Shard Scheduler: object placement and migration
in sharded account-based blockchains

Michat Krél
City, University of London
michal krol@city.ac.uk

Alberto Sonnino
Facebook Novi
asonnino@fb.com

ABSTRACT

We propose Shard Scheduler, a system for object placement and
migration in account-based sharded blockchains. Our system cal-
culates optimal placement and decides on object migrations across
shards. It supports complex multi-account transactions caused by
smart contracts. Placement and migration decisions made by Shard
Scheduler are fully deterministic, verifiable, and can be made part
of the consensus protocol. Shard Scheduler reduces the number
of costly cross-shard transactions, ensures balanced load distribu-
tion and maximizes the number of processed transactions for the
blockchain as a whole. To this end, it leverages a novel incentive
model motivating miners to maximize the global throughput of the
entire blockchain rather than the throughput of a specific shard. In
our simulations, Shard Scheduler can reduce the number of costly
cross-shard transactions by half while ensuring equal load and in-
creasing throughput more than 2 fold when using 60 shards. We also
implement and evaluate Shard Scheduler on Chainspace, more than
doubling its throughput and reducing user-perceived latency by 70%
when using 10 shards.

CCS CONCEPTS

* Security and privacy — Distributed systems security.

KEYWORDS

distributed system, blockchain, sharding, economics, performance

1 INTRODUCTION

Sharding emerged as one of the most promising layer-1 solutions
to the scalability problems of blockchains [1, 13, 22, 25, 37, 39].
A sharded system divides the blockchain infrastructure into groups
called shards. Each shard has its own miners, holds a subset of
the state, and processes a subset of transactions. This technique
has the potential to increase the number of processed transactions
per second, as they can be verified and agreed on in parallel by
independent groups of miners. In theory, by increasing the number
of shards, we can increase the global throughput of the blockchain.

A sharded blockchain [36] can be seen as a distributed database
where each transaction performs write operations, creating, destroy-
ing or modifying objects in one or multiple partitions (shards). We
can distinguish between transactions writing to only one shard (intra-
shard transactions) or to multiple shards (cross-shard transactions).
Intra-shard transactions are relatively cheap and can be agreed on

Onur Ascigil
Lancaster University
o.ascigil @lancaster.ac.uk

Mustafa Al-Bassam
Celestia Labs
mustafa@celestia.org

Sergi Rene
University College London
s.rene@ucl.ac.uk

Etienne Riviere
UCLouvain
etienne.riviere @uclouvain.be

using the consensus protocol within their shard. In contrast, cross-
shard transactions are more costly as they require local consensus
in all involved shards as well as a cross-shard agreement between
these shards. This is achieved using expensive techniques such as
2-phase commit [1, 22, 31] or mutex-based protocols [13, 39]. Fi-
nally, cross-shard transactions must be included in the chains of all
shards holding involved accounts resulting in state inflation. The
placement of objects in shards plays a crucial role in determining
the overall performance (i.e. the Transaction per Second—TPS-rate
and the user-perceived confirmation latency).

In this paper, we focus on the account-based data model. Account-
based objects are persistent. They represent user accounts (i.e. user
balance) or smart contracts and can be modified multiple times. Plac-
ing an object in a shard in the account-based model influences all fu-
ture transactions for this object (in contrast to single-use transaction
outputs in the UTXO model). Ethereum, the largest blockchain sys-
tem supporting smart contracts, is an example of an account-based
blockchain transitioning into a sharded mode of operation [13].

Existing sharded blockchain designs generally use a static hash-
based object-to-shard assignment [1, 13, 22, 25, 37, 39]. The hash
space of object identifiers is divided equally between shards, and
hashing the identifier of an object allows clients and miners to deter-
ministically determine its location without using additional indexing
services. In the long run, hash-based allocation equally spreads the
load across shards but causes loss of data locality. Frequently in-
teracting accounts may be spread across multiple shards causing
costly cross-shard interactions [3]. Furthermore, a fixed assignment
cannot always react to activity bursts of accounts located in a single
shard, causing short-term load imbalance. Both problems become
more pronounced with an increasing number of shards and with an
increasing number of accounts involved in each transaction, e.g. as
the result of the smart contracts executions.

Figure 1 presents a simplified view of a blockchain with two
shards and five accounts. Edges represent interactions (transactions)
between accounts. The upper hash-based placement results in a
high number of cross-shard transactions. A better placement is a
compromise between load-balancing and the number of cross-shard
transactions. We note that achieving such a placement through ini-
tial placement decisions only is not necessarily possible, and may
require migrating objects between shards (e.g. accounts 2 and 5 in
our example). Migration operations [14, 15, 29] require additional
transactions. The individual cost of these transaction executions,
as well as the overhead they impose on the blockchain as a whole,

Conference’17, July 2017, Washington, DC, USA

a hash-based object-to-shard assignment

YN a better placement minimizing cross-
@" ’ ’ '@ shard ions and balancing load

miner QO

O O O O object <>
@) o o
O O O O O cross-shard transaction
shard 1 shard 2 intra-shard transaction -------

Figure 1: Object-to-shard assignment: a static placement (e.g.
hash-based) results in a high number of cross-shard transac-
tions. A better placement could place (or migrate) objects 1, 2
and 3 in (to) shard 1 and objects 4 and 5 in (to) shard 2.

must be worth paying, i.e. result in higher throughput and lower
confirmation latency for future transactions.

Contributions. We present Shard Scheduler, a novel approach for
deciding and enforcing object placement and migration decisions
in sharded, account-based blockchains. Our scheduler balances the
load between shards and improves data locality. It leverages the
possibility to initiate account migrations when necessary and seeks
to maximize the global throughput of the blockchain. At the same
time, Shard Scheduler remains simple, deterministic, and verifiable
for all the miners in the network to prevent abuse. Shard Scheduler
is executed by the miners and does not require modifications of
the clients, who are nonetheless able to verify the legitimacy of
migration decisions taken as part of their transaction execution.
Finally, Shard Scheduler makes scheduling decisions worth enacting
for rational miners through economic incentives. We do not seek
to propose novel mechanisms for handling cross-shard transactions
and account migrations, but rather build upon the different proposals
by other authors [1, 13, 22, 25, 37, 39]. We only make minimal and
common assumptions on the capabilities of the underlying sharded
blockchain, allowing Shard Scheduler to be implemented on top
of a vast range of account-based blockchains, from the upcoming
evolution of Ethereum [13], to current systems such as Zilliga [35].

Outline. We present a background on account-based blockchains
and sharding mechanisms in Section 2. We outline the design and
perimeter of use of Shard Scheduler in Section 3, present our as-
sumptions on the underlying sharded blockchain together with our
design goals in Section 4, and present our system model in Section 5.
We then present our contributions as follows.

Our first contribution, presented in Section 6, is an analysis of the
transaction history from Ethereum from a perspective of a sharded
execution. We use the Ethereum Virtual Machine (EVM) to extract
all accounts that were modified by every transaction. We then inves-
tigate the activity of the accounts, their data locality, and the load
balancing when using a static hash-based assignment.

In Section 7 we present the design of Shard Scheduler, a transac-
tion scheduler for sharded, account-based blockchains. Shard Sched-
uler observes system load and interactions between accounts to place
and migrate accounts across shards to maximize the throughput.

In Section 8, we develop and discuss an incentive scheme for
sharded blockchains that motivates miners to maximize the TPS
of the blockchain as a whole. By deploying this scheme, we free

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

blockchain end-users from costly, manual migrations of the state
and avoid associated security problems. Furthermore, we incentivize
miners to perform migrations providing the highest global TPS
instead of focusing on the fees collected on their own shard.

Section 9 discusses verifiability and security of the proposed
scheme. In Section 10, we quantify the performance gain over a
hash-based approach using a simulator.

In Section 11, we present the integration of Shard Scheduler with
the Chainspace [1] sharded blockchain system and the results of its
deployment on a large-scale testbed. Our evaluation shows that Shard
Scheduler can adapt to many potential configurations of a sharded
environment, more than doubles the throughput of the system, and
lowers the latency by 70% for 60 shards.

Finally, Section 12 presents related work while Section 13 presents
an analysis of Shard Scheduler properties, discusses future work,
and concludes the paper.

2 BACKGROUND

In this section, we present background on account-based blockchains.
‘We then discuss their transition into a sharded mode of operation,
cross-shard transactions and migrations.

2.1 Accounts, state and transactions

A blockchain is an append-only ledger maintained by a number of
nodes called miners. A blockchain is expanded by the addition of
blocks by designated miners, who receive incentives for extending
the chain with correct blocks and behave according to the protocol.
A block consists of a block header together with a list of transactions.
Transactions modify the state of the ledger ranging from simple
coin transfers to invocation of sophisticated smart contracts. The
block header contains a hash of the block, the hash of the previous
block, the hash of the state snapshot at a given time, and additional
information related to the consensus protocol. Each block has a
fixed capacity limiting the number of transactions it can contain.
Including a transaction in a block requires some of the available total
capacity of the blockchain system. We refer to the capacity required
by a transaction as the cost of that transaction. The cost usually
depends on the size of the transaction (as done in Bitcoin [28]) or its
complexity (as done in Ethereum [38]).

Miners that store all the blocks (including all the transactions) are
called full nodes. In contrast, light nodes store only block headers
and reactively pull required state elements or transactions from
full nodes when needed. Light nodes can verify the integrity of
the received data by comparing its hash against the value in the
corresponding block header (i.e. using Merkle proofs [26]).

In the account-based data model, the state of a blockchain consists
of a list of objects representing accounts and their respective states.
An account is accessed by its identifier (e.g. a hash of its owner’s
public key) and represents an externally owned account (EOA), or a
contract account (CA). For EOAs, the state consists of their balance.
For CAs, the state may include more complicated data structures
related to the logic of a smart contract. Importantly, while the state
of EOAs is small and does not grow in time, the state of CAs can
inflate as more data is put in the storage.

The state of an account can be modified by two types of transac-
tions: external and internal. A transaction is external if sent from an

Shard Scheduler

Algorithm 1 Example of a smart contract function modifying the
state of multiple accounts.

1: procedure PAYALL()

2 users «— a list of users to be paid

3 amount < amount to pay each account
4: for user in users do

5 if user.balance < 10 then

6 user.transfer(amount)

EOA. For instance, a coin transfer, a contract creation, and a contract
invocation are the 3 main external operation types happening in
Ethereum [6]. Alternatively, a transaction is internal if it results from
executing a smart contract invoked by an external transaction. A
single external transaction may lead to multiple internal transactions
depending on the smart contract logic.

A regular account-based transaction (i.e. a simple coin transfer)
modifies the state of up to 2 EOAs (the balance of the sender and
that of the receiver). With the addition of Smart Contracts, transac-
tions can lead to the modification of multiple accounts. Algorithm 1
presents a Smart Contract implementing a PAYALL() function. Call-
ing this function modifies the state of the caller (to pay the transac-
tion fees), the smart contract (to decrease its balance), and all the
accounts stored in the users map (to increase their balance), provided
they currently have less than 10 coins. Smart contracts can also in-
teract with and modify the state of other contracts by invoking their
functions. Processing smart contract transactions require the write
and read sets to be known to the consensus protocol layer based on
the current state of the blockchain.

2.2 Sharding

In fully sharded environments!, the blockchain is split into multiple
groups with their own chains of blocks and miners. Each shard main-
tains and modifies the state of only a subset of the accounts existing
in the system. Objects to shards assignments are usually static unless
changed in explicit migrations caused by miners or users. A migra-
tion locks (or destroys) an object in the source shard and recreates it
in the destination shard using an atomic transaction. The object iden-
tifier may or may not change during the migration depending on the
underlying objects-to-shards mapping system. Shards are expanded
by running local consensus protocol between shard-specific miners.
Some designs [13, 39] use a main chain that is used for coordination.
The main chain periodically assigns miners to shards to prevent
malicious miners from freely migrating and taking over a specific
shard. As a result, only miners assigned by the main chain have the
right to participate in the intra-shard consensus [36]. Furthermore,
the main chain may store block headers of all the shards, which
facilitates cross-shard communication [13].

Cross-shard communication and migrations. Transactions modi-
fying the state of accounts placed in a single shard can be processed
using intra-shard consensus similarly as in a non-sharded scenario.
If the involved accounts are spread across multiple shards, how-
ever, executing the transaction requires cross-shard consensus to

lFully sharded environments split both the state and the transaction processing. Some
sharded blockchains such as Monoxide [37] or Elastico [25] only split the latter and do
not fall into this category.

Conference’17, July 2017, Washington, DC, USA

ensure the atomicity of transactions. There are two main types of
cross-shard consensus protocols, (i) protocols based on a two-phase
commit protocol [16] such as S-BAC [1] and Atomix [22], and (i7)
mutex-based protocols such as RapidChain [39] and the upcoming
version of Ethereum [13]. In all cases, a cross-shard transaction
requires an intra-shard consensus run in each shard holding at least
one of the involved accounts together with the run of cross-shard
coordination. The latter always causes additional overhead in all
the involved shards. If any of the shards involved rejects a transac-
tion, all other shards should likewise reject it to guarantee atomicity;
that is, an atomic commit protocol typically runs across all the con-
cerned shards to ensure the transaction is accepted by all or none of
those shards. It also means that the processing time of a cross-shard
transaction is determined by the slowest shard.

Objects can be migrated across shards by users (in explicit cross-
shard transactions [29]) or by miners (as a part of the consensus
protocol [39]). Performing migrations cause processing overhead
for the miners and transaction fees for the end-users. The cost of
migrations can be reduced when combined with cross-shard trans-
actions. If account A in shard 1 sends a transaction to account B in
shard 2, both accounts may remain in their respective shards (causing
a costly cross-shard consensus round) or one of the accounts can
be migrated to the shard of the other one?. In the latter case, the
migration cost still needs to be paid, but further processing requires
cheaper intra-shard consensus in the destination shard.

The use of migration can have a significant impact on the perfor-
mance of the account-based blockchains. This impact can be positive
or negative depending on the migration decisions that are made. Split-
ting frequently interacting communities may negatively impact the
throughput of the entire system for many future blocks. On the other
hand, migrations can equally spread the load across shards on a per-
block basis, improving resource utilization. Migrations increase the
cost of individual transactions but, if done correctly, can also bring
long-term performance gains. Correctly incentivizing decisions that
are good for the blockchain as a whole can significantly improve
the throughput of the entire system. We further discuss this topic in
Section 8.

3 OVERVIEW

The goal of Shard Scheduler is to integrate smart, automatic account
placement and migrations decisions to improve the throughput of
the sharded blockchain as a whole. Our system strikes a balance
between balanced load distribution, data locality, and the number and
costs of performed migrations. Shard Scheduler performs migrations
that are supported by the underlying consensus protocol, introduce
relatively low short-term overhead, and reduces the cost of future
transactions in the long run.

A fundamental design principle of Shard Scheduler is the im-
plementation of our system on miners as a part of the consensus
protocol. While client-based migrations have been proposed for
throughput improvements in the UTXO model [29], such an ap-
proach is not effective for account-based blockchains. A transaction
in the account-based model modifies the state of multiple accounts
(e.g. sender, receiver, smart contract) but is authorized only by its

2Both accounts can be also migrated to a third or different shards. However, such
migration would cause significant overhead to the system.

Conference’17, July 2017, Washington, DC, USA

Ethereum+ RapidChain Chainspace Omniledger
Smart Contracts v X v X
Beacon Chain v v X v
Miners reshuffling v v - v
‘Write set specified 5 v v v

by transactions

Table 1: Shard Scheduler assumptions in existing systems.

sender. It thus restricts potential migrations to moving the sender
only. In contrast, migration decisions taken by miners as a part of
transaction processing can achieve optimal placement by moving
any account involved in a transaction.

In Shard Scheduler, all migration decisions are taken based on
a state snapshot of the blockchain, are deterministic, and can be
verified by other miners. With decision verifiability, Shard Sched-
uler protects against malicious miners who might attempt a denial
of service attack by forcing sub-optimal migrations. Our system
requires only simple arithmetic operations to take optimal migration
decisions and introduces only negligible overhead to the transaction
processing.

Shard Scheduler decouples the mining process from the collection
of fees and aligns rewards collected by the miners with the through-
put of the entire blockchain, rather than with the performance of a
single shard. Rational miners are thus incentivized to pay the over-
head cost related to automatic migrations. Finally, Shard Scheduler
is completely transparent for the clients submitting transactions to
the blockchain and does not require any client-side modifications.

The performance of a distributed system is tightly coupled to its
submitted workload. Before outlining our design, we analyze the
transaction history of Ethereum together with state-dependent smart
contracts calls and extract new insights that allow understanding
expected cross-shard interaction dynamics and shape the design of
Shard Scheduler.

4 ASSUMPTIONS AND DESIGN GOALS

We base our assumptions on Ethereum [13, 38], the main account-
based blockchain transitioning into a sharded environment with
support for smart contracts. Where Ethereum does not yet specify
all the design details of its transition to a sharded operation, we
assume functionalities provided by academic sharded blockchains
(Omniledger [23], Chainspace [1], and RapidChain [39]). The char-
acteristics of these systems are shown in Table 1.

4.1 Security Assumptions
We distinguish two types of actors:

e users are owners of EOAs that use the blockchain;
e miners are maintainers of the blockchain.

We assume the presence of arbitrary malicious actors that can
play the role of users or miners and try to disturb the system. No
single user or miner is trusted by its peers. However, as for many
sharded blockchain designs [1, 23, 31, 39], we assume that all shards
have an honest consensus majority. With the current single-chain
economic models applied to a sharded environment, miners may
be incentivized to deviate from the protocol when taking migration
decisions. In Section 8, we develop an economic model for a sharded

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

blockchain that makes the honest majority assumption more probable
in a real-world deployment.

We assume a partially synchronous network for 2PC-based proto-
cols® [10], and a synchronous network for mutex-based protocols
(in light of recent replay attacks against sharded blockchains [31]).

We assume a sharded blockchain environment as envisioned by
Omniledger [23]. A measure of time is determined from the chain
length of an arbitrary shard and is divided into epochs of equal length.
In every epoch, nodes can manifest their intention to become miners
for the next epoch by registering their public key to a dedicated
smart contract [1] (or hardcoded logic on a beacon chain [13, 23]).
The system runs a black box Sybil detection algorithm (typically
proof-of-work [28, 38] or proof-of-stake [20]) that outputs the list of
registered public keys of the nodes that will become miners during
the next epoch. At the start of a new epoch, miners are shuffled and
assigned to new shards using a pseudo-random assignment.

We assume the presence of a main chain (as in Omniledger [23]
and RapidChain [39]) that additionally stores the block headers of
all the shards (as proposed for Ethereum [13]). Each miner is a
full node for its respective shard and acts as a light client for the
beacon chain and all the other shards. We assume the presence of
a mapping service holding current accounts-to-shards assignments
(e.g. implemented as a Distributed Hash Table).

Processing a cross-shard transaction requires modifying a set of
objects. For a simple transfer transaction (i.e. not a call to a smart
contract) the set contains the sender and the receiver and can be read
directly from the transaction data. For blockchains supporting smart
contracts, the list of involved accounts for a specific execution may
depend on the current state across multiple shards. In Algorithm 1
for instance, the caller, the contract, and accounts from users may
be spread across multiple shards. The required state and a list of
involved objects can be either proactively locked and provided to
the miners by the user as part of the transaction data (as done in
Chainspace [1]) or reactively pulled by miners executing the trans-
actions (as discussed for Ethereum [13]).

Our system is orthogonal to the actual implementation of cross-
shard transactions with or without smart contracts. For each transac-
tion, Shard Scheduler relies only on a read and write set (i.e. accounts
whose state will be read or modified by this transaction). Such a set
is already required to process smart contract transactions (Section 2).
Finally, we assume that each cross-shard transaction is forwarded
to a shard responsible for its execution. We refer to this shard and
more specifically to a miner including the transaction in its block, as
the transaction coordinator. The transaction coordinator obtains a
list of accounts to be modified and coordinates other shards involved
in the transaction.

4.2 Design Goals
The design of Shard Scheduler targets the following properties.

Migration and placement recommendations. Shard Scheduler an-
alyzes interactions between accounts and issues recommendations
specifying how an incoming transaction should be handled and, in
particular, what (if) migrations should happen. These recommen-
dations have the goal of keeping frequently interacting accounts

3This assumption is not required by the cross-shard consensus protocol per se, but by
the BFT protocol running within each shard.

Shard Scheduler

Parameters

s; €S states t;eT transactions

0; €0 objects acc; € ACC accounts

b; balance of acc; ¢ mapping function
c(t;) cost of t; C; capacity of s;

migrations

Table 2: Notations.

mjk (acc;)

within one shard while providing a balanced load across shards. By
reducing the number of cross-shard transactions and their associated
overheads, and avoiding performance degradation due to overloaded
shards, these two goals participate in unison to an increased through-
put (total number of transactions per second for a given capacity).

Recommendation verifiability. Each recommendation is determin-
istic and can be reliably verified by all other miners. Shard Scheduler
recommendations are part of the consensus and block validation pro-
tocols. This property is required to ensure the availability of the
blockchain. Without verifiability, malicious miners may attempt to
move objects towards an overloaded shard or split frequently in-
teracting communities, thus increasing the cost of transactions and
lowering the number of transactions per second [27]. Such a denial
of service attack, even when targeting a single shard, influences the
throughput of the entire blockchain due to the impact on cross-shard
transactions.

Lightweight recommendations. Shard Scheduler recommendations
are generated on a per-transaction basis. The system ensures that the
amount of required computation is low and can be easily performed
by all miners without introducing significant space and time over-
head. Shard Scheduler operations remain computationally tractable
also when the number of accounts present in the blockchain grows.
Shard Scheduler does not introduce any significant network overhead
(i.e. fetching large, additional state from other shards).

No changes for the clients. Shard Scheduler is transparent for EOA
owners and, in contrast to related work [29], does not require addi-
tional operation or maintenance of state by users.

Incentive model. Shard Scheduler provides an incentive model for
the miners to motivate them to follow the recommendations. The
reward of each miner is proportional to the amount of performed
work (i.e. the number of mined blocks) and the total amount of
rewards acquired by the blockchain as a whole. Miners are still
incentivized to compete for producing new blocks that include a
maximum amount of transactions. However, miners do not benefit
from keeping excessive numbers of accounts in their shards and
ignoring ingoing or ongoing migrations decisions made by Shard
Scheduler.

5 SYSTEM MODEL AND NOTATION

We present the notations used throughout the rest of the paper, and
the model in which Shard Scheduler operates. Notations are summa-
rized by Table 2.

5.1 Blockchain Model

The blockchain is maintained by a number of miners m € M vali-
dating and processing transactions. We adopt a similar blockchain

Conference’17, July 2017, Washington, DC, USA

model as Al-Bassam et al. [2]. We model the blockchain as a set
of state variables that encode its state s € S and transactions ¢t € T;
at any time s € S represents a snapshot of the state of every object
(i.e. accounts, smart contracts). The blockchain maintains an append-
only log of ordered transactions {t...t, } € T. The blockchain starts
in an initial state sy € T and transitions from one valid state to the
next valid state with each valid transaction #;(s;) — sj41-

Sharded blockchains. In sharded blockchains, minders are divided
into groups called shards z € Z, and each shard maintains a subset
of the objects. Shard z; at step i maintains s;; : acc € ACC;.
We assume a shard assignment function mapping objects to their
respective shard ¢(acc;) — z; as defined by Chainspace [1].

Transactions lifecycle. Each miner holds all incoming transactions
in a fixed-sized transaction pool (also called mempool). At every
time step, the transaction pool of every miner is completely filled
with transactions from clients. Executed transactions are removed
from the transaction pool. Only valid transactions are considered
(e.g., for coin transfers, both the sender and receiver exist and the
sender has sufficient funds to make the transfer). Invalid transactions
are discarded.

5.2 Processing Capacity

The concept of processing capacity is key to our model. Every time
period, each shard z; has a processing capacity C; indicating how
many transactions it can process during that time period while main-
taining a constant user-perceived confirmation latency. In practice,
this capacity can be limited by a number of factors such a network
conditions, the size of the shard, and specific implementations. We
assume that each shard has the same capacity (Vi, j C; = Cj), and
that the capacity of the whole blockchain is the sum of the capacity
of all its shards C = Y, C;.

The cost of cross-shard transactions is higher than the cost of
intra-shard transaction; we denote c(t;) the cost of transaction ;.
The exact cost depend on the consensus protocol used, as well as
on the cross-shard agreement protocol. The cost of each cross- and
intra-shard transaction depends also on its size c(t;) « size(t;). The
larger the transaction, the longer it takes to propagate the information
to all concerned miners*.

To process a transaction, a shard needs to spend some of its
capacity equal to the cost of the transaction. For an intra-shard
transaction t;, shard i spends c¢(t;) and is left with a capacity C; =
Ci—c(t;). For a cross-shard transaction each concerned shard spends
the cost of a cross-shard transaction; so the transaction can only be
processed if all shards have enough capacity to process it during this
time period.

State migration. Shard Scheduler migrates objects between shards.
When object o; is migrated from shard z; to z, m;_,(0;) the shard
assignment function ¢ is updated accordingly. Similar to transac-
tions, state migrations also have a cost for all involved shards that
depends on the size of the migrated object c(m;_,x(0;)) o size(o;).

4We determine the exact cost of transactions for Chainspace [1] in later sections.

Conference’17, July 2017, Washington, DC, USA

6 OBSERVATIONS

We start by investigating the transactions in the Ethereum blockchain
from the perspective of a sharded operation. Our observations moti-
vate the design of Shard Scheduler. For each transaction, we extract
all the accounts whose state was modified. Details on data extraction
are presented in Section 10.1.

O1. Write-oriented. In a blockchain, one can securely read the state
from any honest participant. In contrast, writing to the blockchain is
complex, because the data must be propagated to every single miner
and agreed on using a consensus protocol. In this work, we focus on
writing state to the blockchain.

02. Hot Spots. The activity of accounts can vary significantly (Fig-
ure 2). The top 20% accounts (e.g. popular exchanges) are responsi-
ble for over 92% of overall transactions. In the context of sharding,
the most active accounts should not all be placed in the same few (or
unique) shard(s).

Iy
)

CDF of transactions by accounts

o
)

0.2

e
o

0.1

I
IS

0.0

0.2 04 0.6 0.8 1.0

°
¥)

Percentage of accounts

g——

H

0.2 0.4 0.6 0.8 0.9 1.0
Percentage of transactions

°
o°
o

Figure 2: CDF of the number of transactions all the observed
accounts were involved in.

03. Communities. Multiple works reported accounts forming com-
munities, i.e. groups of entities that interact frequently with each
other [6, 32]. While the communities change over time, preserving
them can significantly increase performance of a sharded blockchain
due to a reduced number of cross-shard transactions [15].

04. Load spikes. To maximize the throughput of the system, each
shard should utilize its full capacity. Accounts in Ethereum expe-
rience bursts of activity caused by the market (e.g. Initial Coin
Offerings, new tokens being added to exchanges) and “follow the
sun” cyclical workloads. We investigate the balance of load between
shards if we were to use a hash-based account-to-shard allocation
(Figure 3). We observe significant differences in shard load, espe-
cially for shorter periods of observation. Without account migrations,
a sharded blockchain might not be able to fully utilize its capacity,
and the problem becomes more pronounced with increasing number
of shards.

O5. Migrating state during cross-shard transaction is cheap.
Under the model presented in Section 5, the cost of EOA migration
is equivalent to the cost of an cross-shard transaction®. When two
accounts spread across two shards are involved in a cross-shard trans-
action, one of the accounts can be migrated towards the other one
replacing a cross-shard transaction by a migration and an intra-shard
transaction. The intra-shard transaction will be processed only by

5 A cost of of smart contract migration is proportional to its size.

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

EEE 200 transactions
Bm 20k transactions
2M transactions

Shard

Figure 3: Distribution of the load between 8 shards when simu-
lating an hash-based account-to-shard allocation, for different
periods of observation.

the shard that hosts the accounts after the migration and does not
generate additional overhead to the other shard.

06. Inactive accounts. Accounts in blockchain are easy to create
and are not constantly active. As of April 2020, the number of ac-
counts exceeds 85 Millions, growing at a rate of about 50 to 150
thousands new accounts per day [12]. However, only 3% and 5%
of accounts are active within one-week and one-month observation
periods, respectively. A newly created address is used, on average,
for 35.45 days before going inactive [8]. At the same time, active
accounts are likely to be updated soon after they are updated. An
account is updated in a day from its previous activity with 62% prob-
ability [21]. We can say that only a fraction of accounts are active at
any point of time, but once they are activated, they are likely to be
accessed again soon (temporal locality). Inactive objects do not take
part in new transactions and should not be migrated between shards
even if they are highly connected with active objects. A migration
of an inactive object involves a costly cross-shard agreement, does
not decrease the state held by the input shard and increases the state
held by the output shard without bringing any benefits.

O7. Smart Contracts. Smart contract migration is a complex pro-
cess [14]. A migration of a Smart Contract requires creating a snap-
shot of its current state, locking it in the input shard and re-creating
it in the output shard. Noteworthily, the process of creating the snap-
shot is complex and there are currently no efficient mechanisms to
perform it. At the same time, the migration cost depends heavily on
the size of the snapshot. In contrast to EOAs, the state size of smart
contracts can be significant.

Iy
)

e
®

o
)

== Smart contract transactions
Simple transactions

°
ES

o
N

Contract transactions ratio

o
)

V] 500 1000 1500 2000 2500
Blocks in thousands

Figure 4: Simple and smart contract transactions over time.

08. Smart Contract Transactions. Smart contract transactions
constitute a growing part of all the transactions in Ethereum. Fig-
ure 4 presents the percentage of transactions per type. The number

Shard Scheduler

of ordinary user-to-user simple transactions is on a solid downward
trend. Contract transactions, on the other hand, take up to 45% of the
recent blocks in our sample. While the majority of smart contract
transactions modify the state of 2 accounts (e.g. EOA balances or
internal state of smart contracts), some transactions modify up to 50
accounts at a time. Finally, the average number of accounts modified
by an average transaction is on the rise over time caused by increased
usage of smart contracts.

7 SHARD SCHEDULER DESIGN

Shard Scheduler is implemented as a part of the consensus protocol
involving the miners of the blockchain. For each external cross-shard
transaction, our scheduler operates in two steps:

(1) It determines the main shard for the transaction and decides
the placement of new accounts;

(2) It decides on the migration(s) of existing account(s) towards
the main shard.

We describe both steps in subsections below. Shard Scheduler does
not migrate any account that is not involved in pending transactions
(OS. Migrating state during cross-shard transaction is cheap)
thus avoiding costly migrations that will not bring benefits in the
future (06. Inactive accounts). The main shard selected during the
first step is then used during the second step. Only the main shard
will be considered as a potential migration destination.

7.1 Data structures

Shard Scheduler miners associate an alignment vector
vi = [ai1, aiz, ..., @in]

with each account (including EOA and CA) in the blockchain where
a;j represents the alignment of account i towards a shard j. The
alignment is a positive integer and represents the total cost of trans-
actions the account performed with the specific shard. When an
account is created, the alignment vector values are all set to 0. When
an account acc; in shard z; is involved in a transaction f; with ac-
count acc; in shard z;, the respective values of both alignments
vectors will be increased by the cost of t, so that a;j+ = c(t;) and
aji+ = c(t;). Importantly, v; will not be updated when acc; migrates
between shards (and conversely) simplifying the operation. Consider
acc; in shard 1 that had three transactions with acc; in shard 2 and
no transaction with other shards, so that a;» = 3. If at some point
accj migrates to shard 3, v; will not be modified, so that ai2 = 3 and
ai3 = 0.

The alignment vector implements a sliding window approach
and takes into account transactions from the last 100 blocks. This
approach allows Shard Scheduler to better react to a sudden burst
of account activity (O4. Load spikes) and reduces memory over-
head, as empty vectors can be dropped from memory. Due to the
large number of inactive accounts (O6. Inactive accounts.), Shard
Scheduler maintains alignments vectors for a small fraction of the
accounts at a time®.

The alignment vector of an account is held locally by each miner
allocated to the shard where that account resides. It does not intro-
duce any memory overhead to miners outside of this shard and does

5We further show the memory overhead in Section 10.

Conference’17, July 2017, Washington, DC, USA

not require storing any additional information on chain. The align-
ment vector is dropped (zeroed) when an account is being migrated
to another shards.

The second Shard Scheduler data structure is maintained on the
beacon chain and represents the load of each shard in the system. The
load for shard z; is a positive integer that holds the total cost of all the
transactions processed by this shard in the last 100 blocks. Similarly
to the alignment vector, implementing a sliding window approach
improves Shard Scheduler reactivity to sudden load changes. The
load is reported by shards when submitting their block headers to the
beacon chain and is certified by the shard-specific miners. Placing
the load information on the beacon chain makes it available to all
the miners in the system.

7.2 Determining the main shard

The first step is performed by the transaction coordinator. Shard
Scheduler takes as input the list of accounts that will be modified by
the incoming external transaction [;, the shard assignment function
¢ and the last state of the blockchain s; (as defined by the previous
block on the beacon chain). The list is known to the coordinator
and includes accounts modified by internal transactions caused by
I; (O8. Internal Transactions). Based on this information, Shard
Scheduler outputs allocation recommendations for new accounts
(that appear on the blockchain for the first time) if any, and a main
shard for the transaction.

Based on the list of accounts and ¢, Shard Scheduler starts by
enumerating the shards involved in the transaction. Consider the
smart contract from Algorithm 1, and a transaction ¢; invoking the
PAYALL() function. The list of accounts [; includes the EOA of the
caller, the CAs of the contract and of accounts that from the users
list (from Line 2 in Algorithm 1) that have less than 10 coins’.

If the set of shards involved in the transaction is not empty, Shard
Scheduler then reads the load of each involved shard from the beacon
chain and chooses the least loaded one as the main shard for this
transaction. If the set of shards involved in the transaction is emptyg,
our scheduler chooses the least loaded shard from all the shards.

Shard Scheduler assigns all new accounts from /; to the main
shard. The main shard identifier is then passed to shards holding
non-new accounts involved in the transaction. The whole procedure
for selecting the main shard is illustrated by Algorithm 2.

The main shard selection is based uniquely on the load shards. It
allows Shard Scheduler to migrate accounts to the least loaded shard
performing load balancing (O2. Hot Spots).

7.3 Deciding to migrate existing accounts

The second step takes as input an account acc; involved in a cross-
shard transaction, the shard assignment function ¢ and transaction-
specific main shard determined in the first step. The procedure is
invoked only by miners associated with shard z; where acc; resides
(i.e. ¢(accj) = zj). Importantly, the procedure does not require any
external (from other shards) data and can be performed within the
specific shard.

7 Assuming that the contract has enough money to pay all the accounts.
8This may happen if the transaction modified the state of new accounts that are not yet
assigned to shards,e.g. a first coinbase transaction of an account.

Conference’17, July 2017, Washington, DC, USA

Algorithm 2 Main shard selection

1: procedure SELECTMAINSHARD(/;, ¢, s;,)
2 involvedShards «— set()

3 newAcc < new accounts from I

4 for accin/; do

5: involvedShards.add(¢(acc))

6 if involvedShards.empty() then

7 mainShard «— lowestLoad(allShards)

8 else

9 mainShard < lowestLoad(involvedShards)

10: for acc in newAcc do
11: ¢(acc) < mainShard
12: return mainShard

From the local state (account alignment vector), Shard Sched-
uler extracts the account’s alignment towards all other shards. If
the alignment towards the current shard, where the account is cur-
rently located, multiplied by the cost of the cross-shard transaction
is smaller than the sum of alignments towards the other shards,
the account will be migrated to the main shard of the transaction.
Otherwise, the account remains in its current shard.

Taking into account the alignment vector stops the load balance-
based migration if the account has strong connection with its current
shard. Such an approach preserves existing clusters of frequently
interacting accounts (O3. Communities). The condition is more
likely to stop the migration with increasing cost of cross-shard trans-
action. The whole procedure deciding on migrations is illustrated by
Algorithm 3. For consensus protocols requiring all the accounts to
reside in a single shard before processing (i.e. mutex-based), Shard
Scheduler always migrates all the involved accounts to the main
shard.

Algorithm 3 Migration decision algorithm.

1: procedure SHOULDMIGRATE(acc, ¢, mainShard)

2 V « the alignment vector for acc

3: sh « ¢(acc)

4 if (c(crossShard)V[sh]) < (sum(V) - V[sh]) then
5 migrate(acc, mainShard)

8 ECONOMICS

Maintaining a blockchain requires resources to store (disk space),
exchange (network bandwidth) and verify (CPU cycles) transactions.
In open systems, miners are incentivized to perform this useful
work in exchange for a financial reward. Incentive mechanisms for
open sharded blockchains are currently a gap in the blockchain
literature [3]. We argue that naively applying incentive mechanisms
from traditional (single-committee) blockchains to sharded systems
has shortcomings, and then propose a novel design to fix them.

Purpose of the incentive mechanism. The purpose of the incentive
mechanism is to motivate rational miners to follow the protocol. In
the absence of externalities (e.g. secondary markets), it ensures that
miners following the protocol collect a higher financial reward than if
they were deviating from it. The main purpose of Shard Scheduler is

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

to increase the performance of the blockchain. We require, therefore,
an incentive mechanism that also goes in that direction: miners
should be incentivized to follow the recommendations of Shard
Scheduler.

Traditional incentive mechanism. Starting from Bitcoin, incentive
schemes [13, 28, 38] typically involve collecting transaction fees
from the end-user. The leader of the consensus protocol collects all
the fees associated with the transactions it proposes; this leader is
thus often rotated following system-specific strategies. Users are
free to offer any fee for processing their transaction. Rational miners
prioritize high fee transactions when constructing their blocks to
maximize their financial reward.

A naive extension of the incentive mechanism described above
could work as follows. A user would associate transactions fees as in
single-committee systems. These fees are then shared amongst the
leaders of the intra-shard consensus protocol of every shard involved
in the transaction. A similar incentive mechanism is adopted by
Zilliqa [35].

We argue that directly applying this mechanism to a sharded
environment does not incentivize rational miners to maximize the
system’s performance. We show that, if given the right to perform
account migrations, miners financially benefit from taking actions
that harm the total system performance by creating a load imbalance
between shards.

LEMMA 8.1. In the sharded environment described in Section 4,
rational miners financially benefit from concentrating as many ac-
counts as possible into their own shard.

PROOF. Miners are periodically elected as leaders according to
the intra-shard consensus protocol and propose new blocks. When
acting as the leader, rational miners choose the clients’ transactions
to include in their next proposal by selecting those with the high-
est fees. They can, however, only include transactions involving
accounts in their own shards: these transactions are by definition
a subset of the total transactions submitted to the system (for any
epoch). As a result, miners have less options to select high-fees
transactions than if they could choose amongst all transactions. To
increase the number of transactions that involve their shard, and
thus increase their choice of transactions, miners are motivated to
concentrate a large portion of accounts to their shard. O

Lemma 8.1 indicates that rational miners may financially benefit
from actively resisting optimal placement recommendations, which
may worsen system performance.

Adapting the model for sharded blockchains. To overcome the
shortcoming presented above, we propose an alternative solution that
decouples the process of collecting transactions fees from cashing
them in. We leverage the fact that miners are assigned to shards in a
pseudo-random manner, and thus cannot predict which shard they
will integrate next (Section 4). The incentive mechanism operates
across every two consecutive epochs:

e During epoch ej, miners collect the fees of transactions that
involve their shard and lock them into a shard-specific deposit
(as opposed to adding them to their private accounts). This
deposit keeps a fine-grained accounting of the fees that each
miner of the shard collected during the epoch. We follow

Shard Scheduler

classic incentive mechanisms and attribute the transactions
fees to the current leader of the consensus protocol.

e Upon epoch change, miners are unpredictably shuffled and
re-assigned to other shards. Upon entering the next epoch
(en+1), miners cash in the transaction fees deposited into their
new shard’s deposit, in proportion of their contribution during
the previous epoch, generally in another shard.

miner my

collects 10 o
(@) coins ... : (@)
O O 100 coins . O O O
© Yo _ @H o
shard z; S~ - o shard z,
0%° R N TR
o9 o ; o O 0
shard z, + ... cashes 10% shard z,
+ of 50 coins
OO O @) O 50 coins . o) OO O
shard z3 collected fees ! shard z3
epoch e, ' epoch ep,; >
time (epochs)

Figure 5: Incentive model for Shard Scheduler.

Consider a scenario with 3 shards: z1, z», and z3, and a miner
mj € z; in epoch e, (Figure 5). During epoch e, shard z; collects
a total of 100 coins in transaction fees, z, collects 50 coins, and
z3 also collects 50 coins. These fees are locked in their respective
shard’s deposit; that is, the deposit of z; holds 100 coins, and the
deposits of zz and z3 each hold 50 coins. No miners have access
to these deposits for the time being. Let’s say that miner mj, when
acting as leader, proposed transactions containing a total of 10 coins
of fees during epoch e,,. That is, we attribute 10% of the total fees
collected by z; during e, to miner m;. During epoch ep41, mj is
assigned to shard zz. Upon entering the epoch, it cashes in 10% of
the deposit accumulated by z2 during epoch e;,. That is, m; cashes
in 5 coins.

Effectiveness analysis. We argue that our proposed incentive scheme
incentivizes rational miners to increase the total system’s capacity.

LEMMA 8.2. Each epoch ey, the expected reward of miners is
proportional to the total transaction fees collected in the system
x;’o_tl during the previous epoch.

PROOF. The expected reward of a miner during epoch e, is
E"(x) = Z{le xi"_lp,-, where xl.”_1 is the total reward collected
by shard i during epoch e,_1, p; is the probability that the miner
ends up in shard i in epoch e, and k is the total number of shards
in the system. Since miners are unpredictably assigned to shards,
Vi,j, pi=pj =1 Thus E*(x) = %Z;‘:l Xl = Ll O

LEMMA 8.3. The total fees collected in the system x;o; increases
with the total capacity of the system C.

PROOF. As described in Section 5, we assume that the shards’
processing capacity C; is a scarce resource and that clients trans-
actions are abundant. As a result, if the shards’ capacity increases,
miners can process more transactions per epoch and thus collect

Conference’17, July 2017, Washington, DC, USA

more fees. This implies that the fees x; collected by shard i increases
with the shards’ capacity C;. We can thus express x; in terms of C;
as a monotonically increasing function: x;(Cj).

The total fee collected in the system is defined as x;o; = Zle Xj.

We can thus write x;or = Z{;l x;(C;) to show that the total fees x;o¢
increases with the shards’ capacity C;.

Section 5.2 defines the total capacity of the system as the sum
of the capacity of every shard: C = Zle C;, which means that C
increases with {C,-}i.‘zl. Combining those observations, we have that

both x;, and C increase with the shards’ capacity {Ci}le. It follows
that the total collected fees x;; increase with the total capacity of
the system C: x4o; and C are positively correlated. O

LEMMA 8.4. The expected reward of miners increases with the
total system’s capacity.

PROOF. Lemma 8.2 implies that the expected reward of miners
increases with the total fees collected in the system. Lemma 8.3
shows that the total fees collected in the system increases with
the total capacity of the system. Therefore, the expected reward of
miners increases with the total capacity of the system. m]

9 DISCUSSION

Shard Scheduler provides objects migration and placement recom-
mendations for account-based sharded blockchains. It provides a
number of desirable properties and achieves the design goals identi-
fied in Section 4.2. We discuss in this section how these properties
hold in the presence of faulty and malicious miners.

Shard Scheduler migration decisions are publicly verifiable as
they are deterministic, based uniquely on on-chain data and their de-
termination is part of the transaction processing. Any third party can
verify the correctness of object migration decisions and miners can
readily apply recommendations without using an extra round of con-
sensus. A block containing incorrect migrations will be considered
invalid by honest miners.

In all sharded blockchains considered in this paper [1, 13, 23, 39],
if each shard contains at most f faulty miners, the cross-shard consen-
sus protocol guarantees consistency and validity. If this assumption
is violated, i.e. one or more shards contain more than f Byzantine
miners each, then honest shards can detect faulty shards. Namely,
enough auditing information is maintained by honest miners to de-
tect inconsistencies and attribute them to specific shards (or miners
within them).

The rules for transaction validity are checked in a distributed
manner: each shard keeps and checks the state of objects assigned to
it. An honest shard manifests its intention to commit a transaction
only if all (system dependent) checks pass, and otherwise proposes
to abort. A dishonest shard may emit a commit messages arbitrarily
without checking the validity rules. By definition, an invalid transac-
tion is one that does not pass one or more of the checks defined by
the system [1].

Shards keep records of their operations as a non-repudiable signed
hash-chain of checkpoints—with a view to prove the correctness
of their operations. They also provide non-repudiable statements
about their decisions in the form of signed cross-shard messages to
other shards. The two forms of evidence must be both correct and
consistent—otherwise their misbehavior is detected [1].

Conference’17, July 2017, Washington, DC, USA

Section 8 provides a novel incentive mechanism for sharded
blockchains to financially motivate rational miners to maximize
the total throughput of the system—miners collect higher fees by
improving the overall performance of the system rather than by con-
centrating accounts in their own shard. Miners who do not perform
useful work (i.e. free-riders submitting empty blocks) will not be
rewarded by the protocol as the cashed rewards are proportional
to the amount of fees mined in previous epochs. Malicious miners
may still ignore the incentives and deviate from the protocol by
taking sub-optimal migration decisions. However, as stated above,
blocks with such migrations will be considered as invalid and dis-
carded by the honest majority. A similar rule applies for single-chain
blockchains based on classical incentive models [28, 38]. By bind-
ing the expected miner rewards with the overall performance of the
entire blockchain, our economic model makes the honest majority as-
sumption more likely to occur in real-world deployments of sharded
blockchains.

10 EVALUATION

We provide details on our data set as well as the setup and results of
our simulations.

10.1 Data Extraction

We download the first 2M blocks of the Ethereum transaction his-
tory (1 year). We extract 8M non-coinbase transactions and all
the accounts that were modified during each transaction. We use
openethereum v3.2.3° operating in archive mode, which allows to re-
compute all the intermediary states of the blockchain. To extract the
transactions and state modifications, we create a Python tool based
on web3.py 0. This tool queries the client with frace_replayTransaction
calls in stateDiff mode. We made the code and the dataset publicly
available to the scientific community '!.

10.2 Setup

We implement a Python-based simulator to evaluate the effectiveness
of our approach. The simulator closely follows the model presented
in Section 5, operates in rounds and takes transactions (extracted in
Section 10.1) as the input workload. Before the first round, the simu-
lator fills up the mempool with transactions from the input workload,
and in the beginning of each subsequent round, the simulator tops
up the mempool from the input workload.

The size of the mempool is fixed and set up using simulation
parameters. The transactions are processed in the order of arrival by
the blockchain. The policy being evaluated indicates placement deci-
sions and in the case of Shard Scheduler, decisions on the migration
of objects. Each transaction increases the load of one or multiple
shards. A transaction can be processed in the current round only if
there is enough processing capacity left in all involved shards. Un-
processed transactions remain in the mempool and will be processed
during subsequent rounds. The simulator reports the following per-
formance metrics:

o Throughput - the global throughput of the entire blockchain
in terms of the number of processed transactions per block.

9hllps://openethereum.org/
10hnps://githuhc0m/ethereum/web3.py
Mhttps://github.com/harnen/shard_scheduler

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

o Latency - the average elapsed time to complete the process-
ing of the transactions in the workload. We measure the
elapsed time to complete a transaction in terms of number
of rounds (blocks), i.e. from the round when a transaction is
initially read until the round when this transaction is added to
the blockchain.

o Wasted Capacity - the load-balancing performance of the
system in terms of residual capacities of the shards summed
over all the rounds. The residual capacity of the shards is the
sum of unused capacity of the shards at the end of a round.

o Cross-shard transaction ratio - the percentage of transac-
tions that involve accounts from multiple shards. For Shard
Scheduler, each migration is accounted as a separate cross-
shard transaction.

We compare Shard Scheduler against a hash-based policy and
against a baseline policy based on the application of an offline com-
munity detection algorithm. The hash-based policy represents the
approach used in existing sharded blockchains [1, 13, 22, 39] that
assigns accounts to shards based on a hash of their identifier and
does not perform migrations. The Metis policy is a hypothetical
one that reads all the transactions at once at the beginning of the
first round and proactively performs sharding on the basis of the
output of the well-known Metis community detection (graph parti-
tioning) algorithm [19] on the transaction graph, whose nodes are
individual accounts and whose edge weights indicate the number of
transactions between two accounts [9].

The Metis algorithm computes a desired number of “balanced”
partitions, each corresponding to a shard, on an input transaction
graph—the objectives of partitioning are to minimize the total weight
of cross-partition edges (i.e. minimizing cross-shard transactions)
and to minimize variance across partitions in terms of their total of
intra-partition edge weights (i.e. achieving similar number of intra-
shard transactions in each shard). We do not compare against UTXO
solutions such as OptChain [29] due to data model incompatibility.

We verify the impact of the following parameters:

o Number of shards - we vary this parameter from 1 to 60
shards, and set its default value to 16 shards. A higher number
of shards means an increased processing capacity, but also
more cross-shard interactions and load balancing challenges.

o Cross-shard transaction costs - we assume a fixed cost of
all cross-shard transactions and measure the impact of chang-
ing this cost from one (as costly as an intra-shard transaction)
to ten. The actual cost depends on the consensus protocol and
its implementation. We set the default value to 2 as observed
for the Chainspace system in Section 11. This parameter also
impacts the cost of migrations performed by Shard Scheduler.
We do not migrate smart contract accounts due to the diffi-
culty to model the migration cost in a simulated environment.

e Shard processing capacity - we investigate the impact of
modifying the processing capacity of a single shard. We set
the default value to 200 (i.e. 200 intra shard transactions per
block) as observed for Ethereum [12].

e Mempool-to-capacity ratio - we express the mempool size
in terms of the ratio of processing capacity of the entire
blockchain per block. The mempool size of the system de-
pends in practice on the rate of transaction submissions (i.e.

https://openethereum.org/
https://github.com/ethereum/web3.py
https://github.com/harnen/shard_scheduler

Shard Scheduler

the rate of arrival to the mempool buffer) and on the process-
ing speed (i.e. the rate of departures) of the blockchain.

In each experiment, we only vary one system parameter while the
rest of them assume their default values. We start by measuring the
performance of all the policies in terms of throughput and latency
and later explain the results by observing wasted capacity and cross-
shard transaction ratio.

10.3 Results

12501 = = = Metis
== = HashBased

*21000 Shard Scheduler
<
2 750
e)
=
= 500 e L e
2 ’ — -
250 @ —"—%
0 10 20 30 40 50 6o
#shards

Figure 6: Throughput vs number of shards.

Throughput. Figure 6 shows the impact of varying the number of
shards on throughput. We observe that Shard Scheduler achieves
increasingly better throughput as the number of shards increases.
On the other hand, the throughput of both Metis and hash-based
policies flatten out with increasing number of shards. Shard Sched-
uler improves the throughput by 100% for 16 shards and by 250%
for 60 shard over the hash-based approach. Shard Scheduler also
outperforms the theoretical Metis policy, which uses future trans-
action information, for more than 10 shard and achieves similar
performance for lower values.

1000

= = = Metis

a0 .‘ == = HashBased

< . Shard Scheduler
.

5 600 a ‘o

: S

£ 400 N e,

= .'~~ ..'O--.

200 -~ _'_"_"_:---.-...-.-_:
3 " Py 8 10

Cross-shard tx cost

Figure 7: Throughput vs cross-shard transaction cost.

Figure 7 shows the impact of varying cross-shard transaction
costs on throughput, with the default value of 16 shards. Higher pro-
cessing costs result in lower throughput. Shard Scheduler achieves
the highest throughput with any of the considered cost values. The
performance gain with Shard Scheduler remains steadily over both
that of the hash-based policy (80-95% throughput increase) and that
of the Metis policy (10-40% throughput increase).

In Figure 8, we vary the mempool size using multiples of the
shard processing capacity. A larger mempool size allows to achieve
better load balancing and improves throughput for all the policies.
However, the impact of an increased mempoll size on hash-based and
Metis policies is limited. Shard Scheduler achieves 80% throughput
increase for a 0.5 mempool-to-capacity ratio and a 130% throughput
increase when using a ratio of 5.

Conference’17, July 2017, Washington, DC, USA

7007 ... Metis
600 — " HashBased
‘g Shard Scheduler
< "TEELEEE]
© 500 ssssssssEEEEsEEsEEEEESsE®
g JRCTTCTTEELL b
e .
£a00{ ©
00| _ _emm—m—mm———————————
1 2 3 4 5
Mempool-to-capacity ratio
Figure 8: Throughput vs mempool size.
=== Metis ‘f‘_‘,,‘f.
340 == = HashBased “__.‘—-‘f‘
S Shard Scheduler R
& 30 e
) -
g20 PR et
[} _ ~
Z10 2 ot
PO
V] 10 20 30 40 50 60
#Shards

Figure 9: Average latency vs number of shards.

Latency. In Figure 9 we observe average processing latencies for
an increasing number of shards. Shard Scheduler higher throughput
translates to significantly lower latency (3.5 times lower than the
other policies when using 60 shards). The surprisingly high latency
of the Metis policy is caused by unequal load allocation, as discussed
later in this section.

1001 =+« Metis -
-
> == = HashBased -
¢ 80 -
3 Shard Scheduler -
& -
= 60 - Lus®
) - sant
o - Lan®"
° a0 - o ""
9] - Lann®
z - P TR
20 - AT L LA
e
2 4 8 10

Cross-shard tx cost

Figure 10: Average latency vs cross-shard transaction cost.

Increasing the cross-shard transaction cost (Figure 10) increases
the latency for all policies. The Metis policy preserves account
communities and performs better than the hash-base policy with an
increasing cost of cross-shard interactions. However, Shard Sched-
uler achieves 2 times lower latency than Metis and 3 times lower
than hash-based policy even when cross-shard transactions cost 10
times as much as an intra-shard transaction.

le8

1.257 . .4 Metis " 2 0
>
£1.00{ = = HashBased ot L
S Shard Scheduler Lest L
g0.75 LS
° -
0 0.50 -
g I
Lo.25 ‘(. L e

P -
0.00 S
1] 10 20 30 40 50 60
#shards

Figure 11: Wasted capacity vs number of shards.

Conference’17, July 2017, Washington, DC, USA

le8
>2'° = Metis ’f’.
.515 == = HashBased ,0"
g™ Shard Scheduler -_
g - eene
1.0 - PP L
? - .--"'
2 - sannet
% 0.5 P T LL L
z g
0.0
2 4 8 10

Cross-shard tx cost

Figure 12: Wasted capacity vs cross-shard transaction cost.

Wasted Capacity. Both the Metis and hash-based policies achieve
equal load spread across the shards in the long run. However, they
fail to adapt to fine-grained activity changes due to the lack of mi-
grations. Shard Scheduler takes per-transaction migration decision
based on the previous load of all the shards and better utilizes the
overall capacity of the blockchain. This effect is more pronounced
as the number of shards (Figure 11) or the cost of cross-shard trans-
actions (Figure 12) increases. More cross-shard interactions or their
increased cost translates into more transactions waiting for one of
the involved shards to become available.

ol T . el el |

©0.9
=]
o
308 === Metis
?‘,07 == = HashBased
A Shard Scheduler
o
30.6
S
0.5 o C EEREEERREEE IEEEEREEE FEEEEEERTY IEEEEREEE)
2 4 6 8 10

Cross-shard tx cost

Figure 13: Cross-shard transaction ratio vs cross-shard trans-
action cost.

Cross-shard Transaction Ratio. Finally, we observe in Figure 13
that Shard Scheduler is able to adapt gracefully to increasing cross-
shard transaction costs and reduce its ratio of cross-shard transac-
tions. This reduction is caused by the migration stopping condition
(Algorithm 3) which takes the cost of cross-shard transactions into
account. On the other hand, the Metis and hash policies are oblivious
to cross-shard transaction costs and their cross-shard ratio remain
roughly constant, failing to adapt to the changing environment.
Overall, we observe that Shard Scheduler achieves significantly
better performance despite the use of additional cross-shard transac-
tions to enact account migration decisions. The short-term migration
overhead is largely compensated by the long-term advantages of bet-
ter load-balancing and of the preservation of account communities.

11 PROTOTYPE

In this section we confirm our simulation results with real-world
experiments.

Setup. We implement Shard Scheduler, and the Metis and hash-
based policies on top of Chainspace [1] with security improvements
proposed by Byzcuit [31]. Other sharded blockchains are either not
yet finished [13], do not open their source code [37, 39], or do not
fully partition the state [25]. By default, Chainspace implements a
UTXO data-model and does not implement blocks (i.e. transactions

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

150 mmm HashBased

125 B Metis
Shard Scheduler

100

Throughput [TPS]
vl ~N
o w

N
%]

o

10

#Shards

Figure 14: Chainspace throughput.

are serialized as a continuous flow). We thus add an implementation
of the blocks structure and a data-model translation module that
allows us to replay the history of Ethereum (Section 10.1) with an
equivalent number of intra-shard and cross-shard transactions. We
make the block implementation coherent with our model presented
in Section 5 and publish the code'2. We deploy 3 miners per shard
on Amazon AWS within a single data centre and run tests using 5
and 10 shards. Due to high result variation within a single run, we
repeat each test 5 times and report the average values.

We create 2 synthetic workloads of 1M transactions containing
uniquely: (i) intra-shard transactions and (i) cross-shard transactions.
Both workload create perfectly balanced load across all shards. For
the second workload, we observe a throughput that is 2 times lower
than for the first workload. We thus assume that the cost of cross-
shard transactions to be 2 for Chainspace and use it as a parameter
to Shard Scheduler (Section 7).

Results. We start by measuring the throughput of the system reported
by Chainspace as the transaction per second (TPS) rate (Figure 14).
Surprisingly, we observe almost no throughput improvement for
the hash-based policy when increasing the number of shards from
5 (55TPS) to 10 (S6TPS). This is caused by a highly unequal load
balance across shards. For 10 shards, we observe multiple blocks
filled to less than 50% of their capacity. The Metis policy provides
much higher throughput (123TPS) but also suffer from unequal
per-block load. The performance of the Metis policy is expected to
further drop down when increasing the size of the input file. Shard
Scheduler is the only policy experiencing a significant throughput
improvement. When using 10 shards, Shard Scheduler achieves a
throughput that is three times higher than that of the hash based
policy. However, the TPS rate when doubling the number of shards
increases by only 23% (from 120TPS to 148TPS). This is caused by
migration decisions and therefore additional cross-shard transactions
that cannot be fully eliminated, in particular with complex smart
contract transactions that involve large numbers of accounts.

We continue by investigating the transaction latency as perceived
by end-users (Figure 15). Similarly to the results of our simulations,
the number of transactions submitted per block (i.e. the mempoll)
is proportional to the per-block capacity of the entire blockchain.
Without the linear increase of throughput, this approach causes an
increase of user-perceived latency (as more blocks are necessary to
fully process the mempoll). However, we observe that the average
latency achieved by Shard Scheduler is significantly lower than that

12 https://github.com/srene/byzcuit

https://github.com/srene/byzcuit

Shard Scheduler

I
o
(=]

mmm HashBased
I Metis
Shard Scheduler

w
(=3
(=]

User-perceived latency [ms]
= N
o -]
=] =]

(-]

#Shards

Figure 15: Chainspace latency.

of both the hash-based (49% reduction for 10 shards) and the Metis
policies (31% reduction for 10 shards).

12 RELATED WORK

We review related work on object migration and placement for
sharded blockchain. We then briefly discuss related object man-
agement techniques from the area of distributed systems.

Object migrations and allocation. Optchain [29] proposes an ora-
cle for transaction placement in sharded blockchains. The system
uses graph clustering techniques and is implemented as an external
service for the clients. However, the Optchain approach only targets
UTXO blockchains and cannot be easily adapted to the account-
based data model. Han et al. [17] study existing shard allocation
protocols and propose WORMHOLE, a shard allocation protocol
taking into account both self-balance and operability. However, the
study focuses on allocating miners to shards, rather than objects
residing on the blockchain. Fynn et al. [15] analyze the history of
Ethereum transactions and investigate multiple graph clustering pro-
tocols in the context of account placement in sharding. Similarly
to our observations, they show that proactive placement without
periodic migration does not achieve optimal performance. Fynn
et al. [14] develop techniques for moving smart contracts between
shards and blockchains de facto enabling contract migrations. The au-
thors implements their protocol on Ethereum [38] and Burrow [18].

Distributed systems. In the area of the distributed systems multiple
works investigated the problem of optimal object assignment and the
use of migrations. The proposed systems focus on two main aspects:
(i) developing a partitioning/migration plan (i.e. object-to-partition
allocation) and (ii) devising efficient plan execution guaranteeing
safety without causing significant downtime.

For database systems, E-store [34] provides an efficient solution
based on tuples monitoring and solving a bin backing problem to
compute an optimal assignment of objects to partitions. However,
the system does not take into account data locality. Clay [30] bal-
ances the number of cross-partition transactions, load balancing and
limiting the number of migrations in order to maximize the through-
put of the system. P-store [33] creates a partition plan taking into
account load only. It contains a traffic prediction module [5] that can
proactively scale up or down the entire platform.

Squall [11] and Mgcrab [24] implement systems for object par-
tition and migration once given a partition plan. The platforms
proposed for distributed systems provide important insights also
relevant for our design. However, they cannot be directly applied to

Conference’17, July 2017, Washington, DC, USA

sharded blockchains due to a different governance model. The ma-
jority of the platforms contain a non-deterministic element or cannot
be verified by third parties [33], introduce significant computational
overhead [5, 30], or migrate large clusters of the objects at once [30].

13 CONCLUSION

We presented Shard Scheduler, an object migration and placement
recommendation system for account-based sharded blockchains.
Shard Scheduler improves the overall throughput of sharded block-
chains. This is achieved through the mechanisms detailed in Sec-
tion 7, whose effectiveness is demonstrated by both simulations
(Section 10) and real-world experiments (Section 11). In some se-
tups, Shard Scheduler more than doubles the throughput of the
system, and lowers the latency by up to 70%. In addition, Shard
Scheduler is lightweight in the sense that it does not require extra
protocol messages, and does not introduce significant computation
or memory overhead. It integrates seamlessly into existing protocols
requiring only minimal changes to the miners’ software, and does
not impact the way clients use the system.

We leave a number of open questions that are deferred to future
work. First of all, the objects placement recommendations of Shard
Scheduler are efficient based on current and past typical usages of
blockchains. There are no guarantees that this would be the case if
blockchains are used in significantly different ways in the future. A
learning agent may solve this issue by predicting future interactions
between accounts, but it is not clear how to ensure that such an
agent remains both deterministic and lightweight. Secondly, han-
dling transactions fees could become costly operations as they are
associated with each transaction and may involve multiple shards.
It would thus be desirable to remove fees handling from the critical
path of the transaction’s processing, or even offload them to a infras-
tructure on the side. Recent works [4, 7] demonstrate that distributed
payment systems can efficiently be implemented without consensus,
and by quorum-based systems that can be natively integrated into
one or more shards of a sharded blockchain.

ACKNOWLEDGEMENTS

Alberto Sonnino is supported by Novi, a subsidiary of Facebook.
This work is partially supported by The Brussels Institute for Re-
search and Innovation (Innoviris) under project FairBCaa$S, and by
the Belgian Fonds de la Recherche Scientifique (FNRS) under Grant
#F452819F.

REFERENCES

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George
Danezis. Chainspace: A sharded smart contracts platform. In Network and
Distributed System Security Symposium, NDSS, 2017.

Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud proofs: Max-
imising light client security and scaling blockchains with dishonest majorities.
arXiv preprint arXiv:1809.09044, 160, 2018.

[3] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-
Corry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of
blockchains. In 15t ACM Conference on Advances in Financial Technologies, AFT,
2019.

Mathieu Baudet, George Danezis, and Alberto Sonnino. FastPay: High-
performance byzantine fault tolerant settlement. In 2nd ACM Conference on
Advances in Financial Technologies, AFT, 2020.

Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng
Zhao. Energy-aware server provisioning and load dispatching for connection-
intensive internet services. In 5th USENIX Symposium on Networked Systems
Design & Implementation, NSDI, 2008.

[2

[4

[5

Conference’17, July 2017, Washington, DC, USA

[6]

[7]

[8

[9

[10]

(1]

[12]
[13]
[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xiapu Luo, John Chi-Shing Lui,
Xiaodong Lin, and Xiaosong Zhang. Understanding Ethereum via graph analysis.
ACM Transactions on Internet Technology (TOIT), 20(2):1-32, 2020.

Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo
Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, An-
drei Tonkikh, and Athanasios Xygkis. Online payments by merely broadcasting
messages. In 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN, 2020.

ConsenSys. Ethereum by the numbers. https://media.consensys.net/ethereum-by-
the-numbers-3520f44565a9, 2018.

Inderjit Dhillon, Yugiang Guan, and Brian Kulis. A fast kernel-based multilevel
algorithm for graph clustering. In 71/th ACM SIGKDD international conference
on Knowledge discovery in data mining, KDD, 2005.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288-323, 1988.

Aaron J Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. Squall: Fine-grained live reconfiguration for partitioned main
memory databases. In ACM SIGMOD International Conference on Management
of Data, 2015.

EtherScan. Ethereum charts and statistics. https://etherscan.io/charts, 2021.
Ethereum Foundation. Ethereum 2.0 phases. https://docs.ethhub.io/ethereum-
roadmap/ethereum-2.0/eth-2.0-phases/, 2019.

Enrique Fynn, Alysson Bessani, and Fernando Pedone. Smart contracts on the
move. In 50th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN, 2020.

Enrique Fynn and Fernando Pedone. Challenges and pitfalls of partitioning
blockchains. In Workshops of the 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, DSN-W, 2018.

Jim Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, 1978.

Runchao Han, Jiangshan Yu, and Ren Zhang. Analysing and improving shard
allocation protocols for sharded blockchains. JACR Cryptol. ePrint Arch., 2020,
2020.

HyperLedger. Burrow. https://github.com/hyperledger/burrow, 2021.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359—
392, 1998.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357-388. Springer, 2017.

Jae-Yun Kim, Junmo Lee, Yeonjae Koo, Sanghyeon Park, and Soo-Mook Moon.
Ethanos: efficient bootstrapping for full nodes on account-based blockchain. In
16th European Conference on Computer Systems, EuroSys, 2021.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In IEEE Symposium on Security and Privacy, S&P. IEEE, 2018.
Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583-598.
IEEE, 2018.

Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching Tsai, Aaron Elmore, and
Shan-Hung Wu. Mgcrab: transaction crabbing for live migration in deterministic
database systems. Proceedings of the VLDB Endowment, 12(5):597-610, 2019.
Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. A secure sharding protocol for open blockchains. In ACM
SIGSAC Conference on Computer and Communications Security, CCS, 2016.
Ralph C Merkle. A digital signature based on a conventional encryption function.
In Conference on the theory and application of cryptographic techniques, pages
369-378. Springer, 1987.

Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and
Ari Juels. Bdos: Blockchain denial-of-service. In ACM SIGSAC conference on
Computer and Communications Security, CCS, 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, 2008.

Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. Optchain: opti-
mal transactions placement for scalable blockchain sharding. In 39th International
Conference on Distributed Computing Systems, ICDCS. IEEE, 2019.

Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. Clay: Fine-grained adaptive partitioning for general
database schemas. Proceedings of the VLDB Endowment, 10(4):445-456, 2016.
Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. Replay
attacks and defenses against cross-shard consensus in sharded distributed ledgers.
In European Symposium on Security and Privacy, EuroS&P. IEEE, 2020.

Hanyi Sun, Na Ruan, and Hanqing Liu. Ethereum analysis via node clustering. In
International Conference on Network and System Security, NSS. Springer, 2019.
Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. P-store: An
elastic database system with predictive provisioning. In International Conference

[34]

[35]

[36]

[37]

[38]

[39]

M. Krél, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére

on Management of Data, SIGMOD, 2018.

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction processing systems. Proceedings of
the VLDB Endowment, 8(3):245-256, 2014.

The Zilliga Team. Zilliga whitepaper. https://docs.zilliqa.com/whitepaper.pdf,
2017.

Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. SOK: Sharding on
blockchain. In st ACM Conference on Advances in Financial Technologies, AFT,
2019.

Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous
consensus zones. In 16th USENIX Symposium on Networked Systems Design and
Implementation, NSDI, 2019.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1-32, 2014.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2018.

	Abstract
	1 Introduction
	2 Background
	2.1 Accounts, state and transactions
	2.2 Sharding

	3 Overview
	4 Assumptions and design goals
	4.1 Security Assumptions
	4.2 Design Goals

	5 System Model and notation
	5.1 Blockchain Model
	5.2 Processing Capacity

	6 Observations
	7 Shard Scheduler design
	7.1 Data structures
	7.2 Determining the main shard
	7.3 Deciding to migrate existing accounts

	8 Economics
	9 Discussion
	10 Evaluation
	10.1 Data Extraction
	10.2 Setup
	10.3 Results

	11 Prototype
	12 Related Work
	13 Conclusion
	References

