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Abstract—Congestion control has traditionally relied on moni-

toring packet-level performance (e.g., latency, loss) through feed-

back signals propagating end-to-end together with various queue

management practices (e.g., carefully setting various parameters,

such as router buffer thresholds) in order to regulate traffic

flow. Due to its end-to-end nature, this approach is known to

transfer data according to the path’s slowest link, requiring

several RTTs to transmit even a few tens of KB during slow start.

In this paper, we take a radically different approach to control

congestion, which obviates end-to-end performance monitoring

and careful setting of network parameters. The resulting In-
Network Resource Pooling Protocol (INRPP) extends the resource

pooling principle to exploit in-network resources such as router

storage and unused bandwidth along alternative sub-paths. In

INRPP, content caches or large (possibly bloated) router buffers

are used as a place of temporary custody for incoming data

packets in a store and forward manner. Data senders push data

in the network and when it hits the bottleneck link, in-network

caches at every hop store data in excess of the link capacity;

nodes progressively move/send data (from one cache to the next)

towards the destination. At the same time alternative sub-paths
are exploited to move data faster towards the destination. We

demonstrate through extensive simulations that INRPP is TCP

friendly, and improves flow completion time and fairness by

as much as 50% compared to RCP, MPTCP and TCP, under

realistic network conditions.

Index Terms—Transport Protocol, Resource Pooling, Multi-

path.

I. INTRODUCTION

Transport-layer protocols have been traditionally establish-
ing end-to-end sessions, that is, from the sender to the receiver
of data. This model fitted well the traditional client-server
model of computing where clients are requesting data from
a server that (potentially) applies computation to permanently
stored data and sends the requested data back to the client. The
assumption has always been that in-network elements (i.e., net-
work routers) are “dump” devices that do not possess storage
or computation capabilities and should therefore, exclusively
focus on packet forwarding.

Middleboxes, distributed cloud computing and more recent
developments in the areas of edge and fog computing neces-
sitate reconsideration of this traditional model as more and
more functionality is taking place inside the network, mid-path
from the server to the client. In-network storage [1] and com-
putation [2] is gradually transforming “forward-only” routers
to server-like elements, which can increasingly store and/or
process incoming data. In other words, as storage and compute
become cheaper, in-network elements can increasingly serve
as independent servers.

In view of these advances, we consider it necessary to
rethink the design of transport-layer protocols. In this paper,
we start from the assumption that network routers possess in-
creased amounts of storage and can therefore, act as temporary
storage nodes. Ultimately, the goal is to overcome some of
the weaknesses of the current design, namely, eventual packet
loss (which in turn has triggered false bufferbloat designs1),
low link utilisation (due to single-path transmission, or end-to-
end multipath only [3], [4]) and slow responsiveness to utilise
available bandwdith [5], which in turn results to increased
flow completion times, even in cases of very short flows
and bandwidth availability [6]. These design weaknesses force
ISPs to be conservative and overprovision their networks [4]
resulting in increased maintenance costs. To address those
issues, we design a framework which pools mid-path storage
and link resources together to transfer data across the end-
to-end path. According to the In-Network Resource Pooling
Protocol (INRPP) [7], data can move from one hop to the
next along the path from the original server towards the client.
INRPP includes a group of mechanisms that guarantee: i)
zero packet loss in intermediate network routers, ii) network
stability, and iii) increased link utilisation.

For the purposes of this work, we ignore in-network compu-
tation at intermediate network nodes, but it is trivial to extend
our framework to include such capability.

A. High-Level Overview

The In-Network Resource Pooling Protocol is composed of
three main operational states: i) push: content is pushed as
far in the path as possible in an open-loop, processor sharing
manner [8]; the sending rate is based on the path’s hop-by-
hop bandwidth resources to take advantage of underutilised
links; ii) store and detour (S&D): when (and if) data reaches
a bottleneck link, the excess data is stored in local memory. At
the same time, detour paths towards the destination are sought
in order to utilise extra available resources; iii) backpressure: if
detour paths do not exist and the node’s local memory is filled
up, the system enters a backpressure mode of operation [9],
[10] to avoid overflowing of the local memory.2 During the
backpressure state, the nodes enter a closed-loop mode.

All three main operational states of INRPP are necessary
to guarantee full network utilisation, network stability and

1https://www.bufferbloat.net
2We refer to storage, memory and cache interchangeably to denote local,

in-network storage resources.
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flow fairness. INRPP states are interdependent similarly to
the different phases and mechanisms of traditional transport
protocols (e.g., TCP) - disabling one can rip the protocol apart.
In particular, the push state is similar to TCP’s slow-start and
intends to speed-up data transfer when bandwidth is available.
The Store & Detour state is similar to the multipath feature
of recent proposals to exploit multihoming and multiplicity
of available e2e paths [11], [12]. INRPP, however, can also
take advantage of mid-path multipath, as opposed to traditional
end-host-based multihoming only, which as we show later pro-
vides significant performance gains. Finally, the backpressure
state is similar to TCP’s AIMD-based congestion avoidance.
We argue and show through extensive evaluations that the
combination of these three main operational states strike the
right balance between aggressiveness and responsiveness to
utilise all available bandwidth resources, eliminate packet loss,
optimise performance and guarantee stability.

As a representative example of INRPP’s main operation,
consider two flows in the topology of Fig. 1. According to tra-
ditional e2e transport design (left part), the flow that traverses
the bottleneck link (2-4) would achieve 2Mbps throughput,
while the second flow would dominate the shared link (1-2)
and achieve 8Mbps.

In contrast, according to the In-Network Resource Pooling
Protocol introduced here (right part of Fig. 1), the shared link
(1-2) is split equally among the two flows. Node 2 is acting as
the temporary server for incoming data. Node 2 is therefore
temporarily storing incoming data and has two options: i) find
alternative routes to reach node 4, or ii) enter backpressure
mode and notify node 1 to reduce its sending rate (closed-
loop system to avoid extensive caching at node 2).
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Fig. 1: Left: e2e: Bandwidth is split according to the slowest
link. Right: INRPP: Bandwidth is split equally up to the
bottleneck link. Detour applies to guarantee stability.

B. Platform Essential Elements
INRPP inherently prerequisites availability of alternative

sub-paths (to allow for detours) and in-network content caches.
We look in detail into the extra investment needed to add cache
capacity in routers in Section III-D, and we conclude that it
is feasible to build the cache system required at a reasonable
cost. In order to prove the feasibility of having one or more
detour paths to divert excessive traffic at the router level, we
analysed a set of real topologies (from Rocketfuel [13]) for
nine ISPs (see Table I). Indeed, we find that six out of the
nine real network topologies analysed can provide at least one
1-hop detour path on more than 50% of links, reaching up
to 92.3% for Level-3 topology (second column). Columns 3-
7 show how the percentage of 1-hop detour paths (shown in
column 2) is split between 1, 2, 3, 4 and 5+ detour paths.
We see that, in most cases, when a detour path exists, there is
more than one detour sub-path for the link. The extreme case

of the Level3 network shows that 47.06% of its edge-to-edge
paths with at least one detour sub-path have five or more 1-hop
detour sub-paths. The final column in Table I is the maximum
number of 1-hop detour sub-paths that the topology has for at
least one of its links. Overall, we observe that networks are
rather well-connected and would realistically allow for mid-
path detouring of excessive traffic.

Network
1-hop Number of detour paths (% of col. 2) Max

Detours 1 2 3 4 5+ 1-hop

Telstra 68.75 % 27.45 30.09 11.5 7.9 23.06 38
Sprintlink 57.3 % 44.9 20.7 14.9 6.8 57.6 27

Ebone 51.8 % 55.5 28.78 10.6 3.53 1.5 10
Verio 71.75 % 23.56 18.01 13.45 12.56 32.52 25

Tiscali 24.44 % 60.60 19.19 12.12 5.05 3.03 8
Level3 92.30 % 13.40 14.10 12.42 13.02 47.06 95
Exodus 50.33 % 50.67 17.93 16.59 8.96 5.82 6
VSNL 25 % 100 0 0 0 0 1
AT&T 34.84 % 56.07 17.68 11.88 4.7 9.67 24

TABLE I: Availability of detour paths in real topologies

The rest of the paper is organized as follows. In Section II,
we present an overview of our framework, describing the main
operation of an INRPP network. In Section III, we describe
further details on the operation of INRPP including detouring
mechanism, end-point functionality, and a cost-effective cache
system for INRPP routers. Then, we provide results from
a rigorous set of experiments in Section IV to evaluate our
framework. In Section V, we discuss real-world deployment
of INRPP. Finally, we present the related work followed by
conclusions in Section VI and Section VII, respectively.

II. INRPP FRAMEWORK OVERVIEW

In this section, we first discuss in detail the operational
states of INRPP router interfaces in Section II-A. Then, in
Section II-B, we describe how transitions in interface states
affect flow states along the e2e path.

A. INRPP Router States
An INRPP router in a simple topology is shown in Fig. 2,

where router R1 has a detour path through R3 to reach R2.
Each interface of a router has a dedicated cache (apart from the
buffer), which operates in one of INRPP’s operational states.
State transitions are triggered by cache occupancy oscillations
which we monitor through a low and a high threshold, as we
explain below.
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Fig. 2: INRPP router (zoomed in the box on the left) and
detour example: Router R1 has a detour path through R3 to
reach R2 (dashed lines)

At any given time, an INRPP router interface is in one of the
three main states: Push (P), Store and Detour (S&D), Back-
pressure (B), or the transitional state Disable Backpressure
(DB). The state transition diagram is given in Fig. 3 and our
notation in Table II.
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1) Push (P) State: When the outgoing interface link is not
fully utilised and the cache of the interface is empty (each
interface has its own dedicated cache as mentioned earlier),
the router interface is in push state. In the push state, the
router forwards incoming data straight to its outgoing interface
without using its cache storage or detour interfaces. The push
state is similar to the TCP slow-start, and its main purpose is to
rapidly push data out as long as there is available bandwidth at
the outgoing interface link. When the outgoing interface buffer
(i.e., queue) starts building up and eventually overflows, the
excess data is sent to the interface cache, at which point the
state of the interface switches to Store-and-Detour.

2) Store and Detour (S&D) State: The purpose of the S&D
state is to send data out of the cache rapidly by exploiting the
pool of available bandwidth on the alternative detour paths.
While its interface i1 is in S&D state, router R1 in Fig. 2 starts
storing incoming data at interface i1’s cache. During this state,
interface i1 pulls packets directly from the cache and sends
them out at the maximum rate of its outgoing link, denoted
Ci1

R1
. At the same time, router R1 continuously monitors

the share of residual capacity on interface i1’s detour path
(through node R3 in Fig. 2) through probe packets (explained
in Section III-A). If residual capacity is available, R1 forwards
data through this path too.

In order to keep track of cache oscillations and act accord-
ingly, we introduce a lower- and an upper-bound threshold
for each interface i, Slow

i and Shigh
i , respectively. As long

as the total cache occupancy for an interface i (denoted
Si) is below Shigh

i , the interface stays in S&D state. If the
outgoing interface rate is higher than the incoming rate, the
cache eventually drains and incoming data is now handled by
the interface buffer (see Push state above). Instead, if the
occupancy of the interface cache increases beyond the upper-
bound Shigh

i , interface i switches to Backpressure (B) state.
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Fig. 4: Backpressure Example: On the left-side is the placing
of slow-down notifications in ACK packets (originating from
the end-points) and on the right-side is the slowing-down of
traffic shown with dashed line

3) Backpressure (B) State: The purpose of the Backpres-
sure state is to reduce the occupancy of the cache and avoid
packet drops. During this state, an interface i sends “slow-
down” notifications (piggybacked to ACKs) to upstream
nodes. Upon receiving a slow-down request, an upstream
router RU enters closed-loop operation on the flows that are
heading to interface i only (path RU ! R ! RD in Fig. 4).
Flows to any other interface of R (e.g., nodes R1, R2 in Fig. 4)
are not affected. This is achieved by tagging the ACK packets
of the affected flows—those traversing interface i—with a
slow-down notification along with a nonce, which is effectively
a unique alias name for interface i (possibly derived from i’s IP
address) that propagates upwards. The upstream nodes (node
RU in this case) store the nonce and forward the ACKs further
upstream. The sender node echoes this nonce back to data
packets of the respective flows, while downstream nodes cache
packets with the nonce. Those upstream nodes (e.g., RU in our
example) send one packet for each ACK packet with nonce
received. As we explain later, the closed-loop operation moves
progressively upstream; that is, the upstream nodes slow down
only when their caches reach their upper threshold, Shigh

i .
Once the occupancy of i’s cache at R drops below the lower-
bound threshold Slow

n , interface i leaves the Backpressure state
and switches to Disable Backpressure state.

4) Disable Backpressure (DB) State: Before an interface i
in Backpressure state can switch back to S&D, it first enters a
transition state named Disable Backpressure. During this state,
R’s interface i (e.g., in Fig. 4) sends a “cancel” notification
(again piggybacked with ACKs) along with the nonce corre-
sponding to i to upstream nodes of R (e.g., RU in Fig. 4),
who have been caching traffic heading downstream to i. The
upstream nodes of R (e.g., RU ) receiving the cancellation
notice, erase the nonce from their list of locally stored nonces
and stop caching nonce-carrying packets heading downstream
to R. If during the DB state, the cache occupancy exceeds the
upper-bound, then the interface switches back to Backpressure
state.

NOTE: Our nonce-based backpressure mechanism assumes
symmetric paths between data and ACKs. The path symmetry
requirement can easily be relaxed if data packets (instead of
ACKs) are used for piggybacking of nonce and “DB state
cancel” notifications. In this case, receiver end-points would
echo the nonce to ACKs which would then be acted upon
once they reached the sender. This process would require an
extra ⇠ 1/2 · round-trip time (RTT) before sender can take
any action.

B. Hop-by-hop Flow(let) States
In the context of INRPP, it is important to distinguish the

router’s interface states (discussed above) from the flow’s
states. Generally speaking, INRPP flows operate in either open
loop or closed-loop mode. However, the fact that different
parts of the flow are cached at different nodes along the
path results in the situation where different parts of the flow
(vaguely defined as flowlets) are in different states.

Similarly to TCP’s slow-start, new flows enter the system
in open-loop mode at the sender. Triggered by a slow-down
notification originating from some backpressuring interface i
along the path, flows that traverse i (denoted as Fi) enter
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Algorithm 1 Processing of ACK packets at an interface.
1: function ACK-PROCESSING(Interface i, Ack Packet p)
2: if i.state = B & Si < Slow

i then

3: i.state DB
4: p.notification.append(cancel)
5: set expiration timer
6: else if Si > Shigh

n then

7: i.state B
8: p.notification.append(slow-down)
9: else if Si > 0 then

10: i.state S&D
11: else

12: i.state P
13: end if

14: if p.notification = slow-down then

15: . Add the nonce to the stored-nonces set
16: i.stored-nonces.add(p.nonce)
17: Data Packet d  Cache.get(p.flow)
18: forward(d) . Send one data packet for the ack
19: if i.state 6= B then

20: . Don’t propagate Closed Loop
21: p.notification.clear(slow-down)
22: end if

23: else if p.notification = cancel then

24: . Remove the nonce from the stored-nonces set
25: i.stored-nonces.remove(p.nonce)
26: end if

27: forward(p)
28: end function

a closed-loop mode between the current and the immediate
upstream node, that is, not along the entire e2e path. The
closed-loop operation extends further upstream when the cache
of the immediate upstream node of the backpressuring router
reaches its upper-bound cache threshold, Shigh

i .
Consider the example in Fig. 5, where we demonstrate a

sequence of state changes in three consecutive stages. Initially
(see part A of Fig. 5), the upstream nodes of router R (Ru

and Ruu) send traffic to its interface i in an open-loop (i.e.,
Push) manner (entire flow is in open-loop mode). Eventually,
the occupancy of interface i’s cache (at R) exceeds Shigh

i and
interface j of upstream node Ru—upon receiving slow-down
message— enters S&D state (see part B of Fig. 5), i.e., Ru

starts caching the data packets (carrying nonce) belonging to
Fi at its interface j, and sends one data packet for one ACK
received for the flows in Fi. Note that at this point, interface
j is in S&D mode, while flow(s) Fi are in closed-loop mode
downstream from Ru’s interface j and in open-loop mode
upstream from Ru’s interface j. In other words, the upstream
node of Ru (Ruu) continues to send packets of Fi in an open-
loop manner because Ru’s j interface cache has not reached
its upper-bound threshold, Shigh

i , yet. To achieve this, Ru does
not propagate the slow-down notification upwards and keeps
only the nonce (corresponding to i at R) in the ACK packets.
The ACK packets received by Ru and Ruu are shown above
these routers in Fig. 5.

Once the cache occupancy of interface j of Ru also exceeds
the upper-bound Shigh

j , interface j enters Backpressure mode

j
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Fig. 5: Hop-by-hop Propagation of Flow state

too, and sends slow-down messages upstream to Ruu to slow-
down the traffic flowing through j. At this point, the flow’s
closed-loop mode extends to Ruu as shown in part C of Fig. 5.

The hop-by-hop flow states and their propagation is essential
to avoid packet drops from INRPP caches. A tightly coupled
requirement to the propagation of flow states is appropriately
setting the upper-bound threshold on the interface cache
occupancy, Shigh

i . In particular, the upper-bound threshold
should be set in a way that allows enough time to notify
upstream nodes to slow down without overflowing the cache.
The extreme case where the slow-down notification has to
propagate all the way to the sender leads us to set this
threshold to Shigh

i = Size(Cachei) � RTT ⇥ Ci
n. On the

other hand, the value of lower-bound threshold on the cache
occupancy (Slow

i ) is less critical, as it only affects the duration
of the backpressure state. In the evaluation section, we set this
threshold to half of Shigh

i . A sensitivity analysis is provided in
Section IV-E to evaluate the impact of the upper- and lower-
bound thresholds on the performance.

The ACK packet processing behavior of INRPP routers is
shown in Algorithm 1. In lines 2-13, the interface i state of the
router is set depending on the occupancy of the interface cache
following the discussion in Section II-A. In case the ACK
packet contains a slow-down notification, then the flow corre-
sponding to the ACK packet enters the closed-loop operation,
and the nonce in the packet is stored locally (line 15). As part
of the closed-loop operation, the router forwards exactly one
data packet from the cache for the corresponding closed-loop
flow (lines 17-18). The closed-loop is not propagated upstream
(i.e., slow-down notification is cleared from the ACK packet)
in case the interface is not in Backpressure state; otherwise, the
notification stays in the ACK packet and propagated upstream
(lines 19-22). On the other hand, if the ACK packet contains a
Cancel notification, then the nonce is removed from the local
storage (lines 23-25).
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III. INRPP IMPLEMENTATION DETAILS

In this section, we provide implementation details of the
several mechanisms comprising the In-Network Resource
Pooling Protocol. In Section III-A, we discuss computation of
detour paths and the feedback mechanism to determine the fair
share of spare capacity on detour paths. Then, in Section III-B,
we explain how the feedbacks are used to achieve a max-
min fair allocation in a stable way among routers sharing the
same detour paths. Afterwards, in Section III-C, we discuss the
changes required at the TCP agents at the end-points. Finally,
in Section III-D, we present the details of the INRPP cache
system.

Symbol Definition

Stotal
i Cache size at interface i
Si Cache occupancy at interface i

S
high/low
i

Upper-/Lower-bound occupancy threshold
of the cache at interface i

Ci
n Link i capacity at node n

T i
n Link i traffic at node n

Fi Flows traversing interface i
Tp Interval of probing packets
Td Interval of decision on detour path sending rates

TABLE II: INRPP Design Notation

A. Detour Path Information Signalling
In INRPP, a node detours its traffic through alternative paths

to eliminate the excess traffic stored in its cache. In order to
avoid severe detour delays and packet reordering, nodes refrain
from using already congested detour paths as sending traffic
to a congested interface would result in caching of the detour
traffic along the detour path. For the purposes of this paper
we assume that flows follow 1-hop detours only, i.e., no 2- or
more-hop detours are considered (see Table I).

INRPP makes use of a simple link-state protocol in order
for each router to identify its 1-hop detour neighbours. In
Fig. 2, node R1 determines that its next-hop neighbours
R3 and R2 are directly connected by examining the local
routing information (i.e., link state advertisements). Router
R1’s detour lookup table for the topology of Fig. 2 is shown in
Table III (interfaces i1 and i2 detour traffic for each other and
i3 has no detour interfaces). In order to make sure the detoured
traffic eventually reaches the intended next-hop, routers tag
their detoured packets with their original next-hop IP address.
The link-state protocol would be slightly more complicated
for multi-hop detour paths.

Going back to Fig. 2, when R1’s interface facing R2 (la-
beled i1) is congested (i.e., i1’s buffer overflows), the interface
switches to S&D state. At this point, R1 starts caching excess
data and demultiplexes packets between the primary and the
detour interfaces. A (1-hop) detour path has spare capacity,
only if both of the two (egress) interfaces along the path are
operating in the Push mode. Therefore, R1 uses the detour
path (dashed line in Fig. 2), only if its own interface i2 and
interface i1 of R3 are both in Push mode.

In order to determine the amount of traffic to send on detour
paths, routers periodically (every Tp msec) send probe packets3

3Similar to ICMP packets, probes are control packets that require slow data
path processing at the routers.

to each of their immediate neighbors along the detour paths.
Upon receipt of a probe packet, a neighboring router returns
the probe packet back to the sender with a detour path-specific
“rate feedback”. A rate feedback for a detour path is used
by a detour interface to revise its aggregate sending rate (for
out-going detour traffic) along the corresponding detour path.
As an example, consider Fig. 2 where the router R1 sends
a probe packet to obtain a rate feedback for its detour path
(R1 ! R3 ! R2) to R2. The “detour router” R3 continuously
monitors the utilisation on its interface i1 and returns the probe
packet back to R1 with a rate feedback. Then, R1 combines
the feedback from R3 with the knowledge of local interface
i2’s spare capacity and eventually makes a decision on the
sending rate for its aggregate detour traffic over the detour
path to R2 (see Section III-B for details).

In general, the detour interfaces periodically (every Td

msec) make a decision on their (revised) sending rates of
detour traffic based on the feedback they obtain from their
neighbors. For stability reasons, the decision time-scales are
significantly smaller than the probing time scales: existing
traffic engineering solutions [14] have shown that both con-
ditions: Td � 5Tp and Tp > “RTT of the probed path” are
necessary to obtain stability. We use Td = 50msec and
Tp = 10msec (10msec is greater than the round-trip time
of the one-hop detour paths in the experimented topologies)
in our evaluations.

Primary Outgoing Interface Detour Interface(s)

1 2
2 1
3 Null

TABLE III: Detour interface lookup, router R1, Fig. 2

B. Stable allocation of spare capacity

When the spare capacity of a link is shared by multiple
detour paths—e.g., the link R1-R4 in Fig. 6 is used by two
detour paths: R2 ! R1 ! R4 and R3 ! R1 ! R4

(see dashed lines)—, the routers sending detour traffic must
coordinate their sending rates along the detour path. This
is because the uncoordinated decisions of the senders (e.g.,
R2 and R3 in Fig. 6) can lead to not only congestion
but also persistent oscillations. As an example to persistent
oscillations, consider the case when the link R1-R4 in Fig. 6 is
underutilized and both R2 and R3 decide to shift their traffic to
the link. Because both routers move their traffic to the common
detour path without any coordination, the total traffic on link
R1-R4 becomes larger than the link can handle. This causes
both routers to eventually move traffic away from their detour
paths, resulting with under-utilization of the shared link R1-
R4; this cycle repeats causing persistent oscillation in the rate
of traffic on the shared link.

Using the periodic feedback from their detour router, the
detour interfaces iteratively revise their sending rates along
the detour path. The objective is to achieve a fair allocation
of spare capacity along a detour path by the detour interfaces.
The iterative rate adaptation performs an additive increase,
multiplicative decrease of sending rates depending on the
amount of spare capacity on the shared detour path: in case of
available spare capacity, the detour interfaces perform additive
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Fig. 6: Detour Example: The routers R2 and R3 use detour
paths through router R1 to reach R4 (dashed lines)

increase to further allocate an equal share of the spare capacity
for their detour traffic; otherwise, the detour interfaces perform
multiplicative reduction of their rates proportional to their
current sending rates.

The spare capacity of an interface i is computed as follows:

SCi = ↵ · Tp ·RBi � � ·Qi, (1)

where � and ↵ are constants, RBi is the average residual band-
width on the interface (i.e., capacity minus load) calculated
using Exponential-Weighted Moving Average (EWMA) over
the last few (we use the last five intervals in the evaluation) Tp

msec measurement intervals and Qi is the length of interface
i’s buffer queue at the end of the current interval (i.e., at the
time of feedback computation).

Following the work of Kandula et al. [14], a router R
computes and returns a pair of � values in response to a
probe packet for its interface i as follows:

if SCi
R > 0,�+ = SCi

R
N ,�� = 0

if SCi
R  0,�� = SCi

R
Li ,�+ = 0

(2)

where SCi
R is the calculated spare capacity of interface i

(using Equation 1), N is the number of routers contending
for the detour path (e.g., N=2 for R1 in Fig. 6), and Li is
the EWMA of the aggregate load on the interface calculated
using the aggregate load values measured during each of the
last few Tp msec intervals (we use the last five intervals in
the evaluation, consistent with the SCi

R calculation). In case
of spare capacity at the interface i, the Equation 2 returns
a non-zero �+ which is the equal share of spare capacity in
terms of number of bytes that can be delivered over a Tp msec
interval, i.e., the additive rate increment in bytes per second.
On the other hand, in case of no spare capacity, the Equation 2
returns a unitless ratio (��) that is applied for multiplicative
decrease of the current rate as we explain below.

Upon receipt of a � pair, a detour interface revises its
current rate of out-going detour trafic rcurrd to compute a new
rate rnewd as follows:

rnewd = rcurrd +�+ � rcurrd ·��, (3)

where the �+ is the additive increase component, while �� ·
rcurrd is the multiplicative decrease component. It has been
shown in [14] that stable allocation of rates requires ↵ and �
constants in spare capacity calculation (SC in Equation 1) to
be assigned as follows: 0 < ↵ < ⇡

4
p
2

and � = ↵2
p
2.

C. INRPP End-Points
Although TCP itself can be adjusted to exploit multiple

paths simultaneously [11], the addition of in-network storage

necessitates a rate-based transmission pattern. Recent studies
on the impact of buffer-bloat on TCP’s performance [15] show
that an AIMD-based transmission pattern cannot cope with
large in-network storage. Such environments cause TCP to
open its window beyond what the network can handle and
eventually end up in consecutive timeout events and severe
unfairness. We have therefore decided to use a modified, rate-
based version of TCP.

Our resulting INRPP end-point client complies with the
feedback signals received from notifications (e.g., slow-down)
in the ACK packets. The fast-recovery mechanism at the
sender is disabled; however, the timeout-based retransmission
mechanism is kept: even though INRPP routers no longer
experience congestion-related packet drops, packets will in-
evitably need to be retransmitted in case of packet corruption.

As detailed in Section II-B, INRPP flows operate in either
open-loop or closed-loop state. The INRPP sender initially
transmits in an open-loop manner and forwards packets ac-
cording to processor sharing. When the INRPP sender receives
a nonce within an ACK packet, it stores the nonce and copies
it to the future data packets of this flow. The nonces as well
as the slow-down and cancel notifications are stored within
INRPP’s packet option fields. When an INRPP sender receives
a slow-down request, it adapts the sending rate of the specific
flow to the rate of acknowledgement packets (i.e., closed loop
operation). On the other hand, when an INRPP sender receives
a “cancel” notification through an ACK packet, it switches
back to open-loop mode and sends at the rate available through
its outgoing interface. In case of no reception of ACKs during
specific time intervals at INRPP end-points—for instance, no
ACK arrivals for an entire TCP retransmission timeout (RTO)
period (calculated based on recently observed RTTs)—,flows
will automatically switch back to open-loop mode and send
packets back at full rate.

The INRPP receiver does not require any modifications
compared to a standard TCP receiver. It is worth noting,
however, that INRPP receivers might see out-of-order packets,
due to re-ordering. Although re-ordering might happen due to
detouring of some parts of the flow, detour paths add very
small extra delays (in the order of a few milliseconds as we
show in our extensive evaluation), given they are only 1-
hop detours. Also, note that INRPP avoids packet loss and
lengthy retransmissions, which are normally the main reason
of reordering and cause Head-of-Line (HoL) blocking. That
said, reordering in our case differs from the more complicated
cases where re-ordered packets experience substantially longer
delays.

D. INRPP Cache System Design
An INRPP router contains per-interface caches as shown on

the left hand-side of Fig. 7. Each interface cache is a bloated
buffer with a storage capacity of few (e.g., tens) seconds of
traffic that store packets overflowing from the corresponding
interface’s queue (buffer). When the cache is empty, the
incoming packets (arrow 1 in Fig. 7) follows the cut-through
path (arrow 4) directly to the default (i.e., determined by
forwarding lookup) outgoing interface buffer. Cached packets
on the other hand, are forwarded either through the default
outgoing interface, or through the detour interface(s) (arrows
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2,3)—that is, the interfaces facing the first link of the detour
paths—depending on the availability of residual bandwidth on
the detour paths (see Section II-A).
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Fig. 7: Router overview (left), cache system (right)

Because existing memory technologies present a speed
(i.e., access time) vs. storage cost trade-off, (see Table IV),
designing a cost-effective interface cache is an important
issue. While only SRAM’s access time of 0.45ns is sufficient
to accommodate read/write speeds of 100 Gbps for 64-byte
data (which requires 2.56 ns latency), a cache that is solely
made from SRAMs would be very expensive. However, recent
research has considered cost-effective hybrid memory archi-
tectures combining slow DRAMs and fast SRAMs together
in a hierarchical manner [16], [17], [18]. Hybrid memory
architectures can achieve the overall access speed of the fast
SRAM, while keeping the per-bit storage cost close to the
DRAM’s cost. This is achieved by “parallelizing” the high
throughput of SRAMs through multiple slow DRAMs as
shown in the right hand side of Fig. 7.

Technology Access (ns) Capacity Cost ($/MB)

SRAM 0.45 260 MB 27
DRAM 11.25 8 GB 0.054

TABLE IV: Access time and cost details of *RAM

In Fig. 7, multiple slow DRAMs are “sandwiched” between
a single tail and head SRAMs. The purpose of the tail SRAM
is to store incoming data at line rate, and similarly the
purpose of head SRAM is to maintain line-rate data flow
between the cache and the outgoing interface buffer. Based
on the access speed ratios between state-of-the-art DRAM and
SRAM, around 25 DRAMs are sufficient to achieve an overall
linespeed storage. This leads to a storage size of 200GB with
8GB DRAMS, which corresponds to 16 seconds of traffic.
The DRAMs cost around $1350 for each cache, which is
reasonable for high-end routers.

Overall, a hybrid cache design is cost-effective for high-
speed interfaces and leads to ⇡ 99% cost savings in com-
parison to similar-sized cache systems built only of SRAM.
Also, the trend of decrease in per-bit storage prices in DRAM
memories would make packet caches with hybrid architecture
more cost effective in the future. For further details on hybrid
memory architectures, we refer the reader to [18].

IV. PERFORMANCE EVALUATION

In this section, we provide a detailed investigation of the
performance of the proposed INRPP scheme, and we compare
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Fig. 8: Detour simple scenario

its performance with TCP, RCP and MPTCP for various
topologies and network conditions. We implemented INRPP in
ns-3 [19], ported the existing ns-2 implementation of MPTCP
to ns-3 and used RCP’s existing implementation for ns-3 [20].
We use the New Reno version of TCP.

For our evaluation, we use the following three scenarios: i)
Dumbbell Topology with a detour path, where the purpose is
to demonstrate the operation of the INRPP mechanisms in a
simple setup, ii) Multihomed Topology, where we compare the
performance of INRPP with other transport protocols (mainly
the MPTCP) when the senders are multihomed, iii) Rocketfuel
Topology, where the purpose is to evaluate INRPP under a
realistic workload using a realistic (i.e., ISP) topology4.

A. Dumbbell topology with a detour path
1) Scenario description: We first evaluate a simple sce-

nario using a dumbbell topology with a fully-connected core
component (nodes 0, 1, and 2), depicted in Figure 8. The
purpose is to show in detail the operation of the different
INRPP mechanisms in a simple setup. This topology has a
bottleneck link (link 0-2) of 10Mbps, but it also has another
10Mbps capacity one-hop detour path (link 0-1-2) that can
be exploited to complement the bandwidth available at the
bottleneck. Hosts are connected with 40Mbps links, and links
4-0 and 2-3 have more capacity than the rest of the links. We
pair the senders (three hosts on the left) and the receivers (three
hosts on the right), and each sender initiates a single flow to its
receiver pair. The three flows enter the system one second apart
from each other. Each flow has the same size of 10 MB, and
the size of each router cache is set to only 1.25 MB (1s worth
of traffic at 1Mbps) in order to demonstrate the operation
of the backpressure mechanism, which eventually propagates
to the sender. The cache occupancy upper and lower bounds
Shigh
n and Slow

n are set to 1 MB and 500 KB, respectively.
Packet size is set to 1500 bytes. Router interfaces buffer size
is set to 50 msec [21] worth of traffic using Drop Tail and
link latencies are 5 msec. For RCP simulations we used the
following parameters: ↵ = 0.1 and � = 1.0. We simulated
the scenario using INRPP, RCP and TCP. In this scenario,
we do not evaluate MPTCP since hosts are not multihomed,
and therefore there is no possibility of establishing multiple
subflows between peers.

2) Results: AFCT: In Table V, we present the average flow
completion time (AFCT) [22]. INRPP completes flows ⇡ 50%
faster than TCP and ⇡ 60% faster than RCP. This is because
INRPP is able to exploit all the available bandwidth in the
bottleneck and the detour paths. On the other hand, TCP and
RCP are only utilising the bottleneck link capacity.

4The code and scripts to reproduce the results will be made publicly
available.
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Goodput: In Figure 9, we demonstrate the goodput at the
receiver in bps. With INRPP (top figure), we observe that the
bandwidth is shared equally between the existing flows and
there is no fluctuation when a new flow arrives. Particularly,
the first flow starts at second 1 and is transmitted at 20Mbps
using both the bottleneck link and the detour path shown with
an arrow in Figure 8. When the second flow starts at second
2, the capacity is immediately shared between the two active
flows (10Mbps each), while when the third flow starts at 3
seconds the available bandwidth is immediately split between
the three active flows (⇡ 6.66 Mbps per flow). When flows
start completing, the existing flows adapt their rate and share
the bandwidth no longer used by the completed flow. With
TCP (bottom figure), on the other hand, we can observe that
the goodput at the receiver is erratic and fluctuates excessively.
TCP shares the bandwidth equally; however, it needs time to
adapt to the new flow arrivals. Even after all the flows begin,
the goodput oscillates continuously throughout the simulation
due to the saw-tooth behaviour of the congestion window
of TCP. In contrast, RCP does not have such oscillation in
goodput, but we see that RCP also requires time to adapt and
share the bandwidth between flows efficiently. RCP’s slow
adaptation to arriving flows is more pronounced due to the
small number of flows: RCP shares the bandwidth among
flows by estimating the number of active flows, and when
the number of active flows is small, this estimation is less
accurate. The slow adaptation of RCP to arriving flows leads
to worse AFCT than TCP in this scenario.
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Fig. 9: Receiver goodput

Fairness: In Table V, we also present fairness results, using
the Jain’s index [23]. In order to demonstrate that INRPP is not
affected by diverse RTT paths [24], we also evaluated fairness
for heterogeneous access link latencies: 50, 100 and 200 msec.
With both homogeneous and heterogeneous RTTs, we observe
that INRPP and RCP fairness remains close to the optimal,
due to their rate-based transmission pattern. TCP, on the other
hand, presents the worst fairness performance, especially under
heterogeneous RTTs, due to its erratic throughput oscillations.

Cache Occupancy: In Figure 10, we present the cache
occupancy, data input and output rates of nodes 0 and 4.
The purpose is to show INRPP’s cache system behaviour in
detail. The output data rate at node 0 is constant and equal to
the capacity of the bottleneck link (0-2) plus the detour path
capacity (2⇥ 107bps). That is, the interface of node 0 facing

Protocol AFCT Fairness
Fairness

different RTTs

INRPP 10.50 0.9945 0.9972
RCP 25.96 0.9934 0.9994
TCP 23.31 0.8902 0.8321

TABLE V: Dumbbell topology simulation results

node 2 switches to Store & Detour (S&D) state from the initial
Push (P) state shortly after the first flow starts. The input rate
of node 4 initially decreases gradually when the senders of the
first and the second flow complete their transmission, marked
in the bottom plot with “Flow 1 transmitted” and “Flow 2
transmitted”, respectively. After this point, only the sender of
flow 3 is still transmitting, and at around time 5s, the cache
occupancy exceeds the upper-bound, which causes node 4 to
send a slow-down notification to the sender of flow 3. This
causes the sender of flow 3 to enter closed-loop (CL) mode,
and therefore, slow down around time 5s as shown in the
bottom plot of the figure with the marker “CL senders”. During
CL, the incoming rate of node 4 reduces to the rate at which
the packets of flow 3 leave the cache of the bottleneck node 0,
i.e., 20Mbps/3⇡ 6.66 Mbps, since the cache in node 0 contains
data from all sources and shares its bandwidth equally among
the flows.
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Fig. 10: Cache occupancy and data input/output rates (node 0
- top, node 4 - bottom)

Flow of Packets: In Figure 11 we depict the sequence
number of the segments flowing through different locations
of the network for a single flow. The first plot of the figure
is the sequence number of the segments leaving the sender,
where we observe how differently a flow is transmitted from an
INRPP sender compared to TCP or RCP senders. In particular,
in only 2secs the INRPP sender transmits the entire flow
data of 10 MB at rate of 40 Mbps. TCP and RCP senders
are inserting data into the network in a closed-loop manner
and are therefore transmitting for the whole duration of the
flow, irrespectively of the available resources in the network.
The second plot in the figure is the sequence number of the
segments that are arriving at the cache of node 4. Here we
can see that only the second half of the flow is cached in
node 4; node 4 starts caching packets when it receives a slow-
down request from node 0, which happens later (at 3.04s)
after transmitting approximately half of the flow’s data without
caching. The third plot is the sequence number of the segments
that are cached in node 0. In the beginning, the flow is cached
at a higher rate, i.e., slope is steeper in the third plot until
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time 3.04s. This is because node 0 is caching packets, and
it is not in Backpressure state; therefore, the previous node
(node 4) is transmitting at full rate. The bottom plot shows
the sequence of segments arriving at the receiver host. At time
3.04s, node 0 gets into Backpressure state and sends a slow
down message to node 4. Node 0 implicitly performs ACK
pacing as it sends ACKs at the rate of the bottleneck link (⇡
10Mbps). At this point, node 4 sets all the flows to closed-
loop mode; consequently, it starts caching incoming packets
and sends one data packet for every ACK received. Node 4’s
output rate, i.e., the input rate of node 0 shown in the third plot,
immediately becomes equal to the rate at which the receiver
host receives the flow. This can be observed by the similarity
in the steepness of the slopes in plot 3 after time 3.04s with
the slope of plot 4 after that time.
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Fig. 11: Flows sequence number transmission

Cache Occupancy: Figure 12 shows the Total Cache oc-
cupancy, as well as the contribution of each flow to the cache
at node 0 (top) and node 4 (bottom). In this figure, we can
observe that the contribution (in terms of data) of each flow to
the cache (sections of the flow plots with positive/increasing
slope) and the flushing rate of the data belonging to each flow
(sections of the flow plots with negative/decreasing slope) is
the same. The latter demonstrates INRPP’s fairness property
as all flows are transmitted at the same rate. The top plot
shows the state of node 0’s interface (facing node 2 in
Fig. 8) along with the cache occupancy. When the interface is
backpressuring the previous node (i.e., node 4 in Fig. 8), the
cache occupancy of node 0 is maintained in the upper-bound
since the caching and the flushing rates are equal. The gradient
in the slope of the cache occupancy of a flow increases as other
flows complete. For example, the cache occupancy by flow 3
increases when flow 2 completes at time ⇡ 8s in the top plot.
The bottom plot in Fig. 12 shows the cache occupancy at node
4 after various events. Caching at node 4 starts at 3.04s when
the node receives the slow down message from node 0. At
time ⇡ 4s, the arrival rate of flow 2 becomes 0 and the same
happens later around time ⇡ 5s for flow 3.

B. Multihomed topology
1) Scenario description: In this second scenario, we aim

to evaluate INRPP in a multihomed scenario where we can
compare it with multipath transports, such as MPTCP. MPTCP
can exploit more than one e2e path and establish multiple
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subflows to take advantage of multihomed senders. It is, how-
ever, constrained to end-host multihoming and can therefore,
take advantage of e2e paths only. We evaluate the scenario
depicted in Figure 13 where two paths can be used in parallel
when using MPTCP (link 0-1 and link 2-1). MPTCP senders
are multihomed and are connected to node 0 and 2 at the
same time, while the MPTCP receivers are singlehomed and
connected to node 1. MPTCP users establish two subflows, one
for each pair of source-destination IP addresses. In addition,
we also evaluate INRPP/TCP/RCP connecting the senders to
node 0 and the receivers to node 1 only. This way, TCP and
RCP will use only the path across link 0-1 (the shortest path)
and INRPP will use this path as the main option, but will also
be able to use the detour paths 0-3-1 and 0-2-1. The network
parameters are the same as in Section IV-A, however, here,
we increase the cache size to 12.5MB (size proportional to 10
seconds worth of traffic); the end-points have 100 Mbps links.
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Fig. 13: Multihomed topology scenario

We applied a Poisson Pareto Burst Process (PPBP) [25] to
model Internet traffic. We used 1000 poisson-arriving flows
with a � rate determined by the offered load of the network ⇢,
where ⇢ = �⇥E[L]/C (E[L] is the average flow size in MB
and C is the capacity of the link in Mbps), that we set to 0.9.
Flow sizes are pareto distributed with shape equal to 1.2. Note
that this scenario is beneficial for MPTCP due to symmetric
bandwidth and/or latency links. MPTCP behaviour declines
in case of highly asymmetric paths (in terms of bandwidth or
latency, e.g., 3G and WiFi) due to packet reordering [26], [27].

2) Results: In Fig. 14, we present results using E[L] 30
and 500 packets respectively. We observe that the AFCT of
both MPTCP and INRPP is much shorter than TCP or RCP
for both cases. RCP still does not outperfom TCP because the
number of active flows is still not large enough for RCP to
reduce its error rate in estimating the number of active flows.
The performance of RCP and TCP is substantially inferior
compared to MPTCP and INRPP, because neither of them can



10

0 50 100 150 200 250
Flow size (packets)

10 -1

10 0

Av
er

ag
e 

flo
w

 c
om

pl
et

io
n 

tim
e 

(s
ec

)
INRPP
MPTCP
RCP
TCP

(a) AFCT for E[L] = 30

0 500 1000 1500 2000 2500
Flow size (packets)

10 -1

10 0

10 1

10 2

Av
er

ag
e 

flo
w

 c
om

pl
et

io
n 

tim
e 

(s
ec

)

INRPP
MPTCP
RCP
TCP

(b) AFCT for E[L] = 500

Fig. 14: Average flow completion time in the multihomed
topology

use more than one path to send data. When comparing MPTCP
to INRPP we can see that INRPP clearly outperforms MPTCP,
providing shorter flow completion times - up to around 50%
in some cases (note log-scale y-axis in Fig. 14(a)). The reason
for this is twofold. First of all, MPTCP can use more resources
than TCP, but at the same time it also inherits its limitations,
i.e., being end-to-end. In particular, because MPTCP is an end-
to-end resource pooling mechanism, it cannot exploit mid-
path resources as INRPP does with the residual bandwidth
available in detour paths (paths 0-3-1 and 0-2-1 in Fig. 13).
Secondly, AIMD-based MPTCP faces drops and time-outs,
that although do not necessarily impact significantly AFCTs,
they cause poorer fairness performance - see Table VI. In fact,
the chances of packet drops and timeouts in MPTCP increases
linearly with the number of subflows. This is proved by the
substantally worse fairness performance in case of short flows -
up to 30% in case of E[L] = 30 (see first column in Table VI).

E[L] = 30 E[L] = 500

TCP 0.8205 0.8575
RCP 0.9301 0.9589

MPTCP 0.6103 0.8947
INRPP 0.9298 0.9895

TABLE VI: Protocol Fairness - Topology Fig. 13

C. Hierarchical topology

1) Scenario description: In this scenario, we evaluate IN-
RPP in a network with transit-stub hierarchy, where different
sets of users are clustered in the edges, and edges connect
each other through a highly connected core. Different edge
nodes (E) in Fig. 15, are connected to a transit network
consisting of core (C) routers. Some of the edge nodes in
the topology are interconnected to other edge nodes to form
a small stub network. Senders (servers) are concentrated in
a branch of the topology and receivers are placed in the rest
of the network, similarly to an ISP network connected to a
data-center. All the links have the same capacity of 10 Mbps
except the links connecting the edge nodes of the servers to the
core nodes, which have 100 Mbps capacity. In this scenario,
we can have multiple bottlenecks and multiple detour paths
in the network. More importantly, this scenario presents a
more challenging environment for INRPP because the traffic
flowing on shortest paths occupy all the links in the topology
as opposed to previous two scenarios where the detour paths
were exclusively used by detour traffic.
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Fig. 15: Multi-domain topology scenario

2) Results: Each group of senders (top of the figure)
connected to a single edge node consists of 3000 hosts, and
each group of receivers (left, right and bottom of the figure)
connected to a single edge node consists of 1000 hosts. We
randomly pair each sender with a receiver and start a flow
from each sender to its pair, which makes a total of 6000
flows. MPTCP end nodes are multihomed with two of the
edge routers from the same domain. In this scenario, we start
these 6000 flows with an offered load of the access link ⇢ =
0.8 and a E[L] = 125.

In Figure 16, we show the AFCT for varying flow sizes,
using the same PPBP process, described in Section IV-B. We
observe that even in this challenging scenario, INRPP clearly
outperforms RCP and TCP by around 100% in terms of flow
completion time and also MPTCP up to around 50%, similarly
to Section IV-B. It does so because INRPP can take advantage
of available residual bandwidth even when it is available for
very short time-intervals, e.g., milliseconds, to detour excess
traffic. We can conclude that dealing with congestion locally
using INRPP is better than the e2e congestion control used by
RCP, TCP or MPTCP given that the topology has detour paths
(which is the common case - see Table I) and nodes possess
caches.

10-1

Fig. 16: AFCT for E[L] = 125

D. Rocketfuel topology
1) Scenario description: In this section, we evaluate the

performance of INRPP using a real-world topology. In partic-
ular, we use the 3257.pop.cch topology from the Rocketfuel
dataset [13], which corresponds to the Tiscali network in Ta-
ble I. Spanning over the European continent, the 3257.pop.ch
topology has V = 440 routers and 681 bidirectional links. Out
of the 440 routers, 267 are edge routers (with degree less than
3), 126 are gateway routers (i.e., connected to an edge router,
degree larger than 2), and 47 backbone routers. A total of
13350 senders and receivers are connected to the edge routers
and flow arrivals are poisson-distributed. We randomly pair
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each sender with a receiver and start a flow from each sender
to its pair, which makes a total of 6675 flows. In this scenario,
we start these 6675 flows with an offered load of the access
link ⇢ = 0.8 and a E[L] = 125. All links have the same
capacity of 1 Gbps except for the links connecting edge to
gateway routers, which have 100 Mbps capacity, creating this
way multiple bottlenecks and detour paths. MPTCP users are
multihomed with two of the edge routers uniformly randomly
distributed.
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Fig. 17: Performance evaluation for the rocketfuel topology

2) Results: In Figure 17(a), we show the AFCT for dif-
ferent flow sizes, using the same PPBP process, described in
Section IV-B. INRPP clearly outperforms RCP and TCP by
at least 50% (note log-scale y-axis) and MPTCP by at least
20% in terms of AFCT. INRPP takes advantage of available
residual detour bandwidth to perform mid-path multipath even
when it becomes available for very short time-intervals. Note
that INRPP is not limited by equal-cost sub-paths as is the
case for MPTCP. In fact, in our evaluation ECMP is enabled,
and hence, all protocols take advantage of it by default.
Furthermore, in-network storage enables data to progressively
move to downstream caches and therefore avoid e2e rate-
backoffs. MPTCP is not able to take advantage of bandwidth
resources available in all sub-paths, as it is limited by its
e2e design. We conclude that dealing with congestion locally
(i.e., without retransmissions) through temporary caching and
detouring provides significant performance benefits: i) given
the availability of detour paths in real network topologies (see
Table I) and ii) assuming caching is available in network
routers (see Section III-D).

In Figure 17(b), we show the percentage of links that fall
into various ranges of utilisation levels. As shown earlier in
Table I, 24.4% of links have 1-hop detours in the Tiscali
topology; the lowest 1-hop detour path ratio among the ISPs
in Rocketfuel dataset. We observe that around 40% of the
links achieve significantly low utilisation (i.e., in the range
0%-20%) even with INRPP, largely due to the limited number
of flows (for scalability of the simulator) failing to utilise all
the links in this large topology. On the other hand, the number
of links with utilisation in the range 80%-100% are almost
doubled with INRPP compared to TCP, RCP and MPTCP.
Furthermore, the number of links with utilisation between 60%
and 80% is increased. We observed larger gaps in utilisation
levels between INRPP and other protocols for other topologies
with larger number of detours, but we omit those for space
considerations. In Table VII, we show the overall average
link utilisation in the simulation, and we observe that INRPP
improves the overall utilisation by 50% compared with TCP

and RCP, and by 20% compared with MPTCP. This is because
INRPP achieves a large increase in the utilisation of backbone
router links that have one or more 1-hop detours.

Average Link Utilisation (%)
TCP 25.02
RCP 24.41

MPTCP 33.18
INRPP 40.15

TABLE VII: Average Link Utilisation - Rocketfuel Topology

E. Cache Sensitivity analysis
In this section, we perform a set of experiments to evaluate

the sensitivity of INRPP to the size of the caches. In this
set of experiments we evaluated the same scenario used in
Section IV-A, depicted in Figure 8, but with 100 INRPP flows.
The rest of the parameters are the same.

In Figure 18 we represent the flow completion time analysis
as a function of the cache size configured in the routers. This
cache size is the total cache space available per interface and
we set the Shigh

i threshold to half of the overall cache size and
Slow
i threshold to the forth (i.e, for a 10MB cache size, the

Shigh
i is set to 5MB and the Slow

i to 2.5MB. From the figure
we can observe that INRPP starts performing correctly from a
cache size of at least 1MB for the evaluated scenario. Below
this cache size INRPP caches drop packets, and therefore the
performance is suboptimal, requiring retransmissions.
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Fig. 18: Flow completion time using different cache sizes

In the experiments, 1MB is the minimum cache size that
avoids any packet drop in the cache. Packet drops may occur
when the traffic received at incoming interfaces after activating
backpressure is higher than the traffic sent through the con-
gested interface, plus the cache space remaining between the
Shigh
i and the total cache size. Therefore, the margin between

Shigh
i and Stotal

i should be at least higher than the difference
between incoming and outgoing link capacities plus the higher
link latency (time required to activate the backpressure to the
previous router).

V. INRPP DEPLOYMENT

As we have demonstrated so far, INRPP provides benefits
to users in terms of fast data transfer completion times and
provides unbiased per-flow fairness. INRPP also provides
benefits for network operators in terms of moving traffic from
over-utilized to under-utilized links. Therefore, we believe that
there are incentives for both users and network providers to
deploy INRPP. What remains to be shown is how INRPP and
TCP can coexist without compromising the performance, and
how INRPP can be used in case of partial deployment, i.e.,
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Fig. 19: TCP friendliness

only a subset of nodes implement INRPP. We also touch on
the securty of INRPP at the end of this section.

A. TCP Friendliness

In order to illustrate that the INRPP protocol can co-exist
smoothly with TCP, we partition the per-interface cache of
the INRPP routers into two; one for the INRPP flows and
one for the TCP flows. As before, the INRPP cache system
has drop-tail fair queuing. However, because TCP does not
work well with large buffers, we limit the size of the TCP
partition to 50 ms worth of traffic in the experiments. The
INRPP cache multiplexes incoming packets using the protocol
field and places each packet in the appropriate partition.

We evaluate our solution using the topology in Figure 8
using the following two scenarios: i) Mixed Scenario, where
we have 50 INRPP flows and 50 TCP flows using INRPP
routers, ii) TCP Alone Scenario, where we have only the 100
TCP flows using legacy IP routers (i.e., INRPP cache system
disabled) in the same topology. Obviously in both scenarios,
the detour path (0-1-2) is not utilised by any of the TCP flows.

The results depicted in Figure 19 represent the average
goodput for the INRPP and TCP flows in the scenario mixing
TCP and INRPP, and the average flow goodput for the TCP
alone scenario. We observe that INRPP and TCP flows share
the bandwidth in a fair manner on the bottleneck link (0-2) of
10 Mbps. As shown in Fig. 19(a), each of the 50 TCP flows use
half of the bandwidth along the bottleneck, which is around
5 Mbps/50 = 100 Kbps (depicted as “TCP mixed”). On the
other hand, the INRPP flows use both their equal share along
the bottleneck link and the entire bandwidth along the detour
path. As a result, each of the 50 INRPP flows use around
15 Mbps/50 = 300 Kbps (depicted as “INRPP mixed”). The
performance of TCP flows using legacy IP routers is depicted
as “TCP Alone” in Fig. 19(a). We observe that the goodput
is almost identical in the case of mixed and alone scenarios
for TCP, which means that the TCP goodput is not affected
adversely by coexistence of both protocols.

We also measure the RTT of the TCP flows for the “TCP
mixed” and “TCP alone” scenarios. We observe that the
RTT of the TCP flows in the “TCP mixed” scenario is only
marginally higher compared to the “TCP alone” scenario
(see Fig. 19(b)). This additional delay is due to the queue
management overhead of the cache system, which is utilised
by the TCP flows in the “TCP mixed” scenario. These results
demonstrate that TCP flows can co-exist smoothly with INRPP
flows.

B. Incremental Deployment

We envision deployment of INRPP within a single Au-
tonomous System (AS) as ingress-to-egress transport for intra-
domain traffic. Within a domain, INRPP can utilise bandwidth
resources and alternate flows’ operation between open and
closed loop mode to shape traffic. However, when an ingress
router’s INRPP interface (facing another router in the same
AS) cache fills up, it may be necessary to propagate closed-
loop mode of flows beyond the edge of the AS and slow-down
the flow’s sender. A possible way to slow-down a sender’s rate
is through manipulating advertised TCP receive window size
as done by middleboxes in the Internet today [28]. Specifically,
an ingress router reduces the receive window size of ack
packets in order to shape the throughput of senders in the
opposite direction. The details of such an approach is to be
further investigated and we leave it for future work.

Deploying INRPP in a multi-AS setting may be problematic
at the AS borders, because AS routing policy violations may
occur in case egress traffic are to be detoured at a border router
of an AS. Nevertheless, this problem can be mitigated by dis-
abling the detour mechanism at border nodes. We envision that
initially INRPP can work as an overlay network under partial
deployment. In this case, an overlay routing mechanism is
required to compute forwarding tables for the INRPP nodes in
order to forward INRPP packets along default or detour paths.
To realise partial deployment, one possibility is to exploit the
Information-centric networking (ICN) [1] architectures, which
conveniently include large packet caches in their routers by
design. For this, we consider the incrementally-deployable
Hybrid ICN (hICN) [29] architecture of Cisco, which has
already seen partial deployment in the current Internet. In
the case of partial deployment, the INRPP nodes must ensure
reliable transfer of data through the underlay network. This can
be accomplished through different ways; one possibility is to
establish TCP tunneling between the INRPP overlay nodes. A
more detailed investigation of the partial deployment of INRPP
is the subject of future work.

C. Security of INRPP

INRPP relies on explicit network feedback in the form of
slow-down and cancel notifications piggybacked with ACK
packets to guide the transmission rates. Non-cooperative nodes
can ignore feedback to obtain unfair advantage over cooper-
ative ones, which is a problem common to many transport
protocols. We refer interested readers to the work of Wilson
et al. [30] for a detailed discussion on attacks against fairness
by uncooperative behaviour in a transport protocol that relies
on explicit network feedback similar to INRPP.

At the same time, it is important to secure INRPP against
malicious behaviour by the end-points that target either other
end-points or the network infrastructure. In one attack vector,
malicious end-points launch a Denial-of-Service (DoS) attack
by injecting slow-down notifications to unnecessarily slow
down on-going flows. However, in order for an injection attack
to successfully slow down a target flow, the end-points of the
flow must echo the nonces in the injected ACK packets to their
data packets. For echoing to happen, the malicious nodes must
somehow guess the correct sequence numbers of the target
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flows when injecting nonces. Therefore, the chance of success
for an injection attack in INRPP is similar to the one in TCP.

Another type of attack involves spamming the network with
bogus nonces as part of a state exhaustion attack targeted at the
upstream routers’ limited storage for nonces. To prevent the
nonce storage from overflowing, routers can simply implement
their nonce storage as a cache with an eviction policy such
as Least-Recently-Used (LRU). However, cache storage alone
does not solve the problem with poisoning of nonce caches
with bogus nonces from malicious nodes. Currently, in the
INRPP protocol, the endpoints do not originate slow-down
notifications because the flow control is performed end-to-end.
Therefore, the correct implementation of the protocol does
not allow nonce origination from the end-points. Authenti-
cating the notifications between directly neighboring routers
would be sufficient to detect bogus nonces, and this can be
achieved through a lightweight mechanism such as a MAC-
based authentication [31]. We are not aware of other potential
attacks against INRPP and leave a more detailed analysis of
the protocol’s security to future work.

VI. RELATED WORK

The common practice among ISPs to move the bottleneck to
the edge of the network (i.e., DSLAM/GPON to user) restricts
users from taking up as much bandwidth as possible. As we
move towards a FTTx environment, however, the bottleneck
will inevitably move to the core of the network potentially
causing severe congestion events. Overprovisioning of core
links will not be an option anymore and therefore alternative
solutions will need to be sought. Multi-Path TCP [11] has
received wide attention recently due to its ability to take advan-
tage of multiple e2e paths. However, the requirement for mul-
tihoming of MPTCP (and mTCP [32]) have driven adoption of
MPTCP to controlled, data-centre environments mainly [33].
INRPP extends the Resource Pooling Principle [12], [34],
natively integrated in MPTCP, to also utilise midpath multipath
without the equal-cost requirement of ECMP [35].

Multipath routing on the other hand has been studied in the
context of traffic engineering in the core of the network [36],
[37], [38], [14], mainly for load-balancing reasons [35], [14].
Despite extensive studies on multipath routing [39], [40], [41]
and multipath congestion control [42], [43], [44], these two
arguably complementary areas remain remarkably decoupled.
There has been no previous attempt to combine the benefits
of multipath routing and congestion control into a common
framework in order to improve overall resource utilisation.

With the In-Network Resource Pooling Protocol we make
a first attempt to bring the worlds of multipath congestion
control and multipath routing closer together. Although much
of INRPP’s mechanisms can be replaced or redesigned to fit
to specific network needs, our detailed design and evaluation
shows that the proposed set of mechanisms work smoothly
together. At the same time, the significant performance gains
observed prove the need for a combined multipath routing and
congestion control framework.

VII. SUMMARY AND CONCLUSIONS

We have proposed a radically new way of circumventing
the bottleneck caused by end-to-end transport techniques’

limitations in wide area networks. The proposed scheme relies
on in-network storage to progressively move data along the
path from source to destination. Intermediate routers/caches
act as custodians for received data, that is, they are not allowed
to drop data. Therefore, packet losses due to congestion are
eliminated and data migrates hop-by-hop in caches according
to local resource availability (i.e., faster than the e2e path’s
slowest link).

INRPP makes better use of in-network link resources and
as a result achieves up to 50% faster data transfers. This is
especially beneficial for short flows.

Our extensive performance evaluation shows that INRPP
does not risk network stability since it gets in a closed-
loop mode when network conditions deteriorate. When the
network is less congested, INRPP takes immediate advantage
of all the available bandwidth on both the main path and any
detour available along the path and completes file transfers
up to two times faster than conventional transport protocols.
End-host clients need only minor modifications, while routers
need to be equipped with caches and implement the detour
and backpressure mechanisms. The proposed hybrid SRAM-
RLDRAM cache design keeps the cost down by mostly using
cheap DRAMs and only very few expensive SRAMs per
updated interface. We believe that, given the performance
gains of INRPP, the required changes are not prohibitive.
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