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Abstract

We consider the configuration of airport gates with passenger boarding bridges. The set of
aircraft types that can be serviced at a gate depends on the installed boarding bridge(s). For
instance, the Airbus A380 can only be serviced at gates equipped with a passenger boarding
bridge that is able to access its upper level. Given the dynamic development of both the
number of aircraft movements and the fleet mix at airports, the recurring decision problem
is to determine for each gate whether and when the passenger boarding bridge configuration
should be changed. The objective is to minimize investment and operating costs associated with
the bridges as well as penalty costs for aircraft which cannot be processed because gates that
are equipped with adequate gate configurations are not available. We propose a mixed-integer
model formulation and present its underlying network structure. To solve the problem, we
employ a column generation based heuristic approach. We demonstrate the good performance
of the heuristic in a computational study and present a detailed discussion of the decisions taken
as part of a case study.
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1 Introduction

Airports operate in a highly competitive environment, and the efficient use of infrastructure is a key
driver of success (e.g., Caves 1994, Dorndorf et al. 2007). This paper focuses on the infrastructure
provided at the gates1, which represent the interface between the terminal complex and the apron
and where the aircraft are accommodated during their service time on the ground. Passengers
need to be conveyed safely, comfortably and efficiently from the terminal building to the parked
aircraft and vice versa. To facilitate these deplaning and boarding operations, so called passenger
boarding bridges (PBBs) are employed at the contact gates of most airports, especially large ones.
For each gate, airports have to decide whether and, if so, how many PBBs of each type should be
installed. We denote the resulting options - including the “no PBB” option - as PBB configurations
that a contact parking position can be equipped with. The decision regarding which gate should
be equipped with which PBB configuration depends on the aircraft types to be processed at the
position in question, as the compatibility between aircraft types and PBB configurations is restricted
by the various aircraft geometries (e.g., Kazda and Caves 2008). Thus, the decision of which PBB
configuration to install at which gate clearly affects the gate capacity of an airport with respect to
each aircraft type.

In addition to the compatibilities between aircraft types and PBB configurations, restrictions
caused by the adjacent parking of aircraft have to be taken into account. The accommodation of
an aircraft at a gate might be temporarily prohibited due to potential wingtip collisions with other
aircraft parked at adjacent parking positions at the same time (cf. Dorndorf, Jaehn, and Pesch
2017). Also, so-called Multi Aircraft Ramping Stands (MARS) as proposed by International Air
Transport Association (2004) and frequently employed at major airports need to be considered.
Depending on their size, up to two aircraft can be accommodated simultaneously at a parking
position configured as a MARS (which we will refer to in the following as a MARS gate). Due to
their greater operational flexibility, MARS gates require special PBB configurations.

PBB configuration decisions have to be considered in a dynamic context, as the total number
of aircraft present at an airport evolves over time, as does the fleet mix. This evolution may
occur gradually or abruptly and may have either temporary or enduring effects. For instance, the
average annual growth in global air traffic volume yields a gradual and enduring increase in traffic
at many airports. One example of a gradual and permanent change in the fleet mix is the current
trend towards employing smaller but more fuel efficient aircraft on long haul flights rather than
large Boeing 747s or Airbus A380s (Boston Consulting Group 2020). It was in the course of this
trend that both Airbus and Boeing recently announced that they would cease production of their
largest aircraft models in the near future (Airbus 2019, Boeing 2020). An example of a sudden and
permanent reduction in traffic volume at an airport is the opening of a new major airport in the
vicinity. Finally, the current global crisis caused by the SARS-CoV-2 virus can be classified as an
abrupt but temporary decline in air traffic volume. Adapting the gate capacity too early or too late

1In line with Dorndorf et al. (2007) and Ashford, Mumayiz, and Wright (2011), we will use the terms “gate” and
“parking position” synonymously.
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to a fluctuating traffic volume and fleet structure inevitably leads to either unused PBBs or aircraft
which cannot be processed at a contact gate due to capacity shortages. Consequently, airports
not only have to decide which PBB configuration should be installed at which parking position
but also when - decisions that can be supported by various long-term forecasts that are regularly
undertaken by important actors in the aviation industry (refer to Airbus 2018 or Eurocontrol 2018,
for instance).

Facing a highly uncertain future, airport managers would prefer the most flexible PBB config-
urations over others if no further aspects were taken into account. However, higher flexibility is
associated with higher cost, and decisions need to be considered carefully, as the cost of a single
PBB is approximately 450, 000€ (Airport Improvement Magazine 2010, Travel PR News 2019).
For instance, Terminal 1 at Munich Airport is currently undergoing expansion. Unaware of the
aforementioned current development concerning the Airbus A380, decision makers at Munich Air-
port opted for two additional parking positions equipped with PBBs with sufficient flexibility for
processing the A380 at the new terminal building (Munich Airport 2016). As the airport already
possesses gates which can process the A380 in sufficient number to serve pre-SARS-CoV-2 traffic,
it is at least questionable from today’s point of view whether the investment in additional PBBs
will eventually pay off.

The overall question is when to equip which gate with which PBB configuration, balancing
the operational flexibility and total cost with respect to the PBB configurations. We propose a
model to formally describe this problem. To increase the tractability of the problem, we propose
a Dantzig-Wolfe decomposition, which exploits the inherent network structure. Based on a column
generation methodology, we propose a heuristic solution approach to the problem and show that it
performs well for realistic data instances.

The remainder of this paper is structured as follows: In Section 2, we position our work in the
literature. Section 3 introduces the details of the problem. A mixed-integer model is presented
in Section 4, while Section 5 describes our proposed solution approach. The computational study
presented in Section 6 investigates the performance of the proposed procedure. In Section 7, we
present a case study for Munich Airport Terminal 2, based on real data. Finally, conclusions and
recommendations for future research are presented in Section 8.

2 Related Literature

Our work is positioned at the interface between the strategic capacity planning of aprons and the
gate assignment problem (i.e., the optimal assignment of aircraft to gates). We will briefly discuss
the existing literature from both fields of research and state the similarities and differences of both
streams compared to our approach.

Strategic capacity planning of aprons. The strategic management of apron capacity has been
addressed from different perspectives. An elaborate review of the relevant literature is provided
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by Mirković and Tošić (2014). Simple formulas for calculating the capacity of a given apron can
be found in Ashford, Mumayiz, and Wright (2011), Horonjeff et al. (2010), and de Neufville and
Odoni (2013). These formulae either assume that each gate can accommodate all aircraft types or
they take existing compatibility restrictions into account and calculate apron capacities for different
types of aircraft. More elaborate methods provide advice on the number of gates an apron should
have to be able to fulfill certain requirements, mostly under stochastic conditions (see Bandara
and Wirasinghe 1989, Wirasinghe and Bandara 1990, Steuart 1974, Hassounah and Steuart 1993,
Narciso and Piera 2015). Furthermore, comparing hub airports to non-hub airports, Mirković and
Tošić (2017) demonstrate how gate capacity depends on the traffic characteristics of the airport.

This paper relates to the strategic planning of apron capacity, as the choice of PBB configura-
tions at gates determines how many aircraft of each type can be served simultaneously. However,
while the above literature provides formulae with which to perform a one-time calculation of apron
capacity for the number of gates available, the objective of this work is to dynamically reconfigure
the gates so as to enable the most cost-efficient use of the existing infrastructure in the long run2.
We therefore investgate not only how much capacity of which type needs to be provided, but also
when it is needed. Furthermore, existing work investigates the number of aircraft that a given apron
can process per time unit considering a continuous time horizon of operational length. In contrast,
we aim to dynamically adjust the number of aircraft which can be processed simultaneously (i.e., at
a given moment in time) over a strategic time horizon. Finally, contrasting the existing literature,
we consider such operational aspects as MARS gates and adjacency restrictions in our model.

Gate assignment problem. The second stream of research that our problem relates to is the
gate assignment problem, where arriving aircraft need to be assigned to available, compatible
gates. Extensive reviews of the literature considering this problem are provided by Dorndorf et al.
(2007), Cheng, Ho, and Kwan (2012), Guépet et al. (2015), and recently by Daş, Gzara, and Stützle
(2020). The main similarity of our approach to existing literature that discusses the gate assignment
problem is that we assign aircraft to gates subject to capacity and compatibility constraints, while
additionally considering aircraft parked at both adjacent gates and MARS gates. However, rather
than creating a schedule for the operative level of decision making, where individual aircraft are
assigned to gates, we determine on a strategic level which type of aircraft each gate accommodates
to enable long-term adaption of PBB configurations and in turn efficiently service the aggregate
traffic. Our objective is thus to minimize the number of aircraft that cannot be accommodated
at a contact gate due to gate unavailability or incompatibility. In contrast, existing literature on
the gate assignment problem considers such objectives as the minimization of the total walking
distance for passengers and the minimization of the number of required towing procedures or else
attempts to find robust schedules that remain stable in the face of uncertainty. Daş, Gzara, and
Stützle (2020) find that more recent approaches tend to incorporate multiple objectives. While the
gate assignment problem itself has been proven to be NP-hard (Guépet et al. 2015), we employ a

2This follows the recommendations by Caves 1994 and Narciso and Piera 2015 to improve the efficiency of existing
apron space instead of investing in new infrastructure.

3



basic version of it embedded into our strategic decision problem.

3 Problem Description

We consider the PBBs at the contact gates of an airport over a strategic time horizon of up to 10

years. Time is discretized into periods with a length of half a year each, as this interval matches
the seasons over which flight plans generally remain unchanged and thus the capacity requirements
posed to airports remain stable. The objective is to strike a balance between PBB costs and the
probability of not being able to service aircraft at contact gates. For each gate and time period
it needs to be decided whether the PBB configuration from the previous time period should be
retained or exchanged. Selecting a PBB configuration for a gate implies deciding on (a) the type(s)
and (b) the number of bridges of the selected type(s) that are installed at the gate. Regarding
(a), PBBs can be grouped into stationary and apron-drive bridges, see Figure 1. In contrast to
stationary PBBs, apron-drive bridges are equipped with a rotatable connection to the terminal
building and a drive column with wheel bogey. Consequently, they exhibit a higher operational
flexibility but with the downside of higher investment and operational costs due to their greater
technical complexity.

Figure 1: Stationary and apron drive loading bridges (source: International Civil Aviation Organi-
zation 2005, edited according to Airport Cooperative Research Program 2010).

With respect to (b), either a single PBB or two PBBs of the same type are usually installed
per gate. At gates that accommodate code F3 aircraft, such as the Airbus A380, a third PBB is
employed in order to expedite the boarding and deplaning operations. The aggregate of all PBB
configurations represents all possible states of a gate with respect to PBBs, including the no-PBB
case. The number of contact gates as well as the initial PBB configuration of each parking position
are predefined, enabling both greenfield and brownfield scenarios to be modeled.

3according to International Civil Aviation Organization (2018)
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In addition to the diverse PBB configurations, a multitude of commercial aircraft types exists,
each with different specifications. As indicated by Kazda and Caves (2008), the variation in doorsill
height across aircraft of different types causes incompatibilities between PBB configurations and
aircraft types (also see Airport Cooperative Research Program 2010). In addition to these inevitable
incompatibilities owing to aircraft and PBB geometries, it is not practical to serve certain types of
aircraft with certain PBB configurations. For instance, there might be a PBB configuration that is
defined as a single but flexible apron-drive PBB. Although this PBB might reach the doorsill of all
aircraft on the market, boarding and deplaning operations would require an unacceptable duration
for large types of aircraft. Consequently, the compatibility between PBB configurations and aircraft
types is de facto restricted beyond the physical limitations, such that accommodation is physically
possible and operations can be conducted with adequate efficiency. Due to the large variety of
aircraft types and to account for aircraft that will be introduced to the market within the time
horizon, we classify aircraft according to the commonly used wingspan criterion4. Consequently, we
define the compatibilities between PBB configurations and aircraft classes rather than individual
aircraft types. If a PBB configuration is compatible with a particular aircraft class, all aircraft of
that class can be accommodated at a parking position equipped with that PBB configuration.

As we consider the problem in a dynamic context, we rely on forecasts that estimate the demand
for accommodation for each aircraft class and time period in the time horizon. The decisions are
taken at the beginning of each time period and configuration changes are realized instantly, such
that any new configurations can be utilized in the respective time period. The following three cost
types are relevant to the decision problem: First, a change in PBB configuration causes investment
cost for dismantling and disposing the previous PBB configuration, gate unavailability during
reconfiguration and the purchase and setup of the new PBB configuration. The actual amount
depends on the PBB configurations before and after the change. For each period, we consider a
constrained budget available to change PBB configurations. Second, installed PBB configurations
cause operating costs over the course of the respective time period. These include the maintenance
costs of the installed equipment (including vertical and horizontal drive motors, control systems
and air-conditioning units) and thus depend on the PBB configuration. Third, in each time period,
penalty costs are incurred for each aircraft that cannot be accommodated at one of the contact
gates. Aircraft that cannot be processed at a contact gate need to be parked at a remote parking
position and passengers then have to be conveyed from and to the aircraft by bus. On the one
hand, this has a direct financial impact on the airport, as airlines pay fees for the use of PBBs at
contact gates (for instance, see Aena 2020), which are, however, not incurred for aircraft processed
at remote parking positions. On the other hand, this diminishes the operational efficiency at the
airport, as it leads to longer connecting times for transfer passengers. Greater connection times
reduce the hub potential of the affected airport as fewer connections can be offered within a given
space of time. The penalty costs include the resulting costs accruing due to lost income, deteriorated

4Further criteria such as doorsill height, maximum number of passengers, and maximum takeoff weight are
positively correlated with the wingspan measure, which is why a one-dimensional categorization is sufficient.
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efficiency and lost connections, and the amount depends on the class of the relocated aircraft. The
objective is to minimize the total cost, i.e., the sum of the investment, operating and penalty costs.

Demand patterns. Airlines and airports generally issue two flight plans per year, one for the
summer and one for the winter season. As we have chosen a time period length of half a year, the
length of a season matches the length of one time period, and each season is represented by one time
period. Within each season, the flight schedules generally repeat in a weekly rhythm. Therefore,
the flight traffic for each season can be represented by the flights observed in one representative
week of that season. In the course of a week, the number of aircraft processed simultaneously is not
constant but varies over time (Figure 7 in Section 7 shows an illustrative example of the number
of aircraft processed simultaneously at Munich Airport Terminal 2 for a typical week).

We determine all the situations in one representative week where the total number of aircraft
processed reaches a peak. Each situation is defined by the number of aircraft per class processed
simultaneously and by a weighting factor. We denote the vector with the number of aircraft per
class as the corresponding demand pattern. For example, a demand pattern [3, 4, 5] states that 3,
4, and 5 aircraft of class 1, 2, and 3, respectively, are processed in parallel. The weighting factor
is based on the relative frequency of the pattern. For example, if there are three different demand
patterns which are observed with frequencies of 2, 3, and 1, respectively, the weights of the demand
patterns are 0.33, 0.50, and 0.17, respectively.

The use of demand patterns has three major benefits. First, the amount of demand data is
drastically reduced, while information relevant for demand fulfillment is retained. If the demand
can be covered during all peak hours, a capacity shortage is unlikely to occur at other moments
in time due to unavailable or incompatible PBBs. Second, estimating the number of aircraft and
the fleet mix to be expected during peak hours is easier for airports to implement than forecasting
the complete flight plan over the entire time horizon. Third, to account for forecasting uncertainty,
the proposed approach allows the definition of several demand patterns, reflecting different possible
future scenarios of one peak hour without any further changes being made to the concept.

Neighborhood restrictions. The accommodation of an aircraft at a gate might temporarily be
prohibited due to potential wingtip collisions with other aircraft simultaneously parked at adjacent
parking positions (Dorndorf, Jaehn, and Pesch 2017). This is relevant to our decision problem,
as it induces restrictions to reasonable PBB configurations at the parking positions depending on
the PBB configurations at the adjacent gates. For instance, there is no point in installing PBB
configurations for large aircraft types at two adjacent gates if only one of the gates can serve
one large aircraft at a time due to spatial restrictions. We consider a nose-in parking orientation
of aircraft accommodated at contact gates as common at most airports (for further reference,
see Horonjeff et al. 2010 and Kazda and Caves 2008). Gates comprise lead-in lines (see Airport
Cooperative Research Program 2010), which guide aircraft from the taxiway on the apron to their
final parking positions. The fuselages of parked aircraft are aligned with the lead-in lines. To
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accommodate aircraft of different types and increase operational flexibility, a single parking position
may have several lead-in lines.

Figure 2: Lateral distance between adjacent gates and half wingspans

In order to prevent wingtip collisions of aircraft processed simultaneously at adjacent gates, the
sum of the half wingspans of aircraft being processed on any combination of lead-in lines belonging
to the gates must not exceed the lateral distance between the lead-in lines the aircraft are parked
on. Consider the situation at the adjacent gates depicted in Figure 2, for example, where both
gates are equipped with two parallel lead-in lines. As we have classified aircraft according to their
wingspan, the wingspan of an aircraft is equal to the maximum wingspan of its aircraft class.

Multi Aircraft Ramping Stands. In order to enhance spatial efficiency, MARS gates have been
introduced at many airports (see Airport Cooperative Research Program 2010). Up to two aircraft
can be accommodated simultaneously at a MARS gate, depending on the size of the aircraft. To
be able to process two smaller aircraft simultaneously, configurations of at least two PBBs have
to be installed at MARS gates. Parking positions need to be equipped with at least three lead-
in lines in order that they can be used as MARS gates. These include a central lead-in line for
processing single aircraft and two outer lead-in lines to enable two aircraft to be accommodated
simultaneously. Figure 3 presents the possible modes of operation of a MARS gate and illustrates
the three parallel lead-in lines described.

For each PBB configuration, we define whether it can be employed at a MARS gate. While
gates with no MARS-capable PBB configuration can only accommodate one aircraft at a time,
the capacity restriction is two for gates with a MARS-capable PBB configuration. Furthermore,
previous considerations of neighborhood restrictions need to be adapted to prevent wingtip collisions
between two narrowbody aircraft parked simultaneously at a MARS gate. In addition to the existing
constraints, which consider all combinations of lead-in lines at adjacent gates, it is now additionally
necessary to check all combinations of lead-in lines individually for each single gate.
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Figure 3: Modes of operation and lead-in lines of MARS gates

4 Model

In this section, we present a deterministic mathematical model for the dynamic gate configuration
problem. A summary of the notation is given in Table 5 of Appendix A. As previously stated,
the planning goal is to determine which PBB configuration should be installed at each gate, and
when, in order to satisfy dynamic demands with minimum total cost. Planning is based on a
discrete horizon T = {0, . . . , T} with T time periods of equal length. The sets of gates and lead-in
lines are denoted as G = {0, . . . , G} and J = {0, . . . , J}, respectively. For each gate, disjoint sets
Jg ⊆ J contain the lead-in lines associated with gates g ∈ G. At the beginning of each time
period t = {0, . . . , T − 1} it needs to be decided for each gate which PBB configuration of set
L = {0, . . . , L} should be installed, where l = 0 represents a dummy PBB configuration in which
no PBB is installed at the respective gate. The set LMARS ⊆ L contains all PBB configurations
which indicate that the respective gate is equipped as a MARS gate.

Time-space network. We model the problem as a time space network, in which each gate is
represented by one subnetwork. The example in Figure 4 shows two gates, T periods and three
PBB configurations.

The horizontal axis of each subnetwork constitutes the planning horizon, and the vertical axis
the PBB configurations. Each node depicts a possible state of gate g ∈ G with respect to PBB
configuration l ∈ L in time period t ∈ T . The arcs represent feasible transitions from one node to
another. The flow through arcs which connect nodes of different PBB configurations k, l ∈ L at the
beginning of each period t ∈ T is determined by binary decision variables xgtkl ∈ {0, 1}. Binary
decision variables zgtl ∈ {0, 1} determine the flow through arcs connecting nodes that depict PBB
configuration l ∈ L during period t ∈ T . Variable xgtkl is 1 if the construction of PBB configuration
l ∈ L at gate g ∈ G is performed at the beginning of time period t = 0, . . . , T −1 to substitute PBB
configuration k ∈ L \ {l}, and 0 otherwise. For the PBB configuration l ∈ L which is employed
at gate g ∈ G during time period t ∈ T , the respective variable zgtl equals 1, and 0 otherwise. At
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Figure 4: Time-space network

each node, a parameter egtl gives the difference between the sum of all inflows and the sum of all
outflows. At the source node, i.e., the node at t = 0 representing the initial PBB configuration
of the respective gate, inflows are 0 and outflows are 1 (egtl = 1). Furthermore, at each node in
t = 0, . . . , T − 1 which is not a source of the network, the sum of all inflows must be equal to the
sum of all outflows (egtl = 0) in order to ensure that the balance of flow is maintained.

Aircraft types and demand patterns. Aircraft are classified according to their wingspan, as
stated in Section 3, and the resulting set of aircraft classes is denoted as A = {1, . . . , A}. For each
aircraft class a ∈ A, a set of PBB configurations that can be employed to accommodate aircraft of
the respective class is introduced as La ⊆ L.

Future traffic volume is estimated by means of demand patterns as stated in Section 3. The
demand patterns are enumerated in the set B = {1, . . . , B}. Parameter Dba gives the number of
aircraft of class a ∈ A in demand pattern b ∈ B. Furthermore, for each time period t ∈ T , the set
Bt ⊆ B contains the demand patterns of time period t. Weight ftb gives the relative frequency of
demand pattern b ∈ Bt in time period t ∈ T . Since we assume that demand patterns and weights
for the time horizon are given at the beginning of the decision process, our model is deterministic.

The degree to which demand (as represented by the demand patterns) can be fulfilled depends
on the PBB configurations of the gates. Binary decision variable ygjtba states if for demand pattern
b ∈ Bt an aircraft of class a ∈ A is assigned to gate g ∈ G in time period t ∈ T using lead-in line
j ∈ Jg. Decision variables y−tba count the number of ungated aircraft. If for any demand pattern
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b ∈ Bt in time period t ∈ T an aircraft of class a ∈ A cannot be accommodated at any of the
contact gates, y−tba is increased by 1.

Aircraft at adjacent gates. For each parking position g ∈ G, set Ng ⊆ G is introduced,
containing gate g and its right side neighbor gate g+15. Further, the lateral distance between the
lead-in lines i ∈ J and j ∈ J is denoted by the parameter dij . We define the parameter sa as the
lateral distance from the center of the fuselage to one of the wingtips (i.e. half the wingspan) of the
aircraft with the largest wingspan in aircraft class a ∈ A plus an additional minimum separation
distance, which must be adhered to. In the model, constraints will assure for each gate g ∈ G that
for no combination of lead-in lines i ∈ Jh and j ∈ Jh (i 6= j and h ∈ Ng) does the sum of the
adjusted aircraft wingspans sa of the aircraft parked simultaneously at lead-in lines i and j exceed
the value of dij . As lead-in lines i and j might be associated with the same gate, these constraints
also cover the necessary neighborhood relations between two aircraft parked simultaneously at a
MARS gate.

Costs and objective. The objective of minimizing the total cost implies minimizing the sum of
three cost types. First, investment costs ci

kl represent the costs of changing the PBB configuration at
any gate for each combination (k, l ∈ L) of unidentical PBB configurations. The total investment
cost incurred in period t ∈ T is limited by the available budget rt. Second, operating costs co

l

measure the running costs for maintenance and of accommodating aircraft at an aircraft stand
where PBB configuration l ∈ L is installed. Third, penalty costs c− are incurred for each passenger
who leaves or boards an aircraft parked at a remote position. In the objective function, c− is
multiplied by the parameter pa, which gives the average number of passengers on board an aircraft
of class a ∈ A. Thus, the penalty cost incurred depends on the class of the respective aircraft which
cannot be assigned to a contact gate.

Extensive formulation. We now present the extensive formulation of the passenger boarding
bridge layout problem, which we denote as Original Problem OP.

min zOP :=
∑
g∈G

∑
l∈L

∑
k∈L\{l}

T−1∑
t=0

ci
klxgtkl (1a)

+
∑
g∈G

T−1∑
t=0

∑
l∈L

co
l zgtl

+ c−
∑
a∈A

pa

T−1∑
t=0

∑
b∈Bt

ftby
−
tba

5The left side neighbor gate g − 1 does not need to be considered as the combination of gates g − 1 and g is
already considered in the set Ng−1.
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subject to∑
k∈L\{l}

xgtlk + zgtl ∀g ∈ G, t = 0, . . . , T − 1, (1b)

−
∑

k∈L\{l}

xgtkl −
∑
t′=t:
t′>0

zg,t′−1,l = egtl l ∈ L

∑
g∈G

∑
j∈Jg

ygjtba + y−tba ≥ Dba ∀t = 0, . . . , T − 1, (1c)

b ∈ Bt, a ∈ A∑
g∈G

∑
l∈L

∑
k∈L\{l}

ci
klxgtkl ≤ rt ∀t = 0, . . . , T − 1 (1d)

∑
a∈A

ygjtba ≤
∑

l∈L\{0}

zgtl ∀g ∈ G, j ∈ Jg, (1e)

t = 0, . . . , T − 1, b ∈ Bt∑
a∈A

∑
j∈Jg

ygjtba ≤ 2−
∑

l∈L\LMARS

zgtl ∀g ∈ G, t = 0, . . . , T − 1, (1f)

b ∈ Bt

ygjtba ≤
∑
l∈La

zgtl ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (1g)

b ∈ Bt, a ∈ A∑
a∈A

yhitbasa +
∑
a∈A

yhjtbasa ≤ ∀g ∈ G, i, j ∈ Jh : h ∈ Ng, j > i, (1h)

dij +M ·

(
2−

∑
a∈A

yhitba −
∑
a∈A

yhjtba

)
t = 0, . . . , T − 1, b ∈ Bt

xgtkl ∈ {0, 1} ∀g ∈ G, k ∈ L, l ∈ L \ {k} , (1i)

t = 0, . . . , T − 1

zgtl ∈ {0, 1} ∀g ∈ G, t = 0, . . . , T − 1, (1j)

l ∈ L

y−tba ≥ 0 ∀t = 0, . . . , T − 1, (1k)

b ∈ Bt, a ∈ A

ygjtba ∈ {0, 1} ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (1l)

b ∈ Bt, a ∈ A

Objective function (1a) minimizes the sum of the investment, operating and penalty costs.
Constraints (1b) are the flow balance equations and constraints (1c) require that demands are
satisfied, otherwise a penalty is incurred. Budget constraints (1d) make sure that the budget
available for PBB configuration changes is not exceeded in any time period. Capacity constraints
(1e) ensure that no aircraft can be assigned to a lead-in line which belongs to a gate that does

11



not have any PBB installed. Additional capacity constraints (1f) ensure that at gates which are
not equipped with a MARS-capable PBB configuration, no more than one aircraft can be serviced
simultaneously, while at gates where a MARS-capable PBB configuration is installed, at most two
aircraft can be accommodated at a time. Constraints (1g) ensure that only aircraft stands with
compatible PBB configurations are used to serve the demands of each aircraft class. Neighborhood
constraints (1h) ensure that restrictions on aircraft parking simultaneously at adjacent gates and
MARS gates are adhered to. We set the value of the Big-M parameter used in these constraints to
maxa∈Asa. Finally, constraints (1i) – (1l) define the variable domains.

5 Solution Methodology

In the computational study that follows in Section 6, it will be seen that OP (1a)-(1l) is too large to
be solvable within a reasonable amount of time for data instances of realistic size. When ignoring
the gate assignment variables y−tba and ygjtba, the penalty costs in objective function (1a) and related
constraints (1c)-(1h), OP can be reduced to a multi-commodity flow problem, where for each gate
g ∈ G a shortest path problem has to be solved (see Figure (4)). Due to this natural decomposition
of the problem, we suggest to reformulate OP by applying Dantzig-Wolfe decomposition and to solve
the reformulated model using a column generation (CG) heuristic. Desrosiers and Lübbecke (2005)
show that the extreme points of the polyhedron defined by a shortest path problem correspond
to paths through the flow network. In our case, the flow network is the one presented in Figure
(4) and a path is defined as a sequence of nodes leading from the source to the sink of the graph
associated with one gate. A path thus defines the PBB configuration of one gate for each time
period within the time horizon. In addition to the notation presented in Table 5, the terminology
provided in Table 6 will be used in the following. All paths (of all gates) are contained in the set
P = {1, . . . , P}, and for each gate g ∈ G, a set Pg ⊆ P contains all paths associated with the
respective gate. Furthermore, each path is associated with path cost cp, which equals the sum of
investment and operating costs accumulated through the respective path. Instead of deciding for
each gate and time period whether the current PBB configuration should be retained or replaced
by a different one by setting binary decision variables xgtkl and zgtl, the decision now is whether
or not to select path p ∈ Pg for gate g ∈ G, represented by binary decision variables λp. Binary
parameters zpgtl indicate whether or not gate g ∈ G is equipped with PBB configuration l ∈ L in
time period t ∈ T and path p ∈ Pg. Similarly, binary parameters xpgtkl indicate whether or not
the PBB configuration l ∈ L is replaced by PBB configuration k ∈ L at gate g ∈ G in time period
t ∈ T .

Master Problem. Given our definition of a path and the presented notation, reformulation of
OP yields the following Master Problem MP:
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min zMP :=
∑
p∈P

cpλp (2a)

+ c−
∑
a∈A

pa

T−1∑
t=0

∑
b∈Bt

ftby
−
tba

subject to

∑
g∈G

∑
j∈Jg

ygjtba + y−tba ≥ Dba ∀t = 0, . . . , T − 1, (2b)

b ∈ Bt, a ∈ A

∑
g∈G

∑
p∈Pg

λp

∑
l∈L

∑
k∈L\{l}

ci
klxgtkl

 ≤ rt ∀t = 0, . . . , T − 1 (2c)

∑
a∈A

ygjtba ≤
∑
p∈Pg

λp

 ∑
l∈L\{0}

zpgtl

 ∀g ∈ G, j ∈ Jg, (2d)

t = 0, . . . , T − 1, b ∈ Bt∑
a∈A

∑
j∈Jg

ygjtba ≤ 2−
∑
p∈Pg

λp

 ∑
l∈L\LMARS

zpgtl

 ∀g ∈ G, t = 0, . . . , T − 1, (2e)

b ∈ Bt

ygjtba ≤
∑
p∈Pg

λp

∑
l∈La

zpgtl

 ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (2f)

b ∈ Bt, a ∈ A∑
a∈A

yhitbasa +
∑
a∈A

yhjtbasa ≤ ∀g ∈ G, i, j ∈ Jh : h ∈ Ng, j > i, (2g)

dij +M ·

(
2−

∑
a∈A

yhitba −
∑
a∈A

yhjtba

)
t = 0, . . . , T − 1, b ∈ Bt∑

p∈Pg

λp = 1 ∀g ∈ G (2h)

y−tba ≥ 0 ∀t = 0, . . . , T − 1, b ∈ Bt, a ∈ A (2i)

ygjtba ∈ {0, 1} ∀g ∈ G, j ∈ Jg, t = 0, . . . , T − 1, (2j)

b ∈ Bt, a ∈ A

λp ∈ {0, 1} ∀p ∈ P (2k)

Note that the flow balance constraint is incorporated in the definition of a path and is therefore
not represented in MP. The same holds for constraints (1i) and (1j), because decision variables

13



xgtkl and zgtl have been replaced and zpgtl and xpgtkl are now parameters. Constraints (1d), (1e), (1f)
and (1g) are modified to (2c), (2d), (2e) and (2f) according to the altered notation, and convexity
constraints (2h) need to be added as one path per gate needs to be selected.

Column Generation. For practical data instances, P will be prohibitively large. Explicitly
enumerating and evaluating all possible paths in MP therefore becomes intractable. Hence, we
derive the Restricted Master Problem RMP from MP by substituting P with the subset of paths
P ′ ⊆ P. In order to apply the CG approach, we relax the integrality requirements on decision
variables λp and ygjtba and denote the resulting, relaxed version of RMP as R̃MP. Similarly, the
version of MP where integrality requirements on decision variables λp and ygjtba are relaxed is
referred to as M̃P. After the initialization of R̃MP with a dummy path for each aircraft stand
g ∈ G, the CG procedure is commenced by solving R̃MP to optimality. Then, the dual variable
values of constraints 2c, (2d), (2e), (2f) and (2h) are used to determine whether for any aircraft
stand a new path can be found with negative reduced cost. This is done by solving G subproblems
- one for each gate g ∈ G. If for any gate(s) a path with negative reduced cost can be found, the
latter is/are added to R̃MP and the process is repeated until no path with negative reduced cost
can be found. The resulting solution is optimal to M̃P and the CG process is terminated.

A CG approach has to define how many subproblems should be solved after each re-optimization
of R̃MP and how many of the found columns should be added to R̃MP in each iteration (see Morabit,
Desaulniers, and Lodi 2020, , for instance). While adding only one column per iteration may lead
to a large number of (potentially expensive) R̃MP re-optimizations, columns which are added to
R̃MP in the same iteration are derived from the same dual variable values and thus are likely to
be very similar, possibly inducing undesired symmetries to the problem. We opt for a balanced
approach, which considers both aspects, in which, before launching the CG procedure, the gates
are assigned to groups of size ≥ 1. In each iteration, the subproblems associated with one group
are solved to optimality and the columns that are found (at most one per gate) are added to R̃MP.
The gates are allocated to the groups, such that the lateral distances between the gates of one
group are maximized. The aim is to mitigate the effect of adding columns responding to the same
dual variable values.

Subproblems. Let πbud
t , πcap,line

jtb , πcap,gate
tb , πcom

jtba and πcon denote the dual variable values of
constraints 2c, (2d), (2e), (2f) and (2h) associated with aircraft stand g ∈ G, respectively. Then,
for this gate the reduced cost of the best path which could be added to R̃MP is calculated by
solving the following Subproblem SP to optimality:
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min cg :=
∑
l∈L

∑
k∈L\{l}

T−1∑
t=0

ci
kl

(
1− πbud

t

)
xtkl (3a)

+
T−1∑
t=0

∑
l∈L

co
l +

∑
j∈Jg

∑
b∈Bt

∑
l′∈L\{0}:

l′=l

πcap,line
jtb

−
∑
b∈Bt

∑
l′∈L\LMARS :

l′=l

πcap,gate
tb

+
∑
j∈Jg

∑
b∈Bt

∑
a∈A

∑
l′∈La:
l′=l

πcom
jtba

 ztl − πcon

subject to

∑
k∈L\{l}

xtlk + ztl ∀t = 0, . . . , T − 1, l ∈ L (3b)

−
∑

k∈L\{l}

xt′kl −
∑
t′=t:
t′>0

zt′−1,l = etl

xtkl ∈ {0, 1} ∀k ∈ L, l ∈ L \ {k} , (3c)

t = 0, . . . , T − 1

ztl ∈ {0, 1} ∀t = 0, . . . , T − 1, l ∈ L (3d)

The index g is removed from all parameters and variables, as SP is solved for each aircraft stand
g ∈ G individually. We solve the subproblems efficiently by means of dynamic programming. That
is, we find the shortest path through the (sub-)network corresponding to the respective gate as
shown in Figure 4. The initial PBB configuration of the gate in t = 0 constitutes the source of the
network, and in t = T + 1, we add a supersink which is connected with each node of t = T . The
weight wklt of the arc connecting the node representing PBB configuration k ∈ L in time period
t ∈ T with the node depicting PBB configuration l ∈ L in time period (t+ 1) ∈ T is calculated as

wklt = co
l+ci

kl

(
1− πbud

t

)
+
∑
j∈Jg

∑
b∈Bt

∑
l′∈L\{0}:

l′=l

πcap,line
jtb −

∑
b∈Bt

∑
l′∈L\LMARS :

l′=l

πcap,gate
tb +

∑
j∈Jg

∑
b∈Bt

∑
a∈A

∑
l′∈La:
l′=l

πcom
jtba.

If k = l the term ci
kl

(
1− πbud

t

)
is omitted. The weight of the arcs connecting the nodes of t = T

with the supersink is set to 0.
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Obtaining integral solutions. Solving R̃MP gives us an optimal solution to M̃P, but this
may not necessarily be an integral solution. We therefore employ the following heuristic approach
to obtain an integral solution to OP. As soon as the CG process is terminated, the integrality
constraints on decision variables λp and ygjtba are restored in R̃MP and the resulting RMP′ is
solved by a commercial solver. This approach is a heuristic, as only the paths added to R̃MP during
the CG procedure can be used in the optimal solution to RMP′. Furthermore, to counteract the
slow convergence behavior of RMP′ when close to the optimal solution, we abort the optimization
process of RMP′ when the duality gap reaches a sufficiently small value. The solution approach is
illustrated as pseudo-code in Algorithm 1. The computational study will show that this allows us
to find integral solutions of a given quality more quickly than the commercial solver when solving
OP (1a)-(1l).

Algorithm 1 Proposed CG heursitic

START
Initialize R̃MP and one SP per gate, create N gate groups
columnFound := true
n := 0
WHILE columnFound = true DO

Solve R̃MP and get dual variable values
columnFound := false
IF n = N + 1 THEN

n := 0

ENDIF
FOR all gates belonging to group n

Solve SP with the dual variable values from R̃MP
c := objective function value of SP
IF c ≤ 0 THEN

Add the respective column to R̃MP
columnFound := true

ENDIF

ENDFOR
n := n+ 1
IF columnFound = false THEN

FOR all gates

Solve SP with the dual variable values from R̃MP
c := objective function value of SP
IF c ≤ 0 THEN

Add the respective column to R̃MP
columnFound := true

ENDIF

ENDFOR

ENDIF

ENDWHILE
Add integrality constraints to the path variables of R̃MP to obtain RMP
Solve RMP until the desired duality gap is reached
Return the obtained solution
END
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6 Computational Study

The numerical analysis presented in this section investigates the computational performance of the
proposed CG heuristic and consists of four parts. First, we introduce how the data instances used in
the following experiments were generated. Second, we investigate the performance obtained when
solving OP (1a)-(1l) to optimality using a commercial solver. Third, we vary the parameters of the
proposed CG heuristic to find a good setting with respect to both solution quality and runtime.
Finally, we demonstrate the effectiveness of the CG heuristic by comparing its performance to
solving OP. All experiments were conducted on a computer equipped with an octa-core CPU
running at 3.8GHz and 32GB of RAM, while Gurobi 9.1 was employed as a commercial solver. The
algorithms were implemented in Java, using the Gurobi API.

6.1 Generation of data instances

To investigate the performance of the solution methods, we generated problem instances of different
sizes. We model an airport terminal with G ∈ {10, 15, 20} contact gates, each gate being equipped
with four lead-in lines, thus J = 4 · G. The length of the time horizon is T ∈ {10, 15, 20}.
The number of aircraft types is set to A = 3 (small, medium, large aircraft with maximum half
wingspans sa of 20, 34, and 44 meters, respectively). There are L = 5 PBB configurations available,
where l = 0 denotes the “no PBB” case and l = 4 represents a MARS PBB configuration. The
compatibilies between aircraft classes and PBB configurations are defined as L1 = {1, 2, 3, 4} ,L2 =

{2, 3, 4} , and L3 = {3, 4}. Figure 5 shows the five configurations employed in the computational
study, including the “no PBB” case (configuration 0).

Figure 5: PBB configurations in the computational study

At t = 0, all gates have PBB configuration l = 1 installed and the distance between each
pair of adjacent aircraft stands is set to 60 meters. Each gate is equipped with two inner lead-in
lines located five meters to the left and right of the center of the gate, respectively. To allow for
MARS operations, each aircraft stand is additionally equipped with two outer lead-in lines, which
are placed 25 meters left and right from the center line of the gate, respectively. Since we cannot
disclose real cost data, we use the following cost factors reflecting the relationship between the
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different costs: ci
kl =


0 8 16 24 32

8 0 8 16 24

8 8 0 8 16

8 8 8 0 16

8 8 8 8 0

, co
l = ( 0.5 1.5 2.5 3.5 4.5 ) and c− = 0.02. The

more flexible a PBB configuration l is, the higher are its investment costs ci
kl and operating cost

co
l . As for the value of c−, the case study presented in Section 7 will demonstrate that 0.02 is a

reasonable value for a quality oriented airport with respect to the given values of ci
kl and co

l . The
aircraft classes are weighted with pa = ( 150 300 400 ), approximately corresponding with the
number of passengers carried by the respective types of aircraft. While we investigate the impact of
different values of r on the solution in the case study in Section (7), we relax budget constraints (1d)
and (2c) within the scope of the computational study in this section. Regarding the development of
air traffic over the time horizon, we model a scenario where a high traffic volume (i.e., approximately
G aircraft per demand pattern) throughout the time horizon is combined with a shift in the fleet
mix towards larger aircraft. In recent decades, this scenario was frequently observed at airports
where the construction of additional capacities (runways, terminals, etc.) was not possible in the
medium term although passenger volume was increasing (London Heathrow, for instance).

For each combination of G and T we generated 20 instances, which gives 3 ·3 ·20 = 180 instances
in total. In the following, we will refer to the instances of one G and T as instance class. The 20

instances of one instance class differ with respect to the demand patterns as well as the relative
weighting of the patterns:

• The demand patterns in Bt are selected randomly from a predefined set of demand patterns
B for each time period t ∈ T , such that three demand patterns are allocated to each time
period and the described development of air traffic over the time horizon is replicated6.

• The weighting factors ftb take random values between ]0; 1[, where for each time period∑
b∈Bt

ftb = 1 must hold.

We divided the 180 instances into two batches of 90 instances each, where each batch contains 10

instances of each instance class.

6.2 Solving OP to optimality using a commercial solver

We applied the commercial solver to the first batch of instances. Table 1 presents the average
computation times of OP for each instance class.

6Further details are provided in Appendix B.
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Table 1: Average computation times of OP (1a)-(1l) [min]

T = 10 T = 15 T = 20

G = 10 1.78 5.00 23.81
G = 15 13.59 61.07 129.29
G = 20 24.38 94.29 674.547

Computation times increase considerably when the values of T and G are increased. It is
apparent that the commercial solver cannot efficiently solve OP to optimality for larger instances.
We observe three instances where T = G = 20, for which the solution process is not completed
within 24 hours. OP is thus not applicable to data instances of realistic size where G and T may
both take values larger than 20 (e.g., Munich airport has G = 58 contact gates8) and the number
of demand patterns for each time period might be larger than three.

6.3 Approximating optimal solutions using the CG heuristic

When applying the CG heuristic, the following parameters have to be set:

• The number of gates per group as defined for the iterative optimization process of R̃MP,
denoted as group_size.

• The duality gap that needs to be reached to abort the optimization process of RMP′, denoted
as rmp_gap.

We tested the computational performance of the CG heuristic for all combinations of group_size
∈ {1, 2, 4, 10} and rmp_gap ∈ {0, 2.5%, 5%, 10%, 12.5%, 15%, 17.5%, 20%}. Thus, we applied the
heuristic 4 · 8 = 32 times to each of the 90 data instances of the first batch.

To find the best values for group_size and rmp_gap, we investigated the performance of each
value combination of these parameters for every instance class. More precisely, we calculated for
each instance class and value combination of group_size and rmp_gap (a) the average percentage
deviation from the optimum (referred to as optimality gap) and (b) the average total runtime9. We
normalized the values of both (a) and (b) to be in [0; 1] by vn = v−vmin

vmax−vmin , where normalized values
close to zero indicate small optimality gaps for (a) and short runtimes for (b)10. In the following,
we will refer to the normalized values as quality and runtime scores, respectively. Figures 6a and
6b provide the average quality and runtime scores of each parmeter combination over all instance
classes.

As expected, the setting of both group_size and rmp_gap parameters has a clear impact on
the performance of the CG heuristic. Increasing rmp_gap leads to a worsening of the quality

7The optimization process of three instances was aborted after 24 hours.
8as of January 2020
9The optimum objective function values were obtained by solving OP with unlimited runtime.

10For group_size = 10 and rmp_gap = 0 we found considerably higher runtimes for all instance classes compared
to other parameter combinations. In order to obtain reasonable values by the normalization, we excluded this
parameter combination from the normalization procedure and set its value to 1 for all instance classes.
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Figure 6

score (i.e., an increase in the optimality gaps) and an improvement of the runtime score (i.e.,
shorter computation times). We find that the value of group_size only has a notable impact on
the quality score for large values of rmp_gap. However, the best quality scores are observed when
group_size = 1 and rmp_gap is small. With respect to the runtime score, group_size has a larger
impact when the value of rmp_gap is small. Again, the best runtime scores were observed for
group_size = 1. We conclude that the disadvantage of solving fewer subproblems per iteration
(potentially resulting in many necessary R̃MP re-optimization cycles, see Section 5) is smaller than
the negative effect of adding multiple similar columns to R̃MP per iteration (which results from
larger values of group_size) in our case.

As small optimality gaps and short runtimes are conflicting goals, there is no dominating pa-
rameter setting. For the following experiments, we selected the parameter combination with the
smallest sum of quality and runtime scores, as shown in Figures 6a and 6b. This is the case for
group_size = 1 and rmp_gap = 0.075. With these parameter values, the final heuristic solution
is found after 2.15 minutes and the optimality gap is 1.99%, averaged over all instance classes.

6.4 Validating the performance of the CG heuristic

To validate the performance of the CG heuristic with the given parameter values, we applied it to
the second batch of instances created in Subsection (6.1).

Tables 2a-2c present the results when applying the CG heuristic with the parameters as selected
in Subsection 6.3 to these instances. As a valid benchmark for the computation times of the CG
heuristic, we solved each instance with OP (1a)-(1l) and aborted the solution procedure once the
objective function value obtained by the CG heuristic was reached. Furthermore, we solved OP to
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optimality as presented in Subsection 6.2 in order to calculate the optimality gaps.

T = 10 T = 15 T = 20

G = 10 0.24 0.92 2.10
G = 15 0.35 1.52 3.61
G = 20 0.60 2.35 6.29

(a) Average computation times of CG heuristic
[min]

T = 10 T = 15 T = 20

G = 10 0.87 1.18 0.87
G = 15 0.46 0.51 0.57
G = 20 0.62 0.86 0.62

(b) Average computation times of CG heuristic
divided by average computation times of OP
with abortion criterion

T = 10 T = 15 T = 20

G = 10 1.96 2.68 2.35
G = 15 1.54 1.18 2.29
G = 20 2.20 1.93 1.95

(c) Average optimality gaps of CG heuristic [%]

Table 2

The results demonstrate the efficiency of the proposed CG heuristic. With optimality gaps
between 1.18% and 2.68%, the CG heuristic reaches its final objective function value on average
in less than 73% of the runtime needed by the commercial solver to find a solution of equal qual-
ity. With the exception of one relatively small instance class (G = 10 and T = 15), where the
commercial solver finds the final objective function value provided by the CG heuristic faster than
the CG heuristic and where the optimality gap reaches its maximum, the CG heuristic thoroughly
outperforms the commercial solver.

7 Case Study

In the case study, we consider the current situation at Munich Airport Terminal 2. For our analysis,
we modeled the contact gates of the terminal, generated demand patterns based on real traffic
data, and considered the current crisis caused by the SARS-CoV-2 virus11. We provide the data
set containing all information that is needed to reproduce the case study in Hagspihl et al. (2021).
In the following two subsections 7.1 and 7.2, we investigate the impact of different values of penalty
cost c− and the available budget per period r on the solution proposed by the CG heuristic.

Munich Airport is a major European hub airport with a passenger volume of 48.0 million in 2019

(Munich Airport 2020). Passengers are processed via two terminals, where Terminal 2 including its
satellite building is the high-quality hub terminal used by member airlines of the Star Alliance and
provides approximately double the capacity of Terminal 1. Terminal 2 possesses G = 47 contact
gates, each of which is equipped with one to three lead-in lines. The contact gates are equipped
with apron-drive PBBs, where up to three bridges are installed per gate. Currently four gates are
in use as MARS gates.

11We do not need to consider the entire airport, as Terminal 2 is used exclusively by member airlines of the Star
Alliance and thus the traffic can be forecast individually for this part of the airport.
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Along the lines of the computational study, we considered L = 5 PBB configurations (0: No
PBB; 1: Single apron-drive PBB; 2: Two apron-drive PBBs; 3: Three apron-drive PBBs; 4: MARS)
and A = 3 aircraft classes with maximum half wingspans sa of 20, 34 and 44 meters, respectively.
The compatibilities between PBB configurations and aircraft classes were defined as in Section 6.1,
and we set the length of the time horizon to T = 20 time periods, representing the time span from
summer 2019 to summer 2029.

As for the development of demand over time, we modeled the current situation, which is heavily
impacted by the SARS-CoV-2 virus. That is, we modeled an abrupt but temporary drop in air
traffic volume in 2020, followed by a continual recovery from the low point reached. To generate
the demand patterns, we analyzed a representative week of the flight plan of Munich Airport for
the summer period of 2019. Of all flights listed for that week, we only considered those that were
processed at a gate (contact or remote) belonging to Terminal 2. Using the list of the relevant
arrivals and departures, we calculated the number of aircraft which were simultaneously accommo-
dated on the apron of Terminal 2, with a time granularity of five minutes. Figure 7 presents the
resulting number of aircraft at a gate over time, which demonstrates the aforementioned oscillatory
behavior.

Figure 7: Number of aircraft accommodated simultaneously at Munich Airport Terminal 2 over
one typical week in summer 2019

To derive the relevant demand patterns, we first determined the number of aircraft of each class
to be accommodated simultaneously for each peak. We then identified those demand patterns that
are not dominated by others12. This procedure revealed four demand patterns to be included in
the model for the period of summer 2019. This enabled us to generate demand patterns for the

12A pattern b = 1 dominates another pattern b = 2 if for all a ∈ A the term D1a ≥ D2a holds and for at least one
a ∈ A the inequality D1a > D2a is satisfied.
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following time periods, such that | Bt |= 4 for each t ∈ T . More specifically, the demand patterns
for t ∈ {1, 2, 10, 19} were generated as follows. In periods 1 and 2, the patterns follow the steep
decrease in traffic caused by the SARS-CoV-2 crisis. The demand patterns of t = 10 equal those of
period 0, based on the assumption that the demand will have recovered from the crisis by then. The
demand patterns of the last period t = 19 are based on those of t = 10, ensuring that the demand
is stationary with low variance after t = 10; however, based on recent developments around the
Airbus A380 and the Boeing 747, the largest class of aircraft becomes less frequent. For t ∈ [3, 9],
the demand patterns were interpolated between the patterns of t = 2 and t = 10, and random but
seasonally biased deviations were added13. For t ∈ [11, 18], the same method was applied using the
patterns of t = 10 and t = 19 for the interpolation. Figure 8 shows the number of aircraft of each
class over the time horizon, averaged for the demand patterns over the respective time period.

Figure 8: Average number of aircraft of each class as represented in the demand patterns over the
time horizon

7.1 Investigating the impact of different penalty cost values

In practice, both the costs ci
kl, co

l , and the aircraft class weights pa are given exogeneously by
PBB and aircraft manufacturers. In contrast, the penalty cost c− depends on the desired service
quality the airport aims to offer to its customers: Accommodating an aircraft at a remote parking
position leads to a higher penalty cost at a quality oriented hub airport than at a low cost oriented
small airport. For the following analysis, we set ci

kl, co
l and pa to the values given in Section 6.1,

whereas we varied the value of c− within [0; 0.3] with a step size of 0.005, which allows us to analyze
the effect of service quality on the decisions taken and the different cost components. While we
investigate the impact of different budgets in Subsection 7.2, the investigation of different penalty

13A random value was added to each value of Dba. If pattern b ∈ B is associated with a winter period, the value
was chosen from [−3,−1], otherwise from [1, 3].
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cost values is based on relaxed budget constraints (2c), which is also in line with Subsection 6.1.
For simplicity reasons, all weights ftb were set to 0.25.

Averaged over all values of c−, the CG heuristic with group_size = 1 and rmp_gap = 0.075

solves the instance in 2.83 minutes. The objective function value (the total cost) obtained by the
CG heuristic is 1612.35 on average. When solving the CG heuristic with the additional constraint
that the PBB configurations installed in summer 2019 must not be changed, the objective function
value is 2006.88 on average. Consequently, averaged over all values of c− and under the assumption
that the future traffic development represented by the demand patterns indeed materializes in the
future, changing the PBB configurations over time can yield savings of 19.66%.

The solution found by the CG heuristic depends on the value of c−. For small values of c−,
a large share of aircraft is processed at remote parking positions. With increasing c−, more PBB
capacities are installed to reduce the share of aircraft processed at remote positions. Figure 9 shows
the relation between the value of c−and the share of aircraft processed at remote parking positions.
Furthermore, the figure presents the total investment, operating and penalty costs obtained de-
pending on the value of c−. Finally, Table 3 presents the number of gates equipped with each PBB
configuration at the beginning of the time horizon and - for each value of c− - the number of gates
equipped with each PBB configuration after the first five time periods.

Figure 9: Total investment, operating and penalty costs depending on the value of c−

In their initial state, as presented in Table 3, the PBB configurations installed at Munich Airport
Terminal 2 would allow 98.99% of the traffic modelled for summer 2019 to be accommodated at
contact gates. In the light of the given demand scenario, with a strong decrease in demand at the
beginning of the time horizon followed by a slow recovery in the following years, PBB configurations
are more likely to be downgraded or maintained than upgraded, depending on the ratio of the cost
components. As shown in Figure 9, the operating costs are the largest cost item across all values
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Table 3: Distribution of PBB configurations at the beginning of the time horizon and after five
time periods for each value of c−

l t = 0 t = 5

c−

0 0.005 0.010 0.015 0.020 0.025 0.030

0 0 47 26 13 9 7 6 5
1 27 0 21 28 27 27 28 28
2 15 0 0 6 10 12 12 11
3 1 0 0 0 1 1 1 0
4 4 0 0 0 0 0 0 3

of c−. For c− ∈ [0; 0.02], the operating costs are increasing in c− and for c− ≥ 0.02 they remain
comparably constant. Consequently, the higher the value of c−, the more operating costs are
accepted for larger PBB configurations in order to avoid increasing penalty costs. In contrast, the
investment costs for changing the configuration are decreasing in c− for c− ∈ [0; 0.015] and remain
constant for c− ≥ 0.015. That is, the larger the value of c−, the less gates are downgraded in order
to save on operating costs.

In the considered SARS-CoV-2 scenario, PBB configurations are downgraded for all values of
c− (see Table 3). That is, PBB configurations which have the flexibility to accommodate larger
types of aircraft are substituted by PBB configurations that can only be used to process smaller
types of aircraft. Furthermore, for all values of c−, the PBB configuration is changed to l = 0 at
some gates, i.e., the gate is considered a remote parking position after the change. When c− = 0,
there is no incentive to accommodate aircraft at contact gates, and in order to reduce the operating
costs to the minimum, the PBB configuration is changed to l = 0 at all gates in t = 0. When c−

is increased to 0.005, the number of gates without any PBBs installed in t = 5 decreases to 26.
However, no gate remains with l ≥ 2. The more the value of c− is increased, the smaller the number
of gates without any PBBs after five time periods and the higher the number of gates equipped
with l ≥ 2. Only when c− = 0.030, we observe gates which are equipped with l = 4 in t = 5. For
smaller values of c−, the high degree of flexibility which justifies the high operating costs of MARS
gates cannot be sufficiently exploited in the given traffic scenario.

7.2 Investigating the impact of different budget values

In the remainder of the case study, we investigate the impact of different investment budgets
available per period on the solution. Accordingly, we added budget constraints (2c) and run the
CG heuristic for budget values r ∈ {0, 8, 16, 32, 64, 1504}, where r = 0 and r = 1, 504 represent
two extreme scenarios: When r = 0, there is no budget available and hence, no PBB configuration
changes can be undertaken. By contrast, when r = 1, 504, the available budget equals the upper
bound of the budget demand G · maxk,l∈Lc

i
kl, and thus, all PBB configuration changes can be

undertaken. Based on the prior analysis of the penalty cost, we set c− to 0.025. Figure 10 shows
the resulting total investment, operating, and penalty costs as well as the share of aircraft processed
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at remote parking positions for each value of r. Furthermore, Table 4 provides a detailed overview
of the investment costs per time period for each value of r. As an example, all results of one
instance (c− = 0.025 and r = 32) are provided in Appendix C.

Figure 10: Total investment, operating and penalty costs depending on the value of c−

Table 4: Investment cost per time period for different values of r

t
r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

∑
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 8 8 8 8 0 8 8 0 0 0 0 0 0 0 0 0 0 0 48
16 16 16 8 16 0 16 0 0 0 8 0 8 0 0 0 0 0 0 0 0 88
32 32 24 16 8 8 0 0 8 0 8 0 0 8 0 0 0 0 0 0 0 112
64 56 24 24 0 0 8 0 0 0 0 8 0 0 0 0 0 0 0 0 0 120
1504 88 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104

Figure 10 demonstrates that the objective function value improves for higher values of r. The
total cost difference between the two extreme scenarios (r = 0 and r = 1, 504) is 10.5%. As discussed
earlier, in the SARS-CoV-2 scenario, PBB configurations should be downgraded in order to reduce
the operating costs. The higher the available budget for PBB configuration changes is, (1) the more
of these changes can be realized, (2) the earlier the changes can be made, and (3) the higher the
resulting reduction of operating costs is. The last column of Table 4 shows that higher values of r
are associated with higher total investment cost, except for r = 1, 504. Furthermore, Table 4 shows
that the higher the value of r, the more PBB configuration changes tend to be undertaken in early
periods of the time horizon where the effect of the change is the largest. Regarding the penalty
costs, Figure 10 shows a slight variation in the percentage of aircraft processed at remote parking
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positions for different values of r. However, this percentage is smaller than 6.5% in all cases. The
maximum is reached for r = 16, where the penalty costs also reach their maximum.

Whether a higher budget leads to lower total costs depends on the characteristics of the demand
scenario. If the growth in air traffic volume and the change of the fleet mix are moderate, higher
budgets will, in general, not lead to considerable savings. By contrast, the SARS-CoV-2 scenario
is characterized by a drastic drop in air traffic volume in 2020 and a slow recovery in the following
years. Thus, a higher degree of flexibility - especially at the beginning of the time horizon - leads
to substantial reductions of total costs.

Overall, the case clarifies the tradeoffs between investment, operating, and penalty costs in a
dynamic environment, as well as the relevance of the available investment budget, and demonstrates
that our approach provides airports with highly valuable decision support.

8 Conclusions

In this paper, we introduced the dynamic gate configuration problem and formulated it as a de-
terministic mixed-binary problem. By considering neighborhood constraints, MARS gates and the
concept of demand patterns, the mathematical formulation incorporates operational constraints in
the strategic context of the problem. Our computational results demonstrated the intractability of
the extensive formulation for data instances of realistic size. We presented a CG heuristic to cir-
cumvent this problem and illustrated its good performance with respect to solution quality as well
as computation time for data instances of mutable complexity. Finally, we presented a case study
to demonstrate the implications of the results of the CG heuristic in reality. The results provide
important insights for airport managers as to the degree to which the capacities provided at the
gates in the present are capable of handling demand during peak hours in the future. Furthermore,
the results indicate at which gate(s) the PBB configuration should be changed in the event that
the solution recommends such change(s). Upgrades are performed such that they maximize the
gain in operational flexibility and downgrades are performed such that they minimize the loss of
operational flexibility.

In future research, the model could be extended to allow for the addition of new gates within
the time horizon, representing terminal extensions or the construction of entirely new terminals.
Furthermore, our model does not take into account that managerial decisions besides the ones
considered here, not to mention legal constraints, may pose further restrictions on the accommo-
dation of aircraft at certain aircraft stands, besides spatial neighborhood constraints. For example,
airports may have mutual agreements with airlines for the exclusive use of gates (for instance, see
Young and Wells 2011) and airports may have to provide gates equipped with security equipment
of different levels. On the one hand, both aspects require a more detailed subdivision of demand
as presented in this paper, while on the other, they might allow a decomposition of the problem.
For example, our approach may be applied to a subset of all gates if these gates are used by one
airline only by contract and the traffic development can be estimated separately for that airline.
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The concept of the model can also be transferred to other problems, where limited capacites need
to be (re-)configured to meet changing demand over time. For instance, hospitals have to deter-
mine which rooms to allocate to which ward, while the number of patients treated by the wards
fluctuates over time and both investment and personnel costs need to be considered.
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Appendix A Notation

Table 5: Notation

Sets, parameter
T = {0, . . . , T} Planning horizon
L = {0, . . . , L} PBB configurations
A = {1, . . . , A} Aircraft classes
G = {1, . . . , G} Aircraft stands
J = {1, . . . , J} Lead-in lines
B = {1, . . . , B} Demand patterns
sa [meters] Maximum half wingspan of aircraft belonging to class

a ∈ A including additional space for minimum separation
requirements

dij [meters] Lateral distance between lead-in lines i ∈ J and j ∈ J
Jg Set containing all lead-in lines belonging to gate g ∈ G
Ng Set containing gate g ∈ G and its dexter neighbor gate
La PBB configurations that can be used to accommodate

aircraft class a ∈ A
pa Average number of passengers on board an aircraft of class

a ∈ A
LMARS PBB configurations which indicate a MARS configuration
ci
kl [MU’s14] Investment cost of PBB configuration l ∈ L, if PBB

configuration k ∈ L is currently installed
co
l [MU’s] Operating cost of PBB configuration l ∈ L
c− [MU’s] Penalty cost per passenger
egtl 1, if aircraft stand g ∈ G has PBB configuration l ∈ L

installed in period t = 0; 0, otherwise
Dba Demand of aircraft class a ∈ A according to demand

pattern b ∈ B
rt [MU’s] Available investment budget in period t ∈ T
Bt Demand patterns of period t ∈ T
ftb Relative weight of demand pattern b ∈ B in period t ∈ T
M Sufficiently large number
Decision variables
zgtl ∈ {0, 1} 1, if PBB configuration l ∈ L is installed at aircraft stand

g ∈ G in period (t, t+ 1) for t = 0, . . . , T − 1; 0, otherwise

14MU = monetary unit
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xgtkl ∈ {0, 1} 1, if PBB configuration l ∈ L is built at aircraft stand
g ∈ G starting with PBB configuration k ∈ L \ {l} at time
t = 0, . . . , T − 1; 0, otherwise

ygjtba ∈ {0, 1} 1, if aircraft stand g ∈ G (lead-in line j ∈ J ) is used for
aircraft of class a ∈ A in period (t, t+ 1) for demand
pattern b ∈ Bt; 0, otherwise

y−tba ≥ 0 Uncovered demand in period (t, t+ 1) for t = 0, . . . , T − 1

for aircraft of class a ∈ A for demand pattern b ∈ Bt

Table 6: Additional notation for column generation approach

Sets, parameter
P = {1, . . . , P} Paths ( for all aircraft stands g ∈ G)
Pg Paths associated with aircraft stand g ∈ G
cp [MU’s] Total (investment and operating) cost of path p ∈ P
zpgtl 1, if PBB configuration l ∈ L is installed at aircraft stand

g ∈ G in period (t, t+ 1) for t = 0, . . . , T − 1 in path
p ∈ P; 0 otherwise

πcap,line
jtb Dual variable of the respective (lead-in line) capacity

constraint in the master problem
πcap,gate
tb Dual variable of the respective (gate) capacity constraint

in the master problem
πcom
jtba Dual variable of the respective compatibility constraint in

the master problem
πcon Dual variable of the respective convexity constraint in the

master problem
Decision variables
λp ∈ {0, 1} 1, if path p ∈ P is used; 0, otherwise
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Appendix B Allocation of Demand Patterns to Time Periods

Depending on the number of gates G, we pre-define a set of B = 10 demand patterns as

Dba =



1.2 ·G 0 0

G 0.1 ·G 0

0.9 ·G 0.05 ·G 0.05 ·G
0.9 ·G 0 0.1 ·G
0.5 ·G 0.4 ·G 0

0.5 ·G 0.25 ·G 0.05 ·G
0.5 ·G 0.2 ·G 0.1 ·G
0.5 ·G 0 0.2 ·G
0.25 ·G 0.25 ·G 0.25 ·G
0.25 ·G 0.15 ·G 0.35 ·G



.

The matrix is defined such that a higher value of b corresponds with a higher share of large and
very large aircraft. We allocate the demand patterns to time periods according to the following
scheme:

• If t ≤ T
3 : Randomly allocate three demand patterns from the subset of demand patterns in

B with index [0; 4] to time period t

• If t > T
3 and t ≤ 2·T

3 : Randomly allocate three demand patterns from the subset of demand
patterns in B with index [3; 7] to time period t

• Else: Randomly allocate three demand patterns from the subset of demand patterns in B
with index [6; 9] to time period t

Appendix C Case Study: Detailed Results for c− = 0.025 and r =

32

In the following we present detailed results for the case study provided in Section 7 with c− = 0.025

and r = 32. Table 8 provides the PBB configurations for each gate g ∈ G and time period t ∈ T .
PBB configuration changes are highlighted for visibility. When the PBB configuration of a gate is
downgraded, the respective cell is dyed gray. When it is upgraded, the cell is enframed.
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Table 8: Resulting PBB configurations at Munich Airport for c− = 0.025 and r = 32

t
g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
38 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2
46 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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