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Abstract

In this paper, we implement and analyse an Attention U-Net deep network for

semantic segmentation using Sentinel-2 satellite sensor imagery, for the pur-

pose of detecting deforestation within two forest biomes in South America, the

Amazon Rainforest and the Atlantic Forest. The performance of the Atten-

tion U-Net is compared with U-Net, Residual U-Net, ResNet50-SegNet and

FCN32-VGG16 across three different datasets (three-band Amazon, four-band

Amazon and Atlantic Forest). Results indicate that the Attention U-Net pro-

vides the best deforestation masks when tested on each dataset, achieving av-

erage pixel-wise F1-scores of 0.9550, 0.9769 and 0.9461 for each dataset, re-

spectively. Mask reproductions from each classifier were also analysed, showing

that compared to the ground reference the Attention U-Net could more ac-

curately detect non-forest polygons than U-Net and overall it provides more

accurate land cover polygons than each of the other methods despite its re-

duced complexity and training time, thus being the first application of an At-

tention U-Net to a land cover segmentation problem. This paper concludes

with a brief discussion on the ability of the attention mechanism to offset
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the reduced complexity of the Attention U-Net, as well as ideas for further

research into optimising the architecture and applying attention mechanisms

into other architectures for deforestation detection. Our code is available at

https://github.com/davej23/attention-mechanism-unet.

Keywords: Attention Mechanism, Attention U-Net, Deep Learning,

Deforestation Mapping, Sentinel-2

1. Introduction

The Amazon Rainforest represents around 40% of the remaining tropical

forests on Earth (Hubbell et al., 2008), and provides refuge for 10% of the world’s

species (WWF, 2020). Therefore, the enormous carbon sequestering capability

of the Amazon Rainforest is pivotal to the regulation of the continental, and

global climate, since it is estimated to store 76 billion tonnes of carbon in the

form of 390 billion trees (Müller, 2020). However, the region has seen large-scale

deforestation for agriculture, raw materials, and for land to build housing due

to rapid development of South America (Garcia-Ayllon, 2016).

This destruction poses an existential threat to the Amazon Rainforest and

threatens to further worsen the effects of global warming. It is estimated that

the Amazon’s ability to act as a carbon sink will disappear in 2035 (Hubau

et al., 2020), and is already showing signs of being close to this (Harris et al.,

2021), thus resulting in extreme weather such as drought and forest fires locally

and globally.

In 2020 alone, an average of 2309.5 hectares of forest per day was destroyed

(MapBiomas, 2020); roughly equating to an area the size of Ottawa, the capital

city of Canada, which covers 6287 square kilometers (Statistics Canada, 2011),

every month. As a result, it has become a global priority to minimise the rate

of deforestation of the Amazon by designating protected areas, campaigning

against companies which produce products in illegally-cleared areas of the forest,

as well as by regular monitoring (Tollefson, 2015). The latter has long been a

problem as on-the-ground monitoring is infeasible due to the sheer amount of
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surface area the Amazon Rainforest covers (Gong et al., 1994). This paper

looks to further the effort towards remotely-sensed monitoring for detecting

deforestation within the Amazon region primarily but also for use in other forest

biomes, through the use of artificial intelligence (AI) in the form of an Attention

U-Net deep neural network (Oktay et al., 2018).

1.1. Architecture Fundamentals

The Attention U-Net is based upon the U-Net architecture (Ronneberger

et al., 2015), which itself is a specific type of fully convolutional network (FCN);

a family of neural networks characterised by an encoder-decoder, or contraction

and expansion, structure. These are designed for semantic segmentation, also

known as pixel-wise classification.

U-Net builds upon the standard FCN architecture by introducing skip con-

nections, meaning that blocks of layers within the contraction phase can pass

their output directly to blocks within the expansion phase, which greatly im-

proves the ability to extract high-level features within training images. Previ-

ously, the U-Net has been applied to the task of semantic segmentation of the

Amazon Rainforest using Sentinel-2 satellite imagery with high success (Bra-

gagnolo et al., 2021), and the aim of this paper is to explore the incorporation

of an attention mechanism into U-Net to improve upon this benchmark.

An attention mechanism aims to replicate the human ability to direct focus,

or to concentrate on, specific stimuli. In the domain of neural networks, this

involves learning which parts of the input to focus on during the process of

training and prediction. Attention mechanisms are prominently used within

the field of natural language processing (NLP), where they focus on sections of

an input corpus, which is useful within tasks such as sentiment analysis (Galassi

et al., 2020).

The Attention U-Net is created by adding an attention gate to the skip

connection used within U-Net. Rather than concatenating each upscaled layer in

the expansion phase with the appropriate contraction-phase layer, the upscaled

layer is concatenated with the output from the attention mechanism, a function
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of the pre-upscaled layer and the aforementioned contraction-phase layer.

1.2. Previous Work

Machine learning-based forest cover change monitoring of the Amazon has

been ongoing for almost a decade (Souza et al., 2013), with deep learning (DL)

methods being the current state-of-the-art. This has been demonstrated within

comparisons of cutting-edge methods such as U-Net, ResUNet (Diakogiannis

et al., 2020) and SharpMask (Pinheiro et al., 2016), using Landsat imagery of

the Amazon Rainforest, versus less sophisticated methods such as the multi-

layer perceptron (MLP) and random forests (de Bem et al., 2020).

Previous segmentation work using U-Net, and involving Sentinel-2 satellite

data, has also been carried out, such as detecting change within Ukrainian

forests (Isaienkov et al., 2021), as well as mapping irrigation systems (Graf,

2020). Other examples include the use of a spatio-temporal FCN for land cover

segmentation of Slovenia (Zupanc et al., 2019). Spatio-temporal approaches use

a short-term collection of images to map changes over time, thus learning how to

recognise deforested areas. This type of approach has been used with early and

late fusion spatio-temporal U-Nets and have been shown to provide marginal im-

provements upon U-Net (Maretto et al., 2021) at mapping deforestation within

the Amazon.

Desertification detection within Algeria, using Landsat ETM+ satellite data,

with a variational autoencoder (VAE) (Verstraete, 1986) is another example of

the wide variety of contexts and approaches that have been used with semantic

segmentation. Importantly, previous applications of the Attention U-Net have

only been within medical contexts, such as brain tumour segmentation (Islam

et al., 2021), liver computerised tomography (CT) scan segmentation (Li et al.,

2020) and gland segmentation (Zhao et al., 2020). As a result, we believe that

this paper represents the first, or one of the first, successful applications of the

Attention U-Net to a cover change detection problem.
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Figure 1: Map of the Amazon Rainforest and Atlantic Forest biomes within South America,

including images from the 4-band datasets.

2. Methodology

2.1. Datasets

To evaluate the Attention U-Net for deforestation segmentation, we used

three datasets produced from images in the satellite imagery database Sentinel-

Hub (Sinergise, 2014). The first dataset is a collection of RGB-converted images

and deforestation masks of the Amazon Rainforest ([dataset] Bragagnolo et al.,

2019), where 0s and 1s represent deforested and forested areas respectively in

the masks. This dataset is composed of 30 training images and 15 validation

images. In order to have more unseen data to evaluate our models, we took five

images from the training data and added them to the validation dataset.

The other two datasets are both composed of 4-band RGB + near-infrared

imagery, one containing images from the Amazon Rainforest and the other from

the Atlantic Forest (Mata Atlantica) ([dataset] Bragagnolo et al., 2021). Figure

1 shows the location of these biomes, as well as example images, and clearly
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shows that the images are highly concentrated within two geographically distinct

regions. These datasets had 499 and 485 training images, respectively, 100

validation images and 20 test images. For training, we randomly selected 250

training images due to memory limitations.

Throughout this paper, we refer to the first dataset as the ’RGB’ dataset

and the latter two datasets as the 4-band Amazon and 4-band Atlantic For-

est datasets. Within each dataset, each image is of shape (512, 512, 3) in the

RGB dataset and (512, 512, 4) in the 4-band datasets, and each image has a

corresponding (512, 512, 1) deforestation mask. In order to produce the images

and masks found within each dataset, the author of the dataset split a large

satellite image into sub-images and produced masks using a modified version of

the k-means classification algorithm with the GRASS-GIS 7.6.1 software suite

(GRASS Development Team, 2020). Images were repeatedly re-classified until

the corresponding masks had ’a satisfactory rating’.

2.1.1. Difference Between U-Net and Attention U-Net
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Figure 2: A network architecture diagram for the Attention Mechanism. The AG marker

signifies the location of the attention gate, or attention mechanism.

The architecture of U-Net is similar to that of the Attention U-Net, shown

in Figure 3, except the number of filters used within each convolutional layer,
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Figure 3: A network architecture diagram for the Attention U-Net.

in each respective block, are 64, 128, 256, and 512, with 1024 filters used in

the bottleneck layers, and there are no attention mechanisms. We chose to use

16,32,64, and 128 filters, and 256 filters in the bottleneck layer, as the number of

convolutional filters in each block for the Attention U-Net. We found that using

the same number of filters as U-Net caused the Attention U-Net to have more

parameters and a greater training time, despite being slightly more performant,

as the parameters within the attention mechanism as seen in Figure 2 add

complexity. In the configuration used within this paper, the Attention U-Net is

much more computationally efficient and has greater performance than U-Net.

In order to evaluate the performance of the Attention U-Net, four other mod-

els were also tested: U-Net, Residual U-Net, ResNet50 (He et al., 2015) with

a SegNet backbone (Badrinarayanan et al., 2016), and FCN32 with a VGG16

backbone (Simonyan and Zisserman, 2015). Each of the models were trained

from scratch, including the backbone architecture, in order to provide a fair

comparison. Typically, VGG16 and ResNet models are trained using trans-

fer learning, where the model has already been trained on a dataset such as

ImageNet (Deng et al., 2009) before being trained on a suitable dataset corre-

sponding to the given task. Transfer learning is particularly useful where limited

training data is available, as the features learned from training on a dataset such

as ImageNet can provide transferrable knowledge to tasks such as segmentation

(Dube et al., 2018).
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2.1.2. Training and Testing Procedure

The number of epochs and the learning rate used for each network can be

found in Table 1. These values were found to be the values which gave max-

imal validation accuracy through experimentation. Models were trained using

different learning rates and epochs until the highest validation accuracy was

obtained. Once the optimal hyperparameters were found, models were not re-

trained due to constraints relating to using the Google Colab environment with

hardware usage limits. However, our results cover multiple datasets and each

show the Attention U-Net to be the stronger performer, therefore reducing the

likelihood of the results being down to weight initialisation alone. Also, we used

data augmentation on the RGB dataset, including rotation, reflection, zooming

and shearing, in order to facilitate the need for a greater amount of training

data. With the 4-band datasets, the volume of training data was already suf-

ficiently large. Finally, each image was normalised before training, such that

each pixel channel value was in the interval [0,1]. For each model, the Adam

optimiser (Kingma and Ba, 2017) was used as it provided the greatest peak val-

idation accuracy compared to the stochastic gradient descent (SGD) optimiser.

The Binary Crossentropy (BCE) loss function was used as it has been shown to

work well within binary semantic segmentation tasks (Jadon, 2020).

Classifier
Learning

Rate

Epochs

RGB 4-band

Attention U-Net 0.0005 50 60

U-Net 0.0001 30 20

ResNet50-SegNet 0.0001 40 20

FCN32-VGG16 0.0001 50 50

Residual U-Net 0.0001 40 20

Table 1: Number of Training Epochs and Learning Rate Used for Training Each Classifier on

RGB and 4-band Datasets; Values Chosen Through Trial and Improvement.

After training, each of the models were evaluated on the validation data
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from the dataset they were trained on, and the models trained on the 4-band

datasets were tested on the test dataset also. Due to the existence of 4-band

data from two locations, each 4-band model was also evaluated on the data from

the opposite location, for instance the models trained on the 4-band Amazon

data were also tested on the Atlantic Forest data, and vice-versa. This gives us

the ability to test how transferable each model is to imagery from a different

location, which could show whether our model could be used successfully for

deforestation segmentation within other regions globally. The evaluation process

of a model involves generating mask reproductions for each unseen image by

passing an image I into it, obtaining a 512 × 512 × 1 output with values being

in the range [0, 1]. These values are rounded to the nearest integer to create a

binary mask. The performance of a model is then evaluated by computing the

pixel-wise differences between these masks and the original ground truth masks.

2.1.3. Quantifying Results

To quantify our results, the weighted Precision, Recall, F1-score and Jac-

card Index, also known as the Intersection over Union (IoU) score, were used.

The IoU score was selected as it is describes the similarity of the predicted de-

forestation polygons with the ground truth, which is a better measure within

image segmentation compared to pixel accuracy which only measures the num-

ber of accurate pixel predictions. Weighted metrics were used as they account

for class imbalance between forest and non-forest pixels (Tague-Sutcliffe, 1992).

Precision, Recall and IoU scores were computed for both classes and weighted

according to the number of pixels within each class. The positive class is the

forest pixels.

Another essential piece of the analysis of a model is determining its compu-

tational efficiency; a factor which determines whether it is viable for real-world

use. If the training time is too high, it may be more suitable to opt for a slightly

less performant model which takes less time to train. Furthermore, models with

large parameter spaces are more likely to overfit and have worse generalisability

than less complex models (Ying, 2019) despite typically having greater perfor-

9



mance. Therefore, it is important to evaluate the efficiency of a candidate model

to determine whether it should be recommended for wider use so in this paper

we compare the number of learnable parameters and the total training time of

each model.

To carry out our experimentation, we used the Google Colaboratory Python

environment (Google, 2017) as it provides free use of datacenter-grade GPUs.

Neural networks within this paper were trained on an NVIDIA Tesla P100

16GB GPU with 12GB of RAM. Each of the models were written with the

Keras (Chollet et al., 2015) Application Programming Interface (API) of the

TensorFlow machine learning framework (Abadi et al., 2015).

3. Experimental Results

3.1. RGB Dataset

When testing the models on the RGB validation data, the Attention U-Net

achieved the highest results overall, as can be seen in Table 4. This is evidenced

in Figure 4a where the mask prediction from Attention U-Net is markedly better

than those produced by the other classifiers. There is a reduced tendency to

incorrectly classify forest as non-forest, false-positives, in contrast to U-Net,

which appears to often exaggerate the non-forest polygons. The exception to this

is the upper red circle within the upper Attention U-Net reconstructed mask,

where the other classifiers fail to identify the extent of the forested polygon

being highlighted.

3.2. 4-band Datasets

3.2.1. Amazon Dataset

A similar result is seen with the validation and test metrics for the 4-band

Amazon data. Table 2 shows that the Attention U-Net outperforms each of

the other three classifiers, with a 0.5% improvement in F1-score over the stan-

dard U-Net. We can see this within Figure 4b where the Attention U-Net

produces deforestation polygons with greater detail than U-Net and gives less

false-positives than ResNet50-SegNet.
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Classifier

Dataset

Validation Test

IoU Precision Recall F1-

score

IoU Precision Recall F1-

score

Attention U-Net 0.9581 0.9790 0.9779 0.9785 0.9516 0.9758 0.9748 0.9753

U-Net 0.9530 0.9766 0.9752 0.9759 0.9473 0.9738 0.9724 0.9731

Residual U-Net 0.9432 0.9723 0.9696 0.9720 0.9429 0.9715 0.9703 0.9709

ResNet50-SegNet 0.9467 0.9733 0.9717 0.9725 0.9416 0.9707 0.9694 0.9701

FCN32-VGG16 0.8592 0.9210 0.9214 0.9212 0.8557 0.9212 0.9205 0.9208

Table 2: Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest

and Non-Forest Areas Within the 4-band Amazon Test and Validation Satellite Imagery. Bold

Text Identifies the Best Result.

Classifier

Dataset

Validation Test

IoU Precision Recall F1-

score

IoU Precision Recall F1-

score

Attention U-Net 0.9120 0.9563 0.9520 0.9541 0.9199 0.9591 0.9571 0.9581

U-Net 0.8818 0.9387 0.9346 0.9366 0.8883 0.9424 0.9373 0.9399

Residual U-Net 0.9102 0.9544 0.9514 0.9512 0.9073 0.9542 0.9493 0.9517

ResNet50-SegNet 0.9043 0.9514 0.9480 0.9497 0.9026 0.9510 0.9466 0.9488

FCN32-VGG16 0.7182 0.8319 0.8290 0.8304 0.6902 0.8186 0.8077 0.8131

Table 3: Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest

and Non-Forest Areas Within the 4-band Atlantic Forest Test and Validation Satellite Imagery.

Bold Text Identifies the Best Result.

3.2.2. Atlantic Forest Dataset

Following on from this, the Attention U-Net once again outperforms other

models on the Atlantic Forest data. In particular, Figure 3 shows that the F1-

score produced by the Attention U-Net is significantly greater than for the other

models. This difference can be witnessed within Figure 4c where the Attention
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Classifier IoU Precision Recall F1-score

Attention U-Net 0.9028 0.9574 0.9526 0.9550

U-Net 0.8888 0.9571 0.9473 0.9522

Residual U-Net 0.9127 0.9539 0.9505 0.9493

ResNet50-SegNet 0.9025 0.9519 0.9470 0.9495

FCN32-VGG16 0.8198 0.8988 0.8978 0.8983

Table 4: Quantitative Evaluation of the Performance of Four Classifiers at Classifying

Forested/Deforested Areas Within the RGB Amazon Validation Set Satellite Imagery. Bold

Text Identifies the Best Result.

U-Net is again able to identify more complex polygons when compared to U-

Net. It can be seen that ResNet50-SegNet can also accurately identify the same

polygons in question however it also produces more false-positives, than the

Attention U-Net.

Classifier

Training Data Location - Testing Data Location

Amazon - Atlantic Forest Atlantic Forest - Amazon

IoU Precision Recall F1-

score

IoU Precision Recall F1-

score

Attention U-Net 0.8143 0.9222 0.8829 0.9021 0.8722 0.9445 0.9266 0.9355

U-Net 0.8134 0.9169 0.8847 0.9005 0.8254 0.9323 0.8915 0.9115

Residual U-Net 0.7707 0.9164 0.8508 0.8824 0.8709 0.9440 0.9256 0.9347

ResNet50-SegNet 0.7921 0.9156 0.8670 0.8906 0.8453 0.9355 0.9088 0.9220

FCN32-VGG16 0.6797 0.8246 0.7930 0.8085 0.7913 0.8985 0.8750 0.8866

Table 5: Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest

and Non-Forest Areas Within Imagery from the Dataset from the Other Location. Bold Text

Identifies the Best Result.

3.3. Testing on non-local imagery

When testing the Amazon-trained models on the Atlantic Forest data, in

Table 5, we see that the Attention U-Net is the most performant overall, except
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(a) Image from the RGB Amazon dataset.

(b) Image from the 4-band Amazon dataset.

(c) Image from the 4-band Atlantic Forest dataset.

Figure 4: Comparison of ground truth deforestation masks versus classifier-generated mask

predictions. Deforested areas appear in black, and forested areas in white. Notable differences

are highlighted with red circles.

for the recall score in which it is bested by U-Net, however it more importantly

has a higher F1-score and IoU score meaning that the reproduced mask is more

spatially similar to the ground truth and has a greater precision and recall

overall. When we look at the results from the opposite scenario, the difference

in performance between the Attention U-Net and the other models is much

greater suggesting that the Attention U-Net provides greater transferability to

data from a different location than the other methods.

3.4. Computational efficiency

Figure 6 shows that the Attention U-Net is the most efficient model, contain-

ing both the fewest number of parameters, as well as the lowest training time

for each of the datasets; it is also vastly more efficient, training between 20% to

56% faster than other models. The training time of both ’4-band’ models was
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identical, due to being trained over the same number of epochs with the same

learning rate.

Classifier
Parameters

(×106)

Training time (s)

RGB 4-band

Attention U-Net 2.01 365 465

U-Net 31.03 366 650

Residual U-Net 31.3 744 975

ResNet50-SegNet 72.27 1092 1475

FCN32-VGG16 134.3 650 2300

Table 6: Comparison of the Computational Efficiency of Four Classifiers, in Terms of the

Number of Parameters and Training Time Per Step/Image. Bold Text Identifies the Best

Result.

3.5. Attention U-Net versus U-Net

Finally, we compare the ground truth masks to the predictions made by

Attention U-Net and U-Net. Figure 5 shows that the Attention U-Net cor-

rectly identifies a greater percentage of forest pixels compared to U-Net on both

the RGB and Atlantic Forest datasets, by 2.47% and 3.06% respectively and

produces 2.47% and 3.16% fewer false-positives, respectively. On the 4-band

Amazon dataset, the Attention U-Net produces fewer misclassifications as well

as a greater proportion of correct predictions overall compared to U-Net; this

is highlighted by the fact that only 2.21% of pixels are mis-classified. When

taking into account the correctly identified pixels within each dataset, the At-

tention U-Net identifies 1.03%, 0.274% and 1.73% more pixels correctly on the

respective datasets. When using a model to determine deforested regions in

satellite imagery in order to estimate total deforested area, false-positives are

more desirable than false-negatives as deforested area being underestimated can

potentially caused new deforestation within an area to go undetected. However,

in this case, as the Attention U-Net more accurately identifies a greater number

of pixels than U-Net the greater number of false-negatives is not an issue.
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Figure 5: Confusion matrix comparing U-Net and Attention U-Net mask predictions versus

ground truth masks within each dataset.

4. Discussion

4.0.1. General comments

Throughout our analysis, the Attention U-Net outperforms the other models.

Despite the Residual U-Net providing better results in some cases, the Attention

U-Net consistently provides the best, or second-best, results. The improvement

of Attention U-Net upon U-Net is likely due to the attention mechanism be-

ing able to distinguish high levels of detail in complex polygons, resulting in

fewer errors within mask predictions. It was also shown within our experimen-

tation that the 4-band Attention U-Net models are transferable to images from

a different region, and this could be further confirmed by testing on a similar

dataset from a different forest. We also saw that the Attention U-Net is more

efficient than the U-Net, where the training time was up to 30% lower yet had

noticeably improved performance. In regards to the datasets themselves, we can

see in Figure 5 that the Atlantic Forest dataset has a large class imbalance in

favour of non-forest pixels, which accounted for two-thirds of the total number

of pixels. This is likely the reason why the Atlantic Forest models performed

very well when evaluated on Amazon data.
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4.0.2. Limitations

We conjecture that the performance of classifiers is limited by the quality of

the ground truth masks as they were produced using an imperfect classification

method. It was noted in the dataset author’s paper (Bragagnolo et al., 2021)

that some model mask predictions identify deforested polygons which were not

picked up within ground truth masks. As a result, it could be useful for future

work to update the ground truth masks by adding in the polygons found by our

Attention U-Net model.

4.0.3. Future work

To build upon the work from this paper, interested readers could experiment

with other loss functions such as Jaccard loss (Bertels et al., 2019), Dice loss

(Sudre et al., 2017), or derivatives such as DiceTopK and DiceFocal, as they

have been successful with other segmentation tasks (Ma et al., 2021). Also,

the addition of regularisation layers such as Dropout and Batch Normalisation

could reduce overfitting and validation loss. These were not tested in our ex-

perimentation, but have been shown to provide improvements to deep learning

models in multiple scenarios.

Since the addition of the attention mechanism allows the Attention U-Net

to perform to such a degree despite having very few parameters, we believe that

others may have success implementing attention mechanisms into less complex

versions of existing deep learning methods to a similar effect. One such pos-

sibility is the use of a Residual Attention U-Net which would contain more

parameters than the Attention U-Net, and perhaps longer training time, but

may improve upon the Residual U-Net.

Finally, we suggest that transfer learning could be used with either of the

4-band Attention U-Net models by training on both 4-band training datasets.

This could allow for greater transferability to images from a wider set of loca-

tions. It was shown in Section 3.3 that the models trained on a single location

were transferable, so it is sensible to suggest that transfer learning would fur-

ther improve this and allow for successful applicability to forest imagery from
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around the world.

5. Conclusion

In this paper, we have carried out a quantitative analysis of the perfor-

mance of the Attention U-Net at the semantic segmentation of South American

tropical rainforest imagery for detecting deforestation. We found that the ad-

dition of an attention mechanism to a less complex version of U-Net provides

greater performance than the standard U-Net architecture, as well as several

other state-of-the-art methods. The attention mechanism enables the network

to retain high levels of spatial information despite containing layers of much

lower dimensionality than U-Net. Due to the successful application of an atten-

tion mechanism to a deep neural network for this task, we can recommend the

use of an Attention U-Net for other land cover segmentation tasks in the field.
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