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Abstract

Wavelets provide the flexibility to analyse stochastic processes at different scales.

Here, we apply them to multivariate point processes as a means of detecting and

analysing unknown non-stationarity, both within and across data streams. To pro-

vide statistical tractability, a temporally smoothed wavelet periodogram is developed

and shown to be equivalent to a multi-wavelet periodogram. Under a stationary

assumption, the distribution of the temporally smoothed wavelet periodogram is

demonstrated to be asymptotically Wishart, with the centrality matrix and degrees

of freedom readily computable from the multi-wavelet formulation. Distributional

results extend to wavelet coherence; a time-scale measure of inter-process correlation.

This statistical framework is used to construct a test for stationarity in multivariate

point-processes. The methodology is applied to neural spike train data, where it is

shown to detect and characterise time-varying dependency patterns.

1 Introduction

We adopt the construction of Hawkes (1971) which presents a p-dimensional multivariate

point process (p ≥ 1) as a counting vector N(t) ≡ {N1(t), . . . , Np(t)}T where the random

element Ni(t) (i = 1, ..., p) states the number of events of type i over the interval (0, t]. Its
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first order properties are characterized by its rate λ(t) ∈ Rp, defined as λ(t) ≡ E{dN(t)}/dt

where dN(t) = N(t+ dt)−N(t), and its second order properties at times s and t charac-

terized by its covariance density matrix

Γ(s, t) = E{dN(s)dNT(t)}
/

(dt ds)− λ(s)λT(t) .

Process N(t) is second-order stationary, henceforth referred to simply as “stationary”, if

λ(t) is constant for all t and Γ(t, s) depends only on τ = s−t. In this setting we will denote

the covariance density matrix Γ(τ).

The spectral domain provides a rich environment for representing this second order struc-

ture and is based on the fact that stationary stochastic processes can be considered as

a composite of subprocesses operating at different frequencies. The spectral density ma-

trix of a stationary point process is the Fourier transform of its covariance density matrix

(Bartlett, 1963), namely

S(f) = diag(λ) +

∫ ∞
−∞

Γ(τ)e−i2πfτdτ, −∞ < f <∞.

A fundamental summary of the second order relationship between a pair of component

processes, Ni(t) and Nj(t) say, is their coherence defined as

ρ2ij(f) =
|Sij(f)|2

Sii(f)Sjj(f)
. (1)

This provides a normalized measure on [0, 1] of the correlation structure between the pro-

cesses in the frequency domain. For time series data, it has been used extensively in several

disciplines, including climatology, oceanography and medicine. For event data, it has been

an important tool in neuroscience for the analysis of neuron spike train data.

Estimation of the coherence can be achieved by substituting smoothed spectral estimators

into (1). Failure to smooth, i.e. simply using the periodogram, will result in a coherence

estimate of one for all frequencies, irrespective of whether correlation exists between the

pair of processes or not. Tractability of the coherence estimator’s distribution is crucial

for principled statistical testing and dependent on the smoothing procedure used (Walden,

2000).

Often, stochastic processes do not conform to the assumptions of stationarity. This might

occur through simple first-order trends in the underlying data generating process, or more
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typically, complex changes in its second, or higher, order structure. For point processes, the

key objective now is to analyse how correlations within and across event streams change

in time. One approach is to model the process and its associated time-varying spectrum,

with the locally stationary Hawkes process (Roueff et al., 2016; Roueff & Von Sachs, 2019)

representing an important recent advancement. The present paper complements this by

developing a versatile non-parametric approach for exploring second-order structure in a

time-localised way. Wavelets form a natural basis with which to do this due to their

inherent ability to trade-off time and frequency resolution. Wavelet methods designed

for time series analysis (e.g. Nason et al., 2000) could be deployed on discrete-time count

sequences. However, should precise timestamps for the events be available, the necessary

binning procedure required to implement them would discard information. This motivates

the development of continuous time methodologies that preserves all temporal information.

For a wavelet ψ(t), the continuous wavelet transform at scale a > 0 and translation (or

time) b ∈ R of N(t), observed on the interval (0, T ], is defined by Brillinger (1996) as

w(a, b) = a−1/2
∫ T

0

ψ∗{(t− b)/a}dN(t) , (2)

where ∗ denotes the complex conjugate. The ith element of this stochastic integral is

computed as wi(a, b) =
∑Ni(T )

k=1 ψ∗a,b(si,k), where si,1, ..., si,Ni(T ) are the ordered event times

of Ni(t) and ψa,b(t) ≡ a−1/2ψ{(t−b)/a}. Thus, working with the continuous time process is

possible if the finite set of event times are known. The wavelet periodogram is subsequently

defined as W (a, b) = w(a, b)wH(a, b), where H denotes the complex conjugate transpose.

As is the case with the Fourier periodogram, smoothing is required for two reasons. Firstly

to control variance, and secondly to give meaningful values of the wavelet coherence estima-

tor. Wavelet coherence is an analogue of coherence which provides a normalized measure

on [0, 1] of the correlation between a pair of processes in time-scale space. It is defined as

γ2ij(a, b) =
|Ωij(a, b)|2

Ωii(a, b)Ωjj(a, b)
,

where Ω is a smoothed version of W . In the time series setting, wavelet coherence has been

extensively applied in a wide range of disciplines (e.g. Torrence & Webster, 1999; Grinsted

et al., 2004). Understanding the distributional properties of these smoothed coherence
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estimators is vital for rigorous statistical analysis and testing. In the Gaussian discrete-

time setting the asymptotic distribution of coherence is widely studied (Cohen & Walden,

2010a,b), however, the point-process case has received little attention.

There are a wide range of ways in which non-stationarity can occur. Hence, rather than

assume a specific model of non-stationarity, we propose to study the properties of the

temporally smoothed wavelet periodogram and coherence for stationary point-processes.

This provides a statistical framework in which we deploy methods for exploratory data

analysis and construct a test for second order stationarity, complementing stationarity

tests in time series analysis (e.g. Von Sachs & Neumann, 2000; Nason, 2013; Preuss et al.,

2013).

2 Temporally smoothed wavelet periodogram

2.1 Formulation

Assumption 1. Wavelet ψ(t) is a real or complex valued continuous function that satisfies

(i)
∫∞
−∞ ψ(t)dt = 0, (ii) ‖ψ‖2 = 1, and (iii) the admissibility condition

∫∞
−∞ f

−1|Ψ(f)|2df <

∞, where Ψ is the Fourier transform of ψ(t).

Assumption 2. Smoothing function h(t) is a non-negative, symmetric function supported

and continuous on (−1/2, 1/2), and normalized such that
∫∞
−∞ h(t)dt = 1.

Let ψ(t) and h(t) satisfy Assumptions 1 and 2, respectively. We define the temporally

smoothed wavelet periodogram as

Ω (a, b) =

∫ ∞
−∞

hξ(u− b)W (a, u)du, (3)

where hξ ≡ ξ−1h(t/ξ) with ξ > 0 controlling the level of smoothing. This is a wavelet

analogue to Welch’s weighted overlapping sample averaging spectral estimator for stationary

time series (Welch, 1967; Carter, 1987). It will prove convenient for the level of smoothing

to scale with a, and we therefore let ξ = κa, with κ > 0.
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For a particular choice of κ, and defining the Hermitian kernel function (at scale a = 1) as

K(s, t) =

∫ ∞
−∞

hκ(u)ψ(s− u)ψ∗(t− u)du , (4)

the temporally smoothed wavelet periodogram in (3) can be expressed as

Ω(a, b) ≡
∫ T

0

∫ T

0

Ka,b(s, t)dN(t)dNT(s) ,

where Ka,b(s, t) = a−1K{(s− b)/a, (t− b)/a}. The (i, j)th element of Ω(a, b) is computed

as

Ωij(a, b) =

Ni(T )∑
k=1

Nj(T )∑
k′=1

Ka,b(si,k, sj,k′) .

Given a choice for h(t) and κ, the form of K(s, t) will depend on ψ(t). Throughout this

paper, we use the examples of the complex valued Morlet wavelet and the real valued

Mexican hat wavelet. These are examples of wavelets for which K(s, t) is analytically

tractable.

2.2 Practical implementation

For continuous time wavelet analysis, the wavelets themselves are often non-compactly

supported. However, the region of significant support is typically well localized and a close

approximation to w(a, b) can be obtained through utilising the approximating wavelet

ψ̄(t) =

 ψ(t) |t| < α/2

0 otherwise.

For example, the Morlet wavelet ψ(t) = π−1/4e−t
2/2ei2πt shown in Fig. 1 has infinite support

but can be well approximated by ψ̄(t) for α = 8. In practice, to speed up computation,

it can make sense to use the approximating wavelet as only a subset of the data is re-

quired to compute the wavelet transform. From herein, to simplify notation, will we use

ψ(t) to represent both the original and approximating wavelet, assuming that α is chosen

appropriately.

In a finite data setting we are restricted to regions of the time-scale space in which we

can fairly evaluate (2) without the consequences of edge effects at either ends of the data.
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Figure 1: The Morlet wavelet and the valid region for analysis Tα,κ,T . Note this has been

plotted with time b on the horizontal axis and scale a on the vertical axis, as is convention

These issues are compounded when smoothing across time, for a smoothing window hκ(t)

with supp(h) = (−κ/2, κ/2), the effective size of support for K(s, t) is α+ κ, therefore we

restrict ourselves to values of a and b for which supp(Ka,b) = (b − a(α + κ)/2, b + a(α +

κ)/2)× (b− a(α+ κ)/2, b+ a(α+ κ)/2) ⊆ (0, T ]× (0, T ]. This defines an isosceles triangle

Tα,κ,T ⊂ R2 with vertices (0, 0), (0, T ) and (amax(T ), T/2), where amax(T ) = T/(α + κ).

This is an adaptation to the cone of influence (Mallat & Peyré, 2008, p. 215) that also

mitigates for smoothing distances. In practice, a positive minimum value of a should be

imposed to ensure a reasonable amount of event data exists in the smoothing range.

3 Multi-wavelet representation

3.1 Formulation

Given K(s, t) is continuous and non-negative definite by construction, associated with

kernel K(s, t) is the Hermitian linear operator TK defined as [TKf ](s) =
∫∞
−∞K(s, t)f(t)dt.

It follows from Mercer’s Theorem (Mercer, 1909) that K(s, t) =
∑∞

l=0 ηlϕl(s)ϕ
∗
l (t) where

{ϕl(t); l = 0, 1, ...} are the orthonormal eigenfunctions of TK with non-zero eigenvalues

{ηl; l = 0, 1, ...} ordered in decreasing size. Noting that tr(TK) :=
∫∞
−∞K(t, t)dt = 1, it
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follows that
∑∞

l=0 ηl = 1. From here on, we refer to {ϕl(t); l = 0, 1, ...} as the eigenfunctions

of K(s, t). The following proposition shows that these orthonormal eigenfunctions are

themselves wavelets.

Proposition 1. Let ψ(t) satisfy Assumption 1, h(t) satisfy Assumption 2, and for κ >

0 the corresponding non-negative definite kernel K(s, t) have eigenfunctions {ϕl(t); l =

0, 1, ...}. Every eigenfunction ϕl(t) with a non-zero eigenvalue is a wavelet that satisfies

the conditions of Assumption 1.

We adopt the term eigen-wavelets for the functions {ϕl(t); l = 0, 1, ...}.

Turning our attention back to the temporally smoothed wavelet periodogram, it is straight-

forward to show ∫ ∞
−∞

Ka,b(s, t)ϕl{(t− b)/a}dt = ηlϕl{(s− b)/a}.

Thus, the scaled and shifted versions ϕl,a,b(t) = a−1/2ϕl{(t − b)/a}, l = 0, 1, . . . of the

eigen-wavelets are themselves the eigenfunctions of Ka,b, and again from Mercer’s theorem

Ka,b(s, t) =
∑∞

l=0 ηlϕl,a,b(s)ϕ
∗
l,a,b(t). The temporally smoothed wavelet periodogram can

thus be represented as

Ω(a, b) =
∞∑
l=0

ηlvl(a, b)v
H
l (a, b), (5)

where vl(a, b) =
∫ T
0
ϕl,a,b(t)dN(t) is the continuous wavelet transform of N(t) at scale a

and translation b with respect to eigen-wavelet ϕl(t). Therefore the temporally smoothed

wavelet periodogram is equivalent to the weighted sum of wavelet spectra arising from the

orthonormal eigen-wavelet system. This is analogous to multitapering (Thomson, 1982)

and comparisons can also be drawn with the multi-wavelet spectrum of Cohen & Walden

(2010b). In that setting, multiple orthogonal wavelets were derived in Olhede & Walden

(2002) from a time-frequency concentration problem, whereas here we have shown they can

be generated by any arbitrary wavelet ψ(t) and smoothing window h(t).

The representation in (5) will be crucial for deriving the distributional results in Section 4,

as well as offering computational speed-up. In particular, we will make use of the following

proposition which shows the effective frequency response of the eigen-wavelet system is

equal to the frequency response of the generating wavelet ψ(t).
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Proposition 2. Let ψ(t) satisfy Assumption 1, h(t) satisfy Assumption 2, and for κ > 0 the

corresponding non-negative definite kernel K(s, t) have eigenfunctions {ϕl(t); l = 0, 1, ...}

and eigenvalues {ηl; l = 0, 1, ...}. It holds that
∑

l ηl|Φl(f)|2 = |Ψ(f)|2 where Φl(f) and

Ψ(f) are the Fourier transforms of ϕl(t) and ψ(t), respectively.

In general, closed form expressions for the eigen-wavelets {ϕl(t); l = 0, 1, . . .} will be unob-

tainable and numerical procedures need to be used to find the solutions of
∫∞
−∞K(s, t)ϕ(t)dt =

ηϕ(s).Details for an implementation of the Nystrom method for doing just this can be found

in Appendix 1.

3.2 Worked example

The Morlet wavelet can be seen as a complex sinusoid enveloped with a Gaussian window,

and therefore the wavelet transform at scale a > 0 and translation b is the Fourier transform

of the tapered process, localized at b and evaluated at frequency 1/a. The temporally

smoothed wavelet periodogram using a rectangular smoothing function

h(t) =

 1 −1/2 < t < 1/2

0 otherwise,
(6)

emits kernel K(s, t) = k(s, t)e−i2π(t−s), where

k(s, t) = (2κ)−1e−(t−s)
2

[erf{κ− (t+ s)}+ erf{κ+ (t+ s)}]

and erf(x) = π−1/2
∫ x
−x exp(−t2)dt is the Gauss error function. The real part of this kernel

is shown in Fig. 2a.

The function k(s, t) is itself a real valued non-negative kernel with its own set of real valued

orthonormal eigenfunctions {φl(t); l = 0, 1, ...} and associated eigenvalues {ηl; l = 0, 1, ...}.

It follows that ϕl(t) = ei2πtφl(t) is an eigenfunction of K(s, t) with corresponding eigenvalue

ηl and hence {ϕl(t) = ei2πtφl(t); l = 0, 1, ...} is the eigen-wavelet system emitted by the

Morlet wavelet with a rectangular smoothing function. The first five of these eigen-wavelets

for κ = 10 are shown in Fig. 2b. This eigen-wavelet system follows the same spirit of

the generating Morlet wavelet, with themselves being complex sinusoids enveloped by a
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Figure 2: The kernel and first five eigen-wavelets for the Morlet wavelet (panels a,b) and

Mexican hat wavelet (panels c,d) subject to a rectangular smoothing window of width

κ = 10. In panel b) the solid and dashed line represent the real and imaginary components

respectively.
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taper. Thus, performing a continuous wavelet transform with one of the eigen-wavelets

is equivalent to a time localized tapered Fourier transform evaluated at frequency 1/a,

and the temporally smoothed wavelet periodogram as represented in (5) is equivalent to

a time localized multitaper spectral estimator. As means of a comparison, the kernel

and associated eigen-wavelets of the Mexican hat wavelet using a rectangular smoothing

function are shown in Fig. 2c and Fig. 2d, respectively.

4 Statistical Properties under Stationarity

4.1 Preliminaries

Let us define the kth order cumulant q of the differential process as

qi1,...,ik(t1, ..., tk)dt1 · · · dtk ≡ cum{dNi1(u1), ..., dNik(uk)} .

The following mixing condition (Assumption 2.2 in Brillinger, 1972) is sufficient for the

asymptotic results that follow. It ensures that dependency structure in the point process

decays at a sufficient rate for central limit arguments to be invoked.

Assumption 3. The p-dimensional point process N(t) is strictly stationary, i.e. qi1,...,ik(t1+

t, ..., tk+t) = qi1,...,ik(t1, ..., tk), and we set ri1,...,ik(u1, ..., uk−1) = qi1,...,ik(u1, ..., uk−1, 0). Fur-

thermore, all moments exist, the cumulant function satisfies∫ ∞
−∞
· · ·
∫ ∞
−∞
|ri1,...,ik(u1, ..., uk−1)|du1 · · · duk−1 <∞,

for i1, ..., ik = 1, ..., p and k = 2, 3, ..., and∫ ∞
−∞
|u||ri1,i2(u)|du <∞,

for i1, i2 = 1, ..., p.

The distributional results that follow differ slightly depending on whether a real valued

wavelet (e.g. Mexican hat) or complex valued wavelet (e.g. Morlet) is chosen. We present
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the results for a complex valued wavelet and relegate the derivation for a real valued wavelet

to the Supplementary Material. For wavelet ψ(t) with Fourier transform Ψ(f), its central

frequency is defined as the first moment of |Ψ(f)|2, namely f0 :=
∫∞
0
f |Ψ(f)|2df (Cohen &

Walden, 2010a). The central frequency of ψa,b is therefore f0/a and can be interpreted as

the central analysing frequency of the wavelet at scale a. For example, the Morlet wavelet

has a central frequency of f0 = 1 and the Mexican hat wavelet has a central frequency

of (approx.) f0 = 0.21. We further define the frequency concentration of ψ(t) to be the

second central moment of |Ψ(f)|2, namely σψ = ‖(f − f0)Ψ(f)‖2. It immediately follows

from Proposition 2 that the central frequency and frequency concentration of the eigen-

wavelet system is f0 and σψ, respectively.

Assumption 4. Wavelet ψ(t) is complex valued, satisfies Assumption 1, has approximating

support (−α/2, α/2) for some finite α > 0, and σψ <∞. Furthermore, there exists a finite

C such that
∫
|ψ(t+ u)− ψ(t)|dt < C|u| for all real u, and it is orthogonal to its complex

conjugate, i.e.
∫∞
−∞ ψ(t)ψ(t)dt = 0.

The Morlet wavelet is an example of a complex valued wavelet that satisfies Assumption

4.

Assumption 5. Smoothing function h(t) satisfies Assumption 2 and furthermore there

exists a finite C ′ such that
∫
|h(t+ u)− h(t)|dt < C ′|u|.

4.2 Asymptotic distributional results

We allow the wavelet to scale with T by defining ψ(T )(t) = {(α+κ)/T}−1/2ψ{t(α+κ)/T},

and appropriately normalize the scale and translation parameters as ã = a(α + κ)/T and

b̃ = b/T , respectively. Under this rescaling (2) becomes

w(a, b) = w(T )(ã, b̃) = ã−1/2
∫ T

0

ψ∗(T ){(t− b̃T )/ã}dN(t),

and the normalized temporally smoothed wavelet periodogram is defined as

Ω(T )(ã, b̃) =

∫ ∞
−∞

h(T )

κã (u)W (T )(ã, u)du,
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where h(T )(t) = T−1h(t/T ). For any T , the valid region of analysis is normalized to T̃α,κ,

an isosceles triangle with vertices (0, 0), (0, 1) and (1, 1/2) whose interior contains all valid

pairs of (ã, b̃). Asymptotic results are presented for any fixed point (ã, b̃) ∈ T̃α,κ as T →∞.

In doing so we define the frequency fã = f (T )

0 /ã, where f (T )

0 :=
∫∞
0
f |Ψ(T )(f)|2df with

Ψ(T )(f) denoting the Fourier transform of ψ(T )(t).

Proposition 3. Let N(t) be a p-dimensional stationary process with spectral density matrix

S(f). Let ψ(t) be a wavelet satisfying Assumption 1 and let h(t) be a smoothing function

satisfying Assumption 2. For all κ > 0 and for all (ã, b̃) ∈ T̃α,κ,

E{Ω(T )(ã, b̃)} = E{W (T )(ã, b̃)} =

∫ ∞
−∞

ã|Ψ(T )(ãf)|2S(f)df

and E{Ω(T )(ã, b̃)} = S(fã) +O(T−2) as T →∞.

In the following theorem, N Cp (µ,Σ) denotes the circular p-dimensional complex normal

distribution with mean µ and covariance matrix Σ.

Theorem 1. Let N(t) be a p-dimensional stationary process satisfying Assumption 3 with

spectral density matrix S(f), and let ψ(t) be a wavelet with central frequency f0 satisfying

Assumption 4. The continuous wavelet transform w(T )(ã, b̃) is asymptotically N Cp {0, S(fã)}

as T →∞, for all (ã, b̃) ∈ T̃α,κ.

Let WCp (n,Σ) denote the p-dimensional complex Wishart distribution with n degrees of

freedom and centrality matrix Σ.

Theorem 2. Let N(t) be a p-dimensional stationary process satisfying Assumption 3 with

spectral density matrix S(f). Let ψ(t) be a wavelet with central frequency f0 satisfying

Assumption 4, let h(t) be a smoothing function satisfying Assumption 5, and for κ > 0

let {ηl; l = 0, 1, ...} be the eigenvalues of the kernel K(s, t) defined in (4). The temporally

smoothed wavelet periodogram Ω(T )(ã, b̃) is asymptotically (1/n)WCp {n, S(fã)} as T → ∞

for all (ã, b̃) ∈ T̃α,κ, where n = 1/ (
∑∞

l=1 η
2
l ).

The following distributional result for the wavelet coherence is now immediate from Theo-

rem 2 and Goodman (1963). We let 2F1(α1, α2; β1; z) denote the hypergeometric function

with 2 and 1 parameters α1, α2 and β1 and scalar argument z.
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Corollary 1. Under the conditions of Theorem 2, the temporally smoothed wavelet coher-

ence γ2ij(ã, b̃) = |Ω(T )

ij (ã, b̃)|2/{Ω(T )

ii (ã, b̃)Ω(T )

jj (ã, b̃)} between component processes Ni(t) and

Nj(t) (i 6= j) asymptotically has density function

gγ2(x) = (n− 1)(1− ρ2)n(1− x)n−2 2F1(n, n; 1; ρ2x),

where ρ2 is shorthand for ρ2ij(fã), the spectral coherence between Ni(t) and Nj(t) at frequency

fã.

In the case of the rectangular smoothing function given in (6), the effective degrees of

freedom n scale linearly with κ according to the following proposition.

Proposition 4. Let ψ(t) satisfy Assumption 4, let h(t) be the rectangular smoothing func-

tion given in (6), and for κ > 0 let corresponding kernel K(s, t) have ordered eigenvalues

{ηl; l = 0, 1, ...}. Provided κ > α, then n = (
∑∞

l=0 η
2
l )
−1 = κ{

∫∞
−∞ |P(x)|2dx}−1, where

P(x) ≡
∫∞
−∞ ψ(t)ψ∗(t− x)dt.

5 Test for stationarity

5.1 Formulation

Consider testing the null hypothesis H0 that states N(t) is a stationary process, against

the alternative hypothesis HA that states N(t) is non-stationary. Under H0 and from

Proposition 3 it is true that E{Ω(a, b)} is constant in b. We therefore consider testing

for stationarity at different scales. For convenience, we perform a dyadic partition of the

time-scale space, performing a test at each scale in the set {ãj = 2−j; j = 1, ..., J}. At

scale ãj, we partition time into 2j non-overlapping equal size segments, each centred at

time points {b̃j,k = (2k − 1)/(2j+1); k = 1, ..., 2j} and each the width of the approximate

support of the wavelet at that scale. Our test at scale ãj therefore becomes a test of the

null hypothesis

Hj : E{Ω(T )(ãj, b̃1)} = ... = E{Ω(T )(ãj, b̃2j)} = Ωj,
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where Ωj is unspecified.

We construct a likelihood ratio test based on the asymptotic distribution of Ω(T )(ã, b̃)

stated in Theorem 1. To attain asymptotic results we require smoothing parameter κ and

consequently degrees of freedom n, see Proposition 4, to grow with T . Furthermore, we

permit the maximum resolution of analysis J to also grow.

Assumption 6. Let κ = O(T c) and 2J = o(T 1/2−c), for some c ∈ (0, 1/2).

Proposition 5. Let B1, ..., BK be independent samples where Bi ∼ (1/n)WCp (n,Σi) (i =

1, ..., K). The likelihood ratio test statistic for the null hypothesis H : Σ1 = ... = ΣK = Σ,

with unspecified Σ, is

U(K) = KpKn

∏K
i=1 det(Bi)

n

det
(∑K

i=1Bi

)Kn .
Furthermore, when H is true, −2 log(U(K)) is asymptotically χ2

f as n → ∞, where f =

(K − 1)p2.

In the following proposition, we let Ũj be a random variable that is equal in distribution

to U(2j) under the null hypothesis.

Proposition 6. Let Assumptions 3, 4, 5 and 6 be true, and for a fixed j ∈ {1, ..., J} define

the test statistic for Hj as

Vj = KpKn

∏K
i=1 det{Ω(T )(ãj, b̃i)}n

det
{∑K

i=1 Ω(T )(ãj, b̃i)
}Kn ,

where K = 2j and n is as given in Theorem 2. Under Hj, Vj
d
= Ũj + o(1) as T →∞.

Theorem 3. Let Assumptions 3, 4, 5 and 6 be true. For a fixed j ∈ {1, ..., J}, under Hj,

pr{−2 log(Vj) ≤ x} = pr(χ2
νj
≤ x) + o(1) as T →∞, where νj = (2j − 1)p2.

With the following assumption, we can now combine the test statistics for H1, ..., HJ , to

form V ≡
∏J

j=1 Vj with which to test H0.

Assumption 7. Wavelet ψ(t) satisfies
∫∞
−∞ ψ

(T )

j,k (t)ψ∗(T )

l,m (t)dt = 0 for all (j, k) 6= (l,m)

where ψ(T )

j,k (t) denotes the wavelet at the jth scale and kth translation (j = 1, ..., J ; k =

1, ..., K).

14



Note, this is only an approximation for the Morlet wavelet.

Corollary 2. Let Assumptions 3, 4, 5, 6 and 7 be true. Under H0, pr{−2 log(V ) ≤ x} =

pr(χ2
ν ≤ x) + o(1) as T →∞, where ν =

∑J
j=1 νj = p2(2J+1 − 2− J).

5.2 Simulations

The following simulations all use a Morlet wavelet and tests are conducted on H1, H2, H3

and combined hypothesis H0 at the α = 0.05 level.

To demonstrate the test asymptotically attains the nominal level, we consider a pair of

independent homogeneous Poisson processes each with intensity λ = 1 and increase T .

We let smoothing parameter κ grow as κ = 10 T 1/4. The type I error rate of the tests

as a function of T is shown in Fig. 3(a). The effective support of a smoothed wavelet

periodogram at scale j is 2−jT , hence, convergence is fastest at j = 1.

To study power with respect to first-order non-stationarity, we consider a pair of indepen-

dent inhomogeneous Poisson processes. The first has a linearly increasing intensity function

λ1(t) = tan(θ)t+ 1− (T/2) tan(θ), the second is linearly decreasing with intensity function

λ2(t) = tan(−θ)t + 1 − (T/2) tan(−θ). We vary θ, the slope of the intensity functions,

between − arctan(2/T ) and arctan(2/T ); the process is stationary if and only if θ = 0.

This model ensures that the expected number of events in (0, T ] is equal for all θ. We

set T = 1024 and again have κ = 10 T 1/4, resulting in 22 degrees of freedom. Power as

a function of θ is shown in Fig. 3(b). As expected, power increases with |θ|, noting the

nominal level is attained (for small j) at θ = 0.

To study power with respect to second-order non-stationarity, we consider a bivariate piece-

wise stationary Hawkes process, see Appendix 2, made up of three segments. The first and

third segments are the time intervals (0, 256] and (768, 1024], respectively. On these exist a

bivariate process with baseline intensities ν1 = ν2 = 1 and an exponential excitation kernel

with excitation parameter α11 = α22 = 1 and decay parameter β11 = β22 = 2; there is

no mutual (cross) excitation between the processes, i.e. α12 = α21 = 0. On the second

segment at time interval (256, 768] exists a mutually exciting Hawkes process with identical

15



self-excitation parameters to segments one and three, and now with mutual excitation be-

tween the individual processes. The decay parameters are set at β12 = β21 = 2, and power

is explored as α12 and α21 are increased together to introduce increasing levels of mutual

excitation. This in turn gives an increasing deviation away from the distribution of the

process in the first and third segments. The baseline intensity on (256, 768] is decreased

accordingly to ensure the expected number of events is constant across the entirety of the

time interval (0, 1024]. Fig. 3(c) shows power increases with the value of α12 in the second

segment, i.e. as the distribution of the process in the second segment deviates further from

that of the first and third segments.

The final study we consider is a pair of independent locally-stationary Hawkes processes

as developed in Roueff et al. (2016). We let each process have a baseline intensity of

ν1 = ν2 = 0.5 and a Gamma excitation kernel of the form

g{u; δ(t/T )} = {u− δ(t/T )}e−{u−δ(t/T )}

2
1{u>δ(t/T )}, 0 ≤ u <∞ . (7)

This excitation kernel only allows an offspring event to be generated after a delay of δ(·),

which varies as a function of time to introduce non-stationary second order structure. In

this example we set δ(s) = 1 + δ0|1 − 2s|; when δ0 = 0 the process is stationary and we

can introduce time-varying second order behaviour of increasing magnitude by increasing

δ0. Power as a function of δ0 is shown in Fig. 3(d). As expected, power increases with δ0

and the nominal level is attained at δ0 = 0.

5.3 Practical implementation

In practice, one must make a choice of κ and J that is both suitable for the dataset under

analysis and the time-scales on which one wishes to detect deviations from stationarity,

while accounting for traditional trade-offs. Assumption 6 dictates the growth rates of κ

and J must be balanced such that 2Jκ = o(T 1/2). If analysing variation on small time-

scales, one benefits from lowering κ and increasing J , at the consequence of asymptotic

limits being less appropriate. Conversely, asymptotic limits can be practically attained

at the cost of loosing temporal resolution. Therefore, there does not exist a universal
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Figure 3: Results for simulation studies detailed in Section 5.2. Tests are performed at

the α = 0.05 level (indicated by the light grey line) on hypotheses Hj for j = 1, 2, 3,

and combined hypothesis H0. In all cases, 1000 realisations of the processes were used.

(a) The type I error rate for a pair of independent homogeneous Poisson processes. (b)

Power as a function of θ, the slope of the intensity function for the pair of independent

inhomogeneous Poisson processes. (c) Power as a function of α12 (and α21), the mutual

excitation parameter in the second segment of the piecewise stationary bivariate Hawkes

process. (d) Power as a function of δ0, the magnitude of the excitation delay effect in the

locally stationary Hawkes process.
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heuristic for making this choice. If attaining the nominal level of the test is of importance,

experiments with independent Poisson processes over a time length and intensity that is

indicative of the data can be used select values of κ and J . Example results for experiments

of this type are presented in Supplementary Fig. 2.

6 Application to neural signalling

To give an example of the methods in practice, we analyse signalling regions within the

lateral geniculate nucleus of a mouse. Specifically, we consider a set of neurons examined

in Tang et al. (2015), where the authors are primarily concerned with analysing firing

properties in order to understand how visual signals are encoded and transferred throughout

the brain. To demonstrate the ability of our smoothed coherence estimator and stationarity

test to operate with a single trial we consider only a single firing sequence from the paper.

In this case, the mouse is shown a visual stimulus in the form of an liquid crystal display

screen showing a sinusoidal monochromatic drifting grating with spatial stimulus at a

frequency of 0.04 cycles per second and temporal flicker of 1Hz. The firing pattern is 7

seconds in length and represents data for cells 108 and 117; these cells were picked for

the example as they demonstrate relatively high firing rates. We use the Morlet wavelet

with temporal smoothing parameter κ = 10 and approximating support parameter α = 8.

For completeness, this example was performed using exact kernel sampling, however, an

approximate computation based on the Nystrom method, see Appendix 1, provides visually

indistinguishable results and p-values.

The analysis of the experimental data is provided in Fig. 4. Tests for stationarity were

performed at scale levels j = 1 and 2, informed by the analysis of Supplementary Material

Section 3, with dyadic sampling points as marked by the crosses. With a p-value of 0.032,

there is strong evidence that the process demonstrates non-stationary behaviour at the

coarsest scale j = 1, corresponding to a scale of 0.25s and frequency of 4Hz through the

f = 1/a relationship for a Morlet wavelet. However, there is not enough evidence to reject

the wavelet spectrum stays constant at the finer scale j = 2. With the parameters specified,
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Figure 4: Wavelet coherence estimated from the mouse neuron firing data with the Morlet

wavelet. Black lines represent contours drawn at the 95th percentile of the distribution for

zero coherence (see Corollary 1). Crosses indicate dyadic sampling points for the station-

arity test, with arrows depicting the scale specific p-values.

the 95th percentile of the distribution for zero coherence is 0.593 and is represented by the

black contour line. This indicates that the non-stationarity at j = 1 involves a change

in the correlation between the two data streams half way through the experiment, with

significant coherent signalling becoming present in the latter half.
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Supplementary material

Supplementary Material Section 1 contains the proofs to propositions, theorems and corol-

lary presented here. Supplementary Material Section 2 provides the results for real valued

wavelets. Supplementary Material Section 3 provides a guide to practical implementation.

Supplementary Material Section 4 contains a link to a MATLAB package for implementing

the presented methods.

Appendix 1

Computing eigen-wavelets and eigenvalues

The Nystrom method (Chapter 1, Kythe & Puri, 2001) is an efficient method for computing

the eigenfunctions of kernel K(s, t) for the multiwavelet representation described in Section

3. We can approximate the integral using the quadrature rule to solve the approximate

eigen-problem
∑n

j=1wjK(s, tj)ϕ̃l(tj) = η̃ϕ̃l(s) for a discrete set of values for s. The quadra-

ture points {t1, ..., tn} (n large) are regularly spaced across (−(α+κ)/2, (α+κ)/2) and the

weights are set to be wj = (α + κ)/n. For simplicity, the Nystrom points {s1, ..., sn} are

set to equal {t1, ..., tn}. In matrix form, the eigen-problem now becomes

KWϕ̃ = η̃ϕ̃ ,

where K is the Rn×n matrix (K(si, tj)), ϕ̃ ≡ [ϕ̃(t1), . . . , ϕ̃(tn)]T, and W ≡ diag(w1, . . . , wn).

Solving the above gives approximations to the first n eigenvalues and eigen-wavelets of

kernel K(s, t).

Should it be required, the Nystrom extension of the sampled vector ϕ̃l = [ϕ̃(s1), . . . , ϕ̃(sn)]

is the function

ϕ̃l(x) = λ̃l

n∑
j=1

wjK(x, sj)ϕ̃l(sj).

The sum in (5) is over an infinite set of (eigen-)wavelet periodograms. However, in practice,
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the size of the eigenvalues drop away rapidly indicating that the kernel can be accurately

reconstructed using only a small number of its eigen-wavelets, hence (5) can be approxi-

mated with only a small number of terms. For example, in the case of the κ = 10, the first

nine eigenvalues contain 99.9% (3.s.f.) of the overall energy.

Appendix 2

Hawkes process

A stationary bivariate Hawkes process (Hawkes, 1971) contains both inter and cross de-

pendencies, and is defined through its stochastic intensity function

Λ = ν +

∫ t

−∞
G(t− s)dN(s),

where ν ≡ (ν1, ν2)
T is the baseline intensity vector and G(·) is the matrix valued excitation

kernel. The diagonal elements of G(·) characterise the self-exciting behaviour of each indi-

vidual process, and the off-diagonal elements characterise the mutually exciting behaviour.

The exponential excitation kernel used in Section 5.2 is

G(s) =

 α11 exp(−β11s) α12 exp(−β12s)

α12 exp(−β21s) α22 exp(−β22s)

 .

For simulation we use the thinning algorithm of Ogata (1981).
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