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Abstract

We study a coordination game where N players simultaneously and indepen-
dently decide whether to take a certain action or not. Players’ payoffs depend only
on how many players take each action (i.e., the coalition size) and there is incom-
plete information on players’ types: “Dominant” types have a dominant strategy
and care about “enough” people taking an action. “Non-dominant” types do not
have a dominant strategy due to non-monotone preferences over the coalition size:
their payoffs are maximized when “enough” but “not too many” people take an
action. We focus on the behavior of “non-dominant” types and show how the
frequency of taking each action and (mis)coordination outcomes depend on the
distribution of types and types’ preference heterogeneity. Our experimental results
are (mostly) in line with our theoretical predictions: The frequency of coordination
failure is not only increasing in the preference heterogeneity —as predicted by the
theory, but is also increasing in the share of “non-dominant” types.
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1 Introduction

Imagine you just received an invitation to a picnic party. Each person invited is asked to

contribute either food or beverages, with an equal dollar value, and all food and beverages

are shared among invitees. What should you bring along? A picnic with no beverages is

going to be dry. Not enough food and folks will be hungry. Achieving the perfect mix

of the two requires coordination that is not trivial in the absence of communication and

can be further complicated if preferences are private information.

This strategic situation poses a coordination problem with three core elements: First,

individual players only care about the distribution of choices, i.e., the size of the coalition:

how much food and beverages are there at the picnic, but not who brought what. This

feature is also prevalent in other coordination games, as for instance in standard voting

games. Second, preferences over the size of the coalition may not be monotone,1 which

is a common feature of anti-coordination games. Third, there is incomplete information

about other players’ preferences, which is often the case in several real-world scenarios.

Examples of such situations are found beyond social life. They can arise in teams

working on tasks in which individual effort by any team member may have undesired

externalities. Or in cases where teams are working towards multiple goals simultaneously.

In politics, a similar coordination problem arises in what is known as protest voting.2 In

this case voters are in favor of an incumbent, but may consider voting against her, hoping

that she only gets reelected marginally, in order to express dissatisfaction about the way

she handled certain issues.

Let us now further illustrate the characteristics of the setting we consider by returning

to our simple picnic example. In this case, there are three possible outcomes: a) a

picnic with plenty of beverages but not enough food, b) a picnic with plenty of food but

not enough beverages, or c) a successful picnic offering the right mixture of food and

beverages. Suppose invitees can be of two types. ‘Appetite’ types enjoy the picnic as

1In section 1.1 we further discuss the relationship of our work to the existing literature on coordina-
tion.

2See Kselman and Niou (2011); Myatt (2017).
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long as enough food is provided. They are indifferent between outcomes b and c, and

strictly prefer both to a. ‘Balance’ types also appreciate when enough food is available,

but they strictly prefer a picnic that also offers enough beverages. They strictly prefer

outcome c, followed by b and consider a the worst. Assuming incomplete information and

random draws of types from a commonly known distribution, what should each invitee

contribute to the party? Or, more generally, if in such a coordination problem types are

private information, how are individuals’ choices determined by what they know about

others’ preferences? This is the first question this paper addresses.

Individual choices will of course determine the success of the picnic party. Outcome c

is clearly optimal due to invitees’ efficient coordination: the “right” mixture of beverages

and food is available and both types are satisfied. Outcome a at the other extreme is a

coordination failure: not enough food is provided, letting both types unsatisfied. Outcome

b instead is an outcome of partial coordination: while invitees successfully coordinate so

that enough food is provided, they fail to coordinate so that enough beverages are also

available. ‘Appetite’ types are satisfied, but ‘balance’ types are not. What determines

the frequency of efficient coordination, partial coordination, or coordination failure? This

is the second question this paper addresses.

The picnic party example captures the key elements of the coordination problem at

hand: a number of individuals simultaneously and independently decide whether to take

a certain action or not and there is incomplete information on individual types. Dominant

types have monotone preferences over the number of individuals taking the action (i.e.,

the coalition size) and hence for them taking the action is a dominant strategy (for the

‘appetite’ types in the example, contributing food is a dominant strategy). Non-dominant

types instead have non-monotone preferences over the coalition size and therefore no

dominant strategy (the ‘balance’ types in our example).3 In other words, dominant

types care about the coordination outcome over one threshold: “enough” people taking

the action. Non-dominant types instead care about the coordination outcome over two

3We borrow the definition of types from Baliga and Sjöström (2004); Jelnov et al. (2020).
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thresholds: “enough” but not “too many” people take the action. An important feature

of this setting is that while payoffs depend on one’s type and the number of individuals

taking the action, individual payoffs are the same for two individuals of the same type

taking different actions.

While for dominant types taking the action seems the obvious choice, non-dominant

types (may) need to randomize between taking the action or not. Overall, efficient

coordination cannot be guaranteed. What affects the behavior of non-dominant types

and the frequency of coordination outcomes? Our analysis focuses on two key parameters

of the above-presented setting: i) the distribution of individuals across types, and ii) the

preference heterogeneity across types.

Returning to our simple example, consider the case where ‘balance’ types are rare. It is

evident then that a ‘balance’ type should contribute to the party beverages and the equi-

librium is in pure strategies. As these types become more frequent, the (type-symmetric)

equilibrium is obtained in mixed strategies. In this mixed strategy equilibrium, ‘balance’

types contribute beverages less often as their (expected) share increases. Interestingly,

in equilibrium the frequency of each outcome is not affected by the (expected) share of

non-dominant types. For example, an increase in the (expected) share of ‘balance’ types

is fully offset by the decrease in the probability that each of them contributes beverages

to the picnic, leaving the frequency of each outcome unaffected.

However, the prospects of (un)successful coordination reacts to the degree of prefer-

ence heterogeneity across types. Types are heterogeneous due to the additional utility

‘balance’ types assign to outcome c compared to outcome b, with ’appetite’ types indif-

ferent between outcomes b and c. When this utility difference goes to zero, ‘balance’ and

‘appetite’ types are quite “similar”: both types care about avoiding a party with not

enough food. As this utility difference is getting larger, the type heterogeneity increases:

while ‘appetite’ types still only care about the availability of enough food, ‘balance’ types

have stronger incentives to guarantee the availability of enough beverages. Therefore, an

increase in preference heterogeneity makes ‘balance’ types contribute beverages more of-
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ten, resulting in more parties failing due to the availability of too many beverages and

not enough food, and in fewer parties with too much food and not enough beverages.

More formally, our results show that the frequency non-dominant types take the action

is decreasing in preference heterogeneity. This leads to an increase in the frequency of

coordination failures and a decrease in the frequency of partial coordination. The effect

of preference heterogeneity on the frequency of efficient coordination instead, is inverse-U

shaped.

But is this equilibrium analysis pertinent to settings of empirical interest? To give a

first answer, we take the above theoretical predictions to the laboratory and consider the

simplest possible experimental setup to test them: Two subjects are randomly assigned

either the dominant or non-dominant type with a given probability and choose simulta-

neously and independently whether to take the action or not. Efficient coordination is

achieved when one subject takes the action and the other does not. Both subjects taking

the action results to partial coordination, while none of the two subjects taking the action

results to coordination failure. In this setting, we use a 2x2 factorial design where we

vary the two main parameters of our theoretical setting as far as comparative statics

are concerned: i) the probability subjects are assigned each type (i.e., the distribution

of types), and ii) the utility differential for non-dominant types (i.e., types’ preference

heterogeneity).

Overall, we observe subjects “over-taking” the action in three out of four treatments,

compared to the equilibrium benchmarks. Nevertheless, the comparative statics regard-

ing individual behavior across treatments are very much in line with the theoretical pre-

dictions. Regarding coordination outcomes, in treatments with frequent non-dominant

types, perhaps surprisingly, subjects achieve higher than anticipated levels of efficient

coordination. We provide evidence that indicates that subjects employ what we call role

playing : instead of mixing, a subject adopts a specific role of either always or never taking

the action when assigned a non-dominant type. As we explain in the theory section, this

type of behavior, which can explain the high levels of efficient coordination, would also
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appear if subjects were playing an asymmetric Bayes-Nash equilibrium.

1.1 Related Literature

Theoretical and subsequently experimental research on strategic coordination remains

active for the past three decades (see Cooper et al. 1990; Van Huyck et al. 1990, 1991 and

Ochs 1990 for some early experimental work; Devetag and Ortmann 2007, Weidenholzer

2010 and Camerer 2011 for more recent surveys of the literature). Two opposing building

blocks of these models are present in coordination and anti-coordination games (Chierchia

et al. 2018). In the classical examples of coordination individuals have incentives to match

their actions (e.g., pure coordination games, stag-hunt games, standard voting games, and

many others, see for instance Mehta et al. 1994; Battalio et al. 2001). In the classical

example of anti-coordination instead individuals have incentives to mismatch their actions

(e.g., entry games, see for instance Selten and Güth 1982; Camerer and Lovallo 1999).

Our setup shares features with some coordination games in which players care about

the distribution of choices, but do not necessarily care about the identity of the players

who chose each action. This feature is particularly prevalent in standard voting games

—it does not matter who voted for whom but the election winner. It also shares elements

with anti-coordination games, as a distinctive feature of our model is that preferences

over the size of the coalition need not be monotone.

A common class of coordination problems with preferences over the coalition size –

and irrespective of the specific individual choices– includes work on political economy

and voting in binary elections: voters obtain their type-specific payoff depending on

how many individuals voted for each candidate regardless of whether they voted for one

candidate or another. In classical models of strategic voting in multi-candidate elections

preferences are monotone and there is need for coordination among subjects belonging to

the majority, to avoid a coordination failure where the Condorcet loser wins the election

(Palfrey 1989; Forsythe et al. 1993; Myerson and Weber 1993; Fey 1997; Bouton and

Castanheira 2012; Bouton et al. 2017). Instead, non-monotone preferences –as in our
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setting– appear in the model of protest voting proposed by Myatt (2017).4 In the simplest

version of such model, all voters agree that the incumbent is preferred over her opponent.

While dominant types just rank the two candidates, non-dominant types’ most preferred

outcome is a “successful protest”: enough votes for the incumbent so that she wins the

election, but not too many votes for her so that voters signal their dissatisfaction. Given

that in equilibrium non-dominant types (may) randomize between the two alternatives,

coordination failures resulting to electoral accidents where the incumbent loses cannot be

ruled out. Our experimental analysis directly applies to this setting and presents one of

the first experiments on protest voting. Our results from the laboratory would suggest

that non-dominant types protest more often as they become more fanatic or less popular.

The presence of incentives towards anti-coordination reveals some similarities with

entry games. However, in standard entry games payoffs depend both on the coalition

size and on the choice of the individual, which is not the case in our setup. An addi-

tional distinction of our paper with respect to the respective experimental literature is

that, with some exceptions (e.g., Heinemann et al. 2004; Cabrales et al. 2007; Kaplan

and Ruffle 2012), entry game experiments typically feature complete information (e.g.,

Sundali et al. 1995; Rapoport et al. 1998; Erev and Rapoport 1998; Zwick and Rapoport

2002; Duffy and Hopkins 2005). In our game, players are uncertain about their opponent

types. Nevertheless, our results about individual behavior exhibit some parallelism with

the findings of this literature. Nash predictions do a good job explaining behavior in the

experiment, but whether subjects converge to the unique symmetric mixed strategy equi-

librium or an asymmetric pure strategy equilibrium depends on the particular treatment

parameters used. Hence, our results contribute to the experimental literature of strategic

coordination games with incomplete information.

4The coordination game we present is in fact inspired by Myatt (2017). Nevertheless, the two
models are not nested: Myatt (2017) considers richer environments regarding types and information
(i.e., aggregate uncertainty), but focuses on bell-shaped distributions, which make it hard to disentangle
between the two key elements of our model: the distribution across types and preference heterogeneity.
One can view our experimental results as (mostly) corroborating the main insights of Myatt’s (2017)
formal analysis. For a broader review of the literature on protest voting see Alvarez et al. (2018).
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In what follows we first derive our hypotheses by studying a simple model of coor-

dination with non-monotone preferences (Section 2), we then present our experimental

design (Section 3) and results (Section 4), and, finally, we conclude (Section 5).

2 Formal arguments

Consider a society of N individuals with N ≥ 2. Among them, n individuals, where

2 ≤ n ≤ N , have to make a payoff-relevant binary choice a ∈ {0, 1}, henceforth referred

to as take an action (a = 1) or not (a = 0). Individuals are of two types: “dominant”

or “non-dominant”, denoted {d, nd}. The utility of individual i depends on the size m

of the coalition of individuals whose choice is payoff relevant and take the action, where

0 ≤ m ≤ n. Dominant types only care about “enough” individuals taking the action.

Non-dominant types also care about “enough” individuals taking the action, but they

obtain an even higher utility if “enough” but not “too many” individuals take the action.

Formally,

Ud
i (m) =


0 if m < t1

1 if m ≥ t1

Und
i (m) =


0 if m < t1

1 + h if t1 ≤ m ≤ t2

1 if m > t2

where thresholds t1 and t2, with 1 ≤ t1 ≤ t2 ≤ n−1, quantify the notion of “enough” and

“too many” individuals taking the action.5 The two thresholds determine three possible

coordination outcomes: (i) coordination failure, i.e., m < t1, (ii) efficient coordination,

i.e., t1 ≤ m ≤ t2, and (iii) partial coordination, i.e., m > t2.
6 Parameter h > 0 denotes the

preference heterogeneity across types. The above preferences are summarized in Figure 1.

5The case of t2 = n would be rather uninteresting, as that would mean that non-dominant types
would also have a unique threshold at t1 and would just receive a higher utility than dominant types if
this was surpassed. Thus, they would also have no incentive to not take the action.

6Of course, the payoffs in the partial and efficient coordination outcomes can coincide for certain
realization of types, a situation pertinent in our experimental setting. For consistency, we use this
terminology throughout the paper.
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Figure 1: Preferences for dominant and non-dominant types over the coalition size m and
the three possible coordination outcomes.

The timing is as follows: Nature draws uniformly at random the n individuals out

of the N that will be relevant, i.e., whose actions will be relevant for payoffs. Then,

nature also draws individuals’ types with i.i.d. draws from a binomial distribution with

parameter q ∈ (0, 1), which is common information and represents the probability that

a random individual is assigned the non-dominant type. Each individual observes her

own type and whether or not she is among the n individuals whose actions will be payoff

relevant, but does not observe any of this information for other individuals. Subsequently,

individuals choose simultaneously their (mixed) strategies, where the strategy of player

i is the probability pi with which she takes the action.

At this point, we should stress that the modeling choice of considering a subset of

n ≤ N individuals chosen at random to make payoff-relevant choices is a generalization

of the more natural and standard environment where all N individuals do so. The reason

we do that is because it allows us to get some additional insights on the adoption of

asymmetric equilibrium strategy profiles, i.e., equilibria in which individuals of the same

type choose different strategies. It also permits us to bring the theoretical model closer

to our experimental setting, were we employed a random matching in groups of four with

two individuals playing together.7 The main theoretical results we describe below also

7This assumption is actually realistic in some particular instances, for example elections with sor-
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hold for the case where n = N .

Given that strategic decisions are made simultaneously, the natural solution approach

is to seek for Bayesian Nash Equilibria (BNE). More specifically, we consider the agent-

normal form version of the game, in which each individual at each information set is

considered as a distinct player. An information set here is a pair of type and relevance

–dominant/non-dominant, and relevant/non-relevant. Nevertheless, for simplicity and

given that the choices of non-relevant players do not affect anyone’s payoffs, without loss

of generality, we assume that they always choose to take the action for sure. Thus, with a

slight abuse of terminology, in our subsequent analysis we condition individual behavior

only on type and describe equilibria accordingly.

Throughout the analysis, we treat N , n, t1 and t2 as given, and focus on the com-

parative statics of the distribution of types, q, and types’ preference heterogeneity, h, on

individual behavior and coordination outcomes. Let us define HQ := R+ × (0, 1), which

is the set of admissible pairs (h, q).

Non-Responsive equilibria

The game we described admits a large number of equilibria in which players’ actions and

the outcome do not depend on the draw of types. These include, for example, the cases

where t1 > 1 and t2 < n− 1 and either all or none of the players take the action. It also

includes equilibria in which specific players take the action and the rest do not.

We find these equilibria to be less interesting in our setup, since in many cases these

equilibrium strategy profiles require the use of dominated strategies by some players,

namely dominant types required to not take the action in equilibrium. Thus, in the

current setup it is unlikely for such behavior to emerge in a decentralized manner.

For the remainder of the paper we focus on equilibria that are responsive: the equi-

librium outcome is not constant in the players’ type distribution. That is, given an

tition, dating back in the Athenian democracy where individuals were randomly chosen to participate
in the election (see for example Saran and Tumennasan 2013, 2019 for theoretical research on elections
with sortition).
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equilibrium strategy profile, there is at least one possible draw of players’ types that

results in a different outcome. Thus, we do not require that every player changes their

strategy according to their type, but some do and are able to affect the outcome.

Type-symmetric equilibria

We start our analysis focusing on symmetric equilibria. Symmetry requires that all

players of the same type employ the same strategy. It rules out equilibria in which

different players behave differently when they are assigned the same type.

The following proposition characterizes the unique BNE that is both symmetric and

responsive in our setting.

Proposition 1. Let

q̃(h) = 1− 1

1 +
[

h
1+h

(t1−1)!(n−t1)!
t2!(n−t2−1)!

] 1
t2−t1+1

For each pair (h, q) ∈ HQ, there exists a unique BNE that is both symmetric and respon-

sive:

1. When q ≤ q̃(h), the equilibrium is in pure strategies: each individual chooses to take

the action when assigned a dominant type and not to take the action when assigned a

non-dominant type.

2. When q > q̃(h), the equilibrium is in mixed strategies: each individual chooses to take

the action with probability equal to 1 when assigned a dominant type and to take the

action with probability equal to p(h, q) = q−q̃(h)
q

when assigned a non-dominant type.

The threshold value q̃(h) determines whether non-dominant types follow a pure strategy

and never take the action or they randomize between the two actions. If the probability

with which individuals are assigned a non-dominant type is relatively low, i.e., if q ≤ q̃(h),

then most likely there are not going to be enough non-dominant types to give rise to

a coordination failure, and hence non-dominant types never take the action. On the
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contrary, if q > q̃(h), non-dominant types follow a mixed strategy where they take the

action with some positive probability p(h, q). This probability is computed so that non-

dominant types are indifferent between taking the action or not. Given p(h, q), we can

also compute the probability with which a random payoff-relevant individual, henceforth

called a random individual, takes the action in equilibrium, which we shall denote by

r(h, q).8

When individuals are assigned a non-dominant type with low probability, i.e., when

q < q̃(h), the comparative statics are obvious. In this region, both types follow pure

strategies, with dominant types taking the action and non-dominant types not taking

the action. Thus, the probability that a random individual takes the action equals the

probability with which an individual is assigned a dominant type, i.e., r(h, q) = 1−q, and

is hence decreasing in q. The arguably more interesting comparative statics appear in the

region where individuals are assigned a non-dominant type with high enough probability,

i.e., when q > q̃(h). In these cases, the probability that a random individual takes the

action is r(h, q) = (1 − q) + q × p(h, q). These comparative statics results summarized

in the following proposition pave the ground for our main empirical hypotheses; the ones

that we subsequently test in the laboratory.

Proposition 2 (Comparative Statics). For each pair (h, q) ∈ HQ, in the unique BNE

that is both symmetric and responsive, the probability p(h, q) with which non-dominant

types takes the action and the probability r(h, q) with which a random individual takes the

action satisfy the following:

• If (h, q) is such that q > q̃(h):

1. p(h, q) is strictly increasing in q and strictly decreasing in h,

2. r(h, q) = (1− q) + q × p(h, q) does not vary in q and is decreasing in h.

• If (h, q) is such that q < q̃(h):

8Under the assumption of symmetry, this probability is the same for all individuals and it is calculated
conditional on the individual being payoff relevant, but before the realization of types.
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1. p(h, q) = 0,

2. r(h, q) = 1− q is strictly decreasing in q and does not vary with h.
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Figure 2: An example where n = 2, t1 = t2 = 1. Solid line for h = 1, dashed line for
h = 5. Value of q̃(h) is 1/3 for h = 1 and 5/11 for h = 5.

Given some level of type heterogeneity h, for any value of q > q̃(h) the equilibrium

probability with which non-dominant types take the action is increasing in q. As non-

dominant types are assigned more frequently, they have incentives to take the action

more often to avoid a coordination failure. The exact shape of p(h, q) for an example

with n = 2 is depicted in Figure 2a. Figure 2b instead illustrates the probability with

which a random individual (without conditioning on type) takes the action. As we have

already mentioned, for q < q̃(h) this probability is linearly decreasing in q, whereas, more

interestingly, for q > q̃(h) it does not depend on q. The mixed strategy played by non-

dominant types ensures exactly that. More specifically, in expectation, non-dominant

types choose how often to take the action so that the “right” share of individuals is

taking the action. This “right” share ends up being independent of q and is, in fact,

equal to 1 − q̃(h). Hence, a change in the distribution of types (i.e., in q) triggers an

appropriate downward adjustment in the individual frequency with which non-dominant

types take the action. The two effects counterbalance each other and as a result they
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leave the likelihood of each coordination outcome unaffected.

Given a fixed probability q, as long as (h, q) is such that q > q̃(h), changes in type

heterogeneity h also affect the probability that a randomly chosen individual takes the

action and therefore the likelihood of each coordination outcome. As the type hetero-

geneity increases the utility difference for a non-dominant type between the efficient and

partial coordination increases, providing incentives to non-dominant types to take the

action less often (see Figure 2a). Given that q is fixed, an increase in h –as long as it does

not result to q < q̃(h)– results to a decrease in the probability that a random individual

is taking the action. This increases the frequency of coordination failures and decreases

the frequency of partial coordination. The relationship between this probability and the

frequency of efficient coordination instead is non-monotonic. The left panel of Figure 3

illustrates the relationship between the probability a random individual takes the action

and the frequency of coordination outcomes for our example with n = 2 and t = 1.

On the right panel of Figure 3, we represent the same frequencies of coordination out-

comes on the simplex. The dashed line on the simplex represents the expected frequencies

of the three outcomes assuming that a randomly chosen individual takes the action with

any probability in the [0, 1] interval. If this probability is one, individuals partially coor-

dinate with certainty and we are at the northern corner of the simplex. As the probability

to take the action decreases, we move along the dashed line till coordination fails surely

when randomly selected individuals never take the action. Both panels of Figure 3 also

illustrate the expected frequencies of the three outcomes in our two-individuals example

with h = 1 and h = 5 when non-dominant types play the mixed strategy characterized

in Proposition 1 and hence the probability of a random voter taking the action is 6/11

and 2/3 respectively.

Type-asymmetric equilibria in pure strategies

Next, we extend our analysis by relaxing the assumption of symmetry, but maintaining the

requirement of equilibria to be responsive. Out of all possible type-asymmetric equilibria,
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Figure 3: The left panel presents the frequencies of coordination outcomes in the example
where n = 2, t1 = t2 = 1 assuming that a randomly selected individual takes the action
with a given probability [0, 1]. For h = 1 the probability a random individual takes the
action is 2/3. For h = 5 this probability is 6/11. The right panel contains a representation
of such frequencies on the simplex. Both representations highlight that this specific
increase in h —accompanied by a decrease in the probability a random individual takes
the action— increases the frequency of coordination failures and efficient coordination
and decreases the frequency of partial coordination.

we restrict our attention to type-asymmetric BNE in pure and undominated strategies.

As we shall see, asymmetries allow different players to assume different “roles” in the

game, with some of them conditioning their choices on their type and others always simply

taking the action irrespective of their type. Such role-playing behavior is interesting in its

own right, even beyond the scope of equilibrium, especially in light of our experimental

findings.

The characteristics of asymmetric responsive BNE in pure and undominated strategies

that we focus on are the following: (1) each individual chooses to take the action when

assigned a dominant type, (2) K out of the N individuals choose to take the action also

when assigned a non-dominant type, whereas the rest N −K individuals do not take the

action when assigned a non-dominant type, and (3) 1 ≤ K ≤ N − n+ t2. Condition (3)

guarantees that the equilibrium will be responsive. If in some equilibrium most of the

players, though not necessarily all, were to choose to take the action even when assigned

a non-dominant type (i.e., K ≥ N − n + t2 + 1), then any draw of players’ types would
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lead to the same outcome, thus would not be responsive. Such equilibria may exist here,

but condition (3) rules them out. Henceforth, we refer to such a BNE as a role-playing

equilibrium.

Proposition 3. Let q̃(h) be the same as defined in Proposition 1. Then, for a pair of

parameters (h, q) ∈ HQ:

1. When q ≤ q̃(h), the game has no role-playing equilibrium.

2. When q > q̃(h), the game has at least one role-playing equilibrium and in any role-

playing equilibrium it holds that K < N − n+ t1.

Proposition 3 provides useful intuition. First, it strengthens further the appeal of the

symmetric pure strategy equilibrium for parameter values below the threshold q ≤ q̃(h).

Second, for values above the threshold, not only guarantees the existence of a role-playing

equilibrium, but also provides a partial characterization. To observe that, note that the

threshold of K below which role-playing equilibria are proven to exist is lower than

the threshold that induces responsiveness. This means that role-playing equilibria will

typically involve a substantial share of players assuming each of the two roles.

Additionally, the proof of this result contains an explicit expression of the conditions

on expected utilities that need to be satisfied in an equilibrium, which are quite intu-

itive. Namely, increasing (decreasing) the number of non-dominant types who take the

action by one has two opposite effects: it increases (decreases) the likelihood of passing

from a coordination failure to efficient coordination, but it also increases (decreases) the

likelihood of passing from efficient coordination to partial coordination. An equilibrium

is such that either an increase or a decrease in the number of non-dominant types who

take the action makes the respective negative effect prevail over the positive one.

The explicit equilibrium conditions –despite their complexity– can also allow us to

point down all such equilibria for any specific choice of parameter values. This is helpful,

because it could allow us to obtain a better understanding of the number and properties
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of such equilibria for any configuration of interest. The following corollary characterizes

the role-playing equilibria for each of our four experimental treatments.

Corollary 1. Let N = 4, n = 2 and t1 = t2 = 1. Then,

1. for (h, q) = (1, 0.5), there are two role-playing equilibria, with K = 1 and K = 2.

2. for (h, q) = (1, 0.8), there is one role-playing equilibrium, with K = 2.

3. for (h, q) = (5, 0.5), there is one role-playing equilibrium, with K = 1.

4. for (h, q) = (5, 0.8), there is one role-playing equilibrium, with K = 2.

3 The Experiment

3.1 Design

The experiment took place at the Laboratory for Experimental Economics at the Uni-

versity of Cyprus. A total of 128 subjects were recruited in 8 sessions, with 16 subjects

in each session.9 The experiment consisted of 100 rounds, prior to which there were 2

practice rounds that aimed at helping the subjects familiarize with the environment. Av-

erage total payment was approximately 17.4 euros, including 5 euros as a participation

fee, and the experiment lasted about 90 minutes.10

The experiment employed the simplest version of the coordination game described

in Section 2 with two subjects simultaneously deciding whether to take the action or

not. Efficient coordination was achieved when the two subjects mismatched their actions

with matching actions instead resulting to either partial coordination or coordination

failure.11 We used a 2 × 2 factorial design with two sessions per treatment. The two

treatment variables were: (i) the types heterogeneity, H, and (ii) the distribution of

types, q. Heterogeneity refers to the payoff (in tokens) that non-dominant types enjoy in

9Recruitment was done via ORSEE (Greiner et al. 2004).
10The experiment was designed and run on z-Tree (Fischbacher 2007).
11This would correspond to threshold values t1 = t2 = 1 and n = 2.
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the event of an efficient coordination, and may take one of two values in each treatment:

H ∈ {300, 700}. The probability q of a subject being assigned the non-dominant type

was also selected from two possible values in each treatment: q ∈ {0.5, 0.8}. A summary

of the experimental design is shown in Table 1.

Treatment Heterogeneity (H) Distribution (q) Subjects Sessions Subgroups

(300, 0.5) 300 0.5 32 2 8

(300, 0.8) 300 0.8 32 2 8

(700, 0.5) 700 0.5 32 2 8

(700, 0.8) 700 0.8 32 2 8

Total: 128 8 32

Table 1: The four treatments.

The two subjects of each pair were asked to either take the action or not. When no

subject took the action, coordination failed and both players received 100 tokens. When

both subjects took the action, partial coordination arose and both players received 200

tokens. When the two subjects mismatched their actions: dominant types received 200

tokens and non-dominant types received H tokens. The value of H varied in different

treatments. Table 2 summarizes the possible outcomes and payoffs. In the experiment

we used a neutral frame.12

Note that the payoffs in tokens are a monotone transformation of those described in

Section 2. Namely, for an outcome that would yield utility U to a subject, the subject

would receive 100(1+U) tokens. In the current setup, this transformation does not affect

the theoretical predictions. Heterogeneity H = 300 (H = 700) corresponds to h = 1

(h = 5) in the theoretical analysis.

In each round, subjects were randomly matched in pairs and played a one–shot game

with their assigned pair. We used a stranger matching protocol to avoid any repeated

game effects. To maintain a sufficient number of independent observations, pairs were

12The two available actions are presented as “choosing X or O”. Again, see the instructions in the
Appendix for details.
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actions: 00 10 or 01 11
outcome: Coordination failure Efficient coordination Partial coordination

Non-dominant 100 S ∈ {300, 700} 200

Dominant 100 200 200

Table 2: Round payoffs in tokens, for each type, depending on outcomes.

drawn from subgroups of four subjects (i.e., N = 4 and n = 2). Subjects were told that

the matching was random and that in each round it was more likely to not be matched

with the same subject as in the previous round, while the existence of these subgroups

was not detailed to subjects.13 This design choice is not behaviorally neutral and we

come back to that in Section 4.3.

Types were assigned randomly and independently for each subject in each round.

Subjects knew their own type but not the type of their partner. They also knew the

distribution of types. The process was represented to them as draws (with replacement)

from a single urn with red and blue balls. In the treatments where q = 0.5 the urn

contained five balls of each color, whereas in treatments where q = 0.8 the urn contained

two red balls and eight blue balls. Drawing a blue ball meant that a subject was a non-

dominant type in that round. Both subjects knew the composition of the urn. They

could see the ball that was drawn for them, but not the one drawn for their partner. The

composition of the urn remained the same throughout each session.

At the end of each round, subjects were informed about the choice of their partner

and their payoff from that round. Final earnings were determined by the sum of the

subject’s payoffs in 10 randomly selected rounds out of the 100.14 The conversion rate

used in the experiment was 1 euro for every 250 tokens.

13See instructions in the Appendix.
14Subjects were paid based on a random subset of rounds to avoid any wealth effects. Given the

large number of rounds in the experiment, we did not pay for a single randomly picked round to keep
monetary incentives salient, as some subjects may underweight the very small likelihood of a particular
round being picked (Hertwig et al. 2004).
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3.2 Testable Hypotheses

Similar to our theoretical setting, dominant types have a straightforward payoff-maximizing

option (i.e., to take the action). Hypothesis 0 summarizes this behavior. Hypotheses 1

and 2 instead summarize non-dominant types’ behavior as predicted by Proposition 2.

Recall that as summarized in Figure 2a, for a given q, non-dominant types take the ac-

tion less often as the heterogeneity increases. Similarly, for a given level of heterogeneity,

non-dominant types take the action more often as q increases. The exact values for the

mixed strategy equilibrium probabilities that a non-dominant type takes the action in

our experimental setup are given in Table 3 in the following section.15

Hypothesis 0. Dominant types take the action always in all treatments.

Hypothesis 1. For a given probability q ∈ {0.5, 0.8}, non-dominant types take the ac-

tion less often in the high heterogeneity treatment (700, q) than in the low heterogeneity

treatment (300, q).

Hypothesis 2. For a given heterogeneity H ∈ {300, 700}, non-dominant types take the

action more often in the high probability treatment (H, 0.8) than in the low probability

treatment (H, 0.5).

Hypotheses 3 and 4 and Table 4 summarize the predictions of our model regarding

the likelihood of outcomes across treatments (see Figure 3 for the corresponding theoret-

ical predictions). Recall that there are three possible outcomes from a pair’s choice: i)

Coordination failure: None of the two subjects takes the action and each individual gets

the lowest possible payoff, irrespective of her type, ii) Efficient coordination: One subject

takes the action and the other not, and any subject that is a non-dominant type gets the

maximum payoff, and iii) Partial coordination: Both subjects take the action and hence

the intermediate payoff, regardless of their type.

15Those values can be directly obtained from Proposition 1 by substituting the relevant parameters
of our experimental treatments (i.e., n = 2, t1 = t2 = 1, and q ∈ {0.5, 0.8}, h ∈ {1, 5}). Actually, those
values are the ones that are used in our example of Figures 2 and 3.
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Hypothesis 3 fixes the probability q and permits the heterogeneity H to vary. One

of our main comparative statics shows that coordination failures occur more often as the

heterogeneity increases. This increase in coordination failures goes hand in hand with an

increase in the frequency of instances of efficient coordination and a decrease in instances

of partial coordination.

Hypothesis 3. For a given probability q ∈ {0.5, 0.8}, coordination failures and efficient

coordination occur more often in the high heterogeneity treatment (700, q) than in the

low heterogeneity treatment (300, q). Partial coordination occurs more often in the low

heterogeneity treatments (300, q) than in the high heterogeneity treatments (700, q).

Hypothesis 4 instead fixes the heterogeneity and varies the probability with which

nature assigns non-dominant types. As we have shown, changes in q do not affect the

frequency of different coordination outcomes. This is because the mixed strategy equilib-

rium strategies adjust to changes in heterogeneity (Hypothesis 2), letting the frequency

of outcomes invariant to changes in heterogeneity.

Hypothesis 4. For a given heterogeneity H ∈ {300, 700}, coordination failures, partial

coordination, and efficient coordination occur equally often in the high and low probability

treatments (H, 0.8) and (H, 0.5).

4 Results

We first present results regarding individual behavior and then we argue how such be-

havior translates to coordination outcomes.

4.1 Individual behavior (Hypotheses 0-2)

Table 3 shows the symmetric (mixed Bayesian Nash) equilibrium predictions for each type

in each treatment, as well as the corresponding mean frequency of individuals taking the

action observed in the data. Focusing on the lower part of the table, it is reassuring to
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note that in line with Hypothesis 0, dominant types seem to realize that taking the

action is payoff maximizing and almost always follow this strategy. Thus, we can now

focus on the behavior of non-dominant types.

Figure 4 summarizes the behavior of non-dominant types across treatments, compares

that with the Nash predictions, and summarizes relevant tests for differences across treat-

ments. In general we find significant treatment effects as subjects respond to the changes

in the treatment variables. When comparing behavior to that predicted by theory, we

find that in three out of four treatments, non-dominant types take the action more often

than the equilibrium prediction. The exception is the treatment (300, 0.8), where the

frequency observed in the data is not statistically different from a BNE. For all other

treatments, we have statistically significant over-taking of the action (see Figure 4).

H = 300 H = 700

q = 0.5 q = 0.8 q = 0.5 q = 0.8

Non-dominant
Nash

0.333 0.091
0.583 0.432

Data
0.409 0.308

0.56 0.483

Dominant
Nash

1 1
1 1

Data
0.988 0.959

0.971 0.976

Table 3: Equilibrium and actual frequency of taking the action.

Regarding Hypotheses 1 and 2, although the frequency of taking the action is

mostly different from the equilibrium predictions, comparative statics move in the pre-

dicted directions. Performing Wilcoxon rank sum tests comparing the data in two treat-

ments aggregated at the subgroup level (8 observations per treatment) yields low p-values

for all treatment effects on the average frequency of taking the action. First, for a given

probability q, taking the action among non-dominant types is decreasing in the hetero-
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Figure 4: The cyan dots indicate the average frequency of non-dominant types taking
the action in each treatment. Error bars indicate 95% confidence intervals for the mean,
constructed using 5000 bootstrap samples from the data clustered at the subgroup level.
The red X’s mark the Nash prediction for each treatment. The p-values refer to the
result of a Wilcoxon rank sum test comparing the data in two treatments, indicated by
the horizontal bars, aggregated at the subgroup level (8 observations per treatment)

geneity H (p-values <0.01). Second, for a given heterogeneity H, taking the action among

non-dominant types is increasing in the probability q (p-values <0.05).

As discussed in Section 4.4, there is some evidence of learning, as individual subjects

behave differently in earlier compared to later rounds. Nevertheless, on an aggregate level

there is no difference in the frequency of taking the action across rounds in any of the

four treatments.
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4.2 Coordination outcomes (Hypotheses 3 & 4)

Table 4 shows the outcome distribution in the experimental treatments and the corre-

sponding Nash equilibrium distribution. Figure 5 summarizes those outcome distribu-

tions on the simplex. It also reports the p-values for a bootstrapped Hotelling test for

compositional data (Tsagris et al. 2017) comparing treatments.16

The prediction of Hypothesis 3 is supported in our data. As we see in Table 4,

for a given probability q, we observe more instances of efficient coordination and more

coordination failures as the heterogeneity increases, while the frequency of instances of

partial coordination decreases. As we see in Figure 5, the corresponding p-values are

0.057 for the high probability treatment (i.e., q = 0.8), and 0.053 for the low probability

treatment (i.e., q = 0.5). In line with our theoretical prediction: For a given q, as

types’ heterogeneity H increases, non-dominant types realize the potential gain from an

efficient coordination and take the action less often (Hypothesis 1), therefore increasing

the frequency of coordination failures and of instances of efficient coordination.

Contrary to what we find for the previous hypothsesis, there is little evidence in sup-

port of Hypothesis 4. Recall that according to theory, for a given H, changes in q

should not affect the frequency of the three outcomes. Table 4 instead indicates that for

either level of heterogeneity, as the non-dominant types are assigned more frequently, the

frequency of outcomes varies. Our data shows that for a given H there are more coor-

dination failures, more instances of efficient coordination, and fewer instances of partial

coordination in the high probability treatments than in the low probability treatments.

These results are also visualized in Figure 5. For a given level of heterogeneity H, an

increase in q moves the distribution point south-east, and those movements are statisti-

cally significant (p-values are 0.035 for the high heterogeneity treatment (i.e., H = 700),

and 0.015 for the low heterogeneity treatment (i.e., H = 300). While the increase in effi-

cient coordination and coordination failures have opposite effects on welfare, the former

16Comparing treatments by each outcome separately and ignoring the compositional nature of the
data, i.e., outcome frequencies add-up to one, yields lower p-values. Hence, the test we use is more
conservative than other, less appropriate approaches.
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H = 300 H = 700

q = .5 q = .8 q = .5 q = .8

Coordination
failure

Nash
.111 .207

.111 .207

Data
.087 .120

.100 .148

Efficient
coordination

Nash
.444 .496

.444 .496

Data
.422 .484

.512 .538

Partial
coordination

Nash
.444 .297

.444 .297

Data
.491 .396

.388 .314

Table 4: Frequencies of the three possible coordination outcomes

is much more pronounced. This leads to an overall higher efficiency when q is higher.

4.3 Asymmetric behavior

Figure 5 depicts expected and actual outcomes’ distributions on the simplex. The dashed

line coincides with the one on the right panel of Figure 3. It represents the expected

frequencies of the three outcomes assuming a symmetric behavior by all individuals,

i.e., all dominant types taking the action always and all non-dominant types taking the

action with some given probability in the [0, 1] interval. If non-dominant types always

take the action, partial coordination is guaranteed and we are at the northern vertex

of the simplex. As the (symmetric) probability of not taking the action increases we

move along the dashed line. The ending point of that curve illustrates the frequency of

outcomes when non-dominant types never take the action. The illustrated dashed line

in Figure 5 is plotted for q = 0.8. While varying the level of q does not affect the shape

of the curve, it affects its ending point. That is, for lower levels of q this curve would
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0.057

Data {.5, 300}

Data {.5, 700}

Data {.8, 300}

Data {.8, 700}

Nash {q, 300}

Nash {q, 700}

0.053

0.035

0.015

Figure 5: Outcome frequencies for our experimental data across the four treatments and
Nash predictions on the simplex. The numbers next to the large braces report p-values
for a bootstrapped Hotelling test for compositional data (Tsagris et al. 2017). The dashed
line coincides with the one on the right panel of Figure 3. The dot clouds are proxies for
confidence intervals and are obtained by simulating behavior by all individuals as detailed
in Section 4.3.

be “shorter”, and for higher levels of q it would be “longer”. The larger red dot on the

curve illustrates the ending point for q = 0.5. Finally, note that the dashed line passes

through the predictions of the symmetric mixed equilibrium of our model.

To obtain a feeling of the distance between the predicted and observed distribution of

outcomes we use simulations. In each simulation, a pair is drawn 100 times with q = 0.5

(red dots) or q = 0.8 (gray dots) and the two individuals play as follows: dominant types

always take the action; for non-dominant types we fix a level for the probability of taking

the action p ∈ {0, .01, .02, ..., 1} and run the simulation 100 times for each given level. For

the simulations where the probability of taking the action equals the one predicted by the

symmetric BNE we color the dots green (when q = 0.5) and blue (when q = 0.8). The

colored “clouds” of simulated outcome distributions form pseudo-“confidence intervals”

–CI clouds– for the outcome distribution expected in the experiment.

A first observation is that Figure 5 visually confirms what is indicated in Table 4.
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Namely, the observed outcomes are far from the corresponding symmetric Nash predic-

tions. Nevertheless, in the treatments in which q = 0.5 it cannot be ruled out, based

on our simulations, that subjects are using a symmetric strategy, as in both cases the

distribution of outcomes is “within the CI cloud” surrounding the dashed line. The same

cannot be said for the two treatments where q = 0.8. In these treatments the outcome

distributions are too far to the right of the dashed line.

The area on the right of the dashed line represents the expected frequencies of co-

ordination outcomes when individuals adopt asymmetric strategies. To see why this is

the case, consider scenario where half of the non-dominant types take the action with

probability p + α and the other half does so with probability p − α, for some α ∈ [0, p].

Whatever the value of α, the probability that a random individual takes the action is

always the same, namely (1 − q) + q × p. However, it is easily verified that for a fixed

p, the probability of efficient coordination is increasing in α, while the probability of the

other two outcomes is decreasing.

The above suggests that the observed outcome distributions, especially in the q = 0.8

treatments, may be the result of subjects employing asymmetric strategies. In Figure

6, we plot the distribution of the frequencies with which non-dominant types take the

action, across treatments. Differences are apparent and in line with those suggested by

Figure 5. Observe first the top two panels of Figure 6 that refer to the low probability

treatments (q = 0.5). The distribution is essentially unimodal, with a great mass of non-

dominant types adopting a homogeneous behavior of never taking the action. Instead, in

the high probability treatments (q = 0.8), shown in the lower two panels, the distribution

is bimodal. A mass of non-dominant types always takes, and another mass of them never

takes the action; indicating an, arguably, more heterogeneous behavior.

These differences are compatible with the predictions of the asymmetric role-playing

equilibria described in Propositions 3 and Corollary 1. Recall from the experimental

design that in each round subjects were randomly matched with another subject from

a subgroup of four. Therefore, our experimental setup corresponds to our modeling
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Figure 6: Histograms show the distribution of individual frequencies for non-dominant
types taking the action, by treatment. There are 32 individuals in each treatment.

environment with parameter values N = 4, n = 2 and t1 = t2 = 1. For these values,

Corollary 1 shows that in each of the treatments there is some role-playing equilibrium

in which one or two individuals take the action also when assigned a non-dominant

type, while the rest do not. More specifically, in the treatments in which non-dominant

types are more likely to appear (i.e., q = 0.8) the role-playing equilibrium predicts a

higher number of individuals who would take the action even when assigned a non-

dominant type, in order to decrease the likelihood of a coordination failure. This pattern

of behavior is largely observed in Figure 6, which highlights the differences between the

unimodal distributions in the low probability treatments, and the bimodal distributions

in the high probability treatments.
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4.4 Learning

The experiment lasted for 100 rounds, so there was ample opportunity for subjects to

adjust their behavior and learn how to play. In this section we take a closer look at

possible learning patterns.

At the aggregate level, there seems to be very little change across the experiment. Fig-

ure 8 in the appendix shows how the average frequency of taking the action evolved across

rounds in each treatment. It is clear that these frequencies remain quite stable. This

seems to indicate that subjects do not change their behavior throughout the experiment.

Taking a closer look at individual behavior reveals a more nuanced picture.

In Figure 7 we again plot the distribution of the frequencies with which non-dominant

types take the action, across treatments, only now we do it separately for every 20 rounds

of the experiment. In the first 20 rounds in all treatments, most subjects are mixing to

some degree between taking the action or not. Already in rounds 21 to 40, a majority of

subjects have switched to some form of role-playing behavior, where they almost always

either take the action or not. In later rounds this role-playing behavior becomes even

more pronounced.

To summarize, we observe the treatment effects on individual behavior to be present

from the start, and all in line with the comparative statics predicted by theory. Still,

subjects transition from an initial phase of mostly mixing (rounds 1-20) to adopting role-

playing behavior in later rounds. So, while behavior does not get closer to equilibrium,

it does move away from mixing and closer to role-playing.
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Figure 7: Histograms show the distribution of individual frequencies for non-dominant
types taking the action, by treatment, in each 20 round interval. There are 32 individuals
in each treatment.

5 Conclusions

We examine a novel coordination problem that combines features of both coordination

and anti-coordination games in the presence of incomplete information. The comparative

statics obtained by the theoretical analysis do a good job in capturing how individuals

react to changes in the game’s parameters. Of course, the theoretical predictions do not

match the experimental results perfectly. One result that we did not anticipate and is

worth highlighting is the fact that subjects in the experiment are able to achieve higher

payoffs in the treatments with more uncertainty about their opponents strategy. The

behavior of dominant types is almost perfectly predictable, so one might expect things to

be easier for a non-dominant type when it is more likely for the opponent to be a dominant

type. We find the opposite to be true. This seems to be related to the superiority of

role-playing behavior, which subjects did adopt, versus symmetric mixing. The positive

effect on payoffs then becomes more salient in the environment with more non-dominant
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types that role-play.

In the context of protest voting à la Myatt (2017), which provided the first inspiration

for this paper, this result issues additional caveats regarding protest campaigns: fringe

candidates may gain not only by fanaticising protest voters as suggested by the formal

analysis, but also by expanding their popular base. As it was found, such strategy, im-

proves not only the chances of a successful protest, but also of an electoral accident where

the alternative preferred by the majority of voters loses against an inferior opponent.

Role playing is interesting beyond the specific treatment effect. The existence of

role-playing equilibria that can increase every player’s payoff compared to the symmetric

mixed strategy equilibrium is in fact a special feature of our game, which only became

apparent after conducting the experiment. In the context of teams, such equilibria provide

a rationale for specialization that is unrelated to comparative advantage, namely that of a

coordination device. For instance, in teams that need to act fast roles are predetermined,

not necessarily on the basis of ability, but mainly because it cuts down on time-consuming

communication. This is why a combat unit maintains a watch rotation. While this insight

is not novel, we are not aware of other simple games that feature such equilibria. Our

game might therefore prove useful in theoretical or experimental studies of organizations.
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A Proofs

Proof of Proposition 1: Let us first look at the behavior of individuals who are

assigned a dominant type. The expected utility an arbitrary such individual gets by

taking the action is equal to EUd(1) = (1) ×

[
n−1∑

k=t1−1

(
n−1
k

)
rk(1 − r)n−1−k

]
and by not

taking the action it is equal to EUd(0) = (1) ×

[
n−1∑
k=t1

(
n−1
k

)
rk(1 − r)n−1−k

]
, where r is

the probability that a random individual takes the action in a symmetric strategy profile.

Thus, EUd(1) ≥ EUd(0) for all 1 ≤ t1 ≤ n− 1 and for all r ∈ [0, 1]. Therefore, whenever

an individual is assigned a dominant type, taking the action is a best response to any

beliefs and in all but the two cases described below it is actually the unique best response.

Not taking the action when assigned a dominant type could only be a best response

when (i) all other individuals are expected to not take the action with certainty irre-

spective of their type, i.e. r = 0, or when (ii) all other individuals are expected to take

the action with certainty irrespective of their type, i.e. r = 1. In both of these cases,

an equilibrium in which the said individual puts a positive probability in not taking the

action when being assigned a dominant type would either be non-responsive –case (i)–

or asymmetric –case (ii). Namely, in case (i), the unique symmetric equilibrium in which

dominant types put positive probability to not taking the action is such that all individu-

als choose with certainty not to take the action irrespective of their type. This would not

be responsive. On the other hand, in case (ii) all other individuals would choose to take

the action irrespective of their type, thus a strategy that would put positive probability

in not taking the action would violate symmetry.

Hence, let dominant types take the action with certainty. By symmetry, we have

that any equilibrium is essentially characterized by a single number, p, which denotes

the probability with which an individual takes the action when assigned a non-dominant

type. For the equilibrium to also be responsive, this probability, p, should be different

than one. This rules out the pure strategy equilibrium where all individuals take the

action irrespective of their type.

36



The probability p is strictly between zero and one only if an individual who is assigned

a non-dominant type is indifferent between taking the action or not. If r denotes again

the probability that a random individual takes the action, then in equilibrium q, r and p

should satisfy that r = (1− q) + q× p, or equivalently 1− r = q× (1− p). The expected

utility obtained by an individual who is assigned a non-dominant type if she takes the

action is:

EUnd(1) = (1+h)×

[
t2−1∑

k=t1−1

(
n− 1

k

)
rk(1−r)n−1−k

]
+(1)×

[
n−1∑
k=t2

(
n− 1

k

)
rk(1−r)n−1−k

]

while her expected utility by not taking the action is

EUnd(0) =


(1 + h)×

[
t2∑

k=t1

(
n−1
k

)
rk(1− r)n−1−k

]
+ (1)×

[
n−1∑

k=t2+1

(
n−1
k

)
rk(1− r)n−1−k

]
if t2 ≤ n− 2

(1 + h)×

[
n−1∑
k=t1

(
n−1
k

)
rk(1− r)n−1−k

]
if t2 = n− 1

Hence, for a non-dominant type to be indifferent between taking the action or not the

following equality must hold:

EUnd(1) = EUnd(0)⇔ (1 + h)

(
n− 1

t1 − 1

)
rt1−1(1− r)n−t1 = h

(
n− 1

t2

)
rt2(1− r)n−1−t2

Solving with respect to r we get that

r =
1

1 +
[

h
1+h

(t1−1)!(n−t1)!
t2!(n−t2−1)!

] 1
t2−t1+1

And given that r = (1− q) + q × p, we can solve for p to obtain:

p(h, q) =

1

1+
[

h
1+h

(t1−1)!(n−t1)!
t2!(n−t2−1)!

] 1
t2−t1+1

− 1 + q

q
=
q − q̃(h)

q

where q̃(h) := 1− 1

1+
[

h
1+h

(t1−1)!(n−t1)!
t2!(n−t2−1)!

] 1
t2−t1+1

.
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Finally, notice that a mixed-strategy equilibrium exists if and only if p(h, q) ∈ (0, 1).

The condition p(h, q) < 1 is trivially satisfied because q̃(h) > 0 for all admissible pa-

rameter values. On the other hand, the condition p(h, q) > 0 requires that q > q̃(h).

Thus, a mixed equilibrium exists whenever q > q̃(h). When q < q̃(h) we have that

EUnd(1) < EUnd(0) for every p ∈ [0, 1], and, hence, the unique equilibrium that satisfies

our properties is the pure one in which non-dominant types do not take the action with

certainty. The same holds for q = q̃(h), as in this case EUnd(1) = EUnd(0) for p = 0 and

strictly negative for any p > 0.

Proof of Proposition 2: We only need to provide a proof for pairs (h, q) for which

q > q̃(h). For these pairs we have that p(h, q) = q−q̃(h)
q

, where q̃(h) is independent of q.

Thus, we obtain the following results:

∂p(h, q)

∂q
=
q̃(h)

q2
> 0 and

∂2p(h, q)

∂q2
= −2

q̃(h)

q3
< 0

The derivatives of p(h, q) with respect to h are as follows:

∂p(h, q)

∂h
= −1

q
q̃′(h) = − [1− q̃(h)]2

q

([
h

1 + h

(t1 − 1)!(n− t1)!
t2!(n− t2 − 1)!

] 1
t2−t1+1

)′
=

= − [1− q̃(h)]2

q(t2 − t1 + 1)

[
(t1 − 1)!(n− t1)!
t2!(n− t2 − 1)!

] 1
t2−t1+1

[
h

1
t2−t1+1

−1

(1 + h)
1

t2−t1+1
+1

]
< 0

∂2p(h, q)

∂h2
= − 1

q(t2 − t1 + 1)

[
(t1 − 1)!(n− t1)!
t2!(n− t2 − 1)!

] 1
t2−t1+1

(
[1− q̃(h)]2

[
h

1
t2−t1+1

−1

(1 + h)
1

t2−t1+1
+1

])′
> 0

Because [1 − q̃(h)]2 > 0,

[
h

1
t2−t1+1−1

(1+h)
1

t2−t1+1+1

]
> 0, ([1− q̃(h)]2)

′
= −2[1 − q̃(h)]q̃′(h) < 0 and[

h
1

t2−t1+1−1

(1+h)
1

t2−t1+1+1

]′
= h

1
t2−t1+1−2

(1+h)
1

t2−t1+1+2

[
1

t2−t1+1
− 1− 2h

]
< 0 given that t2 ≥ t1.

Moreover, for these pairs it holds that r(h, q) = 1− q + q × p(h, q). Thus,

∂r(h, q)

∂q
=
∂[1− q + q × p(h, q)]

∂q
= −1+p(h, q)+q

∂p(h, q)

∂q
= −1+

q − q̃(h)

q
+q

q̃(h)

q2
= 0
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∂r(h, q)

∂h
=
∂[1− q + q × p(h, q)]

∂h
= q

∂p(h, q)

∂h
< 0 and

∂2r(h, q)

∂h2
= q

∂2p(h, q)

∂h2
> 0

Proof of Proposition 3: In a role-playing equilibrium each individual takes the

action when assigned a dominant type, K of the N individuals take the action also when

assigned a non-dominant type, and the remaining N − K individuals do not take the

action when assigned a non-dominant type.

For this strategy profile to be an equilibrium, the following two conditions should hold

simultaneously: (1) an individual who is assigned a non-dominant type and believes that

K of the N − 1 remaining individuals will take the action when assigned a non-dominant

type prefers not to take the action, and (2) an individual who believes that K − 1 of

the N − 1 remaining individuals will take the action when assigned a non-dominant type

prefers to take the action when assigned herself a non-dominant type.

Therefore, let us denote by ∆EUnd(K) the difference in the expected utility of an

arbitrary individual between taking and not taking the action when assigned a non-

dominant type and conditional on making a payoff-relevant choice, when she expects

K of the remaining individuals to take the action when assigned a non-dominant type

and all individuals to take the action when assigned a dominant type. Given this, the

equilibrium conditions can be summarized as follows:

∆EUnd(K) ≤ 0 and ∆EUnd(K − 1) ≥ 0

In fact, we can calculate the exact form of ∆EUnd(K), which is the following:

∆EUnd(K) = (1 + h)

[
min{K,t1−1}∑

λ=max{0,K+n−N}

(Kλ)(N−1−K
n−1−λ )

(N−1
n−1)

(
n−1−λ
t1−1−λ

)
qn−t1(1− q)t1−1−λ

]
− h

[
min{K,t2}∑

λ=max{0,K+n−N}

(Kλ)(N−1−K
n−1−λ )

(N−1
n−1)

(
n−1−λ
t2−λ

)
qn−1−t2(1− q)t2−λ

]

When the maximum value of λ in a sum is smaller than its minimum, the value of the

sum to be equal to zero.

The first (resp., second) part of each expression describes the increase (resp., decrease)

in the individual’s expected utility when by taking the action she increases the number
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of individuals who take the action from t1 − 1 to t1 (t2 to t2 + 1). The index λ in each

sum denotes how many of the individuals who take the action even when assigned a

non-domintant type are selected to make a payoff-relevant choice.

Let us first show that a role-playing equilibrium exists if q ≥ q̃(h). By simple substi-

tution, we can get that ∆EUnd(0) ≥ 0 if and only if q ≥ q̃(h), with equality holding for

q = q̃(h). Moreover, for anyK ∈ {N−n+t1, . . . , N−n+t2} we must have ∆EUnd(K) < 0.

The latter holds because for these values of K the first part of the expression is equal to

zero, whereas the second part is different than zero and, in fact, negative. Therefore, there

exists some K̃ ∈ {1, . . . , N − n+ t1} such that ∆EUnd(K̃ − 1) ≥ 0 and ∆EUnd(K̃) ≤ 0.

Thus, there is a role-playing equilibrium in which K̃ individuals take the action when

assigned a non-dominant type.

Let us now show that that no role-playing equilibrium exist when q < q̃(h). To do

that, let us slightly reshape ∆EUnd(K).

We start by defining F (K,λ, t) :=
(Kλ)(N−1−K

n−1−λ )
(N−1
n−1)

(
n−1−λ
t−λ

)
qn−1−t(1− q)t−λ. Given this def-

inition, observe that F (K,λ, t2) =

[
(t1−1−λ)!
(t2−λ)!

(n−t1)!
(n−t2−1)!

(
1−q
q

)t2−t1+1
]
F (K,λ, t1 − 1). Then

we can rewrite ∆EUnd(K) as follows:

∆EUnd(K) =

= (1 + h)

min{K,t1−1}∑
λ=max{0,K+n−N}

F (K,λ, t1 − 1)− h
min{K,t2}∑

λ=max{0,K+n−N}

F (K,λ, t2) =

=

min{K,t1−1}∑
λ=max{0,K+n−N}

[(1 + h)F (K,λ, t1 − 1)− hF (K,λ, t2)]− h
min{K,t2}∑

λ=min{K,t1−1}+1

F (K,λ, t2) =

=

min{K,t1−1}∑
λ=max{0,K+n−N}

h
(n− t1)!

(n− t2 − 1)!

(
1− q
q

)t2−t1+1

F (K,λ, t1 − 1)

[
1 + h

h

(n− t2 − 1)!

(n− t1)!

(
q

1− q

)t2−t1+1

− (t1 − 1− λ)!

(t2 − λ)!

]
− . . .

· · · − h
min{K,t2}∑

λ=min{K,t1−1}+1

F (K,λ, t2)

Observe that, the second part of the expression is different than zero for K > t1 − 1

only, in which cases it is negative. Moreover, note that (t1−1−λ)!
(t2−λ)! is strictly increas-

ing in λ, given that t2 ≥ t1. Thus, given that all the other factors are positive, if
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[
1+h
h

(n−t2−1)!
(n−t1)!

(
q

1−q

)t2−t1+1

− (t1−1−λ)!
(t2−λ)!

]
< 0 for λ = 0, it will also be negative for all λ > 0,

which means that the whole expression will be negative. This factor is negative for

λ = 0 precisely whenever q < q̃(h), irrespective of K. Hence, if q < q̃(h) it holds that

∆EUnd(K) < 0 for all relevant K and, thus, the game has no role-playing equilibrium.

Calculations of Corollary 1: First, observe that for n = 2 and t1 = t2 = 1, we get

that q̃(h) := 1
1+2h

. Thus, q̃(1) = 1/3 and q̃(5) = 1/11, which means that in all four cases

there is at least one role-playing equilibrium for some K ∈ {1, 2, 3}, i.e. in all four cases

∆EUnd(0) > 0 and ∆EUnd(3) < 0. Then,

∆EUnd(1) =
2

3
[(1 + h)q − h(1− q)]− 1

3
h

∆EUnd(2) =
1

3
[(1 + h)q − h(1− q)]− 2

3
h

Therefore, simple substitutions give us the following equilibria:

For (h, q) = (1, 0.5): ∆EUnd(1) = 0 and ∆EUnd(2) = −1/2 < 0⇒ K ∈ {1, 2}.

For (h, q) = (1, 0.8): ∆EUnd(1) = 3/5 > 0 and ∆EUnd(2) = −1/5 < 0⇒ K ∈ {2}.

For (h, q) = (5, 0.5): ∆EUnd(1) = −4/3 < 0 and ∆EUnd(2) = −19/6 < 0⇒ K ∈ {1}.

For (h, q) = (5, 0.8): ∆EUnd(1) = 13/15 > 0 and ∆EUnd(2) = −16/15 < 0⇒ K ∈ {2}.

B Outcome simulations

In this section we give some more details on the construction and interpretation of Figure

5 and the underlying simulations.

As we note in the main text, the dashed line represents the expected outcome dis-

tribution if all individuals adopt a symmetric, un-correlated strategy (not necessarily a

BNE). The expected outcome distribution for the symmetric BNE’s will therefore also lie

on this line. In Figure 5, these are marked by the black square and triangle for {q, 300}

and {q, 700} respectively.
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To move into the area to the left of the dashed line it would be necessary for individuals

to coordinate and adopt some type of (positively) correlated strategy. Since there are no

means of communication and coordination between subjects, correlated strategies cannot

emerge. In fact, we do not observe outcome distributions in that area, so this type of

strategies are not discussed any further.

Of course, the points on the dashed line are theoretical predictions. Even if all in-

dividuals do adopt the same strategy, the actual distribution of outcomes for a given

sample will generally not lie on the line. The larger the size of the sample, the closer to

the theoretical prediction we expect the sample distribution to be. The question then is,

given the sample size from our experiment, how far from the theoretical prediction can

the sample distribution be to not reject it? In other words, what is the “confidence inter-

val”? Calculating exact confidence intervals for the multivariate distribution of outcomes

is beyond the scope of the paper. Instead we use Monte Carlo simulations.

In the simulations we use the same sample size as in the experiment: 16 pairs playing

100 rounds. In each run of the simulation we fix the parameter q, which determines

whether a player is dominant or not, to either .5 or .8. If a player in a given round is

dominant she always takes the action. If she is non-dominant, she takes the action with

some probability that remains fixed for all players in all rounds of the run. We repeat

each run with the same constellation of parameters 100 times. Each small colored dot in

Figure 5 represents the outcome of one run.

First we run the simulation with players adopting one of the two BNE strategies.

The green dots creating the “confidence cloud” around the black Nash {p,300} square

in the zoomed-in right panel of Figure 5 are the results obtained in the 100 runs of

the simulation for q = .5 and non-dominants taking the action with the equilibrium

probability p∗(.5, 300) = .333 (the value for p∗ is shown in Table 3). As can be seen in the

figure, the sample distribution for {q = .5, H = 300}, indicated by a green square, lies

outside the corresponding “confidence clouds”. Hence, the observed data is unlikely to

be the result of subjects in the experiment playing the symmetric BNE. The same is true
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for all treatments and the corresponding confidence clouds (blue corresponds to q = .8,

squares and triangles correspond to H = 300 and H = 700 respectively).

Next we look at whether it is possible for subjects to be playing a symmetric strategy,

even if it is not a BNE. For that we do 100 runs each time with q ∈ {.5, .8} and p ∈

{0, .01, .02, ..., 1}. The red (gray) dots represent the results from runs with q = .5 (q = .8).

In the region of interest, the two confidence clouds (red and gray) essentially coincide.

The red and grey clouds also overlap with the green and blue clouds, as the BNE’s are a

subset of the set of symmetric strategies.

It can be seen in Figure 5 that the sample outcome distribution for the two treatments

with q = .5 do lie within the red “confidence cloud”. Hence, we cannot reject the notion

that subjects in these treatments adopt a symmetric strategy. Nonetheless, as we saw,

this strategy is probably not the symmetric BNE strategy and is also likely different in

the two treatments.

On the other hand, the sample outcome distribution for the two treatments with q = .8

do lie outside of the gray “confidence cloud”. It is therefore unlikely for them to be the

result of some symmetric strategy. As we explain in the main text, outcome distributions

to the right of the dashed line can be the result of players adopting asymmetric strategies.

C Learning across rounds
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Figure 8: The markers indicate the average frequency of taking the action over 20 rounds
in each treatment.As a benchmark, the straight dotted lines indicate the expected fre-
quency for the symmetric BNE’s.
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