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Abstract

In today’s Internet, the current architecture may not be able to support various

challenges (e.g., security, mobility, scalability, and quality of service) in a sufficient

level. Information-centric communication model is expected to address the bottleneck

of the traditional host-centric model. A number of Information Centric Network

(ICN) approaches have been proposed by aiming to replace or augment the current

host-to-host routing architecture. ICN focuses on finding and transmitting content to

end-users and content routing is location-independent, thereby being able to support

multi-sourcing for content consumers.

Named Data Networking (NDN) is one of the promising ICN proposals that

allows users (i.e., consumers) to find content objects by their names. In the default

forwarding strategy of NDN, an interest packet is forwarded to locate content. A

corresponding data packet will be returned back in the reverse path to its requester and

will be replicated along this path (called on-path caching). When a consumer requests

a content object, it may be found at an intermediate on-path cache. However, several

replicas that are often cached off-path especially in nearby nodes of the consumer’s

vicinity could be the better potential source but they are not effectively utilised,

causing a worse than necessary delivery efficiency.

Therefore, this thesis investigates the potential of off-path content finding in

NDN. We examine how we can design a flexible and efficient solution to supplement

the existing NDN architecture. We then propose a new design called a Vicinity-

based Content Finding scheme (VCoF) to utilise nearby replicas in each vicinity for

improving content finding. This includes analysing the efficiency of the proposed

scheme in comparison to default NDN. We consider content popularity, which can

impact content finding results due to the different number of content replicas (i.e.,

content availability). We also explore our scheme in supporting mobility, particularly

for the issues of missing content because of handover. Through a prototype

implementation, we evaluate the delivery efficiency against overhead costs in different

scenarios, made possible through effective deployment on real NDN environments.
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Chapter 1

Introduction

Named Data Networking (NDN) is an Information-Centric Networking (ICN) paradigm

that is one of the most promising architectural approaches for the Future Internet

[1, 2]. In the current Internet, the Domain Name System (DNS) is used to translate

numeric IP addresses into domain names to make it easier for people to locate data.

Packets are delivered to destinations indicated by IP addresses but content objects are

served according to their names. Therefore, the main design of NDN is to eliminate

the standard IP addresses by allowing users to directly locate content objects by

their names. To find content, requesting packets are forwarded in default forwarding

paths indicated by the names of the desired content objects. These objects can be

replicated in several caches along the default paths between consumers and content

producers (called on-path caching) in the network. Thereby, content can be located

from multiple sources.

There are several challenges in the original design of the current Internet

architecture. The traditional host-to-host routing infrastructure and its practical

implementation have been identified as a cause of several limitations [3]. By using

NDN, data can be routed from multiple sources (i.e., caches) due to the caching

function. According to this concept, NDN is potentially an appropriate solution

to overcome the lacks of the existing point-to-point communication and the current

limitations of the TCP/IP Internet [4].

NDN nodes including consumers, routers, and producers are the key elements

in content delivery chains. The consumers send interest packets to look for desired

content objects that have been provided by their producers. The routers (i.e., nodes

or devices) are responsible for two main tasks: caching/seeking content in their caches
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Chapter 1. Introduction

and forwarding both incoming and outgoing packets. In each router, a Face represents

a network interface, which is mapped with content names. A name is exchanged

among NDN nodes to advertise its reachability and its location. An NDN forwarding

strategy selects a proper Face for a single-path strategy, or several Faces for a multi-

path strategy, to forward an interest packet to find its corresponding content object

indicated by its name.

The study of [5] proves that content caching can significantly reduce path lengths

for retrieving content since interest packets can be served closer to requesters. Content

caching can provide more content availability [6], faster delivery, and lower congestion

on long links [7]. Hence, it can be seen that content caching can, indeed, bring content

close to end-users, through which several benefits can be gained especially in terms

of delivery efficiency.

The default best route strategy [8] of NDN selects a Face mapped with the lowest

cost to find a shortest path for locating a content object according to its name.

However, the best direction to find the object is, perhaps, not on the default path

[9]. The content replicas might be close to the requesters and these replicas could

be the better sources for consumers. Notably, the default strategy, by design, could

not naturally find nearby replicas located off the default path. Hence, this might not

take appropriate advantage of the surrounding replicas, causing sub-optimal delivery

efficiency.

Content replicas are replicated within a network regardless of a default forwarding

path and they are often cached nearby like in a vicinity (also dependent on their

density). Several existing NDN source selection strategies locate a desired content

object according to its name without considering off-path or especially nearby replicas,

which can be the cause of insufficient delivery efficiency. A number of proposals try to

find off-path replicas (discussed in Section 2.5). However, particular shortcomings of

these solutions can decrease their effectiveness. For example, by mapping consumers

with producers or caching content at rendezvous points or Name Resolution Systems

(NRSs), multiple centralised mapping systems incur higher control overhead and a

single point of failure. Although an interest flooding strategy might help to find

nearby replicas, expensive overhead costs can be incurred. In addition, several data

chunks might be generated in return and thereby increasing cache eviction rates.

Content replicas could be available in a particular vicinity of a requester and they

can be reachable through different paths. When other requesters in the same vicinity

try to look for the same replicas, they can gain benefits (especially in terms of content

2



Chapter 1. Introduction 1.1. Research Hypothesis

delivery) looking for the nearby replicas instead of the original content that might be

located further away. Therefore, the work presented in this thesis proposes a content

finding strategy (called Vicinity-based Content Finding scheme, or VCoF ) to utilise

nearby replicas, that can be the better sources for a consumer. The scheme expands

the consumer’s view into a vicinity to gain more advantage in nearby content finding.

By centering a consumer node, a vicinity contains the set of NDN nodes that are

connected to the consumer in different distances. A distance is the number of hops

that defines the scope of the vicinity, called vicinity size. This is also crucial to limit

and mitigate the overheads of content finding.

The main contribution of this work is the improvement of content finding in NDN

using the proposed VCoF scheme. To first understand advantages and disadvantages

of the vicinity-based strategy, the designed scheme is developed and investigated. In

the first instance, a realistic-like NDN system with static connections is considered to

evaluate VCoF to understand delivery efficiency against additional overheads. The

investigation of the content popularity is then explored since different popularity

levels of content objects/replicas can impact different content finding results. Finally,

content finding in the context of mobility could also be challenging and this is

also investigated. For example, when a mobile node is moving, some particular

contents/replicas might be failed to deliver due to handover. The previous location

and the current location of the mobile node are often in the same vicinity. Though if

there is a significant jump between the previous and the current location, other nodes

in the vicinity and other nearby vicinities can still be alternate sources. Hence, the

VCoF scheme can also be beneficial under this mobile environment.

1.1 Research Hypothesis

Due to the rapid growth of the number of devices and the increment of content

demand, several challenges in the current Internet architecture (e.g., delivery

performance, content distribution problems, and dynamic communication) need to

be addressed. Delivering content or enhancing content distribution in the current

point-to-point communication protocol can be error-prone and complex.

Named Data Networking (NDN) is a promising alternative that could increase

content delivery efficiency. NDN changes the paradigm of the current architecture by

delivering a packet to its destination identified by a given name. Although NDN can

mitigate or eliminate some issues of the existing architecture, a number of challenging
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benefits need to be explored. One of these is the location of content independent from

original producers. Each NDN node can replicate content from the original producers

and allows requesters to retrieve their desired content from multi-points.

However, several existing NDN routing strategies try to locate a content object

according to its name but the delivery efficiency could be sub-optimal, since these do

not consider nearby replicas. A number of proposals try to locate off-path or nearby

replicas. Nevertheless, their drawbacks can outweigh their benefits (e.g., single point

of failure by using resolution-based routing, cache eviction by using flooding-based

name routing, and overhead problems). Hence, a suitable content finding (i.e., source

selection) strategy would be the possible solution to increase the delivery efficiency and

mitigate the existing drawbacks. Getting some information (e.g., content availability)

within a neighborhood or a node in the vicinity could help to indicate a consumer to

fetch a content object from a better source.

Nevertheless, there are a number of other factors that need to be considered, for

instance content density can also affect content finding results. For example, if a

consumer try to look for a desired content object and its density (i.e., availability

or copies of the content) in the consumer’s network is high, the opportunity that a

replica of this desired content could be cached nearby would also be high. Thereby,

this increases the opportunity that the desired object can be located faster. Further

to this, additional overhead in finding content must also be considered to trade off

with the efficiency of a content finding solution.

An appropriate source selection strategy can also be beneficial in the context of

mobility. For instance, when a source of a content object is going off-line, the proper

strategy could still help to find the replica of the object that might be already cached

nearby. In several mobile environments, a desired content object is often forwarded

to a previous location of a mobile node. The requested object can be missing due to

the disconnection during handover. A suitable content finding solution can also help

to locate the missing content that is frequently cached close to the mobile node (e.g.,

in the previous location or other nodes in the vicinity).

Therefore, in our research hypothesis, it is possible to develop a new content finding

or source selection strategy to be integrated with the existing NDN architecture to

improve delivery efficiency. Nearby content replicas are expected to be the better

potential sources for consumers. However, a number of factors need to be investigated

in the consideration of nearby content finding. For example, different content densities

can impact different content finding results. Overhead costs especially in the context
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of locating content generated by the extra solution should be considered to trade off

with delivery efficiency. In addition, finding nearby content can also be beneficial in

a number of mobile communication models.

1.2 Research Questions

In order to show the validity of the research hypothesis, we need to address the

following 4 main research questions while considering different research methods (e.g.,

analytical research, analysis of requirements, design of appropriate mechanisms as well

as practical implementation).

1. Can the content finding of default NDN be improved by considering the vicinity

of the consumer?

2. Can the delivery performance of default NDN be increased through the

involvement of nearby nodes, and if yes by how much?

3. Does the improvement of content finding create additional overheads, and if so

how high are these?

4. What are the effects of content popularity (or replica density) and mobility on

the performance and overhead costs of content finding?

1.3 Methodology

This PhD research aims to improve content finding in NDN by taking advantages

of replicas that are cached nearby. The highlight of the research methodology is

presented as itemised below.

1. Identify the problem space of off-path content finding and options to

improve content finding in NDN. In Chapter 2, we will describe a set of

problems of content finding in NDN. This includes the off-path content finding

issues in the existing strategies as well as in a number of related solutions.

Further to this, in Chapter 3, the problem identification can help to design a

better solution by avoiding the existing problems and shortcomings of several

existing forwarding strategies.
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2. Design and implement a new scheme (entitled “VCoF”) to improve

content finding in NDN.

In the current NDN architecture (i.e., default NDN), an interest packet is

forwarded to locate a content object indicated by its name prefix. It is difficult

to locate off-path replicas that are already cached nearby since there is no

knowledge about these nearby replicas. Hence, in this thesis, we will research

a new scheme to proactively advertise the availability of content objects and

their replicas to enable a consumer to locate the nearby objects according to

the advertised information. This technique can help an end node to know the

locations of the nearby replicas. The received information should indicate proper

paths to find the nearby objects, which means they can be fetched closer instead

of going to further producers.

When a content object is located nearby, there should be another mecha-

nisms to forward the content object back to its requester. Hence, in this thesis,

we will also research mechanisms of data (i.e., content) routing. When the

interest packet has located the nearby replica in a vicinity, the corresponding

data packet should be routed in a shorter path compared to the path to

the original producer. According to NDN’s stateful forwarding, an intelligent

forwarding strategy can be deployed and we can keep track interest/data packets

to ensure the success of content delivery regarding to delivery efficiency. Due

to the concept of Vicinity-based Content Finding, entitled VCoF, this will aim

to encompass the research of this work. Chapter 3 of this thesis presents the

design of VCoF and the implementation is detailed in Chapter 4.

3. Analyse and evaluate the designed strategy by using appropriate

tools to determine how big the improvement is in terms of delivery

efficiency. To indicate how well VCoF can improve content finding in NDN,

the evaluations of the design in various aspects are crucial. Although the VCoF

scheme might help to increase delivery efficiency, excessive overhead costs can be

problematic. Hence, we will examine the performance of content delivery against

additional overhead costs. The overhead costs should be acceptable while

introducing a better performance of content delivery. The trade-off between

the delivery efficiency and the overhead costs must be explored in order to find

a balance point. This is presented in Chapter 5.
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4. Investigate how VCoF performs considering different conditions such

as content popularity or replica density. Content popularity/density is

another important factor that can affect content finding results. For example,

when desired content objects are less populated, it means the density of the

desired objects is low. So, the opportunity to find the nearby content objects

is also low, resulting in higher delivery delays. When the network is highly

populated with the desired content objects, the opportunity to find the nearby

replicas is high. So, the delivery performance should be increased. Hence,

to understand the effects of content popularity/density, in Chapter 5, this is

examined by comparing the VCoF scheme to the default best route strategy of

standard NDN.

Due to the increasing number of objects/replicas, cache replacement rates

are another important factor that can affect the content finding results. For

example, when a cache is quite large, the replacement rate is low since replicas

can be remained in the cache for longer. So, the opportunities to find the replicas

are higher compared to a smaller cache size. In this thesis, we assume that the

replicas of desired content are available to be located but cache replacements

might decrease the replica availability. So, this issue will also be investigated in

the evaluation chapter.

5. Investigate the effects and performance of VCoF in the case of

mobility. According to the concept of VCoF, the area and also directions

of content finding is expanded. So, this can increase the opportunity that

a desired content object that is already cached nearby can be found faster,

resulting in higher delivery efficiency. Due to this concept, VCoF can also have

benefits in the context of mobility. For example, when a node has moved to a

new location, a requested content object is frequently forwarded to the node’s

previous location or cached in the node’s vicinity. The scope of content finding

of VCoF can help to find the object that is cached nearby such as in the previous

location, another node in the vicinity, or even in another nearby vicinity instead

of requesting the content object again through a new path from the new location

since the requested interest is unsatisfied. Re-expressing unsatisfied interest

packets might incur excessive overhead, and higher latency. This particular

case of mobility will also be investigated in Chapter 5.
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1.4 Research Outline

The research outline of this work is threefold by aiming to examine the efficiency of

content finding as well as the effectiveness of content delivery. The outline can be

ordered in the following sequence.

First, the VCoF scheme is proposed and investigated in a static NDN environment

(i.e., structure of the network is fixed) to indicate the performance of the scheme

against its overhead costs. This also aims to understand the actual operations of

VCoF in realistic NDN networks. A set of metrics is used to measure delivery

efficiency and additional overheads in different situations compared to the default

NDN strategy. RTT values, as the indicator, are examined to understand how much

VCoF can improve the delivery delays over the baseline of default NDN. Message

overhead and data volume are investigated to understand the effects of additional

costs generated by the VCoF scheme to the entire network traffic.

Second, the impact of content popularity is then evaluated in a larger static

topology. Some popular content could be requested several times. Hence, considering

different content popularity levels can help to understand the effects of the number of

content replicas to content finding results. The effectiveness as well as the efficiency

of VCoF (especially the improvement of content delivery) might be significantly

leveraged due to the increasing number of replicas.

Finally, although the results in the static networks can indicate how well VCoF

improves content finding, finding nearby replicas in a dynamic environment would

also be challenging. For example, when a node is moving, a piece of content might

be forwarded to a previous location in the same vicinity or other nearby nodes. So,

there could be different paths to access the content through a new location. VCoF

should help to find a proper path to fetch the content (e.g., in the previous location,

other nodes in the vicinity, or other nearby vicinities). Hence, extending VCoF in this

particularly dynamic environment (the mobility context) is finally explored.

1.5 Thesis Structure

This thesis is structured into six chapters. Following this introductory chapter,

the next chapter, Chapter 2, gives the background and related work. The chapter

describes the limitations of the current Internet architecture and its modern role

in delivering content leading to understand the reasons of the emergence of ICN
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architectures. We describe the fundamentals of ICN in this chapter. The chapter also

discusses a number of some representative ICN approaches, alongside their content

finding/delivery concepts, and discusses their shortcomings, which indicate the main

reasons of choosing NDN as the base architecture in this work. We also present the

advantage of content caching and discuss the well-known CDN caching in comparison

to NDN caching. The particular issues of content finding in NDN are then presented.

Finally, this chapter examines current content finding solutions and their drawbacks.

These also include content finding in the mobility context.

Chapter 3 presents the design of VCoF that tries to utilise nearby replicas to

leverage content delivery in NDN. The chapter also includes detailed motivations and

aims that consider the impact of nearby replicas that can be the better potential

sources for consumers, and additional overhead costs that can be incurred by using

the design.

Chapter 4 provides the details of the implementation of VCoF. This includes

realising a fully running system by implementing the modification of existing NDN

code-bases. It also details the existing software (essential) components of deploying

an NDN system. The detailed implementation of the designed modules of VCoF to be

applied in each NDN node is also presented in this chapter. In addition, the chapter

describes the implementation of a number of tools to be used in the next chapter to

evaluate the design in comparison to default NDN as the baseline.

In Chapter 5, detailed evaluations of VCoF are presented. These are compared

with standard NDN in a number of different scenarios. Three main evaluations are

examined to answer the aforementioned research questions. In the first instance, we

investigate VCoF in a fully running system to better understand our scheme under

the realistic operations of an NDN network. We then evaluate the impact of content

popularity distributions in a larger scale network. Finally, we extend the VCoF scheme

in the context of mobility and demonstrate how the scheme can leverage content

finding in mobile NDN environments that their communication model would fit the

advantages of the VCoF scheme.

Finally, Chapter 6 summarises this thesis as well as the future work based on this

research. Summary of possible research limitations and concluding remarks are also

presented and discussed.
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Chapter 2

Background and Related Work

In this chapter, we examine the current Internet architecture and how it has developed

to serve the current needs of users. This highlights the limitations of the today’s

Internet architecture and the main reasons for the emergence of ICN, which are

described in Section 2.1.

ICN is expected to overcome the today’s Internet limitations by changing host-

centric to information-centric, which is the current trend of transferring content. In

Section 2.2, we describe how ICN works and the core principle behind its operation.

This includes content finding, which is different from the current TCP/IP principle.

A number of ICN approaches have been proposed. Most of these approaches focus

on content objects that are independent from their original locations due to enabling

in-network caching and replication. Nevertheless, these approaches have their own

concepts. In this thesis, we focus on content finding in NDN which is an ICN approach

but the number of ICN approaches are also interesting. Hence, in Section 2.3, we

examine some representative ICN approaches to explore their concepts and identify

their shortcomings especially in the context of content finding and delivery.

One of the main techniques to optimise content access is content caching. This is

the key component of most ICN architectures. It is also very crucial in NDN because

it is the main mechanism to enhance content delivery. Outlined in Section 2.4, we

discuss the importance of content caching in the current Internet architecture with an

understanding of the caching technique of the well-known performance optimisation

solution for content access called Content Delivery Networks (CDNs). We also discuss

CDNs compared to NDN and describe the better potential benefits in NDN that a

content finding/delivery solution can take.
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By distributing content to several caches, the content can be located closer to

consumers. However, several content finding solutions (particularly the default best

route strategy of NDN) try to find content objects at their original sources without

utilising nearby (cached) replicas, resulting in sub-optimal delivery efficiency. To

enhance this, a number of previous solutions try to utilise off-path replicas as an

alternate source. Hence, in Section 2.5, we identify particular issues of off-path content

finding in NDN and examine how previous items of work have influenced on enhancing

content finding in NDN, as well as their shortcomings are considerably presented.

These also include a number of solutions in the mobility context.

2.1 The Current Internet Architecture

The principles and essential architecture of the today’s Internet are rooted in the

system that was created over 40 years ago. The architecture was designed to

provide a communication between hosts. As the main concept of the current Internet

architecture, a user has to establish a communication to a specific host to exchange

information. The primary goals of the Internet were to share resources, connect new

networks, and communicate between individual devices in a trustworthy environment.

Various challenges including security, mobility, scalability, and quality of service

are the important issues [10, 11] of the current Internet architecture. Due to the

shortcomings in the original design, the current Internet architecture cannot effectively

handle those challenges [12]. The current design is based on packet switching and

used in the telephone network. So, the architecture still resembles to the telephone

network. It is difficult to change the original design to support future characteristics

of the Internet.

Recently, most people from all over the world use the Internet for searching in-

formation, accessing desired content, exchanging information, enjoying and exploring

multimedia content, trading, conferencing, taking software services, and etc. The

Future Internet should effectively handle these interactions which are performing by

billions of people. There is a dramatic increment in information distribution over

the Internet. Billions of people increase the information demand [13]. The current

Internet architecture becomes insufficiently flexible to the changes of the content

demand. Billions of devices will also be connected to the Internet [14]. The increasing

number of nodes (e.g., computers and mobile devices) can be problematic to the

current Internet architecture, which it may not be able to support to a sufficient level.
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So, reliability, availability, robustness, and survivability are imposed to the Future

Internet architecture. Connecting mainframes and minicomputers and providing

efficient remote access to them were the key goal of the original Internet. However, this

end-to-end communication approach [15, 16] and its practical implementation have

been identified as a cause of several limitations [3] of the current Internet architecture.

Various add-ons, such as Network Address Translations (NATs), Mobile IP,

Content Delivery Networks (CDNs), etc., have been developed to serve the current

needs of users. Nevertheless, these were not part of the original requirements [17].

The current Internet architecture was designed in an environment, which is different

from today’s reality. In particular, according to the growing number of mobile devices,

mobile networks should be flexible to enable dynamic communications. Due to the

design of the IP address, a mobile host needs to be assigned an IP address to be an

identifier for TCP connection. This can be problematic, when the mobile host moves

to a new location. It requires to decouple the identifier from a previous location.

Establishing a new TCP connection and identification is then required at the new

location. Thereby, this limitation of mobility support of the current TCP design can

not be able to effectively handle mobile communication.

Several applications such as the MobileIP [18, 19] have been used to serve the needs

of the current Internet requirements. However, they also add some complexity and

seem to be temporary mechanisms to address the current issues since they are built on

top of the original host-to-host communication model [20, 21]. Although some content

delivery solutions (e.g., CDNs and peer-to-peer networks) have been deployed to

transfer content from producers/publishers to consumers/subscribers, these solutions

still suffers the same problems. The designs of these solutions still face the content

centric problem due to the limitations of the host-to-host communication model. So,

a simple “host-to-host” packet delivery paradigm needs to be transformed into a more

flexible paradigm focusing on handling information, content, and users rather than

the machines [3]. The needs to support content distribution in a scalable manner, new

emerging applications, security, mobility and many more others are required [22, 23].

Due to the multitude of challenges in the original Internet architecture, this is likely

that it is time to shift from the current Internet towards a new Internet paradigm.

Recently, distributing and manipulating information has become the main goal of

today’s Internet [24]. Several Information Centric Network (ICN) approaches have

been proposed to handle many challenges that cannot be sufficiently handled in the

current Internet architecture. Most ICN architectures are clean-state designs since
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several issues of the current Internet can not be effectively addressed on the original

design of the Internet. As mentioned previously, exchanging information is one of the

major functions of the today’s Internet. So, ICN architectures focus on finding and

transmitting information to end-users [25] rather than transferring content from host

to host. An information object can be located by its name instead of its address.

This can overcome the current problems of using IP addresses with location-oriented

communication environments, and offer better benefits, which will be detailed in the

next section.

2.2 Information Centric Networking (ICN)

According to the original design of today’s Internet, the architecture is encountering

many challenges as described in the previous section. By using the current Internet

architecture to locate a specific content object, the object is mapped to a host using

a DNS server. This server is used to translate the host name to its location (i.e.,

IP address). However, the lack of available IP addresses, increasing network traffic,

exchanging massive data, increasing delays can be problematic in the new era of the

Internet. Today, users are interested in increasingly large content objects (such as

ultra high-definition movies), mobility, security, privacy and other features that were

never considered in the original design of the current Internet architecture.

To address the aforementioned issues of the current architecture, several re-

searchers have suggested that there should be a new network paradigm that is a

clean state redesign of the Internet. Due to the growing content demand, these

researchers have presented their ideas in focusing on content rather than machines

or hosts. This prompted the research into changing the current architecture from

host-centric to information (content)-centric. So, Information-Centric Network (ICN)

has been introduced with the main aim to potentially replace or augment the existing

Internet architecture. It is expected to be a key component of the Future Internet

[26, 27].

In the current host-centric architecture, when a user needs a piece of content, the

user must know the content’s location, which is the URL of the content. Today, the

content can be located in several locations. According to the concept of Content

Delivery Networks (CDNs), the content object should be mapped with the nearest

server. However, the content retrieval is still handled by application-layer solutions

rather than the network layer itself. Hence, the access overhead can be incurred and
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the network-layer optimisations are not optimised.

In an ICN system, a content object is given a name instead of an IP address. The

content can be directly exchanged by its name. It means a centralised system is not

required to map the IP address to its host name like in the current architecture.

Hence, the new network paradigm is more flexible to deploy in various types of

networks, especially in the context of mobility. According to the features of in-

network caching and replication, the content object becomes independent from its

original location. Thereby, better scalability, improved efficiency, better robustness

in challenging communication scenarios are also the expected benefits of ICN [28].

2.2.1 ICN Naming

Most ICN approaches focus on content rather than hosts. Hence, some content

identification schemes are required to identify every content object in the network.

A number of researchers have widely suggested that each content object should be

identified by name. Hence, determining a suitable naming scheme becomes one of the

most challenging issues in the ICN systems. Instead of providing names to devices or

hosts, a proper ICN architecture must be effective and efficient to identify different

content objects (such as videos, images, documents, web-pages, etc.). So, the number

of available names in the network can be enormous. The ICN systems must effectively

handle naming schemes to be more efficient. There are two main types of the naming

schemes in ICN [29].

First, hierarchical naming consists of several components of content identifi-

cation and the structure of the name is very similar to the URL. For example,

lancaster.ac.uk/obj1 can be named to uk/ac/lancaster/obj1. The name can be a

human-readable name that would be a URL-like name. Several objects in the same

node can be located by its prefix. So, the hierarchical naming can be aggregated into

a name prefix to indicate the location of several content objects in a particular source.

The hierarchical naming can be readable and easy to remember. However, it creates

security vulnerabilities because the name is visible.

Second, flat naming provides uniqueness because the hash of the content or the

hash of the key is part of the name. One benefits of the flat name is to provide

more security compared to the hierarchical naming because the name is not human-

readable. The name can naturally authenticate its source. However, flat naming does

not support routing aggregation, meaning it does not scale well.
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According to the aforementioned issues of the both types of naming, there should

be any additional schemes to solve the issues [20]. For example, by using hierarchical

naming, some additional security mechanisms should be implemented. In a flat

naming system, a number of approaches should be applied to mitigate the naming

scalability issue.

2.2.2 Content Finding in ICN

In an ICN forwarding strategy, there is a process that forwards a packet to find a

content object at its source. When the object is located, it will be routed back to its

requester. There are two main approaches to forward the packet [30]. First, by using

a name resolution approach, the process maps a packet to its source location and

forwards the packet to the mapped location. To map the location of the source of the

content, Name Resolution System (NRS) is responsible for providing the translation

of the name to its location. This approach can potentially guarantee that the packet

will be forwarded to its source to fetch the desired content object because the name is

already mapped with its source at the centralised system. However, this approach can

introduce a single point of failure. This is because the NRS requires large amounts of

storage to store the mapping information. If it fails to operate, the packet can not be

forwarded to the source location and several content objects registered on the NRS

would be inaccessible. Resolution delays could be another problem.

Second, by using a name-based approach, the packet is forwarded hop-by-hop to

its source by content routers. A content router is responsible for determining a next

hop to forward the packet based on its name. There is a Forwarding Information Base

(FIB) to map the packet with the best possible next hop to forward the packet to.

According to the hop-by-hop forwarding process, this name-based approach does not

likely guarantee that the content object of the packet can be located (compared to the

previous approach). However, a requested packet can be re-issued and re-transmitted,

if its requester has missed the corresponding (desired) data.

Data routing is the process to specify a path to return a data object back to a

requester. There are two main approaches for the data routing. One strategy is a

coupled approach that the data object is transferred back to the requester in the same

path as the initial request (i.e., the reverse path). In contrast, a decoupled approach

selects a route independently and the strategy allows different routing mechanisms to

be used to route the data object back to the requester.
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2.2.3 ICN Caching

To improve the performance of content access, Most ICN approaches provide caching

services. By caching content, several replicas of a content object can be distributed

across the networks. These replicas can be stored locally on an ICN node or can

be shared on any network caches. Content can be cached in several points of the

networks (e.g., content routers, and edge nodes or end devices in the networks),

thereby being able to support multi-sourcing for content consumers. Content caching

can be considered in three levels including object level (a complete content object),

chunk level (part of a content object), and packet level (bytes of a content object)

[31]. Each ICN architecture can also deploy or customise different caching policies,

and schemes depending on its design.

2.3 ICN Approaches

In the previous section, we highlighted the main keys and benefits of ICN to make

it the expected solution to replace or augment the current Internet architecture.

However, there are recently several ICN architectures that have been proposed.

So, this section presents the overview of a number of some representative ICN

architectures, which are the widely discussed projects being developed, alongside their

content finding/delivery principles. This also includes a comparison of the features

and shortcomings of each approach, which is found in Section 2.3.6. By considering

the shortcomings, we also describe the main reasons of choosing NDN as the base

architecture of this work.

2.3.1 Data-Oriented Network Architecture (DONA)

DONA was developed by UC Berkeley as detailed in [32]. It is considered among

the first full ICN architectures. DONA identifies names of data with flat names and

these names are not location-oriented. It means the replicas of named objects can

be stored in several caches. By the design, the objects can be moved independently.

This can also achieve one of the goals of ICN in supporting mobility. A cryptographic

technique is used to authenticate and to verify the data integrity. A principal is a

trusted entity and is associated with a public-private key pair. A cryptographic hash

(called P) of the principal’s public key and a label (L), chosen by the principal are
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combined together to generate a name. The name is made from P:L to ensure that it

is unique.

There is a triplet of the form <data, principal’s public key, principal’s signature>

and other metadata to be sent to a consumer. According to the form, the consumer

can immediately check the integrity of the data using the public key and the signature.

This can help to ensure the authenticity of the data. However, due to the flat names,

it is difficult to consumers to remember the names because these are quite long and

are not human-readable making them hard to remember. To eliminate this issue, a

name resolution service is designed similar to URLs in a DNS system. A user-friendly

name associated with a content object is mapped in the name resolution process. The

difference between DONA and DNS is that a DNS system tries to map a URL with

its location but in DONA, the names are not attached to a specific location.

In DONA, there is at least one Resolution Handler (RH) (sometimes referred

as a Dissemination Handler (DH)) in each autonomous system (AS). These RHs are

responsible for the resolution process (DNS-like service) in the DONA system. DONA

organises RHs in a hierarchical fashion. A higher RH above another on the hierarchy

is called the parent of the below RH. When a producer needs to provide a content

object or a service, it creates a message packet, namely REGISTER (P:L). The name

of this content object is made by (P:L) as described in the aforementioned description.

REGISTER (P:L) stores a pointer to the producer and further propagates to the peers

and parent RHs. A registration table in each RH is maintained to provide information

about the next hop (or next RH) and distance to the available replica(s) of the content

object. When a consumer needs this content object, it issues a FIND(P:L) packet to

find the object named (P:L). A REGISTER message can be expired, which is indicated

by a TTL (time to live). An UNREGISTER message can be issued to indicate that

a particular content object is no longer available.

Longest Prefix Matching (LPM) [33] is deployed in each RH. In a longest prefix

matching case, the RH tries to match the P:L of a packet in its registration table. If

it can be matched, the corresponding data will then be served with the name P:L or

forwarded to a next possible hop depending on the existing routing information. If

the name P:* or P:L can not be matched in a registration table, it means that there

is no corresponding data to be matched in the table. The FIND packet will then be

forwarded to its RH parent.

As presented in Figure 2.1., the FIND packet is routed by its name towards a

proper source. The packet is forwarded using the LPM technique until it reaches the

17



Chapter 2. Background and Related Work 2.3. ICN Approaches

Figure 2.1: DONA Overview

source of its corresponding data. The data packet is then routed back (also cached

along this path) to the requester or over a direct route. A FIND message forwards up

to the RH hierarchy, unless locates a match. If the FIND does match a record, the

corresponding data is returned by using a standard transport-level response to the

requester. If the FIND message reaches a Tier-1 AS and does not match any record,

the Tier-1 RH then returns an error message to the source of the FIND message.

When a data packet is forwarded back to the requester, each RH is not involved in

the transport process. The data packet can be transferred by using the standard IP

routing. To make this works, transport protocols should bind to names instead of

addresses.

DONA generally supports mobility. To locate a content object, a mobile entity

simply issues a FIND message and forwards to RHs. The RHs provide a closest

replica to the requester depending on routing information. Mobile producers are also

supported. When a mobile producer moves to a new location, it simply unregisters its

provided content from the old location and registers the content to the new location.
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2.3.2 Network of Information (NetInf)

NetInf [34, 35] allows access Named Data Objects (NDOs) using NDO names, instead

of using host-dependent addresses. A NetInf node forwards NDO requests to find

their corresponding data objects. A name of an NDO is unique and location-

independent and the NDO can be replicated or cached in the network. A NetInf

NDO can be a complete object or broken down into several chunks. It can also

be forwarded by directly using routing information of the object name (name-based

routing/forwarding) or using name resolution services. NetInf represents a hybrid

architecture that can support both name-based and name resolution routing. An

inter-domain interface is defined in NetInf for the name resolution and routing that

can be used different mechanisms in different parts of a network. There are two name

resolution mechanisms that have been developed in NetInf as described as follows.

First, Multilevel Distributed Hash Table (MDHT) system [36] is used to inter-

connect separated local NRSs into a global NRS infrastructure. Hierarchical NRS

is topologically embedded in the underlying network. Potentially Distributed Hash

Tables (DHTs) enables location-aware and scalable resolution of flat namespaces.

Second, NetInf provides an NRS approach (named Late Locator Construction (LLC)

[37]) that aims to handle highly dynamic network topologies. To support producer

mobility, when a content object moves, the NRS updates the movement results to

the new network location. In LLC, a Global Locator (GL) is responsible for routing

between the Core Network (CN) and the Edge Networks (ENs). GL is built inside the

Locator Construction System (LCS). Each network and host in the edge topology has

an associated Attachment Register (AR) in the LCS. The host or the network updates

its AR with the name of the attached neighbor. Hence, the LCS can construct a GL

for the source/destination routing.

NetInf can handle client mobility dependent on a data transport mechanism and

a forwarding strategy. For example, Global Information Network (GIN) [38] natively

supports client mobility. In GIN, PUT(ID) request is to register the availability of a

stored data object at a storage location in Distributed Network Dictionary. A retrieval

request (GET message) for the object ID will be resolved into a location address.

By mapping an NDO name to its locations, NRS is deployed to locate the NDO and

can indicate where the NDO is cached. To create a hierarchical resolution system,

MDHT is applied in the NRSs including the global NRS and local NRSs. MDHT

can take different caching decisions at different levels (i.e., multi-level caching). For
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example, the more frequently requested objects should be cached in the access node

level. In contrast, the less frequently requested objects should be cached in the AS

level. Both global and local NRSs can indicate that the selected locator is close to

the requester. The NRS can also track the request and keep request statistics. This

statistics can help to determine which NDO should be cached locally.

Cached NDOs can bring content closer to a requester, increasing the opportunities

of faster content delivery. By using the name-based routing, NDO information is

stored and distributed among NetInf routers by a routing protocol. An NDO request

can be fetched directly by the requester. Furthermore, by integrating the NRS with

name-based routing, this hybrid design can support a flexible routing scheme. A

routing hint provided by the NRS can also guide the request to fetch the NDO at its

source.

Similar to DONA, a flat name-space with some structures is deployed for NDO

names [39]. NetInf provides a fundamental of name-data integrity validation.

Requesters or any other nodes can validate names without theoretically infrastructure

support (assuming that the names are trustable). In a NetInf NDO, there is a

Figure 2.2: NetInf Overview
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security metadata that includes the data signature and public key [40] necessary

for its verification.

As presented in Figure 2.2, an example of name-based routing, name resolution,

and the hybrid approach is illustrated. In the name-based routing, a GET request

created by the requester is forwarded hop-by-hop among NetInf nodes unless a cached

replica of the NDO is located or the request has reached the original producer of the

NDO. If the NetInf routers cannot perform the name-based routing, it means there

is not enough information to route the request. The hybrid mode is then activated.

Before forwarding the request to the source of the NDO, a name resolution process is

performed by sending the GET message to the NRS to get routing hints. The request

can then be forwarded indicated by the routing hints. The NDO can be cached along

the return path to the requester. Alternatively, the requester can resolve the NDO

name into a set of locators and can retrieve a replica of the NDO from the best

available source(s) indicated by the locators obtained from an NRS.

2.3.3 MobilityFirst

MobilityFrist [41, 42] aims to design a clean state architecture for a next generation

Internet. According to the growing number of mobile devices, the project envisions

mobile devices as a key of the next generation communications. One of the current

limitations of the traditional IP architecture is the ability to effectively handle

seamlessly transition between mobile devices. In the design of MobilityFirst, mobility

and trustworthiness are two main keys. “Mobility” focuses on providing seamless

communication between wireless devices, thereby mitigating the mentioned limitation

of the existing architecture. “Trustworthiness” means that the design should be able

to handle security and privacy.

In MobilityFirst, names can be used to identify different entities such as devices,

services, consumers, or content. A Globally Unique IDentifier (GUID) contains bit-

strings to be used as an identifier and it can be self-certifying. The self-certification

of GUIDs means that any entities can be theoretically verified without requiring

an external certification authority. Challenge-response procedure is used in the

authentication process. In the design of GUIDs, Global Naming Service (GNS) is

used to translate human-readable names into corresponding GUIDs.

MobilityFirst uses a Network Addresses (NA) to identify a network. This NA

corresponds to an Autonomous System (AS) and it can also be used to identify a
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subnet or one or more base stations or an Internet Service Provider (ISP). Global

Name Resolution Service (GNRS) is used to translate GUIDs to NAs. When a content

producer needs to provide a content object or a service, it asks the GNS for a GUID.

The GUID is then registered along with its NA in the GNRS. when the consumer

needs a content object or a service, a GET message (Containing the GUID of a

desired content object or a service and the GUID of the consumer) is issued and sent

to its local Content Router (CR). The CR forwards the GET message to other CRs or

network entities. The GNRS provides routing information to route the GET message.

In a data routing process, a hybrid approach between IP routing and name-based

routing can be performed. The GNRS is responsible for mapping addresses to GUIDs.

Hence, to forward the data packet, traditional IP address routing can also be used.

However, the initial request for the data and all end host/node communication must

be done by using a name (associated with a GUID) rather than addresses. So, names

are exclusively interacted before forwarding data packets.

As presented in Figure 2.3, a host wants to sent a data packet to all of John’s

devices. The host will lookup and obtain the corresponding GUID from the GNS. A

service API is then invoked to use a command such as send (GUID, options, data).

’

‘ ’ ’

Figure 2.3: MobilityFirst Packet Routing

22



Chapter 2. Background and Related Work 2.3. ICN Approaches

The options can be service features such as anycast, multicast, and so on. The host

then queries the set of network addresses using a GNRS lookup to find the current

points of attachments of the destinations. In this case, the network addresses are N99

and N32. The packet is then sent out by the host and it consists of a destination

GUID, Service ID (SID), and list of NAs. To make a forwarding decision, each CR

uses the current NAs of the destinations. Multicast of the packet is then added to

reach both N99 and N32. The data packet is then forwarded to all of John’s devices.

If the packet fails to delivery according to disconnection or mobility. The packet is

still stored in the network and the GNRS is periodically updated to rebind the GUID

with the current NAs. The packet is then delivered before a timeout or it will be

discarded due to timeout.

According to the data routing process, the path to forward the GET message

might not be the same path to forward the data packet. This is due to the fact that

the GET and the content packet are routed based on their own destination GUIDs.

So, the routing processes are decoupled.

2.3.4 PSIRP/PURSUIT

The Publish-Subscribe paradigm is an alternate way of sending and receiving content.

Communication architectures based on this paradigm fundamentally consists of

three basic elements including publishers, subscribers, and a network of brokers

[43]. Publishers are the content producers who publish content by issuing content

publications to be requested by subscribers. Subscribers are content consumers that

are interested in the content provided by the publishers. Subscriptions are issued by

the subscribers to be sent out to consume the interested content items. A network

of brokers located between the publishers and subscribers is responsible for matching

the publications and subscriptions. The broker where the publication-subscription

matching takes place is known as the Rendezvous Point (RP) [44].

PSIRP (Publish-Subscribe Internet Routing Paradigm) [45, 46] is a clean-state

information-oriented architecture aiming to enhance the Future Internet. The core

networking functions have been developed based on the publish-subscribe primitives.

The architecture focuses on information rather than hosts. The paradigm includes

integrated support for anycast and multicast, caching, multihoming and mobility, and

security and privacy [44].

In PSIRP, content items are organised within scopes. Scopes can be physical
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Figure 2.4: PSIRP Overview

structures (e.g., a campus network, a corporate network) or logical structures (e.g.,

social media friends). A pair of identifiers: a Rendezvous Identifier (RId) and a

Scope Identifier (SId) is used to identify every content object with flat-label-based

information. The RId must be unique within a scope, while the SId denotes the scope

where a content object belongs. As presented in Figure 2.4, to publish a content

object, the publisher issues a publication with the SId of the scope. The RId is then

created for the publication and it is forwarded to the rendezvous nodes of the SId’s

rendezvous network. Subscriptions follow the similar process. When the subscriber

needs a content object, it learns the identifiers (the RId and the SId of the desired

piece of content). The subscriber then issues a subscription packet towards the proper

RP using the RId. A data forwarding path is created between the publisher and the

subscriber. The Forwarding Identifier (FI) consisting of a Bloom filter [47] of routing

information is used by the PSIRP routers to route the content object to the subscriber.

To further explore, PSIRP project has been expanded and called PURSUIT [48]

(Publish-Subscribe Internet Technologies). The motivation goals of PURSUIT are to

develop a more complete architecture and protocol suite. By taking the advantage of

all lessons learned from PSIRP, PURSUIT filters missing components and improves

the existing ones. In PURSUIT, the information organisation follows the same

principles of PSIRP. However, it also focuses on the lower layers and on mechanisms

that can provide better resource allocation and utilisation at the link and the physical
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layer by also taking advantage of the information structures at the higher layers [44].

For example, one of the most serious threats on caching networks is a cache pollution

attack [49]. However, at the higher layers, ranking information items based on positive

votes can achieve better results in terms of polluted content isolation [50].

2.3.5 Named Data Networking (NDN)

As mentioned previously, several ICN architectures are poised to address the current

limitations of today’s Internet, such as scalability, addressing, mobility, security, and

privacy. These ICN approaches also aim to be able to handle the requirements of new

emerging Internet applications in sufficient efficiency. To realise ICN, Named Data

Networking (NDN) [1, 2] is designed and has become one of the most promising ICN

architectures for the Future Internet [51]. According to its clean state design and

flexible communication model, it is expected to be suitable to handle a number of

challenges encountered in the today’s Internet requirements.

NDN supports information-oriented communication instead of the existing location-

oriented model. Every content item is identified by its name. By using a stateful

forwarding plane, forwarders keep a state of each request packet and remove the

state when its corresponding data returns back. Hence, this can keep track on

content delivery. According to the NDN’s stateful forwarding, intelligent forwarding

strategies can be deployed and loops can be detected. Content caching in NDN

allows nodes (e.g., routers, or end devices) to store distributed content objects leading

to accommodate scalable content delivery on the Internet. By the NDN’s design,

the scalability and content distribution issues of the current Internet architecture

can be potentially handled. Additionally, data transfer in NDN is secured directly

at the network layer. By signing any of named data, packets can be verified and

extra security mechanisms such as Public Key Infrastructure (PKI) [52] can also be

deployed.

The NDN project originally used Content-Centric Networking (CCNx) as its code-

base. However, as of 2013 has forked a version to support research experimentation

that aimed to address open questions (e.g., not as much forwarder modularity, API

ease-of-use, and trust management tools) [53].

Two packet types including interest and data packets is designed to eliminate the

current IP model. An interest packet issued by a requester is to request a desired

content object indicated by its name prefix. The corresponding data packet will be
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(a) IP Routing

(b) NDN Routing

Figure 2.5: The Main Difference between the Traditional IP and NDN Routing

returned back in the reverse path of the interest packet (i.e., Breadcrumb trail) to be

delivered to the requester. The content name is considered by a forwarding strategy

to indicate or route the interest packet, which this is also supplied by the routing

information in the FIB of each NDN node.

NDN allows multi-path routing that is different from the traditional host-to-host

routing. Figure 2.5 describes the overview of the major difference between the IP and

NDN routing. In Figure 2.5 (a), if there is a packet that is going to a destination,

the prefix of the destination IP address will be matched according to the routing

information in each router, which normally provides a single path routing. In NDN

as presented in Figure 2.5 (b), a packet can be sent in different paths. In default

NDN, each router normally selects a path indicated by every lowest link cost to route

the packet. Several paths can also be selected depending on a forwarding strategy.
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According to the support of multi-path routing in NDN, we can gain several benefits.

For example, in a dynamic topology, a source of content might be going off-line, if a

number of desired content objects are cached nearby, NDN could make full use of the

surrounding resources. While the traditional host-to-host routing might be failed to

get the content.

2.3.5.1 NDN Forwarding Strategy

To route NDN’s interest/data packets, there are three core elements in each NDN node

as presented in Figure 2.6: a Pending Interest Table (PIT), a FIB, and a Content

Store (i.e., called CS, or Cache). The PIT stores interest packets that have been

forwarded and are waiting for their content objects. The FIB contains forwarding

entries (Faces with name prefixes and costs) to be used as the input in a forwarding

strategy. This strategy determines proper Faces (e.g., by the lowest cost) to forward

the interest packets to find their corresponding data. The returning content objects

(i.e., data) are replicated in each router’s CS (i.e., Cache) along the default path from

their sources to their requesters. Thereby, this supports multi-sourcing since content

can be distributed in any parts of networks. The following strategies are available in

standard NDN to be configured for content finding.

• Best Route Strategy: The default forwarding strategy of NDN is configured to

find a content object in a shortest default path to its producer. A node selects a

Face with the lowest routing cost to forward an interest packet indicated by its

name. In this work, default NDN (i.e., standard NDN) means the default

best route strategy of NDN.

Figure 2.6: NDN Principle
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• Multi-cast Strategy: Every interest packet is forwarded to all outgoing Faces

to find its content object. These Faces are selected based on the name of the

content object in the supplied FIB entry in each NDN node.

• Client Control Strategy: A node specifies an outgoing Face for a particular name

of corresponding interest packets.

2.3.5.2 Shortest Path Strategies

In the NDN control plane, a routing protocol is crucial to compute and insert

forwarding entries into a FIB. Named-data Link State Routing protocol (NLSR)

[4, 54], for instance, is a routing protocol that advertises the reachability of name

prefixes to every router’s FIB. In the default forwarding plane of NDN, the best route

strategy determines a proper Face by considering the lowest cost supplied by the FIB

computed by the routing protocol to find the shortest way to fetch a content object.

To reduce NLSR’s overhead, a hyperbolic routing protocol [55] uses the coordinates

of NDN nodes to calculate a possible shortest path to a producer. Similarly, several

forwarding strategies (e.g., [56, 57, 58]) aim to find the best paths by considering other

factors (e.g., geolocations) to fetch desired content objects. However, nearby replicas

especially in the vicinities of consumers, which are often located off those paths, might

be opportune to be efficient looking for them to achieve higher delivery efficiency.

These can potentially be the shortest paths for retrieving the desired content.

2.3.5.3 Adaptive Forwarding Plane

By observing interest and data packets, a router can measure delivery performance

(e.g., RTT, throughput, and packet loss) to determine alternatively suitable paths to

forward an interest packet [59]. The forwarding process in NDN can be adaptive [60].

Thereby, robustness communication is another one of expected benefits of NDN due

to the adaptability and variety of content finding or routing paths.

Interface ranking [61, 62], for instance, is applied to find the current best path

to fetch a content object. In the design of [8], Faces can be categorised into three

colors. Green represents the status of a Face that can bring a desired content object

back. Yellow indicates that the Face may bring the content object back but it may

exceed an expected time. A Yellow Face turns to Red when there is no data packets

back after trying this Face in a certain amount of time or the Face is down. Notably,

each Face based on the color scheme can also be ranked by using another factor. For
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example, an RTT value can be recorded to rank the Yellow Faces. The lower RTT

might help to select a Face that can bring data faster. To find an appropriate path

of a content object, [63] creates routes based on an interface ranking. Content names

are mapped with a Face as an entry in a Stable BloomFilters(SBF)-based FIB. The

more an SBF’s entry matches with the content names, the higher associated Face is

ranked. An alternate path can then be selected based on the ranked Faces.

Although the ranking design might find a proper path to fetch a content object,

the strategies consider only the best way to find the content object indicated by its

name. In fact, the replica of the content object could be hidden nearby. It might be

difficult to find this replica because there is no indication entry in the FIB by default.

2.3.6 Comparison of ICN Approaches

As detailed previously, the number of representative ICN architectures and their

fundamentals are presented. By considering their routing strategies, name-based

routing, name resolution routing, and hybrid routing can be categorised. By using

name-based routing, an ICN approach like NDN (standard NDN) finds content hop

by hop. In this default NDN, the forwarding plane selects every Face indicating a

shortest path to an original source of desired content to forward an interest packet to

every next hop in this default path according to the FIB constructed by the control

plane. The PIT is used to keep track of the content delivery. However, PIT overflow

can be problematic, if there are a highly excessive number of unsatisfied PIT entries.

In terms of content finding, off-path cached content might not be located by using

the default strategy, causing sub-optimal delivery efficiency.

Even though DONA uses a resolution-based technique to ensure that such flat

names can be resolved to appropriate locations, FIND packets are routed using the

routing information in each RH provided by REGISTER packets that indicate paths

to publishers. This is likely also considered as a name-based routing approach.

A registration table in each RH maintains location information provided by the

REGISTER packets, which can help to point about next hop (or next RH) to available

objects/replicas according to their names. Nevertheless, there is a global scalability

challenge due to the hierarchical fashion.

By using name resolution routing strategies, a rendezvous point is responsible for

mapping request packets to their producers or corresponding caches. For instance,

MobilityFirst use GNRS to map addresses to registered GUIDs. A GET message
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stores the GUID of a desired content. To forward the GET message, each CR asks

the GNRS for a route of the mapped GUID. If the packet fails to delivery due to

disconnection or mobility, GNRS is periodically updated to rebind the GUID with

the current NAs. This rebinding process might also slow down the name resolution

processes. Changing topology/connection and mobility might still be problematic

especially in terms of delivery delays, e.g., the rebinding delays can also increase the

overall delays of content delivery.

In PSIRP/PURSUIT, a pair of identifiers: an RId and SId is used to identify

each information item. A subscriber sends out a subscription message via its local

RN in its scope using the RId. A return path is then generated denoting with an FI

to be sent to the source, which source routing is then used to deliver content to the

subscriber. However, the particularly designed scope in this architecture might limit

communication in a particular area, facing scalability challenges. Multiple rendezvous

nodes might create higher control overhead. By using the name resolution routing

strategy, additional resolution delays can also decrease delivery efficiency. Single point

of failure can make desired content inaccessible. In addition, NDO mapping in the

centralised manner also requires large storage.

A hybrid strategy like NetInf can switch the operation between name-based routing

and name resolution routing. The name resolution routing is activated by sending

a request to an NRS to get routing hints or a set of locators. NetInf allows multi-

level caching. For example, more requested content will be cached in the access level

(nodes) while less frequently requested content should be cached in the AS level. In

this hybrid approach, additional resolution delays and single point of failure could still

be problematic, when the name resolution routing is activated. Multi-level caching

might be complex in terms of cache management. For example, if an access node

decides to not cache a specific content object, other nodes that need this object might

spend more time in looking for the object at a higher caching level. In addition,

distributing NDO information (for the name-based routing) especially when there are

massive amounts of NDOs can increase excessive overhead that might impact the

entire network traffic.

To summarise those ICN approaches, their routing strategies, main features,

and shortcoming remarks are compared in Table 2.1. Additionally, there are other

interesting ICN approaches such as COntent Mediator architecture for content aware

nETworks (COMET) [64], CONVERGENCE [65], CONET [66], and CURLING [67].

Nevertheless, the main key features that characterise most ICN architectures can
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summarily be in-network caching, traffic management and QoS, mobility support,

resolution handling and data transport, forwarding and data routing, and congestion

control. We discuss each of these features as follows:

• According to location-independent naming of information objects, content can

be replicated in several caches, which can be delivered to consumers irrespective

of whether the original producer is inaccessible or not. Caching allows more

efficient utilisation of replicas and multiple paths for content delivery.

• Exposing content names to the forwarding layer can support traffic management

and QoS. For example, the selection of an appropriate source of a desired content

can be performed over the essentially suitable routing paths (e.g., shortest paths,

less congested, lowest delays, etc.), which can be directly considered at the

forwarding layer.

• Several ICN architectures can natively support consumer mobility. Mobile nodes

simply re-issue requests for content objects that they have missed due to the

disconnection during handover. Additional overhead can be incurred but it is

still potentially flexible than the current TCP/IP communication model that

has been encountering the limitations of session re-establishment and location-

dependent routing.

• By using resolution routing, a separate resolution handler matches consumers

with producers to calculate routing paths for data transport.

• Since naming can directly operate at the forwarding layer, an ICN node can

make forwarding decisions on its own. Routing protocol can also be deployed

to propagate default routing information for the forwarding decisions. Data

routing can be coupled with the request forwarding such as returning a data

packet back in the reverse path of its request.

• ICN can monitor traffic information using a separated service or a mechanism

inside an ICN node itself. For example, when there are highly congested packets

in a particular network interface, the ICN node can use alternate interfaces to

forward packets.

Although ICN can provide the number of favorable features, there are also the

number of shortcoming remarks as mentioned previously and as compared in Table
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2.1. By using name resolution approaches, single point of failure and additional

resolution delays could be problematic. Some particular ICN approaches might be

beneficial in a particular network structure such as RHs in the hierarchical fashion

of DONA. Scopes in PSIRP/PURSUIT might also face scalability challenges. In the

centralised manner, most resolution mapping strategies require large storage. Multiple

NRSs can incur highly control overhead. In addition, when cached objects may change

so quickly, resolution-based strategies could not effectively map these objects.

Hence, we are interested in the ICN architectures based on name-based routing

since interest/data packets can be routed according to their names irrespective of

a separate name resolution service/system. This could be more flexible in various

network environments. Although the name-based routing might perform well in

NetInf, the excessive overhead of distributing NDO information must be debatable.

In addition, the strategy still relies on the name resolution, which can still face the

aforementioned problems of the resolution-based routing. Flat naming in some ICN

approaches has a scalability challenge since it does not support routing aggregation.

Hence, by considering the aforementioned drawbacks, we focus on NDN due to

its clean state design and flexible communication model, which can potentially be

deployed in various kinds of networks. It is also one of the most promising ICN

architectures [68] and widely discussed as a potential paradigm for the Future Internet.

NDN uses hierarchical naming that can be readable and easy to remember and

it can also be aggregated into a name prefix to indicate content finding in single-

sourcing or multi-sourcing. However, it imposes security vulnerability because the

name is visible. Nevertheless, according to its design, it secures data directly [69],

which can achieve data authenticity, and confidentiality regardless of whether the

data is in transit or at rest. Additionally, extra security mechanisms like PKI can

also be deployed. Each ICN approach has its own content finding issues as discussed

earlier. Likewise, NDN has also ineffective content finding strategies. Although an

NDN node can send a request to a shortest path due to the routing information

constructed in the control plane, several off-path (e.g., nearby) cached content objects

cannot be located because there is no routing information for these objects, causing

a worse than necessary delivery efficiency. Multi-cast strategies might help to find

these objects faster. They can increase excessive overhead and cache eviction rates,

however. More details regarding these issues will be specifically discussed further in

Section 2.5.1.
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Architecture Strategy Main Feature Remark

DONA

N
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m

e
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es
ol

u
ti

o
n

In each AS, one logical RH
is responsible for the resolution
process. RHs support two primi-
tives: FIND and REGISTER. RHs
forward REGISTER issued by a
producer to a higher layer RH and
peer RHs and route FIND indicated
by the location information from
REGISTER.

Global scalability chal-
lenge. Single point of fail-
ure. Routing overhead of
REGISTER dissemination
due to the uniqueness of
flat named objects. Off-
path content finding.

NetInf

H
y
b

ri
d

By using the name-based routing,
a request is forwarded unless a
content is located. If the request
cannot be routed, the name reso-
lution is activated by sending the
request to an NRS to get routing
hints/locators. Local and global
NRS can indicate a selected locator
close to a requester.

Additional resolution de-
lays. Single point of fail-
ure. Complexity of multi-
level caching. Overhead of
distributing NDO informa-
tion.

MobilityFirst

N
am

e
R

es
o
lu

ti
on

GNRS is responsible for mapping
addresses to registered GUIDs. A
consumer issues a GET message
containing the GUID of a desired
object. Each CR asks the GNRS
for a route to forward the GET
message.

Additional resolution de-
lays. Delay of rebinding
name resolution informa-
tion. NDO mapping re-
quires large storage. Single
point of failure.

PSIRP/
PURSUIT

N
am

e
R

es
ol

u
ti

on

A subscriber issues a subscrip-
tion packet towards a proper ren-
dezvous point. Rendezvous function
matches the subscriber’s interest
with a specific content provided by
a publisher. Routing table creates a
delivery path.

Scalability challenge due
to scopes and flat-label-
based. Higher control
overhead. Single point of
failure. Additional resolu-
tion delays. NDO mapping
requires large storage. Off-
path content finding.

NDN

N
am

e-
b

a
se

d
R

ou
ti

n
g

Find objects hop by hop. Reliable
and global delivery. An Interest
packet is to request an object,
which will be returned back in a
Breadcrumb trail. Routing loops
can be detected and eliminated.

PIT overflow. Congestion,
if there are a highly exces-
sive number of PIT entries
especially mapped within a
particular Face. Off-path
content finding.

Table 2.1: Comparison of the ICN Approaches
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2.4 Content Caching

According to the increasing content demand, various techniques of performance

optimisations for accessing content have been developed. For example, load balancing

is the technique of distributing network traffic across multiple servers in a server farm.

This is to ensure that there is no single server that encounters too much demand, e.g.,

connections, which can improve responsiveness. However, content objects could still

be located further away from their consumers, causing highly delivery delays.

Another one of the most well-known techniques of content access enhancement

is content caching such as Content Delivery Networks (CDNs) in the existing

architecture. Also, in most ICN approaches, content caching is one of their key

components as described in Section 2.2. By caching content, a desired content item

can be served from a closer cache rather than its original server, which is frequently

located further away. So, this will decrease the content retrieval time. To indicate

the potential advantages of content caching in NDN over the existing CDNs in the

current architecture, the following sections describe some background of CDNs and

discuss the comparison of NDN to CDNs in the caching manner.

Note, this work aims to improve content finding in NDN that has different

characteristics of content caching compared to CDNs. This section mainly aims to

present some background related to the content finding/caching in CDNs that are

widely used in the existing Internet architecture leading to the discussion regarding

the potential advantages of content caching in NDN that a content finding solution

can provide some benefits.

2.4.1 Content Delivery Networks (CDNs)

CDN is a geographically distributed group of servers. The goal is to provide fast

delivery of Internet content by caching them and this aims to move content closer to

users [70]. In the early days, web content objects were usually served from one sever

to all clients. By using traditional web hosting, several websites struggled to perform

adequately. Single server distribution is not a sufficient solution for the increasing

demand of content (e.g., ultra high-resolution videos, musics, graphics, software, etc.)

we consume today. Although adding more servers and employing load balancing could

help to mitigate the problem, scalability is still the important issue. While a CDN

does not host content, it does help to cache content at the network edge, which can
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improve website performance.

As several of content creators are driven commercial enterprises, it is important

for them to ensure that their users received the best possible quality of experience.

Small delays in the loading of content could be very sensitive for user experience

[71]. Hence, the content creators often employ CDNs to guarantee that their users

are not discouraged from enjoying multi-media content due to poor connectivity or

availability. The basic operation of content caching in the current Internet architecture

can be described as follows:

1. A consumer accesses a desired content object by clicking a link to a web page

or by using an application.

2. Assuming that the desired content is not already stored in the browser cache

or the consumer has not recently visited the web page, the consumer’s browser

gets connected to the possible nearest cache automatically. The request is then

sent to the cache. This is done by using a redirection technique (e.g., DNS

resolution) to route the request.

3. If the requested object is available in the cache, it is then delivered to the

consumer. In this case, the content will be fetched extremely fast because the

content object is physically closer to the consumer.

4. If the requested object is not stored in the cache, the object will be fetched from

the original server and ultimately delivered to the consumer. It can be slower

for an initial request to the original server but this case will be rarer. Hence, the

consumer can always expect an impressive retrieval time due to content caching.

By distributing proxy/caching servers in data centers all over the world, content

can be delivered efficiently without straining the origin servers (the locations that

stores the original content). A CDN ensures that content can be delivered to a

user directly from a possible closest location. This decreases latency and load times,

contributing the better quality of experience while consuming desired content. A

content object that is already cached in a CDN server can be a potential source for

the next users that request the same object from the same area, resulting in faster load

times. The CDN server between the user and the original storage server also prevents

the origin not being overwhelmed by a huge number of direct requests. Content can
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be delivered from different network locations since CDN servers are distributed. This

allows content to go viral without systems crashing because of the heavy load.

By increasing the number of Points of Presence (PoPs) [72], the possibility

that there is a nearby server to a larger percentage of end-users is increased.

This can ensure that the users derived a consistent standard irrespective of where

they are located. Placing content topologically to a user offers a more reliable

connection between the user and the nearby CDN server. The traffic must traverse

fewer networks, which means cutting distance is cutting latency, thereby potentially

increasing the reliability.

The composition of a CDN can vary from provider to provider [73] and frequently

changes over time. Nevertheless, the key components [74] can often be generalised as

itemised below.

• Replica Servers: These servers replicate a content object in order to serve a

request performed by a user. They are the core infrastructure of a CDN.

• Origin Server: This server stores the original file or object of the content. The

server is possibly operated by the content provider or a designated server in the

CDN operation infrastructure. Generally, changes in the content on this origin

server will be updated across the replica servers.

• Clients: They are the end-users requesting the content. They may be connected

and located anywhere on the Internet. The connections can be through different

networks and technologies.

• Redirection Infrastructure: This is to ensure that a user receives a desired

content object from a CDN server. Notably, the redirection strategy must

ensure that the request performed by the user can be served from a nearby

replica server. This guarantees that the user received the best possible quality

of experience due to the lower latency.

• Distribution Infrastructure: The distribution infrastructure is to deliver the

content stored on the origin server to a number of replica servers. The content

can be proactively cached on the replica servers before it is requested by a

user. This ensures that the user can receive the content instantly because the

replica server does not have to retrieve the content from the original sever before

forwarding to the user. The content can also be reactively cached, which means
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there is no content stored on the replica server by default. The content will

be replicated on the replica server once initially requested by the user. So, the

initial request will be typically slower, but next requests will take the advantage

from the replica server that has stored the content already. This reactive content

caching is useful in cases where the cache has a limited storage.

• Accounting and Monitoring Infrastructure: The accounting infrastructure allows

the provider to precisely charge for the usage of the CDN to their users. The

monitoring infrastructure enables the provider to monitor the health of the

other elements of the CDN. This ensures the availability and the reachability of

the content. It can also inform that which replica servers should situate what

content, by considering previous request data, which can maximise the cost

savings.

Redirection techniques are crucial to redirect or route a request to a proper CDN

server1. Several methods are used to achieve these. For example, the HTTP 1.0

specification [76] defines a number of codes that can redirect a HTTP request to

an alternate location. For instance, the 301 code is defined as Moved Permanently,

which indicates that there is no requested content available at the current location

and all next requests should be redirect to a given URI. However, a limitation of using

HTTP codes is that the servers must know where the content is currently located. In

a distribution system, the content can be located in several locations. So, modifying

the target of a redirect in a per-client basis is not scalable.

By using the DNS resolution, a given URL will be resolved to an IP address using a

lookup to a DNS server. The resolution process can also be used to redirect a request

to a geographically closer cache [77]. To achieve this, the DNS server will inspect the

source of the request with a corresponding geographical region. A response will then

be returned to the user, which will indicate the request from the user to a nearby

edge cache. Nevertheless, the same piece of content can be stored with different

identifiers within a cache, causing cache duplication and unnecessary disk utilisation.

In addition, when the user caches the DNS response, it can result in a slower response

to failures. This is because the user is not aware of changes in the location of the

1Note, since content can be distributed in more than one location, caching techniques are also
important [75], e.g., for the improvement of a cache hit ratio. However, this section mainly discusses
about redirection since this can provide the basic understanding of how content can be located in
CDNs which is widely used in the existing Internet architecture for the improvement of content
delivery that is different from NDN.
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content. Content provider may use low Time To Live (TTL) values in their DNS

entries, but it can result in frequent DNS cache misses, causing additional delays.

Another technique to redirect requests is performed on the transport layer.

Generally, a request routing middlebox or appliance that acts as an initial gateway is

required. A replica server will then be selected from a connected group indicated by

the appliance and deliver the content to the user without traversing the middlebox

again. Notably, the user requires to purchase the intermediary middlebox. There are

also additional maintenance costs and changing the configuration of a device can be

a time-consuming process.

By using an anycast technique, a routing protocol (such as the Border Gateway

Protocol) is used to announce the same IP address from several different places within

the Internet. However, not all replica servers replicate the same set of content. In

addition, most redirection techniques require additional redirection services, servers,

or devices that can introduce a single point of failure. The delay of a redirection

process can also increase the overall delivery delay.

2.4.2 Comparing NDN to CDNs

Although NDN is a clean state paradigm, NDN can still operate as an overlay on the

today’s TCP/IP architecture by mapping network interfaces to NDN Faces. Similarly,

a CDN is also operated as an overlay on the existing architecture. Both designs share

the same motivation that is to solve the scalability challenges of content demand and

distribution. Additionally, when content objects (e.g. popular content) are requested

by a huge number of users, content servers without CDNs or NDN would confront

load or performance problems.

According to the design of CDNs, content objects can be pushed to edge caches

that are close to consumers. When a consumer needs a content object, a common

solution to find the object is that a host DNS serves the IP address of a proper

server/cache to the consumer. Several CDN servers that are distributed in different

locations could help to handle the scalable challenges and to improve delivery

efficiency. CDNs tend to be a good solution to address a number of current limitations

of the TCP/IP architecture. But as content distribution traffic grows, current

solutions like CDNs might not be sufficient and more efficient solutions are needed.

NDN would potentially be a long-term solution to address the challenging problems.

A number of comparisons between NDN and CDNs have been examined and
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discussed. For example, the study of [78] compared NDN to CDNs in several aspects

especially in terms of content delivery efficiency. The results of the study prove that

under the same topological network conditions, the number of packet loss by using

NDN is significantly less than CDN and the average latency of NDN is lower. The

studies in [78, 79] prove that under the same network load and bandwidth, bandwidth

utilisation using NDN is better and CDNs need more nodes to equal NDN. Similarly,

under the same network condition, in [80], CDNs consume more bandwidth compared

to NDN because NDN can support different interest requests in every frequently

requested path but a CDN supports only limited interests for content at particular

caches. It means that by using the CDN, there are more number of interest packets

that must be forwarded to original producers compared to NDN. Together, these

studies have proved that NDN can perform better especially in terms of scalability

and delivery efficiency.

Furthermore, today’s Internet is more dynamic and the multi-point communication

of NDN is suitable for dynamic caching [80]. NDN does not require a resolution host

(e.g., DNS) like CDNs or edge cache servers. Hence, it can also reduce the deployment

costs and make networks more robust.

2.4.3 Benefits of Content Caching in NDN

The primary benefit of content caching is the retrieval time. As many content creators

are driven commercially, the content retrieval time is the key factor to ensure the

best possible quality of experience to users. Assuming that a content producer is

located in the UK, a consumer is accessing the content from somewhere in Asia.

Even though the server and network platform perform very well, the retrieval time

could be hundreds of milliseconds or more. However, content caching can bring the

content closer to the consumer and this ensures faster retrieval time. This can also

indicate that the consumer would be satisfied in the delivery efficiency of the desired

content. Consumers are mostly sensitive to loading delays, which they can leave using

unsatisfied services.

In an NDN network, nodes can consume, publish, and forward content objects

according to their unique names. Content caching allows NDN nodes (e.g., routers,

and end devices) to replicate content in their local caches. When a node or router

receives an interest packet, it checks its local cache to seek a corresponding content

object by the interest’s name. This can reduce the workloads of end producers
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and can bring content closer to consumers. The study of [5] demonstrates that

caching content in router-level can lead to significant reductions in path distance.

More content/replica availability can also result in lower congestion on long paths [7].

Hence, closer replicas provide advantages to both end-users and content producers.

With lossy access links, [81] shows that NDN can gain more advantage in finding

cached content. Caching also helps to reduce redundant traffic in the Internet [82].

Nevertheless, although the replicas are often cached nearby (depending on the

replica density), the standard strategy of NDN is not designed to find these nearby

replicas. So, the strategy does not utilise the existing nearby replicas, which can

be the better sources for consumers. This means by using the default mechanism of

NDN, the appropriate advantages of cached replicas (especially nearby objects), which

are distributed to various locations in the network, can not be taken. For example,

finding these nearby objects could improve delivery efficiency and cache utilisation.

2.5 Content Finding in NDN

In the previous section, we presented the importance of content caching that is the

important key component of NDN. We also pre-announced the particular content

finding issues in the former section that can handicap the benefits of content caching.

Hence, this section details these particular issues of off-path content finding in NDN,

which brings to the main research motivation of this work.

Several content finding proposals have been proposed to solve their motivation

problems. These proposals mostly modify both or either the control plane (to initially

define default paths from consumers to origin producers) and the forwarding plane (to

forward packets by following the defined paths) to support their schemes. Further to

the first sub section (Section 2.5.1), the after sub sections discuss those content finding

solutions, which are categorised broadly into two main groups depending on their

strategies. We also highlight their shortcomings that should be avoided or mitigated

in our design.

2.5.1 Off-path Content Finding Issues in NDN

According to the caching function of NDN, a content object can be replicated in

several locations (i.e., router nodes, end devices). A content finding strategy finds

the object or its replicas dependent on a particular technique. Based on the default
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best route strategy, an NDN router searches content opportunistically on-path (i.e.,

along a default path to a producer) indicated by a corresponding FIB’s entry. The

content can be found at the origin producer or an intermediary cache in the default

path. However, the content can also be found off-path (i.e., off the default path),

which might be closer than the on-path caches.

The strategies that are available in default NDN are illustrated in Figure 2.7 and

described as follows. First, the default best route strategy of NDN finds a content

object on its default path. Assuming that the node h1 is a consumer and needs a

content object named “/h3-site/h3/content”, this node issues an interest packet to

be forwarded on-path. To simply describe the calculation of the cost for finding the

content, this cost is generally calculated by multiplying the number of hops with a

defined latency. In this case, each link is assumed the homogeneous latency of 10ms.

Assuming that the content origin is the node h3, the shortest path takes two

hops from h1 to h3. Therefore, 2*10 equals 20, which is the lowest cost to h3.

Longest prefix matching is used and in this case, h1 tries to match the entire name

“/h3-site/h3/content” in its FIB. However, this cannot be exactly matched since the

default routing like NLSR propagates reachability to name prefixes. So, the shorter

name prefix (/h3-site/h3/) is instead matched. There are two Faces in h1 but it

selects the Face 1 due to the lowest cost of 20 to send the interest packet. This

process happens again at h2 and the Face 2 is selected because it takes one hop to

reach h3. The lowest cost coupled with this Face is 10. The interest packet will then

be reached at h3 and the content will be forwarded to the reverse path to h1 using

“the Breadcrumb” left by the interest packet from h1.

Nevertheless, assuming that the content “/h3-site/h3/content” is already re-

quested and cached in h5 ’s CS, h1 cannot find the closer (off-path) replica at h5

because there is no indication to confirm the availability of the content in h5. It

always follows the default strategy. In addition to the first strategy, second, by using

the multi-cast strategy of NDN, the interest packet is forwarded to all outgoing Faces

(e.g., both Face 1 and 2 of h1 ). This can increase the opportunity to locate the

nearby replica. Third, by using the client control strategy, h1 specifies an outgoing

Face for the particular content name, which can be Face 1 or 2 depending on the

node’s administrators.

As mentioned in Section 2.4.3, faster retrieval time is the primary benefit of content

caching. Considering nearby (cached) replicas can offer advantages, especially in terms

of content access. According to the above described default strategy, the desired
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content object is found further whilst it is already cached closer. So, this decreases

considerable gains especially in terms of delivery efficiency.

As discussed previously, many content creators need to ensure that their consumers

received the best quality of experience. Longer delays can be problematic. Even

though content caching can bring replicas closer to consumers, content objects are

mostly found along the default paths due to the default strategy. Nearby (cached)

replicas are often not utilised. This means that cache utilisation is relatively poor

whilst caching feature is one of the promising techniques of NDN to address the

current content distribution of the today’s Internet. Furthermore, the workloads of

end producers or other surrounding caches performed by the default strategy can be

higher than a strategy that can find nearby replicas. This is because these producers

are the terminals of all corresponding requests. The producers themselves or their

surrounding caches have to handle several requests from different locations. However,

if nearby content can be located, the number of packets in long paths can also be

reduced, thereby mitigating the network load including the workloads of end producers

and their nearby nodes.

Although the multi-cast strategy of NDN can help to find nearby replicas, excessive

overhead can be incurred because of without defining proper scopes to restrict the area

of interest flooding. Notably, several data chunks in return can be created because

Figure 2.7: Content Finding in NDN
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interest packets traverse to many locations. Desired content can be hit in several

places, causing higher cache eviction rates in return. By using the client control

strategy, it requires good knowledge of the best directions to forward interest packets.

Nevertheless, network conditions can change anytime. It is also difficult to configure

a node with no permissions granted.

2.5.2 Content Finding Solutions

In NDN, content objects/replicas in each CS allow consumers to retrieve their

desired content objects from different sources. Multi-sourcing supports content replica

fetching, thereby providing a number of advantages (e.g., a lower delay by fetching

a nearby content, and higher cache hit-rate). Several proposals (e.g., [6, 83, 84, 85])

try to pro-actively push a number of replicas into a specific area to increase content

availability (i.e., density). The higher number of the replicas of desired content can

increase the opportunities that the requested content can be located faster. However,

although several replicas are often already cached close to consumers, a few proposals

are directly designed to find and gain benefits from these nearby replicas, especially

along with the consideration of their density.

To find and deliver desired objects, both or either the control plane and the data

plane must be required to create a delivery chain. In the control plane, routers/nodes

normally exchange routing updates and calculates the best default paths to proactively

construct the FIBs. The information in the FIBs can indicate a default path from

a consumer to an origin producer for an interest packet. The actual control plane is

stateful, which can adapt to the network changes (e.g., link down, node crashes, new

links, or alternate routing paths). According to the constructed routing information

from the control plane, in the forwarding plane also known as the data plane, an

interest packet is normally forwarded to every next hop that is executed upon the

FIB’s entries.

[61] assumes that in NDN, the forwarding plane is the actual control plane because

the forwarding strategy module makes forwarding decisions on its own. For example,

when a failure is detected, a node can send interest packets to other Faces to discover

alternate paths. [82] suggests that cached content objects should left behind the

control plane due to two reasons. First, the cached objects may change so quickly

that it is difficult to keep track of them in the routing table. The data plane might

select inappropriate Faces due to the obsoleted routing information. Second, they are
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distributed randomly and cannot be aggregated to achieve scalability, which is likely

in the context of routing management. Nevertheless, both control and forwarding

plane is still applied in several content finding solutions to address their motivation

problems. This also depends on their definitions and aspects.

Content finding can be broadly separated into two main solutions: resolution-

based and routing-based solutions [86]. In resolution-based solutions, rendezvous

points are responsible for mapping content producers with requesters. In a centralised

manner, an NRS [87] is required to register/update communication. For example,

NDNS [88] mimics the structure of the DNS system in the today’s Internet to provide

support for cryptographic key distribution and routing management. Each router has

“/net/NDNS” prefix in its FIB to further forward an interest packet to perform lookup

at an NDNS server. To find content objects in proper paths, using resolution-based

solutions (e.g., [36, 89]), requesters are mapped with producers at rendezvous points.

Additionally, several resolution-based solutions (e.g., [87, 90, 91, 92]) are designed to

locate off-path content objects cached at nearby (or not) nodes. These solutions also

map requests to content objects usually at predetermined rendezvous points.

In the traditional CDN, a request-routing algorithm (e.g., DNS-based request

routing [93]) resolves a domain name into a numerical IP address of the optimal server.

By embedding NDN into the existing CDN framework, in the design of nCDN [94],

content objects or their replicas can be routed from the nearest server to consumers

straightforward. According to the static server location with resolution-based content

finding, consumers know where to find the content objects. However, a server is still

required to translate a HTTP request to the NDN interest format, thereby possibly

complicating the communication.

To discover off-path cached replicas, an extra routing table at each NDN node is

usually required to map or to create paths from requesters towards the corresponding

rendezvous points or the off-path caches. For example, a new component table is

used to map requests to collaborative routers that cache desired content objects [95].

The extra routing information can maintain either in a distributed manner by using

signaling protocols like [54, 96]. Upon a route request, a controller designed in [97]

locates a content producer by computing the sequence of router identifiers in the path

from its consumer. A specific interest packet installs the new FIB entry on each

router along the path and a corresponding interest packet is forwarded in this path.

In another approach [98], every subscription request asks the Mediation System (a

rendezvous point) to identify the resolution path to request content. [9] has proposed
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a design, named Fetching the Nearest Replica (FNR). A tracker server (similar to

the DNS system) calculates a path to forward an interest packet to fetch a popular

replica. Similarly, in the approach presented in [99], a topology is divided into different

domains and a rendezvous controller in each domain is responsible for forwarding

decisions.

However, centralised designs may not take the appropriate advantages of the

decentralised concept of NDN [100, 101] especially in dynamic topologies (e.g., mobile

environments [102]). Their performance can be degraded when there are dynamic

and large content demand [86]. Furthermore, by using resolution-based solutions,

resolution delay could also be problematic. This is because the increment of the

resolution delay can increase the overall delivery delay. A single point of failure could

be another important problem [103]. In addition, it is very difficult to map nearby

replicas that may change so quickly.

Several routing-based solutions make use of opportunistic information on the

availability of content. [104] considers an ideal Nearest Routing Replica (iNRR)

scheme that allows to reach the nearest, possibly off-path, cached replica. The

iterative algorithm makes use of an oracle providing information on the availability

of content in all caches. The scheme selects a Face with the shortest distance to a

desired content item. However, according to the authors, the implementation of the

perfect oracle is not feasible in a real environment [105].

In the approach presented in [106], each Content Router (CR) has a neighbor

table. Each CR broadcasts content identifiers to its neighboring CRs and adds the

identifiers to their neighbor tables. The tables allow opportunistic content routing

towards CRs that may have the desired content. There are some drawbacks including

false misses and false hits. A false miss is when a CR has a new content, but the

content identifiers have not updated. A false hit is when the CR does not store the

content anymore, but the content identifiers still reflects it.

A number of reinforcement learning approaches have been proposed. INFORM

[107] realises distributed reinforcement learning at each network node to discover

routes towards temporary replicas. The strategy adheres the family of approaches

[8, 108, 109] that uses local information available at each node to quickly react to

dynamic item availability. The strategy is to complement NDN with a dynamic

INterest FORwarding Mechanism (INFORM). There are two phases including

exploration and exploitation when making forwarding decisions. In the exploration

phase, there is no learning incurred and a received interest packet is sent using the
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best Face indicated by the FIB. A random Face is then selected to send a copy of the

interest. This process is repeated again except the best Face will be the one learnt by

the strategy and it will be used in the subsequent exploitation phase. Nevertheless,

there is no method to handle interest NACKs, which can increase the possibilities of

interest loops [110].

Similarly, Multi-Armed Bandits Strategy (MABS) based on reinforcement learning

is proposed in [111], which an NDN node floods a request to its all of Faces to

explore nearby replicas, when there is no available forwarding information. By

using reinforcement learning, the trade-offs between exploring the environment and

exploiting which the best Face has already learned should be discussed. For example,

in a highly dynamic environment, the costs for the exploring phrase can be higher.

Scoped-flooding [112, 113] is usually applied to find an off-path content object with

a certain probability. A hop limit is usually used to restrict a scope. [113] adds a new

component called Downstream Forwarding Information Base (D-FIB) to an original

NDN content router to track the directions in which the data packets were sent in the

past. The D-FIB entries are based on the “Breadcrumbs” [114]. To increase cache

hit rates, the strategy opportunistically multicasts an interest both towards its origin

producer and the direction indicated by the D-FIB entries. The similar concept of

this strategy is extended in [115]. A strategy proposed in [116] send scanning requests

to locate close and possibly multiple copies of a requested content. Content Routing

Tables (CRTs) are exchanged among content routers to advertise routing information.

In an NDN node, the scanning requests are sent to the next hops indicated by its CRT.

Nevertheless, flooding/multicasting interest packets might create several data

chunks in return, causing higher cache eviction rates [105]. Flooding requests or meta-

requests to discover content locations might also introduce amounts of overheads.

However, the proposal [117] limits the scope of the flood to the neighborhood. The

results demonstrate that although there are some additional overhead costs, the

approach is far from unacceptable and can indeed scale and achieve considerable

gains.

In other multipath strategies [118, 119, 120, 121], the forwarding probability

of each Face in each NDN node is dynamically assigned by a forwarding weight,

which helps to determine the proportion of traffic (e.g., a number of interest/data

packets) sent on it. Achieving load balancing and managing congestion control are

the main aims of these strategies. In other approaches like [122, 123], several attributes

related to real time network conditions are considered to select a Face with the high

46



Chapter 2. Background and Related Work 2.5. Content Finding in NDN

probability to forward an interest packet. Nevertheless, by considering many metrics,

a high calculation time can be problematic in making a forwarding decision [124].

A multi-path interest forwarding strategy might increase the opportunity to locate

nearby replicas. For instance, each NDN router forwards every interest packet to all

upstreams according to the supplied FIB entries. However, the increasing overhead

can impact the entire network. The broadcast strategy can also cause the interest

flooding attacks [62, 125] and DDoS Attacks [126].

A strategy [82] is designed to advertise cached content objects in a limited scope.

Nevertheless, it still lacks the quantitative analysis and the concrete implementation

for the routing strategy. For example, how exactly does the strategy define a scope

and the impact of the scope’s size and its overhead costs. Additionally, a number

of implementation techniques are not likely stipulated. In considering a strategy

presented in [127], nodes need to be partitioned into different reigns to define a cluster.

This is to limit a scope of internal cached content announcement. However, the best

source for a content object might be located in a different cluster. It is also difficult to

define clusters in complex topologies, e.g., highly dynamic environments. Introducing

a new component namely Availability Info Base (AIB), is deployed in [95] to keep

track of content availability information from other collaborative routers. Notably,

the false hit problem should be discussed.

The approach in [86] advertises content from origin servers using a Bloom filter-

based routing. This has claimed the advantages over the shortest path approach

in terms of overhead costs and delivery efficiency. However, replicas that are often

cached nearby could be another potential sources for consumers rather than the origin

servers.

In addition, most of content finding strategies do not consider or provide a concrete

analysis of the availability of replicas in regard to their densities in the network. We

argue that the popularity or content (replica) densities can be the important factor

on impacting content finding/delivery.

2.5.3 Content Finding in Mobile NDN Environments

In the current Internet architecture, by using an IP address to identify a mobile

host, when the mobile host moves to a new location, the TCP connection identifier

causes TCP connection continuity problem [10]. The mobile node requires decoupling

between the location of the mobile host from the identifier for the TCP connection
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identification. Establishing a new TCP connection is required to continue the

connectivity. To solve this issue, Mobile IP [18] is designed to allow mobile devices

to move from one network to another with the same IP address. It ensures the

connection continuity without dropping connection’s sessions. However, it is not an

efficient solution because it is still built on top of the original IP design, which is

still encountering the limitation of mobility support. Furthermore, in the triangular

routing of the design, the content source has to send packets to a home agent before

forwarding to a mobile device. Similarly, the mobile device may have to transfer

generated content to a home agent first before sending to a requester. This is very

inefficient especially in terms of delivery efficiency.

In NDN, a mobile node needs to send an interest packet to request a desired

content object and when it is moving to a new location or NDN Access Router

(NAR), a desired content is often forwarded to the NAR that the mobile node

has performed the request. The desired content object is returned in the reverse

path of the request (interest) packet back to the mobile node. When the mobile

node has moved to the new NAR before receiving the content object, it re-expresses

the unsatisfied interest packet to create/update a new path to its current NAR. So,

consumer mobility is natively supported [128]. Thus, NDN has been extensively used

as underlying communication paradigm for mobile environments (such as Vehicular

Ad-hoc Networks [129]).

Different types of wireless networks have their own characteristics. For example, in

Mobile Ad hoc Networks (MANETs), nodes are infrastructure less. In Wireless Sensor

Networks (WSNs), nodes can be fixed or mobile. A content finding solution in NDN as

underlying communication architecture for MANET and WSN should consider energy

efficiency the most [130, 131] because the energy and power consumption of mobile

and sensor nodes is the important issue in these types of networks. In Wireless Mesh

Networks (WMNs), mobility of node is less frequent and topology is likely static.

The networking infrastructure is simplified and decentralised. Hence, decentralised

designs of content finding solutions would be feasible to deploy in WMNs. In Vehicular

Ad hoc Networks, fast moving vehicles exchange information with other vehicles and

Road Side Units (RSUs) [132]. Since VANET nodes are located at the roadside or are

connected to the power supply of each vehicle, they are usually not energy constrained

[133]. However, content finding and delivery in these kinds of wireless networks

frequently encounter the particular issues as described in the following paragraph.

These issues are also particularly examined in this work.
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Several objects are often forwarded to a previous NAR of a mobile node due to

its movement. The mobile node re-issues an interest packet to re-request a content

object, when it has missed this desired object according to the disconnection during

handover. This is the cause of higher latency and re-transmission rates. These issues

are particularly important, if seamless experience is preferred. The previous studies

[134, 135] have proved that sending the lost content from a previous NAR can help

to improve the re-transmission rates and handover latency. However, NARs might

be located in different Location Areas (LAs) [136, 137]. There could be a significant

jump from a previous NAR to a new NAR. Finding content only at a previous NAR

that might be located in a different LA of the mobile node could result in higher

delays.

Nevertheless, several replicas are often cached in the vicinity of the mobile node

and other nearby vicinities, especially when the replica density increases. Hence,

locating content in the previous NAR, other nodes in the vicinity, and nearby

vicinities can increase the opportunities of fetching the desired content from the most

possible optimal sources, which can improve delivery efficiency. This thesis focuses on

considering the content finding issues in this particular mobile case, since the VCoF

design can potentially provide its benefits in this type of mobile networks.

In considering additional related items of work in the area of improving content

finding to particularly enhance consumer mobility support in the mentioned commu-

nication model, we focus on the main aim of minimising the loss of data during a

hand-off scenario and delivery latency. The proposal presented in [138] introduces a

centralised architecture to set up a new path for a re-issued interest. A proxy-based

mobility management approach is proposed in [139] to handle consumer mobility with

a proxy node. This node holds a desired content packet at its repository after receiving

a ‘Hold request message’ from a mobile consumer. The content will be forwarded to

the new location of the consumer after handover. A rendezvous point (called RP)

based technique is also introduced in [140]. Content can be fetched from the RP of

a mobile consumer after hand-off. This technique requires the name of the mobile

node’s access router as part of the content name. So, the content name is not unique,

which can be problematic when it is relocated.

In the centralised manner, many issues have been highlighted in Section 2.5.2. The

remarkable issues could be higher control overhead in deploying multiple rendezvous

services and a single point of failure. These are also considered in the mobile case.

In addition, most of strategies focus on transferring a lost content object, which is
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mainly provided by its original producer, to a new NAR of a mobile node. Nearby

replicas could not be beneficially utilised by using these centralised designs, however.

As mentioned previously, sending the lost content from a previous NAR can

improve latency and network overheads [134, 135]. Likewise, a technique in [140]

is proposed, which is also to retrieve data from the previous NAR of a mobile node.

The new NAR of the mobile node signals the previous NAR to retrieve corresponding

data of the pending interest packets on behalf of the mobile node. The design in

[141] introduces Routing Tag, which is the on-path resolver at the previous NAR of a

mobile node. The mobile node re-issues an interest packet towards the previous on-

path routers indicated by the Routing Tag. The desired content will then be fetched

from a previous on-path router. In another approach [142], a new NAR proactively

requests and caches desired content from a previous NAR. By taking these into

consideration, although previous NARs can be good sources for mobile consumers,

the aforementioned problem of significant jumps between NARs can decrease the

advantage of these strategies. By considering nearby replicas in the vicinity of every

mobile node or nearby vicinities, these can also be the potential sources for leveraging

content finding in the mentioned scenario of mobile communication.

2.6 Summary

This chapter has presented background and related work to this thesis. First of all,

we started describing the current limitations of the current Internet architecture and

discussed most well-known solutions that have been triggered by the current needs

while lacking of the coherent Internet architecture. We identified a particular trend

of networking, which focuses on finding and transmitting information to end-users

rather than exchanging information from host to host. We then pointed out that why

the current architecture must be changed from host-centric to information-centric.

This has indicated the emergence of ICN, which is expected to be a key component of

the Future Internet. When this ICN is deployed to replacing the core of the today’s

Internet architecture, better scalability, improved efficiency, better robustness are the

expected benefits. We also presented the principle of ICN alongside an understanding

of how it generally works. The further topic is a number of representative ICN

architectures alongside their concepts and shortcoming remarks. Considering these

information has led to the reasons of choosing NDN as the base architecture in this

work.
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To optimise the performance of accessing content, the important technique is

content caching, which is an important key of the existing content distribution

solutions like CDNs. Also, content caching is one of the key components of NDN. We

described content caching and its benefits and discussed a number of work indicated

that content caching in NDN can perform better (e.g., bandwidth utilisation, and

scalability) than the well-known content caching technique of CDNs.

Although NDN seems to be a potential architecture to overcome the current

limitations of the today’s Internet architecture, it is still encountering particular issues

of content finding because of without utilising nearby (cached) replicas, which have

also been described in this chapter. Notably, the primary goal of this work is to

address these issues to effectively leverage the efficiency of content finding in NDN. By

considering such issues of content finding, we surveyed the solutions straddling several

research projects. We described two phases of content finding operations including

control plane and data plane. We also identified the main techniques of content

finding of the surveyed proposals, which can be grouped into two main solutions:

resolution-based and routing-based solutions. This enables an NDN node to obtain

routing information (from the control plane) and to make forwarding decisions (in the

data plane). The core commonality all of these related proposals of content finding

is the ability to find desired content objects at their original producers or off-path

caches to ultimately deliver these objects to their consumers.

As the information from the related items of work, we have identified some

shortcomings in the context of content finding that should also be avoided or mitigated

in our design. These are follows:

• By using the resolution-based solutions, centralised designs can introduce a

single point of failure. Multiple resolution controllers incur higher control

overhead. Notably, resolution delays can increase overall delivery delays. In

addition, it is very difficult to map nearby replicas that may change so quickly.

• In considering the routing-based solutions, although interest flooding can

help to find content objects faster because these are often cached nearby,

several data chunks in return can be created, causing higher cache eviction

rates. Furthermore, trade-offs between additional overhead and performance

gains should be considered. By considering many metrics (e.g., the interest

satisfaction rate of a Face, congestion, or previous delivery latency), it requires

a high calculation time to make a forwarding decision. In addition, there is also
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a lack of suitable implementation of cache advertisement solutions especially in

regard to content density.

• In the mobility context of the mentioned communication model, although some

routing-based solutions prove that requesting content from a previous NAR can

improve the amount of re-transmitted data and handover latency, NARs might

be located in different LAs, which means there is a significant jump between

two NARs. Finding a content object only at a previous NAR that might be

located in a different LA can result in a higher delay while nearby replicas in

a vicinity or nearby vicinities can be the better sources. By using a centralised

service, a new path of a reissued interest packet can be re-calculated, but the

issues of the centralised designs can still be problematic. In the next chapter,

we also attempt to avoid theses shortcomings in our design.
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Chapter 3

Design

In this chapter, we discuss the motivations and aims behind the need to develop a

content finding strategy for improving delivery efficiency in NDN. We describe a brief

strategy of default NDN and its shortcomings. We then focus on how we can design

a more suitable scheme compared to the strategy of standard NDN. We also discuss

additional overheads in the context of content finding that could be generated. We

then present the designed VCoF scheme and its modules. In Section 3.1, we discuss

the motivations behind the design and define the aims. In Section 3.2, we present

the development of the VCoF scheme regarding the aims. We then describe how the

scheme can be extended in the context of mobility in Section 3.3.

3.1 Design Motivations and Aims

As described in Chapter 2, NDN can bring content closer to end-users. NDN nodes

along a default path from an original producer to a consumer cache every newly

incoming content object in their CSs. If there are a higher number of requesters

in the vicinity of the consumer that request the same content object, it means the

replicas of the content object can be significantly cached in the specific area or in

the neighborhood of the consumer. This increases the replica density in the network.

When another consumer needs the same content object, several caches nearby can

be the potential sources for this consumer. However, the existing concept of the

default best route strategy of NDN cannot naturally find the desired content from

these nearby sources, causing sub-optimal delivery efficiency.

Therefore, in this chapter, we aim to design the new scheme called VCoF that
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allow an NDN node to be able to find nearby replicas that could be the better

sources. If VCoF can help to find the nearby replicas, it must help to reduce delivery

delays because desired content objects can be found closer, resulting in better delivery

efficiency. This chapter also describes the detailed operations of VCoF and how it can

improve content finding compared to default NDN.

3.1.1 Addressing the Challenges of Content Finding in NDN

In the forwarding plane of NDN, when an NDN node (a consumer) needs a content

object, an interest packet is created to be forwarded to other NDN nodes to find

the content object. Normally, the name prefix of the interest packet is used to

identify the default routing path between the consumer and the original producer

of the content. In the caching process, every NDN node along the default path stores

the content object in its CS. When another consumer needs the same content object,

it can be unintentionally found at any node that caches the content object (e.g.,

the intermediate node in the default path of the request performed by the previous

consumer).

To address the challenges of content finding in NDN, it is important to understand

the fundamental (i.e., strategy) of default NDN. This is previously described in Section

2.5, which can be summarised as follows: (1) There is a FIB table in each NDN node

that stores the name prefix of each other NDN node in the network. A name prefix

is mapped with costs (e.g., number of hops, or link delays) that can indicate the

distances to its location. Each name prefix is exchanged among NDN nodes using a

routing protocol such as Named Data Link State Routing Protocol (NLSR). (2) To

forward an interest packet, the name prefix of the packet is mapped with the name

prefix in the FIB to determine the costs to the source of the content object. Every Face

ID associated with each lowest cost is then selected to forward the interest packet to

every next node along the default path to the original producer or unless the interest

reaches an intermediate node that can serve the content object. (4) The content

object is then returned to the consumer in the reverse path using the information in

the PIT of each node. While the content object is returning back to the consumer,

each node along the path stores the received object in its CS.

According to the aforementioned strategy, we can see that the mechanism aims to

find the content object in the default path, which is mostly at the original producer.

The NLSR can exchange only the name prefix of each producer to define each default
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shortest path for every consumer. So, it is difficult to locate any replicas that are

located off every default path. It means we can not gain sufficient benefits of the

objects that might be cached nearby, such as effective cache utilisation and better

delivery efficiency. By caching content objects, several nodes can be the better sources

for consumers. However, a content name can only map with an exchanged name

prefix provided by corresponding FIBs to forward an interest packet indicated by

only the name prefix. Hence, we aim to design the VCoF scheme that can help every

consumer to locate nearby replicas by adding extra mechanisms into the current NDN

architecture.

3.1.2 Discussion of Designing the VCoF Scheme

In our design, the main goal of VCoF is to find content objects that are already

cached nearby. This aims to increase delivery efficiency. Hence, a comparison between

fetching content using default NDN and our strategy should be made to understand

how the design can improve content delivery. It is challenging to design VCoF to find

the nearby content/replicas since in the NDN forwarding plane, there is no indicator

that can help to indicate any interest packets to find these nearby replicas.

Content distribution in the network can be the important factor that can impact

content delivery according to the caching fashion. As mentioned earlier, the different

number of content or replicas can impact different content finding results. So, we

need to observe the content finding situations by comparing VCoF against default

NDN with different content (replica) densities. This is to understand how VCoF will

perform from the case of low replica densities to the case of higher replica densities. For

example, when the number of the replicas of desired content is low, the opportunities

to find the content should also be low. In this case, an original producer might

be the appropriate source for requesters. When the replica density increases, the

opportunities to find the desired content should be higher. It might be opportune to

locate nearby replicas to leverage delivery efficiency.

Additionally, another factor that can indicate the efficiency of a content finding

scheme is content finding overhead. For example, the increased number of requests

mean the higher number of packets for finding content. So, the overhead costs of

content finding can also be increased. The design of VCoF should also consider the

effects of these additional overhead costs.

Another aim of any caches is to provide network efficiency. A high number of
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interest packets can impact the entire network traffic. If there is a high number

of requests, it can increase the overall number of packets in the network that might

overwhelm each NDN node. Similarly, by using the multi-cast content finding scheme,

an interest packet is generated and flooded. Although this technique might help to

find off-path replicas and desired content can be fetched faster, several interest packets

might be generated and forwarded into the large area of the network, causing highly

excessive overheads. Furthermore, the multi-cast strategy can also increase cache

eviction rates, if there are several hits for desired content objects. These are fetched

from several nodes and they might replace several existing content objects in the CS

of each cache. So, many replicas might be removed and it might be significantly

difficult to find them, when a consumer needs these replicas. Hence, the design must

also realise these issues.

3.1.3 The Effects of Vicinity

If there are several consumers in a particular area that requests the same content

object from an original producer, many replicas are often cached in several nodes in

the area due to the caching mechanism of NDN. It is difficult to locate these nearby

replicas because there are no any routing information that directly indicate content

finding paths for them. From our observation, replicas are usually replicated in the

area dependent on their densities. We can gain benefits of the existing nearby replicas,

which they can be the best sources for end-users. Hence, we prioritise nearby replicas

first and then their original producers.

Finding nearby replicas may cover a different or larger scope of content finding

compared to default NDN, which can introduce some additional overheads. To limit

the area of content finding for mitigating excessive/unworthy overheads, we should

design a proper content finding scope. Based on our research hypothesis, we define

this scope called a “vicinity”. The vicinity can expand the larger or alternate view of

content finding, which increases the opportunities to find the replicas that are located

nearby. This is the reason that we call this content finding technique the “VCoF”

(Vicinity-based Content Finding) scheme.

As mentioned in Section 3.1.2, interest flooding can help to find off-path replicas,

but highly excessive overheads can be incurred. So, in our design, we try to limit

the scope of content finding using the vicinity to mitigate the overheads. In our

definition, a vicinity means a set of nodes that are connected to a requester node
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in a different number of hops (i.e., distance). By looking into a vicinity, we might

find desired content objects that are located closer compared to distances to original

producers. We need to design some indications that can help an NDN node to know

the availability of nearby content. This availability information should help to indicate

forwarding paths to the desired content locations.

The size of a vicinity is also important to define the scope of content finding. It

should not be too wide because several spending packets to find a single piece of

a content object might outweigh the benefits. The increasing number of requests

can also increase overhead costs at each NDN node. A high number of requests

mean a high number of processes that needs to be executed. So, it can increase the

workload of each NDN node. In addition, the data volume in each node might also be

increased due to the higher amount of packets (i.e., requests). Hence, a comparison

between fetching content objects at original producers and finding the content objects

in different vicinity sizes should be made while considering the different number of

requests.

In different vicinity sizes, content popularity can also impact on content finding

results. For example, finding content objects in a high content popularity case even

considering a small vicinity might still help to find the content faster because the

desired content objects are already distributed nearby. As mentioned previously,

vicinity sizes can be the important factor to indicate the performance of content

finding. Hence, the vicinity in our design should be adjustable. We can then examine

the favorable vicinity size(s) by increasing small size(s) to larger sizes in the evaluation.

3.1.4 Content Finding Overhead

By using the NDN’s best route strategy, an interest packet is created at a consumer

and is then forwarded to an original producer indicated by the name prefix of a desired

content object. The interest packet is forwarded hop by hop to the original producer.

The overhead of this mechanism is the interest packet that is created in each hop

along the path from the consumer to the producer. A higher number of hops that

the interest packet have traveled mean the higher number of packets. Thereby, these

packets may increase the network traffic in long paths, and the number of processes,

causing the higher workload in a number of nodes or the entire network. The VCoF

design can add some overheads compared to default NDN due to the designed scope

of content finding. The design of VCoF must realise on the overhead costs that might
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create some effects to the NDN nodes and the entire network. However, these overhead

costs might be worth to spend, if the trade-off between the overheads and delivery

efficiency is acceptable.

For example, by looking for a desired content object in a vicinity, the higher

number of packets might be created to learn the content availability in each node in

the vicinity. Thereby, the message overhead can be developed. In some situations, this

message overhead might outweigh the benefits. For instance, in a too-large vicinity,

when a distance to an original producer is not very different compared to a distance

to a node in the edge of the vicinity. It might not be worth to spend so many packets

to find a content object instead of fetching it directly at the original producer. In

contrast, when the producer is located further away, it might be worth to spend a

higher number of packets in a larger vicinity to locate nearby content objects. Hence,

to understand the effects of additional message overhead, comparisons between default

NDN and VCoF should be examined.

As mentioned in the previous paragraph, a high volume of packets can impact

network efficiency. When there are several packets at an NDN node, the data volume

should also be increased that can cause the incrementally required storage in the

node. Hence, to understand the effects of the number of packets to the data volume,

comparisons of data volume generated by the related packets of content finding

between default NDN and VCoF should be evaluated. As mentioned previously, the

benefits of the design are not for free. It is difficult to provide a better solution without

additional overheads. So, we must consider the tread-offs between performance gains

and the content finding overheads.

3.1.5 Flexible Deployment

One of the keys of the VCoF’s design is that it should be flexible to be deployed in

different network scenarios. For example, in a dynamic scenario that a requester node

might move from a location to another location while requesting a content object.

The requested content object might be forwarded to the previous location of the

requester. If the node moves in the same vicinity, VCoF can benefit this because it

can help to find the content object in the previous location, which is mostly located

in the vicinity. In another example, when a source node might be going offline but it

already forwards the content object to a requester. By using default NDN, it may not

be able to locate the content object in the off-lined producer. However, the replicas

58



Chapter 3. Design 3.1. Design Motivations and Aims

of the content object might be cached nearby already. So, VCoF could still help to

find a replica at a node in the vicinity that replicates the content object in its CS.

In our design, the VCoF scheme is a decentralised solution, which can eliminate

the issues of centralised designs that can make the scheme inflexible. The centralised

designs may not take full advantage of the decentralised concept of NDN [100, 101].

For example, a central sever that keeps the locations of replicas could be a single

point of failure. Where there are a high number of requests to the single server and

the requests cannot be served, the system might fail to service. In addition, in a

dynamic topology, several nodes might change their locations frequently. The central

server might not be able to update the locations of these nodes instantly. Hence,

the decentralised-based system is more flexible to be deployed in different situations.

Thereby, this can potentially support various kinds of networks.

3.1.6 Feature Summary

In this section, we have identified a number of features to be used in the design and

the development of VCoF. In table 3.1, we list a summary of each functionality and

evaluation of the design that we aim to achieve.

Content Availability

Provide content availability to advertise locations of
content/replicas to nodes in a vicinity
Develop a Content List to store names in a CS and to
advertise the content availability
Modify an interest packet to push a Content List
Select neighborhood in a vicinity
Evaluate the effects of vicinity sizes

Content Finding

Improve delivery efficiency by considering extra routing
information
Develop mechanisms to forward an interest packet to
locate a corresponding content or replica in a vicinity
Select the better source between a default path to a
producer and a nearby node in a vicinity
Evaluate the effects of content density/popularity
Evaluate delivery efficiency alongside the consideration
of content finding overheads
Extend VCoF in a dynamic environment

Table 3.1: Feature Summary
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3.2 The VCoF Scheme

The main objective of this work is to find nearby replicas based on the vicinity concept.

This is expected to improve content finding in NDN. The code-bases of NDN are

modified to support the VCoF scheme. In considering the design, the scheme is

a routing-based solution, which can avoid the shortcomings of the resolution-based

solutions as discussed in Chapter 2 (Section 2.5). We also try to eliminate or mitigate

the number of shortcomings of the other routing-based approaches as also reviewed

in the previous chapter.

The core idea is conceptually described in Figure 3.1. The processes can be detailed

as follows: The consumer C needs the content object “/P/content” from the producer

P. This original producer is located further away (on-path) from the consumer C. We

assume that the object “/P/content” is already requested by the consumer R. It

means the object is already replicated in the consumer R’s CS. In considering the

location of the consumer R, it is located in the vicinity of the consumer C (off-path).

By comparing fetching the replica at the consumer R with locating the origin content

at the further producer P using default NDN, the delay to the producer should be

higher.

To find the nearby replica, the consumer C must know the availability of the

“/P/content” in the consumer R’s CS. So, we design a Content List, which is used

to store and advertise the name of each content object in an NDN node’s CS. In this

case, the consumer R pushes its Content List to every node in its vicinity. After

receiving the list from the consumer R, the consumer C knows where to find the

content object by sending an interest packet towards the reverse path to the owner

’

’

Figure 3.1: Core Scheme
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of the list (consumer R). So, the content object can then be fetched closer at the

consumer R rather than the further producer.

In our VCoF design, we employ two main modules to process incoming interest

packets and data packets as illustrated in Figure 3.2. The first module named

“Content Finding” module is responsible for finding content using the proactive

routing information generated by the second module called “Content Availability

Advertisement” module. The first module contains three main processes including

the Content List Checking process, Face Selection process, and Forwarding process.

An incoming interest packet is checked to find a corresponding entry in a Content

List pushed by another node in the vicinity. This is the process of the Content List

Checking. If the name is matched in the list, by comparing the lowest cost of a Face

to the owner of the list to the lowest cost of a Face mapped with the default name

prefix (i.e., two candidate Faces), the better Face to forward the interest packet is

selected, which is performed in the Face Selection process. This ensures the proper

Face to be used in the Forwarding process.

The second module is responsible for content availability announcement in each

vicinity. It consists of three main processes including the Caching process, Content

Figure 3.2: The Overview of the VCoF Modules
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List Pushing process, and Vicinity Selection process. In the Caching process, an

incoming data packet is cached in an NDN node’s CS, which is the default mechanism

of NDN. This means the CS is updated. So, the process of the Content List Pushing

is then activated to advertise the update of content availability of the node to other

nodes in its vicinity. Notably, there are several ways to push a Content List, which will

be discussed in Section 3.2.2.2. To push a Content List, the scope of the list pushing

should also be considered. A node has to select every node in its vicinity using the

Vicinity Selection process. FIB of every node manages all of routing information

regarding the operations of both designed modules as the overview in Figure 3.2.

3.2.1 Content Finding Module

In this module, as illustrated in Figure 3.3, when a node receives an interest packet

that is generated by a consumer. The name of the interest packet is firstly checked to

find the corresponding content in the node’s CS (cache). The content object will be

returned back to the consumer, if it is found in the CS. Otherwise, the name is then

checked to seek a corresponding entry in any Content Listi containing the name of

each entry in the CS of every owner of the list. Each name in a list is mapped with

a Face that has received this list with the cost to the owner of the list. This means

we can look up the corresponding name to select the Face ID supplied by the FIB

with the lowest cost to forward the interest packet to locate the content object at the

owner of the list.

The node then compares which Face to the owner of the list or to a default

corresponding FIB’s entry (e.g., Face to the original producer) that has the lowest

cost. The module then selects that Face to be used to forward the interest packet

to the next node. In this next node, the same process is repeated again until the

interest packet arrives at the node that can return the desired content object back to

the consumer. If the name is not in the list, it potentially means the desired content

can not be found inside the vicinity. In this case, the default strategy of NDN is

activated.

3.2.1.1 Content List Checking

In the default NDN best route strategy, an NDN node selects a Face with the lowest

cost to fetch a content object indicated by its name. It does not consider nearby

replicas. Hence, to find these replicas, consumers must know what and where content
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Figure 3.3: Content Finding Module

objects or replicas are in their vicinity. This is done by using the designed Content

List to advertise the content availability. In this section, we describe the details of

the Content List and the importance of the Content List Checking process.

If an NDN node is a producer, it stores its own content objects in its CS, but if

it acts as a forwarder, the CS also stores replicas of other producers. To provide the

reachability of the content objects/replicas, we design a Content List that contains

the names in the CS. The list is used to advertise the availability of the content objects

and replicas in the local cache of a consumer to other consumers in its vicinity. To

reduce the list’s size, we ignore a number of default names (e.g., NLSR messages and

local names).

To advertise the content availability of a node, its Content List containing each

name in its CS will be pushed to neighborhood in the vicinity of the node. When

another node in the vicinity receives the list, a Face ID and the lowest cost to the

owner of the list is proactively mapped with each name in the pushed list to be used as

the routing information to forward corresponding interest packets. We will describe

the in-depth details of the Content List pushing process in Section 3.2.2.

The Content List Checking process enables an NDN node to seek a corresponding

Content List for a particular interest packet. If the name of the interest packet
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matches an entry in a pushed list, the replica of the desired content can be found

nearby at the owner of the list. It is important to note that each name in the pushed

list couples with a Face with the lowest cost to the owner of the list. We expect that

the distance to the owner of the list is potentially shorter than the distance to the

original producer of the content. Nevertheless, the producer can be located closer.

So, the comparison of the costs to the owner of the list and to the default node (e.g.,

the original producer) should be made to select the better source.

3.2.1.2 Face Selection

In the Face Selection process, we develop the Face comparison mechanism to find a

proper Face to forward an interest packet generated by a consumer. The name of

the interest packet is mapped to seek a corresponding entry in a Content List and

a default entry in the FIB to determine a better forwarding Face. By using the

default NDN strategy, there is only one Face with a default name prefix in the FIB

that can indicate the path to fetch the content object. This is because the default

routing protocol like NLSR propagates reachability to name prefixes. The replicas

of the content object that are located nearby (i.e., off-path) cannot be found since

there is no name coupled with a Face and a cost (i.e., routing information) to indicate

the interest packet. By using the designed Content List, we can know the content

availability of a node in a vicinity. Each name in the list mapped with the lowest cost

of a Face to the owner of the list is compared with the lowest cost of a Face provided

by a default name prefix of a producer in the FIB. The Face with a lower cost of these

two candidate Faces is then used to forward every corresponding interest packet to

locate its desired content or replica.

By mapping the name in the Content List, the lowest cost of the Face ID can then

be found and selected. It will be compared to the lowest cost of the Face ID indicated

by a default name prefix (mostly to the original producer) in the FIB to determine

that which path is shorter. If the path to the original producer is shorter, the interest

packet is then forwarded to the Face with the lowest cost to the producer. Otherwise,

if the path to the owner of the list is shorter, the interest packet is then forwarded

to the Face with the lowest cost to the owner of the list. This ensures that a better

source is selected to forward the interest packet to find the desired content object,

which is performed in the Forwarding process.
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3.2.1.3 Forwarding Process

When the consumer starts to request the content object, it then checks the existing of

the content’s name at each pushed Content List. At the current stage, this name can

be found in a pushed list and the consumer knows where to find the replica. According

to the routing information obtained from the Face Selection process, the consumer or

each intermediate node selects the Face with the lowest cost to forward the interest

packet after comparing the distance to the owner of the list with the distance to the

original producer.

If the name cannot be mapped with any name in each Content List, it means a

replica that has the same name cannot be located nearby. Hence, the default strategy

of NDN is then activated. The interest packet will be forwarded in the default path to

the original producer using the default forwarding strategy by determining the default

name prefix in each node’s FIB.

There could be other Faces mapped with the similar name but we focus on the

Face to the nearest replica. The interest packet is originally created at the consumer

will be reversely forwarded to each Face of each node unless it reaches the node that

is the owner of the list or any intermediate node that can serve the replica. The

replica will then be fetched using the mechanism of “Breadcrumbs” without sending

any requests to the further producer. In the worst case, if the interest packet arrives

at the owner of the list but the desired object has already been removed or evicted,

it will be forwarded to the default path from the current node of the interest to its

original producer. Therefore, content delivery is highly guaranteed.

In considering the issue of routing loop, when an interest packet has arrived at

a node, it will not be forwarded to the Face that has received this packet (i.e., to

downstream node(s)). The interest packet is always forwarded to upstream node(s).

Even if routing information provided by any content lists might indicate the interest

packet to its previous node (i.e., downstream), the Face to this previous node will

not be the choice for making a routing decision, thereby mitigating the routing loop.

However, in some cases (e.g., in a ring topology), a content finding loop can be

happened, if there is no any corresponding data cached in any nodes along the finding

path. This data might be removed or replaced by other content and every node always

forwards the interest to every Face that might route the interest back to its original

node. Nevertheless, this issue can be rarer, if the availability of the desired content

is higher and in the networks (e.g., core networks) that offer several alternate routing
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paths (i.e., connections). However, addressing the issue is still preferred and this can

also be handled by some further mechanisms described in the following paragraph.

To mitigate the issue that a content object advertised by a pushed Content List

can not be found at the owner of the list due to a cache eviction, some additional

mechanisms to the current VCoF scheme need to be considered in the Future. The

brief of this is that the entries in the Content List do not synchronise with the

availability of the content cached in the list owner. This is the current limitation

of this work but it can be handled by further mechanisms. For example, we can

define a timeout for a Content List and all of the content in this list (e.g., x% in the

cache) are not allowed to be replaced by other content unless reached the timeout.

Every node that has received the list also knows this timeout and does not forward

any interest to the list owner if timeout exceeded. The timeout can be renewed

with a newer Content List. In addition, we can also push a list by considering only

a number of recent content in a cache. This can reduce the opportunity that the

recently cached content objects might be replaced if we consider a particular caching

policy, e.g., FIFO. In summary, a number of solutions can help to handle this issue

and need to be investigated. However, in the early stages of this work, we focus on

proving that nearby content replicas in every vicinity can indeed be the better source

for content finding.

3.2.2 Content Availability Advertisement Module

In an NDN node, to find a content object, an interest packet is generated and this

module of the node checks the content name with the latest Content List of this node.

This is because the content that the node is trying to find might be already cached

in the node itself and the availability information of the content might be already

pushed. Hence, there is no need to push the current list again. Otherwise, if this

name is not in the list, it means the node is looking for a new content object and the

updated Content List will be pushed. This is done after the operation of the Content

Finding module is complete and the desired object is found and has arrived at the

node. It should be noted that this is the current mechanism for pushing a Content

List used in this work. There are some limitations and different list pushing strategies

as discussed in Section 3.2.2.2.

When the data packet of the desired content arrives at an NDN node, it is then

cached in the node’s CS. Assuming it is a new object in the CS, the content name is
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Figure 3.4: Content Availability Advertisement Module

then added into the the node’s Content List. The list is then pushed to neighborhood

in the node’s vicinity1. As presented in Figure 3.4, once a neighbor node receives the

list, each entry in the list is proactively mapped with a Face that has received the

list with the lowest cost to the node who has pushed the list (i.e., the owner of the

list). Every entry is then stored in the neighbor node’s FIB to be used as the extra

routing information to select a proper Face for any corresponding interest packet that

is looking for the same content object as described in the Content Finding module.

The lowest cost to the owner of the list is calculated by the routing information in

the FIB. If there are several nodes that provide the same lowest cost, we consider the

latest node who has pushed its list to potentially ensure that the content object is

fresh and available to be located.

In summary, we design a Content List for two main reasons. First, we use the

Content List to be pushed to advertise the content availability of the node that is

the owner of the list. When the list arrives at another node, each entry in the list

is then mapped with the Face (with the cost) that has received the list. This is the

lowest cost of the Face to the owner of the list, which will be used as the extra routing

information. Second, we use the Content List to check a corresponding name of an

interest packet to get a Face with the lowest cost indicated by the list in comparison to

1Note, the details of the vicinity-based concept are described in Section 3.2.2.3
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a Face with the lowest cost indicated by a default entry in the FIB before forwarding

the the interest packet out of a node.

3.2.2.1 Caching

Before searching for a desired content item, if the content’s name is already listed in

the latest requester’s Content List, it means the content object is already cached in

the node who performs the request. So, we might not need to announce the list again

to reduce the redundant of content advertising. Otherwise, the name is newly added

into the node’s Content List after the arrival of the data packet. It will be cached in

the node’s CS and the Content List is updated. To advertise the list, the updated

Content List will be pushed to neighborhood in the node’s vicinity. The process of

Caching notifies the Content List Pushing process. Notably, we might not need to

check the list, if we use another list pushing strategy (e.g., a periodically pushing

strategy).

3.2.2.2 Content List Pushing

List Pushing Concept

The core idea is that each NDN node has its Content List to be pushed to advertise

the availability of content objects and replicas in its CS to other nodes in its vicinity.

A node who needs a content object can try to find its nearby replica by looking at

the names from each pushed list first.

Various techniques can be used to push Content Lists and these can be adjusted in

different situations. For example, a list is pushed after updating an entry in a node’s

CS. When a data packet arrives at an NDN node, it is cached in the node’s CS, which

is the default operation of NDN. After adding the content into the CS, the process of

Content List Pushing is activated. Before pushing the list, the name of the content

object is firstly checked. It will be mapped with each entry in the latest list. If it

can be mapped, it means there is the same name as an entry in the list. We do not

need to push this list again because of the duplicated name. Otherwise, if the name

cannot be found, it means it is a new entry and the list is updated. So, the list will

be pushed to the neighborhood in the vicinity. This work uses this technique to push

Content Lists because the content availability can be instantly updated. However,

the overheads of pushing the lists should be considered.

The Content Lists can also be pushed periodically such as every n seconds. In some
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cases, we do not need to push the lists to advertise the availability of all content in a

cache. For instance, an NDN node can also push its Content List by considering the

changes of some particular content (e.g., popular content). This means the overheads

of content list pushing can be mitigated or optimised compared to the current strategy

in this work. However, this should be further investigated.

Limitations of the List Pushing

In this work, we push a Content List instantly, after a node has received a new

content object. This might generate a high number of overheads in some situations.

For example, if this pushing mechanism is deployed in core routers that usually see

many updates, the increment of the overheads of list pushing could be problematic.

As mentioned previously, the mechanisms for the list pushing optimisation can be

further investigated and developed. For example, we do not need to push the list

instantly. The list can be pushed every n second, considering the changes of some

particular content (e.g., popular), or occasionally pushing for a number of recently

cached objects by defining a Content List lifetime. However, there could be another

problem, if the list does not synchronise with its content cached at its owner since an

object indicated by the list might be removed or evicted. Nevertheless, this could be

further handled by some techniques (e.g., as previously described in Section 3.2.1.3).

In considering consumers or edge networks, nodes might see a lower number of

content updates compared to core networks. So, pushing the list instantly could

be possible but if the consumers or the edge networks detect significantly excessive

costs of the list pushing, the aforementioned mechanisms can also be deployed to

mitigate the costs. Hence, different ways of Content List pushing can be used in

different situations or different parts of the networks. Nevertheless, this work uses the

mentioned list pushing strategy since we assume that desired content can be located

according to the routing information advertised by every Content List. This firstly

aims to prove that nearby content in every vicinity can indeed be the better source

to improve delivery efficiency. Additional factors with more complex situations could

be challenging in the Future work.

3.2.2.3 Vicinity Selection

By centering a consumer node, a vicinity contains a set of NDN nodes whose are

connected to the consumer in different distances. A distance is the number of hops

to the central node and is less than or equal to a threshold. We define the scope
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of the vicinity called “vicinity size”, which is a threshold number. For example, as

illustrated in Figure 3.5, when the vicinity size is set to 2, it means that the coverage

area includes every node that connects to the central node C in 1-hop and 2-hop

distances. The number of nodes in the vicinity depends on the topology and the

number of links around the consumer.

This work expands the consumer’s view into a vicinity. Unlike the narrow view of

the current NDN paradigm, the consumer can gain higher advantage of the designed

scope especially in terms of content finding. The vicinity is a limited scope that can

help the consumer to find a desired content object in a proper area of neighbors.

However, the scope can be too broad or too narrow. Thus, the experiments will also

investigate the impact of different vicinity sizes.

In the Vicinity Selection process, to select a vicinity (i.e., the area of a Content List

pushing), a node that is the central node should define the vicinity size2. The vicinity

might be defined in a configuration file by system administrators and in this work,

we define vicinity information in each node’s configuration based on the evaluation

topologies, which will be presented in Chapter 5. To select paths to push a Content

List, we modify the current interest packet structure to be able to carry the list. The

modified interest packet is pushed to its destinations indicated by each name prefix

2Note, in this thesis as detailed in Chapter 5, we evaluate VCoF by considering different vicinity
sizes. So, we assume that every experiment defines its vicinity size depending on the experiment
setup. However, to be more practical, vicinity sizes can be varied in different parts of the network
and this can also be further investigated in the Future work.

Figure 3.5: An Example of a 2-hop Vicinity
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of each node in the vicinity. To mitigate the redundant of advertising a particular

content, we ignore pushing a Content List containing the name of the object that has

been recently forwarded to its requester back to the owner of the list. This is because

this node already stores the content in its CS and the content is potentially available

at the list owner.

The possible routing cases using the VCoF scheme are presented in Figure 3.6.

In considering these cases, VCoF not only helps to find nearby replicas inside a

vicinity, but also increases the opportunity to locate replicas in nearby vicinities.

For example, if a replica cannot be found inside a consumer’s vicinity, the interest

packet is forwarded to the default path. Based on the operations of VCoF, when a

node in the default path receives the interest packet, it then checks the corresponding

Content List to compare the distance to find the content in the default path to the

distance to the owner of a list. In this case, we assume that this node is fortunately a

member of a nearby vicinity, which another node in this vicinity is storing the desired

replica. The replica can then be found in this nearby vicinity instead of the further

producer.

Figure 3.6: Routing Cases
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3.3 Mobility Support

Different types of wireless networks have their own unique communication models.

We are interested in a particular communication model as discussed in Section 2.5.3.

The brief summary of the model and its issues are described as follows: When a

mobile node moves to a new location, a requested content object is usually cached

in the previous location of the mobile node. The mobile node might have missed the

content object due to disconnection during handover. By using default NDN, the

mobile node re-transmits the interest packet to re-request the object again at the new

location. A new path of content finding is re-defined, causing poor delivery efficiency

and higher re-transmission rates.

Notably, the previous location and the new location are often in the same vicinity.

A number of related items of work have proved that retrieving the content object from

the previous location can reduce the delivery delay. However, the previous location

and the new location might be located in different Location Areas (LAs), which means

there is a significant jump between them. Finding the content only at the previous

location can be insufficient to improve the delay whilst other nodes in the vicinity

and nearby vicinities can be the better potential sources.

To be specific about the mobile communication model that is focused on this

work, one example that can also potentially indicate the benefits of VCoF is Vehicle-

to-Infrastructure (V2I) communication in VANETs. For instance, assuming that a

mobile node (e.g., a car, or a train) is moving in a particular direction, there are a

number of access stations (i.e., NDN Access Routers) that provide the connectivity

to the mobile node. Several content objects are usually forwarded to the nearby area

of the mobile node due to the generated interest packets performed by the mobile

node, which is moving in the area. VCoF tends to fit this mobile communication

model since it increases the opportunity to find the replicas of desired content in

those sources (i.e., the nearby area). So, we develop the VCoF scheme in a mobile

NDN environment, which represents the aforementioned communication model.
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3.3.1 Applying the Design in a Mobile NDN Environment

The core idea of VCoF in a mobile environment is presented in Figure 3.73. We assume

that the mobile consumer is moving from time T1 to T2 and it needs a content object

from the producer P. It travels from the previous NAR to the new NAR. All NARs

are connected to the NDN infrastructure network. Before handover, the mobile node

starts requesting the content object by sending an interest packet through the current

NAR (the first node on the left hand-side), which will be the previous NAR when

it has moved to the new NAR. The content object is then fetched from the original

producer P and it is replicated along the default path from the producer towards the

consumer.

When the previous NAR receives the content object, it will cache the object

(replica R) in its CS. The VCoF scheme is then activated by pushing the latest

Content List to each node in the vicinity except the node who has forwarded the list

since the object is already cached in its CS. In this case, there is only one node (the

new NAR) in 1-hop vicinity that needs to update the pushed list. Assuming that

there is another node in the vicinity of the new NAR storing the replica (replica R in

3Note, this is the example that illustrates how VCoF can be applied in the mobile environment.
There could be a higher number of nodes in a real network.

Figure 3.7: The Core Scheme of VCoF in the Context of Mobility
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the infrastructure network), this node also pushes its Content List to the new NAR.

The new NAR then maps each name from every list to each Face that has received

every list to the FIB. If there is the same name from several sources that provide the

same lowest distance, we select the latest source who has pushed its list.

After the mobile node has moved to the new location, we assume that the content

object has been forwarded to the previous NAR. So, in this case, the content object

fails to deliver to the mobile consumer due to handover. The consumer then sends

a new request again. The new NAR then checks its FIB and it knows where to find

the content object because of the updated Content List. The new NAR then selects

the Face (the mapped Face with the content name) to send the interest packet in

the reverse path to the previous NAR. The content object can then be fetched at the

previous NAR that is located closer to the mobile consumer rather than the producer

P that is located further away. The replica R might be found at the another node

in the vicinity (the black node in the infrastructure network) but in this case, we

find the replica R at the previous NAR due to its latest update of the Content List.

The opportunities that nearby replicas of desired content can be located are increased

since using VCoF covers both the previous NAR in the vicinity and other nodes in the

vicinity. Additionally, the scheme can also increase the opportunities to find replicas

even in other nearby vicinities as described in Section 3.2.2.3.

3.3.2 Content Availability Announcement

To locate an off-path content object (cached in a vicinity), each node should know

the availability of the content object and which Face should be used to forward an

interest packet. Hence, in the mobility context, each NAR and NDN node must push

its Content List to announce the content availability in its CS to every node in its

vicinity using the Content Availability Advertisement module. It means a node or an

NAR that is the owner of the list is ready to serve all objects in its CS. After receiving

the pushed list, a node in the vicinity maps each name in the list with a Face that

has received the list. For example, an NAR maps each name of each content object

in a received list to a Face that indicates the path to a previous NAR. When a mobile

node needs a content object, it just sends an interest packet through its NAR. This

NAR just checks the desired name with the mapped Face. The NAR then selects the

Face to send the interest packet in the reverse path to the owner of the list (i.e., in

this case, the previous NAR) and then the off-path content object will be found.
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3.3.3 Fetching a Content Object

In the mobility context that is particular focused in this work, while a mobile node is

moving to a new NAR, several replicas are often cached in a previous NAR because

most requests are performed in the location of the previous NAR. The previous NAR

is often located in the same vicinity of a new NAR. Hence, it is our expectation that

VCoF can help to find the nearby replicas. The distances between a requester to

the previous NAR or some nodes in the vicinity are mostly closer compared to the

distance to an original producer. So, by looking at the previous NAR or nodes in

the same vicinity, the delivery efficiency can be improved, which is the key concept

of VCoF. To fetch a content object, when an interest packet arrives at the owner of

a Content List, the object will be forwarded back in the reverse path towards the

requester using “Breadcrumbs” left by the interest packet. The owner of the list can

be a previous NAR, another node in the vicinity, or another node in a nearby vicinity,

which are usually located closer than the producer.

3.4 Discussion

The VCoF scheme detailed in this chapter is designed to meet the aforementioned

motivations and aims. The design of VCoF realises on delivery performance that

can be improved with the consideration of some additional overheads. The design

is a significant modification of the existing NDN architecture. So, it is expected to

be directly deployed on real NDN systems. The concept of packet forwarding of

VCoF is based on the shortest path strategy of NDN. However, instead of forwarding

interest packets to the default shortest paths to their producers, VCoF offers better

opportunities to forward the packets to the alternate shortest paths to nearby replicas.

The VCoF scheme requires the modification of the core design of the current NDN

architecture. The official code-bases of NDN need to be modified by integrating the

proposed design to support VCoF. Additionally, the design also realises on supporting

the flexibility of deployment in various scenarios. The VCoF scheme has been designed

with the aim to be flexible on deploying in both static and dynamic environments.

The Content Availability Advertisement module has been designed to advertise

the content availability of an NDN node. The Content List is pushed to every node in

the NDN node’s vicinity. Each node in the vicinity then knows what are the current

content objects storing in the owner of the pushed list. A Face that is mapped with the
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list indicates the node that has received the list to find a desired content object mapped

in the list at its owner. This is done by using the Content Finding module. According

to the VCoF design, the packets used to push the Content Lists can increase network

traffic overhead because of the higher number of packets regarding content finding

in comparison to default NDN. So, we must evaluate the effects of the additional

overhead while considering the trade-offs of improvement performed by the designed

scheme.

By realising on the discussion in Section 2.6, our VCoF scheme has also been

designed by avoiding the mentioned shortcomings. These are summarily described as

follows:

• The VCoF scheme is a decentralised design, that can eliminate the mentioned

issues of the centralised designs, which are mostly found in resolution-based

solutions.

• By using VCoF, only a desired content object/replica in a proper potential

source is fetched. A single interest packet is used to fetch a corresponding

content object. This means that VCoF does not introduce the cache eviction

problem caused by multi-sourcing in return due to multiple interest packets

of content finding in several interest-flooding based techniques. Based on

the design, VCoF introduces some additional overheads. Nevertheless, the

trade-offs between the overheads and the performance gains will be discussed

further in Chapter 5. Additionally, without considering many metrics, VCoF

does not require a high calculation time to make a forwarding decision.

Furthermore, VCoF is a cache advertisement solution, which introduces the

concrete implementation that can potentially deploy on real NDN networks.

• In the mobility context of the mentioned communication model, unlike several

previous proposals on gaining benefits of replicas only located in previous NARs,

VCoF also offers alternate opportunities to find nearby replicas inside a vicinity

or nearby vicinities. This can result in better delivery efficiency.

We have detailed the design of VCoF in this chapter. As mentioned previously,

the design will be integrated with the existing NDN architecture. Hence, in the

following chapter, we present how we implement the VCoF design by integrating with

the current NDN primitives.
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Implementation

In the previous chapter, we described the core modules that make up the VCoF

scheme. In the modules, we also presented the detailed processes of content

finding and content availability advertisement. These include the core forwarder

that is responsible for processing interest/data packets. Once these are taken into

consideration, a number of elements must be implemented specifically for use in the

VCoF scheme.

In this chapter, the existing essential components that are necessary for making

up a fully running system of NDN are described in Section 4.1. The NDN library,

tools for providing default routing information, and a core forwarding daemon are

required to be installed in every NDN node in the network. The explanations of

these elements lead to the detailed implementation of VCoF described in Section

4.2. For example, by integrating VCoF into the existing elements of NDN, the

designed modules implemented specifically to proactively provide routing information

for finding nearby content are presented in this section. The process of implementing

VCoF integrated with the current NDN forwarding plane (consisting of the three

major tables) is also detailed. Finally in Section 4.3, the implementation of a number

of tools to be used in the next chapter to evaluate VCoF is presented.

4.1 The Existing Essential Components of NDN

The items described in this section are the essential components (i.e., software) to be

installed in every NDN node for implementing an NDN network. These components

have been released by the NDN project [143], which operate together to provide an
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actual instance (a fully running system) of NDN. In this section, we describe the

implementation details of the main components. As mentioned in Section 3.2, the

official code-bases of NDN are modified to support VCoF. So, the descriptions of the

existing core components can lead to understand the implementation of the extra

modules that we have added into the current NDN architecture.

In order to run an actual instance of an NDN system, the essential components

(presented in the following sub-sections) need to be installed in each NDN node. All of

these components are built using the C++ programming language. This is to support

the clean state architecture of NDN, which mainly aims to replace the today’s TCP/IP

protocol architecture. Nevertheless, it is possible to have IP with NDN at the same

time. NDN can run as the overlay on an IP network by converting an Ethernet/IP

network interface to an NDN Face in every host. Also, those core components can

support NDN as the overlay.

When we have built a core NDN network, every NDN node in the network can

store and forward packets using the basic NDN primitives. In addition, there is a

common Application Programming Interface (API) that allows different applications

developed by different languages such as C++, Java, JavaScript, Python, and .NET

(C#) using the NDN Common Client Libraries (NDN-CCL) [144] to connect to the

core NDN network. In this work, however, we focus on the core architecture of

NDN to be modified to support VCoF. Hence, all of our extra modules and tools are

implemented in C++ because these are easier to be compatible with the existing core

components.

4.1.1 ndn-cxx

ndn-cxx [145], NDN C++ library with eXperimental eXtensions, implements all

of NDN protocol primitives such as “Name”, “Interest”, “Data” to facilitate the

development of NDN and to provide a foundation for NDN application development

and experimentation in NDN. It also drives the development of NDN Forwarding

Daemon (NFD), another core component of NDN to maintain packet forwarding,

which will be detailed further in Section 4.1.3. Since the initial release in 2014, it has

been developed to support the definitions of NDN protocol incorporating with the

development of NFD. In addition, it simplifies the development of NDN applications

(e.g., [146, 147]). It is an open source project licensed under the GNU Lesser General

Public License, version 3 or later. Developers can redistribute it and modify it under
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the terms of the license.

An example of using the ndn-cxx library can be describe as follows: assuming that

a consumer currently uses an NDN client application in order to look for a particular

content object, the application makes use of the library to generate an interest packet

based on a defined format. At a producer side, a data packet is defined in another

format. A Type-Length-Value (TLV) format is used to encode each NDN packet. It is

noted that unlike the TCP/IP packet headers, an NDN packet format does not have

a fixed packet header. This means it is more flexible to add or remove some types in

the format depending on how the protocol evolves.

The version of interest (at the time of writing this chapter) TLV-based format

contains the following elements. “Name” is the only required element. “Nonce” is

required when the interest packet is forwarded over the network. It is important to

carry a randomly-generated 4-octet long byte-string. This “Nonce” should uniquely

identify the interest packet by combining with its “Name”. By this, looping interests

can be detected using a duplicated nonce of an interest packet. Other optional

elements (e.g., “MustBeFresh”, and “InterestLifetime”) can be set to guide interest

forwarding or matching (“ForwardingHint”). Signature/key information (contained

in “Selectors” element) can also be included for security reasons. This process of

formatting the interest is done using the ndn-cxx library. The library then expresses

the interest to the network after prompted by the client application.

A server-side application at the producer proactively publishes the data (i.e.,

content) object and waits for any corresponding interest request. Similarly, to generate

the data packet for the published content object, the application makes use of the

library by relying on the TLV format of data packets. When the data object is found

at the producer matched with the received interest, it will be returned back along a

default path to the consumer.

The following elements are composed in the version of the response data in a

TLV-based format. “Name” of the content is required to identify the data packet,

which contains some arbitrary binary data (hold in the optional “Content” element).

“Signature” represents a digital signature for data verification. Additional bits of

information labeled as “MetaInfo” element specify additional information of the

content. “ContentType” is a sub-element, which defines a specific type of the data

packet. In this case, it is “BLOB” (binary large object), which represents the default

type of payload. “KEY” and “NACK” are another types representing public key and

application-level negative acknowledgment (NACK), respectively. The expiration of
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an optional “FreshnessPeriod” indicates that the producer may publish newer content.

The optional “FinalBlockId” provides the end of the final block in a sequence of

fragments. This is done as part in the library. The server-side application then

prompts the library to put the content to be ready to serve once the corresponding

interest has been received.

4.1.2 Routing Information

To forward interest packets, a forwarding strategy requires knowledge of where to

forward. This can be done by considering routing information in the FIB of the

NFD in each NDN node. By default, each node has an empty FIB. Inputting routing

information into the FIB can either be manually configured, or can be assigned using a

routing protocol. The protocol generally disseminates producer prefixes and updates

their availability to simplify FIB management especially in large topologies. NLSR

is one of the most well-known routing protocols in NDN, which is used in this work

and described in Section 4.1.2.1. In NFD, the Routing Information Base (RIB) stores

static or dynamic routing information registered by applications, the routing protocol,

the operator, and NFD itself. FIB entries are calculated from the RIB to be used

directly by NFD to determine next hops to forward the interest packets. This also

depends on each forwarding strategy.

4.1.2.1 Named-data Link-State Routing (NLSR) Protocol

NLSR [54], Named-data Link-State Routing protocol, is a link state routing

protocol like OSPFN [96], developed to overcome the limitations of OSPFN in

NDN such as the inadequate multi-path support. NLSR populates NDN’s RIB,

which exchanges the link state information using interest/data packets. This builds

the FIB table in each NDN node by discovering adjacencies and disseminating

name prefixes regarding the network topology. In NLSR, each NDN node has a

hierarchical name structure, which identifies the location it belongs to, such as

“/ndn/uk/ac/lancaster/scc”. The NLSR process on a node has the node’s name as its

prefix, e.g., “/ndn/uk/ac/lancaster/scc/nlsr” to periodically send hello messages at a

default interval of 60 seconds between adjacent NLSR nodes to detect the changes of

neighboring connections.

When an NDN node’s NLSR detects a failure or a new connection of neighbor, it

disseminates a new Link State Advertisement (LSA) message to the entire network.
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Two types of LSA are carried out by NLSR nodes. A Name LSA stores all name

prefixes registered locally with NLSR, which are injected by connected end-nodes. An

Adjacency LSA stores all of the active links of a node, which each entry represents

a neighboring node’s name and a link cost. A Link State Database (LSDB) in each

node stores the latest version of the LSAs. A simple extension of Dijkstra’s shortest

path first (SPF) algorithm is executed to calculate multiple next hops to reach each

node. Each node recalculates the latest routes and updates its FIB, upon receiving

any new LSAs. NLSR creates Faces for the neighbors using the information obtained

from the NFD. To enable this protocol, each node must install NLSR using its source

code available in [148].

4.1.2.2 ChronoSync

NLSR propagates LSAs using sync protocols such as the ChronoSync protocol [149].

This is to synchronise changes in the nodes’ LSDBs. Each node exchanges a crypto

digest form (i.e., hash) of a name set, which contains all the latest LSAs in its

LSDB. A node compares a received hash of a neighboring node’s LSDB to its local

hash. If the comparison is different, the node will request the different LSA from the

neighbor to update its LSDB. To deploy NLSR, a sync protocol, which is ChronoSync

(available in [150]) used in this work, is required before installing NLSR due to its

core function to disseminate routing information for building and managing the FIB,

which is performed by NLSR.

The processes of disseminating an LSA message in the network can be described as

follows: To synchronise a hash of LSAs in an LSDB, ChronoSync on a node broadcasts

a Sync Interest to all of its neighbors. When an updated LSA is added to a neighbor’s

LSDB, the hash of the neighbor’s LSA name set will be different compared to the

node’s hash. This causes the ChronoSync protocol of the neighbor replying to the

Sync Interest with a Sync data packet containing the new LSA name. The node’s

ChronoSync then receives the Sync data packet, and notifies NLSR of the new LSA

name to update its LSA name set. The node’s NLSR sends an LSA Interest to retrieve

the updated LSA from the neighbor, since the NLSR process on the node has been

notified by the new LSA name. The neighbor responds to the LSA Interest with its

updated LSA data. When the node’s NLSR receives the LSA data, it updates the

LSA in its LSDB. LSDBs of the two nodes are now synchronised. A new hash of

the new LSA name set is computed and exchanged between the two nodes using new
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Sync Interests to ensure the similarity.

Since LSAs are used to calculate routes, it means by default, no existing routing

information to be used to send LSA Interests. Hence, a multi-cast forwarding strategy

configures the specific name prefix of LSAs (/localhop/<network>/nlsr/lsa). This

name allows an NDN node to forward the Interest for an LSA to all of its neighboring

nodes. If any of the neighboring nodes have a copy of the corresponding LSA data in

its NLSR process or its cache, the neighbor node will return the LSA data. Otherwise,

it will discard the Interest because of the restriction of the localhop scope.

4.1.3 NDN Forwarding Daemon (NFD)

NDN Forwarding Daemon (NFD) [151] is a network forwarder responsible for

processing/forwarding interest/data packets. All incoming interest packets are

processed by NFD to make forwarding decisions depending on a forwarding strategy

and to seek their corresponding data. NFD returns data packets towards their

consumers using “Breadcrumb trails” left by the interest packets. NFD implements

the core NDN structure. So, it must be installed in each NDN node with ndn-cxx.

These operate together to process incoming/outgoing packets.

NFD implements three major tables including the CS, the PIT, and the FIB

evolved together with the NDN protocol. The forwarding module interacts with

Faces, Tables, and Strategies to implement basic packet processing pathways. NFD

determines whether, and where to send packets using the provided information in the

three tables. In the data routing module, when an incoming interest packet hits a

corresponding content object in the CS, the object will be reversely forwarded back

to the requester using the “Breadcrumb trail” left in every PIT along the path. NFD

selects Face(s) to forward the interest packet using the information supplied by the

FIB entries (filled by NLSR or system administrators) depending on a forwarding

strategy.

Both modules of NFD are modified to support the VCoF scheme. A sub-module,

“Face Counters”, is used to monitor some evaluation metrics (e.g., message overhead,

and data volume). In this work, we mainly focus on two tables, which are the CS and

the FIB. According to our design, the CS of a node creates its Content List as a new

element after the node startup. This is to prepare the list for the Content Availability

Advertisement module as described in Section 3.2.2. NFD gets the latest Content

List from the CS to advertise the content availability. The CS also inserts received
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content objects as a normal operation of NDN.

By considering the NFD’s forwarding module, the FIB indicates routing infor-

mation for interest packets, as usual. It also inserts the Content List coupled with

the cost to the list owner to be used in the Content Finding module as described

in Section 3.2.1. The PIT is responsible for keeping unsatisfied interest packets and

forwarding data packets in the reverse paths of the interests. After sending the data

packets, the PIT then makes the pending interests of the corresponding data packets

satisfied.

4.2 The VCoF Scheme

To supplement the existing NDN functionalities of content finding, we develop the

VCoF scheme based on the detailed design described in the previous chapter. As

mentioned in Section 4.1, the existing core structure of NDN needs to be modified to

support the VCoF modules. First of all, we take advantage of NLSR to propagate

name prefixes and to calculate each default shortest path to reach each node in the

network. We then calculate shortest paths to the owners of Content Lists using the

information of the name prefixes of the list owners provided by NLSR. Hence, there

is no modification in NLSR. NDN nodes still require the default routing information

to forward interest packets to their default paths, especially when nearby (off-path)

replicas can not be found by using the VCoF scheme. This is a function of our design

that can potentially ensure content delivery.

ndn-cxx is modified to attach the Content List into the default interest packet

format. We also modify NFD to support our content finding strategy. This is because

NFD implements packet processing pathways. The core operations of NFD directly

involve in the content finding strategy. The following detailed implementation of the

core modules of the VCoF scheme describes how we develop the scheme.

4.2.1 Content Finding Module

In NFD, a core forwarder is responsible for processing incoming/outgoing interest and

data packets using the three major tables (PIT, FIB, and CS). Hence, we modify the

forwarder to support the VCoF packet processing. Figure 4.1 shows how an interest

packet is processed by the modified forwarder, realising the three main processes of

the Content Finding module as described in Section 3.2.1. In the diagram, we assume
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Figure 4.1: The Flow of Content Finding

that the consumer is looking for a particular content object. It should be noted

that there are three major forwarding decisions in the flow depending on the current

information in the three tables of each node. The description of the flow is detailed

as follows.

Assuming that the consumer uses an application requiring the particular content

object from the producer, the interest packet named /<network>/obj is generated.

The <network> component in the name of the interest represents the network of the

object residing in. It can contain additional details in the hierarchical format such

as /<core-network>/<sub-network>/<node>/obj. In the Content List Checking

process (step 1), the consumer checks the FIB to find a corresponding entry in a

Content List pushed by another consumer in its vicinity as illustrated in Figure 4.2.

This is done by matching the exact name of the content.

The exact name of the content (or the interest) is the first priority in the matching

process. If the name can be found in the FIB, it will response the routing information

of this particular name. This name is in the list pushed by its owner, which

couples with the Face ID and the lowest cost to the owner (representing the routing

information to find a nearby replica). The default routing information of the name

prefix will also be provided to determine the better direction to forward the interest
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packet in comparison to the information provided by the matching of the exact interest

name. Based on the given routing information, candidate Faces represented by their

Face IDs are considered in the next process.

In the Face Selection process (step 2), NFD compares the given candidate Faces

to find the proper path to forward the interest packet. This is done by comparing the

costs of the Faces to their destinations. In this case, the cost to the owner of the list

is compared with the cost to the original producer. It is noted that the default prefix

indicates the shortest path to the producer. It means the exact content name to the

list owner is compared with the name prefix to the producer. After completing the

cost comparison, the better Face is selected to be used in the Forwarding process.

After selecting the proper Face, in the Forwarding process, the Face ID provided

by the FIB is used to forward the interest packet to find the nearby replica at the

neighboring node in its 1-hop vicinity (step 3a). Notably, this is the first forwarding

decision, representing the case that the exact name can be matched an entry in a list.

This means the cost to the owner of the list (nearby replica) is lower than the cost to

the producer. When the neighboring node receives the interest, the node’s NFD look

ups the corresponding object in its CS. If it can be found, the data packet named

/<network>/obj is then returned back in the reverse path to the consumer (step 4a)

and the interest will be satisfied in the neighbor’s PIT. So, the desired content can

be found nearby instead of going to the further producer. The consumer’s NFD then

marks the interest satisfied in its PIT, inserts the content into its CS, and updates the

CS’s Content List (i.e., clist) (step 5a). The updated list will be used in the Content

Availability Advertisement module.

In the case of the second forwarding decision, the neighboring node, which is an

intermediate node in the consumer’s 1-hop vicinity, adds the interest as a pending

entry in the PIT, which couples with the Face ID that has received the interest.

This is to indicate a corresponding incoming data packet to the reverse path to the

consumer, i.e., creating a Breadcrumb trail. If another interest packet looking for the

same content arrives at this node, the node look ups the PIT to add the incoming Face

ID of this interest as another pending downstream Face (as illustrated in Figure 4.4).

This neighboring node repeats the Content List Checking process again (step 3b). We

assume that this is because the desired content cannot be found in this neighbor’s

CS. It means this node is not the actual owner of the list. So, this neighboring node

checks a corresponding entry of each pushed list in its FIB to find a Face of the exact

interest name to be used in the Face Selection process (step 4b).
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After the completion of the cost comparison, assuming that the cost to the actual

list owner in the n-hop vicinity is still lower than the cost to the original producer,

the interest packet is then forwarded to the list owner performed by the Forwarding

process using the Face ID provided by the FIB (step 5b). Notably, if there are some

intermediate other node(s) in the vicinity before reaching the list owner, the three

major processes will also be repeated in every intermediate node. This is the case

when the cost to the list owner in each intermediate node is still lower than the cost

to the producer.

When the actual owner of the list receives the interest packet, its NFD look ups

the corresponding object in the CS, as usual. Since it is the owner of the list, the CS

stores the replica of the desired content object and the interest packet hits this replica.

The data packet containing the replica is then generated and returned back to the

intermediate node who has forwarded the interest (step 6b). The interest packet will

be marked satisfied in the list owner’s PIT. In this case, the intermediate node is the

neighboring node (in the 1-hop vicinity) of the consumer.

Once the data packet arrives at this intermediate node, the PIT entry that stores

the incoming Face ID of the received interest packet (as mentioned previously) is

used to forward the data packet in the reverse path to the consumer. It is then

satisfied in the intermediate node’s PIT. Notably, there could be more than one Face

of the pending interest. The data packet will be forwarded downstream to all Faces

of this interest. This technique is called “Breadcrumbs” and will be repeated in each

intermediate node towards the consumer. It should be noted that if the data packet

cannot be matched any entry in the PIT, it is dropped since it is an unsolicited data.

The intermediate node stores the content obtained from the data packet before

forwarding downstream to the consumer. This content replica can be further located

by other consumers. The CS’s Content List of this intermediate node is then updated

(step 7b). Notably, there is an option to (or not to) allow caching the content (named

“allowCache”) in each intermediate node consisting of “setAllowCache(boolean)” and

“getAllowCache()”. This is to control content popularity/density for some evaluation

purposes, which will be described further in Chapter 5. This also depends on different

customisation of VCoF to be further deployed in each particular network, which may

have different characteristics of content caching. If this option is set to false, step

7b is not required to updating the list since the content object is not allowed to be

cached at any intermediate nodes.

The consumer’s NFD then seeks a corresponding PIT entry of the received data
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packet (step 8b). The pending entry of the interest packet is then satisfied and the

data packet is then added into the consumer’s CS, thereby activating the update

of the Content List (step 9b). The received data packet notifies the application by

triggering a sub process (called “afterReceiveData”) in the Face module of ndn-cxx

and it can be further used in the application level.

The third forwarding decision considers the case of no entry of the exact name

found in the FIB or the lower cost to the original producer compared to the cost to

the list owner. Hence, in the Face Selection process (back to step 2), the Face ID

provided by the FIB indicating the default path to the original producer is selected

to forward the interest. It may travel through several nodes in the default path

before reaching a particular node that can serve the content. The desired content can

be opportunistically found at an intermediate node, or be ultimately located at the

producer (step 3c).

Once the interest packet hits its corresponding content in an on-path node’s CS,

the node’s NFD returns the data packet back to the reverse path towards the consumer

(step 4c). The node’s PIT marks the interest satisfied. Each intermediate node

processes the incoming data packet using the Breadcrumb trail in its PIT left by the

interest. When the data packet arrives at the consumer, the same process of the PIT

satisfaction as described previously is activated. The content object is then inserted

into the consumer’s CS and can be used in the application level. The Content List is

also updated to be prepared for the Content Availability Advertisement module.

It should be noted that an intermediate node can be a member of another nearby

vicinity. When an interest packet arrives at the intermediate node, NFD always

performs the three major processes of the Content Finding module. This ensures

that a candidate Face with the lowest cost is selected to forward the interest packet

to find its corresponding content at the nearby source or at its original producer. The

nearby source can be in either the node vicinity itself or another nearby vicinity as

described previously in Section 3.2.2.3.

4.2.2 Content Availability Advertisement Module

To advertise the content availability of an NDN node, the core forwarder of NFD

is also responsible for pushing the node’s Content List to each node in its vicinity.

To achieve this, we modify the format of interest packets in ndn-cxx to support the

Content List pushing operation. The main change is illustrated in Figure 4.2. This
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spacial interest packet is pushed to the vicinity by following the flow demonstrated in

Figure 4.3. The node (i.e., consumer) must perform the three major processes of the

Content Availability Advertisement module as described in Section 3.2.2. It is noted

that the flow presents the Content List pushing operations in the smallest vicinity

size of 1 and the larger vicinity size of n. The node’s NFD must push its Content List

dependent on a defined vicinity size. The details of the packet modification and the

implementation of the list pushing are described as follows.

…………………

…………………

’

…………………

………

Figure 4.2: Modified Interest and FIB Interaction

As shown in Figure 4.2, the consumer pushes its Content List to a node in its

vicinity. The interest packet is modified to carry the extra table of the Content List

in the consumer’s CS. The table stores each of exact content name in the consumer’s

CS. This is done by altering the interest TLV-based format as described in Section

4.1.1. A new element called “contentList” is added into the current format. In ndn-

cxx, each interest packet is encoded into TLV block. So, we have to prepend the TLV

block of the extra table to expand the total length of the interest packet for encoding.

A new function called “getContentList()” is added into the interest processing. This is

to enable NFD to get the extra table in the new “contentList” element of the interest.

A function “setContentList(list)” is likewise attached to enable NFD to update the
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Figure 4.3: The Flow of Content Availability Advertisement

latest extra table.

The interest packet is named according to the network of a node in the consumer’s

(n)-hop vicinity that it resides in, i.e., /<n-hop-vicinity>/<node>/clist. The <n-

hop-vicinity> and the <node> components contain the name of the network and the

name of the node, respectively. The name prefix routes the interest to the node that is

one of the members in the consumer’s vicinity. We assume that this prefix is obtained

from the consumer’s configuration file. This file contains each name prefix of each

node in the consumer’s vicinity, which is used in the Vicinity Selection process of

the Content Availability Advertisement module. The “clist” component identifies the

type of the interest packet (i.e., specifically for pushing the Content List).

Although the “clist” component can identify the packet type, a name of a

content object can be duplicated. To avoid this issue, a new element called

“packetType” is added into the interest TLV format. Functions “getPacketType()”

and “setPacketType(type)” are also attached for packet type checking and setting,

respectively. The consumer then pushes the interest packet according to its name.

When the destination node of the interest receives the pushed list, each content name

in the list is then inserted into the destination node’s FIB to be used in the Content

Finding module. The list is coupled with the cost to the owner of the list (i.e., the

consumer) and the Face ID that has received the list. The destination node, which

is another consumer, uses an entry in the list to find a corresponding content object

at the owner of the list. Since the consumer pushes the list in a shortest path to the

destination node, the Face ID that has received the list indicates the reverse shortest
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path (the same path) to the list owner.

It should be noted that there might be several lists from different sources inserted

in a node’s FIB. A duplicated name can be aggregated into an entry. The lowest cost

of a particular Face ID of this name will be selected to be used in the Face Selection

process as described in Section 4.2.1. In addition, the lowest cost of this name can

be coupled with several Face IDs, which means there are more than one direction to

find a nearby replica with the same distance. In this case, the node selects the latest

Face ID that has received a list containing this name.

In Figure 4.3, when a newly requested content object arrives at its consumer, it is

inserted into the CS of the consumer’s NFD (step 1). The CS’s Content List is then

changed. This notifies the node to provide its updated content availability to each

node in its vicinity by using a developed Content List pushing application. This is

the Caching process of the module. If the object is already in the latest list that has

been pushed, we ignore pushing the list. In the Content List Pushing process, the list

is pushed using the mentioned strategy in Section 3.2.2.2. Each prefix of each member

in the vicinity listed in the consumer’s configuration is used to generate its special

interest packet to be pushed (step 2). This is done by the Vicinity Selection process.

The interest named /<1-hop-vicinity>/A/clist, for instance, is created using the

customised ndn-cxx, which the <1-hop-vicinity> component represents the network

of a member (i.e., Node A) located in the consumer’s 1-hop vicinity. The interest

packet is then sent to Node A according to the name prefix (/<1-hop-vicinity>/A/)

through the Face ID provided by the FIB (step 3).

When Node A receives the interest, each name in the pushed list is inserted into

the FIB of Node A, which couples with the Face ID that has received the list and

the lowest cost to the list owner. The process of Content List pushing to a member

(another consumer) in the consumer’s 1-hop vicinity is then finished. Other names in

the 1-hop vicinity repeat the same process. It should be pointed out that if there are a

number of entries of n-hop vicinity, the consumer must push the list to all entries listed

in the configuration. For example, the interest named /<n-hop-vicinity>/B/clist is

also pushed to Node B residing in the network of the consumer’s n-hop vicinity (step

5). An intermediate node’s forwarder (e.g., Node A) forwards this interest towards

Node B indicated by its name prefix using the mapped Face ID in the FIB. Each

name in the pushed list is then added into Node B’s FIB to be used in the Content

Finding module.

The interest/data packet processing flow is illustrated in Figure 4.4. The flowchart
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’

Figure 4.4: Upstream Interest Forwarding Flow and Downstream Data Forwarding
Flow Integrated with the Designed Modules

describes the integration of the major modules of VCoF added into the current NDN.

It presents where the modules are applied in the NDN architecture. It starts from

generating the interest packet triggered by the application. The interest packet is

then classified to identify its type. If the packet type is to push the Content List, the

updated list is carried in the interest to provide the content availability. Otherwise, the

interest packet is processed to find its content. After the arrival of an interest/data

packet in a node, the node processes the incoming packet differently. The interest

packet processing is to forward the interest to upstream node(s) supplied by each

FIB, create the Breadcrumb trail in each PIT, look up a corresponding content object
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in each CS, and push the Content List. The data packet processing is to return the

corresponding content obtained from the CS to downstream node(s) (towards its

consumer) in the created Breadcrumb trail, drop unsolicited data, and update the

Content List.

To attach a Content List into an interest packet, the packet must be altered in

NFD. This is because we cannot currently get the list provided by its CS in the

application level. The list is likewise updated using NFD before sending to the

application level. When the interest packet (carrying the list) arrives at a node,

it must be checked that the node is the destination of the list or not. This is to ensure

that the pushed list will be advertised in the target node of the defined vicinity.

4.3 Evaluation Tools

There are various ways to evaluate an NDN scenario including using a testbed, virtual

machines, an emulator, and a simulator. In considering the testbed, it is slower to

boot/restart compared to other tools. It also requires several dedicated devices to

run a large-scale network. Hence, the testbed might scale poorly. Virtual machines

can connect different NDN nodes using a smaller number of machines compared to

the testbed. However, NDN installation and configuration must still be manually

performed in each VM. Changing and managing event(s) of an experiment might also

be difficult due to no central experiment controller by default.

Since this work aims to leverage content finding in NDN, it requires a higher

amount of nodes in a network, while the content finding events performed by several

consumers can be controlled by a central controller. For example, content finding

requests should be executed by different consumers in several locations to realise the

realistic evaluation. Hence, we start focusing on an emulator (i.e., Mini-NDN [152]).

This is because a fully running system consisting of the mentioned components in

Section 4.1 can be easily emulated. Any changes in these components can directly

apply to the NDN official code-bases. Each NDN node can run real applications (e.g.,

Content List pushing or finding). We can understand the flow of a packet better

because we can interact directly in real time. For instance, current name prefixes in

a FIB of a node can be observed using an actual command of NFD (<node name>

nfdc fib list) to investigate routing information.

After understanding the actual operations of the VCoF scheme (in comparison to

default NDN) in a fully running system by using the emulator, the evaluation requires
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higher-scale networks to understand content finding results in larger topologies. This

is done by using a simulator (i.e., ndnSIM [153]) since it can simulate a larger-scale

network compared to the emulator. It should be noted that ndnSIM uses discrete

time steps. Hence, an application might run differently from real world.

As mentioned in Chapter 1 (Section 1.4), the research outline is threefold. Based

on the outline, Mini-NDN is used to evaluate VCoF in a static (emulated) NDN

network to first understand the deployment of VCoF in the NDN network that

consists of the actual software components (ndn-cxx, NLSR, NFD, and ndn-tools),

i.e., for the fully running system. ndnSIM is then used to evaluate VCoF in a larger

topology compared to the emulated network by considering the impact of content

popularity with an actual data-set of content requests, which provides a higher content

count. Finally, ndnSIM with a mobile simulation package evaluates VCoF in handling

mobility. The evaluation tools and their implementation details are described as

follows1.

4.3.1 Mini-NDN: A Mininet based NDN Emulator

Mini-NDN [152] is an emulation tool based on Mininet [154] to realise NDN imple-

mentation. The prior Mininet based emulator, Mini-CCNx [155], is a prototyping

tool for implementing basic CCNx protocols, which operates on CCNx architecture.

Currently, the CCNx is no longer available, however. Unlike Mini-CCNx, Mini-NDN

uses the current NDN code-bases to support the needs that CCNx was not amenable

as mentioned in Section 2.3.5. Since it uses real world time steps, an emulation

network can be close to a real world environment. The network topology can be

easily generated by a GUI tool named MiniNDNEdit as illustrated in Figure 4.5.

The NDN software components described in Section 4.1 can be emulated to examine

a fully running system of NDN in a single machine using Mini-NDN. It runs the

components on top of visualised nodes and uses each of different socket file for each

node. Therefore, the mentioned essential components need to be installed in the

machine before setting up Mini-NDN.

Since Mini-NDN is built on top of Mininet, we must install Mininet prior to Mini-

NDN. Python is also required since it is used to run experiments. Process-based

visualisation and network namespaces are the features in recent Linux kernels, which

allow Mininet to create virtual networks. In a network namespace, Mininet runs hosts

1Note, the detailed evaluation will be described in the next chapter.
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as “bash” processes. Any commands or applications that can normally execute on a

Linux system should also be able to execute within a Mininet host. So, commands

such as nfdc <option> (NFD command) can be virtually executed in the host. The

host will only see its own processes and will have its own private network interface(s).

Mini-NDN maps each network interface to each NDN Face. In Mini-NDN, hosts can

be connected by virtual links (processed by the Linux kernel) in a point to point

fashion instead of using switching elements like in Mininet.

As shown in Figure 4.4, an interest packet is generated by an application and its

corresponding data will be used in the application level. Hence, to transmit a single

interest/data packet for any content to be used in the application, an NDN node

needs some essential tools. A collection of basic tools for NDN called ndn-tools [156]

is recommended to be installed in all NDN nodes. So, ndn-tools is installed after the

installations of the mentioned NDN software components. We focus on a major tool

involved the evaluation of this work, which is “ping”. The “ping” tool is generally

used to test reachability between a consumer and a producer. It can also transmit

the single packet between the two nodes because it is based on a simple interest/data

transmission.

To generate a special interest packet for carrying a Content List provided by

Figure 4.5: Generating an Evaluation Topology using MiniNDNEdit
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a node’s CS, we modify the “ping” tool by setting an interest option to identify

the packet type representing the list pushing. This calls the “setPacketType(type)”

function that we have added into the interest packet format in ndn-cxx. The tool then

sends the interest to NFD. In NFD, we develop a function to allow getting the current

Content List of the node’s CS. The interest packet is then altered by attaching the

obtained list before forwarding out of the node. When the destination node receives

the list, each name in the list is inserted into its FIB as described previously. No data

packet is returned since the interest packet is the one-way packet for pushing the list.

Hence, a tool named “pingserver”, a pair application of the “ping” tool for serving

the corresponding data in response to the interest, is not required. We name the tool

“pushlist” without removing the origin “ping” tool from ndn-tools.

An interest packet for finding content is generated in a consumer node using the

another modified “ping” tool renamed to “findcontent”. The tool prepares the packet

type to be set in the “setPacketType(type)” function to identify the default packet type

of content finding. The packet is then sent to NFD. The “getPacketType()” function in

NFD is used to check the packet type as illustrated in Figure 4.4. Since it is the default

packet, it will be processed by the described Content Finding module. When a node

that can serve the corresponding data in response to the interest, receives the interest,

the data packet generated by the modified “pingserver” tool named “servecontent” is

returned back to the consumer.

4.3.2 ndnSIM: An NS-3 based NDN Simulator

ndnSIM [153, 157] is an open-source simulator written in C++ to realise NDN

implementation. It is based on NS-3 [158], a discrete event network simulation

platform. The latest release of ndnSIM integrates NFD and ndn-cxx code-bases,

increasing its value in understanding the NDN implementation such as finding content,

developing applications, applying NDN to different network environments (e.g., mobile

environments), designing congestion control and caching. Since the NDN team started

developing the new implementation of NDN forwarder and supporting library to

realise the latest NDN protocols and to enable several new features [159] (e.g., security

abstractions with trust schemas, formalised forwarding pipelines, forwarding hints,

etc.), ndnSIM 2.x [160, 161] integrates those code-bases inside itself instead of re-

implementing the same features for NS-3 based on the prior version (ndnSIM 1.x).

ndnSIM is built on top of NS-3. Hence, we must install NS-3 prior to ndnSIM.
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Unlike Mini-NDN, the NFD and ndn-cxx components are already included. So,

we do not need to install them separately. As mentioned previously, NLSR provides

default routing information into FIBs. However, in ndnSIM, NLSR is not originally

included. In ndnSIM, a global routing controller can also simplify FIB management

by calculating and installing FIBs on every node using “GlobalRoutingHelper”. The

helper calculates each shortest path for every destination node and installs routes for

all of default name prefixes. This is done by doing Dijkstra for each destination node.

Hence, by using ndnSIM, we do not need to use NLSR since “GlobalRoutingHelper”

can also provide default routing information, which is sufficient for the current version

of VCoF especially in terms of content finding evaluation in this work. It is noted

that “GlobalRoutingHelper” does not require a central controller. It is indeed a

specific helper in ndnSIM that calculates default routing information to simplify FIB

management after the startup of an experiment.

ndnSIM allows simulating two distinct types of NDN applications including

ndnSIM-specific and real-world applications. ndnSIM-specific applications simulate

basic interest/data packet flows. The version of the ndn-cxx library (used in this

work) bundled in ndnSIM alongside the operations of NFD enables simulating real-

world NDN applications. We port our modified real world applications based on

ndn-tools as described in Section 4.3.1 into ndnSIM. Unlike ndn-tools in Mini-NDN

that can directly set their attributes via Command Line, ndnSIM uses “AppHelper” to

set the underlying application attributes and to install the applications in each node.

The flows of interest/data packets are processed based on the modification described

in Section 4.2. This is done by applying the customised core forwarder of NFD and

ndn-cxx library into the existing NFD and ndn-cxx code-bases inside ndnSIM.

Before running an experiment, we need to define a network topology. In ndnSIM,

a topology is specified using a specialised helper or in a text file. It is easier to use

a text file because we can define a topology in a single file. This is very convenient

when we need to change a topology by simply changing a current file name to the

new file name of the new topology in a simulation script. Hence, each text file

that is simple user-readable format, is used to define every evaluation topology. The

“AnnotatedTopologyReader” class reads annotated topology from a file and applies

parameter settings to corresponding nodes and links. In the file, we can define

topology parameters such as node names, links between desired nodes, link bandwidth,

link delays. An (x,y) coordinate pair represents the position of a node in the network,

which can also be defined.
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4.3.2.1 ndnSIM Mobile Simulation Package

ndnSIM Mobile Simulation Package [162] is an NDN hackathon project, which

contains a simple WiFi mobility simulation. In the simulation, assuming that a WiFi

AP acts as an NAR connected with other NARs and nodes in the infrastructure, it is

responsible for associating mobile nodes in its coverage area. The scenario simulates

a three topology provided by a text file using the “AnnotatedTopologyReader” class.

A mobile node moves from a previous AP to its current AP in a constant velocity.

After association, the mobile node sends a uni-cast interest packet to the AP. The

interest packet is then forwarded to a producer and the corresponding data packet

is returned back to the mobile node through the AP. The AP broadcasts the data

packet to be forwarded to its consumer.

“GlobalRoutingHelper” is also used to propagate default name prefixes of the

nodes in the topology to provide default routing information. By considering

the mobility simulation in the package, we modify this simulation to support the

evaluation topology in Section 5.4 and evaluate simulation events to examine how

VCoF handles the mobile case, which is previously discussed. The NFD and ndn-cxx

code-bases are also replaced by following the modification described in Section 4.2 to

deploying VCoF.

4.3.2.2 A Live Simulation of the VCoF Scheme

In NS-3, a live simulation visualiser can be useful for debugging. i.e., to understand

if a packet flow is what we expect. Since ndnSIM is built on top of NS-3, it can also

support the visualiser. To debug a flow performed by VCoF, for instance, we can

monitor a simple interest/data processing flow by simply defining a simple topology

with static locations of a consumer and a producer. We can then check the flow by

using the visualiser as soon as the consumer sends a request. However, the visualiser

is not compatible with real applications by default. Hence, the real applications

mentioned previously are modified to be executed in the visualiser mode.

It should be noted that the evaluation topologies in Chapter 5 contain several

nodes and the locations of requesting content and producers can be varied. There

are also a high number of interest/data packets. This might be impossible to check

the evaluation flows using the visualiser. So, we only use the visualiser for checking

packet flows with simple defined NDN networks (i.e., for debugging). An example

flow for debugging is described as follows.
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In the example, the topology represents a grid network consisting of 4x4 nodes as

shown in Figure 4.6. Assuming consumer A is the first requester of a content object

provided by the producer, the consumer A’s location is at the (0,0) coordinate. The

producer is located further away at at the (3,2) coordinate. The shortest path to reach

the producer is 5 hops. By requesting the content, an interest packet is generated by

the consumer A’s application and forwarded along the default path indicated by each

FIB towards the producer. After receiving the interest, the producer then returns the

corresponding content in the reverse path towards consumer A by following each PIT

entry left by the interest. This is the default best route strategy of NDN.

By following the operation of the Content Availability Advertisement module,

when consumer A receives the content, it then pushes its Content List to the other

nodes in its vicinity. Figure 4.7 presents the flows of the list pushing. In this case,

we set the vicinity size to two. Every node in the vicinity then inserts the received

list into its FIB coupled with the Face ID and the lowest cost to the list owner (i.e.,

consumer A). This is the proactive routing information for each node in the vicinity

that might look for the same content.

Assuming consumer B is another requester looking for the same content, the

Content Finding module tries to find the content by considering the routing

information in its FIB. This case assumes that consumer B is located at the (2,0)

coordinate. After receiving the list pushed by consumer A, consumer B knows

where to find the same content object nearby by considering the added extra routing

Figure 4.6: First Request Performed by Consumer A
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Figure 4.7: List Pushing Performed by Consumer A

information in its FIB. This consumer then sends an interest packet to fetch the

content from consumer A as shown in Figure 4.8.

The visualiser ensures that the flow of finding the nearby content is correct. Instead

of taking 3 hops, which is the shortest path to the producer, consumer B can find the

content in the shorter distance of 2 hops (assuming no consideration of other caches),

which is located in a different path to the producer. Notably, in this case, we allow

only the requester (i.e., consumer A) to push its Content List. It is also noted that

the content might be opportunely found at an intermediate node in the default path.

Figure 4.8: Second Request Performed by Consumer B
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Nevertheless, the content can also be found at an intermediate node to the list owner

or in a nearby vicinity.

4.4 Summary

In this chapter, we presented the detailed implementation of the VCoF scheme. We

started introducing the core software components necessary for setting up a fully

running system of NDN. These led to understand how the implemented modules are

applied in the existing NDN architecture. We then described the implementation of

VCoF consisting of the designed modules. In particular, we presented the detailed

packet processing flows integrated with the modified core forwarder of NDN. We also

described a number of tools to be used to evaluate the VCoF scheme, including the

emulator to firstly understand our scheme in a fully running system, and the simulator

to simulate larger-scale networks compared to using the emulator. The simulator is

also used for the mobile case. In the next chapter, we take the implementation and

evaluate it in a number of scenarios using the aforementioned evaluation tools.

In table 4.1, we summarise the implemented modification of the three software

components of NDN. We list the added element(s) in each interest/data packet

structured in ndn-cxx, which enable the packet to carry the extra information for

use in the VCoF scheme as detailed in Table 4.1 (a). The modification of the core

forwarder and the major tables in NFD is then summarised in Table 4.1 (b). Finally,

the set of tools to be used in the application level is presented in Table 4.1 (c).

Each tool has its attributes to generate interest/data packets according to its

requirements. The “name” attribute is to set the name of an interest, data, or list

pushing packet. The “packetType” attribute indicates the type of a packet. The

interest timeout is defined by the “interestLifetime” attribute, which the default value

is 4000 ms. The “mustBeFresh” attribute is to define allowing a stale data request

and the default value is False. The freshness of a content object is declared by the

“freshnessPeriod” attribute, which the default value is 1000 ms. The “allowCache”

attribute defines the allowance of caching a content object at each intermediate node.

It is optional (with the default value of True) to control replica densities for the

evaluation purposes (will be described later in Chapter 5).
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Packet Original Element Added Function

Interest
name, selectors, nonce,
interestLifetime,
forwardingHint

packetType
setPacketType(type),
getPacketType()

contentList
setContentList(list),
getContentList()

Data
name, metainfo,
content, signature

(optional) allowCache
setAllowCache(boolean),
getAllowCache()

(a) ndn-cxx

C
or

e
fo

rw
ar

d
er

Original Feature Added
Process in/out packets Check packetType (getPacketType()) and process packets
Interest Content List Normal Interest
Look up PIT.
Detect interest loops.
Add an interest as a pending
entry.
Find a corresponding Data
in CS.
Forward the interest
to upstream using default
routing information in FIB.

Get current Content List from
a CS to be inserted in
a list pushing packet.

Found in a pushed list?
(Look up FIB for
a corresponding entry
to find a list owner)

Add the list into the packet
(setContentList(list)) to carry
each name in the list for
advertising its availability.

Face selection (Compare
the lowest cost of a Face ID to
a producer and a list owner)

Push the list according to
the name of each node in
a consumer’s vicinity.

Send the packet according to
the selected Face or to a default
Face in case of no entry found
in each pushed list.

Data
Return the data back in
the reverse path left by
the interest.
Satisfy the interest in PIT.

Is the list’s destination?
Yes No

Nack Add the list into FIB
(call getContentList()).

Forward the list to upstream.

Forward Nack to the requester.
Drop Nack, if there is no
matching entry in PIT.

Send a corresponding data from the list owner to its consumer.
Optional

Call getAllowCache().
Check and set allowCache
to each data packet.

Table Original Feature Added
CS Store and serve content objects. Provide and update its Content List

FIB
Provide each default name
prefix of each producer
(default routing information)

Provide the exact name of each content in every pushed list.
Each name couples with the lowest cost of a Face ID to
a list owner.
Insert Content List.

PIT Store pending interest entries.
Ignore creating a reverse path for a list pushing packet.
Create a routing path for a data packet from a list owner.

Content
List

None
Store each name in a node’s CS into TLV block
to be encoded in the interest packet of a list pushing.

(b) NFD
Added tool Attributes Features

pushlist
(“name” : [<name>]),
(“packetType” : [<type>])

Push a node’s Content List into its vicinity.
Call setPacketType(type) to define the type of Content List.

findcontent

(“name” : [<name>]),
(“packetType” : [<type>]),
(“interestLifetime” : [<ms>]),
(“mustBeFresh” : [<boolean>])

Generate a normal interest to find a content
object. Call setPacketType(type) to define
the type of normal interests.

servecontent
(“name” : [<name>]),
(“allowCache” : [<boolean>]),
(“freshnessPeriod” : [<ms>])

Provide a content object.
Call setAllowCache(boolean) to (or not to)
allow caching a data packet in each intermediate node.

(c) ndn-tools

Table 4.1: Summary of the Implemented Modification of the NDN Code-bases
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Evaluation

In this chapter, we comprehensively evaluate VCoF by considering various factors

alongside the trade-offs between delivery efficiency and additional overhead costs

in comparison to default NDN. In Section 5.1, we describe the overview of the

evaluations. We then perform the first evaluation to understand how VCoF enhances

content finding in a fully running system of NDN using the emulator as detailed

in Section 5.2. Further in the larger topology, we examine the impact of content

popularity with the consideration of an actual data-set of content access. This is

done by using the simulator as presented in Section 5.3. Finally, we investigate VCoF

in handling mobility by considering the well-known mobile communication model that

can also take the benefits of VCoF. This is detailed in Section 5.4.

5.1 Evaluation Overview

To answer the research questions in Section 1.2, we evaluate this work in three

different evaluations that give insights in different conditions under which NDN

operates. This is to understand VCoF in different evaluation scenarios. Although the

three major evaluations look at different aspects, together they focus on measuring

the effectiveness as well as the efficiency of content finding performed by VCoF in

comparison to default NDN as the baseline. These are briefly discussed as follows.

The first evaluation aims to firstly understand how VCoF enhances content finding

in realistic NDN networks. Hence, the actual code-bases of the essential components

of NDN consisting of NLSR, ndn-cxx, NFD, and ndn-tools are installed in every node

of a snapshot of an actual NDN test-bed. We assume that this is a fully running
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system of NDN since all of the essential components are installed. The modified code

of VCoF is also installed to deploying the scheme, which is to compare with default

NDN. This is done by using the emulator (Mini-NDN). In this evaluation, we can

track the flows of packets by looking at the validity of each FIB of every node via the

actual command lines. Nevertheless, this is also confirmed by the results.

Based on the previous evaluation, we know that the number of the replicas of

desired content (i.e., replica density) is the important factor that can affect different

content finding results. So, in the second evaluation, we analyse how the content

popularity impacts on content finding by considering the actual behaviors of content

access obtained from a data-set. We use the simulator (ndnSIM) which is scale better

than the emulator to support the higher content count.

In the final evaluation, we extend the VCoF scheme in the consideration of the

mobility context. The important objective of this evaluation is to demonstrate that

the scheme can also help to address the issues of failed content delivery and delays

due to handover as discussed previously in Section 2.5.3.

In every evaluation, a number of metrics are used to measure VCoF compared to

the baseline. A metric may have the similar name in each evaluation but it is slightly

different. The overview of the metrics is described here:1.

• Round Trip Time (RTT) is crucial to indicate the delivery efficiency. The basic

definition of RTT in this work is the duration in milliseconds (ms) it takes for

a content request to go from a requester to a node that can serve the desired

content and back again to the requester. It is used in the same pattern for

all evaluations, that is the average RTT of a number of requests is calculated

after the end of each experiment. According to the results, the number of

requests defined in each of the evaluation in this work are sufficient to indicate

the delivery efficiency. This is also confirmed by error bars that represent

95% confidence interval. Nevertheless, it is noted that network conditions and

evaluation topologies which could be different from the experiment setups in

this work might require a different number of requests to sufficiently calculate

the average RTT results.

• Message overhead is to measure a number of interest packets in the context of

content finding. In the first evaluation, we focus only on the interest packets

generated within a number of request(s) to see the number of additional packets

1Note, more details are discussed in each sub-evaluation section.
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produced by the VCoF scheme. In the second evaluation, we consider the

average message overhead per node, which can help to understand how the

entire network traffic in the context of locating content can be affected. In the

final evaluation, we calculate the total message overhead after finishing each

experiment. This is because the particular requesting behavior performed by

the mobile node from specific areas, which means the average message overhead

per node might not properly indicate the overhead results.

• Data volume is to understand how much the extra packets produced by the

VCoF scheme consume data volume, that can indicate another additional

overhead in addition to the message overhead. By considering the first

evaluation, the average data volume per node is investigated from the beginning

to the ending of each experiment. This is to observe how the results develop from

the small number of requests to the higher number of requests. In the second

evaluation, the overall data volume results (after completing each experiment)

are examined. Based on the results from the first (Section 5.2) and second

evaluation (Section 5.3), the data volume does not significantly play a major role.

So, we consider only message overhead in the third evaluation to understand the

extra costs.

• Re-transmission percentage is specifically used in the final evaluation since the

mobile node re-transmits a request if it has missed a desired content object.

We expect that the VCoF scheme can find the content faster, i.e., the re-

transmission percentage should be reduced because the content can be delivered

before handover. Replica hit rate is also considered in the final evaluation. This

is because of the particular node mobility and a desired content object that

is frequently forwarded to the area of the current NAR of the mobile node.

Replicas can be hit frequently due to the concept of VCoF itself. Hence, the hit

rate can also help to better understand how nearby replicas can be the potential

sources in the context of mobility.

5.2 Enhancing Content Finding

This first evaluation aims to firstly understand the effectiveness as well as the

efficiency of VCoF in an instance of actual NDN environments. We need to see how

VCoF improves content finding results in NDN while considering against additional
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overheads. Mini-NDN, the emulator, is used in this evaluation. We inspect a router-

level network with a limited scale to better monitor and understand the flows of

packets. The evaluation topology is composed of 22 nodes and 50 links as shown

in Figure 5.1. It is a snapshot of an actual NDN testbed [55]2. A cost to find a

content object can be varied dependent on each link cost and the number of hops.

To consider only the number of hops, we assume that each link has a homogeneous

latency of 10ms. This is because path reductions can be indicated by hop count. The

lower number of hops can cause the reductions of delivery delays. The NDN nodes

in the topology can be either consumers, routers, and producers, which are the key

elements in the content delivery chain of NDN. They are designed to emulate content

finding situations.

5.2.1 Experimental Model

Two main scenarios are employed in the evaluation. In the first scenario, we analyse

the delivery efficiency of VCoF by investigating how much it can reduce the average

round trip time (RTT) compared to the default NDN mechanism. As discussed

previously, replica density is important in content finding. A higher number of replicas

of desired content can offer better possibilities to find the desired content. So, the

caches are filled up with a number of replicas dependent on a specific replica density

of a desired content. Replica density is defined by the percentage of the number of

2Note, this topology is used to evaluate the main aims of this work and there are some evaluation
limitations as described in Section 5.2.4.4

Figure 5.1: Emulation Topology
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distinct replicas in the network compared to the potential number of distinct locations

that they could be cached. A higher percentage means a higher number of replicas

in the topology. In every experiment, each cache is fixed to prevent that successive

requests affect the further outcome of the test, i.e., an increasing of the replica density

is prevented. In each density, we execute 30 requests from randomised consumers and

the average RTT of these requests is then calculated.

In the second scenario, we examine the overhead costs of VCoF in comparison

to default NDN. This is to consider the trade-offs between delivery efficiency and

additional overheads. To clarify how the message overhead can be generated, we

consider the additional messages that only involve in our VCoF scheme. These

messages include the interest packets for requesting the desired content, and for

pushing the Content List(s)3. We execute 30 runs in every experiment to calculate

the average message overhead.

In considering the message overhead, we focus on two factors that can affect the

overhead results. First, a higher number of Faces (i.e., connected links) of an NDN

node can increase the number of packets for pushing its Content List. This might

result in higher message overhead costs. Hence, to evaluate this, we set only one

randomised requester and producer in the topology within each of different number of

links, including 30, 35, 40, 45, and 50 links, respectively. This is to understand how

high the message overhead is generated in each request in consideration with each of

defined number of links, which can represent low to high connections in the topology.

Second, we also investigate the impact of the number of requesters. This is because

a higher number of requesters can generate a higher number of requesting packets

and list pushing packets. In each experiment, the interest packets generated by the

requests from the requesters are counted. The number of randomised requesters vary

from 5 to 35.

In addition, VCoF might consume additional storage or traffic in each node to

process the packets especially for Content List pushing. Hence, we also analyse the

average data volume in each node. We test from the small number of requests to the

higher number of requests (the beginning to the ending of every experiment (time t1
to t30)) to see the development of the data volume. It is noted that each time step

has one requester that requests a desired content object, thereby starting with the

low number of requests to the higher number of requests.

3Note, due to no list pushing by using default NDN, in this evaluation, the message overhead
costs of default NDN are only the interest packets for requesting the content.
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5.2.2 Vicinity and Content Placement

As seen in [5], the number of hops can be used to indicate path reductions and delivery

performance. Hence, based on this knowledge, we solely investigate on the number of

hop(s). It should be noted that there are a number of other factors in real networks

that can affect delivery delays such as different link latency characteristics, jitter,

throughput, packet loss, etc. However, this work aims to first prove that nearby

content can be the better source for content finding. So, the number of hops can

properly indicate the improvement in the context of locating content, which means

cutting distances is cutting delays. This is fair to compare VCoF to standard NDN

under the consideration of the same network conditions. Nevertheless, to be more

practical, those factors need to be further investigated and additional optimisation

mechanisms might be required to be able to properly deploying in more complex

network conditions.

A trade-off that has to be essentially examined is what the optimal size of the

vicinity is to find nearby replicas by still keeping the costs low or acceptable. In our

hypothesis, the vicinity size should not be too large. We expect that, by centering

a consumer, a replica should be located nearby. If it cannot be found nearby, the

default path is still a suitable way to locate the content. This is to control the scope

of content finding especially for mitigating the potentially expensive message overhead

of the list pushing packets. Hence, to evaluate a narrow vicinity, the size is set to

1 hop. We expand the vicinity size to 2 and 3 hops to evaluate the larger views of

content/replica finding. It means that the scope of the Content List pushing (i.e., the

vicinity size) varies form 1 to 3 hops.

In the first scenario mentioned in Section 5.2.1, a producer is randomised and then

random consumers (i.e., requesters) request a desired content object from the producer

to create replicas in the topology depending on the percentage of their density. For

example, 50% replica density means there could be around 11 nodes in the evaluation

topology that cache the replicas of the desired content. This is to assume that the

replicas of the desired content are distributed in the network based on their pre-

defined percentage that each of this includes the cases of low-to-high replica densities.

We expect that different replica densities in the network can impact different content

finding results. To control the replica density, we allow only the requesters to cache

the replicas. This is because if we let any nodes along default paths from the producer

to the requesters cache the replicas, it is impossible to control the percentage of the
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Number of nodes 22 nodes

S
ce

n
ar

io
1

Replica density (percentage) [5,20,50,70,90]
Number of requests after each cache is fixed
(to get avg. RTT)

30 requests

2
Number of links [30,35,40,45,50 (default)]
Number of requesters [5,10,15,20,25,30,35]

Vicinity size [1,2,3]
Content chunk size (a complete object) 1024 bytes
Link latency 10 ms

Table 5.1: Summary of Emulation Parameters

replica density that we would like to evaluate. So, we assume that the replicas of a

desired content item are already distributed by following a defined percentage that we

need to examine. This is done by using the added “allowCache” element described

in Section 4.2.1.

A producer provides a content object that is a piece of data. It is carried in a

data packet to be forwarded to a consumer when a corresponding interest packet has

arrived at a node that can serve the content. In the evaluation, each object is created

in one chunk and has the same size of 1024 bytes.

In the second scenario mentioned in Section 5.2.1, we perform the three major

experiments to study the overhead costs. The first experiment investigates the

overhead costs in consideration with the number of links. We analyse the average

number of interest packets (message overhead) that each request produces by using

the VCoF scheme compared to default NDN. The second experiment examines the

average message overhead costs, varying the number of requesters (5 to 35). In the

third experiment, we aim to understand the data volume that might affect the storage

consumption or traffic in each NDN node. Emulation parameters are summarised in

Table 5.1.

5.2.3 Metrics

In this evaluation, we focus on three main aspects including delivery efficiency,

message overhead, and data volume in the consideration of the aforementioned

scenarios. We analyse these aspects by comparing VCoF within different vicinity

sizes to default NDN. The evaluation metrics are itemised below.

• RTT: the average RTT per request by each consumer to retrieve its desired
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content object. The goal of this metric is to measure the delivery efficiency.

The comparison between VCoF and default NDN is investigated. A lower RTT

indicates that each consumer can fetch its desired content object faster.

• Message Overhead: We consider the overhead packets performed by the

requester(s) including the interest packets for requesting the desired content,

and for pushing the Content List(s). We examine the impact of the number

of links and requesters. We focus only on messages that involve in content

finding and therefore ignore some system messages such as NLSR messages or

local messages. A higher average number of messages mean a higher number

of packets in each node that might increase the network traffic. However, we

need to consider that the overhead is acceptable or not to perform a better

performance in terms of content delivery.

• Data Volume: To understand how much the packets in the context of content

finding (especially the Content List pushing packets) can affect the data volume

of each node, the average data volume in each node is hence measured. The

data volume results include every packet that passes through each single node.

Higher data volume results mean higher traffic and disk utilisation. This might

impact the entire network and higher storage consumption in the nodes.

5.2.4 Results

In this section, the results of the experiments alongside the consideration of the

aforementioned metrics within a number of emulation scenarios are presented. In

the following results, we also discuss main findings. It is noted that these results are

the numbers obtained from the experiments performed in this work and they could

be different in real world with more complex network conditions. Nevertheless, the

results can still strongly support the proof of the improved content finding by using the

VCoF concept compared to the baseline in an NDN network, made possible through

deployment on real systems.

5.2.4.1 Round Trip Time (RTT)

This analysis is to quantify how well default NDN deliveries content compared to

VCoF to see how much the proposed scheme can improve. The results of the average
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RTT per request (with error bars that represent 95% confidence interval) are shown

in Figure 5.2.

The results indicate that VCoF benefits in almost every case of replica densities.

We start considering the case of the low replica density (e.g., 5%). In this case, there

are a low number of replicas in the network. Hence, for both default NDN and VCoF,

the average RTT results are comparatively high while considering against the cases of

higher replica densities. For example, it is 128.26ms for default NDN and 115.2ms for

the vicinity size of one in this case of 5% density. Interestingly, VCoF is better since

it offers alternate opportunities to locate nearby replicas in each vicinity or nearby

vicinities.

When the replica density is medium (e.g., 50%), VCoF can gain the most

advantage compared to default NDN. This is because the higher number of replicas

and the ability to find these replicas performed by VCoF increase the opportunities

that the desired content can be located nearby and thereby faster. In this medium

replica density case within the 1-hop vicinity, the average RTT is approximately

67.86ms while default NDN is around 101.98ms. Nevertheless, in the case of the

highest replica density (90%), the replicas are cached at almost every node. Hence,

they can be easily located, not just in the off-paths but also in the default paths.

This is why in this specific case, the differences between VCoF and default NDN are

marginal.
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Figure 5.2: Average RTT per Request Varying Vicinity Sizes and Replica Densities
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5.2.4.2 Message Overhead

In this analysis, two factors that can affect the message overhead results are

considered. First, we examine the impact of the number of links. As presented

in Figure 5.3, by using default NDN, the results of the overhead are quite stable. The

results performed by VCoF within the 1-hop vicinity are slightly higher than default

NDN since VCoF has to push Content Lists in each vicinity within a narrow scope.

The overhead results increase alongside the increment of the number of links. When

the vicinity size is set to two, there are around 20 additional packets from default

NDN in the default 50 link case. By considering the trade-off between the gained

performance and the generated overhead, the results are likely too high when the

vicinity size is set to three.

Second, further to the investigation of the number of links, the involvement of

the number of requesters on the additional message overhead generated by VCoF is

examined and the results are presented in Figure 5.4. The results are slightly increased

by using default NDN alongside the increment of the number of requesters. Similarly,

there are slight increments, when the vicinity size is set to one. There are only 22

additional packets within the 1-hop vicinity in the case of 5 requesters. When the

vicinity size is set to two or three, the results are higher. In particular, the overhead

packets increase to approximate 196 packets in the case of the 3-hop vicinity with

5 requesters. It can be seen that a larger vicinity means that VCoF must push the
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Content List to a higher number of nodes and the increased number of requesters

creates a greater number of packets to be pushed. According to the results, the

message overhead growth is almost linear. If we increase the number of requesters

(more than 35 requesters), the graph would grow in the same pattern.
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Figure 5.4: Average Message Overhead Varying the Number of Requesters

5.2.4.3 Data Volume

According to Figure 5.3 and 5.4, the message overhead results seem to be significantly

increased in the 3-hop vicinity cases. This overhead might consume higher data

volume in each node. Hence, the goal of this analysis is to understand how much the

data volume overhead can be incurred in every node in addition to the increment

of the requests. We start considering default NDN and VCoF within the 1-hop

vicinity. As illustrated in Figure 5.5, the difference is very marginal and the results

are approximately 0.57±0.01MB. These are quite stable from time t1 to t30. This is

because each node sends a small number of packets even including the list pushing

packets. Although the results include all messages (e.g., default routing messages,

and messages created by VCoF), the data volume results are still low (the maximum

value is less than 0.6MB) due to the small size of the pushed packets.

When the vicinity size is set to two, the results are slightly increased (e.g., VCoF

adds only 0.048MB to the baseline after the ending of the experiment) since there are

the higher number of packets to be processed. Similarly, the results are higher, when
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Figure 5.5: Average Data Volume per Node from Time t1 to t30

the vicinity size is three. Interestingly, in considering the results in Section 5.2.4.2,

although the message overhead costs seem to be higher alongside the increment of the

vicinity sizes, the differences of the data volume results are negligible. In the worst

case (the 3-hop vicinity at time t30), it is only ≈15% high compared to the baseline

of default NDN. It can be seen that the list pushing packets are quite small and do

not introduce a huge impact to the network traffic and storage consumption.

However, it is important to note that the more packets created, the more processing

has to take place, which may overload the network. So, we suggest that the vicinity

size should not be too large to keep the overhead as low as possible, while introducing

considerable gains. For example, in the medium replica density case (50%) within

the 1-hop vicinity, the performance of content delivery is improved to 33.46% while

the additional average message overhead per request can be only 3 packets. However,

although the improvement is higher in the larger vicinity size of three (e.g., in this

same case, 11.8% improved over the vicinity size of one), the overhead is significantly

increased (13 times over the smallest vicinity size). This can outweigh the benefits.

5.2.4.4 Summary and Discussion

The default best route strategy of NDN focuses on finding a content object according

to its name prefix, which this object is normally located on-path (i.e., default path).

We argue that nearby off-path replicas can be the better source. VCoF is designed

to proactively provide routing information of these nearby replicas. This can be of
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Vicinity Size
1 2 3

Improvement
over Baseline (%)

Low Replica Density (5%) 10.18 13.97 17.61
Medium Replica Density (50%) 33.46 40.74 45.32
High Replica Density (90%) 1.73 4.64 7.07

Increased Average Message Overhead over Baseline (packets) 3 20 40
Increased Average Data Volume over Baseline (MB) 0.011 0.048 0.099

Table 5.2: Results Summary of Improvement with Additional Overhead

advantage by providing a higher efficiency in locating content. This first evaluation

has demonstrated how VCoF enhances content finding in NDN. The results have

indicated that VCoF can significantly improve delivery efficiency with some additional

overhead costs especially in the cases of the narrow vicinity size of one. Although, a

larger vicinity size such as the vicinity size of three can provide further improvement,

the trade-off between the gained performance and the overhead might not be worth

it to spend too much costs.

According to the results, considering the trade-off between the achieved benefits

and the overhead costs, the experimental results have demonstrated that the 1-hop

vicinity can be considered as a good trade-off since VCoF provides considerable

benefits while introducing slight increments of the overhead costs compared to the

default NDN cases. As shown in Table 5.2, the percentage of improvement compared

to the baseline can reach up to 33.46% in the 1-hop vicinity case. In considering

the overhead in this case of the 1-hop vicinity, a small increment of the average of

3 additional message overhead packets and also the slightly increased average data

volume of 0.011MB have incurred.

In some particular cases, due to the further decreased RTT (e.g., 40.74% of

improvement in the 50% replica density), the 2-hop vicinity might still be worthwhile.

For example, where a producer is quite far from a consumer and the neighborhood

within which there is interest in the content is larger than one hop. The overhead

results of the 3-hop vicinity are likely to be too high in consideration of the

performance gained. 40 packets of the increased average message overhead per

request have demonstrated the highly excessive overhead while getting only a slight

improvement over the smallest vicinity. It should be noted that the overhead packets

do not consume high bandwidth since VCoF introduces only 0.099MB of the increment

of the data volume in the worst case of the 3-hop vicinity.
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The experiments have indicated the effects of content finding using VCoF in a

static network environment. Though, there are other scenarios that VCoF can also

provide benefits. In the mobility context, for instance, VCoF can help to find content

in the vicinity or nearby vicinities of a mobile node. In particular, when it has missed

desired content due to handover. Hence, this leads to extend VCoF in supporting

mobility, which will be described further in Section 5.4. Furthermore, locating nearby

replicas with different content popularity distributions can help to understand the

impact of content popularity to content finding. The different number of replicas

of desired content that are distributed by the requests of consumers can impact

content/replica finding results and this is explored in the next evaluation section.

Evaluation Limitations: In considering the topology, it may not be considered as a

practical topology that represents a current network, which is based on the existing

Internet architecture. We need to consider the topology that can potentially represent

an NDN topology in the Future. This is because routers and end devices are allowed

to cache/serve content. We believe that hardware customisation specifically for NDN

must be required. This can change the way of content delivery. Hence, the snapshot of

an actual NDN test-bed is likely an appropriate topology that can help to understand

content finding performed by VCoF in comparison to standard NDN since every node

in the topology can perform the full of NDN primitives.

In contrast, if the network topologies in the Future are very similar to the current

topologies even integrated with NDN, we can still deploy VCoF specifically in different

parts of the networks. For example, an ISP backbone network can be possible.

VCoF can also deploy only in core routers that are connected with their network

segments. At edge networks (e.g., a home network), a topology could have various

communication technologies [163]. It is common to have Bluetooth, Zigbee, WiFi,

Ethernet, etc. This means there are a different number of routing parts or devices to

find content. Hence, VCoF can likely help to handle these networks.

Nevertheless, the strategies of Content List pushing should be adjusted or

optimised depending on the different characteristics of networks, e.g., the number

of content updates and parts in the networks as described in Section 3.2.2.2. Content

finding results in different network conditions might be different from the evaluation

results in this work especially the overheads. Nevertheless, we still believe that if

desired content can be found nearby, the delivery efficiency must be improved since

due to the results, distances to get desired content performed by VCoF are usually
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closer than performed by standard NDN. In the Future, some further mechanisms to

optimise and handle the issues such as the overheads, network congestion, content

updates regarding different network conditions can be developed afterwards.

5.3 Impact of Content Popularity

The goal of this evaluation is to examine the impact of content popularity to content

finding. In the previous evaluation, we have found that the different number of

replicas of desired content can significantly affect the content finding results. Hence,

this evaluation aims to profoundly examine the popularity distribution of content

using a real dataset [164] of actual content access. One limitation incurred using the

emulator in the previous evaluation is the ability to emulate a higher-scale network.

For example, default name prefixes propagated by the routing protocol (NLSR) take

a considerable time for routing convergence, especially in the case of a high number

of nodes. Using the emulator, each name prefix of every node should be disseminated

to other nodes in the topology to calculate default routing information. This is the

important process of routing convergence4. The experiment fails, if there is a node’s

name prefix that is not fully disseminated to every node in the topology because the

process of routing convergence is not complete.

Therefore, we port the implementation code to the simulator (ndnSIM), which

can simulate a higher-scale network compared to the previous one. This is to

support the higher content count in the dataset. The simulation topology which

is another snapshot of the actual NDN testbed introduced in [165] consists of 46

nodes with 138 links as presented in Figure 5.6. This is to cover the number of

consumers/producers selected from the dataset. We still assume that each link has

the same cost (a homogeneous latency of 10ms). It is noted that this environment

is to understand VCoF compared to the baseline under the same network conditions

defined specifically for this second evaluation and a number of limitations should be

considered as discussed in Section 5.3.4.4.

4Note, routing convergence is the process that the routing algorithm computes routes and builds
default routing information in a set of NDN nodes in a topology. This is done by exchanging each
name prefix of each node across the network.
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Figure 5.6: Simulation Topology

5.3.1 Experimental Model

We consider the dataset [164] that is collected from an IPTV-service that provides

content for consumers. The dataset shows content popularity since there are several

consumers requested the same content. We examine different TV programs in the

dataset since they can represent the popularity levels in every case including low,

medium, and high. A content popularity distribution is defined by the percentage

of the number of requests (created replicas) of a program compared to the overall

requests5.

Before running an experiment, the caches are filled up based on the dataset by

considering two selections of different numbers of content objects. First, we investigate

a less populated network by filling up the caches with a 100 selected objects. Second,

500 objects are filled to evaluate a more populated network. A less populated network

represents an NDN network that at the time where it has been exposed to a low

number of overall requests, which means the caches or the consumers have seen low

traffic passing through. In contrast, a more highly populated network is an NDN

network that has been exposed to a higher (frequent) number of requests, which

5Note, a program might be requested more than one time by a single consumer.
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means a higher number of content objects are in the caches or at the consumers (i.e.,

highly densely populated).

When a requester node receives a desired content object6, the Content Availability

Advertisement module is activated to push the latest node’s Content List into its

vicinity. This is to proactively advertise content availability of the node to other nodes

in its vicinity. It might create additional overhead but the scope (i.e., vicinity size)

of the list pushing can mitigate the overhead. Hence, we investigate the list pushing

in different vicinity sizes to understand how the overhead costs develop in the real

behaviors of content access. We push Content Lists for only desired content since

we need to see how overhead costs develop in the context of locating the particular

content that represents a case of content popularity that we would like to investigate.

We focus on the spending overhead to find only each desired program (i.e., content).

Unlike the previous evaluation where we examine how the overhead costs develop with

a number of request(s), this evaluation is to understand the average message overhead

generated by VCoF for each particular content program based on its popularity.

Three packet types of interest messages necessary include: packets for filling up the

caches depending on the number of content objects (i.e., 100 or 500), for requesting

content (30 requests) after the caches are fixed, and for pushing the Content Lists

for each desired content by the requesters. It is noted that message overhead costs in

the context of locating desired content are considered by including the baseline of the

costs (i.e., packets) of other content provided by the dataset to fill up the caches.

Content popularity might be affected by cache sizes. For example, a small cache

size can increase the cache replacement rates and decrease the opportunities to locate

replaced replicas. This means the replacement can affect the content availability.

It is noted that the impact of cache performance might also affect content finding

results since desired content objects can be removed depending on a caching policy.

However, in this work, we do not want to determine which caching policy performs

the best while applying VCoF. In our hypothesis, the actual impact would be cache

replacement because it can reduce the number of desired content items that decrease

the opportunities to locate the content/replicas. A smaller cache size can also

force a higher replacement rate. Therefore, to understand the impact of the cache

6Note, a desired content object means a complete content object that a consumer is trying to
find. In this second evaluation, a desired content is a TV program in the dataset that represents a
particular case of content popularity (could be low, medium, or high depending on the percentage
of the popularity) that is examined.
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replacement, the small cache size of 10 and the large cache size of 10007 are evaluated

within different content popularity levels.

5.3.2 Vicinity and Content Placement

A particular level of content popularity is considered based on the dataset. The

replicas of a desired content representing a level of content popularity are placed

(i.e., filled) in the caches by requesting the content generated by its producer based

on the popularity percentage. One issue of each experiment is that requesting a

desired content object several times can increase its popularity. However, we have to

control content popularity depending on each predefined percentage calculated from

every selected TV program in the dataset, representing each of content popularity

level. Similar to the first evaluation, we assume that replicas are distributed only at

their requesters based on their percentages. We then control every level of content

popularity by freezing (i.e., fixing) each cache before collecting the average RTT of

30 requests. The average value of the requests performed in each experiment is then

calculated. Therefore, all of the average RTT values are compared to indicate the

performance of VCoF alongside the consideration of default NDN.

Through the previous evaluation, it is to be expected that replicas should be

located closer especially alongside the increment of content density or popularity.

Based on the knowledge of the previous evaluation, 1-hop vicinity can be the good

7Note, this is the default cache size. We do not expect any cache replacement since the number of
content in the evaluation are not sufficiently high compared to this default cache size of 1000. This
is only for the evaluation purpose as the large cache size can remain content for longer compared to
the small cache size (which is also evaluated) that can have some cache replacement cases.

Topology 46 nodes, 138 links
Link latency 10 ms

Content popularity (%)

Number of content objects
100 [1,7,11,37]
500 [0.6,2.6,7.4,12.2,20]

Number of requests after each cache is fixed
(to get avg. RTT)

30 requests

Cache sizes [10,1000(default)]
Vicinity sizes [1,2,3]
Content chunk size (a complete object) 1024 bytes

Table 5.3: Summary of Simulation Parameters
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trade-off, while 3-hop vicinity has demonstrated the unworthy trade-off between the

performance gained and overhead obtained. Hence, we again investigate the narrow

vicinity size of one and expand the vicinity size to 2 and 3 hops, respectively. The

simulation parameters of this second evaluation are summarised in Table 5.3.

5.3.3 Metrics

In this second evaluation, we employ three key metrics consisting of the average RTT

per request, the average message overhead per node, and the overall data volume.

The details of each metric are itemised below.

• RTT: the average RTT per request performed by the random consumers to

find a content object within each of content popularity level represented by its

percentage. A lower average RTT indicates that the consumers can locate the

desired content object faster.

• Message Overhead: After finishing an experiment, the interest messages are

counted from every node. The average message overhead result is then

calculated. We filter only messages that are involved in content finding. A

higher result indicates the increment of traffic. However, the trade-off between

the overhead and the achieved performance in terms of delivery efficiency should

be ultimately considered.

• Data Volume: the overall data volume obtained from each node after an

experiment is ended. In the evaluation, all incoming packets are counted as

megabytes. A higher data volume means a higher traffic or overall storage

consumption that could impact the workload of each node or the entire network.

5.3.4 Results

The experimental results are presented and examined in this section alongside the

consideration of the aforementioned metrics. In each metric, we also discuss main

findings considered from the results. Similar to the previous evaluation, it is again

noted that these results obtained from the experiments performed in this work

could be different in other environments or real world with more complex network

conditions.
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5.3.4.1 Round Trip Time (RTT)

This analysis is to indicate how well VCoF deliveries content compared to default

NDN. The results with error bars that represent 95% confidence interval are shown in

Figure 5.7 and 5.8. It should be noted that Figure 5.7 represents the results for both

cache sizes (10 and 1000 objects) since there is no significant difference by considering

the impact of cache sizes in the less populated network8 (described further in the

following paragraph).

In the case of the less populated network, as presented in Figure 5.7, by comparing

the cases of the cache size of 10 and 1000, cache size does not have any significant

effects since the number of content objects are not high enough to increase cache

replacement rates even in the case of the small cache size of 10. When the content

popularity levels increase, VCoF can provide higher benefits compared to default

NDN due to the higher opportunities of finding nearby replicas. In the case of the

highest popularity level (37% in this case), the overall distribution of the replicas

of desired content is approximately average compared to the total number of nodes.

Nevertheless, the increment of these replicas still shows the visible gaps between

VCoF and default NDN. For example, in the 1-hop vicinity, 55.3ms is from default

8Note, the definition of the less populated network and more populated network is already defined
in Section 5.3.1, which is also used to describe the results of this second evaluation.
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Figure 5.8: Average RTT per Request in the More Populated Network

NDN while 40.91ms is performed by VCoF. This has demonstrated the significant

improvement provided by VCoF even in the less populated network.

As presented in Figure 5.8 (representing the more populated network), VCoF still

shows higher advantage over the baseline. This is because the designed scope of

content finding can increase the opportunities to find nearby replicas in each vicinity
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or even closer vicinities. However, when the popularity level is high (e.g., 20%), in the

case of the 1000 object cache size, the differences between VCoF and default NDN

are negligible because the replicas can be remained in each cache for longer. It is

effortless to locate the replicas since they are already cached in almost every node

even using default NDN. However, in the case of the cache size of 10, the replicas

might have been replaced with other content more, reducing their availability. So, it

is more difficult to find the replaced replicas but VCoF can still significantly reduce

the RTT with the noticeable gaps to default NDN. For instance, in the 1-hop vicinity

case, the result of default NDN is 42.10ms while the result of VCoF is 34.13ms.

By comparing the same percentage of content popularity between the two cache

sizes, the results have demonstrated that the large cache size (Figure 5.8 (b)) slightly

decreases the RTT compared to the small cache size (Figure 5.8 (a)). For example,

in the case of 0.6% with the small cache size, the average RTT result of default NDN

is 75.5ms, while the result of the large cache size is 71.9ms. Similarly, the differences

of VCoF itself develop in the same direction. This is because in the large cache size,

the replicas can be remained for longer and it is easier to find these available replicas,

resulting in the lower RTT.

5.3.4.2 Message Overhead

In this analysis, we examine the message overhead costs generated by VCoF in

comparison to default NDN. Figure 5.9 and 5.10 present the average overhead (with

error bars of 95% confidence interval). It is again noted that Figure 5.9 contains the

results from both cache sizes due to no noticeable difference, which is described later.

We consider the overhead results along with the improvement of delivery efficiency

presented in the previous section. As shown in Figure 5.9, when we increase the

content popularity levels, the message overhead costs also increase. This is because

the replicas of desired content are distributed to the higher number of nodes, increasing

the Content List pushing packets. It should be noted that the desired content can be

found in the local cache of a single node if this node performs a number of requests

more than one time. Hence, there is no Content List pushing packet for any request

looking for this content after the first request.

In the case of the 3-hop vicinity, the costs are likely high after considering the

achieved performance compared to the smaller vicinity sizes. The 2-hop vicinity can

be worth it while the RTT can be significantly reduced with considerable overhead.
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In the case of the 1-hop vicinity, the costs are slightly increased compared to default

NDN, while the RTT results are improved significantly. In this case, the improvement

can reach 26.02% while the increased average message overhead is only 5.5 packets.

In this less populated network, cache size does not again affect the results since the

number of filled content in the caches are not sufficiently high to create some cache

replacements.

In the more populated network as presented in Figure 5.10, the message overhead

results slightly increase considering the cases of the 1-hop vicinity. For example, the

additional average overhead is only 5 packets in the case of the cache size of 10 and

medium content popularity. This is due to the fact that the packets are pushed in

the small areas caused by the narrow scope of the vicinity. In considering the delivery

performance, the results have shown favorable outcomes performed by VCoF. For

instance, the improvement can reach up to 29.39% within this narrowest vicinity size.

In the 2-hop vicinity cases, there are still performance gained but with the higher

overhead costs. In particular, when a producer is located further away, expanding

the vicinity size from one to two can be beneficial. In cases of the 3-hop vicinity, the

increased overhead results could considerably outweigh the benefits. Interestingly, in

the case of the large cache size, the results are slightly reduced compared to the small

cache size. This is because the number of packets for finding desired objects travel

shorter distances (i.e., hops). This is due to the higher number of replicas remaining
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Figure 5.10: Average Message Overhead per Node in the More Populated Network

longer in the caches. Another reason is that in the case of the small cache size, the

availability of some replaced replicas is lower causing the higher number of packets to

locate them, for instance if they are re-requested again to fill up the caches.
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5.3.4.3 Data Volume

The goal of this analysis is to quantify how much the data volume overhead is incurred.

As presented in Figure 5.11 (covered the results from both cache sizes), cache size does

still not play a major role in the less populated network since the number of replicas in

each cache remain similar. In considering the low content popularity, the differences

are slight since there are a low number of packets to push the Content Lists. This

is because the replicas of the desired content are distributed in a few nodes due to

the low levels of the content popularity of these replicas. This means the number

of list pushing packets for this particular content marginally increase the number of

packets in the topology compared to the default strategy. So, the overall number of

increased packets in the topology are not high resulting in the slight increment of the

data volume results. When we increase the vicinity sizes, the results are higher due

to more number of list pushing packets in the larger scopes. Nevertheless, although

in the case of the highest content popularity (37%) within the 3-hop vicinity (i.e.,

the worst case), the results are still slightly different (the increment is only 1.01MB

compared to the baseline).

In the more populated network, as shown in Figure 5.12, due to the higher number

of packets related to content finding, the overall results increase compared to the less

populated network. These packets include the packets for filling up the caches, finding

content, and pushing the lists. However, since the packets for pushing the lists are
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Figure 5.12: Data Volume in the More Populated Network

quite small, the differences are still negligible. In the large cache size (Figure 5.12

(b)), the results slightly increase compared to the smaller cache size (Figure 5.12

(a)) because the larger cache size means the lager sizes of the lists to be pushed.

Interestingly, the overall increments are still slight (less than 1MB in the worst case

of the 3-hop vicinity compared to default NDN). This has indicated that the small
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packet sizes of the lists do not introduce a huge impact to the entire network traffic

and space consumption in each node.

5.3.4.4 Summary and Discussion

This evaluation revealed the effectiveness and the efficiency of VCoF by considering

the impact of content popularity based on the actual data-set of content access. We

assumed that the replicas of desired content are requested to be stored in the caches

based on the percentage of each level of content popularity. The less populated

network and the more populated were used to examine the different amounts of traffic

passing through the caches. The large cache size of 1000 objects is to ensure that

each node’s CS caches the desired content objects for longer, causing more content

availability. In contrast, we also examined the case of the cache size of 10 objects

to understand if there are some cache replacements due to the small cache size. The

results have again demonstrated that VCoF can provide effective delivery efficiency

over the baseline of standard NDN.

According to the RTT results, the values decrease dependent on the increment

of the content popularity levels. It means when the replicas of desired content are

distributed in a higher number of nodes, this increases the popularity of the desired

content, which increases the opportunities that the desired content object or its

replicas can be found especially in nearby nodes. VCoF can help to locate these

nearby replicas effectively, improving the delivery delays compared to the baseline,

even in the less populated network. For example, as shown in Table 5.4, the scheme

presents 26.02% of improvement in the case of the 37% content popularity, even using

the narrowest vicinity size of one.

Content Popularity
Low (1%) Medium9 (11%) High (37%)

Improvement
over Baseline (%)

V
ic

in
it

y
S
iz

e

1 11.25 23.99 26.02
2 15.02 26.91 29.41
3 18.08 29.95 31.46

Increased Average Message Overhead per Node
over Baseline (packets)

1 0.1 1.8 5.5
2 0.6 9.0 33.1
3 3.1 32.0 83.2

Increased Overall Data Volume
over Baseline (MB)

1 0.155 0.231 0.291
2 0.241 0.541 0.723
3 0.352 0.853 1.013

Table 5.4: Results Summary of the Less Populated Network
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Content Popularity
Low (0.6%) Medium (7.4%) High (20.0%)

Improvement
over Baseline (%)

V
ic

in
it

y
S
iz

e

1 15.49 29.39 18.93
2 19.23 32.46 21.30
3 21.80 35.53 23.61

Increased Average Message Overhead per Node
over Baseline (packets)

1 1.0 5.0 12.3
2 3.8 15.7 65.1
3 9.9 57.0 242.7

Increased Overall Data Volume
over Baseline (MB)

1 0.025 0.060 0.141
2 0.087 0.122 0.392
3 0.125 0.313 0.593

(a) Cache Size = 10 objects
Content Popularity

Low (0.6%) Medium (7.4%) High (20.0%)

Improvement
over Baseline (%)

V
ic

in
it

y
S
iz

e

1 16.09 25.93 3.02
2 17.23 29.37 6.05
3 19.85 32.82 6.05

Increased Average Message Overhead per Node
over Baseline (packets)

1 1.0 3.0 8.0
2 2.7 11.7 55.9
3 5.9 49.0 228.6

Increased Overall Data Volume
over Baseline (MB)

1 0.065 0.110 0.321
2 0.107 0.341 0.592
3 0.185 0.921 0.993

(b) Cache Size = 1000 objects

Table 5.5: Results Summary of the More Populated Network

Interestingly, cache size does not play a major role in the less populated network

since the number of replicas remain similar. In the more populated network, RTT

results of the large cache size slightly reduce compared to the small cache size due

to the more content availability as mentioned in Section 5.3.4.1. In this case, there

are also slight reductions of the overhead results since the requesting packets travel

shorter distances (considering the improved RTT). For example, as presented in Table

5.5 (a), the increased average message overhead result of 7.4% content popularity is

approximate 5 packets in the case of the 1-hop vicinity while the result of the larger

cache size in Table 5.5 (b) is around 3 packets. In considering the data volume, the

results of the large cache size are higher than the small cache size according to the

larger sizes of the Content Lists. Notably, the increments are still negligible and do

not introduce a huge impact to the entire network. For instance, the increment of the

data volume in the worst case of the 3-hop vicinity is only 0.993MB as indicated in

9Note, medium in this context does not mean the middle value but it would mean one of the
values between the low and the high.
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Table 5.5 (b).

The overhead costs increase dependent on the content popularity levels. In

particular, the higher number of requests increase the more list pushing packets.

In the 1-hop vicinity, the results slightly increase (due to the narrow scope) with

the higher efficient content finding compared to default NDN. For example, in the

medium content popularity, VCoF adds only 5 packets to the baseline of the average

message overhead per node while efficiently providing better improvement (29.39%)

as presented in Table 5.5 (a). The costs might still be worthwhile in the case of the

2-hop vicinity while providing the improved RTT results with acceptable overhead.

However, the costs could be likely high within the 3-hop vicinity because of the larger

scope of the list pushing (higher number of hops) and the unworthy trade-off of the

gained performance. For example, considering every content popularity level, the large

vicinity size of three offers less than 7% of the maximum improvement compared to

the narrowest vicinity size of one as shown in Tables 5.4 and 5.5 while the highest

difference of the message overhead can reach up to ≈230.4 packets.

The VCoF scheme has again demonstrated that nearby replicas in every con-

sumer’s vicinity or nearby vicinities can indeed be the potential source for improving

content delivery. Most of the results ensure the higher delivery efficiency over the

baseline. In the next evaluation, we will explore that how replicas that are frequently

forwarded to the vicinity of a mobile node can also be a suitable source for leveraging

delivery performance in the mobile case.

Evaluation Limitations: In this evaluation, we again assume that the topology could

be one of potential NDN topologies in the Future. This is because every node in the

topology can perform all of the NDN primitives. In the existing architecture of the

Internet, routers do not consume, serve or publish content. Hence, the topology used

in this evaluation is not likely sensible if we consider current topologies based on

the existing architecture. However, as discussed previously in Section 5.2.4.4, NDN

could change the way of accessing content. Although core routers might not consume

content, several devices in their network segments can consume and publish content.

Hence, content generated by user’s devices can be cached and served at the core

routers due to the NDN primitives. This create replicas in the networks that VCoF

can still provide the benefits.

Furthermore, considering edge networks, a single node in the evaluation topology

can be a device (e.g., a smartphone, a laptop, a smart device, etc.). Nodes in the
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topology do not always represent core routers and the evaluation topology could also

represent an edge network (e.g., a home network). Due to the design of NDN, it can

be flexible to be deployed in various kinds of networks and parts in a network system.

VCoF can also provide its advantages in different networks. Nevertheless, a number

of Future researches (e.g., caching techniques along with overhead cost optimisation

as described in Section 3.2.2.2) can be further examined and developed specifically

to be used in different network systems. In this evaluation, we aimed to examine

that the nearby content finding performed by VCoF in the consideration of different

content popularity levels can indeed improve the delivery efficiency compared to the

baseline of standard NDN and this has been confirmed by the results obtained.

In considering the content popularity based on the dataset, we do not expect

that the dataset can represent an actual NDN traffic since it is the dataset from a

VoD IPTV-service based on P2P communication in the existing Internet architecture.

However, the dataset can represent different levels of content popularity by considering

different TV programs requested by a number of consumers selected from a specific

section of the dataset. This dataset can indicate the actual behavior of content access.

For example, we know the potential content distribution by considering different

locations of consumers that perform their requests after applying the dataset into the

evaluation topology. Hence, by applying NDN, the replicas of a desired TV program

can be cached and distributed based on its popularity in the topology dependent on

the realistic behavior of requesting content performed by the number of consumers.

This is sufficient to first understand VCoF compared to standard NDN in the context

of finding content by considering the actual content distribution provided by the

dataset.

It is noted that in the Future where might have a real (i.e., native) dataset of NDN

traffic, the results could be potentially similar or different depending on information

in the dataset, the types of networks, and other related factors. Nevertheless, we

still believe that the results proved in this work can indicate that nearby content

finding can also provide the advantages in those network conditions. To ensure this,

further improvement of the VCoF scheme itself and evaluations in different network

conditions can be examined afterwards.
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5.4 Handling Mobility

In Section 2.5.3, the issues regrading content delivery in the mobility case are

discussed. These are mainly about the missing of desired content objects for a number

of requests performed by a mobile node due to handover, causing a higher number of

re-transmissions and delivery delays. In this section, we examine how VCoF handles

consumer mobility considering these issues. In considering the communication model

of this mobility case, the replica of a content item is usually cached in the previous

NAR (i.e., the access station) of the mobile node. It is often located in the same

vicinity of the current NAR. This is likely that VCoF can also help to find the replica

to improve delivery efficiency. However, some of these NARs can also be located in a

different Location Area (LA). In this case, the previous NAR could not be a suitable

source. Based on the knowledge from the previous evaluations, the other replicas in

the vicinity or nearby vicinities can be alternatively potential sources (depending on

the content density). Hence, VCoF has the potential of being an appropriate solution

to handle the issues linked to the mentioned mobility case.

To understand VCoF in a mobile NDN environment within the mentioned

communication model, we need to scale up the evaluation topology since the mobile

node needs to travel between NARs a longer distance. It means there should be a

sufficiently large number of NARs that the mobile node can perform requests through

different NARs. This means the locations of requesting content should be different. If

there are a small number of NARs, it means the mobile node can travel only a short

distance. Some requests might be performed in the same NAR and a desired content

object can be fetched from the same cache. In fact, the mobile node can request the

desired content object from various locations of NARs according to its movement.

So, we set the number of NDN nodes that are located in the infrastructure network

along with the number of NARs, in which content objects can be cached in various

locations. The challenges related to this to the VCoF scheme need to be investigated.

Hence, the simulation topology is composed of 94 nodes of normal NDN nodes (or

routers), 35 nodes of NARs, 14 LAs, and 265 links. The main infrastructure topology

is generated based on considering the number of NARs and their locations. It is again

noted that a number of evaluation limitations (including the simulation topology) are

discussed in Section 5.4.4.3.

We assume that each LA should be connected to different parts of the infras-

tructure network depending on its location. This is also based on considering the

132



Chapter 5. Evaluation 5.4. Handling Mobility

Figure 5.13: Mobile Topology Simulation

aforementioned communication model, which the mobile node moves from its current

location to every next location. The opportunity that the mobile node performs every

request from different locations would be more realistic in the considered mobile case.

So, the NARs and LAs are randomly connected to different areas of the infrastructure

network along the direction of moving the mobile node. As presented in Figure 5.13,

the mobile node moves from the first NAR to the next NAR in the same LA (LA1). It

then moves to the next NAR of the next LA from the left hand-side to the right hand-

side until finishing the communication with the last NAR of the last LA. It moves

in a constant velocity of 25m/s. We again assume that each link has a homogeneous

latency of 10ms.

5.4.1 Experimental Model

In this mobility evaluation, we expect that replica density is still the important factor

since the NARs are statically connected to the infrastructure network. The replicas

can be distributed in several locations in the topology. So, we investigate different

replica densities at 5%, 25%, 50%, 75%, and 90%, respectively. This can cover low-

to-high replica density cases, which can affect different content finding results. To

fill up the caches, we request an origin content object to be randomly distributed
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in different requesters in the infrastructure network by following the percentage of

each replica density. For example, in the case of 50% density, the total number of

nodes that can cache the object are 129 nodes (including normal NDN nodes and

NAR nodes) and in this case, there should be ≈65 nodes that cache the replica of

the desired content. However, if we let all of intermediate on-path nodes store the

object, we can not control any replica density based on the percentage that needs to

be evaluated. So, we assume that the replica is distributed throughout the topology

based on the locations of the requesters10, i.e., only at the requesters under a defined

percentage.

Further to the experiments of the case of fixed caches, we also evaluate the case

of non-fixed caches. In the first case, we assume that an interest packet tries to find

its corresponding data under the network with different pre-cached replica densities.

This is to understand how well every interest packet finds the desired content with

the different defined percentages of replica densities. However, in real NDN networks,

the content can be cached at any nodes in the Breadcrumb trails. This can cause the

increment of a replica density especially in the areas closer to the mobile node due to

the directions of interest packets. Hence, under the same setup of the first case, in

the second case, we do not fix the caches.

After filling up the caches, the mobile node runs 30 requests from different NARs

according to its movement. It is noted that each normal requester in the infrastructure

network has to push its Content List to its vicinity due to the VCoF concept. This

creates some additional overhead. To clarify this, we consider only the interest packets

involved in content finding. The packets include the interest packets for requesting

a content object to distribute the content depending on each replica density, the

interest packets for requesting the content performed by the mobile node, and the

interest packets for pushing the Content Lists. Only two packet types consisting of

the interest packets for filling up the caches (i.e., distributing the content) and for

requesting the content (performed by the mobile node) are considered as the overhead

of default NDN.

According to the results presented in Section 5.3, we have found that a large

cache size can remain content objects for longer and thereby the availability of the

desired content makes it easier for finding them compared to a small cache size. This

is because each content object can be replaced easier in the smaller cache size due

to the limited caching capacity. In this evaluation, we do not consider the impact

10Note, the mobile node is not one of these requesters.
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of cache size. We focus on finding replicas that are distributed in several caches

depending on their density and are assumedly available to be located. There is no

replacement from other objects and this is a note of this evaluation that we need

to focus only on investigating content finding within the availability of the replicas

based on their different percentages of densities. Additionally, the impact of some

cache replacements due to the limited cache size has been already examined in the

previous evaluation.

5.4.2 Vicinity and Content Placement

We assume that the replicas of a desired (i.e., finding) content object are randomly

distributed in the nodes of the main infrastructure network (depending on a defined

parameter (i.e., percentage) of the replica density). When a node receives the finding

content object, it replicates the object into its CS and it then pushes its Content List

to other nodes in its vicinity. If there is an interest packet generated by the mobile

node that has been forwarded to a node (probably in the same vicinity or a nearby

vicinity) to find the content in the node’s vicinity, the content will then be fetched at

the owner of the pushed list due to the Content Finding module. The content object

is then forwarded to the mobile node considering the two cases of the fixed caches

and non-fixed caches. In the first case, any intermediate nodes in the infrastructure

network do not cache the content to prevent the increasing of a replica density. In

the second case, the intermediate nodes are allowed to cache the content.

After the content object has been requested to fill up the caches for distributing

the content, each node that is the requester and is caching the replica of the object has

to push its Content List to advertise the content availability in its CS. This process

can introduce additional overhead. Due to the previous evaluations, we have found

that the vicinity size of the list pushing should be one because it has shown to have

the most favorable tradeoff between the delivery efficiency and overhead costs. In

specific cases, the vicinity size can be expanded to two but this comes at the costs of

higher overhead. A larger vicinity can increase the opportunities of locating replicas.

However, the overhead costs are likely to be excessively high in the case of the large

vicinity size (like 3-hop vicinity) while considering the slight improvement over the

case of the narrowest vicinity size of one. So, in this evaluation, we still control the

vicinity sizes from one to three because we can evaluate the impact of the smallest

vicinity size to the large vicinity size that is sufficiently large to understand excessively
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Topology
94 nodes (in the infrastructure),
35 NARs, 14 LAs, 256 links

Link latency 10 ms
Mobile node’s velocity 25 m/s
Handover delay 50 ms
Coverage area of the access station 100 meters
Number of requests to get the avg. RTT
(randomly send before every handover)

30 requests

Replica density (%) [5,25,50,75,90]

Table 5.6: Summary of Mobile Simulation Parameters

high overhead costs.

During a connectivity with an NAR, the mobile node randomly sends a request

to find the content prior to every handover (at any time in the period of a hundred

milliseconds before handover). This is to understand the higher possibility of re-

transmissions if a number of requests cannot be delivered before handover. We assume

that the default handover delay is set to 50ms. So, if there is a re-transmission, the

RTT will include this hand-off delay with the delay of finding the content which can be

different in each request. In each experiment, the mobile node generates 30 requests

to indicate the performance of VCoF alongside the consideration of different metrics

(described further in the next section).

When an NAR receives the content object, it then replicates the object in its CS.

To understand the benefits of VCoF in the mobile topology, we also allow each NAR

to cache the content object and to push its Content List to its vicinity (i.e., VCoF

deployed). This might slightly increase a replica density from its base percentage

but we can gain more understandings of the VCoF scheme particularly in this mobile

environment from the deployment of the scheme at each NAR. This is because nearby

NARs in a vicinity can also be a potential source especially every previous NAR.

Based on the evaluation setups, the summary of the simulation parameters of this

final evaluation is presented in Table 5.6

5.4.3 Metrics

In this evaluation, we employ four metrics i.e., (i) the average RTT per request

performed by the mobile node, (ii) re-transmission percentages, (iii) replica hit rates,

and (iv) message overhead. We again compare VCoF to the baseline of the default
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NDN strategy. The details of each metric are itemised as follows.

• RTT: the average RTT per request performed by the mobile node to retrieve

the desired content. This is to quantify how much VCoF can improve delivery

efficiency. A lower average RTT demonstrates that the mobile node can find

the desired content faster in comparison to default NDN.

• Re-transmission Percentages: The mobile node re-transmits a request again, if

it has missed the desired content due to handover. VCoF proactively provides

routing information of nearby replicas. So, we expect that the number of re-

transmission percentages can be reduced especially in the case of a higher replica

density. This metric is to understand how VCoF can improve the re-transmission

percentages compared to default NDN. A lower percentage means the decrement

of the number of re-transmission packets. This can relate to the improvement

of delivery efficiency since a small percentage means the content can be found

faster through the current NAR (i.e., before handover) without re-transmitting

a new request through a new NAR.

• Replica Hit Rates: According to all requests performed by the mobile node,

each replica is often cached in each previous NAR that is frequently located in

the same vicinity of the current NAR of the mobile node. The other replicas

can also be cached in area of the NAR of the mobile node depending on the

replica density. So, this is to measure how often the replicas can be found. A

higher replica hit rate demonstrates that the replicas can be located frequently

rather than the original content object at its producer. This can also indicate

higher cache utilisation.

• Message Overhead: the number of all interest packets related to content finding

as described in Section 5.4.1. The interest messages are counted after the

end of each simulation. An increment of message overhead results means a

higher overall spending costs in the context of content finding. Nevertheless,

although VCoF creates some additional overhead, it is important to consider

that the overhead costs are acceptable or not in the consideration of the achieved

performance gains of content finding. Most benefits of several solutions are not

for free. In these experiments, we have also to trade off the overhead costs to

the delivery efficiency.
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5.4.4 Results

This evaluation examines the content finding results by still focusing on delivery

efficiency alongside additional overhead specifically from the perspective of the con-

sumer mobility under the discussed communication model. As discussed previously,

we consider two cases of the fixed caches and non-fixed caches. The following results

demonstrate the aforementioned metrics regarding both cases. This can help to

understand how well VCoF finds and deliveries the content compared to default

NDN in the mobile NDN environment by considering the different cases of content

distributions. It is again noted that the results are the numbers obtained from the

experiments performed in this work and different environments or network conditions

can differentiate the results.

5.4.4.1 Fixed Caches

In the case of fixed caches11, the following results demonstrate how well every single

request finds the content, if the network has been populated with each initialised

replica density. Replicas can be the suitable source for the mobile node. However,

this might depend on the replica density and the replica’s distributed locations.

Round Trip Time (RTT)

In this analysis, we aim to quantify how well VCoF improves delivery efficiency

in the mobile network. The results (with error bars that represent 95% confidence

interval) are presented in Figure 5.14. By considering the results, even in the cases

of the low replica densities (e.g., 5% or 25%), VCoF can help to reduce the delivery

delays. For example, in the case of 5% replica density, default NDN can perform

around 100.24 ms while VCoF can decrease the average RTT to approximate 78.50

ms (the 1-hop vicinity case). However, the RTT results are still higher than the

cases of the higher replica densities because of a lower number of the replicas in each

vicinity, and a previous NAR in a different LA.

Furthermore, when the mobile node requests the content before handover,

although the object can be found at the previous NAR, it might not be delivered

to the mobile node since the node might have moved to a new NAR already. The

mobile node needs to still re-issue an interest packet to find the content again, causing

11Note, the definition of the case of fixed caches and the case of non-fixed caches is already defined
in Section 5.4.1, which is also used to describe the results of this final evaluation.
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some delays. Nevertheless, VCoF can still offer the better advantage of content finding

due to the designed scope of the vicinity-based concept (considering the reductions of

the RTT results).

When we increase the replica densities to medium (50%) or high (75%) or even

highest (90%), the RTT results are improved significantly. These are almost on a

similar level (≈ 35 ms to 43 ms) according to the small number of hop(s) to find

the replicas. Since the increment of the nearby replicas in the vicinity of each of the

current NAR of the mobile node, and in other nearby vicinities adds more content

availability and more list pushing packets (to proactively provide routing information

for the nearby replicas). So, the content can be found faster. Furthermore, the mobile

node does not re-transmit a request again because a path for finding a nearby replica

is proactively advertised. An NAR can instantly forward an interest packet to fetch

the content through the path, resulting in the faster content delivery. Additionally,

the gaps between VCoF and default NDN are reduced due to the higher number of

replicas. For example, in the 90% replica density case, the desired content can be

located easily, even in the default paths due to the higher availability of the replicas.

When we increase the vicinity sizes, there are slight improvements compared to

the smallest size of the 1-hop vicinity. A larger vicinity size might increase replica hit

rates but it also increases the number of hops to locate the replicas due to the larger

scope. Nevertheless, the 1-hop vicinity has still shown the favorable performance
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Figure 5.14: Average RTT per Request in the Case of Fixed Caches
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gains. Interestingly, as mentioned earlier, several replicas are forwarded to previous

NARs and VCoF can help to find these replicas faster. However, when a previous

NAR is located in a different LA of a current NAR, finding a replica in the previous

NAR can not effectively reduce the RTT. This is because there is a significant jump

between the previous NAR and the current one. However, other nodes in a vicinity

and other nearby vicinities are still the alternate potential sources for the mobile node,

proved by the reductions of the RTT results.

By considering the RTT results presented previously in Section 5.2 and 5.3 with

the RTT results in this analysis, the results in the previous evaluations decrease

dependent on the higher number of content popularity/density percentages. However,

the results in this evaluation have demonstrated that the RTT values are reduced to

the almost similar level, when the replica densities are high enough (e.g., medium

to high densities). This is because several replicas are forwarded to the area of each

NAR and cached closer to the mobile node. So, it is easier to locate these replicas

using VCoF. This is unlike the previous experiments that the content objects can be

freely distributed to any areas due to the experimental setups and the real dataset of

content access in the static networks. This decreases the RTT results gradually along

with the increment of the replicas.

Re-transmission Percentages

This analysis examines how VCoF handles re-transmission percentages. According

to the results presented in Figure 5.1512, when a replica density is low (e.g., 5%), the

maximum percentage can reach up to 70% by using default NDN. This is because

the desired content object or its replica can not be delivered through each of the

current NAR of the mobile node before handover. So, the mobile node re-transmits

a number requests again, increasing the percentage. Even though VCoF can reduce

the re-transmission percentages since the opportunity to locate a replica in a vicinity

is higher, the results are still higher than the cases of the higher replica densities

according to the small number of the nearby replicas. There are also re-transmission

packets for retrieving the replicas from previous NARs and every current vicinity of

the mobile node, and also nearby vicinities.

When we increase the replica densities (e.g., more than 50%), VCoF can improve

the percentages efficiently. For example, in the case of 50% replica density, 46.6%

12Note, no cofidence intervals are given since each experiment contains 30 requests per replica
density but no repetition of the experiment for every replica density. This is also considered in the
metric of replica hit rates.
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Figure 5.15: Re-transmission Percentage of Requests in the Case of Fixed Caches

is the re-transmission percentage of default NDN while VCoF introduces only 23.3%

within the 1-hop vicinity. According to the higher number of the replica densities

along with the increment of the list pushing packets, VCoF can proactively indicate

a number of faster routes to find nearby replicas in every vicinity or nearby vicinity.

This increases the higher possibility that the content can be served through each of

the current NAR of the mobile node, reducing the re-transmission percentages. It is

noted that although the results in the medium density case are higher than the higher

density cases due to the lower number of proactively routing information advertised,

the re-transmission packets still travel short distances. Thereby, the RTT results with

some additional handover delays are also reduced.

The results quite relate to the RTT results. For example, when a replica can

be located nearer, i.e., fewer hops away, it can also decrease the RTT value and

re-transmission percentage. In some cases of the high replica densities, when the

vicinity sizes are increased, some percentages could be probably the same because the

replicas can be found in just a small number of hop(s). A too large vicinity might be

unnecessary.

Replica Hit Rates

The goal of this analysis is to understand how much the replica hit rates can be

increased. The results are presented in Figure 5.16. We have found that even in the
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cases of low replica densities (e.g., 5% or 25%), the replica hit rates are significantly

increased compared to default NDN. This is because several replicas can be hit in

each previous NAR. However, the results are still low compared to the higher replica

densities due to the lower number of the replicas in each vicinity. Furthermore, when

there are significant jumps between NARs, which means they are located in different

LAs, VCoF might not provide a path to locate a replica at a previous NAR. This

cannot increase the hit rates. In a very specific case, when the mobile node instantly

sends a request (e.g., a re-transmission packet) after it has moved to a new NAR

before this NAR receives a pushed Content List due to some delays, VCoF may not

indicate the request to find a corresponding replica at a proper source. This can result

in lower replica hit rates.

When the replica densities are sufficiently high (e.g., 50% or 75%), we have found

that the hit rates are improved significantly. For example, in the case of the 50%

replica density within the 1-hop vicinity, 40% has been improved in comparison to

default NDN. This is because the designed scope of content finding can increase the

replica hit rates especially from each previous NAR and at other nodes in each vicinity.

In the case of the highest replica density of 90%, the gaps between default NDN and

VCoF within different vicinity sizes are reduced since the replicas can be found easily,

even in the default paths. In addition, there are some increments in each replica

density, when the vicinity sizes are increased because a larger vicinity can cover a larger

0

20

40

60

80

100

5% 25% 50% 75% 90%

R
ep

li
ca

 H
it

 R
at

e 
[p

er
ce

n
ta

ge
]

Replica Density

NDN Default
Vicinity = 1
Vicinity = 2
Vicinity = 3

Figure 5.16: Replica Hit Rate of Requests in the Case of Fixed Caches
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scope of content finding. So, the replicas hit rates can also be increased. Another

finding is that the increment of the replica hit rates can also reduce the RTT results.

Notably, by using default NDN, the replicas are mostly found further away in the

default paths according to the higher RTT results compared to VCoF.

Interestingly, even though the increment of vicinity sizes can increase replica hit

rates, the RTT results might not be significantly improved. This is because when a

replica is found in a larger scope of a vicinity, it might take a higher number of hops

to reach the node storing the replica. So, the larger vicinity sizes can not improve the

RTT results significantly in this type of networks, where the replicas can be found

in a small number of hop(s). 1-hop vicinity can be sufficient to improve the RTT

results. A larger vicinity size might help to slightly reduce the delivery delays but the

higher overhead costs should be considered as the tradeoff. This is discussed in the

next metric.

Message Overhead

This metric examines the additional overhead costs performed by VCoF in

comparison to default NDN. The results are shown in Figure 5.17. When we increase

the replica densities, the overhead results are also increased due to the higher number

of requests. Even though VCoF can find the content faster and the interest packets

generated by the mobile node travel a shorter number of hop(s), the list pushing

packets still provide the dominant effect on the increment of the message overhead

related to the higher number of requests (i.e., content distribution) in the topology.

Nevertheless, by comparing default NDN to the 1-hop vicinity cases, the overhead

costs performed by VCoF are slightly higher because the pushed packets travel the

narrow scope (i.e., 1 hop). The costs can still be acceptable because of the improved

results of delivery efficiency. In the 2-hop vicinity, the results are notably higher

since the larger scope of content finding covers more hops. The Content Lists have

to be pushed in larger areas. The costs might not be worth while considering the

small improvement of the delivery performance compared to the smaller vicinity (1-

hop vicinity). In the 3-hop vicinity, the overhead costs are likely to be dramatically

higher, outweighing the benefits.

By considering the overhead costs in this analysis alongside the RTT results

obtained as shown in Figure 5.14, in this kind of mobile topologies, we suggest that the

good trade-off for a vicinity size should be one since the larger vicinity sizes slightly

improve the delivery delays. However, these larger vicinity sizes generate remarkably
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Figure 5.17: Message Overhead of Content Finding in the Case of Fixed Caches

overhead costs, outweighing the benefits. The movement pattern in the topology and

the caching behavior as discussed previously allow the desired content to be cached in

the closer areas of the mobile node, providing the advantage for VCoF. 1-hop vicinity

would be sufficient to find the nearby replicas of the desired content object to improve

content finding in this kind of mobile networks.

5.4.4.2 Non-fixed Caches

According to the requests performed by the mobile node, content replicas can be

cached closer especially in each of the current vicinity of the mobile node. Both

VCoF and default NDN can take the advantage of these replicas, particularly when

the caches are not fixed13. In this analysis, the main findings are discussed and also

compared to the previous case of fixed caches.

Round Trip Time (RTT)

In considering the RTT results presented in Figure 5.18 with error bars that

represent 95% confidence interval, the results develop in the same pattern of the case

of fixed caches. However, VCoF can provide the higher advantage over the previous

case particularly in the low replica densities. The gaps between VCoF and default

NDN are reduced when the replica densities are medium to high.

13Note, the definition of this case of non-fixed caches is already defined in Section 5.4.1.
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In the low replica densities of 5% and 25%, default NDN gets the higher advantage

over the case of fixed caches since the replicas are forwarded to each of the area of

the NARs, increasing the content density closer to the mobile node. This means the

opportunity of a node that has forwarded (and cached) a replica to the mobile node

through a previous NAR will be the node that can serve the replica in the next request

is higher. This is because in this default path, the replica can be cached in several

nodes (especially in the area of a current NAR). This is the reason of the reduction of

the RTT values performed by default NDN compared to the previous case (e.g., from

100.24ms to 91.21ms in the 5% replica density).

Nevertheless, VCoF provides the higher advantage over the case of fixed caches

because several recently cached replicas can be hit in nearby nodes due to the routing

information proactively provided by the Content List advertisements. A node that

recently caches a replica can be a potential source after a next request is forwarded to

another node in the same vicinity. Thereby, this can effectively improve the delivery

delays. For example, in the 25% replica density and 1-hop vicinity, the percentage

of improvement over the baseline is 35.37% while 21.76% is the result of the case of

fixed caches.

When the replica density is medium or higher (e.g., 50% or 75%), the gaps between

VCoF and default NDN are reduced compared to the case of fixed caches. This is

because the increment of the replica availability can also improve the RTT values
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Figure 5.18: Average RTT per Request in the Case of Non-fixed Caches
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of default NDN. However, the values performed by VCoF improve to almost the

minimum delays (around 40ms to 34ms) of all of the experimental scenarios of this

final evaluation in this work. The increment of the replica availability (when the

caches are not fixed) can slightly reduce the RTT results but it does not provide a

significant difference since the level of the RTT values is already close to the base

level of the best case (e.g., considering the 90% replica density).

In considering the high replica density of 90%, the results again confirm that

the slight increment of the replica availability can marginally reduce the RTT values

(compared to the case of the fixed caches) but this is not a significant difference. This

is because the replicas are already distributed to almost every node.

Re-transmission Percentages

The results have again demonstrated that VCoF can still provide the better

advantage in reducing re-transmission packets over default NDN. The percentages

reduce when the replica densities increase. However, by comparing the results to

the case of fixed caches, every re-transmission percentage of each replica density is

significantly reduced even using default NDN as shown in Figure 5.19. This is because

of the increment of the availability of nearby replicas. The opportunities of locating

the desired content before handover are higher.

In the case of low replica density (e.g., 5%), the percentage of default NDN is
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Figure 5.19: Re-transmission Percentage of Requests in the Case of Non-fixed Caches
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56.67% while VCoF (1-hop vicinity) is 36.67%. In this case, the gap between VCoF

and default NDN is higher (20%) compared to the previous case (6.7%). This is

because every previous NAR and the increment of the replicas in nearby nodes provide

the higher opportunities to indicate faster paths for retrieving the content. Hence,

the possibilities that the content can be delivered before handover are higher, causing

the reduction of the re-transmission packets and also the RTT results. This is similar

to the case of the low replica density of 25%.

In considering the cases of higher replica densities including 50%, 75%, and 90%

respectively, both default NDN and VCoF can also reduce the percentages compared

to the previous case of fixed caches. However, the gaps between VCoF and default

NDN are likely to be reduced since default NDN can also get the advantage from

the increment of nearby replicas. For example, 13.3% is the improvement over the

baseline while in the same condition, 23.3% is the improvement of the previous

case (considering the condition of 50% replica density with the 1-hop vicinity).

Nevertheless, VCoF can still provide the higher re-transmission reductions over the

baseline. Interestingly, by considering the RTT results, although default NDN can

reduce the re-transmission percentages, the content objects are significantly located

further away due to the higher delays compared to VCoF.

Replica Hit Rates

As presented in Figure 5.20, the incremental results are significantly different from

the previous case of fixed caches. The overall hit rates are dramatically increased

especially in the cases of low replica densities. This is because every single request

towards the original producer can create a number of replicas that are cached in the

network especially around the producer. The opportunities that the next requests

will be hit these replicas are reasonably higher.

In considering the low replica densities, the hit rates are higher than the case

of fixed caches even using default NDN. For example, in 5% replica density, the

percentage performed by default NDN can reach to 73.48% while the previous case

is only 6.68%. This is because the surrounded replicas can be hit before reaching the

origin producer. The results performed by VCoF are slightly better than default NDN

since the opportunities that VCoF can indicate paths to nearby replicas are higher.

The values are significantly higher (almost to 100%) particularly in the highly replica

densities. There are some gaps before reaching the maximum percentage because a

very slight number of requests might be hit directly at the origin producer.
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Figure 5.20: Replica Hit Rate of Requests in the Case of Non-fixed Caches

Message Overhead

The results of message overhead again develop in the same pattern to the previous

case of fixed caches as presented in Figure 5.21. However, the overall values of both

VCoF and default NDN are slightly lower than the previous case. This is because the

requesting packets travel shorter distances even using default NDN. Although VCoF

has to push a higher number of Content List packets when replicas are newly stored

at new nodes, many of them are cached in the previous NARs. According to the

topology, a small number of pushed packets is generated. Some of these packets are

pushed in a vicinity or nearby vicinities, which means in a limited scope and does not

introduce a higher number of message overhead over the previous case.

According to the results, the VCoF scheme has again confirmed that 1-hop vicinity

can be the good trade-off of the vicinity size for this kind of communication model. For

example, considering the medium replica density of 50%, the scheme has introduced

only 110 additional packets while the improvement of the RTT reductions can reach

38.55%. There are slight improvement in the cases of larger vicinities (2 and 3 hops

vicinities). However, the costs might not be worth for the slight improvement over

the 1-hop vicinity. For instance, in the highest replica density of 90%, the maximum

cost can reach to 1,594 packets but only 3.61% is improved over the the 1-hop vicinity

that introduces only 464 packets.
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Figure 5.21: Message Overhead of Content Finding in the Case of Non-fixed Caches

5.4.4.3 Summary and Discussion

In this evaluation, we examined VCoF in comparison to default NDN in terms of

handling consumer mobility in a particular mobile NDN network. According to

the average RTT results, we have found that VCoF can improve delivery efficiency

effectively, especially when the replica densities are ranged from medium to high (50%

to 90%). This is because the number of nearby replicas are sufficiently high to be

located easily. Furthermore, due to the request pattern performed by the mobile

node, several replicas are forwarded to each of the previous NAR, which is frequently

located in the same vicinity of the mobile node. In addition, in a higher density of the

replicas, the opportunities that the replicas are cached in a closer area of each NAR

of the mobile node are also higher, causing faster content discovery.

Two main experiments have been done. In the first experiment, we considered

the case of fixed caches to understand how well every request can find content if the

network is pre-populated with different initialised replica densities. In the second

experiment, the caches are not fixed to gain more understanding about the impact of

natural content caching of NDN specifically in the mobility context.

We summarised the obtained results in Table 5.7. According to the results, for

instance, 44.1% of improvement (the case of fixed caches) over the baseline of default

NDN has indicated the better performance gained considering the 1-hop vicinity with

the medium replica density of 50%. This has proved that VCoF can also fit well with
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this mobile communication model. VCoF has provided the higher performance, even

in the low replica density of 5% in the 1-hop vicinity case, which the improvement

result is 21.68%. Interestingly, the improvements are higher in the low replica densities

when the caches are not fixed (e.g., 30.85% of the 5% density). This is because the

opportunities of nearby replicas cached are higher, which is a central benefit for the

VCoF scheme. In the case of 1-hop vicinity with the high replica density of 90%,

there are slight improvements. In these cases, the content can be found easier, even

in the default paths. Nevertheless, VCoF has again demonstrated the higher delivery

performance over the baseline due to the higher utilisation of nearby replicas.

VCoF also helps to reduce the re-transmission percentages because when the

corresponding replica can be found faster, it can be delivered through the current

NAR of the mobile node. The mobile node does not need to re-transmit a request

again through a new NAR due to the missing content object after handover. So, the

number of re-transmission packets can be decreased. In table 5.7 (a), 23.3% of the re-

transmission reduction is incurred by the medium replica density (50%), even in the

narrow vicinity size of one. However, in the case of non-fixed caches, the reduction is

lower (13.3%) as shown in Table 5.7 (b) since default NDN can also get the benefit of

the higher content availability. Nevertheless, considering the RTT results VCoF still

outperforms the baseline. Interestingly, the percentages of re-transmission reduction

are higher in the case of non-fixed caches and the low replica densities (e.g., at least

20% over 6.7%). This is because VCoF can indicate the better paths for the requesting

packets due to the higher content availability in the nearby areas.

In the previous evaluations, replicas are distributed freely to any nodes and the

RTT results decrease along with the increment of the replica density/popularity.

Unlike those evaluations, the replicas are often cached in the areas of the NARs.

Hence, this evaluation also focuses on the replica hit rates to gain more understanding

of how much the replica hit rates impact on content finding results. By using VCoF,

the desired content can be found easier, especially in a previous NAR, another node

in a vicinity, or another nearby vicinity which are the better potential sources.

Particularly, when the replica density is high enough (e.g., more than 50%), the

hit rate results are increased significantly. This is because several replicas can be

found particularly in the area of each NAR. In considering the case of fixed caches, in

the 1-hop vicinity with 50% replica density, 40% of the increased hit rate (presented

in Table 5.7 (a)) ensures that replicas are more utilised compared to default NDN. In

this density case, larger vicinity sizes offer the higher hit rates (e.g., 46.8% and 53.4%
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Replica Density
Low (5%) Medium (50%) High (90%)

Improvement over Baseline (%)

V
ic

in
it

y
S

iz
e

1 21.68 44.10 10.16
2 24.17 46.70 12.18
3 26.18 48.93 13.87

Re-transmission Reduction
from Baseline (%)

1 6.7 23.3 10.0
2 10.0 26.6 13.3
3 13.3 30.0 13.3

Increased Replica Hit Rate
over Baseline (%)

1 30.0 40.0 7.6
2 33.4 46.8 11.3
3 36.7 53.4 14.0

Increased Overall Message Overhead
over Baseline (packets)

1 38 103 175
2 158 378 636
3 662 1006 1371

(a) Fixed Caches

Replica Density
Low (5%) Medium (50%) High (90%)

Improvement over Baseline (%)

V
ic

in
it

y
S

iz
e

1 30.85 38.55 7.68
2 33.73 40.52 11.29
3 34.68 40.52 11.29

Re-transmission Reduction
from Baseline (%)

1 20.0 13.3 6.6
2 23.3 16.6 10.0
3 23.3 16.6 10.0

Increased Replica Hit Rate
over Baseline (%)

1 16.7 6.6 3.3
2 20.0 10.0 3.3
3 20.0 10.0 3.3

Increased Overall Message Overhead
over Baseline (packets)

1 45 110 177
2 152 353 607
3 603 983 1307

(b) Non-fixed Caches

Table 5.7: Results Summary of Handling Mobility

of the 2 and 3 hop vicinity cases, respectively). The increased hit rates reduce along

with the increment of replica densities since replicas can be hit easier in the default

paths. In the case of non-fixed caches, the overall hit rates increase in both default

NDN and VCoF which means the gaps between these two mechanisms also reduce

(e.g., less than 10% in the medium replica density). This is because the opportunities

that the replicas around the original producer will be hit again for every next request

are significantly higher.

In considering the message overhead results, the Content List pushing packets
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create the most dominant effect on the increment of the overhead. Focusing on

the RTT results, the 1-hop vicinity can be sufficient to perform the significant

improvement of delivery efficiency. A larger vicinity might help to increase the replica

hit rates but an interest packet still needs to travel a higher number of hops due to

the larger scope of the vicinity. This might help to slightly reduce the RTT values

because some replicas can be located faster compared to finding them at their original

producer. However, by expanding too large vicinities, the slight improvement of the

RTT results might not be worth to spend higher overhead since a number of the

content replicas can be significantly found in the smaller scope of each NAR’s vicinity.

For example, in considering the case of fixed caches and comparing the smallest

vicinity size of one to the larger vicinity size of three, less than 5% of improvement is

noticed while the difference of the message overhead is significantly higher (e.g., 1,196

packets added considering the high replica density of 90%). In the case of non-fixed

caches, the message overhead costs develop in the same pattern of the previous case.

However, the overall costs marginally reduce compared to the fixed cache case. This is

because the requesting packets travel shorter distances (caused by the higher content

availability). Additionally, though the Content List packets create the most dominant

impact on the overhead costs, these are also pushed in the limited scopes and many

of them are from every previous NAR (in each of current vicinity) and some of them

are from nearby vicinities.

Evaluation Limitations: By considering the mobile simulation topology, as discussed

previously in Section 3.3, we focus on a particular type of wireless communications

that VCoF can likely provide its benefits. To be more specific, one example of these

mobile communication models could be V2I in VANETs. Imagine that when a vehicle

(i.e., mobile node) is moving from a previous location (i.e., access station) to every

next location such as a car in a highway, a tram or a train. What happens if a

number of desired content are forwarded to the previous location but the mobile

node has moved to its current location? There could be a number of missing objects

caused by the delays of content finding. The content cannot also be delivered before

handover causing re-transmissions. According to the results, VCoF can also provide

the advantages in this kind of networks.

Nevertheless, it should be noted that the results could be different in other mobile

communication models and network conditions. For example, some wireless networks

that mobility of node is less frequent and handover rates could be low compared to

152



Chapter 5. Evaluation 5.5. Evaluation Summary

the topology used in this work such as Wireless Mesh Networks, a particular type of

Wireless Sensor Networks, Wireless LANs, and etc. However, this does not mean that

VCoF cannot provide its benefits but further investigation should be made and some

optimisation techniques can also further be developed specifically for different kinds

of networks as discussed previously.

Further to the limitation of the mobile evaluation topology, content distribution

in the main infrastructure network is assumed based on different replica densities

defined and this is to mimic the potential locations that the content could be cached

in the network. However, the results might be different if the content items are

distributed differently within different network conditions. Nevertheless, in the second

(previous) evaluation, we already understood the potential content distribution based

on the actual content access performed by the requests of consumers. From our

observation, each replica density can also potentially reflect every content popularity

level investigated in the previous evaluation. Note, when the caches are not fixed, the

desired content can be naturally cached at any nodes dependent on the requests that

are randomly generated by the mobile node. This can also realistically demonstrate

how content caching alongside the operations of VCoF can enhance this mobile

communication in the context of content finding.

5.5 Evaluation Summary

In this chapter, we evaluated VCoF considering a number of different aspects. The

designed evaluations are to examine the particular context of content finding in NDN

performed by VCoF compared to the baseline of standard NDN. This is particularly

in respect to the design goals as summarised in Table 3.1. The evaluation results have

indicated the efficiency of the VCoF scheme (i.e., how well the scheme finds content

alongside the consideration of the efficient trade-offs to additional overheads) and

the effectiveness of the scheme (i.e., how nearby replicas located by VCoF effectively

improve content delivery). The three major evaluations are summarily discussed as

follows.

For the VCoF scheme to be a practicable alternative to current content finding

strategies of NDN, it must be applied in an actual running system of NDN. Hence, in

the first evaluation (presented in Section 5.2), we examined how VCoF can enhance

content finding in NDN by considering the system that drives the major software

components of NDN. The implemented modification is added into the core system.
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According to the evaluation results, VCoF has significantly improved content finding

(in terms of delivery efficiency) compared to default NDN with considerable additional

overheads.

The first evaluation was crucial to understand the effectiveness as well as the

efficiency of content finding by considering improved delivery performance within the

realistic NDN network. In this evaluation, we have observed a limitation of emulating

a larger-scale network. This could be problematic, if we have a higher number of

nodes. Nevertheless, the introduced topology is sufficient to understand how VCoF

enhances content finding in a real system.

To further examine a larger network with an actual data-set of content access,

the second evaluation (described in Section 5.3) was used. According to the results

of the previous evaluation, we have found that a different number of content/replicas

can affect different content finding results. This has led us to investigate the impact

of content popularity. To highlight the impact of content popularity, we identify

the different popularity distributions in a less populated network and in a more

populated network. Through this evaluation, VCoF has shown again that it can

indeed leverage delivery efficiency. This evaluation has guaranteed that consumers

can gain the advantage of VCoF since the actual behaviors of accessing content were

simulated.

This second evaluation was also used to demonstrate the effect of cache sizes with

the understanding that existing content can be replaced by other objects, especially

in a limited cache capacity, causing lower replica availability. This can reduce the

opportunity that the replica can be found nearby. Nevertheless, VCoF has still

demonstrated the better content finding performance in comparison to default NDN.

In our final evaluation (outlined in Section 5.4), we examined the benefits of VCoF

in handling mobility. In particular, we looked to demonstrate how VCoF enhances

content finding when a consumer node has missed its desired content due to handover

within a well-known mobile communication model.

The experimentation has demonstrated that VCoF has provided considerable gains

(e.g., up to 44.1% of improvement, even in the narrowest scope of the vicinity size

of one), which delivery efficiency can be improved significantly. We have also shown

the flexibility of deploying VCoF in the mobile environment due to its decentralised

concept. This evaluation has also guaranteed that nearby replicas can be the

better sources for content requesters. This has also confirmed the same direction

of improvement as demonstrated in the previous evaluations in considering the trade-
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offs between the performance of content finding and the overhead costs.

Together, these evaluations have demonstrated the favorable outcomes of the

VCoF scheme. Not only does the scheme efficiently leverage content finding in NDN, it

has also highlighted additional benefits. The most important of these is the flexibility

of deployment and the effective cache utilisation, which takes the advantage of content

naming and caching that is the important key concept of NDN.

Summary of Evaluation Limitations: In the three main evaluations, a number of

limitations should be noted. We highlight some important limitations that could

provide different results to this work, as discussed as follows. The first limitation

is about the evaluation topologies. These might not represent practical topologies

based on the existing architecture of the Internet. This is because according to the

concept of NDN, content can be cached or served at any devices (e.g., routers, devices

in edge networks), which is explicitly different from the current architecture. Hence,

there could be further development possibly including some hardware customisation

for NDN. This can potentially change the way of accessing content in the Future.

So, we consider the topologies that can be the potential topologies of native NDN

networks (no global scale native NDN networks and traffic at the time of this thesis

that we can essentially examine the VCoF scheme) since all of the NDN primitives

can be deployed in the topologies. In addition, potential content distribution is also

explored in these topologies.

However, if actual NDN topologies are very similar to the topologies based on

the existing Internet architecture, we still believe that finding nearby content in

every vicinity can provide the benefits. To ensure this, once NDN can indeed be

deployed to replacing the current architecture, further investigation must be explored.

Some optimisation techniques specifically for different kinds of networks can also be

examined afterwards.

The next limitation is about other related network conditions. Since the VCoF

scheme proposed in this work is in its early stages, we have aimed to develop the

scheme to first prove that nearby content in every vicinity can be the better source

for content finding. Hence, we need to focus on a number of important factors that

can likely impact content finding results the most first. However, some other network

conditions could also provide some effects such as network congestion, content sizes,

different link latency values, bandwidth, packet loss, etc. These should be further

investigated.
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Further to the challenge of the network conditions, the investigation of the impact

of additional overhead costs of content finding in different networks would also be

challenging. Although the results have indicated the favorable outcomes of the

delivery efficiency with the good trade-offs against the additional overhead especially

in small vicinity sizes, these are based on the essential evaluation setups with the

main aim to prove that the concept of VCoF can indeed improve content finding in

standard NDN. However, different networks or parts of networks could have different

characteristics of content caching. For example, core routers could see a higher

number of content updates compared to edge networks. Hence, further mechanisms

to understand or even optimise the overhead costs must be examined to adjust the

VCoF scheme specifically to be used within different networks such as discussed in

Section 3.2.2.2.
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Conclusions

The Internet has become an important and useful technological tool impacting on

many people’s lives. As the patterns of using the Internet have changed over time,

it has seen growing demands of content delivery. Hence, the ways of delivering

content have also evolved in order to fulfill the current needs of users. However,

the traditional Internet technologies have been encountering several limitations of

the existing architecture. In particular, the traditional paradigm of the host-centric

model is considered insufficient and hence a change to the information-centric network

is proposed.

In this thesis, we particularly look into the latest novel content delivery approaches

of Information Centric Networking (ICN). We consider Named Data Networking

(NDN), which is one of the most promising ICN architectures for the Future Internet.

Its impact on the future content delivery architecture is widely discussed. By taking

this into consideration, we have found that some limitations of content finding can

handicap the actual benefits of deploying NDN for content delivery enhancement,

causing ineffective cache utilisation (one of the major advantages of NDN), which can

result in sub-optimal delivery efficiency.

Therefore, developments of a particular solution (called Vicinity-based Content

Finding scheme or VCoF ) have been made. The essential components of the NDN

code-bases are modified to apply the VCoF scheme in order to ensure that the solution

is capable to be deployed in real NDN networks. In considering the scheme, it

includes a set of techniques to proactively provide routing information for off-path

(nearby) content replicas, which can be the better sources for consumers rather than

original producers. Advances in the content finding techniques have also made the

157



Chapter 6. Conclusions 6.1. Thesis Summary

best possible quality of experience for consumers due to the improved delivery delays.

This also includes mobile devices that encounter particular content delivery issues due

to their movement.

6.1 Thesis Summary

The major purpose of this thesis is to improve content finding in NDN, which is

one of the most promising ICN architectures of the Future Internet. Through the

envisaged benefits of NDN, several limitations of the current Internet architecture can

be eliminated or mitigated. However, NDN has also a number of shortcomings that

prevent to exploit its full potential. This is usually inefficient in terms of nearby cache

usage, causing sub-optimal delivery efficiency. The proposed solution in this thesis

(i.e., the VCoF scheme) has shown the favorable outcomes regarding to enhancing

content delivery. This thesis is structured in 6 chapters, summarised here:

Chapter 1 introduces the motivations of this thesis and describes the research

hypothesis, aiming to examine NDN and its shortcomings. This leads to develop a

suitable solution realising on the defined research questions. The chapter also presents

the research methodology and research outline of the thesis.

In Chapter 2, a number of limitations of the current Internet architecture

are described along with the emergence of ICN and its fundamentals. A set of

representative ICN approaches are then compared leading to the reasons of choosing

NDN as the base architecture of this thesis. We also describe the differences between

NDN and the well-known solution (the CDNs) of improving content delivery in today’s

Internet architecture since both of them provide caching as the key component. This

includes how NDN can be a better solution. We then discuss the issues of off-path

content finding in NDN that handicap the benefits of using NDN. This also considers

the existing solutions and their drawbacks that should be avoided or eliminated in

our design. In addition, the chapter highlights these particular issues within the

well-known mobile communication model.

A set of motivations and aims is defined and described in Chapter 3. In this

chapter, we introduce the design of VCoF to address the mentioned issues of content

finding in NDN, mainly aiming on the improvement in terms of delivery efficiency.

The design is also realised on avoiding the particular issues of several existing solutions

(described in the previous chapter).

Chapter 4 presents the overall implementation of VCoF to realise the off-path
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content finding issues in NDN and to fulfill the design aims in the previous chapter.

The core software components of NDN are firstly introduced leading to understand

how VCoF is applied into the current NDN code-bases. A set of tools is described to

be used in the next chapter to evaluate VCoF in a number of aspects as discussed in

Chapter 3 and also in order to answer the research questions.

Chapter 5 evaluates how well VCoF achieves the overall objectives of the thesis,

i.e., of improving content finding in NDN by considering standard NDN as the

baseline. It includes a set of different scenarios that is evaluated using the emulation

and simulation. Various parameters have been examined such as a number of requests,

content density/popularity, high/low densely networks, and various scales of networks.

The evaluation metrics of RTT, message overhead, data volume are used to measure

the trade-offs between the achieved performance and the additional overhead along

with the consideration of re-transmission percentages and replica hit rates specifically

in the mobile case.

In this final chapter, Chapter 6, concludes this work by summarising the thesis

structure and highlighting the contributions of the thesis. This chapter also revisits

the research questions (goals), summarises research limitations, and describes the

directions of future work. Concluding remarks are also discussed.

6.2 Thesis Contributions

This thesis considers the content finding issues in NDN, a potential realisation of the

ICN paradigms for the Future Internet. We focus on NDN due to its communication

model that can be flexible to be deployed in various kinds of networks. It is also

widely discussed as a next potential architecture for the Future Internet. This is done

after understanding the basics and principles of several ICN approaches (summarised

in Chapter 2). According to the study of the well-known content finding strategies

in NDN, as well as their shortcomings, a particular set of motivations and aims is

developed with the aim of improving the issues by utilising nearby (off-path) content

objects. This is achieved alongside avoiding the existing deficiencies of several research

proposals.

In considering the issues, we provide a comprehensive design capable of enhancing

content delivery in NDN. This is separated into different modules, which aim to

proactively provide routing information for nearby content replicas. The area of

finding nearby objects is called a “vicinity”. It is very crucial to limit the scope
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of content finding for mitigating excessive overhead.

Building on this design, we implement a prototype content finding strategy called

“VCoF” by integrating into the current NDN code-bases. This ensures that VCoF

is able to be deployed in actual NDN systems. The implementation is also built to

evaluate VCoF regarding a set of important factors that can affect different content

finding results.

In the first instance, the VCoF prototype is used to examine and understand

its deployment in an actual emulated NDN network. A set of factors has been

investigated to indicate how much the implemented VCoF design can improve delivery

efficiency compared to default NDN. According to the concept of NDN, desired

content can be cached in several locations dependent on the content availability (i.e.,

density). Hence, various content (or replica) densities have been explored alongside

the consideration of the number of request(s), which provides different overhead costs.

This is to find an appropriate trade-off between the achieved performance in terms of

delivery efficiency and the additional overhead.

Through this evaluation, we have found that finding nearby content can effectively

improve delivery efficiency with acceptable overhead (depending on the scope (i.e.,

vicinity) of content finding). It is noted that a too large vicinity is potentially

unnecessary because of the highly excessive overheads that outweigh the benefits

gained. Although this proof of the design has shown that VCoF can be practically

deployed in actual NDN networks, the emulator can not replicate a larger scale

evaluation topology, which contains a higher number of content and consumers.

Further to this, we scale up the experimental environment using a simulator and

use this to measure the impact of content popularity in the consideration of an

actual data set of content access from more various consumers. This has been led

by the understanding of the effect of a different number of replicas in the previous

evaluation. This evaluation however has provided more understanding of the VCoF

scheme aided by simulations of the real behaviors of requesting content. This also

includes the understanding of the overall overheads generated particularly to find the

desired content based on their popularity.

By examining this evaluation, the results has indicated the similar direction of

improvement of the previous evaluation. This is shown through the ability to use

nearby replicas, which can be the better source. It is confirmed by considering

the reduction of delivery delays along with the increment of content popularity.

Interestingly, in a more populated network (representing a network that has seen
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high traffic passing through), existing content objects can be potentially replaced by

a number of other content objects, reducing their availability, especially in a small

cache size. This can decrease delivery efficiency compared to a larger cache size

that can remain content objects for longer. Nevertheless, VCoF has still shown the

advantage over default NDN due to the designed scope of content finding that provides

the better opportunities of nearby cache utilisation.

Another contribution of this thesis is the content finding enhancement in mobile

NDN scenarios, which due to their communication model encountering the particular

frequent issues of content finding and delivery. A short description of the issues is

that a mobile node has missed its desired content due to handover. According to our

investigation, a content object is often forwarded to the previous location (i.e., NAR)

of the mobile node that is frequently located in the same vicinity of the current NAR.

However, the object might be cached in a different vicinity, if the NARs are separately

located in different Location Areas (LAs). Hence, VCoF also fits this communication

model since the area of content finding covers the previous NAR and other nearby

replicas in the vicinity, and either other nearby vicinities.

In this final evaluation, we have demonstrated the enhancement and flexibility (by

taking the advantage of the decentralised design) of deploying VCoF in the mobile

environment. The results have also confirmed the effective improvement of content

finding that efficiently handles the aforementioned issues. Notably, unlike the previous

evaluations, in this evaluation, content replicas are often forwarded into the area of the

mobile node due to its movement, which means they can be found in a small number

of hop(s), especially in 1-hop vicinity. A larger vicinity is significantly unnecessary

due to the very slight improvement with the higher overhead compared to the small

vicinity.

Together, these evaluations examine a number of aspects by exploring a potential

form of the Future Internet considering NDN as the base architecture. They highlight

the benefits and limitations of deploying NDN and also ICN, which has been emerged

as the promising paradigm for future content delivery and also how it can be enhanced.

This allows us to better understand the important steps towards the development of

the next generation Internet.
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6.3 Research Goals Revisited

We described the research goals in the introductory chapter of this thesis by defining

a set of research questions that must be answered to achieve the purposes of the study.

In this section, a summary of each research question is given below:

1. Can the content finding of default NDN be improved by considering

the vicinity of the consumer? This thesis aims to address the off-path

content finding issues in standard NDN as discussed in Section 2.5.1. According

to the designed scheme, VCoF offers higher opportunities of finding nearby

replicas, which can be the potential source for the consumer. This has been

proven by the reduction of the delivery delays demonstrated in the evaluations.

Not only VCoF has improved delivery efficiency but also higher cache utilisation

(confirmed by the higher delivery performance and replica hit rates). Comparing

this to default NDN, although content caching is one of the key principles of

NDN, the default strategy does not utilise nearby cached content by the design

itself causing sub-optimal delivery efficiency. Due to the evaluation results,

VCoF can indeed help to improve content finding by considering nearby replicas

based on the vicinity concept.

2. Can the delivery performance of default NDN be increased through

the involvement of nearby nodes, and if yes by how much? According

to the evaluation results, the VCoF scheme has demonstrated the effective

improvement of delivery efficiency compared to standard NDN. VCoF can indeed

gain the advantage of the replicas in nearby nodes to be the better source for

content delivery. In considering the overall evaluations, the percentage of the

improved performance can reach up to 44% with acceptable overhead1. More

than 48% can be achieved but the excessive overhead may outweigh the benefits.

3. Does the improvement of content finding create additional overheads,

and if so how high are these? VCoF introduces higher message overhead

(i.e., packets) for locating a desired content object compared to default NDN due

to the dominant effect of the Content List pushing mechanism. Nevertheless, the

1Note, all of the results are based on the evaluation setups specifically performed in this work
which can be different within other network conditions. These evaluations mainly aim to prove that
nearby replicas based on the vicinity concept can indeed improve content finding in standard NDN.
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trade-offs between the overhead and the achieved delivery performance have also

been discussed. For example, VCoF can effectively offer a 29% of improvement

by efficiently adding only ≈5 packets to the average message overhead per node.

However, in some cases, such as when the vicinity size is large (e.g., 3 hops), less

than 4% of improvement (compared to the smallest vicinity size of one) is noticed

while the overhead cost is significantly increased, potentially outweighing the

benefits. It should be keep in mind that the list pushing packets are quite small

and the data volume results have demonstrated that they do not consume high

storage or traffic in each single node that may impact the entire network.

4. What are the effects of content popularity (or replica density) and

mobility on the performance and overhead costs of content finding?

We have examined different content popularity levels ranging from low to high.

We have found that VCoF can significantly offer the better performance of

content finding over default NDN in almost every case but the highest advantage

is when the number of content replicas are sufficiently high (e.g., up to 44% with

the case of the medium density of 50%, even in the narrowest vicinity size of

one). The differences of improvement between VCoF and default NDN will

then slightly decrease since the replicas of desired content are distributed to

several (or almost) every node. They can be found easier, even in the default

paths. Nevertheless, VCoF has still shown the advantage in the high content

popularity cases over standard NDN. For instance, the improvement can reach

up to 18%, even in the smallest vicinity size of one. VCoF provides the favorable

performance with the slight increment of the overhead costs which are acceptable

especially in the vicinity size of one. Expanding too large vicinity sizes such as

the 3-hop vicinity might outweigh the benefits since the narrow vicinity can also

provide the opportunity to find content in nearby vicinities while introducing a

lower number of overhead costs.

This thesis also focuses on the frequent issues of content finding and delivery

in the well-known mobile communication model mentioned in Section 2.5.3.

The evaluation results have again demonstrated that VCoF outperforms default

NDN in terms of delivery efficiency. In particular, unlike those evaluations in the

static topologies (the increments of RTT reductions depend on the increments

of content density), the RTT results reduce to an almost similar level when the

content density is high enough (e.g., more than 50% of replica density). This is
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because the replicas are often cached in the specific area of each NAR, which

desired content can be found in a few number of hops. Also, the costs of content

finding can be worthwhile since the scope of content finding is not excessively

large. These also fit well with the advantage of the VCoF scheme.

6.4 Summary of Research Limitations

This work aims to prove that nearby content finding based on the VCoF concept can

indeed improve content finding in standard NDN. Since the development of VCoF is

in its early stages, a number of possible research limitations should be noted. These

can be considered in two main categories: 1) design and implementation, and 2)

evaluation.

In considering the design and implementation, we assume that a content object

(as an entry in a node’s Content List) which is advertised by the Content Availability

Advertisement module is available to be located. However, some issues should be

addressed if a number of entries in the Content List do not synchronise with the

available content objects at the owner of the list due to cache replacement or removal.

For example, in a ring topology, assuming the worst case that an interest packets

always cannot find its corresponding data in every node in the topology due to

cache eviction, the interest is always forwarded to every upstream node (default

NDN concept) in the path and the circling direction to its requester according to

the assumed topology and proactive routing information generated by VCoF. So, an

interest loop is then detected and the desired content can not be found. Nevertheless,

multi-sourcing (e.g., from multiple caches) offers a number of alternate paths to find

the desired content, thereby naturally mitigating these issues.

Although the aforementioned issues especially the loop problem could be the

rare case, some mechanisms to handle this are preferred. Extra mechanisms to the

current VCoF scheme can be developed. For instance, all of the content in the latest

Content List are not allowed to be replaced or removed for a specific period (e.g.,

timeout). By considering the caching policy like FIFO, the Content List can also

advertise only a number of recent content that have been stored in the cache to

mitigate the opportunities that the older content objects are replaced but the list

still reflects these objects. The Content List can also consider only a number of

particular content (e.g., popular content). The main aim of these mechanisms is to

guarantee that the proactive routing information can still indicate any corresponding
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interest packets to their available content at nearby sources. Every content store

might reserve some space for these content (e.g., x% of the cache) and the Content

List can only consider the content in the reserved space. Although some experiments

in Chapter 5 investigate the impact of cache replacement, more complex conditions

and the handling mechanisms as discussed previously would be challenging to the

Future of VCoF.

Further to the first category, in the second category of research limitations, a

number of challenges should be noted. This is also discussed in the three main

evaluations as detailed in Chapter 5. Discussing about the topologies (including the

emulation and simulation topologies), these are not likely the practical topologies

regarding the consideration of existing topologies based on the current Internet

architecture. Since in this architecture, routers/end devices cannot naturally cache

and serve content, accessing content by using NDN could be different. Based on the

principles of native NDN, every node in a topology can support content caching and

multi-sourcing. Hence, we consider the potential topologies (e.g., actual NDN test-

beds) that can represent realistic NDN topologies since all of NDN primitives can

be deployed. This is also inspired by the NDN research communities such as several

participating institutions in [165] or in [55] investigating on NDN forwarding.

Since NDN is in its early stages of development and at the time of this work, no

global scale native NDN traffic that we can essentially examine the impact of content

popularity/density to content finding. In our hypothesis, this is one of the most

important factors impacting on different content finding results. Hence, we consider

content distribution that can likely represent realistic content access with the different

levels of content popularity performed by a number of consumers in the evaluation

topologies (e.g., the real VoD dataset). Furthermore, different parts in a network

system generally see the different number of content updates. This could impact the

VCoF scheme especially the overhead costs. For example, core routers can see the

higher number of content updates compared to edge networks. Thereby, the overhead

results could be different from this work.

Nevertheless, the main aim of this work is to first prove that the vicinity-based

concept can indeed improve content finding in NDN. In the same network conditions,

VCoF is fairly compared to standard NDN and the results have indicated the favorable

trade-offs between the delivery efficiency and additional overhead costs especially in

the small vicinity sizes. However, more complex network conditions (e.g., different

link latency characteristics, jitter, throughput, etc.), different parts of the network,
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and more various kinds of topologies would be challenging to the Future of VCoF.

Memory and CPU overheads could also be challenging and some matching algorithms

can be further applied in VCoF to optimise these overheads especially for the process

of Content List checking. It is noted that the current design of VCoF especially

the Content List and its advertisement strategy is not the final design and it is

customisable for specific use in different kinds of networks. This will be interestingly to

be further investigated and developed. In this thesis, the results have mainly indicated

that locating nearby content based on the vicinity concept can indeed improve content

finding in NDN, and this has proved the main hypothesis of the research.

6.5 Future Work

In this thesis, we presented the VCoF design with the main aim to improve

content finding in standard NDN. We then implemented the prototype of VCoF by

integrating with the current NDN code-bases and examined a number of evaluation

aspects. Nevertheless, further development and deployment continue on VCoF could

help to strengthen its strategy of content finding in NDN. Not only a number of

further research challenges described in the previous section (Section 6.4) need to be

investigated but a number of future work possibilities could also be explored. These

can be described as follows.

The important goal of VCoF is to develop a concrete technique of effective content

finding in NDN mainly aimed to increase delivery efficiency. The development is

integrated into the current NDN code-bases. Hence, in the future, VCoF can be an

alternate content finding strategy in NDN since the scheme is built based on the

existing essential components of NDN.

Future work also includes automatic discovery of nodes in a vicinity since the

current technique assumes that a node knows each member in its vicinity by its

configuration defined by system administrators or evaluation scripts used in this work.

The idea of Neighbor Discovery Protocol (NDP) [166, 167] might be interesting. In

the protocol, a router solicitation message is sent to discover routers on an attached

link. By extending this concept, we can send a message to discover each name prefix

of every node in a vicinity depending on the hop limit of the defined vicinity size.

Interestingly, in NDN, when a pushed Content List packet has been sent to an

NDN node, we can check the number of hops that the pushed packet has passed. So,

due to this information, we can limit the scope of a vicinity by considering the hop
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limit. When the pushed packet reaches the threshold of the vicinity size at an NDN

node, this node just stops forwarding the pushed packet to any next hops because

they are out of the vicinity’s scope.

In recent years, mobile traffic grows more rapidly [13, 168]. In the context of

mobility, NDN can also improve delivery efficiency according to the concepts of

naming, caching and multi-point communication. However, in a mobile network,

paths could change frequently. Sources of content may be going off-line or there are

new local connectivities in a vicinity. These can be challenging to ensure that content

objects can be forwarded reversely to their requesters in a dynamic environment [169].

Further to this, according to the decentralised concept of VCoF, consumers can

gain benefits of locating nearby replicas under different dynamic situations. In this

thesis, we specifically considered the mobile topology consisting of the infrastructure

network. The result revealed the favorable content delivery performance. Neverthe-

less, another future research direction can be the extension of VCoF in other mobile

topologies such as Mobile Ad Hoc Networks (MANETs) [170] and Vehicle-to-Vehicle

(V2V) communications [171] in Vehicular Networks.

Those topologies represent more complex distributed systems that mobile nodes

can freely and dynamically self-organise into temporary “ad-hoc” network topologies

without communication infrastructure. The proposed scheme might also help to

improve content finding in these kind of topologies since a moving node might carry

desired content objects to another node in the same vicinity that is looking for the

same content objects. However, to deploy VCoF in a highly dynamic environment,

the aforementioned feature of automatic discovery of nodes in each vicinity should be

further explored.

One of the most important factors that can affect the performance of content

finding is content placement and the popularity of cached replicas. Caching popular

content objects can decrease the network load and the access delay [172] and the

results in this work have proved that higher content popularity of desired content

can effectively increase delivery efficiency. In particular, if desired content objects

can be remained longer in caches, the opportunities to locate these objects are also

higher. In a small cache size, several content objects might be replaced quickly, causing

the difficulty of finding replaced content. This can also depend on different caching

policies. Once these were taken into consideration, we have found that caching policies

might not play a major role in terms of content finding, if the cache size is large enough
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or desired content objects can be remained longer in each cache2. However, if a cache

size is small, we suggest that caching highly frequent used objects would offer more

benefits because most desired content objects can be easily located compared to less

frequent used objects. Hence, in the case of limited cache capacity, cache replacement

policies that can hold popular content objects might be more beneficial and these can

be further investigated.

6.6 Concluding Remarks

In this thesis, contributions to enhancing content delivery of the Future Internet

based on the novel (promising) network paradigm (i.e., NDN) are developed. This

includes the prototype in which future deployments can be applied. The extensive

evaluations have shown the favorable benefits of using the emerged architecture

specifically integrated with the proposed VCoF design. There is a clear advantage to

properly utilise caches, which is the key principle of NDN, and significantly ensure

that the appropriate cache utilisation (e.g., fetching nearby content) integrated into

the current NDN architecture will be the key to realise increased delivery efficiency.

Although early signs are encouraging that NDN is one of the most promising

architectures for the Future Internet, these are not guarantee that it will replace the

existing Internet architecture in the near future. Since it is still in its early stages,

there are a number of challenges to be met. For example, at the time of this thesis,

most NDN test-beds run as overlay networks on top of traditional IP networks. Global

scale native NDN networks must be required to examine the practical implementation

of NDN in real world. This might require further specific hardware customisation for

NDN, however.

By considering the NDN code-bases themselves, although these are designed to be

executed over various kinds of networks, the NDN forwarder (i.e., NFD) is currently

supported in a number of platforms. Users (mostly developers) need to install the

NDN components manually. This might be too complex for ordinary users. However,

it is understandable since NDN is in the current stage of development. Hence, in the

future of a deployment stage, NDN need to be built-in in the kernels of Operating

Systems to avoid the complexity.

Nevertheless, there is a good sign of providing a common API across several

2Note, in our experiments, we used the default Least Recently Used (LRU) cache replacement
policy.
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programming languages. This can speed-up adoption of NDN by enabling applications

developed by various languages connecting to the core forwarder. Hence, a growing

number of developing communities can push NDN towards the actual implementation

in real world. It will then be an efficient architecture for the Future Internet.

Furthermore, the proposed VCoF scheme presented in this thesis will also potentially

supplement NDN usage since this has been proved by the evaluation results.

169



Bibliography

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs, and R. L. Braynard, “Networking named content,” in Proceedings of

the 5th International Conference on Emerging Networking Experiments and

Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–

12.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”

SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73, July 2014.

[3] J. Pan, S. Paul, and R. Jain, “A survey of the research on future internet

architectures,” IEEE Communications Magazine, vol. 49, pp. 26–36, July 2011.

[4] L. Wang, V. Lehman, A. K. M. M. Hoque, B. Zhang, Y. Yu, and L. Zhang,

“A secure link state routing protocol for ndn,” IEEE Access, vol. 6, pp. 10 470–

10 482, 2018.

[5] G. Tyson, S. Kaune, S. Miles, Y. El-khatib, A. Mauthe, and A. Taweel,

“A trace-driven analysis of caching in content-centric networks,” in 2012

21st International Conference on Computer Communications and Networks

(ICCCN), July 2012, pp. 1–7.

[6] M. B. Lehmann, M. P. Barcellos, and A. Mauthe, “Providing producer mobility

support in ndn through proactive data replication,” in NOMS 2016 - 2016

IEEE/IFIP Network Operations and Management Symposium, April 2016, pp.

383–391.

[7] N. Abani, G. Farhadi, A. Ito, and M. Gerla, “Popularity-based partial caching

for information centric networks,” in 2016 Mediterranean Ad Hoc Networking

Workshop (Med-Hoc-Net), June 2016, pp. 1–8.

170



Bibliography

[8] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for

stateful forwarding plane,” Comput. Commun., vol. 36, no. 7, pp. 779–791, April

2013. [Online]. Available: http://dx.doi.org/10.1016/j.comcom.2013.01.005

[9] J. Cao, D. Pei, X. Zhang, B. Zhang, and Y. Zhao, “Fetching popular data from

the nearest replica in ndn,” in 2016 25th International Conference on Computer

Communication and Networks (ICCCN), August 2016, pp. 1–9.

[10] T. Zahariadis, D. Papadimitriou, H. Tschofenig, P. Daras, G. Stamoulis, and

M. Hauswirth, “Towards a future internet architecture,” in The Future Internet.

Springer Berlin Heidelberg, January 2011, pp. 7–18.

[11] FIArch Group, “Fundamental Limitations of Current Internet and the path to

Future Internet,” White Paper, 2010.

[12] A. Feldmann, “Internet clean-slate design: What and why?” Computer

Communication Review, vol. 37, pp. 59–64, July 2007.

[13] Cisco, “Cisco Annual Internet Report (2018–2023),” White Paper, March 2020.

[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[14] P. Ray, “A survey on internet of things architectures,” Journal of King Saud

University - Computer and Information Sciences, vol. 30, no. 3, pp. 291 –

319, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1319157816300799

[15] T. Moors, “A critical review of ”end-to-end arguments in system design”,”

in 2002 IEEE International Conference on Communications. Conference

Proceedings. ICC 2002 (Cat. No.02CH37333), vol. 2, 2002, pp. 1214–1219 vol.2.

[16] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host congestion

control for tcp,” Communications Surveys and Tutorials, IEEE, vol. 12, pp. 304

– 342, September 2010.

[17] N. Fotiou, K. Katsaros, G. Polyzos, M. Särelä, D. Trossen, and G. Xylomenos,
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