# A new two-step modeling strategy for random micro-fiber reinforced

# composites with consideration of primary pores

Heng Cai<sup>a</sup>, Junjie Ye<sup>a,c\*</sup>, Jinwang Shi<sup>a</sup>, Yiwei Wang<sup>a</sup>, Yang Shi<sup>a</sup>,

Bo Huang<sup>b</sup>, Yonghe Xu<sup>c</sup>, Mohamed Saafi<sup>b</sup>, Jianqiao Ye<sup>b\*</sup>

<sup>a</sup> Shaanxi Key Laboratory of Space Extreme Detection, Key Laboratory of Ministry of Education for Electronic Equipment Structure Design, Xidian University, Xi'an 710071, China

<sup>b</sup> Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK

<sup>c</sup> Yancheng Xinyongjia Petroleum Machinery Manufacturing Co., Ltd., Yancheng 224043, China

## Abstract:

This paper presents a novel procedure to evaluate mechanical properties of random micro-fiber reinforced composites with consideration of primary pores. To this end, micro-CT experiment is conducted first to detect micro-scale morphology of the constituent materials, including size of pores and arrangement of fibers, etc. On this basis, a two-step modeling strategy with consideration of primary pores is proposed. In the first step, the equivalent mechanical properties of the pore defects and the micro-fibers are determined by the 3D parametric finite volume directly averaging micromechanics (FVDAM), by which an equivalent ellipsoidal reinforcing phase composed of fibers and pores is constructed. In the second step, the equivalent pores and fibers are embedded into matrix materials to build an RVE of the composite to calculate the elastic modulus of the composite. In addition, the 3D parametric FVDAM is further extended to simulate plastic deformation of PEEK matrix under quasi-static tensile loading. The results obtained from the proposed two-step modeling strategy have a good agreement with the results from experiments. **Keywords:** Short-fiber composites; Two-step modeling; Representative volume element (RVE); X-ray computed tomography; Porosity.

## 1. Introduction

Compared with traditional homogeneous materials, random micro fiber-reinforced composites exhibit excellent toughness, which have been widely used in both composite sheet molding and bulk molding compounds [1-4]. One of the important influencing factors in evaluating mechanical properties of composites is the existence of primary pore defects that are introduced inevitably during material processing [5-7]. Pore defects not only have a significant effect on the mechanical properties [8-9] of a composite, but also increase uncertainty of damage evolution in the composite [10-12]. Therefore, how to evaluate mechanical properties of micro fiber-reinforced composites with consideration of primary pore defects is worthy of further investigation.

Historical studies on pore defects can be divided into two main categories. The first category focused on a range of pore sizes from meso-scale (mm) to micro-scale ( $\mu$ m) that exist synchronously in a composite. For instance, Huang et al. [13] investigated pore defects at different scales and applied periodical boundary conditions to micro-scale RVEs of fiber tows, as well as meso-scale RVEs of woven composites to determine their elastic modulus. The simulation results indicated that mechanical properties of the composites were more sensitive to the pores in fiber bundles. The second category of the studies focused on investigating mechanical properties of composites at a single geometric scale, which paid more attention to morphology and location of pore defects. With respective to pore distributed in matrix and fiber bundle, Mekonnen et al. [14] developed a finite element model, which demonstrated that elastic modulus gradually decreased

<sup>\*</sup>Corresponding authors.

Email address: ronkey6000@sina.com (Junjie Ye) j.ye2@lancaster.ac.uk (Jianqiao Ye)

when more pore defects were considered. Wei et al. [15] investigated the influence of pore defects on thermal expansion coefficient of composites, and employed a finite element method to calculate their thermal expansion coefficients. In addition, Yang et al. [16] established a Voronoi-structure model and evaluated equivalent shear modulus of composites with different pore shapes by finite element software. The numerical results were in good agreement with the results from compression tests. Cao et al. [17] proposed a fast Fourier transform to obtain equivalent elastic modulus of rock materials with pores and investigated the influence of pore orientation on the nonlinear mechanical behaviors of the materials.

To develop a reliable numerical model, accurate microstructural parameters from experimental tests are important prerequisites. Here, a brief comparison of some main test methods in determining pore defects is introduced. The density measurement method was firstly proposed to estimate pore volume. The method is easy to follow, as test standards, such as ASTM D2734 [18], ASTM D3171 [19], ASTM D2584 [20], etc., are readily available. However, the accuracy of this method is normally low [2]. Compared with the density measurement method, scanning electron microscope (SEM) can be employed to directly characterize two dimensional pore structures. The porosity statistically calculated from the scan images are limited to the selected surfaces of specimens [21]. Ultrasonic test, as a typical non-destructive test method, can measure microstructure of pores by scanning in different directions without causing damage to the specimens. It should be noted, however, that ultrasonic tests are restricted to exploring micro-scale morphology of regular pores [22]. At present, micro computed tomography (micro-CT) is the most popular experimental method to characterize 3D micro-scale morphology in composites, including pore defects, 3D fiber arrangement, etc. [23] Although it is more time consuming in obtaining scanning data, it is compensated by offering high-precision microstructural parameters [24]. Overall, CT scanning technology provides an effective experimental measure in investigating 3D morphology of pores in composites.

Previous studies, e.g., in [25], concluded that pore defects resulted in a significant reduction in stiffness of random micro-fiber reinforced composites. To effectively evaluate their mechanical properties with a high accuracy, micro-CT is firstly used in this paper to explore 3D micro-scale morphology of fiber distribution, pore ratio, etc. Furthermore, a two-step modeling scheme is proposed to predict the effective moduli and nonlinear deformation of micro-fiber reinforced composites. The outline of this paper is as follows: micro-CT test is employed to analyze distribution and volume fraction of pore defects in Section 2. In Section 3, a new two-step modeling strategy with consideration of primary pore defects is presented. Moreover, an effective elastic-plastic constitutive model is proposed to describe nonlinear deformation of composites with consideration of pore defects. A comparison between numerical results and experimental tests is shown in Section 4. The conclusions can be found in Section 5.

#### 2 Micro-scale primary pore defects

#### 2.1. Micro-CT system

To determine the geometric parameters of micro-scale pore structure in the micro-fiber reinforced composites using Micro-CT, a  $1 \text{cm} \times 2.5 \text{mm} \times 2.5 \text{mm}$  specimen was prepared. Fig. 1 is the schematic diagram of the Micro-CT test, which has three stages, i.e., the scanning, the control and the image mosaic stages. From the attenuation of the X-ray emitted from a tube of circular cross-section, a series of two-dimensional micro-scale slices perpendicular to the X-ray direction are

collected. To obtain an accurate three-dimensional structural topology, multi-group scanning images are needed by rotating the object and reconstructing its 3D structure using computer. A post-processing software is required to analyze the micro-structure and extract objective CT data according to the determined threshold values of the constituent materials. Although the test specimen is relatively small, sufficient scanning time should be allowed to obtain the required microscopic parameters accurately. Herein Zeiss Xradia 510 versa is used and the scanning time of each test is nearly 12 hours. During the tests, the recorded tube voltage and power are 70keV and 10W, respectively. To capture the information with a higher accuracy, the scanning accuracy is maintained at 0.5mm/pixel during the experimental tests.



Fig. 1. Micro-CT experiment schematic diagram

2.2. Threshold segmentation of the constituent materials



**Fig. 2.** Determination of the threshold value: (a) Sub-volume to be investigated (b) Original CT image with pore defects (c) The corresponding pixel image

It has been observed that the effective mechanical property of the composite with consideration of micro features (such as spatial orientation, length, pore size, sphericity, etc.) tends to be stable and independent of location when the selected RVE is sufficiently large. It is also noted that a smaller specimen provides more accurate image threshold of the constituent materials, which are distinguished according to their boundary characteristics. Experimental tests have suggested that a 150 $\mu$ m×150 $\mu$ m (Fig. 2) sub-volume extracted from the specimen offers a satisfactory compromise between accuracy and computational efficiency. The micro-scale coordinate system in Fig. 2(a) is identical to that used in the macroscopic tensile tests, which is convenient to analyze

distribution and formation of pores. Fig. 2(b) is the segmented image using the threshold of air. It can be seen from the zoom-in image that different size of the pore defects can be detected. To evaluate the pore volume, the three-dimensional air medium is further converted into the pixel format shown in Fig. 2(c). Although the surface of the 3D pixel image is slightly less smooth, the data are more convenient for Boolean operation [26] to determine the specific geometric parameters of the constituent materials. On this basis, Avizo software is used and the thresholds are calibrated and determined in the range of  $0\sim 65535$ . It is worth mentioning that the threshold ranges are linked to mass density in the X-ray CT images. The respective threshold ranges of the pore defects, matrix and micro-fibers are shown in Table 1.

| Table 1. Threshol | l ranges of constituent | t materials |
|-------------------|-------------------------|-------------|
|-------------------|-------------------------|-------------|

| Materials       | Pores   | PEEK        | E-glass fiber |  |  |
|-----------------|---------|-------------|---------------|--|--|
| Threshold range | 0-15600 | 15600-23500 | 23500-65535   |  |  |

### 2.3. Validation of the determined threshold

The threshold value of the air medium in the CT images has been determined in Section 2.2. Herein the pore defects in a  $1\text{mm} \times 1\text{mm}$  2D plane slice extracted from the 3D CT image are calibrated as shown in Fig. 3(a). The pore defects are marked green in Fig.3(b) to highlight the primary pore defects. From a detailed comparison, it can be concluded that the pore defects in Fig. 3(a) are practically covered by those green spots in Fig. 3(b) according to the determined threshold. In other words, the pore distribution in the micro-fiber reinforced composite can be accurately determined by the calibrated thresholds derived from the CT images.



Fig. 3. Calibration of the threshold value: (a) Original two-dimensional CT slice (b) two-dimensional CT slice with highlighted pore defects

Using the determined thresholds, the correlation law of pore distribution can be established by investigating the selected 3D sub-image shown in Fig. 4(a). During the preparation process, the micro-fibers mixed in the resin unidirectionally flows along the *x*-axis into the mold and the mold compression is perpendicular to the resin flow. To study the distribution of the pores in the micro-fiber reinforced composites, three plane slice images in the  $x_1$ - $y_1$ , the *x*-z and the *y*-z planes are, respectively, taken and shown in Figs. 4(b)-(d). It can be found from Fig. 4(b) that most of the pore defects (in green color) are distributed around the fibers and of irregular morphology. From a comparison of Figs. 4(b)-4(d), it can be found that the pore size in the  $x_1$ - $y_1$  plane is much greater, and the distribution of the fibers is more random, resulting in more space between fibers. In other words, the size of pores and the space between fibers in the *y*-*z* plane, as shown in Fig. 4(c), are relatively smaller. In addition, a few primary pores distributed in the upper and lower edges can be found in Fig. 4(c)-(d). This may be attributed to a combined action of resin flow and mold

compression.



**Fig. 4.** Distribution of the pore defects: (a) three-dimensional topography of the extracted sub-volume  $1mm \times 1mm \times 1mm$  (b) two-dimensional CT slice in  $x_1 - y_1$  plane (c) two-dimensional CT slice in x - z plane (d) two-dimensional CT slice in y - z plane

# 2.4. Statistics of pore defects

Based on the preliminary research reported above, the 3D morphology of the primary pores can be obtained, as shown in Fig. 5. Herein the pore defects are tinted with different colors for easy identification. Obviously, it is impossible to implement this irregular 3D micro-scale morphology of pores in any existing numerical models.



Fig. 5. Micro-scale geometrical morphology of pore defects extracted from the 1mm×1mm sub-

Fig. 6(a) shows the statistical distribution of the pore volume, which is obtained by the postprocessing software Avizo. It can be seen that the volumes of most of the pores are within the range of  $200\mu m^3$  to  $1600\mu m^3$ . From the zoom-in image, it can be seen that the largest pore is approximately  $6400\mu m^3$ . Based on the assumption that pores in the composite can be equivalent to a pore system composed of only spherical pores, the statistical distribution of pore volume can be converted to statistical distribution of pore diameters, as shown in Fig. 6(b), by the following formula,

$$D = \sqrt[3]{6V/\pi} \tag{1}$$

where D and V denote diameter and volume of a pore, respectively.

Fig. 6(b) shows that the diameters of most of the pore defects are concentrated in the range of  $8\mu m$  to  $12\mu m$ , and the maximum and minimum diameters of the pores are  $23.6\mu m$  and  $6.7\mu m$ , respectively. Since the approximate length of the micro-fibers is about  $14\mu m$ , both the pore defects and the fibers can be modelled at the same scale. According to the statistical analysis, the number and the volume ratio of the pores in the  $1mm \times 1mm \times 1mm$  sub-volume are 143975 and 17.32%, respectively.



Fig. 6. Statistical analysis of pore size (a)Volume of the pore defects (b) Diameter of the pore defects

#### 3 Numerical model

#### 3.1. Elastoplastic constitutive equation

The Finite Volume Direct Averaging Micromechanics (FVDAM) proposed by Pindera [27-28] is capable of studying effective modulus and stress-strain relation of continuous fiber-reinforced composites. Inspired by the high-fidelity generalized method of cells [29], the high-order terms in the 2D FVDAM are ignored to improve its computational efficiency [30]. In recent years, the FVDAM has been extended to investigate effective properties of 3D particle-reinforced or short fiber-reinforced composites, whose representative volume element is discretized by parametric meshes [31-34], where the iso-parametric FVDAM is further extended to explore nonlinear behaviors of random fiber-reinforced composites with consideration of primary pores. For a selected RVE, as shown in Fig. 7(a), it is divided first into  $N_1$ ,  $N_2$  and  $N_3$  sub-cells along the  $y_1$ -,  $y_2$ - and  $y_3$ -directions, respectively, in the local coordinate system. The sub-cell displacements  $u_i^{(\alpha\beta\gamma)}$ can be split into a combination of macroscopic displacements and microscopic fluctuate displacements  $u_i^{'(\alpha\beta\gamma)}$ , that is,

$$u_i^{(\alpha\beta\gamma)}(x, y(\zeta, \eta, \xi)) = \overline{\varepsilon}_{ij} x_j + u_i^{\prime(\alpha\beta\gamma)}(\zeta, \eta, \xi)$$
<sup>(2)</sup>

$$y_{i}^{(\alpha\beta\gamma)}(\zeta,\eta,\xi) = \sum_{p=1}^{8} N_{p}(\zeta,\eta,\xi) y_{i}^{p(\alpha\beta\gamma)}, i = 1,2,3$$
(3)

where x and y represent macroscopic and microscopic coordinates, respectively. The superscripts  $\alpha$ ,  $\beta$  and  $\gamma$  are sub-cell numbers. The symbols, p and i, indicate sub-cell vertices and

micro-scale coordinate directions in the local coordinate system, respectively. Here, it is worth mentioning that the parametric coordinates,  $\zeta$ ,  $\eta$  and  $\xi$ , in the local coordinate system are always between -1 and 1. The sub-cell vertex coordinates are linearly interpolated by employing shape functions, *N*, to establish the relationship between the sub-cell vertices in the coordinate system  $y_1$ - $y_2$ - $y_3$  (Fig. 7(b)) and the parametric coordinate system  $\zeta$ - $\eta$ - $\xi$  (Fig. 7(c)). The mapping between the two co-ordinate systems is determined by the Jacobian matrix *J*. The expressions of the shape function, the Jacobian matrix and the homogenized Jacobian matrix  $\overline{J}$  are shown in Refs. [31-32].  $n_i^{p(\alpha\beta\gamma)}$  are directional cosines that are the cosines of the angle between the sub-cells surfaces and the planes  $y_1$ - $y_2$ ,  $y_1$ - $y_3$  and  $y_2$ - $y_3$ , respectively.



Fig. 7. Schematic diagram of parametric transformation of the sub-cell :(a) 3-dimensional representative volume element (b) Iso-parametric element (c) Regular hexahedral element

Quadratic expansion of Legendre polynomials is used to express the microscopic displacement in the parametric coordinates, as follows,

$$u_{i}^{\prime(\alpha\beta\gamma)}(\zeta,\eta,\xi) = W_{i(000)}^{(\alpha\beta\gamma)} + \zeta W_{i(100)}^{(\alpha\beta\gamma)} + \eta W_{i(010)}^{(\alpha\beta\gamma)} + \xi W_{i(001)}^{(\alpha\beta\gamma)} + \frac{1}{2}(3\zeta^{2} - 1)W_{i(200)}^{(\alpha\beta\gamma)} + \frac{1}{2}(3\eta^{2} - 1)W_{i(020)}^{(\alpha\beta\gamma)} + \frac{1}{2}(3\xi^{2} - 1)W_{i(002)}^{(\alpha\beta\gamma)}$$

$$(4)$$

where,  $W_i^{(\alpha\beta\gamma)}$  are the micro-variables in the local coordinate system. By homogenizing the microscale displacements in the  $\zeta -\eta - \xi$  coordinate system, the linear relationship between the surfaceaveraged displacements of an iso-parametric sub-cell and the micro-variables can be obtained,

$$\overline{u}_{i}^{\prime(1,2)} = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} u'(\mp 1,\eta,\xi) d\eta d\xi = W_{i(000)} \mp W_{i(100)} + W_{i(200)}$$
(5)

$$\overline{u}_{i}^{\prime(3,4)} = \frac{1}{4} \int_{-1-1}^{1} \frac{1}{2} u^{\prime}(\zeta, \mp 1, \xi) d\zeta d\xi = W_{i(000)} \mp W_{i(010)} + W_{i(020)}$$
(6)

$$\overline{u}_{i}^{\prime(5,6)} = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} u'(\zeta,\eta,\mp 1) d\zeta d\eta = W_{i(000)} \mp W_{i(001)} + W_{i(002)}$$
(7)

where superscripts 1,2,...,6 are sub-cell surface numbers, as shown in Fig. 7(c). According to Eqs. (5)-(7), the first- and second-order micro-variables can be determined by the surface-averaged

displacements and the zero-order micro-variables, the detailed expressions of which can be found in Refs. [31-32]. Based on the strain-displacement relations, the sub-cell strains can be calculated by Eq. (8).

$$\varepsilon_{ij}(x,y) = \overline{\varepsilon}_{ij} + \frac{1}{2} \left( \frac{\partial u'_i}{\partial y_j} + \frac{\partial u'_j}{\partial y_i} \right) = \overline{\varepsilon}_{ij} + \varepsilon'_{ij}(\zeta,\eta,\xi)$$
(8)

Similarly, the sub-cell strains can be divided into macroscopic and microscopic strains. The expressions of the microscopic strain in terms of the Jacobian matrix are presented in Appendix A.1.

According to the Cauchy's stress theorem, the surface tractions can be determined by the sub-cell stresses as follows

$$t_{j}^{p(\alpha\beta\gamma)} = \sigma_{ij}^{(\alpha\beta\gamma)} n_{i}^{p(\alpha\beta\gamma)}(i, j = 1, 2, 3; p = 1, 2...6)$$
(9)

where

$$\sigma_{ij}^{(\alpha\beta\gamma)} = C_{ijkl}^{(\alpha\beta\gamma)} : \left(\varepsilon_{kl}^{(\alpha\beta\gamma)} - \varepsilon_{kl}^{in(\alpha\beta\gamma)}\right)$$
(10)

is the constitutive equation of the constituent materials. In Eqs. (9)- (10),  $\varepsilon_{kl}^{in(\alpha\beta\gamma)}$  and  $t_i^{p(\alpha\beta\gamma)}$  denote sub-cell inelastic strains and surface tractions, respectively. The expressions of Eqs. (9)- (10) can be found in Appendix A.2-A.3.

By introducing Appendix A.1-A.3 into Eq. (9), and averaging the sub-cell surface tractions, the average surface tractions can be obtained as,

$$\vec{t}_{i}^{(1,2)} = \frac{1}{4} \int_{-1-1}^{1} t_{i}^{(1,2)}(\mp 1,\eta,\xi) d\eta d\xi$$
(11)

$$\vec{t}_i^{(3,4)} = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} t_i^{(3,4)}(\zeta, \mp 1, \xi) d\zeta d\xi$$
(12)

$$\vec{t}_{i}^{(5,6)} = \frac{1}{4} \int_{-1}^{1} \int_{-1}^{1} t_{i}^{(5,6)}(\zeta,\eta,\mp 1) d\zeta d\eta$$
(13)

By solving Eqs. (11)- (13), the three unknown zero-order sub-cell micro-variables can be obtained. According to the Gauss Divergence Theorem [27], the sum of the average surface tractions of a sub-cell is zero, that is,

$$\int_{V} \nabla \cdot \sigma dV = \int_{S} \sigma \cdot n dS = \int_{S} \overline{t_{i}}^{(\alpha\beta\gamma)} dS^{(\alpha\beta\gamma)} = \sum_{p=1}^{6} S_{p}^{(\alpha\beta\gamma)} \overline{t_{i}}^{p(\alpha\beta\gamma)} = 0$$
(14)

where the detailed solutions can be found in Appendix A.4. Substituting Appendix A.1- A.3 into Eq. (14), the three unknown zero-order micro-variables can be determined as,

$$\begin{bmatrix} W_{1(000)} \\ W_{2(000)} \\ W_{3(000)} \end{bmatrix}^{(\alpha\beta\gamma)} = \mathbf{\Phi}^{-1} \mathbf{\Theta} \begin{bmatrix} \overline{u}_{1}^{\prime(1)} & \overline{u}_{2}^{\prime(1)} & \overline{u}_{3}^{\prime(1)} & \overline{u}_{1}^{\prime(3)} & \overline{u}_{1}^{\prime(3)} & \overline{u}_{1}^{\prime(5)} & \overline{u}_{2}^{\prime(5)} & \overline{u}_{3}^{\prime(5)} \\ + & + & + & + & + & + & + \\ \overline{u}_{1}^{\prime(2)} & \overline{u}_{2}^{\prime(2)} & \overline{u}_{3}^{\prime(2)} & \overline{u}_{1}^{\prime(4)} & \overline{u}_{2}^{\prime(4)} & \overline{u}_{3}^{\prime(4)} & \overline{u}_{1}^{\prime(6)} & \overline{u}_{2}^{\prime(6)} \end{bmatrix}^{T(\alpha\beta\gamma)}$$
(15)

where the expressions of  $\Phi$  and  $\Theta$  can be found in Ref. [32]. According to Eqs. (5)-(14), the relationship between the displacements and the average surface tractions of each sub-cell can be determined. In addition, by employing Eq. (15) and Appendix A.1-A.3, the 21 sub-cell micro-variables can be solved. Furthermore, the sub-cell average surface tractions can be expressed by the micro-variables, that is,

$$\overline{\mathbf{t}} = \mathbf{N}\mathbf{C}\left(\overline{\boldsymbol{\varepsilon}} - \boldsymbol{\varepsilon}^{\mathrm{in}}\right) + \overline{\mathbf{A}}\mathbf{W}$$
(16)

By substituting Eq. (14) and Appendix A.1-A.3 into Eq. (16), the relationship between the displacements and the average surface tractions of each sub-cell can be expressed as,

$$\overline{\mathbf{t}} = \mathbf{N}\mathbf{C}\left(\overline{\mathbf{\epsilon}} \cdot \mathbf{\epsilon}^{\mathbf{i}\mathbf{n}}\right) + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{u}$$
(17)

$$\overline{\mathbf{t}} = \overline{\mathbf{K}}\mathbf{u} + \mathbf{N}\mathbf{C}\left(\overline{\boldsymbol{\varepsilon}} - \boldsymbol{\varepsilon}^{\mathbf{i}\mathbf{n}}\right)$$
(18)

or

where the product of matrices  $\overline{\mathbf{A}}$  and  $\overline{\mathbf{B}}$  is replaced by  $\overline{\mathbf{K}}$ . The details of matrices  $\overline{\mathbf{A}}$ ,  $\overline{\mathbf{B}}$ , N and C are shown in Appendix A.5-A.10. In addition, all of the sub-cell local stiffness matrices can be found in Appendix A.11. To compute the global stiffness matrix, the following continuous and periodic conditions of displacements and average surface tractions between adjacent sub-cells are imposed, as shown in Fig. 8,

$$\overline{u}_{i}^{\prime 1(\alpha\beta\gamma)} = \overline{u}_{i}^{\prime 2(\alpha+1,\beta,\gamma)} = \hat{u}_{i}^{\prime 1(\alpha+1,\beta,\gamma)} \quad \overline{u}_{i}^{\prime 1(N_{\alpha}\beta\gamma)} = \overline{u}_{i}^{\prime 2(1\beta\gamma)} = \hat{u}_{i}^{\prime 1(1\beta\gamma)}$$

$$\overline{u}_{i}^{\prime 3(\alpha\beta\gamma)} = \overline{u}_{i}^{\prime 4(\alpha,\beta+1,\gamma)} = \hat{u}_{i}^{\prime 2(\alpha,\beta+1,\gamma)} \quad \overline{u}_{i}^{\prime 1(N_{\alpha}\beta\gamma)} = \overline{u}_{i}^{\prime 2(1\beta\gamma)} = \hat{u}_{i}^{\prime 1(1\beta\gamma)}$$

$$\overline{u}_{i}^{\prime 5(\alpha\beta\gamma)} = \overline{u}_{i}^{\prime 6(\alpha,\beta,\gamma+1)} = \hat{u}_{i}^{\prime 3(\alpha,\beta,\gamma+1)} \quad \overline{u}_{i}^{\prime 1(N_{\alpha}\beta\gamma)} = \overline{u}_{i}^{\prime 2(1\beta\gamma)} = \hat{u}_{i}^{\prime 1(1\beta\gamma)}$$
(19)

$$\overline{t_i}^{1(\alpha\beta\gamma)} + \overline{t_i}^{2(\alpha+1,\beta,\gamma)} = 0 \quad \overline{t_i}^{1(N_\alpha\beta\gamma)} + \overline{t_i}^{2(1\beta\gamma)} = 0$$

$$\overline{t_i}^{3(\alpha\beta\gamma)} + \overline{t_i}^{4(\alpha,\beta+1,\gamma)} = 0 \quad \overline{t_i}^{3(\alpha N_\beta\gamma)} + \overline{t_i}^{4(\alpha1\gamma)} = 0$$

$$\overline{t_i}^{5(\alpha\beta\gamma)} = \overline{t_i}^{-5(\alpha\beta\gamma)} = \overline{t_i}^{-5(\alpha\beta\gamma\gamma)} = \overline{t_i}^{-5($$



Fig. 8. Continuous condition between the adjacent sub-cells

The global stiffness equation can be obtained by introducing Eqs. (19)-(20) into Eq. (18), that is,  $\mathbf{K}\overline{\mathbf{u}} = \Delta \mathbf{C}\overline{\boldsymbol{\varepsilon}} - \Delta \mathbf{C}_{1}\overline{\boldsymbol{\varepsilon}}^{in1} - \Delta \mathbf{C}_{2}\overline{\boldsymbol{\varepsilon}}^{in2}$ (21)

which is subjected to the continuous and periodic conditions in Eqs. (19)-(20). Further details of Eq. (21) are shown in Appendix B.1-B.9. The expressions of matrices **K**,  $\Delta C$ ,  $\Delta C_1$  and  $\Delta C_2$  are shown in Appendix B.10.

## 3.2. A two-step modeling strategy

In reference [25], the authors focused on developing a simple model that can consider random short fibers and testing the model against effective moduli without considering initial pores, as significant experimental work on pore characteristics were required to assess the possibility of including them in the model. Also, it is essential to find a way to incorporate pores into the model without significantly increase the complexity of the modelling process. From the geometric

characteristic and microscopic properties of pore defects, micro-fibers and matrix determined by the Micro-CT images reported in the current work, a novel two-step modeling strategy with consideration of pore defects is proposed in this Section, as illustrated in Fig. 9 and summarized below.

# 3.2.1. First step- Equivalence of pores and random micro-fibers

The 3D iso-parametric FVDAM is employed to construct the micro-scale model capable of considering pore defects and random micro-fibers. Firstly, the distribution of the micro-fibers, as well as the geometric parameters of the pore defects are both defined from the CT images. It should be noted that the detailed topological structure of the individual pores cannot be considered in the numerical modeling due to the number of pore defects, which is prohibitively computational expensive. To simplify this problem, the primary pores derived from the preparation process are considered as an isotropic constituent material [35]. For the random fibers, they are equivalently represented by the isotropic yellow ellipsoid shown in Fig. 9. It should be noted that the geometrical parameters of the simple ellipsoidal model, including its principal axis direction and volume fraction are determined by the test results derived from the CT images. More details can be found from the authors' previous study [25]. For the pore defects, the equivalent cubic element in blue, is determined according to the volume fraction of the pores. The integration of the isotropic cubic pore phase with the isotropic 3D elliptical fiber phase results in an orthotropic phase represented by the purple sphere. The volume fraction of the orthotropic sphere is equal to the total volume fraction of the pores and fibers. The three-dimensional parametric FVDAM is used to establish the micro-scale model according to the micromechanical formula of composites [15]. The stress-strain relationship of the equivalent model and the equivalent stiffness  $C_1$  can be calculated as follows:

$$\overline{\mathbf{\sigma}} = \frac{1}{V_1} \int_{V_1 = V_p + V_f} \sigma^{(\alpha\beta\gamma)} dV = \sum_{n=1}^N (v_p^{(\alpha\beta\gamma)} \sigma_p^{(\alpha\beta\gamma)} + v_f^{(\alpha\beta\gamma)} \sigma_f^{(\alpha\beta\gamma)}) = \mathbf{C}_1 \overline{\mathbf{\epsilon}}$$
(22)

$$\mathbf{C}_{1} = \sum_{n=1}^{N} \left( v_{p}^{(\alpha\beta\gamma)} \mathbf{C}_{p}^{(\alpha\beta\gamma)} \mathbf{A}_{p}^{(\alpha\beta\gamma)} + v_{f}^{(\alpha\beta\gamma)} \mathbf{C}_{f}^{(\alpha\beta\gamma)} \mathbf{A}_{f}^{(\alpha\beta\gamma)} \right)$$
(23)

where the subscripts, p and f, denote pores and matrix, respectively. The calculated equivalent stiffness  $C_1$  is determined by the sub-cell volume v, C and A, the expressions of which can be found in [31]. In fact, the orthotropic mechanical properties of  $C_1$  are mainly attributed to the micro-fibers, while the existence of pores result in reduced stiffness and strength. The calculated orthotropic mechanical parameters of the RVE are to be used in the following section.

# 3.2.2. Second step- Equivalent procedure of the matrix and inclusion phase

The 3D iso-parametric FVDAM is further employed to determine the mechanical properties of the composites composed of the matrix and the equivalent fiber and pore volume obtained at the end of step 1. In detail, the equivalent orthotropic spherical phase, resulting from the integration of the pores and the micro-fibers in step 1, is introduced as the reinforcement to the matrix in the second step. The 3D parametric FVDAM algorithm is again used to establish the secondary equivalent microscale model, which integrates the purple spherical phase with the red matrix materials, as shown in Fig. 9. The average stress  $\overline{\sigma}$  of the equivalent model in yellow can be computed as,

$$\overline{\mathbf{\sigma}} = \frac{1}{V_2} \int_{V_2 = V_1 + V_m} \sigma^{(\alpha\beta\gamma)} dV = \sum_{n=1}^N (v_1^{(\alpha\beta\gamma)} \sigma_1^{(\alpha\beta\gamma)} + v_m^{(\alpha\beta\gamma)} \sigma_m^{(\alpha\beta\gamma)}) = \mathbf{C_2} \overline{\mathbf{\epsilon}}$$
(24)

where

$$\mathbf{C}_{2} = \sum_{n=1}^{N} (v_{1}^{(\alpha\beta\gamma)} \mathbf{C}_{1}^{(\alpha\beta\gamma)} \mathbf{A}_{1}^{(\alpha\beta\gamma)} + v_{m}^{(\alpha\beta\gamma)} \mathbf{C}_{m}^{(\alpha\beta\gamma)} \mathbf{A}_{m}^{(\alpha\beta\gamma)})$$
(25)

where the subscripts, 1 and *m*, represent equivalent model in the first step and of the matrix, respectively. The components,  $v_1$ ,  $C_1$  and  $A_1$ , represent volume fraction, stiffness matrix and Hill's matrix [36] of the equivalent model, respectively. The subscript *m* denotes matrix. Correspondingly,  $v_m$ ,  $C_m$  and  $A_m$  represent volume fraction, stiffness matrix and Hill's matrix of the matrix materials, respectively. The symbol,  $C_2$ , denotes the equivalent stiffness matrix of the micro-fiber reinforced composites with primary pores.



Fig. 9. Schematic diagram of the proposed two-step modeling strategy

## 4 Experimental verification

#### 4.1. Shape randomness of pore defects

Shape irregularity of pore defects is an important factor in an anisotropic model [37]. Based on the spherical assumption, the spherical degree of an irregular pore is evaluated by the following equation in terms of the ratio between the actual volume and surface area of the pore,

$$R = \frac{\pi^{1/3} (6 * V_{void})^{2/3}}{A_{void}}$$
(26)

Page

where *R* is the spherical degree of a pore defect.  $V_{void}$  and  $A_{void}$  are, respectively, the volume and the surface area of the irregular pore.

The volumes of the pores from the experiment tests have been shown in Fig. 6. Fig. 10 shows the distribution of surface area of the primary pores, whose minimum and maximum values are  $135.268\mu m^2$  and  $5472.58\mu m^2$ , respectively. Most of the surface areas are within the range of  $135\mu m^2$  and  $1400\mu m^2$ . It is interesting to mention that nearly half of the surface areas are concentrated in the range of  $200\mu m^2 \sim 600\mu m^2$ . Form the zoom-in image in Fig.10, the number of pores decreases sharply with the increase of surface area. In addition, the pores having a surface area over  $1800\mu m^2$  are less than 1%.



According to the spherical assumption, the spherical degree can be determined by Eq. (26). It is worth noting that the equivalent sphere presents a certain directivity once the spherical degree is less than 1. From the statistical results shown in Fig. 11, the pore defects account for 75% when the spherical degree is greater than 0.9. This proportion increases to 90% when the spherical degree is over 0.8. In addition, there is only very small amount of pore defects with a spherical degree in the range of  $1\sim1.02$ . Therefore, the shape of the primary pores has little effect on the anisotropy of the micro-fiber reinforced composites. In other words, most of the primary pores are approximately spherical. Based on the above analyses, it is concluded that the pores can be assumed to be isotropic in numerical modeling.

## 4.2. A two-step validation

To verify the proposed two-step modeling scheme, local stress distribution is calculated in the first step by the FVDAM. The influence of the number of the sub-cells on the elastic modulus of the composite is studied first and shown in Table 2. It can be seen from the table that a RVE consisting of  $24 \times 24 \times 24$  sub-cells is suffice to achieve a converged result. Thus, this meshing density is used below to calculate the elastic modulus of the composite with or without considering the effect of pores. The numerical predictions are compared with the experiment results from [25]. For the two-step modelling, the material parameters of the PEEK resin and the micro glass fibers are shown in Table 3. In the Step 1 shown in Fig.9, to construct the equivalent orthotropic hybrid inclusion of pores and fibers for the Step 2 homogenization with the matrix, the total volume of the pores must be considered and meshed in the FVDAM model, where the elastic modulus of the pores is assumed to be 0.01 times of that of the resin matrix to facilitate the numerical calculations [38] without sacrificing accuracy. This is because using zero for the modulus of pores may result in an ill-conditioned global stiffness matrix (Eq. (21)) during the numerical analysis by the FVDAM.

**Table 2.** Mesh density analysis on elastic modulus of  $0^{\circ}$  off-axis angle

| Tuble               | a mesh achistey an    | aryons on clubile moda |                          | ungre                    |
|---------------------|-----------------------|------------------------|--------------------------|--------------------------|
| Number of meshes    | $8 \times 8 \times 8$ | 16×16×16               | $24 \times 24 \times 24$ | $28 \times 28 \times 28$ |
| Elastic modulus/GPa | 4.128                 | 5.375                  | 6.049                    | 6.051                    |

Table 3 presents the properties of the constituent materials used in the numerical calculations, where the volume fractions of each constituent are obtained from CT scans. Fig. 12 shows a comparison of the elastic modulus between the numerical results and the experimental data. The results show that pore defects have significant impact on the effective modulus, and the proposed two-step method improves the accuracy of the predictions by nearly 20% when compared with using

the model without considering pore defects [25]. In detail, the maximum relative errors are equal to 1.72% and 1.12% when the off-axis angles are  $45^{\circ}$  and  $0^{\circ}$ , respectively. The calculation error of the proposed two-step method may be attributed to the ignorance of pore direction during the first-step modeling.

| Table 5. I arameters of constituent materials at 25 C |        |        |        |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|--------|--------|--------|--|--|--|--|--|--|--|--|--|--|
| Materials E-glass fiber PEEK Poror                    |        |        |        |  |  |  |  |  |  |  |  |  |  |
| Elastic modulus/GPa                                   | 72.4   | 3.6    | 0.036  |  |  |  |  |  |  |  |  |  |  |
| Poisson's ratio                                       | 0.20   | 0.39   | 0.0039 |  |  |  |  |  |  |  |  |  |  |
| Density/(g/cm <sup>3</sup> )                          | 2.60   | 1.32   | -      |  |  |  |  |  |  |  |  |  |  |
| Volume fraction                                       | 14.41% | 68.43% | 17.16% |  |  |  |  |  |  |  |  |  |  |



Fig. 12. The comparison between numerical results and the experimental data

## 4.3. Nonlinear mechanical behaviors

To take into account the properties of all the individual constituent materials, the micro-fibers and the matrix materials are, respectively, assumed to be linear elastic and elastoplastic in the numerical simulation. To describe the nonlinear deformations in the PEEK matrix, the modified Bodner-Partom constitutive model [39-40] is employed. In this paper, the stress-strain behaviors of the composites with  $0^{\circ}$ ,  $45^{\circ}$  and  $90^{\circ}$  off-axis angles are obtained, respectively, and shown in Fig. 13. In detail, the curves labelled with circles and triangles are the results from numerical simulations with pores and the experimental results from [25], respectively. In general, the numerical predictions agree well with the test results. Similarly, the maximum error between the numerical and test results occurs when  $45^{\circ}$  off-axis load is considered. This is understandable due to the fact that in the  $0^{\circ}$ or 90° direction, which is the respective principal axis of the equivalent ellipsoid of fibers in Fig. 9, the profiles of pores and fibers are directly from the CT measurements. In the 45° direction, however, the profiles of pores and fibers are determined numerically from the elliptical assumption, which inevitably introduces additional errors. Nevertheless, it is evident that the comparisons have shown good agreement between the numerical and the test results in all three directions. In Figs. 13(a)-(c), the FVDAM results without considering pores are also presented for comparisons. Obviously the existence of pores reduces the stiffness of the composites significantly.



**Fig. 13.** Different off-axis angle nonlinear behaviors of fiber-reinforced composites: (a)  $0^{\circ}$  (b)  $45^{\circ}$  (c)  $90^{\circ}$  4.4. The influence of pore ratio

Porosity represents a great influence on the mechanical properties of composites, which leads to obvious anisotropy and reduction in stiffness. In Fig. 15, the effect of 5%, 10%, 15% and 20% pore ratios on the tensile moduli  $E_{11}$  and  $E_{22}$  and Poisson's ratio  $v_{12}$  are evaluated using the two steps strategy, where  $E_{11}$  and  $E_{22}$  are the tensile moduli along the principle axis, i.e., in the 0° and 90° directions, respectively. In addition, the numerical results for 17.16% pore ratio, which are for the material in Table 3, are also shown in the figure. It is interesting to notice that from the figure the tensile elastic modulus and Poisson's ratio decrease nonlinearly with the increase of pore ratio. In particular, for the materials in Table 3,  $E_{11}$  and  $E_{22}$  are, respectively, 5. 917GPa and 3.749GPa. The Poisson's ratio is 0.322.



Fig. 14. Pore ratio influences on mechanical properties: (a) elastic modulus of  $0^{\circ}$  direction (b) elastic modulus of  $90^{\circ}$  direction (c) Poisson's ratio  $V_{12}$ 

#### 5 Conclusions

In this study, a new two-step modeling strategy has been proposed to evaluate effective properties of micro-fiber reinforced composites with consideration of primary pores that may be formed during manufacturing. Micro-CT tests were conducted to obtain micro-scale geometrical morphology of the pore defects. On this basis, a micro-scale model was established and validated. The numerical

results showed a high consistency with the experimental data. The following conclusions are drawn from the study:

- The proposed two-step modeling strategy is effectively in evaluating elastic modulus and nonlinear stress-strain relations of random micro-fiber reinforced composites with consideration of primary pores, which overcome the difficulties in predicting orthotropic mechanical properties of micro-fiber reinforced composites with pores.
- Pore morphology and distribution are mainly related to matrix flow and molding pressure direction during the preparation process. Only a few pores can be found in the upper and lower surfaces of composites.
- 3) For the micro-fiber reinforced composites, the pore defects and the fibers can be considered at the same geometrical scale in numerical modelling. In addition, primary pores can be considered isotropic, which were demonstrated by the spherical analysis.

This study does not include the formation of pores in the process of manufacturing, such as the effect of flow rate and pressure on pore ratio and distribution at microscopic scale, which is currently under investigation. The additional information from further investigations will improve the accuracy of the microscopic model developed in this paper.

### Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

### **CRediT** authorship contribution statement

Heng Cai: Writing-original draft, Methodology, Visualization. Junjie Ye: Writing-original draft, Methodology, Conceptualisation. Jinwang Shi: Visualization, Software. Yiwei Wang: Validation, Data curation; Yang Shi: Methodology, Visualization. Bo Huang: Data curation, Visualization.
Yonghe Xu: Resources. Mohamed Saafi: Writing-review & editing, Supervision. Jianqiao Ye: Methodology, Conceptualisation, Writing-review & editing, Supervision.

## **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

### Acknowledgments

This work was supported by the National Natural Science Foundation of China, China (No. 52175112, 51675397). The National Natural Science Foundation of Shaanxi Province, China (No. 2018JZ5005). The 111 Project, China (No. B14042). China Scholarship Council (No. 202106960030). Yancheng Xinyongjia Petroleum Machinery Manufacturing CO., Ltd of China (HX01202006043). Fundamental Research Funds for the Central Universities (JB210421). Ye would like to thank the technological support from Xi'an Shiyou University for the Zeiss Xradia 510 versa and Avizo software.

## References

- Barari B, Simacek P, Yarlagadda S, Crane RM, Advani SG. Prediction of process-induced void formation in anisotropic Fiber-reinforced autoclave composite parts. Int J Mater Form 2020;13:143–58. https://doi.org/10.1007/s12289-019-01477-4.
- [2] Mehdikhani M, Gorbatikh L, Verpoest I, Lomov S V. Voids in fiber-reinforced polymer composites: A

review on their formation, characteristics, and effects on mechanical performance. J Compos Mater 2019;53:1579–669. https://doi.org/10.1177/0021998318772152.

- [3] Ge L, Li HM, Liu BS, Fang DN. Multi-scale elastic property prediction of 3D five-directional braided composites considering pore defects. Compos Struct 2020; 244: 11. https://doi.org/10.1016/j.compstruct. 2020.112287.
- [4] Dong JW, Huo NF. A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects. Compos Struct 2016;152:1–10. https://doi.org/10.1016/j.compstruct.2016.05.025.
- [5] Zhou B, Yu FG, Li H, Xin W. A Quantitative Study on the Void Defects Evolving into Damage in Wind Turbine Blade Based on Internal Energy Storage. Appl Sci 2020;10:13. https://doi.org/10.3390/app 10020491.
- [6] Zhao CY, Yang B, Wang SL, Ma C, Wang SB, Bi FY. Three-Dimensional Numerical Simulation of Meso-Scale-Void Formation during the Mold-Filling Process of LCM. Appl Compos Mater 2019;26:1121–37. https://doi.org/10.1007/s10443-019-09770-w.
- [7] Wang WQ, Wu CQ, Li J, Liu ZX, Lv YP. Behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading. Int J Impact Eng 2019;132:24. https://doi.org/10.1016/j.ijimpeng.2019.103314.
- [8] Xiong Q, Wang X, Jivkov AP. A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete. Cem Concr Compos 2020;109:103545. https://doi.org/https://doi.org/ 10.1016/j.cemconcomp.2020.103545.
- [9] Ma YQ, Wang J, Zhao YT, Wei XL, Ju LY, Chen Y. A New Vacuum Pressure Infiltration CFRP Method and Preparation Experimental Study of Composite. Polymers (Basel) 2020;12:15. https://doi.org/10.3390/ polym12020419.
- Ye J, Chu C, Cai H, Hou X, Shi B, Tian S, et al. A multi-scale model for studying failure mechanisms of composite wind turbine blades. Compos Struct 2019;212:220–9. https://doi.org/10.1016/j.compstruct.2019. 01.031.
- [11] Xu CB, Yang ZB, Tian SH, Chen XF. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum. Compos Struct 2019;223:10. https://doi.org/10.1016/ j.compstruct.2019.110973.
- [12] Shi PP. Singular integral equation method for 2D fracture analysis of orthotropic solids containing doubly periodic strip-like cracks on rectangular lattice arrays under longitudinal shear loading. Appl Math Model 2020;77:1460–73. https://doi.org/10.1016/j.apm.2019.09.026.
- [13] Huang T, Gong YH. A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects. Compos Struct 2018;185:401–10. https://doi.org/10.1016/j.compstruct.2017.11. 046.
- [14] Mekonnen AA, Woo K. Effects of Defects on Effective Material Properties of Triaxial Braided Textile Composite. Int J Aeronaut Sp Sci 2020;21:657–69. https://doi.org/10.1007/s42405-019-00244-8.
- [15] Wei KL, Li J, Shi HB, Tang M. Numerical evaluation on the influence of void defects and interphase on the thermal expansion coefficients of three-dimensional woven carbon/carbon composites. Compos Interfaces 2020;27:873–92. https://doi.org/10.1080/09276440.2019.1707586.
- [16] Yang PP, Hu N, Guo XJ, Dong LT, Chen Y, Guo ZY. An ultra-simple universal model for the effective elastic properties of isotropic 3D closed-cell porous materials. Compos Struct 2020;249:10. https://doi.org/10.1016/j.compstruct.2020.112531.
- [17] Cao YJ, Shen WQ, Shao JF, Wang W. Numerical homogenization of elastic properties and plastic yield stress of rock-like materials with voids and inclusions at same scale. Eur J Mech a-Solids 2020;81:15.

https://doi.org/10.1016/j.euromechsol.2020.103958.

- [18] ASTM D2734-16, Standard Test Methods for Void Content of Reinforced Plastics, ASTM International, West Conshohocken, PA, 2016, www.astm.org.
- [19] ASTM D3171-11, Standard Test Methods for Constituent Content of Composite Materials, ASTM International, West Conshohocken, PA, 2011, www.astm.org.
- [20] ASTM D2584-18, Standard Test Method for Ignition Loss of Cured Reinforced Resins, ASTM International, West Conshohocken, PA, 2018, www.astm.org.
- [21] Hamidi YK, Aktas L, Altan MC. Three-dimensional features of void morphology in resin transfer molded composites. Compos Sci Technol 2005;65:1306–20. https://doi.org/10.1016/j.compscitech.2005.01.001.
- [22] Lin L, Chen J, Zhang X, Li X. A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. Ndt E Int 2011;44:254–60. https://doi.org/10.1016/j. ndteint.2010.12.003.
- [23] Wang PD, Lei HS, Zhu XL, Chen HS, Wang CX, Fang DN. Effect of manufacturing defect on mechanical performance of plain weave carbon/epoxy composite based on 3D geometrical reconstruction. Compos Struct 2018;199:38–52. https://doi.org/10.1016/j.compstruct.2018.05.066.
- [24] Ye J, Cai H, Liu L, Zhai Z, Victor AC, Wang Y, et al. Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part I experimental tests. Compos Struct 2020:113369. https://doi.org/10.1016/j.compstruct.2020.113369.
- [25] Cai H, Ye JJ, Wang YW, Saafi M, Huang B, Yang DM, et al. An effective micro-scale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers. Compos Struct 2020;240:11. https://doi.org/10.1016/j.compstruct.2020.112087.
- [26] Jin C, Zhang WX, Yang X, Liu K. Region-based adaptive asphalt mixture microstructural modeling for efficient numerical simulation. Constr Build Mater 2020;257:9. https://doi.org/10.1016/j.conbuildmat. 2020.119431.
- [27] Bansal Y, Pindera MJ. Finite-volume direct averaging micromechanics of heterogeneous materials with elastic-plastic phases. Int J Plast 2006;22:775–825. https://doi.org/10.1016/j.ijplas.2005.04.012.
- [28] Bansal Y, Pindera MJ. A second look at the higher-order theory for periodic multiphase materials. J Appl Mech Trans ASME 2005;72:177–95. https://doi.org/10.1115/1.1831294.
- [29] Ye JJ, Wang YW, Li ZW, Saafi M, Jia F, Huang B, et al. Failure analysis of fiber-reinforced composites subjected to coupled thermo-mechanical loading. Compos Struct 2020;235:13. https://doi.org/10.1016/j. compstruct.2019.111756.
- [30] Yang DH, Yang ZB, Zhai Z, Chen XF. Homogenization and Localization of Ratcheting Behavior of Composite Materials and Structures with the Thermal Residual Stress Effect. Materials (Basel) 2019;12:20. https://doi.org/10.3390/ma12183048.
- [31] Ye J, Hong Y, Cai H, Wang Y, Zhai Z, Shi B. A new three-dimensional parametric FVDAM for investigating the effective elastic moduli of particle-reinforced composites with interphase. Mech Adv Mater Struct 2019;26:1870–80. https://doi.org/10.1080/15376494.2018.1452321.
- [32] Chen Q, Chen X, Zhai Z, Yang Z. A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases. Compos Part B Eng 2016;85:216–32. https://doi.org/10.1016/j.compositesb.2015.09.014.
- [33] Cavalcante MAA, Pindera M-J. Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations-Part I: Framework. J Appl Mech Asme 2014;81. https://doi.org/10.1115/1.4024406.
- [34] Cavalcante MAA, Marques SPC. Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory. Comput Mater Sci 2014;87:43–53. https://doi.org/10.1016/j.commatsci.2014.

01.053.

- [35] Feng XQ, Mai YW, Qin QH. A micromechanical model for interpenetrating multiphase composites. Comput. Mater. Sci., vol. 28, 2003, p. 486–93. https://doi.org/10.1016/j.commatsci.2003.06.005.
- [36] Hill R. A self-consistent mechanics of composite materials. J Mech Phys solids, 1965, 13(4): 213-222. https://doi.org/10.1016/0022-5096(65)90010-4
- [37] Liu J, Zuo F, Liu C. A Trans-Scale Young' Modulus Calculation Model of ITZ Based on Void Shape Randomness and Calcium Hydroxide Enrichment. Adv Mater Sci Eng 2020;2020. https://doi.org/10.1155 /2020/9430875.
- [38] Cai H, Ye J, Wang Y, Jia F, Hong Y, Tian S, et al. Matrix failures effect on damage evolution of particle reinforced composites. Mech Adv Mater Struct 2019:1–13. https://doi.org/10.1080/15376494.2019. 1579396.
- [39] Bodner Sr, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials 1975.
- [40] Chen Q, Chen X, Zhai Z, Zhu X, Yang Z. Micromechanical Modeling of Viscoplastic Behavior of Laminated Polymer Composites With Thermal Residual Stress Effect. J Eng Mater Technol 2016;138. https://doi.org/10.1115/1.4033070.

#### Appendix A

$$\begin{split} \varepsilon_{11}(x,y) &= \overline{\varepsilon}_{11} + \frac{\partial u_1'}{\partial y_1} = \overline{\varepsilon}_{11} + \overline{J}_{11} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{12} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{13} \frac{\partial u_1'}{\partial \xi} \\ \varepsilon_{22}(x,y) &= \overline{\varepsilon}_{22} + \frac{\partial u_2'}{\partial y_2} = \overline{\varepsilon}_{22} + \overline{J}_{21} \frac{\partial u_2'}{\partial \zeta} + \overline{J}_{22} \frac{\partial u_2'}{\partial \eta} + \overline{J}_{23} \frac{\partial u_2'}{\partial \xi} \\ \varepsilon_{33}(x,y) &= \overline{\varepsilon}_{33} + \frac{\partial u_3'}{\partial y_3} = \overline{\varepsilon}_{33} + \overline{J}_{31} \frac{\partial u_3'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_3'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_3'}{\partial \xi} \\ \varepsilon_{23}(x,y) &= \overline{\varepsilon}_{23} + \frac{1}{2} (\frac{\partial u_2'}{\partial y_3} + \frac{\partial u_3'}{\partial \zeta}) = \overline{\varepsilon}_{23} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_2'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_2'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_2'}{\partial \xi}) \\ \varepsilon_{12}(x,y) &= \overline{\varepsilon}_{12} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_2} + \frac{\partial u_2'}{\partial y_1}) = \overline{\varepsilon}_{12} + \frac{1}{2} (\overline{J}_{21} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{22} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{23} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \overline{\varepsilon}_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \overline{\varepsilon}_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \varepsilon_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \varepsilon_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \varepsilon_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_3'}{\partial y_1}) = \varepsilon_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{\partial \eta} + \overline{J}_{33} \frac{\partial u_1'}{\partial \xi}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_2'}{\partial y_1}) \\ \varepsilon_{13}(x,y) &= \overline{\varepsilon}_{13} + \frac{1}{2} (\frac{\partial u_1'}{\partial y_3} + \frac{\partial u_2'}{\partial y_1}) = \varepsilon_{13} + \frac{1}{2} (\overline{J}_{31} \frac{\partial u_1'}{\partial \zeta} + \overline{J}_{32} \frac{\partial u_1'}{$$

(A.1)

$$\begin{split} \sigma_{11}^{(a\beta\gamma)} &= C_{11}^{(a\beta\gamma)} (\overline{e}_{11} + \overline{J}_{11}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\zeta W_{1(20)}^{(a\beta\gamma)}] + \overline{J}_{12}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\eta W_{1(20)}^{(a\beta\gamma)}] + \overline{J}_{13}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\zeta W_{1(00)}^{(a\beta\gamma)}] + \\ C_{12}^{(a\beta\gamma)} (\overline{e}_{22} + \overline{J}_{21}^{(a\beta\gamma)} [W_{2(00)}^{(a\beta\gamma)} + 3\zeta W_{2(20)}^{(a\beta\gamma)}] + \overline{J}_{22}^{(a\beta\gamma)} [W_{2(00)}^{(a\beta\gamma)} + 3\eta W_{2(02)}^{(a\beta\gamma)}] + \overline{J}_{23}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\zeta W_{3(00)}^{(a\beta\gamma)}] + \\ C_{13}^{(a\beta\gamma)} (\overline{e}_{33} + \overline{J}_{31}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\zeta W_{3(20)}^{(a\beta\gamma)}] + \overline{J}_{32}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\eta W_{3(02)}^{(a\beta\gamma)}] + \overline{J}_{33}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{33}^{(in(a\beta\gamma))} ) \\ \sigma_{22}^{(a\beta\gamma)} &= C_{21}^{(a\beta\gamma)} (\overline{e}_{11} + \overline{J}_{11}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\zeta W_{1(20)}^{(a\beta\gamma)}] + \overline{J}_{22}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\eta W_{3(02)}^{(a\beta\gamma)}] + \overline{J}_{33}^{(a\beta\gamma)} [W_{1(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{11}^{(in(a\beta\gamma)}) ) \\ \sigma_{22}^{(a\beta\gamma)} &= C_{21}^{(a\beta\gamma)} (\overline{e}_{22} + \overline{J}_{21}^{(a\beta\gamma)} [W_{2(00)}^{(a\beta\gamma)} + 3\zeta W_{2(20)}^{(a\beta\gamma)}] + \overline{J}_{22}^{(a\beta\gamma)} [W_{2(01)}^{(a\beta\gamma)} + 3\eta W_{2(02)}^{(a\beta\gamma)}] + \overline{J}_{23}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{11}^{(in(a\beta\gamma)}) ) \\ \sigma_{33}^{(a\beta\gamma)} &= C_{31}^{(a\beta\gamma)} (\overline{e}_{33} + \overline{J}_{31}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\zeta W_{3(20)}^{(a\beta\gamma)}] + \overline{J}_{32}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\eta W_{3(02)}^{(a\beta\gamma)}] + \overline{J}_{33}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{11}^{(in(\beta\gamma)}) ) \\ \sigma_{33}^{(a\beta\gamma)} &= C_{31}^{(a\beta\gamma)} (\overline{e}_{11} + \overline{J}_{11}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\zeta W_{3(200)}^{(a\beta\gamma)}] + \overline{J}_{22}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\eta W_{3(02)}^{(a\beta\gamma)}] + \overline{J}_{33}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{11}^{(in(\beta\gamma)}) ) \\ \sigma_{33}^{(a\beta\gamma)} (\overline{e}_{22} + \overline{J}_{21}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\zeta W_{3(200)}^{(a\beta\gamma)}] + \overline{J}_{22}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\eta W_{3(02)}^{(a\beta\gamma)}] + \overline{J}_{33}^{(a\beta\gamma)} [W_{3(00)}^{(a\beta\gamma)} + 3\xi W_{3(00)}^{(a\beta\gamma)}] - \overline{e}_{21}^{(in(\beta\gamma)})} ) \\ \sigma_{33}^{(a\beta\gamma)} (\overline{e}_{33} + \overline{J}_{31}^{(a\beta\gamma)} [W_{3(00)}$$

(A.2)

)

 $2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{11}^{(\alpha\beta\gamma)}J_{23}^{(\alpha\beta\gamma)}W_{2(000)}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)}W_{3(000)}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{55}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)}) + 2(c_{21}^{(\alpha\beta\gamma)} + c_{22}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{13}^{(\alpha\beta\gamma)}J_{32}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)}) + 2(c_{23}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}J_{32}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}J_{32}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}J_{32}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{23}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{23}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{23}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{33}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{13}^{(\alpha\beta\gamma)}J_{31}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{11}^{(\alpha\beta\gamma)}J_{13}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{11}^{(\alpha\beta\gamma)}J_{11}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{11}^{(\alpha\beta\gamma)})J_{11}^{(\alpha\beta\gamma)}} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}J_{13}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}J_{12}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)} + 2(c_{13}^{(\alpha\beta\gamma)} + c_{13}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)})J_{12}^{(\alpha\beta\gamma)}$ 

 $\begin{bmatrix} C_{11}^{(\alpha\beta\gamma)} \overline{J}_{11}^{(\alpha\beta\gamma)2} + C_{66} \overline{J}_{21}^{(\alpha\beta\gamma)2} + C_{55} \overline{J}_{31}^{(\alpha\beta\gamma)2} ] (\overline{u}_{1}^{(1(\alpha\beta\gamma)} + \overline{u}_{1}^{(2(\alpha\beta\gamma)}) + (C_{12}^{(\alpha\beta\gamma)} + C_{66}^{(\alpha\beta\gamma)}) \overline{J}_{11}^{(\alpha\beta\gamma)} \overline{J}_{21}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(1(\alpha\beta\gamma)} + \overline{u}_{3}^{(2(\alpha\beta\gamma)}) + (\overline{L}_{11}^{(\alpha\beta\gamma)} + \overline{L}_{12}^{(2(\alpha\beta\gamma)}) + (C_{12}^{(\alpha\beta\gamma)} + \overline{L}_{55}^{(\alpha\beta\gamma)}) \overline{J}_{32}^{(\alpha\beta\gamma)} \overline{J}_{31}^{(\alpha\beta\gamma)} (\overline{u}_{3}^{(1(\alpha\beta\gamma)} + \overline{u}_{3}^{(2(\alpha\beta\gamma)}) + (\overline{L}_{11}^{(\alpha\beta\gamma)} + \overline{L}_{12}^{(\alpha\beta\gamma)}) + (C_{12}^{(\alpha\beta\gamma)} + \overline{L}_{55}^{(\alpha\beta\gamma)} - \overline{L}_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{12}^{(\alpha\beta\gamma)} \overline{J}_{32}^{(\alpha\beta\gamma)} (\overline{u}_{3}^{(\alpha\beta\gamma)} + \overline{u}_{1}^{(4(\alpha\beta\gamma)}) + (C_{12}^{(\alpha\beta\gamma)} + C_{66}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(3(\alpha\beta\gamma)} + \overline{u}_{3}^{(4(\alpha\beta\gamma)}) + (C_{13}^{(\alpha\beta\gamma)} + \overline{u}_{1}^{(6(\alpha\beta\gamma)}) ) + (C_{13}^{(\alpha\beta\gamma)} + \overline{L}_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(5(\alpha\beta\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)}) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(5(\alpha\beta\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)}) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(5(\alpha\beta\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)}) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(5(\alpha\beta\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)}) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(\beta\alpha\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)} ) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{23}^{(\alpha\beta\gamma)} (\overline{u}_{2}^{(\alpha\beta\gamma)} + \overline{u}_{2}^{(6(\alpha\beta\gamma)} ) ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{11}^{(\alpha\beta\gamma)} \overline{J}_{21}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{11}^{(\alpha\beta\gamma)} ) - (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{11}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{10}^{(\alpha\beta\gamma)} ) + (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{12}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} ) - (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} ) - (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{J}_{13}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} \overline{J}_{22}^{(\alpha\beta\gamma)} ) - (C_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)} ) \overline{$ 

(A.3)

$$\begin{split} \tilde{J}_{1}^{(a\beta\gamma)} &= \frac{1}{2} \left( \tilde{J}_{1}^{(a\beta\gamma)} + \tilde{J}_{2}^{(a\beta\gamma)} + \tilde{J}_{12}^{(a\beta\gamma)} + \tilde{J}_{21}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{11}^{(a\beta\gamma)} + \tilde{J}_{11}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{11}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{21}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{21}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{21}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a\beta\gamma)} + \tilde{J}_{22}^{(a$$

$$\begin{split} t_{1}^{p(\alpha\beta\gamma)} &= n_{1}^{p(\alpha\beta\gamma)} C_{11}^{(\alpha\beta\gamma)} (\overline{e}_{11} + \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{1(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{1(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{1(010)}^{(\alpha\beta\gamma)} + 3\eta W_{1(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{13}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] - \varepsilon_{11}^{in(\alpha\beta\gamma)}) + \\ n_{1}^{p(\alpha\beta\gamma)} C_{12}^{(\alpha\beta\gamma)} (\overline{e}_{22} + \overline{J}_{21}^{(\alpha\beta\gamma)} [W_{2(00)}^{(\alpha\beta\gamma)} + 3\zeta W_{2(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{22}^{(\alpha\beta\gamma)} [W_{2(010)}^{(\alpha\beta\gamma)} + 3\eta W_{2(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{23}^{(\alpha\beta\gamma)} [W_{3(001)}^{(\alpha\beta\gamma)} + 3\xi W_{3(001)}^{(\alpha\beta\gamma)}] - \varepsilon_{21}^{in(\alpha\beta\gamma)}) + \\ n_{1}^{p(\alpha\beta\gamma)} C_{13}^{(\alpha\beta\gamma)} (\overline{e}_{33} + \overline{J}_{31}^{(\alpha\beta\gamma)} [W_{3(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{3(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{32}^{(\alpha\beta\gamma)} [W_{3(010)}^{(\alpha\beta\gamma)} + 3\eta W_{3(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{33}^{(\alpha\beta\gamma)} [W_{3(001)}^{(\alpha\beta\gamma)} + 3\xi W_{3(200)}^{(\alpha\beta\gamma)}] - \varepsilon_{23}^{in(\alpha\beta\gamma)}) + \\ 2n_{2}^{p(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\overline{e}_{12} + \frac{1}{2} \{\overline{J}_{21}^{(\alpha\beta\gamma)} [W_{1(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{1(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{22}^{(\alpha\beta\gamma)} [W_{1(010)}^{(\alpha\beta\gamma)} + 3\eta W_{1(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{23}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] - \varepsilon_{21}^{in(\alpha\beta\gamma)}) + \\ \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{2(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{2(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{1(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{13}^{(\alpha\beta\gamma)} [W_{1(010)}^{(\alpha\beta\gamma)} + 3\eta W_{1(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{23}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] + \\ \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{2(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{2(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{2(001)}^{(\alpha\beta\gamma)} + 3\eta W_{1(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{23}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] + \\ \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{2(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{2(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{2(001)}^{(\alpha\beta\gamma)} + 3\eta W_{1(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{33}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] + \\ \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{3(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{3(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{1(00)}^{(\alpha\beta\gamma)} + 3\eta W_{3(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{13}^{(\alpha\beta\gamma)} [W_{1(001)}^{(\alpha\beta\gamma)} + 3\xi W_{1(002)}^{(\alpha\beta\gamma)}] + \\ \overline{J}_{11}^{(\alpha\beta\gamma)} [W_{3(100)}^{(\alpha\beta\gamma)} + 3\zeta W_{3(200)}^{(\alpha\beta\gamma)}] + \overline{J}_{12}^{(\alpha\beta\gamma)} [W_{1(00)}^{(\alpha\beta\gamma)} + 3\eta W_{3(020)}^{(\alpha\beta\gamma)}] + \overline{J}_{13}^{(\alpha\beta\gamma)}$$

(A.5)

(A.6)

$$\begin{split} \bar{\mathbf{A}} &= \bar{\mathbf{F}}\bar{\mathbf{E}}\bar{\mathbf{D}}\bar{\mathbf{C}} \\ \bar{\mathbf{F}} &= [n^{1(\alpha\beta\gamma)}, n^{2(\alpha\beta\gamma)}, n^{3(\alpha\beta\gamma)}, n^{4(\alpha\beta\gamma)}, n^{5(\alpha\beta\gamma)}, n^{6(\alpha\beta\gamma)}]_{diag} \quad \bar{\mathbf{E}} = [C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, C^{(\alpha\beta\gamma)}, d^{\alpha\beta\gamma}]_{diag} \\ \bar{\mathbf{D}} &= [J^{(\alpha\beta\gamma)}, J^{(\alpha\beta\gamma)}, J^{(\alpha\beta\gamma)}, J^{(\alpha\beta\gamma)}, J^{(\alpha\beta\gamma)}, J^{(\alpha\beta\gamma)}]_{diag} \quad \bar{\mathbf{C}} = [A^{1(\alpha\beta\gamma)}, A^{2(\alpha\beta\gamma)}, A^{3(\alpha\beta\gamma)}, A^{4(\alpha\beta\gamma)}, A^{5(\alpha\beta\gamma)}, A^{6(\alpha\beta\gamma)}]_{diag} \end{split}$$

 $0 \quad n_3^{i(\alpha\beta\gamma)} \ n_2^{i(\alpha\beta\gamma)}$ 

where

 $n_1^{i(\alpha\beta\gamma)}$ 

0

0

$$\mathbf{t} = \begin{bmatrix} \overline{t}^{1(\alpha\beta\gamma)} & \overline{t}^{2(\alpha\beta\gamma)} & \overline{t}^{3(\alpha\beta\gamma)} & \overline{t}^{4(\alpha\beta\gamma)} & \overline{t}^{5(\alpha\beta\gamma)} & \overline{t}^{6(\alpha\beta\gamma)} \end{bmatrix}^{T} \\ \overline{t}^{p(\alpha\beta\gamma)} = \begin{bmatrix} \overline{t}_{1}^{p(\alpha\beta\gamma)} & \overline{t}_{2}^{p(\alpha\beta\gamma)} & \overline{t}_{3}^{p(\alpha\beta\gamma)} \end{bmatrix}^{T} \mathbf{N} = \begin{bmatrix} n^{1(\alpha\beta\gamma)} & n^{2(\alpha\beta\gamma)} & n^{3(\alpha\beta\gamma)} & n^{4(\alpha\beta\gamma)} & n^{5(\alpha\beta\gamma)} & n^{6(\alpha\beta\gamma)} \end{bmatrix}^{T} \\ n^{p(\alpha\beta\gamma)} = \begin{bmatrix} n_{1}^{p(\alpha\beta\gamma)} & 0 & 0 & n_{3}^{p(\alpha\beta\gamma)} & n_{2}^{p(\alpha\beta\gamma)} \\ 0 & n_{2}^{p(\alpha\beta\gamma)} & 0 & n_{3}^{p(\alpha\beta\gamma)} & 0 & n_{1}^{p(\alpha\beta\gamma)} \\ 0 & 0 & n_{2}^{p(\alpha\beta\gamma)} & n_{2}^{p(\alpha\beta\gamma)} & n_{1}^{p(\alpha\beta\gamma)} & 0 \end{bmatrix} \\ \overline{\mathbf{\varepsilon}} = \begin{bmatrix} \overline{\varepsilon}_{11} & \overline{\varepsilon}_{22} & \overline{\varepsilon}_{33} & \overline{\varepsilon}_{23} & \overline{\varepsilon}_{13} & \overline{\varepsilon}_{12} \end{bmatrix}^{T} \mathbf{\varepsilon}^{\mathbf{in}} = \begin{bmatrix} \varepsilon_{11}^{in(\alpha\beta\gamma)} & \varepsilon_{22}^{in(\alpha\beta\gamma)} & \varepsilon_{33}^{in(\alpha\beta\gamma)} & \varepsilon_{13}^{in(\alpha\beta\gamma)} & \varepsilon_{12}^{in(\alpha\beta\gamma)} \end{bmatrix}^{T} \\ \mathbf{W} = \begin{bmatrix} W_{i(100)}^{(\alpha\beta\gamma)} & W_{i(001)}^{(\alpha\beta\gamma)} & W_{i(200)}^{(\alpha\beta\gamma)} & W_{i(020)}^{(\alpha\beta\gamma)} & W_{i(020)}^{(\alpha\beta\gamma)} \end{bmatrix}^{T} \end{bmatrix}$$

$$\begin{split} & [C_{55}^{(\alpha\beta\gamma)}\bar{J}_{11}^{(\alpha\beta\gamma)2} + C_{44}^{(\alpha\beta\gamma)}\bar{J}_{21}^{(\alpha\beta\gamma)2} + C_{33}^{(\alpha\beta\gamma)2}\bar{J}_{31}^{(\alpha\beta\gamma)2}](\bar{u}_{1}^{(1(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime2(\alpha\beta\gamma)}) + (C_{31}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)})\bar{J}_{11}^{(\alpha\beta\gamma)}\bar{J}_{31}^{(\alpha\beta\gamma)}(\bar{u}_{1}^{(1(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime2(\alpha\beta\gamma)}) + (C_{32}^{(\alpha\beta\gamma)} + C_{44}^{(\alpha\beta\gamma)})\bar{J}_{22}^{(\alpha\beta\gamma)}\bar{J}_{32}^{(\alpha\beta\gamma)2}](\bar{u}_{3}^{(3(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime4(\alpha\beta\gamma)}) + (C_{55}^{(\alpha\beta\gamma)}\bar{J}_{12}^{(\alpha\beta\gamma)}\bar{J}_{22}^{(\alpha\beta\gamma)}\bar{J}_{32}^{(\alpha\beta\gamma)2}](\bar{u}_{3}^{(3(\alpha\beta\gamma)} + \bar{u}_{3}^{\prime4(\alpha\beta\gamma)}) + (C_{31}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{22}^{(\alpha\beta\gamma)}\bar{J}_{32}^{(\alpha\beta\gamma)2}](\bar{u}_{3}^{(3(\alpha\beta\gamma)} + \bar{u}_{3}^{\prime4(\alpha\beta\gamma)}) + (C_{31}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{32}^{(\alpha\beta\gamma)2}](\bar{u}_{3}^{(3(\alpha\beta\gamma)} + \bar{u}_{3}^{\prime4(\alpha\beta\gamma)}) + (C_{32}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{32}^{(\alpha\beta\gamma)}(\bar{u}_{2}^{\prime3(\alpha\beta\gamma)} + \bar{u}_{2}^{\prime4(\alpha\beta\gamma)}) + (C_{55}^{(\alpha\beta\gamma)}\bar{J}_{13}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{13}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}(\bar{u}_{1}^{\prime5(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime6(\alpha\beta\gamma)}) + (C_{32}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{13}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}(\bar{u}_{1}^{\prime5(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime6(\alpha\beta\gamma)}) + (C_{55}^{(\alpha\beta\gamma)} + C_{55}^{(\alpha\beta\gamma)}\bar{J}_{13}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}(\bar{u}_{1}^{\prime5(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime6(\alpha\beta\gamma)}) + (C_{32}^{(\alpha\beta\gamma)} + C_{44}^{(\alpha\beta\gamma)}\bar{J}_{21}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}(\bar{u}_{1}^{\prime5(\alpha\beta\gamma)} + \bar{u}_{1}^{\prime6(\alpha\beta\gamma)}) + (C_{32}^{(\alpha\beta\gamma)} + C_{44}^{(\alpha\beta\gamma)}\bar{J}_{21}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar{J}_{33}^{(\alpha\beta\gamma)}\bar$$

where

where

$$\mathbf{u} = \begin{bmatrix} \overline{u}^{1(\alpha\beta\gamma)} & \overline{u}^{2(\alpha\beta\gamma)} & \overline{u}^{3(\alpha\beta\gamma)} & \overline{u}^{4(\alpha\beta\gamma)} & \overline{u}^{5(\alpha\beta\gamma)} & \overline{u}^{6(\alpha\beta\gamma)} \end{bmatrix}^{T}$$
$$\overline{u}^{i(\alpha\beta\gamma)} = \begin{bmatrix} \overline{u}_{1}^{ii(\alpha\beta\gamma)} & \overline{u}_{2}^{ii(\alpha\beta\gamma)} & \overline{u}_{3}^{ii(\alpha\beta\gamma)} \end{bmatrix}^{T} \quad \overline{\mathbf{B}} = \begin{bmatrix} P - L\Phi^{-1}\Theta M \end{bmatrix}$$

(A.9)

(A.8)

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{bmatrix} K_{aa} \end{bmatrix}$                | Kah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kaa                                                                                                                                                                                                                               | Kad                                                              | Kaa                                                                                                           | Kaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kaa                                                          | Kah                                                                                               | Kai                                                                     | Kai                                   | $K_{ak}$                                                                                                                                                                                                                                                                              | Kal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kam                                                                                                       | Kan             | Kaa             | Kan             | Kaa      | $K_{ar}$ ] <sup>(c)</sup> | $(\beta\gamma) \left[ \vec{u}_1^{\prime 1} \right]$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------|---------------------------|-----------------------------------------------------|
| $\overline{t}_2^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ha</sub>                                       | K <sub>bb</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $K_{hc}$                                                                                                                                                                                                                          | $K_{bd}$                                                         | Khe                                                                                                           | $K_{hf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{hg}$                                                     | $K_{bh}$                                                                                          | K <sub>bi</sub>                                                         | $K_{hi}$                              | $K_{bk}$                                                                                                                                                                                                                                                                              | $K_{hl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>hm</sub>                                                                                           | K <sub>hn</sub> | $K_{ho}$        | $K_{hn}$        | $K_{ha}$ | $K_{hr}$                  | $\overline{u}_2^{\prime 1}$                         |
| $\overline{t_3}^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ca</sub>                                       | K <sub>ch</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K <sub>cc</sub>                                                                                                                                                                                                                   | K <sub>cd</sub>                                                  | K <sub>ce</sub>                                                                                               | $K_{cf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{co}$                                                     | K <sub>ch</sub>                                                                                   | K <sub>ci</sub>                                                         | K <sub>ci</sub>                       | $K_{ck}$                                                                                                                                                                                                                                                                              | K <sub>cl</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K <sub>cm</sub>                                                                                           | K <sub>cn</sub> | K <sub>co</sub> | $K_{cn}$        | $K_{ca}$ | $K_{cr}$                  | $\overline{u}_{3}^{\prime 1}$                       |
| $\overline{t_1}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>da</sub>                                       | K <sub>db</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $K_{dc}$                                                                                                                                                                                                                          | K <sub>dd</sub>                                                  | K <sub>de</sub>                                                                                               | $K_{df}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{dg}$                                                     | K <sub>dh</sub>                                                                                   | K <sub>di</sub>                                                         | $K_{di}$                              | $K_{dk}$                                                                                                                                                                                                                                                                              | $K_{dl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>dm</sub>                                                                                           | K <sub>dn</sub> | K <sub>do</sub> | $K_{dp}$        | $K_{da}$ | $K_{dr}$                  | $\overline{u}_1^{\prime 2}$                         |
| $\overline{t_2}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ea</sub>                                       | $K_{eb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{ec}$                                                                                                                                                                                                                          | $K_{ed}$                                                         | K <sub>ee</sub>                                                                                               | K <sub>ef</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K <sub>eg</sub>                                              | $K_{eh}$                                                                                          | K <sub>ei</sub>                                                         | K <sub>ej</sub>                       | $K_{ek}$                                                                                                                                                                                                                                                                              | $K_{el}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>em</sub>                                                                                           | K <sub>en</sub> | K <sub>eo</sub> | K <sub>ep</sub> | $K_{eq}$ | K <sub>er</sub>           | $\overline{u}_2^{\prime 2}$                         |
| $\overline{t_3}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K_{fa}$                                              | $K_{fb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{fc}$                                                                                                                                                                                                                          | $K_{fd}$                                                         | $K_{fe}$                                                                                                      | $K_{ff}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{fg}$                                                     | $K_{fh}$                                                                                          | $K_{fi}$                                                                | $K_{fj}$                              | $K_{fk}$                                                                                                                                                                                                                                                                              | $K_{fl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{fm}$                                                                                                  | $K_{fn}$        | $K_{fo}$        | $K_{fp}$        | $K_{fq}$ | $K_{fr}$                  | $\overline{u}_{3}^{\prime 2}$                       |
| $\overline{t_1}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ga</sub>                                       | $K_{gb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{gc}$                                                                                                                                                                                                                          | $K_{gd}$                                                         | K <sub>ge</sub>                                                                                               | K <sub>gf</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $K_{gg}$                                                     | $K_{gh}$                                                                                          | K <sub>gi</sub>                                                         | K <sub>gj</sub>                       | $K_{gk}$                                                                                                                                                                                                                                                                              | $K_{gl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>gm</sub>                                                                                           | $K_{gn}$        | K <sub>go</sub> | $K_{gp}$        | $K_{gq}$ | K <sub>gr</sub>           | $\overline{u}_1^{\prime 3}$                         |
| $\overline{t_2}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ha</sub>                                       | $K_{hb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{hc}$                                                                                                                                                                                                                          | $K_{hd}$                                                         | $K_{he}$                                                                                                      | $K_{hf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{hg}$                                                     | $K_{hh}$                                                                                          | $K_{hi}$                                                                | $K_{hj}$                              | $K_{hk}$                                                                                                                                                                                                                                                                              | $K_{hl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{hm}$                                                                                                  | $K_{hn}$        | $K_{ho}$        | $K_{hp}$        | $K_{hq}$ | $K_{hr}$                  | $\overline{u}_2^{\prime 3}$                         |
| $\overline{t_3}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ia</sub>                                       | $K_{ib}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{ic}$                                                                                                                                                                                                                          | $K_{id}$                                                         | $K_{ie}$                                                                                                      | $K_{if}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{ig}$                                                     | $K_{ih}$                                                                                          | $K_{ii}$                                                                | $K_{ij}$                              | $K_{ik}$                                                                                                                                                                                                                                                                              | $K_{il}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{im}$                                                                                                  | $K_{in}$        | $K_{io}$        | $K_{ip}$        | $K_{iq}$ | K <sub>ir</sub>           | $\overline{u}_3^{\prime 3}$                         |
| $\overline{t_1}^4 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K <sub>ja</sub>                                       | $K_{jb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{jc}$                                                                                                                                                                                                                          | $K_{jd}$                                                         | $K_{je}$                                                                                                      | $K_{jf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{jg}$                                                     | $K_{jh}$                                                                                          | $K_{ji}$                                                                | $K_{jj}$                              | $K_{jk}$                                                                                                                                                                                                                                                                              | $K_{jl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{jm}$                                                                                                  | $K_{jn}$        | $K_{jo}$        | $K_{jp}$        | $K_{jq}$ | K <sub>jr</sub>           | $\overline{u}_1^{\prime 4}$                         |
| $\overline{t}_2^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K_{ka}$                                              | $K_{kb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{kc}$                                                                                                                                                                                                                          | $K_{kd}$                                                         | $K_{ke}$                                                                                                      | $K_{kf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{kg}$                                                     | $K_{kh}$                                                                                          | $K_{ki}$                                                                | $K_{kj}$                              | $K_{kk}$                                                                                                                                                                                                                                                                              | $K_{kl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{km}$                                                                                                  | $K_{kn}$        | $K_{ko}$        | $K_{kp}$        | $K_{kq}$ | K <sub>kr</sub>           | $\overline{u}_2^{\prime 4}$                         |
| $\overline{t}_3^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>la</sub>                                       | $K_{lb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{lc}$                                                                                                                                                                                                                          | $K_{ld}$                                                         | $K_{le}$                                                                                                      | $K_{lf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{lg}$                                                     | $K_{lh}$                                                                                          | $K_{li}$                                                                | $K_{lj}$                              | $K_{lk}$                                                                                                                                                                                                                                                                              | $K_{ll}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{lm}$                                                                                                  | $K_{\ln}$       | $K_{lo}$        | $K_{lp}$        | $K_{lq}$ | K <sub>lr</sub>           | $\overline{u}_{3}^{\prime 4}$                       |
| $\overline{t_1}^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>ma</sub>                                       | $K_{mb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{mc}$                                                                                                                                                                                                                          | $K_{md}$                                                         | $K_{me}$                                                                                                      | $K_{mf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{mg}$                                                     | $K_{mh}$                                                                                          | $K_{mi}$                                                                | $K_{mj}$                              | $K_{mk}$                                                                                                                                                                                                                                                                              | $K_{ml}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{mm}$                                                                                                  | $K_{mn}$        | $K_{mo}$        | $K_{mp}$        | $K_{mq}$ | K <sub>mr</sub>           | $\overline{u}_1^{\prime 5}$                         |
| $\overline{t}_2^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>na</sub>                                       | $K_{nb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{nc}$                                                                                                                                                                                                                          | $K_{nd}$                                                         | $K_{ne}$                                                                                                      | $K_{nf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{ng}$                                                     | $K_{nh}$                                                                                          | $K_{ni}$                                                                | K <sub>nj</sub>                       | $K_{nk}$                                                                                                                                                                                                                                                                              | $K_{nl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{nm}$                                                                                                  | $K_{nn}$        | $K_{no}$        | $K_{np}$        | $K_{nq}$ | $K_{nr}$                  | $\overline{u}_2^{\prime 5}$                         |
| $\overline{t}_3^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K <sub>oa</sub>                                       | $K_{ob}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{oc}$                                                                                                                                                                                                                          | $K_{od}$                                                         | $K_{oe}$                                                                                                      | $K_{of}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{og}$                                                     | $K_{oh}$                                                                                          | $K_{oi}$                                                                | $K_{oj}$                              | $K_{ok}$                                                                                                                                                                                                                                                                              | $K_{ol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{om}$                                                                                                  | $K_{on}$        | $K_{oo}$        | $K_{op}$        | $K_{oq}$ | K <sub>or</sub>           | $\overline{u}_3^{\prime 5}$                         |
| $\overline{t_1}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>pa</sub>                                       | $K_{pb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{pc}$                                                                                                                                                                                                                          | $K_{pd}$                                                         | $K_{pe}$                                                                                                      | $K_{pf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{pg}$                                                     | $K_{ph}$                                                                                          | $K_{pi}$                                                                | $K_{pj}$                              | $K_{pk}$                                                                                                                                                                                                                                                                              | $K_{pl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{pm}$                                                                                                  | $K_{pn}$        | $K_{po}$        | $K_{pp}$        | $K_{pq}$ | K <sub>pr</sub>           | $\overline{u}_1^{\prime 6}$                         |
| $\overline{t_2}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K <sub>qa</sub>                                       | $K_{qb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{qc}$                                                                                                                                                                                                                          | $K_{qd}$                                                         | $K_{qe}$                                                                                                      | $K_{qf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{qg}$                                                     | $K_{qh}$                                                                                          | $K_{qi}$                                                                | $K_{qj}$                              | $K_{qk}$                                                                                                                                                                                                                                                                              | $K_{ql}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{qm}$                                                                                                  | $K_{qn}$        | $K_{qo}$        | $K_{qp}$        | $K_{qq}$ | $K_{qr}$                  | $\overline{u}_{2}^{\prime 6}$                       |
| $\overline{t_3}^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $K_{ra}$                                              | $K_{rb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{rc}$                                                                                                                                                                                                                          | $K_{rd}$                                                         | K <sub>re</sub>                                                                                               | $K_{rf}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $K_{rg}$                                                     | $K_{rh}$                                                                                          | K <sub>ri</sub>                                                         | $K_{rj}$                              | $K_{rk}$                                                                                                                                                                                                                                                                              | $K_{rl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_{rm}$                                                                                                  | $K_{rn}$        | K <sub>ro</sub> | $K_{rp}$        | $K_{rq}$ | $K_{rr}$                  | $\overline{u}_{3}^{\prime 6}$                       |
| $0 n_2^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 n                                                   | $\frac{1}{2}$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $n^1$                                                                                                                                                                                                                             |                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                   |                                                                         |                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                 |                 |                 |          |                           |                                                     |
| $\begin{vmatrix} 0 & 0 \\ n_1^2 & 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $n_3^1$ $n_3^1$ $n_3^1$ $n_3^1$                       | $n_{1}^{1} = n_{1}^{1}$<br>$n_{2}^{2} = n_{1}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} n_1 \\ 0 \\ n_2^2 \end{bmatrix}$                                                                                                                                                                                 |                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                   |                                                                         |                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                 |                 |                 |          |                           |                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n_3^1$ n<br>0 0<br>0 n                               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{vmatrix} n_1 \\ 0 \\ n_2^2 \\ n_1^2 \end{vmatrix} $                                                                                                                                                                      |                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                   |                                                                         |                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                 |                 |                 |          |                           |                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n_3^1$ n<br>0 0<br>0 n<br>$n_3^2$ n                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c} n_1 \\ 0 \\ n_2^2 \\ n_1^2 \\ 0 \end{array} $                                                                                                                                                                |                                                                  |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                                                                   |                                                                         |                                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                 |                 |                 |          |                           |                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c c} n_1 \\ 0 \\ n_2^2 \\ n_1^2 \\ 0 \\ n_2^3 \\ \end{array} $                                                                                                                                                    | [C                                                               | 1 C1                                                                                                          | Cia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                            | 0                                                                                                 | 0 ](                                                                    | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon_{11}$                                                                                                                                                                                                                                      | $in(\alpha\beta\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ']                                                                                                        |                 |                 |                 |          |                           |                                                     |
| $\begin{vmatrix} & & 2 \\ 0 & & 0 \\ n_1^2 & & 0 \\ 0 & & n_2^2 \\ 0 & & 0 \\ n_1^3 & & 0 \\ 0 & & n_2^3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}  n_{1} \\  0 \\  n_{2}^{2} \\  n_{1}^{2} \\  0 \\  n_{2}^{3} \\  n_{1}^{3} \end{array} $                                                                                                                       | $\begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$                       | $_{1} C_{12}$                                                                                                 | $C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0                                                       | 0<br>0                                                                                            | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}^{0}$                              | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon$<br>$\overline{\varepsilon}_{22} - \varepsilon$                                                                                                                                                                                            | $ \lim_{\alpha \to 0} (\alpha \beta \gamma) $ 11 $ \lim_{\alpha \to 0} (\alpha \beta \gamma) $ 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                         |                 |                 |                 |          |                           |                                                     |
| $\begin{vmatrix} & & & 2 \\ 0 & & 0 \\ n_1^2 & 0 \\ 0 & n_2^2 \\ 0 & 0 \\ n_1^3 & 0 \\ 0 & n_2^3 \\ 0 & 0 \\ \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}  n_1 \\  0 \\  n_2^2 \\  n_1^2 \\  0 \\  n_2^3 \\  n_1^3 \\  0 \end{array} $                                                                                                                                   | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$                | $\begin{array}{ccc} & C_{12} \\ 1 & C_{22} \\ 1 & C_{32} \\ 1 & C_{32} \end{array}$                           | $\begin{array}{ccc} & C_{13} \\ c_{2} & C_{23} \\ c_{2} & C_{33} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                                                  | 0<br>0<br>0                                                                                       | $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{0}$                         | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                 |                 |                 |          |                           |                                                     |
| $\begin{vmatrix} & & & 2 \\ 0 & & 0 \\ n_1^2 & 0 \\ 0 & n_2^2 \\ 0 & 0 \\ n_1^3 & 0 \\ 0 & n_2^3 \\ 0 & 0 \\ + & & n_1^4 & 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}  n_{1} \\  0 \\  n_{2}^{2} \\  n_{1}^{2} \\  0 \\  n_{2}^{3} \\  n_{1}^{3} \\  0 \\  n_{2}^{4} \end{array} $                                                                                                   | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \end{bmatrix}$           | $\begin{array}{ccc} & C_{12} \\ 1 & C_{22} \\ 1 & C_{32} \\ 1 & C_{32} \\ 0 \end{array}$                      | $\begin{array}{ccc} & C_{13} \\ c_{2} & C_{23} \\ c_{33} \\ c_{33} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0 \\ 0 \\ 0 \\ C_{44}$                                      | 0<br>0<br>0<br>0                                                                                  | 0  <br>0  <br>0  <br>0                                                  | $(\alpha\beta\gamma)$                 | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $\overline{\varepsilon}_{23} - 2\varepsilon$                                                                                                      | $ \begin{array}{c} in(\alpha\beta\gamma)\\ 11\\ .in(\alpha\beta\gamma)\\ 22\\ .in(\alpha\beta\gamma)\\ 33\\ 2\varepsilon_{23}^{in(\alpha\beta\gamma)} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | γ) -                                                                                                      |                 |                 |                 |          |                           |                                                     |
| $+ \begin{array}{ c c c c c } & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}  n_{1} \\  0 \\  n_{2}^{2} \\  n_{1}^{2} \\  0 \\  n_{2}^{3} \\  n_{1}^{3} \\  0 \\  n_{2}^{4} \\  n_{1}^{4} \end{array} $                                                                                     | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \end{bmatrix}$      | $\begin{array}{cccc} & C_{12} \\ 1 & C_{22} \\ 1 & C_{32} \\ 0 \\ 0 \end{array}$                              | $\begin{array}{c} & C_{13} \\ c & C_{23} \\ c & C_{33} \\ 0 \\ 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \end{array}$      | 0<br>0<br>0<br>0<br><i>C</i> <sub>55</sub>                                                        | 0 7<br>0 0<br>0 0<br>0 0                                                | <i>αβγ</i> )                          | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $2\overline{\varepsilon}_{23} - 2$ $2\overline{\varepsilon}_{13} - 2$                                                                             | $\sum_{i=1}^{i=1} \frac{\sin(\alpha\beta\gamma)}{22}$ $\sum_{i=1}^{i=1} \frac{\sin(\alpha\beta\gamma)}{22}$ $\sum_{i=1}^{i=1} \frac{\cos(\alpha\beta)}{22}$ $\sum_{i=1}^{i=1} \frac{\cos(\alpha\beta)}{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | γ)<br>γ)                                                                                                  |                 |                 |                 |          |                           |                                                     |
| $\begin{array}{cccc} & & & & & & \\ & 0 & & & & \\ & n_1^2 & 0 & & \\ & 0 & n_2^2 & & \\ & 0 & 0 & & \\ & n_1^3 & 0 & & \\ & 0 & n_2^3 & & \\ & 0 & 0 & & \\ & + & & & \\ & n_1^4 & 0 & & \\ & 0 & n_2^4 & & \\ & 0 & 0 & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c}  n_1 \\  0 \\  n_2^2 \\  n_1^2 \\  0 \\  n_2^3 \\  n_1^3 \\  0 \\  n_2^4 \\  n_1^4 \\  0 \end{array} $                                                                                                         | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | $\begin{array}{cccc} & C_{12} & C_{12} \\ 1 & C_{22} \\ 1 & C_{32} \\ 0 & 0 \\ 0 & 0 \end{array}$             | $\begin{array}{cccc} & C_{13} \\ c_{2} & C_{23} \\ c_{33} \\ c$ | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$ | $     \begin{array}{c}       0 \\       0 \\       0 \\       C_{55} \\       0     \end{array} $ | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}^{0}$     | <i>αβγ</i> )                          | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $2\overline{\varepsilon}_{23} - 2$ $2\overline{\varepsilon}_{13} - 2$ $2\overline{\varepsilon}_{12} - 2$                                          | $\sum_{i=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta)$ $\sum_{j=1}^{i} (\alpha \beta)$ $\sum_{j=1}^{i} (\alpha \beta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y)<br>y)<br>y)                                                                                            |                 |                 |                 |          |                           |                                                     |
| $\begin{array}{ccccc} & & & & & & \\ & & & & & & \\ & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c} \begin{array}{c} & & & \\ & & \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c}  n_1 \\  0 \\  n_2^2 \\  n_1^2 \\  0 \\  n_2^3 \\  n_1^3 \\  0 \\  n_2^4 \\  n_1^4 \\  0 \\  n_2^5 \\  \end{array} $                                                                                           | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | $egin{array}{cccc} & & C_{12} \\ & & C_{22} \\ & & C_{32} \\ & & 0 \\ & & 0 \\ & & 0 \end{array}$             | $\begin{array}{cccc} & C_{13} \\ c_{2} & C_{23} \\ c_{33} & 0 \\ 0 \\ 0 \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ C_{55} \\ 0 \end{array}$                                    | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}$         | $\left( \alpha \beta \gamma \right) $ | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $2\overline{\varepsilon}_{23} - 2$ $2\overline{\varepsilon}_{13} - 2$ $2\overline{\varepsilon}_{12} - 2$                                          | $\sum_{i=1}^{in(\alpha\beta\gamma)} \sum_{j=1}^{in(\alpha\beta\gamma)} \sum_{j=1}^{in(\alpha\beta\gamma)} \sum_{j=1}^{in(\alpha\beta\gamma)} \sum_{j=1}^{in(\alpha\beta\gamma)} \sum_{j=1}^{in(\alpha\beta)} \sum_{j=1}^{in(\alpha\beta)}$ | (<br>)<br>(<br>)<br>(<br>)<br>(<br>)                                                                      |                 |                 |                 |          |                           |                                                     |
| $\begin{array}{ccccc} & & & & & & \\ & 0 & & & & & \\ & n_1^2 & 0 & & & \\ & 0 & n_2^2 & & & \\ & 0 & 0 & & & \\ & n_1^3 & 0 & & & \\ & 0 & n_2^3 & & & \\ & 0 & 0 & & & \\ & n_1^4 & 0 & & & \\ & 0 & n_2^4 & & & \\ & 0 & 0 & & & \\ & n_1^5 & 0 & & \\ & 0 & n_2^5 & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c} \begin{array}{c} & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 3 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 1 & & & \\ 3 & & & \\ 3 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 &$                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} n_{1} \\ 0 \\ n_{2}^{2} \\ n_{1}^{2} \\ 0 \\ n_{2}^{3} \\ n_{1}^{3} \\ 0 \\ n_{2}^{3} \\ n_{1}^{3} \\ 0 \\ n_{2}^{4} \\ n_{1}^{4} \\ 0 \\ n_{2}^{5} \\ n_{1}^{5} \\ \end{array}$                                | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \end{bmatrix}$      | $egin{array}{cccc} & & & C_{12} \\ & & & C_{22} \\ & & & C_{32} \\ & & & 0 \\ & & & 0 \\ & & & 0 \end{array}$ | $\begin{array}{cccc} & C_{13} \\ c_{2} & C_{23} \\ c_{2} & C_{33} \\ c_{3} & 0 \\ 0 \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $egin{array}{c} 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$      | $     \begin{array}{c}       0 \\       0 \\       0 \\       C_{55} \\       0     \end{array} $ | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}^{-1}$    | <i>αβγ</i> )                          | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $2\overline{\varepsilon}_{23} - 2$ $2\overline{\varepsilon}_{13} - 2$ $2\overline{\varepsilon}_{12} - 2$                                          | $\lim_{z \to 1} (\alpha \beta \gamma)$ $\lim_{z \to 1} (\alpha \beta \gamma)$ $\lim_{z \to 1} (\alpha \beta \gamma)$ $\lim_{z \to 2} (\alpha \beta)$ $\lim_{z \to 1} (\alpha \beta)$ $\lim_{z \to 1} (\alpha \beta)$ $\lim_{z \to 1} (\alpha \beta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (<br>)<br>(<br>)<br>(<br>)<br>(<br>)<br>(<br>)                                                            |                 |                 |                 |          |                           |                                                     |
| $\begin{array}{ccccc} & & & & & & \\ & 0 & & & & \\ & n_1^2 & 0 & & \\ & 0 & n_2^2 & & \\ & 0 & 0 & & \\ & n_1^3 & 0 & & \\ & 0 & n_2^3 & & \\ & 0 & 0 & & \\ & n_1^4 & 0 & & \\ & 0 & n_2^4 & & \\ & 0 & 0 & & \\ & n_1^5 & 0 & & \\ & 0 & n_2^5 & & \\ & 0 & 0 & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c} \begin{array}{c} & & & \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c}  n_{1} \\  0 \\  n_{2}^{2} \\  n_{1}^{2} \\  0 \\  n_{2}^{3} \\  n_{1}^{3} \\  0 \\  n_{2}^{4} \\  n_{1}^{4} \\  0 \\  n_{2}^{5} \\  n_{1}^{5} \\  0 \\ \end{array} $                                          | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | $egin{array}{cccc} & & C_{12} \\ & & C_{22} \\ & & C_{32} \\ & & 0 \\ & & 0 \\ & & 0 \end{array}$             | $\begin{array}{cccc} & C_{13} \\ c_{2} & C_{23} \\ c_{33} & 0 \\ 0 \\ 0 \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{55} \\ 0 \end{array}$                                           | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}$         | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $\overline{\varepsilon}_{23} - 2$ $\overline{\varepsilon}_{13} - 2$ $\overline{\varepsilon}_{12} - 2$                                             | $\sum_{i=1}^{i=1} \frac{\sin(\alpha\beta\gamma)}{22}$ $\sum_{i=1}^{i=1} \frac{\sin(\alpha\beta\gamma)}{23}$ $\sum_{i=1}^{i=1} \frac{\cos(\alpha\beta)}{22}$ $\sum_{i=1}^{i=1} \frac{\cos(\alpha\beta)}{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Y)<br>(Y)<br>(Y)                                                                                         |                 |                 |                 |          |                           |                                                     |
| $\begin{vmatrix} & & & 2 \\ 0 & & 0 \\ n_1^2 & 0 \\ 0 & n_2^2 \\ 0 & 0 \\ n_1^3 & 0 \\ 0 & n_2^3 \\ 0 & 0 \\ n_1^4 & 0 \\ 0 & n_2^4 \\ 0 & 0 \\ n_1^5 & 0 \\ 0 & n_2^5 \\ 0 & 0 \\ n_1^6 & 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c} \begin{array}{c} & & & \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c}  n_1 \\  0 \\  n_2^2 \\  n_1^2 \\  0 \\  n_2^3 \\  n_1^3 \\  0 \\  n_2^4 \\  n_1^4 \\  0 \\  n_2^5 \\  n_1^5 \\  0 \\  n_2^6 \\ \end{array} $                                                                  | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \end{bmatrix}$      | $egin{array}{cccc} & & & C_{12} \\ & & & C_{22} \\ & & & C_{32} \\ & & & 0 \\ & & & 0 \\ & & & 0 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $egin{array}{c} 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$      | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{55} \\ 0 \end{array}$                                           | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}$         | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $2\overline{\varepsilon}_{23} - 2$ $2\overline{\varepsilon}_{13} - 2$ $2\overline{\varepsilon}_{12} - 2$                                          | $\sum_{i=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $2 \varepsilon_{23}$ $2 \varepsilon_{13}$ $2 \varepsilon_{12}^{in} (\alpha \beta)$ $2 \varepsilon_{12}^{in} (\alpha \beta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y)       y)       y)       y)       y)                                                                    |                 |                 |                 |          |                           |                                                     |
| $\begin{array}{ccccccccc} & & & & & & & \\ & 0 & & & & & & \\ & n_1^2 & 0 & & & & \\ & 0 & n_2^2 & & & & \\ & 0 & 0 & & & & \\ & n_1^3 & 0 & & & & \\ & 0 & n_2^3 & & & & \\ & 0 & 0 & & & & \\ & n_1^4 & 0 & & & & \\ & 0 & n_2^5 & & & & \\ & 0 & 0 & & & & \\ & n_1^5 & 0 & & & \\ & 0 & n_2^5 & & & \\ & 0 & 0 & & & \\ & n_1^6 & 0 & & \\ & 0 & n_2^6 & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ | $\begin{array}{c} n_{1} \\ 0 \\ n_{2}^{2} \\ n_{1}^{2} \\ 0 \\ n_{2}^{3} \\ n_{1}^{3} \\ 0 \\ n_{2}^{3} \\ n_{1}^{3} \\ 0 \\ n_{2}^{4} \\ n_{1}^{4} \\ 0 \\ n_{2}^{5} \\ n_{1}^{5} \\ 0 \\ n_{1}^{6} \\ n_{1}^{6} \\ \end{array}$ | $\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | $egin{array}{cccc} & & C_{12} \\ & & C_{22} \\ & & C_{32} \\ & & 0 \\ & & 0 \\ & & 0 \end{array}$             | $\begin{array}{cccc} & C_{13} \\ c_{2} & C_{23} \\ c_{33} & 0 \\ 0 & 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $egin{array}{c} 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$      | $egin{array}{c} 0 \\ 0 \\ 0 \\ C_{55} \\ 0 \end{array}$                                           | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{66} \end{bmatrix}^{\circ}$ | αβγ)                                  | $\overline{\varepsilon}_{11} - \varepsilon$ $\overline{\varepsilon}_{22} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $\overline{\varepsilon}_{33} - \varepsilon$ $\overline{\varepsilon}_{23} - 2$ $\overline{\varepsilon}_{13} - 2$ $\overline{\varepsilon}_{12} - 2$ | $\sum_{i=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $\sum_{j=1}^{i} (\alpha \beta \gamma)$ $2\epsilon_{13}^{i} (\alpha \beta \gamma)$ $2\epsilon_{13}^{i} (\alpha \beta \gamma)$ $2\epsilon_{12}^{in} (\alpha \beta \gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&gt; &gt; &gt;</pre> |                 |                 |                 |          |                           |                                                     |

(A.11)

 ${}^{\tt Page}22$ 

$$\begin{split} & K_{gb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha\beta\gamma)} + K_{ga}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{jb}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(1(\alpha,\beta+1,\gamma)} + K_{ja}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta+1,\gamma)} + K_{gd}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha\beta\gamma)} + K_{gc}^{(\alpha\beta\gamma)} \\ & \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{jd}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(1(\alpha,\beta+1,\gamma)} + K_{jc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta+1,\gamma)} + K_{gf}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(1(\alpha\beta\gamma)} + K_{ge}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(1(\alpha+1,\beta,\gamma)} + K_{jf}^{(\alpha,\beta+1,\gamma)} \\ & \hat{u}_{3}^{(1(\alpha,\beta+1,\gamma)} + K_{je}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{(1(\alpha+1,\beta+1,\gamma)} + K_{gh}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(2(\alpha\beta\gamma)} + (K_{gg}^{(\alpha\beta\gamma)} + K_{jh}^{(\alpha,\beta+1,\gamma)}) \hat{u}_{1}^{(2(\alpha,\beta+1,\gamma)} + K_{jg}^{(\alpha,\beta+1,\gamma)} \\ & \hat{u}_{1}^{(2(\alpha,\beta+2,\gamma)} + K_{gj}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(2(\alpha\beta\gamma)} + (K_{gi}^{(\alpha\beta\gamma+1,\gamma)}) \hat{u}_{3}^{(2(\alpha,\beta+1,\gamma)}) \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma)} + K_{jn}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{(2(\alpha,\beta+1,\gamma)} + K_{gn}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{(2(\alpha,\beta+1,\gamma)} + K_{jn}^{(\alpha,\beta+1,\gamma)} \\ & (K_{gk}^{(\alpha\beta\gamma)} + K_{jl}^{(\alpha,\beta+1,\gamma)}) \hat{u}_{1}^{(3(\alpha,\beta+1,\gamma)} + K_{gp}^{(\alpha,\beta\gamma+1,\gamma)} \hat{u}_{1}^{(3(\alpha\beta\gamma)} + K_{gp}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(3(\alpha,\beta,\gamma+1)} + K_{jn}^{(\alpha,\beta+1,\gamma)} + K_{jn}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(3(\alpha,\beta+1,\gamma)} + K_{jn}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}$$

$$\begin{split} & K_{cb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha\beta\gamma)} + (K_{ca}^{(\alpha\beta\gamma)} + K_{fb}^{(\alpha+1,\beta,\gamma)}) \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{fa}^{(\alpha+1,\beta,\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cd}^{(\alpha\beta\gamma)} \hat{u}_{2}^{1(\alpha\beta\gamma)} + (K_{cc}^{(\alpha\beta\gamma)} + K_{fd}^{(\alpha+1,\beta,\gamma)}) \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{fc}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{fc}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{1(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha+1,\beta,\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta+1,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta+1,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{2(\alpha+1,\beta+1,\gamma)} + K_{cf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{2(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha+1,\beta,\gamma)} \hat{u}_{1}^{3(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha+1,\beta,\gamma)} \hat{u}_{1}^{3(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha\beta\gamma)} \hat{u}_{1}^{3(\alpha+1,\beta,\gamma)} + K_{ff}^{(\alpha$$

$$\begin{split} & K_{bb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha\beta\gamma)} + (K_{ba}^{(\alpha\beta\gamma)} + K_{eb}^{(\alpha+1,\beta,\gamma)}) \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{ea}^{(\alpha+1,\beta,\gamma)} \hat{u}_{1}^{1(\alpha+2,\beta,\gamma)} + K_{bd}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha\beta\gamma)} + (K_{bc}^{(\alpha\beta\gamma)} + K_{ed}^{(\alpha+1,\beta,\gamma)}) \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(1(\alpha+2,\beta,\gamma)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(1(\alpha\beta\gamma)} + (K_{bc}^{(\alpha\beta\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)}) \hat{u}_{3}^{(1(\alpha+1,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(1(\alpha+2,\beta,\gamma)} + K_{ed}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(1(\alpha+2,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(1(\alpha+2,\beta,\gamma)} + K_{ec}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(1(\alpha+2,\beta,\gamma)} + K_{eb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(2(\alpha+1,\beta+1,\gamma)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(2(\alpha+1,\beta+1,\gamma)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(2(\alpha,\beta)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(2(\alpha,\beta)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha+1,\beta+1,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha+1,\beta+1,\gamma)} + K_{ef}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(2(\alpha,\beta)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(2(\alpha,\beta)} + K_{bf}^{(\alpha\beta\gamma)} \hat{u}_{3}^{(2(\alpha,\beta+1,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\beta)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\beta)} + K_{ef}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(3(\alpha,\beta,\gamma+1)} + K_{ef}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(3(\alpha,\beta,\gamma+1)} + K_{ef}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(3(\alpha,\beta,\gamma+1)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(3(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(3(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(3(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{2}^{(3(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(3(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{(\alpha+1,\beta,\gamma)} + K_{ef}^{(\alpha+1,\beta$$

$$\begin{split} & K_{ad}^{(\alpha\beta\gamma)}\hat{u}_{1}^{(1(\alpha\beta\gamma)} + (K_{aa}^{(\alpha\beta\gamma)} + K_{dd}^{(\alpha+1,\beta,\gamma)})\hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{da}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(1(\alpha+2,\beta,\gamma)} + K_{ae}^{(\alpha\beta\gamma)}\hat{u}_{2}^{(1(\alpha\beta\gamma)} + (K_{ab}^{(\alpha\beta\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)})\hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)})\hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{2}^{(1(\alpha+2,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{2}^{(1(\alpha+2,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{2}^{(1(\alpha+2,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(1(\alpha+2,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(2(\alpha+1,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(3(\alpha+1,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(\alpha+1,\beta,\gamma)} + K_{de}^{(\alpha+1,\beta,\gamma)}\hat{u}_{1}^{(\alpha+1,\beta,$$

(B.1)

Appendix B

$$\begin{split} & K_{nb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha\beta\gamma)} + K_{na}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{qb}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(1(\alpha,\beta,\gamma+1)} + K_{qa}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma+1)} + K_{nd}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha\beta\gamma)} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} + K_{nc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma))} \hat{u}_{2}^{(1(\alpha+1,$$

 $K_{ib}^{(\alpha\beta\gamma)}\hat{u}_{1}^{\prime1(\alpha\beta\gamma)} + K_{ia}^{(\alpha\beta\gamma)}\hat{u}_{1}^{\prime1(\alpha+1,\beta,\gamma)} + K_{lb}^{(\alpha,\beta+1,\gamma)}\hat{u}_{1}^{\prime1(\alpha,\beta+1,\gamma)} + K_{la}^{(\alpha,\beta+1,\gamma)}\hat{u}_{1}^{\prime1(\alpha+1,\beta+1,\gamma)} + K_{id}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime1(\alpha\beta\gamma)} + K_{ic}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime1(\alpha\beta\gamma)} + K_{ic}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime1($  $\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{ld}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime l(\alpha,\beta+1,\gamma)} + K_{lc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime l(\alpha+1,\beta+1,\gamma)} + K_{if}^{(\alpha\beta\gamma)} \hat{u}_{3}^{\prime l(\alpha\beta\gamma)} + K_{ie}^{(\alpha\beta\gamma)} \hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} + K_{lf}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{lf}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} + K_{lf}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} \hat{u}_{3}^{\prime l(\alpha+1$  $\hat{u}_{3}^{\prime l(\alpha,\beta+1,\gamma)} + K_{le}^{(\alpha,\beta+1,\gamma)} \hat{u}_{3}^{\prime l(\alpha+1,\beta+1,\gamma)} + K_{lh}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 2(\alpha\beta\gamma)} + (K_{lg}^{(\alpha\beta\gamma)} + K_{lh}^{(\alpha,\beta+1,\gamma)}) \hat{u}_{1}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{lg}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{\prime 2(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{\prime 2(\alpha$  $\hat{u}_{1}^{\prime 2(\alpha,\beta+2,\gamma)} + K_{ij}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 2(\alpha\beta\gamma)} + (K_{ii}^{(\alpha\beta\gamma)} + K_{lj}^{(\alpha,\beta+1,\gamma)})\hat{u}_{2}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{li}^{(\alpha,\beta+1,\gamma)}\hat{u}_{2}^{\prime 2(\alpha,\beta+2,\gamma)} + K_{il}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime 2(\alpha\beta\gamma)} + K_{$  $(K_{ik}^{(\alpha\beta\gamma)} + K_{ll}^{(\alpha,\beta+1,\gamma)})\hat{u}_{3}^{2(\alpha,\beta+1,\gamma)} + K_{lk}^{(\alpha,\beta+1,\gamma)}\hat{u}_{3}^{\prime 2(\alpha,\beta+2,\gamma)} + K_{in}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 3(\alpha\beta\gamma)} + K_{im}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 3(\alpha,\beta,\gamma+1)} + K_{ln}^{(\alpha,\beta+1,\gamma)}\hat{u}_{3}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{ln}^{(\alpha,\beta+1,$ (B.6)  $\hat{u}_{2}^{\prime 3(\alpha,\beta+1,\gamma)} + K_{lm}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime 3(\alpha,\beta+1,\gamma+1)} + K_{lp}^{(\alpha\beta\gamma)} \hat{u}_{2}^{\prime 3(\alpha\beta\gamma)} + K_{lo}^{(\alpha\beta\gamma)} \hat{u}_{2}^{\prime 3(\alpha,\beta,\gamma+1)} + K_{lp}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime 3(\alpha,\beta+1,\gamma)} + K_{lo}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{\prime 3(\alpha,\beta+1,\gamma)} + K_{$  $\hat{u}_{2}^{\prime 3(\alpha,\beta+1,\gamma+1)} + K_{lr}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime 3(\alpha\beta\gamma)} + K_{lq}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime 3(\alpha,\beta,\gamma+1)} + K_{lr}^{(\alpha,\beta+1,\gamma)}\hat{u}_{3}^{\prime 3(\alpha,\beta+1,\gamma)} + K_{lq}^{(\alpha,\beta+1,\gamma)}\hat{u}_{3}^{\prime 3(\alpha,\beta+1,\gamma+1)} = n_{3}^{3(\alpha,\beta+1,\gamma+1)} + n_{3}^{(\alpha,\beta+1,\gamma)}\hat{u}_{3}^{\prime 3(\alpha,\beta+1,\gamma)} + n_{3}^{(\alpha,\beta+1,\gamma)}\hat{u}$  $[C_{31}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{11}-\overline{\varepsilon}_{11}^{in(\alpha,\beta+1,\gamma)})+C_{32}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{22}-\overline{\varepsilon}_{22}^{in(\alpha,\beta+1,\gamma)})+C_{33}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{33}-\overline{\varepsilon}_{33}^{in(\alpha,\beta+1,\gamma)})]+2n_2^{3(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{22}-\overline{\varepsilon}_{22}^{in(\alpha,\beta+1,\gamma)})+C_{33}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{33}-\overline{\varepsilon}_{33}^{in(\alpha,\beta+1,\gamma)})]$  $C_{44}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{23}-\overline{\varepsilon}_{23}^{in(\alpha,\beta+1,\gamma)})+2n_1^{3(\alpha,\beta+1,\gamma)}C_{55}^{(\alpha,\beta+1,\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha,\beta+1,\gamma)})+n_3^{4(\alpha\beta\gamma)}[C_{31}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{11}-\overline{\varepsilon}_{11}^{in(\alpha\beta\gamma)})+C_{32}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+2n_1^{3(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta\gamma)}(\overline{\varepsilon}_{13}-\overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)})+n_3^{4(\alpha\beta$  $(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)}) + C_{33}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{33} - \overline{\varepsilon}_{33}^{in(\alpha\beta\gamma)})] + 2n_2^{4(\alpha\beta\gamma)}C_{44}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{23} - \overline{\varepsilon}_{23}^{in(\alpha\beta\gamma)}) + 2n_1^{4(\alpha\beta\gamma)}C_{55}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{13} - \overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)}))$  $K_{mb}^{(\alpha\beta\gamma)}\hat{u}_{1}^{(1(\alpha\beta\gamma)} + K_{ma}^{(\alpha\beta\gamma)}\hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{pb}^{(\alpha,\beta,\gamma+1)}\hat{u}_{1}^{\prime (1(\alpha,\beta,\gamma+1)} + K_{pa}^{(\alpha,\beta,\gamma+1)}\hat{u}_{1}^{\prime (1(\alpha+1,\beta,\gamma+1)} + K_{md}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime (1(\alpha\beta\gamma)} + K_{mc}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime (1(\alpha\beta\gamma))} + K_{mc}^{(\alpha\beta\gamma)}\hat{u$  $\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{pd}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime l(\alpha,\beta,\gamma+1)} + K_{pc}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma+1)} + K_{mf}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime l(\alpha\beta\gamma)} + K_{me}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{me}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime l(\alpha+1,\beta,\gamma)} + K_{mf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma)} + K_{pf}^{(\alpha,\beta,\gamma)}\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma)} + K_{p$  $\hat{u}_{3}^{\prime l(\alpha,\beta,\gamma+1)} + K_{pe}^{(\alpha,\beta,\gamma+1)} \hat{u}_{3}^{\prime l(\alpha+1,\beta,\gamma+1)} + K_{mh}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 2(\alpha\beta\gamma)} + K_{mg}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{ph}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+1)} + K_{pg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+1)} + K_{pg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime 2(\alpha,\beta,\gamma+$  $\hat{u}_{1}^{\prime 2(\alpha,\beta+1,\gamma+1)} + K_{mj}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 2(\alpha\beta\gamma)} + K_{mi}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{pj}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime 2(\alpha,\beta,\gamma+1)} + K_{pi}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime 2(\alpha,\beta+1,\gamma+1)} + K_{mi}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime 2(\alpha,\beta+1,\gamma+1)} + K_$  $\hat{u}_{3}^{\prime 2(\alpha\beta\gamma)} + K_{mk}^{(\alpha\beta\gamma)} \hat{u}_{3}^{\prime 2(\alpha,\beta+1,\gamma)} + K_{pl}^{(\alpha,\beta,\gamma+1)} \hat{u}_{3}^{\prime 2(\alpha,\beta,\gamma+1)} + K_{pk}^{(\alpha,\beta,\gamma+1)} \hat{u}_{3}^{\prime 2(\alpha,\beta+1,\gamma+1)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} + (K_{mn}^{(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} + K_{mn}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3(\alpha\beta\gamma)} \hat{u}_{1}^{\prime 3($ (B.7)  $K_{pn}^{(\alpha,\beta,\gamma+1)}\hat{u}_{1}^{\prime3(\alpha,\beta,\gamma+1)} + K_{pm}^{(\alpha,\beta,\gamma+1)}\hat{u}_{1}^{\prime3(\alpha,\beta,\gamma+2)} + K_{mn}^{(\alpha\beta\gamma)}\hat{u}_{2}^{\prime3(\alpha\beta\gamma)} + (K_{mo}^{(\alpha\beta\gamma)} + K_{pn}^{(\alpha,\beta,\gamma+1)})\hat{u}_{2}^{\prime3(\alpha,\beta,\gamma+1)} + K_{po}^{(\alpha,\beta,\gamma+1)}\hat{u}_{2}^{\prime3(\alpha,\beta,\gamma+1)} + K_{po}^{(\alpha,\beta$  $\hat{u}_{2}^{\prime 3(\alpha,\beta,\gamma+2)} + K_{mr}^{(\alpha\beta\gamma)}\hat{u}_{3}^{\prime 3(\alpha\beta\gamma)} + (K_{mq}^{(\alpha\beta\gamma)} + K_{pr}^{(\alpha,\beta,\gamma+1)})\hat{u}_{3}^{\prime 3(\alpha,\beta,\gamma+1)} + K_{pq}^{(\alpha,\beta,\gamma+1)}\hat{u}_{3}^{\prime 3(\alpha,\beta,\gamma+2)} = n_{1}^{5(\alpha,\beta,\gamma+1)}[C_{11}^{(\alpha,\beta,\gamma+1)}] = n_{1}^{5(\alpha,\beta,\gamma+1)}[C_{11}^{(\alpha,$  $(\overline{\varepsilon}_{11} - \overline{\varepsilon}_{11}^{in(\alpha,\beta,\gamma+1)}) + C_{12}^{(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha,\beta,\gamma+1)}) + C_{13}^{(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{33} - \overline{\varepsilon}_{33}^{in(\alpha,\beta,\gamma+1)})] + 2n_{3}^{5(\alpha,\beta,\gamma+1)}C_{55}^{(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{13} - \overline{\varepsilon}_{13}^{in(\alpha,\beta,\gamma+1)}) + 2n_{3}^{5(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{13} - \overline{\varepsilon}_{13}^{in(\alpha,\beta,\gamma+1)})] + 2n_{3}^{5(\alpha,\beta,\gamma+1)}C_{55}^{(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{13} - \overline{\varepsilon}_{13}^{in(\alpha,\beta,\gamma+1)})] + 2n_{3}^{5(\alpha,\beta,\gamma+1)}C_{55}^{(\alpha,\beta,\gamma+$  $-\overline{\varepsilon}_{13}^{in(\alpha,\beta,\gamma+1)}) + 2n_2^{5(\alpha,\beta,\gamma+1)}C_{66}^{(\alpha,\beta,\gamma+1)}(\overline{\varepsilon}_{12} - \overline{\varepsilon}_{12}^{in(\alpha,\beta,\gamma+1)}) + n_1^{6(\alpha\beta\gamma)}[C_{11}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{11} - \overline{\varepsilon}_{11}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{12}^{in(\alpha\beta\gamma)})] + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{12}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{12}^{in(\alpha\beta\gamma)})] + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)})] + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)})] + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22} - \overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{22}$  $\overline{\varepsilon}_{22}^{in(\alpha\beta\gamma)}) + C_{13}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{33} - \overline{\varepsilon}_{33}^{in(\alpha\beta\gamma)})] + 2n_3^{6(\alpha\beta\gamma)}C_{55}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{13} - \overline{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_2^{6(\alpha\beta\gamma)}C_{66}^{(\alpha\beta\gamma)}(\overline{\varepsilon}_{12} - \overline{\varepsilon}_{12}^{in(\alpha\beta\gamma)})$ 

$$\begin{split} & K_{hb}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha\beta\gamma)} + K_{ha}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{kb}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(1(\alpha,\beta+1,\gamma)} + K_{ka}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta+1,\gamma)} + K_{ka}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta+1,\gamma)} + K_{ka}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(1(\alpha+1,\beta,\gamma)} + K_{hc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha\beta\gamma)} + K_{hc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(1(\alpha+1,\beta,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(2(\alpha\beta\gamma)} + K_{hc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{(2(\alpha\beta\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} \hat{u}_{2}^{(\alpha,\beta+1,\gamma)} + K_{hc}^{(\alpha,\beta+1,\gamma)} \hat{u}$$

 $\begin{aligned} \hat{u}_{1}^{3(\alpha,\beta+1,\gamma+1)} + K_{gr}^{(\alpha\beta\gamma)} \hat{u}_{1}^{3(\alpha\beta\gamma)} + K_{gq}^{(\alpha\beta\gamma)} \hat{u}_{1}^{3(\alpha,\beta,\gamma+1)} + K_{jr}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{(3(\alpha,\beta+1,\gamma))} + K_{jq}^{(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{3(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{3(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{3(\alpha,\beta+1,\gamma)} \hat{u}_{1}^{3(\alpha,\beta+1,\gamma)} \\ & \left[ C_{11}^{(\alpha,\beta+1,\gamma)} (\bar{\varepsilon}_{11} - \bar{\varepsilon}_{11}^{in(\alpha,\beta+1,\gamma)}) + C_{12}^{(\alpha,\beta+1,\gamma)} (\bar{\varepsilon}_{22} - \bar{\varepsilon}_{22}^{in(\alpha,\beta+1,\gamma)}) + C_{13}^{(\alpha,\beta+1,\gamma)} (\bar{\varepsilon}_{33} - \bar{\varepsilon}_{33}^{in(\alpha,\beta+1,\gamma)}) \right] + 2n_{3}^{3(\alpha,\beta+1,\gamma)} \\ & C_{55}^{(\alpha,\beta+1,\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha,\beta+1,\gamma)}) + 2n_{2}^{3(\alpha,\beta+1,\gamma)} C_{66}^{(\alpha,\beta+1,\gamma)} (\bar{\varepsilon}_{12} - \bar{\varepsilon}_{11}^{in(\alpha,\beta+1,\gamma)}) + n_{1}^{4(\alpha\beta\gamma)} [C_{11}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{11} - \bar{\varepsilon}_{11}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{22} - \bar{\varepsilon}_{11}^{in(\alpha\beta\gamma)}) + 2n_{3}^{4(\alpha\beta\gamma)} (\bar{\varepsilon}_{33} - \bar{\varepsilon}_{33}^{in(\alpha\beta\gamma)}) \right] + 2n_{3}^{4(\alpha\beta\gamma)} C_{55}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_{2}^{4(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{12} - \bar{\varepsilon}_{12}^{in(\alpha\beta\gamma)}) \\ & \left[ C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{22} - \bar{\varepsilon}_{11}^{in(\alpha\beta\gamma)}) + C_{13}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{33} - \bar{\varepsilon}_{33}^{in(\alpha\beta\gamma)}) \right] + 2n_{3}^{4(\alpha\beta\gamma)} C_{55}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_{4}^{2(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{12} - \bar{\varepsilon}_{12}^{in(\alpha\beta\gamma)}) \\ & \left[ C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + C_{13}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{33}^{in(\alpha\beta\gamma)}) \right] + 2n_{3}^{4(\alpha\beta\gamma)} C_{55}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_{4}^{2(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{12} - \bar{\varepsilon}_{12}^{in(\alpha\beta\gamma)}) \\ & \left[ C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) \right] + 2n_{3}^{4(\alpha\beta\gamma)} C_{55}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_{3}^{4(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{12} - \bar{\varepsilon}_{12}^{in(\alpha\beta\gamma)}) \\ & \left[ C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) \right] \right] + 2n_{3}^{4(\alpha\beta\gamma)} C_{55}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + 2n_{3}^{4(\alpha\beta\gamma)} C_{66}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) \\ & \left[ C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) + C_{12}^{(\alpha\beta\gamma)} (\bar{\varepsilon}_{13} - \bar{\varepsilon}_{13}^{in(\alpha\beta\gamma)}) \right] \right]$ 

where

| $(\mathbf{D})$ | 10) |  |
|----------------|-----|--|
| UD.            | 101 |  |

| K     K     K     K     K     K     K     K     K | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K <sub>13</sub><br>K <sub>23</sub><br>K <sub>33</sub><br>K <sub>43</sub><br>K <sub>53</sub><br>K <sub>63</sub><br>K <sub>73</sub><br>K <sub>83</sub><br>K | K <sub>14</sub><br>K <sub>24</sub><br>K <sub>34</sub><br>K <sub>44</sub><br>K <sub>54</sub><br>K <sub>64</sub><br>K <sub>74</sub><br>K <sub>84</sub> | K <sub>15</sub><br>K <sub>25</sub><br>K <sub>35</sub><br>K <sub>45</sub><br>K <sub>55</sub><br>K <sub>65</sub><br>K <sub>75</sub><br>K <sub>85</sub> | K <sub>16</sub><br>K <sub>26</sub><br>K <sub>36</sub><br>K <sub>46</sub><br>K <sub>56</sub><br>K <sub>66</sub><br>K <sub>76</sub><br>K <sub>86</sub> | K <sub>17</sub> K <sub>1</sub><br>K <sub>27</sub> K <sub>2</sub><br>K <sub>37</sub> K <sub>2</sub><br>K <sub>47</sub> K <sub>4</sub><br>K <sub>57</sub> K <sub>5</sub><br>K <sub>67</sub> K <sub>6</sub><br>K <sub>77</sub> K <sub>7</sub><br>K <sub>87</sub> K <sub>8</sub> | 8 K <sub>19</sub><br>8 K <sub>29</sub><br>8 K <sub>39</sub><br>18 K <sub>49</sub><br>18 K <sub>59</sub><br>18 K <sub>69</sub><br>18 K <sub>79</sub><br>18 K <sub>89</sub> | $\begin{bmatrix} \overline{u}_{1}^{\prime 1} \\ \overline{u}_{2}^{\prime 1} \\ \overline{u}_{3}^{\prime 1} \\ \overline{u}_{1}^{\prime 2} \\ \overline{u}_{1}^{\prime 2} \\ \overline{u}_{2}^{\prime 2} \\ \overline{u}_{3}^{\prime 2} \\ \overline{u}_{3}^{\prime 3} \\ \overline{u}_{2}^{\prime 3} \end{bmatrix} =$ | $\begin{bmatrix} \Delta C_{11}^{(1,2)} \\ \Delta C_{21}^{(1,2)} \\ \Delta C_{31}^{(1,2)} \\ \Delta C_{11}^{(3,4)} \\ \Delta C_{21}^{(3,4)} \\ \Delta C_{31}^{(3,4)} \\ \Delta C_{11}^{(5,6)} \\ \Delta C_{21}^{(5,6)} \end{bmatrix}$ | $\begin{array}{c} \Delta C_{12}^{(1,2)} \\ \Delta C_{22}^{(1,2)} \\ \Delta C_{32}^{(1,2)} \\ \Delta C_{12}^{(3,4)} \\ \Delta C_{22}^{(3,4)} \\ \Delta C_{32}^{(3,4)} \\ \Delta C_{12}^{(5,6)} \\ \Delta C_{22}^{(5,6)} \end{array}$ | $\begin{array}{c} \Delta C^{(1,2)}_{13} \\ \Delta C^{(2,2)}_{23} \\ \Delta C^{(3,2)}_{33} \\ \Delta C^{(3,4)}_{13} \\ \Delta C^{(3,4)}_{23} \\ \Delta C^{(3,4)}_{33} \\ \Delta C^{(5,6)}_{13} \\ \Delta C^{(5,6)}_{23} \end{array}$ | $\begin{array}{c} 0 \\ \Delta C_{442}^{(1,2)} \\ \Delta C_{443}^{(1,2)} \\ 0 \\ \Delta C_{443}^{(3,4)} \\ \Delta C_{443}^{(3,4)} \\ 0 \\ \Delta C_{443}^{(5,6)} \\ 0 \end{array}$ | $\begin{array}{c} \Delta C_{55}^{(1)} \\ 0 \\ 0 \\ \Delta C_{55}^{(1)} \\ \Delta C_{55}^{(2)} \\ 0 \\ 0 \\ 0 \\ \Delta C_{55}^{(3)} \\ \Delta C_{55}^{(3)} \\ 0 \\ 0 \\ \end{array}$ | $ \begin{array}{c} \overset{2)}{1} & \Delta C^{(1,2)}_{661} \\ & \Delta C^{(1,2)}_{662} \\ \overset{2)}{3} & 0 \\ \overset{2)}{1} & \Delta C^{(3,4)}_{661} \\ & \Delta C^{(3,4)}_{63} \\ \overset{4)}{3} & 0 \\ \overset{6)}{1} & \Delta C^{(5,6)}_{661} \\ & \Delta C^{(5,6)}_{662} \end{array} $ | $\begin{bmatrix} \overline{\epsilon}_{11} \\ \overline{\epsilon}_{22} \\ \overline{\epsilon}_{33} \\ 2\overline{\epsilon}_{23} \\ 2\overline{\epsilon}_{13} \\ 2\overline{\epsilon}_{12} \end{bmatrix} = \frac{1}{2}$ |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [r                                                | $_{91}$ $\mathbf{K}_{92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | К <sub>93</sub>                                                                                                                                           | к <sub>94</sub>                                                                                                                                      | K <sub>95</sub>                                                                                                                                      | к <sub>96</sub>                                                                                                                                      | К <sub>97</sub> К <sub>9</sub>                                                                                                                                                                                                                                               | <sub>8</sub> <b>K</b> <sub>99</sub> ]                                                                                                                                     | $\overline{\mathbf{u}}_{2}^{\prime 3}$                                                                                                                                                                                                                                                                                | AC(5,6)                                                                                                                                                                                                                              | AC(5,6)                                                                                                                                                                                                                             | AC(5,6)                                                                                                                                                                                                                             | AC(5,6                                                                                                                                                                            | ) $\Lambda C^{(5)}$                                                                                                                                                                  | <sup>6)</sup> 0                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |
|                                                   | $C_{11}^{(1)} \Delta C_{21}^{(1)} \Delta C_{2$ | $\begin{array}{ccc} (1) & \Delta \\ 12 & \Delta \\ (1) & 22 & \Delta \end{array}$                                                                         | $C_{13}^{(1)}$<br>$C_{23}^{(1)}$                                                                                                                     | $0 \\ \Delta C^{(1)}_{442}$                                                                                                                          | ΔC <sup>(1)</sup><br>55                                                                                                                              | $\Delta C_{661}^{(1)}$<br>$\Delta C_{662}^{(1)}$                                                                                                                                                                                                                             | □                                                                                                                                                                         | $\begin{bmatrix} \Delta C_{11}^{(2)} \\ \Delta C_{21}^{(2)} \end{bmatrix}$                                                                                                                                                                                                                                            | $\Delta C_{12}^{(2)}$ $\Delta C_{22}^{(2)}$                                                                                                                                                                                          | $\Delta C^{(2)}_{13}$<br>$\Delta C^{(2)}_{23}$                                                                                                                                                                                      | 0<br>$\Delta C_{442}^{(2)}$                                                                                                                                                                                                         | $\Delta C_{551}^{(2)}$                                                                                                                                                            | $\Delta C_{661}^{(2)}$ $\Delta C_{662}^{(2)}$                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |
| Δ                                                 | $C_{31}^{(1)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(1)}_{32}$ $\Delta$                                                                                                                                    | C <sup>(1)</sup>                                                                                                                                     | $\Delta C_{443}^{(1)}$                                                                                                                               | $\Delta C_{55}^{(1)}$                                                                                                                                | . 0                                                                                                                                                                                                                                                                          | ε <sub>11</sub>                                                                                                                                                           | $\Delta C_{31}^{(2)}$                                                                                                                                                                                                                                                                                                 | $\Delta C_{32}^{(2)}$                                                                                                                                                                                                                | $\Delta C_{33}^{(2)}$                                                                                                                                                                                                               | $\Delta C_{443}^{(2)}$                                                                                                                                                                                                              | $\Delta C_{553}^{(2)}$                                                                                                                                                            | 0                                                                                                                                                                                    | E11                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |
| 4                                                 | $C_{11}^{(3)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(3)}_{12} \Delta$                                                                                                                                      | $C_{13}^{(3)}$                                                                                                                                       | 0                                                                                                                                                    | $\Delta C_{551}^{(3)}$                                                                                                                               | $\Delta C_{661}^{(3)}$                                                                                                                                                                                                                                                       | $\overline{\epsilon}_{22}^{\text{in1}}$<br>$\overline{\epsilon}_{22}^{\text{in1}}$                                                                                        | $\Delta C_{11}^{(4)}$                                                                                                                                                                                                                                                                                                 | $\Delta C_{12}^{(4)}$                                                                                                                                                                                                                | $\Delta C_{13}^{(4)}$                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                   | $\Delta C_{551}^{(4)}$                                                                                                                                                            | $\Delta C_{661}^{(4)}$                                                                                                                                                               | $\overline{\epsilon}_{22}^{\text{in2}}$<br>$\overline{\epsilon}_{22}^{\text{in2}}$                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| Δ                                                 | $C_{21}^{(3)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(3)}_{22}$ $\Delta$                                                                                                                                    | $C_{23}^{(3)}$                                                                                                                                       | $\Delta C_{442}^{(3)}$                                                                                                                               | 0                                                                                                                                                    | $\Delta C_{662}^{(3)}$                                                                                                                                                                                                                                                       | -33<br>2=in1                                                                                                                                                              | $-\Delta C_{21}^{(4)}$                                                                                                                                                                                                                                                                                                | $\Delta C^{(4)}_{22}$                                                                                                                                                                                                                | $\Delta C_{23}^{(4)}$                                                                                                                                                                                                               | $\Delta C_{442}^{(4)}$                                                                                                                                                                                                              | 0                                                                                                                                                                                 | $\Delta C_{662}^{(4)}$                                                                                                                                                               | $2 = in^2$                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |
| Δ0                                                | $C_{31}^{(3)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(3)}_{32}$ $\Delta$                                                                                                                                    | $C_{33}^{(3)}$                                                                                                                                       | $\Delta C^{(3)}_{443}$                                                                                                                               | $\Delta C_{555}^{(3)}$                                                                                                                               | , 0                                                                                                                                                                                                                                                                          | $2\varepsilon_{23}$<br>$2\overline{\varepsilon}^{in1}$                                                                                                                    | ΔC <sup>(4)</sup><br>31                                                                                                                                                                                                                                                                                               | $\Delta C^{(4)}_{32}$                                                                                                                                                                                                                | $\Delta C^{(4)}_{33}$                                                                                                                                                                                                               | $\Delta C^{(4)}_{443}$                                                                                                                                                                                                              | $\Delta C_{553}^{(4)}$                                                                                                                                                            | 0                                                                                                                                                                                    | $2\varepsilon_{23}$<br>$2\overline{\varepsilon}^{in2}$                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |
|                                                   | $C_{11}^{(5)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(5)}_{12}$ $\Delta$                                                                                                                                    | $C_{13}^{(5)}$                                                                                                                                       | 0                                                                                                                                                    | $\Delta C_{551}^{(5)}$                                                                                                                               | $\Delta C_{661}^{(5)}$                                                                                                                                                                                                                                                       | -513                                                                                                                                                                      | $\Delta C_{11}^{(6)}$                                                                                                                                                                                                                                                                                                 | $\Delta C_{12}^{(6)}$                                                                                                                                                                                                                | $\Delta C_{13}^{(6)}$                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                   | $\Delta C_{551}^{(6)}$                                                                                                                                                            | $\Delta C_{661}^{(6)}$                                                                                                                                                               | 2 = in2                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |
| Δ                                                 | $C_{21}^{(5)}$ $\Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{(5)}_{22}$ $\Delta$                                                                                                                                    | $C_{23}^{(5)}$                                                                                                                                       | $\Delta C^{(5)}_{442}$                                                                                                                               | 0                                                                                                                                                    | $\Delta C_{662}^{(5)}$                                                                                                                                                                                                                                                       | 2 <sup>2</sup> <sup>2</sup> 12                                                                                                                                            | ΔC <sup>(6)</sup> <sub>21</sub>                                                                                                                                                                                                                                                                                       | $\Delta C_{22}^{(6)}$                                                                                                                                                                                                                | $\Delta C^{(6)}_{23}$                                                                                                                                                                                                               | $\Delta C^{(6)}_{442}$                                                                                                                                                                                                              | 0                                                                                                                                                                                 | $\Delta C_{662}^{(6)}$                                                                                                                                                               | _ <sup>2ε</sup> <sub>12</sub>                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                       |
| Δ                                                 | $C_{31}^{(5)} \Delta C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{(5)}_{32}$ $\Delta$                                                                                                                                    | $C_{33}^{(5)}$                                                                                                                                       | $\Delta C_{443}^{(5)}$                                                                                                                               | $\Delta C_{555}^{(5)}$                                                                                                                               | , 0                                                                                                                                                                                                                                                                          |                                                                                                                                                                           | $\Delta C_{31}^{(6)}$                                                                                                                                                                                                                                                                                                 | $\Delta C_{32}^{(6)}$                                                                                                                                                                                                                | $\Delta C_{33}^{(6)}$                                                                                                                                                                                                               | $\Delta C_{443}^{(6)}$                                                                                                                                                                                                              | $\Delta C_{553}^{(6)}$                                                                                                                                                            | 0                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       |

$$\begin{split} & K_{ob}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime l(\alpha\beta\gamma)} + K_{oa}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime l(\alpha+1,\beta,\gamma)} + K_{rb}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime l(\alpha,\beta,\gamma+1)} + K_{ra}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{\prime l(\alpha+1,\beta,\gamma+1)} + K_{od}^{(\alpha\beta\gamma)} \hat{u}_{2}^{\prime l(\alpha\beta\gamma)} + K_{oc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{\prime l(\alpha\beta\gamma)} + K_{oc}^{(\alpha\beta\gamma)} \hat{u}_{2}^{\prime l(\alpha\beta\gamma)} + K_{rc}^{(\alpha\beta\gamma)} \hat{u}_{1}^{\prime l(\alpha\beta\gamma)} + K_{rc}^{(\alpha\beta\gamma\gamma)} \hat{u}_{1}^{\prime l(\alpha\beta\gamma\gamma)} + K_{rc}^{(\alpha\beta\gamma\gamma)} \hat{u}_{1}^{$$

 $\begin{aligned} \hat{u}_{3}^{(1(\alpha,\beta,\gamma+1)} + K_{qe}^{(\alpha,\beta,\gamma+1)} \hat{u}_{3}^{(1(\alpha+1,\beta,\gamma+1)} + K_{nh}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(2(\alpha\beta\gamma)} + K_{ng}^{(\alpha\beta\gamma)} \hat{u}_{1}^{(2(\alpha,\beta+1,\gamma)} + K_{qh}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(2(\alpha,\beta,\gamma+1)} + K_{qg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(2(\alpha,\beta,\gamma+1)} + K_{qg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(2(\alpha,\beta,\gamma+1)} + K_{qg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{1}^{(2(\alpha,\beta,\gamma+1)} + K_{qg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma+1)} + K_{ng}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma+1)} + K_{ng}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(2(\alpha,\beta+1,\gamma+1)} + K_{ng}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(2(\alpha,\beta,\gamma+1)} + K_{qg}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(2(\alpha,\beta,\gamma+1)} + K_{ng}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(3(\alpha,\beta,\gamma+1)} + K_{ng}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(\alpha,\beta,\gamma+1)} \hat{u}_{2}^{(\alpha,\beta,\gamma+1)}$