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When the Fan hits the Shit  

On 9 February 2014, during one of the hottest and driest summers on record, embers 

from a nearby bushfire set alight exposed open-cut coal seams at the Hazelwood Mine in 

the Australian state of Victoria.  Fires burned for 45 days, blanketing smoke and ash over 

surrounding towns in the La Trobe Valley and adding significantly to greenhouse gas 

emissions from the Hazelwood Power Station, already ranked as the OECD’s least 

carbon-efficient power plant (Melody and Johnston, 2015). As the Hazelwood Mine Fire 

Inquiry reported, Victoria is one of the world’s most bushfire-prone areas and faces 

increasing frequency of extreme fire weather. But the Inquiry failed to make reference to 

climate change or to the positive feedback between carbon emissions from coal-fired 

power generation and wildfire risk (Rickards, 2014). 

 

We propose that the Hazelwood Mine Fire exemplifies a particular ‘species of trouble’ 

that is becoming more pronounced under Anthropocene conditions.  It is already well 

understood that unbinding materials and energy from their lithic reservoirs impacts upon 

Earth systems, a dynamic that is especially well documented in the case of the connection 

between fossil fuel combustion and climate change but also pertains to perturbation of 

the phosphorus cycle and rising ocean acidification (Steffen et al., 2015). There is less 

systematic engagement, however, with the multiple ways in which subsequent Earth 

system change reacts back upon the social infrastructures of subsurface exploitation and 

the landscapes they produce.  Surveying research on the climate change–mining interface, 

Phillips observes ‘The potential and actual interactions between climate change and 

surface mining have been, until recently, poorly understood and even neglected’ (2016: 

96).  This is shortfall that we suggest has much broader applicability.   
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Alongside its contributions to Earth system change, transformation of the Earth’s 

surface by mineral and energy extraction is so extensive that it has been considered as an 

‘ancillary marker’ for the start of the Anthropocene epoch (Cooper et al., 2018: 228).  

The amount of sediment currently added to the global flux by anthropogenic mineral 

extraction has been estimated at more than 24 times the volume of sediment transported 

by the world’s major river systems (Cooper et al., 2018).  Extraction-related geological 

mass transfer increased substantially during the Industrial Revolution and post-1950 

Great Acceleration (Cooper et al., 2018; Zalasiewicz et al., 2014).  In more patchy and 

localized ways, anthropogenic mineral extraction has been significantly impacting rock 

fabrics and sediment fluxes since the emergence of metal industries some 6000 years ago 

– and such disturbance may be considered a basic corollary of large-scale urban life.  In 

turn, displaced geological materials resulting from extractive operations have always been 

subject to subsequent impingement by an Earth system in which ‘variability abounds at 

nearly all spatial and temporal scales’ (Steffen et al., 2004: 295).   What is unprecedented, 

however, is not simply the current rate and cumulative impact of geological transfer, but 

its exposure to an Earth system undergoing fundamental shifts in its functioning and 

overall state – changes that may turn out to be abrupt, cascading and irreversible (Steffen 

et al., 2015; Steffen et al., 2018).  

 

Our concern in this paper is the increasingly catastrophic interface between Earth system 

change and anthropogenic processes of extracting materials from the Earth’s crust – or 

what we refer to as ‘geological destratification’. While geological destratification is 

instrumental in triggering climate change and other kinds of Earth system change, these 

changes in turn perturb extractive infrastructures and landscapes, generating further 

impacts on Earth systems. If not always contributing directly to positive feedbacks as in 

the Hazelwood mine fire example, these second generation impacts nonetheless have on-

going degrading and destabilizing effects that we refer to as negative synergies (Homer-

Dixon, 2006: 106-7).  To put a spin on the vernacular, we might say that these are events 

in which the fan hits the shit.  

 

We see this focus on negative synergies between Earth system change and the edifice of 

destratification as complementing Anthropocene geoscience’s concern with the 

contemporary formation of novel lithic strata (Price et al., 2011; Edgeworth, 2018; 

Zalasiewicz et al., 2019: Ch. 2) – or what we would describe as ‘geological 

restratification’.  If restratification is indeed the eventual outcome of materials that have 

been destratified, as Anthropocene science recognizes there is a great deal of lateral 
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transfer and transformation that intervenes between their original unbinding and their 

later re-deposition. Like extractive industries themselves, much of this rearrangement is 

intended by human agents: this includes transportation, processing, utilization, and some 

forms of disposal. But much of it – including byproducts, leakage, decomposition – is 

largely unintentional.  The collision between rapidly changing Earth system processes 

and destratified materials greatly exacerbates the level of unpredictability in this circuit 

between destratification to restratification. These interruptions, we argue, take on a 

special significance with the recognition that entire landscapes have been made over in 

the interests of intensifying mineral and energy extraction.  

 

The paper offers a conceptual mapping rather than a quantification of the negative 

synergies between geological destratification and Earth system change. We construct a 

typology of four categories of ‘trouble’ that is not intended to be exhaustive. The first 

category, illustrated by our opening example, is the interaction between shifting fire 

regimes – or pyroclimatic change (Biondi et al., 2011) -– and processes of hydrocarbon 

extraction.  The second is the interface between hydroclimatic change – which includes 

intensifying hydro-meteorological events and sea level rise – and hydrocarbon energy 

infrastructure.  The third category is the interrelationship between hydroclimatic change 

and landscapes of mineral extraction.   Our fourth category brings together impacts of 

pyroclimatic and hydroclimatic change on nuclear infrastructures and on landscapes 

already contaminated by radioactive materials. 1 

 

We begin with an overview of existing ways in which social science and humanities 

scholars have sought explain the specific forms of hazard that afflict modern or late-

modern societies.  This includes theorists who prioritize risks deriving from complex 

‘horizontal’ socio-technical arrangements and those who focus more on ‘vertical’ 

interactions with the layered structure and deep temporalities of the Earth.  We suggest, 

however, that Anthropocene sciences offers vital insights for bringing together the 

horizontal and vertical dimensions of these narratives – noting in particular the 

deepening collaboration between ‘hard rock’ geology and Earth system science. 

 

Following our schematizing of an Anthropocene species of trouble, we return in more 

depth to the question of how to understand the escalating collision between Earth 

system change and geological destratification.  Going beyond a framing of this 

predicament as a management problem, we make a case for probing the deep historical 

origins of human capacities to negotiate between the Earth’s surface and subsurface.  As 

an opening for later explorations, we propose that Anthropocene science’s novel focus 
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on the articulation between Earth System flows and lithic strata has as yet untapped 

potential for theorizing the long-term human acquisition of geological agency. 

 

 

Diagnosing Modern ‘Species of Trouble’  

There is an extensive social science and humanities literature diagnosing particular kinds 

of hazard associated with the conditions of what has been termed ‘late modernity’.   By 

the mid-to-late 1980s, a series of high-profile accidents such as Three Mile Island, Bhopal 

and Chernobyl had sufficiently shocked social thinkers to the extent that analyses of 

techno-environmental risk moved from the margins to the mainstream of social inquiry.  

Echoing themes raised earlier by biologist Rachel Carson (1962), sociologist Kai Erikson 

identified a ‘new species of trouble’ characterized by the accidental release of toxic 

substances ‘that seem to work their way stealthily in the tissues of the human body and 

the textures of human life’ (1994: 20).  Fellow sociologist Ulrich Beck proposed that 

increasingly deep-seated interventions in atomic, chemical, and biological processes are 

accompanied by the ever-present possibility of ‘undelimitable’ accidents that, once 

triggered, resound unstoppably through space and time (1995: 76-9). Seeking to identify 

the precipitating conditions of what he referred to as ‘normal accidents’, sociologist 

Charles Perrow (1984) alighted upon the effect of routine and minor malfunctions 

concatenating through complex, tightly coupled socio-technical systems.  More generally, 

Bruno Latour (1993) and fellow science studies scholars suggested that the modern 

world lacked conceptual frameworks through which to understand its own intensifying 

intermixing of social and natural components (see also: Bennett, 2005; Law and Mol, 

2008).   

 

While these analyses focus on a predominantly ‘horizontal’ interconnectivity and 

complexity, concern with the dangers arising from fossil fuel and mineral extraction has 

also prompted approaches of a more ‘vertical’ disposition.  As well as addressing the 

infrastructures through which extracted materials circulate, this work looks at how 

modern exploitation of the subsurface opens up spatiotemporal relationships that are 

radically different from those that characterise most surface processes. As political 

theorist Timothy Mitchell explains: ‘fossil fuels are forms of energy in which great 

quantities of time and space … have been compressed into a concentrated form’ (2011: 

15). Geographer Gavin Bridge (2009) likewise recognises that the mineshaft or well is a 

portal to stores of energy and minerals that have accumulated over vast stretches of 

geological space and time. The Earth’s surface and subsurface, Bridge attests, are ‘two 

worlds in which time and space work differently’ (2009: 45), and the speed at which this 
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vertical divide has been breached is one of the defining features of modern existence.  

‘The shock of modernity,’ he observes ‘… is in part about the radical mixing together of 

these two different planes’ (2013: 56, see also: Bremner, 2013; Clark, 2017).  

 

Bridge acknowledges his debt to cultural historian Lewis Mumford’s earlier account of 

‘carboniferous capitalism’ (1934: 156-8).  Not only did Mumford argue that the 

unprecedented rush of geologically ancient matter-energy was a key to understanding the 

exploitative social and economic relationships of modern industrial capitalism, he also 

recognized that entire landscapes of despoliation were the inevitable outcome of the 

extractive mind-set. ‘The byproducts are a befouled and disorderly environment’, 

Mumford concluded, ‘the end product is an exhausted one’ (1934: 157). 

 

Aspects of this vertical approach to late-modern trouble will likely strike chords with 

geoscience researchers, from whom much of this work borrows. At the same time, 

Anthropocene science has its own version of the more horizontal narrative, as for 

example when Will Steffen and his co-authors observe: ‘When the hyper-connectivity of 

the human enterprise intersects with the pressures on Earth System goods and services, 

some concatenated global crises can propagate rapidly through the Earth System’ 

(Steffen et al., 2011: 741).  The social science research into late modern catastrophes that 

we have outlined has much to offer Anthropocene science, especially with regard to 

teasing out the connections between hazard-inducing conditions and uneven relations of 

power and wealth, and exploring the processes through which hidden dangers come to 

be rendered visible and turned into occasions for political mobilization.  

 

There is, however, a vital aspect of the dynamics of contemporary disaster about which 

social scientists could learn a lot from Anthropocene science, and we would add, where 

the community of Anthropocene researchers themselves might do more with their own 

boldest epistemic innovations. Whereas the ‘horizontal’ and ‘vertical’ strands of social 

science investigations of late-modern catastrophe have yet to be systematically integrated, 

exploring the interaction between the outer Earth system and the lithic strata that 

compose the Earth’s crust has emerged as a definitive theme of Anthropocene natural 

science inquiry.  Unprecedented collaboration between the newer interdisciplinary field 

of Earth System science – focused upon ‘the analysis and understanding of 

contemporary global change’, and that more ‘traditional’ discipline of geology –

‘overwhelmingly concerned with ancient, pre-human rock and time’ (Zalasiewicz et al., 

2017: 85) has proved pivotal to the Anthropocene hypothesis.  As Zalasiewicz et al. 

conclude ‘(g)eologists … benefit from this mutual exchange with Earth System Science, 
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as it enables better process models of the stratigraphical data’ while benefits to Earth 

System science accrue from ‘the recognition of geological signals as additional and 

proxies…especially for testing models and forecasting future scenarios’ (2017: 97, see 

also Steffen et al., 2016). We would suggest that this idea of the hinging together of Earth 

system and lithic strata is at once literal and deeply imaginative; a powerful conceptual 

tool and a potent metaphor (Rickards, 2015).  

 

It is noteworthy that one of the most influential Western philosophical texts of the latter 

20th century performs a similar move of putting strata and flows into conjunction.  In A 

Thousand Plateaus (1987) Gilles Deleuze and Félix Guattari explore the human capacity to 

move across different strata and to work the contents of these strata into new structures 

and mixtures (335, 502-3).  Their term for this process - which we have borrowed - is 

‘destratification’. While geological strata are only one of the several types of sedimented 

and relative inert compositional layerings with which Deleuze and Guattari engage, it is 

clear that geology provides the original form and the model for other kinds of 

stratification and destratification (1987: 40-5).  Their concern with the way that, under 

certain circumstances, the contents of strata come to be released and enter into relatively 

unbound and faster moving flows and circulations now appears remarkably prescient of 

key conceptual moves of Anthropocene scientific thought (see: Clark, 2017; Saldanha, 

2017: 23-6; Yusoff, 2017).  If in a speculative way, Deleuze and Guattari’s warning about 

the risk of ‘too-sudden destratification’ stands, for us, as an early incitement to think the 

vertical and horizontal dimensions of endangerment together (1987: 503).    

 

Informed in part by the different modes of addressing the horizontal and vertical 

dimensions of modern ‘trouble’ outlined in this section, we turn now to a range of real-

world situations characterized by negative synergy between Earth system change and 

destratification of geological materials  

 

 

Varieties of Earth System Change-Geological Destratification Trouble 

In each of the four categories outlined, we set out from the mounting evidence that 

uneven anthropogenic impacts are already pushing the operating state of Earth system 

out of Holocene conditions. We also take as given that geological destratification has 

been so intrinsic to modern and some non-modern ways of life that it has transformed 

entire landscapes.  Our focus, then, is on the further turn of the spiral: how escalating 

Earth system change reacts back upon extensively upturned or redistributed geological 

materials.   
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Pyroclimatic Change and Hydrocarbon Extraction  

There is evidence that climate change is increasing wildfire events in many regions, 

although the global picture is complicated and includes indications of decreased fire 

activity in other regions (Bowman et al., 2013; Jolly et al., 2015).  Recent research predicts 

a ∼50% increase in lighting strikes in the USA over the 21st century (Romps et al., 2014), 

while a Canadian study demonstrates that temperature-induced drying of forest fuel 

layers alone will result in a significantly higher frequency of extreme fire weather days, 

(Flannigan et al., 2016).  In 2016, just months after the latter study was published, record 

warm temperatures saw the outbreak of some 330 wildfires in the Canadian province of 

Alberta (McGrath, 2016), including the Fort McMurray fire that burned from May 1-July 

5 and spread across 1,500,000 acres. Fort McMurray is the service centre of the 

Athabasca oil sands operations where bitumen is extracted on a massive scale.  While 

bitumen itself is relatively inflammable, subsequent research highlighted that natural gas 

and other highly flammable substances involved in the extraction, processing and 

transport of bitumen are at high risk of ignition by wildfire, although in this case 

extensive firebreaks of clear-felled forest sufficed to insulate mining infrastructure 

(Khakzad, 2018; Khakzad et al., 2018). 

 

Exposed coal seams and peatlands, especially when the latter are degraded, are more 

flammable than bitumen. Coal-seam fires have been igniting naturally for millions of 

years but have become much more common as a result of the global spread of mining 

since the Industrial Revolution.  Reports from China suggest that coal fires covering over 

30 km2   are currently burning - amounting to an annual loss of up to 200 million metric 

tons of coal (Kolker et al., 2009; Song et al., 2014; see also: Yan et al., 2020) –  while at 

last count 32 abandoned coal mines in the USA were alight (Kuenzer and Stracher 2012).  

The coal and peat fire problem is especially acute in Indonesia where it is exacerbated by 

extensive fire-driven forest clearance for plantation farming (Gaveau et al., 2014; 

Whitehouse and Mulyana, 2004).  One study conjectured that there were over 110,000 

coal and peat fires in Sumatra alone (Hamilton et al 2000), while it is estimated that 

peatland fires in the extreme 1997-8 fire season generated the equivalent of 40% of that 

year’s global fossil fuel carbon emissions (Chokkalingam et al., 2005).  

 

Feedback effects abound. Climate change dries out peatlands, leaving them more 

flammable (Merchant 2015). Particulate pollution from fires in Indonesia and other 

regions reduces rainfall and intensifies the El Niño effect – in turn increasing forest 

flammability (Herawati and Santoso 2011; Mayer 2006). Coal fires ignited by wildfire 
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smolder for decades or centuries, all the while serving as ignition sources of subsequent 

fires (Goldammer, 2007).  Fire in underground mines causes subsidence that may further 

open seams to oxygen, leading to propagation of wildfire (Whitehouse and Mulyana, 

2004; Krajick, 2005).   

 

Along with the greenhouse gas carbon dioxide, coal fires also emit toxic levels of carbon 

monoxide, sulphur dioxide, arsenic, fluoride, mercury, lead and selenium, which enter 

food chains and threaten human health (Dontala et al., 2015; Melody and Johnston, 

2015). There is also evidence that wildfires can release significant quantities of industrial 

lead and other toxins that vegetation has absorbed over decades of exposure to the 

combustion of fossil fuels and their additives (Kristensen and Taylor, 2012). At larger 

scales, black carbon sediments from the coal fire-wildfire nexus contribute to the melting 

of Arctic ice sheets, adding to sea level rise (see: Keegan et al., 2014).   

 

In many regions intensifying wildfire also threatens electricity transmission infrastructure 

(Sathaye et al. 2011: 6, 38), although this problem is obviously not restricted to 

hydrocarbon-generated electrical power.  In turn, faulty powerlines have sparked 

numerous wildfire outbreaks (McFall-Johnson 2019).  

 

 

Hydroclimatic Change and Hydrocarbon Infrastructure 

Many coastal regions are already showing impacts of climate change (Burkett, 2011).  

Even in the unlikely case that greenhouse gas emissions are leveled, oceanic thermal 

inertia will ensure that sea levels continue to rise, with conservative estimates pointing to 

an eventual 2.3 meter rise per Celsius degree of global warming (Levermann et al., 2013).  

Compounding the effects of rising sea levels on coasts are more frequent and intense 

hydro-meteorological events including stronger storm surges (Brown et al., 2014).   

 

Much hydrocarbon-based energy infrastructure, including refineries, storage depots, 

tanker terminals and pipelines, is concentrated in coastal zones, with recent studies 

suggesting high levels of vulnerability coupled with limited planning for climate change 

(Brown et al., 2014; Carlson et al 2015).  This is currently best documented in the USA.  

In some regions, such as the Gulf Coast, sea level rise is exacerbated by subsidence 

resulting in part from oil and gas extraction (Carlson et al., 2015; Kolker et al., 2011), 

while in southern Louisiana canalization of waterways by the oil industry has opened up 

a channels for incoming storms and surges that locals refer to as the ‘hurricane highway’  

(Bakker, 2005). 
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During the record-breaking 2005 Atlantic hurricane season, Hurricane Katrina destroyed 

or set adrift 45 oil platforms, while Hurricane Rita destroyed another 69 platforms 

(Kaiser 2015). Despite rigorous new design standards, the 2008 season saw Hurricanes 

Ike and Gustav take out a further 60 offshore structures (Larino, 2015). 1992’s Hurricane 

Andrew damaged 480 offshore pipelines, 2004’s Hurricane Ivan reportedly damaged 160, 

and Hurricanes Katrina and Rita another 457 (Burkett, 2011: 7722).  Katrina resulted in 

spills of some 6.7 million gallons of fuel from onshore installations, with a single facility 

in southern Louisiana spilling 25,000 barrels of oil – which contaminated city canals and 

approximately 1,700 homes (Carlson et al., 2015).  In the course of the Atlantic Coast’s 

Superstorm Sandy in 2012, flooding, dislodged buildings and uprooted trees caused over 

1600 pipeline leaks in New Jersey’s Barrier Islands alone (Groeger, 2012).  

Hydrometeorological events can also trigger fires and explosions, as a result of lightning 

strikes and the puncturing of pressurized flammable vapours and liquids (Cruz et al., 

2001) 

  

While the oil drilling platforms on the outer continental shelf of the Gulf of Mexico have 

apparently been designed to accommodate storm surges, they are not built to withstand 

permanent sea level rise (Burkett, 2010).  Onshore infrastructure is no better placed.  

One survey identified nearly 300 US coastal energy facilities located below 4 feet from 

high tide level, with Louisiana alone having over 100 facilities – mostly oil and gas – sited 

less than 1 foot below local high tide (Strauss and Ziemlinski, 2012). As an increasing 

proportion of the world’s conventionally recoverable oil and gas lies in ‘difficult 

environments’, infrastructure faces other problems – such as drought and thawing 

permafrost (Hopkins, 2007). Extensive oil and gas networks in Russia’s oil-rich north 

already face major thaw-related damage and deformation problems, with a 2010 study 

reporting some 35,000 pipeline accidents a year in West Siberia (Sobczak, 2015).   

 

As in the case of pyroclimatic hazards, escalating hydroclimatic extreme events threaten 

electricity transmission (Sathaye et al., 2011: 6). In addition to the vulnerabilities of fixed 

infrastructure, hydrocarbon global supply chains rely on the mobile infrastructure of 

ocean-going vessels that – while they may benefit from decreased sea ice – are exposed 

to intensifying extreme weather events (Bitner-Gregersen et al 2012). 

 

Hydroclimatic Change and Mineral Extraction  

Although the harmful consequences of mining have been documented for centuries (see 

Agricola, 1950 [1556]:6-8), it is only in the closing decades of the 20th century that the 
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enduring risks posed by mineral ore extraction have been fully appreciated (Carvalho 

2017). Some ores, including zinc and copper, generate acids when exposed to air, water 

and microbial life, while other ores are frequently associated with both acid-generating 

minerals and heavy metals (Carvalho, 2017; Laurence, 2011; Lin, 2012). Most metal ore 

extraction generates large amounts of waste rock – removed to access ores, and tailings – 

which are the waste product of ore processing: the sulfate minerals in the latter being 

particularly reactive due to their fine grain (Lin, 2012). Along with chemicals such as 

acids and cyanide used in processing, tailings can contain dozens of elements including 

arsenic, lead, and mercury in concentrations that can be highly toxic to ecosystems and 

organisms which have not evolved to tolerate such exposure (Franks et al.,  2011; 

Earthworks and MiningWatch, 2012: 2). Acid mine water and other dangerous chemical 

constitute a vast problem, exacerbated both by exponential increase in demand for many 

ores and by the fact that such demands push extraction into lower grade and less 

accessible ores, resulting in larger void spaces, deeper shafts and ever higher waste to ore 

ratios (Bridge, 2009; Mudd, 2010). 

 

Both the mass of waste generated by mineral extraction and the tendency of extractive 

industries to mine sites beyond profitably and then to relocate are posing considerable 

challenges to regulatory frameworks. As Mudd observes in the Australian context: ‘(a)t 

present, there is no compulsory requirement for public reporting of the waste rock 

mined annually, nor it’s nature’ (2010: 110). Others note how decommissioned mines and 

other extractive sites frequently escape monitoring and legal title (Laurence, 2011).  It is 

onto this already crisis-ridden situation that we must layer the impacts of climatic and 

Earth system change.  

 

As with hydrocarbon energy systems, most mine and quarry infrastructure design 

assumes stable climate or at least continuation of past variability (Ford et al., 2011; Hull 

and Ghiassi-Razavi, 2010). In the mining industry, researchers anticipate that climate 

change will impact slope stability, tailings, and water retention – with severe 

consequences for the dispersion of toxic residues (Anawar, 2015; Pearce et al., 2011; 

Northey et al., 2017).  Hydrology is the key variable, and both drought and heavy rain 

playing critical roles in shifting spatial dispersion of contaminants (Ackil and Koldas, 

2006; Foulds et al., 2014; Loechal, 2013). Catastrophic failure of tailings dams, such as 

the 2015 Mariana and 2019 Brumadinho disasters in Brazil, are a particular problem. As 

Holden (2015: 455) notes: ‘(t)ailing dams must now be constructed to accommodate 

worst case scenarios …. Given the uncertainty surrounding the rapidity of climate 

change, determining worst case scenarios will be extremely difficult if not impossible’. 
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Further problems have been identified with coastal mines at risk of sea level rise 

(Holden, 2015: 252), and in arctic regions where thawing permafrost subverts 

assumptions that mining waste can be permanently stabilized by freezing conditions 

(Hird, 2017; Northey et al., 2017).  Accelerating geochemical weathering rates resulting 

from increased temperature variation can also trigger mass movement of rock in current 

or former mining sites (Northey et al., 2017; Phillips, 2016; Rayne et al., 2009).  

 

In regions where extractive histories run to centuries or millennia, shifting river systems 

are remobilizing contaminants from old mining works and floodplain sediments (Foulds 

et al., 2014).  Evidence that ancient mining sites like the Rio Tinto estuary are still highly 

contaminated after 4500 years is a reminder of the persistence of mining-related 

pollution (Franks et al., 2011; SCU, 2013: 7), leading commentators and legislators to 

insist that some kinds of mining waste need to be closely managed in perpetuity (Franks, 

2011; Kempton 2010).  How this is to be achieved given accelerating climatic and Earth 

system change is unclear. As Phillips concludes: ‘the potential increase in acid mine 

drainage and heavy metal pollution due to climate change, could very well be beyond any 

original, current or foreseeable design parameters of mining operations and 

infrastructure’ (2016: 98). At present, normal practice is to mark it and forget (Kearnes 

and Rickards 2017). 

 

 

Hydro- and Pyroclimatic Change and Nuclear Infrastructure  

Mined from crustal rock, the naturally radioactive heavy metal uranium can be used in 

sustained nuclear chain reactions to generate power. With its combined chemical toxicity 

and radioactivity, uranium is implicated in a range of adverse health effects when 

incorporated in biochemical processes. These are compounded by bioaccumulation, 

transference along food webs, and intergenerational transmission (Dewar 2015; Pereira et 

al., 2014), making radioactive contamination a quintessential ‘slow emergency’ (Anderson 

et al. 2019).  While nuclear power is celebrated in some quarters as a low carbon form of 

energy, the 2011 Fukushima Daiichi nuclear disaster triggered by the Tōhoku tsunami 

has had knock-on impacts in the nuclear industry by exposing the vulnerability of nuclear 

infrastructure to climate or Earth system change (Jordaan et al., 2019; Krausmann et al., 

2019).   

 

Few of the world’s 430-plus operational nuclear power plants were constructed with 

climate change in mind, leaving many exposed to the potentially catastrophic effects of 

storm surges, drought, floods, heatwaves, wildfire and sea level rise (Bartos and Chester, 
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2015; Jordaan et al., 2019;). Generally positioned close to water bodies for cooling 

purposes, the vulnerability of reactors to hydro-meteorological extremes has been made 

increasingly apparent by events such as the 1999 storm-surge that knocked out safety 

systems at France’s Blayais Nuclear Power Plant (de Fraguier, 2010; Kopyotko and 

Perkins, 2011), and the flooding during Superstorm Sandy that threatened water intake 

systems at New Jersey’s Oyster Creek and Salem plants (Shifflett and Sheppard, 2014). 

However, the international treaties and standards that regulate construction and 

operation of nuclear facilities have yet to seriously consider impacts of climate change 

(Jordaan et al., 2019), an oversight that extends to nuclear waste management.  Most of 

the 80,000 metric tons of radioactive spent fuels thus far generated in the US is stored 

‘temporarily’ at power-plant sites –– many of which are vulnerable to sea level rise 

(Jenkins et al., 2020).   

 

It takes some 440 thousand tonnes of excavated uranium-bearing rock to produce the 30 

tonnes of uranium required annually to fuel the average 1200 MW nuclear reactor 

(Dimercan, 2020).  While attention has been focused on high-level threats to nuclear 

reactors, climate change is also likely to mobilise toxins and radiological agents at current 

and past uranium mining sites (Pereira, 2014). Wildfires also pose considerable risk to 

uranium mines in many regions, and firefighters face hazardous radiation exposure when 

fighting blazes in abandoned, reforested mining landscapes (Mingingawreness, 2015). 

When a prescribed burn during a three-year drought in New Mexico escaped control in 

May 2000, the resultant conflagration destroyed part of Los Alamos National Laboratory 

and narrowly missed stockpiled radioactive material (Rothman, 2005).   

 

When nuclear accidents such as the 1986 Chernobyl disaster leave surrounding areas 

unsafe for human habitation, ecological succession in abandoned forests and farmland 

can create conditions conducive to wildfire (Hao et al., 2009). Between 1993 and 2010, 

there were over 1000 uncontrolled fires in the Chernobyl Exclusion Zone, resulting in 

resuspension and widespread redistribution of more than a dozen different kinds of 

radionuclides sequestered in grassland, peat and woods (Hohl et al., 2012: 2, Yoschenko 

et al., 2006). While the International Nuclear and Radiological Event Scale was not 

designed for forest fire releases, estimates suggest that some post-Chernobyl wildfires 

released enough radionuclides into the atmosphere to qualify as ‘serious incidents’ 

(Evangeliou et al., 2016). As with the pyroclimatic change discussed above, longer, drier 

summers may already be increasing fire risk in the Chernobyl Exclusion Zone (Eördögh, 

2014, Evangeliou et al., 2016). Though considered lower fire risk than the Ukraine, 
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radioactively contaminated forests in Japan’s Fukushima prefecture have already 

experienced significant wildfire outbreaks (Bird and Little, 2013; Digges, 2017). 

 

 

Human Agency at the Earth System-Strata Interface   

It is crucial to keep in mind just how extensive the agency of (some) humans has been in 

turning the Earth’s crust inside out. Geologist Jan Zalasiewicz and his co-authors make 

the point that anthropogenic mixing or ‘turbation’ of rock fabric has so outstripped the 

impacts of any other organism that it has ‘no analogue in the Earth’s 4.6 billion year 

history’ (Zalasiewicz et al., 2014: 4). Indeed, they add, such is the degree of cross-cutting 

of strata by our species that it unsettles the logic of superposition through which 

geologists conventionally make sense of the Earth’s deep history (Zalasiewicz et al., 

2014).  It is telling that such observations resonate with the definition of existential 

disaster in certain traditions of 20th century Western philosophy: that is to say an event of 

such consequence that it threatens the very language or reasoning through which the 

event itself could be made intelligible (Blanchot, 1995: 1-7; Lyotard, 1988: 56). 

 

The emphasis of our paper on how Earth system change is impacting back upon 

destratified geological materials is more than a matter of the sheer magnitude of rock 

fabric disruption. It is also about the reach, scale and complexity of infrastructure 

devoted to exploiting subsurface deposits: the millions of miles of tunnels, pipes and 

boreholes, the vast number of facilities and installations, the making over of entire 

landscapes for extractive purposes (Haarstard and Wanvik, 2017; Labban, 2014; 

Zalasiewicz et al., 2014).  Central to any analysis of the interactions between Earth 

system change and anthropogenic destratification is the growing recognition that the 

excess or remainder of mineral-energetic extraction is at least as consequential as its 

intended effects.  As Hird notes ‘(b)etween 95 to 99.9995 percent of mined ore is 

considered waste’ (2017: 198), a realization that has led commentators to conclude that 

mining is more a matter of waste-disposal than it is of resource acquisition (Bridge, 

2009).  

 

By definition, destratification releases materials deposited and transformed over deep 

geological time into radically different ecological or geophysical contexts – which is the 

basic reasoning behind demands for long-term if not perpetual management. The re-

deposition of such material plays a significant part in the formation of novel 

anthropogenic strata that is so central to the Anthropocene narrative (Zalasiewicz et al, 

2019: Ch. 2). Whereas formalization of the Anthropocene hypothesis requires 
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identification of a distinct, geosynchronous signal in ‘restratified’ material, our own 

concern with the collision between destratified landscapes and Earth system change 

bypasses this process in the interest of prioritizing the risks and hazards this involves. So 

serious are these threats, we are arguing, that they call for a fundamental rethinking in the 

current globally dominant social relationship with the vertical or three-dimensional 

Earth.  

 

Again and again, the work we have reviewed underscores the inadequacy of regulatory 

frameworks for dealing with waste and other collateral impacts of human mass geological 

transfer. As geochemist Houston Kempton and his co-authors understatedly conclude: 

‘(a) search for existing institutions capable of providing long term mine management is 

discouraging’ (Kempton et al., 2011: 563). This is hardly surprising, given that the basic 

operative principle of modern industrialized extraction, as we noted above, is one of 

exploitation, exhaustion and abandonment (Bridge, 2009; Mumford, 1934: 156-8,).  

 

Not only do policymakers routinely underestimate the deep temporal repercussions of 

geological transfer, but the very logic of the global capitalist economy rewards extractive 

operators who privatize resources while leaving to ‘the public’ the costly and effectively 

interminable problem of site remediation (see: Carvalho, 2017; Jenkins et al., 2020). 

Faced with pressures to ‘manage’ waste and related problems, many companies either 

relocate or disband.  Drawing parallels with the nuclear industry, Jenkins et al note that 

‘oil and gas companies frequently go bankrupt rather than dealing with cleaning up 

orphan wells or unclaimed sites’ (2020: 7).  And this is even before we factor in 

requirements for the extractive industries to deal with the large-scale, accelerating and 

cascading impacts of Earth system change on current or legacy sites (see: Hodgkinson et 

al., 2014; Loechel et al., 2013). 

 

Many of the social and political issues associated with governance of extractive industries 

in the current global order have been rigorously analysed (see: Bebbington, 2012; Bridge 

2014; Mitchell 2011; Walker and Johnson 2018). Our emphasis on the interaction 

between geological destratification and Earth system change, however, takes us in 

another direction. While it’s vital to recall that the irruption of geological transfer over 

recent centuries belongs to a specific socioeconomic system, it is equally important to 

consider the deeper historical roots of the human capacity to move between the Earth’s 

surface and subsurface.  It is in this context, we argue, that Anthropocene science’s 

definitive concern with the articulation between Earth system processes and ‘hard rock’ 

geology has potential to do more work than it has yet been tasked with.  
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Well in advance of the emergent negative synergies between Earth system change and 

extractive landscapes we have been cataloguing, the turn to mass geological 

destratification in the era of industrialization can be viewed in terms of its positive 

synergies with expanding human engagements with Earth systems.  Early use of the 

steam engine to pump water from coal, iron ore and other mines was itself a form of 

feedback that accelerated extractive processes (Tiles, 2009).  This in turn facilitated global 

synergies between steam-powered machinery used in fabric manufacture and the 

intensified exploitation of Earth system processes in the form of the plantation economy 

– which brought together tropical or subtropical climates, plant monocultures and 

coerced human labour (see Clark and Szerszynski, 2021: 62-4; Protevi, 2009: 165-9; 

Tsing, 2015: 39-40). In this regard, we can view the steam engine as new kind of hinge or 

articulation between the mineral-energetic resources of the lithic strata and the largely 

solar-powered flows of the outer Earth system.  

 

The much earlier emergence of urban centres in the mid-Holocene can also be viewed as 

a significant development in the anthropogenic hinging together of mineral-bearing strata 

and Earth system fluxes (Clark, 2015; 2017).  In the ancient Middle East, 

archaeometallurgists have noted, there was a dynamic, self-reinforcing trade relationship 

between highland metallurgy and the intensive grain cultivation of the alluvial lowlands 

(Atchison, 1960; 18-24; Yener, 2000: 27). Metals not only provided the material for the 

tools, weapons, measures and currencies that were key components of the earliest 

agrarian empires, metallic implements also accelerated mineral ore extraction.   Reflecting 

their distinct but complementary contributions to social life, historian Jack Goody notes 

that in Mesopotamia, the Earth’s surface and subsurface were already subject to political-

legal demarcation five to six thousand years ago (2012: 22). A few thousand years later, 

he adds ‘(t)he very boundaries of the Roman Empire … were the result of the 

distribution of metals, (2012: 80). 

 

In sum, a focus on the different ways in which human agents have intervened at the 

juncture between the outer-Earth system and the stratified subsurface offers a powerful 

conceptual tool not only for engaging with the Anthropocene, but for understanding the 

long history of gradual human acquisition of geological agency (Clark and Szerszynski, 

2021: 64-5).  At this point its worth recalling that each of the four categories of 

contemporary negative synergy between Earth system change and geological 

destratification presented earlier involve some form of fire – whether directly as threat or 

indirectly in the eventual process of smelting ores or combusting hydrocarbons.   If we 
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are seeking the human capability that ultimately underpins unprecedented impact of our 

species on both rock fabrics and Earth system processes, it is fire, above all, that appears 

to be the key (Clark, 2020).  

 

If the unique capacity of the genus Homo to handle flame is pivotal to its increasing 

impact on the living surface of the Earth, so too is fire-use central to the cracking of 

rock, roasting of ores, the forging of metals and the much later the setting to work of 

fossil hydrocarbons (Pyne, 2001: 131). Fire use, we propose, is the original anthropogenic 

hinge between the Earth’s surface and subsurface, for without its guiding light the 

subterraneous world would have remained inaccessible to a diurnal, surface-dwelling 

organism (Clark, 2020).  It is no coincidence, we would add, that the exceptional human 

capacity for cross-cutting geological turbation noted by Zalasiewicz et al. (2014) more 

closely resembles the effects of igneous than biological processes, for already in the 

ancient world craftspeople were capable of firing their furnaces to the volcanic 

temperatures of 1200-1300 °C in order to transform the structure of geological matter: 

this being an axial moment in the anthropogenic hinging together of the surface and 

subsurface (Clark, 2015; Clark and Yusoff, 2014.).  

 

It is beyond the scope and imaginary reach of this paper to even begin to resolve the 

current planetary predicament of anthropogenic Earth system change reacting 

catastrophically upon landscapes made over by accelerating human practices of 

geological destratification.  We should not forget, however, that there are plentiful 

examples of human collectives who have tapped into the resources of the subsurface 

cautiously, respectfully, even reverently; societies who have looked upon the modern 

Western proclivity for mass upturning of the body of the Earth with horror (Kopenawa 

and Albert 2013: 261-289; Li and Paredes Peñafiel 2019, see also: Neale and Vincent, 

2017). Much of ‘the species of trouble’ we have been diagnosing manifests a set of drives 

and dynamics specific to the global capitalist socioeconomic order: a system whose 

modus operandi, it is often noted, is founded on the principle of extraction to the point 

of exhaustion (Mezzadra and Neilson, 2017.  While there is an urgent need to cut 

firebreaks in the destructive synergy between Earth system change and exponential 

extraction, however, we would suggest that transforming the way our species has come 

to articulate between lithic strata and Earth system now requires nothing less than a 

rethinking of what it means to be human.  

 

Far from arguing that this is a task best left to social thinkers, we propose that such a 

project calls for Anthropocene inquiry’s revolutionary collaboration of hard rock geology 
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and Earth system science to be deepened, elaborated upon and generalized.  What we 

face is a critical issue of reining in or dismantling today’s most destructive agents of mass 

geological transfer. But it is also a matter of totally reorganizing the anthropogenic 

orchestration of the Earth system-strata interface.  It is only by thinking generatively 

through this crucial point of articulation, we would argue, that it becomes possible to 

imagine alterative arrangements.  This is a task that requires the input of as many 

different ways of thinking and doing human geological agency as we can gather together.   

 

 

 
 

References 

 

Agricola G (1950 [1556]) De Re Metallica. New York: Dover Publications.  

 

Aitchison L (1960) A History of Metals, Vol. 1, London: MacDonald & 

Evans. 

 

Anawar HM (2015) Sustainable rehabilitation of mining waste and acid mine drainage 

using geochemistry, mine type, mineralogy, texture, ore extraction and climate 

knowledge. Journal of Environmental Management 158: 111–121 

 

Anderson B, Grove K, Rickards L and Kearnes M (2019). Slow emergencies: 

Temporality and the racialized biopolitics of emergency governance. Progress in Human 

Geography 44(4): 621-639. 

 

Akcil A and Koldas S (2006) Acid Mine Drainage (AMD): causes, treatment and case 

studies. Journal of Cleaner Production 14: 1139-1145. 

 

Bakker K (2005) Katrina: the public transcript of ‘disaster’. Environment and Planning D: 

Society and Space 23: 795–802. 

 

Bartos MD and Chester MV (2015) Impacts of climate change on electric power 

supply in the Western United States. Nature Climate Change 5(8): 748–752. 

 

Bebbington A (2012) Underground political ecologies. Geoforum 43: 1152–1162 

 



 18 

Beck U (1995) Ecological Politics in an Age of Risk. Cambridge: Polity Press.  

 

Bennett J (2005) The agency of assemblages and the North American blackout. Public 

Culture 17 (3): 445–65. 

 

Biondi, F, Jamieson L, Strachan S et al. (2011) Dendroecological testing of the 

pyroclimatic hypothesis in the central Great Basin, Nevada, USA. Ecosphere 2(1): 1-20. 

 

Bird WA and Little JB (2013) A tale of two forests: Addressing postnuclear radiation at 

Chernobyl and Fukushima. Environmental Health Perspectives 121(3): A78-85. 

 

Bitner-Gregersen EM, Eide LI, Hørte T and Skjong R (2012) Ship and Offshore Structure 

Design in Climate Change Perspective. Heidelberg: Springer.  

 

Blanchot M (1995) The Writing of the Disaster. University of Nebraska Press: Lincoln.  

 

Bowman DM, Williamson GJ, Abatzoglou JT et al. (2017) Human exposure and 

sensitivity to globally extreme wildfire events. Nature Ecology & Evolution 1: 0058.  

 

Bremner L (2013) The political life of rising acid mine water. Urban Forum 24: 463–483. 

 

Bridge G (2009) The hole world: spaces and scales of extraction. New Geographies 2: 43–8. 

 

Bridge G (2013) Territory, now in 3D! Political Geography 34: 55–57. 

 

Bridge G (2014) Resource geographies II: The resource-state nexus. Progress in Human 

Geography 38(1): 118–130. 

 

Brown S, Hanson S and Nicholls RJ (2014) Implications of sea-level rise and extreme 

events around Europe: a review of coastal energy infrastructure. Climatic Change 122: 81–

95. 

 

Burkett V (2011) Global climate change implications for coastal and offshore oil and gas 

development. Energy Policy 39(12): 7719–7725. 

 



 19 

Carlson C, Goldman G, Dahl K (2015) Stormy Seas, Rising Risks: What Investors 

Should Know About Climate Change Impacts at Oil Refineries. Union of Concerned 

Scientists. Available at:. https://www.ucsusa.org/resources/stormy-seas-rising-risks 

 

Carson R (1962) Silent Spring.  Boston MA: Houghton Mifflin.  

 

Carvalho FP (2017) Mining industry and sustainable development: time for change. Food 

and Energy Security 6(2): 61–77.  

 

Chokkalingam U, Kurniawan I, and Ruchiat Y (2005) Fire, livelihoods, and 

environmental change in the Middle Mahakam Peatlands, East Kalimantan. Ecology and 

Society 10(1): 26. Available at: http://www.ecologyandsociety.org/vol10/iss1/art26/ 

 

Clark N (2015) Fiery arts: pyrotechnology and the political aesthetics of the 

Anthropocene. GeoHumanities 1(2): 266-84. 

 

Clark N (2017) Politics of Strata. Theory, Culture & Society. 34: (2–3) 211–231. 

 

Clark N (2020) Vertical fire: For a pyropolitics of the subsurface. Geoforum 
https://doi.org/10.1016/j.geoforum.2020.04.006 
 

Clark N and Szerszynski B (2021) Planetary Social Thought: The Anthropocene Challenge to the 

Social Sciences. Cambridge: Polity Press.  

 

Clark N and Yusoff K (2014) ‘Combustion and society: a fire-centred history of energy 

use. Theory, Culture & Society 31(5): 203–26. 

 

Cruz AM, Steinberg LJ and Luna R (2001) Identifying hurricane-induced hazardous 

material release scenarios in a petroleum refinery. Natural Hazards Review 2(4): 203–210. 

Cruz AM, Steinberg LJ and Vetere-Arellano AL (2006) Emerging issues for natech 

disaster risk management in Europe. Journal of Risk Research 9 (5): 483–501. 

 

Deleuze G and Guattari F (1987) A Thousand Plateaus: Capitalism and Schizophrenia. 

Minneapolis: University of Minnesota Press.  

 



 20 

Demircan P (2020) What Australia type fire may tell us about the possibility of nuclear 

disasters. DiaNuke.org. Available at:  

https://www.dianuke.org/what-australia-type-fire-may-tell-us-about-the-possibility-of-

nuclear-disasters/ 

 

Dewar D (2013) Uranium mining and health. Canadian Family Physician 59(5): 469–471. 

 

Digges C (2017) Wildfires near Fukushima reignite Chernobyl-like fears of 

contamination. Bellona. Available at: 

 https://bellona.org/news/nuclear-issues/2017-05-wildfires-near-fukushima-reignite-

chernobyl-like-fears-of-contamination 

 

Dontala SP, Reddy TB and Vadde R (2015). Environmental aspects and impacts its 

mitigation measures of corporate coal mining. Procedia Earth and Planetary Science 11: 2–7. 

 

Earthworks and MiningWatch (2012) Troubled Waters: How Mine Waste Dumping is Poisoning 

our Oceans, Rivers, and Lakes. Earthworks and MiningWatch: Washington DC and Ottawa.  

 

Edgeworth M (2018) More than just a record: Active ecological effects of archaeological 

strata.  In: MAT de Souza and DM Costa (eds) Historical Archaeology and Environment. 

Cham: Springer, pp.19-40.  

 

Evangeliou N, Zibtsev S, Myroniuk V et al. (2016). Resuspension and atmospheric 

transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 

2015: An impact assessment. Nature: Scientific Reports 6: 26062 

 

Eördögh F (2014) Chernobyl's Trees Won't Decay, Increasing the Risk of Nuclear Forest 

Fire. Motherboard. Available at:  

http://motherboard.vice.com/blog/chernobyls-trees-wont-decay-increasing-risk-of-

nuclear-forest-fire 

 

Erikson K (1994) A New Species of Trouble: The Human Experience of Modern Disasters. New 

York: WW Norton.  

 

Flannigan M, Wotton B, Marshall G et al. (2016) Fuel moisture sensitivity to temperature 

and precipitation: Climate change implications. Climatic Change 134(1–2): 59–71. 

 



 21 

Ford J, Pearce D, Prno T et al. (2011). Canary in a coal mine: Perceptions of climate 

change risks and response options among Canadian mine operations. Climatic 

Change 109(3), 399–415. 

 

Foulds S, Brewer P, Macklin M et al. (2014) Flood-related contamination in catchments 

affected by historical metal mining: An unexpected and emerging hazard of climate 

change. Science of the Total Environment 476–477: 165–180. 

 

de Fraguier E (2010) Lessons Learned from 1999 Blayais Flood: Overview of the EDF 

Flood Risk Management Plan, EDF. Available at:  

https://www.yumpu.com/en/document/read/15664277/lessons-learned-from-1999-

blayais-flood-overview-of-edf-nrc 

 

Franks D, Boger D, Côte C et al. (2011). Sustainable development principles for the 

disposal of mining and mineral processing wastes. Resources Policy 36(2): 114–122. 

 

Gaveau DL, Salim MA, Hergoualc’h K et al. (2014) Major atmospheric emissions from 

peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran 

fires. Nature: Scientific Reports 4(1): 6112. 

 

Goldammer J (2007) History of equatorial vegetation fires and fire research in Southeast 

Asia before the 1997–98 episode: A reconstruction of creeping environmental changes. 

Mitigation and Adaptation Strategies for Global Change 12: 13–32. 

 

Goody J (2012) Metals, Culture and Capitalism: An Essay on the Origins of the Modern World. 

Cambridge: Cambridge University Press. 

 

Groeger L (2012) How Safe Are America's 2.5 Million Miles of Pipelines? ProPublica. 

Available at:  https://www.scientificamerican.com/article/how-safe-are-americas-2-5-

million-miles-of-pipelines/ 

 

Hao WM, Bondarenko OO, Zibtsev S et al. (2009) Vegetation Fires, Smoke Emissions, 

and Dispersion of Radionuclides in the Chernobyl Exclusion Zone. In: A. Bytnerowicz, 

Arbaugh M, Riebau A and Andersen C (eds) Developments in Environmental Science, Volume 

8. Amsterdam: Elsevier B.V, pp. 265–275.  

 

Haarstad H and Wanvik TI (2016) Carbonscapes and beyond: Conceptualizing the 



 22 

instability of oil landscapes. Progress in Human Geography 41(4) 432–450. 

 

Herawati H and Santoso H (2011) Tropical forest susceptibility to and risk of fire under 

changing climate: A review of fire nature, policy and institutions in Indonesia. Forest Policy 

and Economics 13: 227–233. 

 

Hird M (2017) Waste, environmental politics and dis/engaged publics. Theory, Culture & 

Society 34 (2-3): 187–209. 

 

Hohl A, Niccolai A, Oliver C et al. (2012) The human health effects of radioactive smoke 

from a catastrophic wildfire in the Chernobyl Exclusion Zone: a worst case scenario. 

Earth Bioresources and Life Quality 1: 1. Available at: http://gchera-

ejournal.nubip.edu.ua/index.php/ebql/ 

 

Hodgkinson JH, Hobday AJ., and Pinkard, EA (2014). Climate adaptation in Australia's 

resource-extraction industries: Ready or not? Regional Environmental Change 14(4): 1663–

1678. 

 

Holden WM (2015) Mining amid typhoons: Large-scale mining and typhoon vulnerability 

in the Philippines. The Extractive Industries and Society 2: 445–461. 

 

Homer-Dixon TF (2006) The Upside of Down: Catastrophe, Creativity, and the Renewal of 

Civilization. Island Press, Washington, DC  

 

Hopkins P (2007) Pipelines: Past, Present, and Future. The 5th Asian Pacific IIW 

International Congress Sydney, Australia 7th - 9th March 2007, Penspen Integrity. 

Available at: https://www.penspen.com/wp-content/uploads/2014/09/past-present-

future.pdf 

 

Hull P and Ghiassi-Razavi H (2010) Impacts of climate change on mine water 

management. Civil Engineering 18(5): 46–50. 

 

Jordaan S, Siddiqi A, Kakenmaster W et al. (2019) The climate vulnerabilities of global 

nuclear power. Global Environmental Politics 19(4): 3–13. 

 

Jenkins L, Alvarez R, and Jordaan S (2020). Unmanaged climate risks to spent fuel from 

U.S. nuclear power plants: The case of sea-level rise. Energy Policy 137: 111106. 



 23 

 

Jolly WM, Cochrane MA, Freeborn PH et al. (2015) Climate-induced variations in global 

wildfire danger from 1979 to 2013. Nature Communications 6 (1): 7537. 

 

Kaiser MJ (2015) Hurricane clean-up activity in the Gulf of Mexico, 2004–2013. Marine 

Policy 51: 512–526.  

 

Kearnes M and Rickards L (2017) Earthly graves for environmental futures: Techno-

burial practices. Futures 92: 48-48.  

 

Keegan KM, Albert MR, McConnell JR and Baker I (2014) Climate change and forest 

fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proceedings of 

the National Academy of Sciences of the USA 111(22) 7964–7967.  

 

Kempton H, Bloomfield T, Hanson J et al. (2010) Policy guidance for identifying and 

effectively managing perpetual environmental impacts from new hardrock 

mines. Environmental Science and Policy 13(6): 558-566. 

 

Khakzad N (2018) Impact of wildfires on Canada’s oil sands facilities. Natural Hazards 

and Earth System Sciences 18, 3153–3166. 

 

Khakzad N, Dadashzadeh M and Reniers G (2018) Quantitative assessment of wildfire 

risk in oil facilities. Journal of Environmental Management 223: 433–443. 

 

Kolker AS, Allison MA and Hameed S (2011) An evaluation of subsidence rates and sea-

level variability in the northern Gulf of Mexico. Geophysical Research Letters 38:L21404. 

doi:10.1029/2011GL049458 

 

Kopenawa D and Albert B (2013) The Falling Sky: Words of a Yanomami Shaman. 

Cambridge MA: Belknap Press. 

 

Kopytko N and Perkins J C (2011) Climate change, nuclear power, and the adaptation–

mitigation dilemma. Energy Policy 39 (1): 318–333. 

 

Krajick K (2005) Fire in the Hole: Raging in mines from Pennsylvania to China, coal 

fires threaten towns, poison air and water, and add to global warming. Smithsonian 

Magazine. Available at: https://www.smithsonianmag.com/science-nature/fire-in-the-



 24 

hole-77895126/ 

 

Krausmann E, Girgin S and Necci A (2019). Natural hazard impacts on industry and 

critical infrastructure: Natech risk drivers and risk management performance 

indicators. International Journal of Disaster Risk Reduction 40: 101163. 

 

Kristensen L and Taylor M (2012) Fields and forests in flames: Lead and mercury 

emissions from wildfire pyrogenic activity. Environmental Health Perspectives 120(2): A56–7. 

 

Kuenzer C and Stracher GB (2012) Geomorphology of coal seam fires. Geomorphology 

138: 209–222. 

 

Labban M (2014) Deterritorializing extraction: Bioaccumulation and the planetary mine. 

Annals of the Association of American Geographers 104 (3): 560-576. 

 

Larino J (2015) Offshore oil and gas industry adapts, but risks remain 10 years after 

Katrina. The Times-Picayune NOLA.com. Available at: 

https://www.nola.com/news/article_c0d0ad61-b859-51c6-b4e2-5b78752bca44.html 

 

Latour B (1993) We Have Never Been Modern. Cambridge MA: Harvard University Press.  

 

Laurence D (2011) Flooding and Abandoned Mines, Queensland Floods Commission 

UNSW Global, Expert Opinion Services: Sydney. 

 

Law J and Mol, A (2008) Globalisation in practice: On the politics of boiling pigswill. 

Geoforum 39: 133–143. 

 

Levermann A, Clark PU, Marzeion B et al. (2013) The multimillennial sea-level 

commitment of global warming. Proceedings of the National Academy of Sciences of the United 

States 110(34): 13745–13750. 

 

Li F and Paredes Peñafiel AP (2019) Stories of Resistance: Translating Nature, 

Indigeneity, and Place in Mining Activism. In: Vindal Ødegaard C, Rivera Andía J 

(eds) Indigenous Life Projects and Extractivism: Approaches to Social Inequality and Difference. 

Cham: Palgrave Macmillan, pp. 219-243.  

 

Lin C (2012) Climate change adaptation in acid sulfate landscapes. American Journal of 



 25 

Environmental Science 8 (4): 433-442. 

 

Loechel B, Hodgkinson J and Moffat K (2013) Climate change adaptation in Australian 

mining communities: Comparing mining company and local government views and 

activities. Climatic Change 119 (2): 465–477. 

 

Lyotard, J-F (1988) The Differend:  Phrases in Dispute. Manchester: Manchester University 

Press.  

 

Mayer J (2006) Transboundary perspectives on managing Indonesia’s fires. Journal of 

Environment and Development 15 (2): 202–223. 

 

McFall-Johnson M (2019) Over 1,500 California fires in the past 6 Years – including the 

deadliest ever – we caused by one company: PG&E. Business Insider. Available at:    

https://www.businessinsider.com/pge-caused-california-wildfires-safety-measures-2019-

10?r=US&IR=T 

 

McGrath M (2016) 'Perfect storm' of El Niño and warming boosted Alberta fires.  BBC 

News: Science and Environment. Available at: https://www.bbc.co.uk/news/science-

environment-36212145 

 

Mezzadra S and Neilson B (2017) On the multiple frontiers of extraction: excavating 

contemporary capitalism. Cultural Studies 31 (2-3): 185–204. 

 

Mining Awareness (2015) Wildfires force Evacuation of Uranium Mine Sites. Available 

at: https://miningawareness.wordpress.com/2015/08/01/wildfires-force-evacuation-of-

uranium-mine-sites-stop-shipments-of-uranium-endanger-firefighters-and-environment/ 

 

Mitchell T (2011) Carbon Democracy: Political Power in the Age of Oil. London: Verso. 

 

Melody SM and Johnstone FH (2015) Coal mine fires and human health: What do we 

know? International Journal of Coal Geology 152: 1–14. 

 

Mudd GM (2010) The environmental sustainability of mining in Australia: Key mega-

trends and looming constraints. Resources Policy 35(2): 98–115. 

 

Mumford L (1934) Technics and Civilization. New York: Harcourt, Brace. 



 26 

 

Neale T and Vincent E (2017) Mining, indigeneity, alterity: or, mining Indigenous 

alterity? Cultural Studies 31 (2-3): 417–439. 

 

Northey S, Mudd G, Werner T et al. (2017). The exposure of global base metal resources 

to water criticality, scarcity and climate change. Global Environmental Change 44: 109–124 

 

Pearce T, Ford, D, Prno J et al. (2011) Climate change and mining in Canada. Mitigation 

and Adaptation Strategies for Global Change 16 (3): 347–368. 

 

Pereira R, Barbosa S and Carvalho F (2014) Uranium mining in Portugal: A review of the 

environmental legacies of the largest mines and environmental and human health 

impacts. Environmental Geochemistry and Health 36 (2): 285–301. 

 

Perrow C (1984) Normal Accidents: Living with High-Risk Technologies. New York: Basic 

Books.  

 

Phillips J (2006) Climate change and surface mining: A review of environment-human 

interactions and their spatial dynamics. Applied Geography 74: L 95–108. 

 

Price SJ, Ford JR, Cooper AH and Neal C (2011) Humans as major geological and 

geomorphological agents in the Anthropocene: The significance of artificial ground in 

Great Britain. Philosophical Transactions of the Royal Society A 369: 1056-1084. 

 

Protevi J (2009) Political Affect: Connecting the Social and the Somatic. Minneapolis: University 

of Minnesota Press. 

 

Prowse TD, Furgal C, Chouinard R et al. (2009) Implications of climate change for 

economic development in Northern Canada: Energy, resource, and transportation 

sectors. Ambio 38 (5): 272–281. 

 

Pyne S (2001) Fire: A Brief History. Seattle: University of Washington Press. 

 

Raymond C, Horton R, Zscheischler J et al. (2020) Understanding and managing 

connected extreme events. Nature Climate Change 10 (7): 611–621. 

 



 27 

Rayne S, Forest K and Friesen K (2009) Analytical framework for a risk-based estimation 

of climate change effects on mine site runoff water quality. Mine Water and the 

Environment 28 (2): 124–135. 

 

Rickards L (2014) The real disaster, at Hazelwood and elsewhere, is brown coal itself. The 

Conversation. Available at: https://theconversation.com/the-real-disaster-at-hazelwood-

and-elsewhere-is-brown-coal-itself-31375 

 

Rickards L (2015) Metaphor and the Anthropocene: presenting humans as a geological 

force. Geographical Research 53 (3): 280–287. 

 

Romps D, Seeley J, Vollaro D et al. (2014) Projected increase in lightning strikes in the 

United States due to global warming. Climate Change 346 (6211): 851–854. 

 

Rothman HK (2005) A Test of Adversity and Strength. Wildland Fire in the National Park 

System. Washington DC: National Park Service.  

 

Saldanha A (2017) Space after Deleuze. London: Bloomsbury Academic. 

 

Sathaye J, Dale L, Fitts G et al. (2011) Estimating Risk to California Energy Infrastructure from 

Projected Climate Change. Berkeley CA: Ernest Orlando Lawrence Berkeley National 

Laboratory. 

 

Science Communication Unit (SCU), University of the West of England (2013). Science 

for Environment Policy In-depth Report: Soil Contamination: Impacts on Human 

Health.  European Commission DG Environment. Available at: 

http://ec.europa.eu/science-environment-policy 

 

Shifflett S and Shepherd K (2014) How Rising Seas Could Sink Nuclear Plants On The 

East Coast. HuffPost. Available at:  

https://guce.huffpost.com/copyConsent?sessionId=3_cc-session_4cbb15de-88d7-4684-

86e4-dc331c281878&inline=false&lang=en-us 

 

Sobczak B (2013) Thawing permafrost jeopardizes massive maze of Russian pipelines. 

Energywire. Available at: https://www.eenews.net/stories/1059975505 

 

Song Z and Kuenzer C (2014) Coal fires in China over the last decade: A comprehensive 



 28 

review. International Journal of Coal Geology 133: 72–99. 

 

Steffen W, Sanderson A, Tyson PD et al. (2004) Global Change and the Earth System: A 

Planet Under Pressure. Berlin, Heidelberg, New York: Springer-Verlag.  

 

Steffen W, Persson Å, Deutsch L, et al. (2011) The Anthropocene: from global change to 
planetary stewardship, AMBIO 40 (7): 739–761. 
 

Steffen W, Richardson K, Rockström J et al. (2015) Planetary boundaries: guiding human 
development on a changing planet. Science 347 (6223): 1259855. 
 

Steffen W, Leinfelder R, Zalasiewicz J et al. (2016) Stratigraphic and Earth System 

approaches to defining the Anthropocene, Earth’s Future 4 (8): 324-45. 

 

Steffen W, Rockström J, Richardson K, et al. (2018) Trajectories of the Earth System in 

the Anthropocene. Proceedings of the National Academy of Sciences of the United States. 115 (33): 

8252-8259. 

 

Strauss B and Ziemlinski R (2012) Sea Level Rise Threats to Energy Infrastructure.  

Climate Central. Available at: https://www.climatecentral.org/news/energy-infrastructure-

threat-from-sea-level-rise 

  

Tiles M (2009) Technology and Environment. In Olsen JKB, Pedersen SA and 

Hendricks VF (eds) A Companion to the Philosophy of Technology. Malden MA. Wiley-

Blackwell, pp. 233–247. 

   

Tsing AL (2015) The Mushroom at the End of the World: On the Possibility of Life in Capitalist 

Ruins. Princeton, NJ: Princeton University Press. 

 

Walker J and Johnson M (2018) On mineral sovereignty: Towards a political theory of 

geological power. Energy Research & Social Science 45: 56–66. 

 

Whitehouse A and Mulyana A (2004) Coal Fires in Indonesia. International Journal of Coal 

Geology 59: 91–97. 

 

Yan S, Shi K, Liu J et al. (2020) Integration of satellite remote sensing data in 

underground coal fire detection: A case study of the Fukang region, Xinjiang, China. 

Frontiers of Earth Science 14(1): 1–12. 



 29 

 

Yener K (2000) The Domestication of Metals: The Rise of Complex Metal Industries in Anatolia. 

Brill, Leiden. 

 

Yoschenko VI, Kashparov VA, Protsak VP et al. (2006) Resuspension and redistribution 

of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. 

Fire experiments. Journal of Environmental Radioactivity 86: 143–163. 

 

Yusoff K (2017) Geosocial strata. Theory Culture & Society 34 (2-3): 105–127.  

 

Zalasiewicz J, Waters CN and Williams M (2014) Human bioturbation, and the 

subterranean landscape of the Anthropocene. Anthropocene 6: 3–9. 

 

Zalasiewicz J, Steffen W, Leinfelder, R et al. (2017) Petrifying earth process: The 

stratigraphic imprint of key Earth System parameters in the Anthropocene. Theory, Culture 

& Society 34 (2-3): 83–104.  

 

Zalasiewicz J, Waters C, Williams M and Summerhayes C (eds.) (2019) The Anthropocene as 

a Geological Time Unit: A Guide to the Evidence and Current Debate. Cambridge: Cambridge 

University Press. 

 

Zscheischler J, Westra S, Van den Hurk B et al. (2018) Future climate risk from 

compound events. Nature Climate Change 8 (6): 469-477. 

 

Zscheischler J, Martius O, Westra S et al. (2020) A typology of compound weather and 

climate events. Nature Reviews Earth and Environment 1: 333–347 

 

 

 

 

 
1  Each of our categories overlaps with research in the field of ‘natech’ accidents: the 

study of impacts of natural hazards on hazardous industry and infrastructure (Cruz et al., 

2006; Krausmann et al., 2019), although our interest is in the anthropogenic dimension 

on both sides of the convergent catastrophe. In a more general sense, our approach might 

be seen as a subset of the study of the interacting and concatenating impacts of physical 

and social drivers of hazard in the emergent field of inquiry into ‘compound’ or 
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‘connected’ events (Zscheischler et al., 2018; Zscheischler et al., 2020; Raymond et al., 

2020) – with our own particular stress on the stratal or vertical dimension of such events.      

 


