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ABSTRACT 
This pictorial introduces TangibleTouch, a toolkit 
to design and build interactive tangible cubes using 
capacitive sensing. This toolkit enables designers to 
quickly prototype and explore tangible cubes with 
exchangeable capacitive panels that allows touch-based 
gestures and interactions that can be used for tangible 
input in VR, AR, or physical computing. We introduce 
a design space for TangibleTouch, and present the 
technical implementation, fabrication approaches, and 
software support for designers. We evaluate our toolkit 
by demonstrating its use and application for 3 different 
case studies: a media controller, a platform game, and a 
3D model inspection tool. The contribution of our work 
is a novel toolkit method for constructing and fabricating 
a cube-based interactive tangible user interface. 
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INTRODUCTION 
Tangible User Interfaces (TUI) are commonly adopted 
interaction devices for their innate affordances, 
manipulability, and mechanisms for rich input and output 
[27]. Cubic tangibles are a common form factor and 
widely adopted interaction device in tangible research, 
due to their physical simplicity, spatial stability, multi-
functionality, and abstract nature [2]. A common means 
of interacting with tangibles, cubic or otherwise, is via 
physical manipulation and gesturing upon or with the 
object [1, 14]. Tracking and detecting interaction with 
a physical artefact as an expression of touch input can 
be difficult as it requires either sophisticated external 
tracking or instrumentation of the object. One popular 
approach to creating touch sensitive devices is by using 
capacitive sensing to detect complex surface-based 
gestures and even proxemic interaction [11, 4]. However, 
it is difficult to fabricate such capacitive tangibles that 
can be configured to support a variety of expressive 
touch gestures for different contexts and applications. 

The TangibleTouch toolkit (Figure 1) is a novel 
fabrication method and rapid prototyping toolkit 
for designing modular, interactive cubic tangibles 
with interchangeable capacitive faces, facilitating a 
multitude of surface-based gestures. TangibleTouch 
provides the following: i) a modular and extendable 
hardware platform enabling the rapid fabrication of 
cubic tangibles capable of detecting different surface-
based gestures, ii) a Unity1-integrated user interface that 
supports the configuration and mapping of capacitive 
faces on a given cube, and iii) a run time system to train 
surface-based gestures and detecting them in real-time. 

In this pictorial we present the intersecting literature 
that is the basis of our work, visualise the interaction 
space for cubic tangibles, and explore the design of 
capacitive faces and the types of surface-based gestures 
they support. We then detail the design of the cube, 
the hardware implementation and fabrication process, 
and the components of the toolkit. Next, we evaluate 
the TangibleTouch toolkit through three demonstrative 

1 https://unity.com/ 

applications, displaying the range of surface-based 
gestures supported and highlighting the generality of the 
toolkit. Finally, we reflect on and discuss the features 
and implications of the toolkit. 

BACKGROUND 
Our work builds on different areas of related work 
including Tangible UI, cubic tangibles, fabrication 
methods, capacitive sensing, and toolkit research. 

Tangible Prototyping & Cubes 
Tangible User Interfaces (TUI) provide a physical means 
of representing and manipulating digital information [9, 
27, 31], and there has been considerable work around 
prototyping TUIs without the need for instrumentation. 
For example, the work of Kelly et al. [17] and Zheng 
et al. [36] focused on producing popular TUI elements, 
such as knobs and sliders, using a combination of low 
fidelity material and fiducial-based computer vision 
tracking. Beyond low-fidelity prototyping, there are table 
top approaches that also use external computer vision 
tracking to build toolkits and development platforms 
for TUIs such as: reacTable [15] and reacTIVision 
[16], Madgets [32], and SLAP Widgets [33]. Rather 
than constructing tangible interface components from 
composite objects, another approach is to have an 
interactive artefact. For example, Savage et al. focused 
on interaction with physical objects while utilizing a 
computer-vision based tracking approach to detect user 
gestures and create ‘active’ objects [24]. 

Artefact-based interfaces are commonly used in Mixed 
Reality environments due to their manipulability and 
ability to be used as a proxy [2, 7, 8, 21, 37]. The work 
of Feick et al. [8] produced a toolkit for prototyping 
such tangible artefacts for virtual environments, using 
low-fidelity and modular ‘shape primitives’, to support 
proxy-based interactions. Beyond proxy interaction, 
the work of Angelini [1] and Van den Hoven et al. [14] 
shows how combining a tangible artefact with gestures, 
both motion and surface-based, can effectively recreate 
common UI elements using a single artefact. In addition, 
the benefits of cubes as tangible interaction devices 

have previously been explored [19, 28]. Particularly 
the work of Lefeuvre et al. [19] categorises the distinct 
affordances and properties of cubes by “manipulation, 
placement in space, arrangement, multi-functionality, 
randomness, togetherness, physical qualities, 
containers, and pedestal for output”. Inspired by this 
work, TangibleTouch aims to build upon previous 
tangible prototyping toolkits with a first exploration of 
an emergent design space for prototyping surface-based 
gestures leveraging the benefits of cube affordance. 

Capacitive Sensing & Fabricating Interactivity 
Considering the above related work, we can describe two 
general approaches to sensing tangible interaction: (i) 
using an external tracking system or (ii) instrumenting an 
interface or user. While both approaches have limiting 
factors for prototyping, external tracking has challenges 
and requirements when detecting surface interaction on 
objects, primarily down to occlusion of the object and 
gestures [3, 12, 35]. Considering detecting interaction 
on instrumented objects, capacitive sensing is a common 
and well-documented approach, with particular benefits 
for rabid fabrication and prototyping [5, 11, 23, 25, 
26]. The work of Schmitz et al. [26] and Burstyn et al. 
[5] explored capacitive input on 3D printed interactive 
objects, specifically leveraging conductive filament and 
dual-extrusion printing, to create discrete touch-sensitive 
areas on any 3D object. Capricate [26] in particular 
provided tools for designers to modify virtual models to 
be printed and instrumented with touch-sensitive areas. 

Beyond 3D printing of capacitive objects, so-called 
‘loading mode’ capacitive sensing has been adopted 
for gesture recognition [11]. Commonly, a number 
of capacitive areas are used to form capacitive sensor 
arrays to track touch across a designated area over time 
[10, 22, 29, 30]. Nelson at al. [22] incorporated 4 to 12 
interactive areas to detect gestures on fabric and provided 
an initial exploration of different capacitive plate shapes 
and designs. For TangibleTouch, we aim to combine the 
fabrication techniques of 3D printed interactive objects 
with previous work on capacitive sensing for gesture 
recognition into one rapid prototyping toolkit. 

https://unity.com


Figure 2. A visualisation of the interaction and output space combining cubes and surface-based gestures. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 
 
 

  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
     

 
 
 
 
 

 
 
 

 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  

  
 
 
 
 
 
 
 
 
 

 

  
 

 
 
 

  
 

  
 
 
 
 

   
 
 

  
 

  
 
 
 
 

 

Toolkits 
For prototyping tangible interaction, toolkits have 
been proposed as a productive approach to mitigate 
engineering challenges in building interfaces [18]. 
These toolkits range in levels of fidelity from paper 
prototyping [17, 36] to sophisticated electronic toolkits 
[8, 2]. For gesture recognition on physical objects, there 
is a significant barrier to entry regarding the time to 
design and develop such interfaces. There is also a lack 
of transferability across application contexts as tangible 
devices are often designed for bespoke tasks. Our work 
aims to provide a scalable and modular toolkit, both in 
hardware and software, for prototyping surface-based 
gestures on tangibles objects deployable to a variety of 
different application contexts. 

A common evaluation approach for understanding the 
feasibility and generalisability of toolkits is to actually 
use the toolkit to design and develop a number of 
demonstrative applications [13, 18, 20]. We adopt this 
approach for TangibleTouch and develop 3 demonstrative 
applications using the toolkit. 

INTERACTION SPACE 
As a starting point, we explore the potential of a 
cubic tangible as an interaction device to highlight 
the interactions it can afford, as well as illustrate the 
challenges in detecting these interactions (see Figure 2). 
The space is divided into surface-based input, combining 
gestures, interactions beyond gesture, and output space. 

1. Surface-based Input 
The design space of single and multi-touch surface 
gestures is based on cubic tangible and surface-based 
computing literature [19, 34]. The surface interactions 
described in Figure 2, while not an exhaustive list, 
demonstrates the range of touch gestures that can be 
performed on a simple cube: single touch gestures such as 
taps, swipes, and path gestures, and multi-touch gestures 
such as multi-finger taps and pinch gestures. Due to the 
stable form factor of cubes and the inherent graspability, 
these gestures can be performed in hand or while the 
cube is at rest. By combining cube affordance and 

simple surface-based gestures, common TUI metaphors 
can be mimicked: swipes to represent a slider, taps as 
button input, path traces as directional input or as a dial, 
and pinch gestures to replicate common touchpad input. 

2. Combining Gestures for Input 
Cubes are multiplexers of interaction by virtue of their 
form factor. Each face, while appearing identical to one 
another, can be leveraged as a separate area for input and 
even configured on the fly depending on the context of 
interaction. In the case of surface-based gestures a cube 
can support simultaneous and heterogeneous surface-
based gestures on any face. Further to this, a cubic 
tangible can support modal or state-based interactions 
depending on whether the cube is on a surface, in hand, 
or actively touched on a particular area. 

3. Other Interactions 
There are multitudes of other interactions that are 
significant for the design space of cubic tangible 
interaction. Based on the work of Lefeuvre et al [19], 
cube affordance alone has interesting properties such 
as manipulability, spatial arrangement, and multi-
functionality. Additional interactions are afforded when 
you instrument an object using a particular sensing 
approach. In our work, capacitive sensing enables the 
detection of proxemic interactions such as non-surface-
based gestures, or even other capacitive devices. 

4. Output Space 
Depending on the interaction context, different 
advantages of cube affordance can be leveraged in 
addition to surface-based interactions. For example, 
a cube’s dimensionality, manipulability, and ability to 
be a pedestal for output make them ideal candidates 
as interaction devices in Mixed Reality applications. 
Combine these inherent advantages with gesture 
detection and a wide variety of unique interactions 
can be supported. Moreover, the inherent tangibility of 
cubes makes them an ideal interaction device to support 
collaboration, having the ability to be freely passed from 
one user to another or placed in the environment. Cubes 
are also suited in output spaces that leverage physical 

surfaces, such as desktops or interactive surfaces. The 
stability and space afforded by a surface not only allows 
users to easily arrange and configure cubic tangibles, but 
also combine surface-gestures simultaneously. 

A rich design space for cubic interaction devices exists 
across a number of different output spaces (see Figure 
2). However, supporting a wide array of surface-based 
gestures without adorning the user or using external 
tracking is complex to fabricate and often lacks scalability. 
Gesture recognition using capacitive sensing is also 
non-trivial and requires different sensing configurations 
depending on the surface-gesture being detected. To 
address this we developed the TangibleTouch toolkit that 
provides a method for fabricating extended and modular 
capacitive cubes to detect distinct on-surface gestures. 

TOOLKIT DESIGN 
To address key challenges that exist in fabricating 
interactive tangible cubes, we developed TangibleTouch. 
The goal of this toolkit is to provide a rapid fabrication 
method that uses simple single-extrusion 3D printing to 
support the prototyping of modular cubic tangibles with 
interchangeable capacitive faces with different sensor 
configurations. Additionally, the toolkit aims to provide 
a software platform for digitally configuring the faces 
of a cube, training a particular face to detect one or more 
surface-gestures using machine learning, and a means of 
deploying those interactions in a variety of interaction 
contexts and applications. The toolkit consists of 3 parts: 
i) A face design space for divvying up the surface area 
of a cube to design for single and multi-touch gesture 
recognition using capacitive sensing. ii) An extendable 
hardware platform using conventional 3D printing 
that allows for interchangeable faces with different 
capacitive configurations. iii) A software platform that 
provides a user interface to add and configure interactive 
faces to a cube, record data of surface gestures and train 
a machine-learning model for gesture detection, and 
deploy designed interactions into a variety of different 
Unity based applications. 



Figure 3. Capacitive face design space showing the configuration of sensors and the touch interactions afforded. 



 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

  
 
 
 
 
 
 
 

  

 
 
 
 
 

 
 
 

 
 

 
  

 
 
 
 

  
 
 
 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 
 
 

  
 
 

 

 
 
 

  
 
 
 
 
 

 

 
 

Face Design 
To guide the design of the capacitive faces, we started 
with five general interactions that we wanted to detect 
using the lowest number of touch-sensitive areas: tap, 
swipe, pinch, path, and hover (see Figure 2). Figure 
3 shows a number of different sensor configurations, 
varied by the number of interactive areas and their 
placement on a given face, followed by which surface-
gestures these can support. The concept for each face 
design follows a principle of low complexity in terms 
of number of discrete touch areas. Instead, we rely on 
the multiplexed nature of a cube, with dedicated faces 
for particular interactions. While the toolkit can support 
more complex face designs, we focus on 10 simple 
face designs with 4 different sensor quantities (0, 1, 
2, and 4), and 4 different face configurations: square, 
radial, rectangle, and cross. Figure 3 demonstrates how 
these variables determine if a surface gesture can be 
supported. For example, face2 supports a tap but not a 
swipe as opposed to face3 which supports a tap or swipe 
but requires double the amount of touch-areas. For 
detecting a swipe gesture in practice, face3’s sensor0 is 
triggered at the start of a swipe gesture and sensor1 at 
the end and vice versa for a different swipe direction. 
Generally, if more complex gestures are to be detected 
the number of touch areas on a single face increases, or 
if a face needs to support more than one surface gesture. 
Another example is that both face3 and face5 support 
swipes, but the directionality of the swipe relative to 
the rest of the cube would be different, i.e. face3 cannot 
support ‘top-to-bottom’ swipes whereas face5 can. 

Hardware Platform and Fabrication 
The hardware platform for TangibleTouch (see Figure 
5) consists of three main components all of which can 
be fabricated using a conventional, single-extrusion 3D 
printer: i) non-conductive face bases, ii) conductive face 
components, and iii) cube chassis. In the face design, 
we explicitly chose to design the conductive and non-
conductive parts to be printed separately to make 
fabrication more viable for single-extrusion printers, 
which are generally more accessible and commercially 

available, opposed to dual-extrusion printers. We also 
use a capacitive sensor board, Arduino microcontroller, 
and lithium battery to instrument the cube. 

Non-conductive face bases and cube chassis can be 
printed using generic PLA or ABS. The conductive 
components can be printed using either conductive PLA 
or ABS with conductance of at least 4.6*102 Ohms/cm. 
For the tangible cube prototypes we developed using 
the toolkit, the non-conductive parts were printed using 
white Filamentive PLA and the conductive parts were 
printed using U3 conductive ABS with a conductance 
of 4.64*102 Ohms/cm. We recommend ABS for the 
conductive components as acetone can be used as a 
means of adhering the conductive pieces to the non-
conductive base plate giving reliable adhesion with less 
impact on the surface capacitance. Conductive PLA 
can be used, and can often provide better conductivity, 
but an adhesive agent is needed to mount conductive 
components to the non-conductive face base plate, 
which may affect the surface capacitance. 

All 3D printed parts were printed on an Ender3 V2 at 
50mm/s and a layer height of 0.16mm. The cube chassis 
took 8 hours to print and each face base plate took 30 
minutes (11 hours total for non-conductive parts). 
Conductive part print times can vary depending on the 
surface coverage, from 30 minutes to 1 hour. 

Dupont cables were used to connect the conductive 
parts to the capacitive sensor board, by heating a male 
connector using a soldering iron and inserting it into the 
mounting points. The prototype conductive components 
were measured at around 30kohm resistance across the 
conductive surface, and 10kohm from the conductive 
surface to the connecting cable. We also tested ProtoPasta 
conductive PLA mounted to the base plate using hot 
glue, which measured at 6kohm resistance across the 
conductive surface and 4kohm from the surface to the 
connecting dupont cable. 

Once conductive components are mounted to the face 
base plate and the cables have been connected to the 
conductive mounting points, the face can be simply 

Figure 4. The snap connectors to mount capacitive faces. 
attached to the cube chassis using ‘snap-fit’ connectors 
and the cables routed to the 12-channel capacitive sensor 
board (see Figure 4). In this case, a single cube can have 
a maximum of 12 discrete touch areas and, using the 
modular faces, distributed in any manner across the 
cube. For example, 2 faces with 4 touch areas, 2 faces 
with 2, and 2 with 0 or 6 faces with 2 touch areas. 

We used an Adafruit MPR121 12-Key Capacitive 
Touch Sensor breakout board for detecting capacitance, 



 Figure 5. The toolkit’s hardware components and design. A) The face design and fabrication, B) the cube components and modular design, and C) the controller design, and 
connection to the conductive faces. 



 
 
 
 
 
 

 
 
 
 
 
 

 

  
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  
 

  
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 

 

 
 
 

  
 
 
 
 

 

 
 
 

 
  

 
 
 
 
 
 
 

 
 
 
 

  
 
 
 
 
 
 

 

connected to an Adafruit Feather nRF52840 Express 
microcontroller powered by a small 3.7v 110mah 
lithium polymer battery, all of which can be mounted 
inside the cube chassis using M2 screws and nuts. The 
Adafruit Feather has low energy Bluetooth capabilities 
for transmitting data to other devices, which using the 
110mah battery can run for 11 hours on a single charge. 

We experimented with an additional gyroscope module 
that also has space for mounting within the cube chassis. 
The purpose of this is to make configuring the cube 
using the software interface easier, as a designer can 
determine which faces map to the digital representation 
by simply tilting the cube. However, this is optional and 
is not necessary for configuring the cube. 

Software Platform 
The TangibleTouch software platform is used to digitally 
configure the cube with the appropriate interactive 
faces, train a particular surface gesture for a given face 
using machine learning, and deploy the trained model 
of a surface gesture to an application (see Figure 6). 
The software platform consists of three modules: i) An 
Interface library, ii) a gesture-training library, and iii) a 
data processing and hardware library. 

TT Interface and Configuration 
The Unity-based interface can be loaded as a scene in a 
developer’s application to then configure a cube, train 
gestures, and deploy interactions packaged as Unity 
events, which applications can subscribe to. On loading 
the interface, a designer scans for Bluetooth devices or 
selects the cube directly if connected via UART. Once 
the cube is found and selected, the designer is taken to the 
configuration screen. Here, a designer can see the virtual 
representation of the cube device with 6 blank faces and 
a side panel with faces of varying sensor configurations. 
If a gyroscope module is connected to the cube, then the 
virtual cube will mimic the rotation of the physical cube 
to decipher the face positions, otherwise a developer can 
manipulate the cube using the mouse. Developers can 
easily add additional face configurations by invoking 
the face class and providing an ‘.obj’ file. 

To first configure the cube, a developer needs to 
select each face on the virtual model and assign a 
face configuration. Once all face configurations have 
been assigned the designer then cycles through each 
interactive touch area on the virtual model and touches 
the corresponding capacitive areas on the physical cube 
to calibrate the sensor channels on the capacitive sensor 
to the face configurations. If a previous configuration 
has been made, then a designer can load this into Unity 
from file by selecting the ‘Load Previous’ button. A 
cube configuration is cleared by clicking the ‘Reset 
Cube’ button. Once a designer is happy with their cube 
configuration, they can move to the gesture-training 
screen by clicking ‘Continue’. 

A designer adds a new gesture to the cube by uniquely 
naming the gesture and selecting ‘Add New Gesture’. An 
optional keyboard binding can be added for that gesture 
that will be triggered on gesture detection. The designer 
then selects the newly added gesture and selects ‘Record 
Gesture’. Now the designer performs the desired 
gesture 20 times, each with a sample size of 200 over a 
3 second window. The number of gesture samples, the 
sample size, and duration can all be altered, but these 
were the most optimal settings considering the time to 
set up and accuracy. Once any number of new gestures 
are recorded, the model can be retrained to include 
the newly added gestures by selecting ‘Train Model’. 
‘Start Detection’ then deploys the trained model and 
firing Unity events or triggers keyboard input depending 
on whether any gestures are detected. Developers can 
have an external class subscribe to the events fired by 
the gesture detection class, with each event containing 
the unique gesture name. Figure 6 shows an example of 
recording data for a swipe gesture and then deploying 
this interaction to a simple slider. 

TT Data Processing and Gesture Training 
For the capacitive sensor board, the default firmware 
settings were sufficient for the most part, but after 
testing it was found that the non-conductive base plate 
covering the conductive areas causes the baseline signal 
to not adjust quickly enough when a sensor is touched, 

which affected the performance of gesture detection. 
Setting the filter delay register (MPR121_FDLF) to 
the maximum value of 255 greatly improved the touch 
sensitivity and baseline stability. 

Gesture detection was implemented using TensorFlow2, 
a recurrent neural network, incorporated into the Unity 
environment using a standalone Python program. Once 
the model is ready to be trained, recorded data is loaded 
from a CSV file, and any non-configured sensors are 
zeroed. To account for a user holding the cube or the 
cube resting on a surface while performing a gesture, 
any sensor channels that are triggered for more than 
40% of a gesture sample are disregarded and zeroed. 
The model itself consists of 5 layers. 

First, the data goes through feature extraction, consisting 
of maximum and minimum pool layers. These are 
typically used to down-sample and extract features 
from images by partitioning them into a set of non-
overlapping rectangles and, for each such sub-region, 
outputs the maximum/average or minimum. In this case, 
max-pooling is used to increase the sequence length to 
smooth out any anomalous samples. As max-pooling 
decreases the number of lows, i.e. timesteps where the 
sensors are not touched, between touches, min-pooling 
had to be performed to increase these gaps between 
touches. Setting the strides to 2 also down-sampled the 
data from 200 timesteps to 96. Pool sizes were selected 
by experimentation. 

The main processing is done via the Gated recurrent 
unit (GRU) layer. We chose GRU as related work 
shows better temporal performance while maintaining 
equivalent accuracy [6]. Best accuracy was achieved 
with a unit count of 3 * number of labels. A Gaussian 
noise layer was added to prevent overfitting and an 
RMSprop optimizer was used, with a learning rate of 
0.02. Nadam and Adam optimizers were also tested, but 
they were slightly worse in terms of prediction accuracy. 
Learning rates up to 0.03 can be used to improve the 
speed at the cost of less stable changes between epochs. 

2 https://www.tensorflow.org/ 

https://www.tensorflow.org


Figure 6. The software platform to configure, design, train, and test surface gestures including some examples of deployable interactions. 



  
 

 
 
 
 
 
 
 
 
 
 

  

 

 
 
 
 
 
 
 
 

 
 

 
  

 
 
 

 

 
 
 
 

  
  

 
  

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

A learning rate schedule was used to decrease the 
learning rate over time. 

Categorical cross-entropy was used as the loss function 
and Softmax was used as the activation for the output 
layer. The model is trained over 50 epochs with a batch 
size of 32. The batch size can be increased to increase 
speed, but it will reduce the maximum accuracy that 
could be achieved and the model will converge slower, 
requiring more epochs. The epoch count can also be 
decreased, at the cost of stability. An average accuracy 
of 93% was recorded, with the validation and training 
producing similar accuracy. The trained gesture is then 
loaded as a frozen graph. 

For live gesture detection, the capacitive data is filtered 
and then sent to the model by using TensorFlowSharp3. 
TensorFlowSharp is a runtime that allows for 
TensorFlow models to run from C# and therefore in 
Unity. Two 100 sample rolling-windows were used for 
continuous detection, one with 100 latest samples and 
the other with 100 samples from the previous window. 
Once a gesture is detected, a Unity event is fired with the 
corresponding gesture name. Finally, the toolkit source 
code and 3D-models of the hardware components are 
entirely open source4. 

Gesture Detection Accuracy 
To test the gesture detection accuracy, we conducted 
a small preliminary study involving 4 participants. 
Participants would test 3 pre-trained gestures, double-
tap finger, double-tap hand, and finger swipe, and 1 
custom gesture they create and trained themselves (for 
a total of 40 recordings). The entire study was done 
using the 2-sensor radial face configuration. Each of 
the 4 gestures was tested 20 times by each participant. 
The detection accuracy for double-tap finger was 93%, 
double-tap hand was 100%, finger swipe was 85%, and 
the custom gesture was 85%. 

3 https://github.com/migueldeicaza/TensorFlowSharp 
4 https://github.com/TangibleTouch/Toolkit 

APPLICATIONS 
To evaluate the functionality of TangibleTouch, we 
employ a Type 1 evaluation strategy [18] to demonstrate 
the feasibility of the toolkit and its ability to rapidly 
prototype a tangible interface. We created three exemplar 
applications developed in Unity and deployed across 
3 different output spaces: Model Inspector (Mixed 
Reality), 2D Platformer (Desktop), and a Media Player 
(Public display). Figure 7, 8, and 9 show the generative 
breadth of the TangibleTouch toolkit, illustrating 
different touch gestures used in each application. 

Application 1: Model Inspector 
This application allows the cube to manipulate a 3D 
model, loaded into Unity, via rotation and scaling. The 
cube designed for this application uses 4 blank faces and 
2 interactive faces: a 4-sensor square, and a 2-sensor 
rectangle. The model inspector was deployed in Mixed 
Reality, a popular medium for Tangible Interaction, using 
a Microsoft Hololens2 as shown in Figure 7. A 3D model 
is rotated by performing a circular path gesture on the 
cubes 4-sensor square face, with the direction of rotation 
mapped to the direction of the gesture performed. The 
user can cycle through the 3 different axes for rotation, 
roll, pitch, and yaw, by tapping either of the two sensors 
on the rectangle face. Object scaling is performed by 
swiping from one sensor on the rectangle face to the 
other, and the direction of the swipe determines whether 
the object grows or shrinks. The Model Inspector allows 
users to manipulate and separate the rotational degrees 
of freedom of a virtual model over distance. 

Application 2: 2D Platformer 
This application demonstrates a simple platformer game 
controlling a 2D character to jump, move, draw, and 
release an arrow. The cube uses 2 interactive faces and 
4 blank faces: a 4-sensor cross, and a 2-sensor radial. 
The application was deployed to a desktop PC shown 
in Figure 8. In this application, we make use of the key 
mapping function in the toolkit software to map touch 
input on the cube’s 4-sensor square face to key bindings 
in Unity, W, A, S, and D, for character movement. The 
user can perform an additional action of drawing the Figure 7. Model Inspector application in mixed reality. 

https://github.com/TangibleTouch/Toolkit
https://github.com/migueldeicaza/TensorFlowSharp


 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 

 

  
 
 
 
 
 
 
 

 
Figure 8. 2D Platformer application on a desktop PC. Figure 9. Media Player application on a public display. 

bow by swiping in any direction on the 2-sensor radial 
face and then firing the bow by releasing the finger from 
the sensor. 

Application 3: Media Player 
The final application demonstrates a simple media 
controller for playing, pausing, forwarding, and 
rewinding a video deployed on a public display. The 
cube designed for this application makes use of 4 blank 
faces and 2 interactive faces: two 2-sensor radials. This 
application also makes use of the key mapping function 
to work with web-based video players. As shown in 
Figure 9, a user can double-tap the centre of one radial 
face with a single finger to toggle pause and play, and 
perform a whole-hand double tap to fast forward. The 
same whole-hand gesture is performed on the other 
radial face to rewind a video. 

DISCUSSION 
Prototyping tangible objects with touch capabilities 
is complex, and designing for intricate surface-based 
gestures is non-trivial. Our toolkit, TangibleTouch, 
addresses these challenges by providing an extendable 
and modular hardware platform, that leverages cube 
affordance, and a software platform for configuring 
and designing tangible gesture interfaces across many 
different output spaces. Designers can: i) design their 
own bespoke sensor configurations for a cube, ii) create, 
train, and test in real-time a machine-learning model for 
a set of surface-gestures using the provided interface 
components, and iii) effortlessly deploy interactions to 
a variety of applications built in Unity. 

Expert designers can build upon the capacitive face 
design space introduced, as well as the hardware platform, 
to build entirely new face configurations for different 
or more complex surface gestures. The TangibleTouch 
interface and cube configuration software can support 
any number of face designs, and gestures can be trained 
with any sensor configuration. To ensure accessible 
fabrication, we designed the toolkit components to be 
produced entirely using single extrusion 3D printing. 



 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  
  
 
 

 

 

 

 

 

 

 
 

 

Using three demonstrative applications that include 
a number of different sensor configurations and 
surface-based gestures, we highlight the generality 
of interactions supported as well as the versatility of 
deployment in different output spaces. Additionally, 
we show the toolkit’s ability to rapidly prototype and 
explore rich and expressive input in tangible interaction. 
A fundamental limitation, but also a distinct advantage, 
is the use of a cubic form factor. The abstract nature 
of cubes means that any designed gestures can often 
be transferrable to other, more complex tangible form 
factors. Furthermore, designers can multiplex surface 
gestures in a single artefact by simply using the discrete 
faces inherent to the cubic form factor. Additionally, 
the modular nature of the cube allows for on-the-fly 
reconfiguration of the interaction device, ideal for 
exploring a breadth of interactions during prototyping 
stages of a tangible interface. 

Building upon TangibleTouch 
There is a clear avenue for future work building on 
the foundational elements of TangibleTouch. Firstly, 
to develop more face designs in terms of capacitive 
sensor configurations but also explore face surface 
texture, form, and colour. By using the same modularity 
principles, there is potential to not only design and 
explore further surface-gestures, but also explore haptic 
experiences and output. For example, to differentiate 
and communicate gesture mappings to faces or better 
convey desired interactions to novice users through the 
materiality and affordance of a face. To achieve this, 
more sophisticated fabrication approaches could be 
incorporated to expand the toolkits design space further. 

In terms of leveraging cube affordance in tangible 
interaction, our toolkit has scratched the surface. 
Previous work has touched on the benefits of cube 
affordance in interaction [19], and the TangibleTouch 
toolkit could be expanded to explore cubes 
manipulability, spatial stability and arrangement, and 
capacity as a pedestal for output. The highly decoupled 
nature of the toolkit enables the surface-based gesture 
detection to be incorporated with additional sensing 

approaches or devices such as inertia-measurement, 
proximity sensors, and visual displays. Furthermore, 
our initial characterisation of the interaction space 
briefly touched on the implications of multiple cubes. 
The interplay between multiple interactive cubes and 
their utility in collaborative tasks warrants exploration 
in of itself. The cube form factor could be condensed, 
by adjusting the level of instrumentation, opening up a 
design space for 100s of stackable, miniaturised cubes 
that can be configured into new and unique geometries. 
Finally, while we have evaluated TangibleTouch through 
demonstrative applications [18], future work could 
employ different evaluation methodologies such as 
case-studies, a usability study, or heurisitic evaluation. 

CONCLUSION 
Through our toolkit, TangibleTouch, designers can 
prototype and develop bespoke surface-based gestures 
for tangible interfaces using a modular and easily 
fabricated hardware platform and a software framework 
that abstracts away complex data processing and 
machine learning. The toolkit also reduces testing 
complexity using a run-time environment to detect 
designed gestures in real-time. Both the hardware and 
software platforms are highly decoupled and extendable 
for expert designers to create other capacitive face 
designs, incorporate additional sensors, and implement 
into any Unity-based applications. Future work includes 
building on the basis the toolkit has provided to explore: 
cube affordance beyond surface-based gestures, 
supporting multi-cube interactions, and different types 
of sensors and instrumentation. 

REFERENCES 
[1] Leonardo Angelini, Denis Lalanne, Elise Van den 

Hoven, Khaled Omar Abou, Elena Mugellini. 2015. 
Move, Hold and Touch: A Framework for Tangible 
Gesture Interactive Systems. Machines, 3(3), 173-
207. https://doi.org/10.3390/machines3030173 

[2] Jatin Arora, Aryan Saini, Nirmita Mehra, Varnit 
Jain, Shwetank Shrey, and Aman Parnami. 2019. 
VirtualBricks: Exploring a Scalable, Modular 

Toolkit for Enabling Physical Manipulation in VR. 
Proceedings of the 2019 CHI Conference on Human 
Factors in Computing Systems. Association for 
Computing Machinery, New York, NY, USA, Paper 
56, 1–12. https://doi.org/10.1145/3290605.3300286 

[3] Daniel Avrahami, Jacob O. Wobbrock, and Shahram 
Izadi. 2011. Portico: tangible interaction on and 
around a tablet. In Proceedings of the 24th annual 
ACM symposium on User interface software and 
technology (UIST ‘11). Association for Computing 
Machinery, New York, NY, USA, 347–356. https:// 
doi.org/10.1145/2047196.2047241 

[4] Till Ballendat, Nicolai Marquardt, and Saul Green-
berg. 2010. Proxemic interaction: designing for 
a proximity and orientation-aware environment. 
In ACM International Conference on Interactive 
Tabletops and Surfaces (ITS ‘10). Association 
for Computing Machinery, New York, NY, USA, 
121–130. https://doi.org/10.1145/1936652.1936676 

[5] Jesse Burstyn, Nicholas Fellion, Paul Strohmeier, 
Roel Vertegaal. 2015. PrintPut: Resistive and 
Capacitive Input Widgets for Interactive 3D Prints. 
15th Human-Computer Interaction (INTERACT), 
Sep 2015, Bamberg, Germany. pp.332-339, https:// 
doi.org/10.1007/978-3-319-22701-6_25 

[6] Junyoung Chung, Caglar Gulcehre, Kyunghyun 
Cho, Yoshua Bengio. 2014. Empirical evaluation 
of gated recurrent neural networks on sequence 
modeling. NIPS 2014 Workshop on Deep Learning, 
December 2014. https://arxiv.org/abs/1412.3555 

[7] David Englmeier, Julia Dörner, Andreas Butz and 
Tobias Höllerer, 2020 A Tangible Spherical Proxy 
for Object Manipulation in Augmented Reality. 
2020 IEEE Conference on Virtual Reality and 3D 
User Interfaces (VR), 2020, pp. 221-229, https:// 
doi.org/10.1109/VR46266.2020.00041 

[8] Martin Feick, Scott Bateman, Anthony Tang, André 

https://doi.org/10.1109/VR46266.2020.00041
https://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-3-319-22701-6_25
https://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/2047196.2047241
https://doi.org/10.1145/3290605.3300286
https://doi.org/10.3390/machines3030173


 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Miede and Nicolai Marquardt. 2020 Tangi: Tan-
gible Proxies For Embodied Object Exploration 
And Manipulation In Virtual Reality. 2020 IEEE 
International Symposium on Mixed and Augmented 
Reality (ISMAR), 2020, pp. 195-206, https://doi. 
org/10.1109/ISMAR50242.2020.00042 

[9] Kenneth P. Fishkin. 2004. A taxonomy for and 
analysis of tangible interfaces. Personal Ubiquitous 
Computing 8, 5 (September 2004), 347–358. https:// 
doi.org/10.1007/s00779-004-0297-4 

[10] Tobias Grosse-Puppendahl, Yannick Berghoefer, 
Andreas Braun, Raphael Wimmer and Arjan 
Kuijper, 2013. OpenCapSense: A rapid prototyp-
ing toolkit for pervasive interaction using capaci-
tive sensing. 2013 IEEE International Conference 
on Pervasive Computing and Communications 
(PerCom), pp. 152-159, https://doi.org/10.1109/Per-
Com.2013.6526726 

[11] Tobias Grosse-Puppendahl, Christian Holz, Gabe 
Cohn, Raphael Wimmer, Oskar Bechtold, Steve 
Hodges, Matthew S. Reynolds, and Joshua R. 
Smith. 2017. Finding Common Ground: A Survey 
of Capacitive Sensing in Human-Computer Inter-
action. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems 
(CHI ‘17). Association for Computing Machinery, 
New York, NY, USA, 3293–3315. https://doi. 
org/10.1145/3025453.3025808 

[12] David Holman and Hrvoje Benko. 2011. Sketch-
Space: designing interactive behaviors with 
passive materials. In CHI ‘11 Extended Abstracts 
on Human Factors in Computing Systems (CHI 
EA ‘11). Association for Computing Machinery, 
New York, NY, USA, 1987–1992. https://doi. 
org/10.1145/1979742.1979867 

[13] Steven Houben and Nicolai Marquardt. 2015. 
WatchConnect: A Toolkit for Prototyping Smart-
watch-Centric Cross-Device Applications. In 

Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems 
(CHI ‘15). Association for Computing Machinery, 
New York, NY, USA, 1247–1256. https://doi. 
org/10.1145/2702123.2702215 

[14] Elise Van den Hoven and Ali Mazalek. 2011. Grasp-
ing gestures: Gesturing with physical artifacts. Ar-
tificial Intelligence for Engineering Design, Analy-
sis and Manufacturing, vol. 25, no. 3, pp. 255–271, 
2011. https://doi.org/10.1017/S0890060411000072 

[15] Sergi Jordà, Günter Geiger, Marcos Alonso, and 
Martin Kaltenbrunner. 2007. The reacTable: explor-
ing the synergy between live music performance 
and tabletop tangible interfaces. In Proceedings 
of the 1st international conference on Tangible 
and embedded interaction (TEI ‘07). Association 
for Computing Machinery, New York, NY, USA, 
139–146. https://doi.org/10.1145/1226969.1226998 

[16] Martin Kaltenbrunner and Ross Bencina. 2007. Re-
acTIVision: a computer-vision framework for table-
based tangible interaction. In Proceedings of the 1st 
international conference on Tangible and embedded 
interaction (TEI ‘07). Association for Computing 
Machinery, New York, NY, USA, 69–74. https://doi. 
org/10.1145/1226969.1226983 

[17] Annie Kelly, R. Benjamin Shapiro, Jonathan de 
Halleux, and Thomas Ball. 2018. ARcadia: A 
Rapid Prototyping Platform for Real-time Tangible 
Interfaces. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems 
(CHI’18). Association for Computing Machinery, 
New York, NY, USA, Paper 409, 1–8. https://doi. 
org/10.1145/3173574.3173983 

[18] David Ledo, Steven Houben, Jo Vermeulen, Nicolai 
Marquardt, Lora Oehlberg, and Saul Greenberg. 
2018. Evaluation Strategies for HCI Toolkit 
Research. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems 

(CHI’18). Association for Computing Machinery, 
New York, NY, USA, Paper 36, 1–17. https://doi. 
org/10.1145/3173574.3173610 

[19] Kevin Lefeuvre, Soeren Totzauer, Michael Storz, 
Albrecht Kurze, Andreas Bischof, and Arne Berger. 
2018. Bricks, Blocks, Boxes, Cubes, and Dice: On 
the Role of Cubic Shapes for the Design of Tan-
gible Interactive Devices. In Proceedings of the 
2018 Designing Interactive Systems Conference 
(DIS ‘18). Association for Computing Machin-
ery, New York, NY, USA, 485–496. https://doi. 
org/10.1145/3196709.3196768 

[20] Nicolai Marquardt, Robert Diaz-Marino, Sebastian 
Boring, and Saul Greenberg. 2011. The proxim-
ity toolkit: prototyping proxemic interactions in 
ubiquitous computing ecologies. In Proceedings of 
the 24th annual ACM symposium on User interface 
software and technology (UIST ‘11). Association 
for Computing Machinery, New York, NY, USA, 
315–326. https://doi.org/10.1145/2047196.2047238 

[21] Thomas Muender, Anke V. Reinschluessel, Sean 
Drewes, Dirk Wenig, Tanja Döring, and Rainer 
Malaka. 2019. Does It Feel Real? Using Tangibles 
with Different Fidelities to Build and Explore 
Scenes in Virtual Reality. Proceedings of the 2019 
CHI Conference on Human Factors in Comput-
ing Systems (CHI’19). Association for Computing 
Machinery, New York, NY, USA, Paper 673, 1–12. 
https://doi.org/10.1145/3290605.3300903 

[22] Alexander Nelson, Gurashish Singh, Ryan Robucci, 
Chintan Patel and Nilanjan Banerjee. 2015. Adap-
tive and Personalized Gesture Recognition Using 
Textile Capacitive Sensor Arrays. IEEE Transac-
tions on Multi-Scale Computing Systems, vol. 1, 
no. 2, pp. 62-75, 1 April-June 2015, https://doi. 
org/10.1109/TMSCS.2015.2495100 

[23] Simon Olberding, Nan-Wei Gong, John Tiab, Jo-
seph A. Paradiso, and Jürgen Steimle. 2013. A cut-

https://doi
https://doi.org/10.1145/3290605.3300903
https://doi.org/10.1145/2047196.2047238
https://doi
https://doi
https://doi
https://doi
https://doi.org/10.1145/1226969.1226998
https://doi.org/10.1017/S0890060411000072
https://doi
https://doi
https://doi
https://doi.org/10.1109/Per
https://doi.org/10.1007/s00779-004-0297-4
https://doi


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

table multi-touch sensor. In Proceedings of the 26th 
annual ACM symposium on User interface software 
and technology (UIST ‘13). Association for Com-
puting Machinery, New York, NY, USA, 245–254. 
https://doi.org/10.1145/2501988.2502048 

[24] Valkyrie Savage, Colin Chang, and Björn Hart-
mann. 2013. Sauron: embedded single-camera 
sensing of printed physical user interfaces. In 
Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology 
(UIST ‘13). Association for Computing Machin-
ery, New York, NY, USA, 447–456. https://doi. 
org/10.1145/2501988.2501992 

[25] Valkyrie Savage, Xiaohan Zhang, and Björn Hart-
mann. 2012. Midas: fabricating custom capacitive 
touch sensors to prototype interactive objects. 
In Proceedings of the 25th annual ACM sympo-
sium on User interface software and technology 
(UIST ‘12). Association for Computing Machin-
ery, New York, NY, USA, 579–588. https://doi. 
org/10.1145/2380116.2380189 

[26] Martin Schmitz, Mohammadreza Khalilbeigi, 
Matthias Balwierz, Roman Lissermann, Max 
Mühlhäuser, and Jürgen Steimle. 2015. Capricate: 
A Fabrication Pipeline to Design and 3D Print 
Capacitive Touch Sensors for Interactive Objects. 
In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology 
(UIST ‘15). Association for Computing Machin-
ery, New York, NY, USA, 253–258. https://doi. 
org/10.1145/2807442.2807503 

[27] Orit Shaer and Eva Hornecker. 2010. Tangible 
User Interfaces: Past, Present, and Future Di-
rections. Found. Trends Hum.-Comput. Inter-
act. 3, 1–2 (January 2010), 1–137. https://doi. 
org/10.1561/1100000026 

[28] Jennifer G. Sheridan, B. W. Short, Kristof Van 
Laerhoven, Nicolas Villar and Gerd Kortuem. 2003. 

Exploring cube affordance: towards a classification 
of non-verbal dynamics of physical interfaces for 
wearable computing. IEE Eurowearable, 2003, pp. 
113-118, https://doi.org/10.1049/ic:20030156 

[29] Gurashish Singh, Alexander Nelson, Ryan Ro-
bucci, Chintan Patel and Nilanjan Banerjee. 2015. 
Inviz: Low-power personalized gesture recog-
nition using wearable textile capacitive sensor 
arrays. 2015 IEEE International Conference on 
Pervasive Computing and Communications (Per-
Com), pp. 198-206, https://doi.org/10.1109/PER-
COM.2015.7146529 

[30] Christian Stetco, Stephan Mühlbacher-Karrer, 
Matteo Lucchi, Matthias Weyrer, Lisa-Marie Faller 
and Hubert Zangl. 2020 Gesture-based Contactless 
Control of Mobile Manipulators using Capacitive 
Sensing. 2020 IEEE International Instrumen-
tation and Measurement Technology Confer-
ence (I2MTC), pp. 1-6, https://doi.org/10.1109/ 
I2MTC43012.2020.9128751 

[31] Brygg Ullmer and Hiroshi Ishii. 2000. Emerg-
ing frameworks for tangible user interfaces. IBM 
Syst. J. 39, 3–4 (July 2000), 915–931. https://doi. 
org/10.1147/sj.393.0915 

[32] Malte Weiss, Florian Schwarz, Simon Jakubowski, 
and Jan Borchers. 2010. Madgets: actuating widgets 
on interactive tabletops. In Proceedings of the 23nd 
annual ACM symposium on User interface software 
and technology (UIST ‘10). Association for Com-
puting Machinery, New York, NY, USA, 293–302. 
https://doi.org/10.1145/1866029.1866075 

[33] Malte Weiss, Julie Wagner, Yvonne Jansen, Roger 
Jennings, Ramsin Khoshabeh, James D. Hollan, 
and Jan Borchers. 2009. SLAP widgets: bridging 
the gap between virtual and physical controls on 
tabletops. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems 
(CHI ‘09). Association for Computing Machin-

ery, New York, NY, USA, 481–490. https://doi. 
org/10.1145/1518701.1518779 

[34] Jacob O. Wobbrock, Meredith Ringel Morris, and 
Andrew D. Wilson. 2009. User-defined gestures for 
surface computing. In Proceedings of the SIG-
CHI Conference on Human Factors in Computing 
Systems (CHI ‘09). Association for Computing Ma-
chinery, New York, NY, USA, 1083–1092. https:// 
doi.org/10.1145/1518701.1518866 

[35] Hui-Shyong Yeo, Ryosuke Minami, Kirill Rodri-
guez, George Shaker, and Aaron Quigley. 2018. 
Exploring Tangible Interactions with Radar Sens-
ing. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 2, 4, Article 200 (December 2018), 25 
pages. https://doi.org/10.1145/3287078 

[36] Clement Zheng, Peter Gyory, and Ellen Yi-Luen 
Do. 2020. Tangible Interfaces with Printed Pa-
per Markers. In Proceedings of the 2020 ACM 
Designing Interactive Systems Conference 
(DIS ‘20). Association for Computing Machin-
ery, New York, NY, USA, 909–923. https://doi. 
org/10.1145/3357236.3395578 

[37] Kening Zhu, Taizhou Chen, Feng Han, and Yi-
Shiun Wu. 2019. HapTwist: Creating Interactive 
Haptic Proxies in Virtual Reality Using Low-cost 
Twistable Artefacts. Proceedings of the 2019 CHI 
Conference on Human Factors in Computing 
Systems. Association for Computing Machinery, 
New York, NY, USA, Paper 693, 1–13. https://doi. 
org/10.1145/3290605.3300923 

https://doi
https://doi
https://doi.org/10.1145/3287078
https://doi.org/10.1145/1518701.1518866
https://doi
https://doi.org/10.1145/1866029.1866075
https://doi
https://doi.org/10.1109
https://doi.org/10.1109/PER
https://doi.org/10.1049/ic:20030156
https://doi
https://doi
https://doi
https://doi
https://doi.org/10.1145/2501988.2502048



