continuous speech decoder for service robots. In Proceedings of the Inter-
national Conference on Imaging and Signal Processing for Healthcare and Technology
(ISPHT’12), Baltimore, USA, pp. 150–4.

Akita, Y., Saikou, M., Nanjo, H., and Kawahara, T. 2006. Sentence boundary detection
of spontaneous Japanese using statistical language model and support vector machines.
In Proceedings of the International Conference on Spoken Language Processing (IC-
SLP’06), Pennsylvania, USA, pp. 1033–6.

52 https://creativecommons.org/licenses/by/4.0/- Last checked: 15-September-2020
53 https://www.gnu.org/licenses/gpl-3.0.en.html- Last checked: 11-November-2021

https://github.com/UCREL/UNLT
 https://doi.org/10.17635/lancaster/researchdata/494
https://creativecommons.org/licenses/by/4.0/
https://www.gnu.org/licenses/gpl-3.0.en.html


UNLT-Urdu Natural Language Toolkit 41

Albared, M., Omar, N., Aziz, M. J., and Nazri, M. Z. 2010. Automatic part of speech
tagging for Arabic: an experiment using bigram hidden Markov model. In International
Conference on Rough Sets and Knowledge Technology, ( RSKT’10), Beijing, China, pp.
361–70.

Ahmed, T., Urooj, S., Hussain, S., Mustafa, A., Parveen, R., Adeeba, F., Hautli, A., and
Butt, M. 2014. The CLE Urdu POS tagset. In Proceedings of the 9th International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, pp.
2920–5.

Anwar, W., Wang, X. L. Li., and Wang, X. L. 2007a. A statistical based part of speech
tagger for Urdu language. In IEEE International Conference on Machine Learning and
Cybernetics (ICMLC’07), Hong Kong, China, Volume 6, pp. 3418–24.

Anwar, W., Wang, X. L. Li., and Wang, X. L. 2007b. Hidden Markov model based part
of speech tagger for Urdu. Information Technology Journal 6(8): 1190–8.

Azimizadeh, A., Arab, M.M., and Quchani, S.R. 2008. Persian part of speech tagger based
on Hidden Markov Model. In Proceedings of the 9th International Conference on the
Statistical Analysis of Textual Data (JADT’08), Lyon, France, pp. 121-8.

Bhat, R.A, and Sharma, D.M. 2012. A dependency treebank of Urdu and its evaluation. In
Proceedings of the Sixth Linguistic Annotation Workshop (LAW VI’12), Jeju, Republic
of Korea, pp. 157-65.

Bird, S., Klein, E., and Loper, E. 2009. Natural language processing with Python. ”O’Reilly
Media, Inc.”.

Bird, S., Klein, E., Loper, E., and Baldridge, J. 2008. Multidisciplinary instruction with
the natural language toolkit. In Proceedings of the 3rd Workshop on Issues in Teaching
Computational Linguistics (TeachCL’08), Ohio, USA, Volume 13, pp. 62–70.

Bögel, T., Butt, M., Hautli, A., and Sulger, S. 2007. Developing a finite-state morphological
analyzer for Urdu and Hindi. In Proceedings of the Finite-state methods and natural
language processing : 6 th International Workshop (FSMNLP’ 07), Potsdam, Germany,,
pp. 86–96.

Brants, T. 2000. TnT: a statistical part-of-speech tagger. In Proceedings of the Sixth Ap-
plied Natural Language Processing Conference ANLP-2000, Seattle, Washington, USA,
pp. 224–31.

Butt, J. M. 1995. The structure of complex predicates in Urdu. Ph.D. thesis, Center for
the Study of Language (CSLI), department of linguistics, Stanford University.

Chen, S. F., and Goodman, J. 1999. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language 13(4): 359–94.

Christensen, H. 2014. HC corpora. http://www.corpora.heliohost.org/ (Last checked: 05-
March-2017).

Christer, S. 1996. Handling sparse data by successive abstraction. In Proceedings of the
the 16th International Conference on Computational Linguistics (COLING’96), Copen-
hagen, Denmark, pp. 895–900.

Cohen, J. 1968. Weighted kappa: nominal scale agreement provision for scaled disagree-
ment or partial credit. Psychological bulletin 70(4): 213–20.

Conneau, A., Khandelwal, K., Goyal. N., Chaudhary, V., Wenzek, G., Guzman, F., Grave,
E., Ott, M., Zettlemoyer, L., and Stoyanov, V. 2020. Unsupervised cross-lingual repre-
sentation learning at scale. arXiv preprint arXiv:1911.02116 1: 1–12.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan, V. 2002. GATE: a framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL), Philadelphia, USA, pp. 168–75.

Cunningham, H., Tablan, V., Roberts, A., and Bontcheva, K. 2013. Getting more out
of biomedical documents with GATE’s full lifecycle open source text analytics. PLoS
Computational Biology 9(2): e1002854.



42 Shafi, J. et al.

Curran, J. R., and Clark, S. 2003. Investigating GIS and smoothing for maximum entropy
taggers. In Proceedings of the 10th conference on European chapter of the Association
for Computational Linguistics (EACL’03), Budapest, Hungary, Volume 1, pp. 91–8.

Dandapat, S. 2008. Part of specch tagging and chunking with maximum entropy model.
In Proceedings of the IJCAI Workshop on Shallow Parsing for South Asian Languages
(IJCAI’08), Hyderabad, India., pp. 29–32.

Daud, A., Khan, W., and Che, D. 2016. Urdu language processing: a survey. Artificial
Intelligence Review 47(3): 279–311.

Dietzel, A., and Maynard, D. 2015. Climate change: a chance for political re-engagement?
In Proceedings of the Political Studies Association 65th Annual International Conference
(PSA’15), Sheffield, UK, pp. 1–19.

Durrani, N., and Hussain, S. 2010. Urdu word segmentation. In Human Language Tech-
nologies: The 2010 Annual Conference of the North American Chapter of the ACL, Los
Angeles, California, USA, pp. 528–36.

Ekbal, A., Haque, R., and Bandyopadhyay, S. 2008. Maximum entropy based Bengali part
of speech tagging. Advances in Natural Language Processing and Applications, Research
in Computing Science (RCS) Journal 33(8): 67–78.

Evangelos, D., and George, K. 1995. Automatic stochastic tagging of natural language
texts. Computational Linguistics 21(2): 137–63.

Ferrucci, D., and Lally, A. 2004. UIMA: an architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language Engineer-
ing 10(3-4): 327–348.

Fu, G., Kit, C., and Webster, J. J. 2008. Chinese word segmentation as morpheme-based
lexical chunking. Information Sciences 178(9): 2282–96.

Garside, R., and Smith, N. 1997. A hybrid grammatical tagger: CLAWS4. Corpus Anno-
tation: Linguistic Information from Computer Text Corpora, Longman, London 102(1):
102–21.

Giménez, J., and Marquez, L. 2004. SVMTool: a general POS tagger generator based
on Support Vector Machines. In Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC’04), Lisbon, Portugal, pp. 43–6.

Gries, ST,. and John, N. 2014. Research methods in linguistics. pp. 257–87. Cambridge
University Press, UK

Hardie, A. 2003. Developing a tagset for automated part-of-speech tagging in Urdu. In
In Archer, D, Rayson, P, Wilson, A, and McEnery, T (eds.) Proceedings of the Corpus
Linguistics 2003 conference. UCREL Technical Papers, Lancaster, UK, Volume 16, pp.
298–307.

Hardie, A. 2004. The computational analysis of morphosyntactic categories in Urdu. Ph.
D. thesis, Lancaster University, UK.

Hautli, A., and Sulger, S. 2011. Extracting and classifying Urdu multiword expressions. In
Proceedings of the the ACL-HLT Student Session (ACL-HLT’11), Portland, OR, USA.,
pp. 24–9.

Hearst, MA., Dumais, ST., Osuna, E., Platt, J., and Scholkopf, B. 1998. Support vector
machines. IEEE Intelligent Systems and their applications 13(4): 18–28.

Javed, I. 1985. Nai Urdu qawaid. Urdu Development Board, New Delhi .
Jawaid, B., Kamran, A., and Bojar, O. 2014. A tagged corpus and a tagger for Urdu. In

Proceedings of the 9th International Conference on Language Resources and Evaluation
(LREC’09), Reykjav́ık, Iceland., pp. 2938–43.

Jeffreys, H. 1998. The theory of probability, Volume 3rd. Oxford University Press.
Joshi, N,. Darbari, H., and Mathur, I. 2013. HMM based POS tagger for Hindi. In

Proceedings of the 2013 International Conference on Artificial Intelligence and Soft
Computing (AISC’13), Bangalore, India, pp. 341-9.

Jurafsky, D., and Martin, J. 2014. Speech & language processing, 2nd edition, Volume 3.
Pearson London.



UNLT-Urdu Natural Language Toolkit 43

Khan, S. A., Anwar, W., Bajwa, U. I., and Wang, X. 2012. A light weight stemmer for Urdu
language: a scarce resourced language. In Proceedings of the 3rd Workshop on South and
Southeast Asian Natural Language Processing (SANLP-COLING’12), Mumbai, India,
pp. 69–78.

Kreuzthaler, M., and Schulz, S. 2015. Detection of sentence boundaries and abbreviations
in clinical narratives. In BMC medical informatics and decision making 15(2): 1–13.

Kudo, T., and Richardson. J. 2018. SentencePiece: A simple and language indepen-
dent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing (System
Demonstrations), Brussels, Belgium, pp. 66-71.

Kudo, T. 2018. Subword Regularization: Improving Neural Network Translation Models
with Multiple Subword Candidates. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Long Papers), Melbourne, Australia., pp.
66–75.

Kwartler, T. 2017. Text mining in practice with R. pp. 237–69. John Wiley & Sons, Ltd,
Chichester, UK

Lehal, G. S. 2010. A word segmentation system for handling space omission problem
in Urdu script. In Proceedings of the 1st Workshop on South and Southeast Asian
Natural Language Processing (WSSANLP), the 23rd International Conference on Com-
putational Linguistics, Beijing, China, pp. 43–50.

Malik, A. 2009. A hybrid model for Urdu Hindi translation. In Proceedings of the Named
Entities WorkShop (NEWS’09), Joint conference of the 47th Annual Meeting of the As-
sociation for Computational Linguistics and the 4th International Joint Conference on
Natural Language Processing of the Asian Federation of Natural Language Processing,
(ACL-IJCNLP’09) Singapore, pp. 177–85.

Manning, C. D., and Schütze, H. 1999. Foundations of Statistical Natural Language Pro-
cessing, Volume 999. Cambridge Massachusetts:MIT Press.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D.
2014. The Stanford CoreNLP natural language processing toolkit. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, Baltimore, Maryland, USA, pp. 55–60.

Maynard, D., Greenwood, M.A., Roberts, I., Windsor, G., and Bontcheva, K. 2015. Real-
time social media analytics through semantic annotation and linked open data. In
proceedings of the ACM Web Science Conference (WebSci’15), Oxford, United Kingdom,
pp. 46–8.

Muaz, A., Ali, A., and Hussain, S. 2009. Analysis and development of Urdu POS tagged
corpus. In Proceedings of the 7th Workshop on Asian Language Resources (ALR’7),
Suntec, Singapore, pp. 24–9.

Mukund, S., Srihari, R., and Peterson, E. 2010. An information-extraction system for
Urdu—a resource-poor language. ACM Transactions on Asian Language Information
Processing (TALIP) 9(4): 1–43.

Naz, F., Anwar, W., Bajwa, U.I., and Munir, E. 2012. Urdu Part of Speech Tagging
Using Transformation Based Error Driven Learning. World Applied Sciences Journal
(WASJ) 16(3): 437–48.

Nguyen, M., Lai, V., Veyseh, A.P.B., and Nguyen, T.H. 2021. Trankit: A Light-Weight
Transformer-based Toolkit for Multilingual Natural Language Processing. In Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computa-
tional Linguistics: System Demonstrations, Online, pp. 80–9.

Platts, J. T. 1909. A grammar of the Hindustani or Urdu language. London: Crosby
Lockwood and Son, republished in 2002 by Sang-e-Meel Publications, Lahore.

Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2): 257–85.



44 Shafi, J. et al.

Raj, S., Rehman, Z., Rauf, S., Siddique, R., and Anwar, W. 2015. An artificial neural
network approach for sentence boundary disambiguation in Urdu. The International
Arab Journal of Information Technology 12(4): 395–400.

Rashid, R., and Latif, S. 2012. A dictionary based Urdu word segmentation using max-
imum matching algorithm for space omission problem. In Proceedings of the Inter-
national Conference on Asian Language Processing (IALP’17), Hanoi, Vietnam, pp.
101–4.

Ratnaparkhi, A. 1996. A maximum entropy model for part-of-speech tagging. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP’96), New Jersey, USA, Volume 1, pp. 133–42.

Rehman, Z., Anwar, W., and Bajwa, U.I. 2011. Challenges in Urdu text tokenization
and sentence boundary disambiguation. In Proceedings of the 2nd Workshop on South
Southeast Asian Natural Language Processing (WSSANLP’11), Chiang Mai, Thailand,
pp. 40-5.

Rehman, Z., and Anwar, W. 2012. A hybrid approach for Urdu sentence boundary dis-
ambiguation. The International Arab Journal of Information Technology 9 (3): 250–5.

Rehman, Z., Anwar, W., Bajwa, U. I., Xuan, W., and Chaoying, Z. 2013. Morpheme
matching based text tokenization for a scarce resourced language. PloS One 8(8):
e68178.

Riaz, K. 2012. Comparison of Hindi and Urdu in computational context. Interna-
tional Journal of Computational Linguistics and Natural Language Processing (IJ-
CLNLP) 1(3): 92–7.

Riaz, K. 2010. Rule-based named entity recognition in Urdu. In Proceedings of the 2010
Named Entities WorkShop (NEWS’10), Uppsala, Sweden, pp. 126–35.

Rush, A.M., Chopra, S., and Weston, J. 2015. A neural attention model for abstractive
sentence summarization. In proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP’15), Lisbon, Portugal, pp. 1–11.

Saeed, A., Nawab, R.M.A., Stevenson, M., and Rayson, P. 2018. A word sense disam-
biguation corpus for Urdu. Language Resources and Evaluation (LRE) 1(3): 1–22.

Sajjad, H. 2007. Statistical part of speech tagger for Urdu. Unpublished MS Thesis,
National University of Computer and Emerging Sciences, Lahore, Pakistan.

Sajjad, H., and Schmid, H. 2009. Tagging Urdu text with parts of speech: a tagger
comparison. In Proceedings of the 12th Conference of the European Chapter of the
ACL, Athens, Greece, pp. 692–700.

Schmid, H. 1994b. Probabilistic part-of-speech tagging using decision trees. In Proceed-
ings of the international conference on new methods in language processing (NeMLaP),
Manchester, UK., Volume 12, pp. 44–9.

Schmid, H. and Laws, F. 2008. Estimation of conditional probabilities with decision trees
and an application to fine-grained POS tagging. In Proceedings of the 22nd International
Conference on Computational Linguistics (COLING’08), Manchester, UK, Volume 1,
pp. 777–84.

Schmidt, R. L. 1999. Urdu, an Essential Grammar (Routledge Essential Grammars),
Volume 1. Psychology Press.

Shafi, J. 2020. An Urdu Semantic Tagger–Lexicons, Corpora, Methods, and Tools Ph. D.
thesis, Lancaster University, UK.

Sharjeel, M., Nawab, R.M.A., and Rayson, P. 2017. COUNTER: corpus of Urdu news
text reuse. Language Resources and Evaluation 1(3): 777–803.

Tafseer, A. 2009. Roman to Urdu transliteration using wordlist. In Proceedings of the
Conference on Language and Technology (CLT’09), Lahore, Pakistan., pp. 1–8.

Thede, S. M., and Harper, M. P. 1999. A second-order hidden Markov model for part-of-
speech tagging. In Proceedings of the 37th annual meeting of the Association for Compu-
tational Linguistics on Computational Linguistics (ACL’99), College Park, Maryland,
pp. 175–82.



UNLT-Urdu Natural Language Toolkit 45

Vaswani, A., Shazeer, N., Parmar, Uszkoreit, N., Jones, L., Gomez, A.N., Kaiser, L., and
Polosukhin, I. 2017. Attention Is All You Need. arXiv preprint arXiv:1706.03762 1:
1–5.

Viterbi, A. 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory 13(2): 260–9.

Wicaksono, A.F., and Purwarianti. A. 2010. HMM based part-of-speech tagger for Bahasa
Indonesia. In Proceedings of the Fourth International MALINDO Workshop, Jakarta,
Indonesia, pp. 1-7.

Yi, C. 2015. An English pos tagging approach based on maximum entropy. In Proceedings
of the International Conference on Intelligent Transportation, Big Data and Smart City
(ICITBS’15), Halong Bay, Vietnam., pp. 81–4.


	Introduction
	Related work
	Existing Urdu word tokenization approaches
	Sentence tokenization approaches
	Part-Of-Speech tagging approaches

	Challenges of Urdu NLP tools
	Challenges for word tokenization
	Challenges for Sentence boundary detection
	Challenges for POS Tagging

	Urdu natural language toolkit
	Urdu word tokenizer
	Urdu sentence tokenizer
	Urdu part of speech tagging
	Deep learning approaches for comparison

	Proposed dataset for UNLT
	Dataset for Urdu word tokenization
	Dataset for Urdu sentence tokenization
	Dataset for Urdu POS tagging
	Pre-processing

	Results and analysis of proposed UNLT tools
	Results of Word tokenizer
	Results of Sentence tokenizer
	Results of POS tagger

	Conclusion and future directions
	References

