

TangibleTouch: A Toolkit for Designing
Surface-based Gestures for Tangible Interfaces

Dominic Potts Martynas Dabravalskis Steven Houben
Lancaster University Lancaster University Eindhoven University of Technology

Lancaster, United Kingdom Lancaster, United Kingdom Eindhoven, The Netherlands
d.potts2@lancaster.ac.uk m.dabravalskis@lancaster.ac.uk s.houben@tue.nl

ABSTRACT
This pictorial introduces TangibleTouch, a toolkit
to design and build interactive tangible cubes using
capacitive sensing. This toolkit enables designers to
quickly prototype and explore tangible cubes with
exchangeable capacitive panels that allows touch-based
gestures and interactions that can be used for tangible
input in VR, AR, or physical computing. We introduce
a design space for TangibleTouch, and present the
technical implementation, fabrication approaches, and
software support for designers. We evaluate our toolkit
by demonstrating its use and application for 3 different
case studies: a media controller, a platform game, and a
3D model inspection tool. The contribution of our work
is a novel toolkit method for constructing and fabricating
a cube-based interactive tangible user interface.

Authors Keywords
Tangibles; Gestural Interaction; Toolkit; Rapid
Prototyping; Capacitive Sensing; Mixed Reality

CSS Concepts
Human-centered computing ~ User interface toolkits

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
TEI ‘22, February 13–16, 2022, Daejeon, Republic of Korea
© 2022 Copyright is held by the owner/author(s).
Publication rights licensed to ACM. Figure 1. The TangibleTouch toolkit composed of: A) Capacative Face Design Space, B) modular Hardware ACM ISBN 978-1-4503-9147-4/22/02…$15.00
https://doi.org/10.1145/3490149.3502263 Platform, C) Software Platform to train surface gestures, and D) Deployable Interactions to any Unity application.

INTRODUCTION
Tangible User Interfaces (TUI) are commonly adopted
interaction devices for their innate affordances,
manipulability, and mechanisms for rich input and output
[27]. Cubic tangibles are a common form factor and
widely adopted interaction device in tangible research,
due to their physical simplicity, spatial stability, multi-
functionality, and abstract nature [2]. A common means
of interacting with tangibles, cubic or otherwise, is via
physical manipulation and gesturing upon or with the
object [1, 14]. Tracking and detecting interaction with
a physical artefact as an expression of touch input can
be difficult as it requires either sophisticated external
tracking or instrumentation of the object. One popular
approach to creating touch sensitive devices is by using
capacitive sensing to detect complex surface-based
gestures and even proxemic interaction [11, 4]. However,
it is difficult to fabricate such capacitive tangibles that
can be configured to support a variety of expressive
touch gestures for different contexts and applications.

The TangibleTouch toolkit (Figure 1) is a novel
fabrication method and rapid prototyping toolkit
for designing modular, interactive cubic tangibles
with interchangeable capacitive faces, facilitating a
multitude of surface-based gestures. TangibleTouch
provides the following: i) a modular and extendable
hardware platform enabling the rapid fabrication of
cubic tangibles capable of detecting different surface-
based gestures, ii) a Unity1-integrated user interface that
supports the configuration and mapping of capacitive
faces on a given cube, and iii) a run time system to train
surface-based gestures and detecting them in real-time.

In this pictorial we present the intersecting literature
that is the basis of our work, visualise the interaction
space for cubic tangibles, and explore the design of
capacitive faces and the types of surface-based gestures
they support. We then detail the design of the cube,
the hardware implementation and fabrication process,
and the components of the toolkit. Next, we evaluate
the TangibleTouch toolkit through three demonstrative

1 https://unity.com/

applications, displaying the range of surface-based
gestures supported and highlighting the generality of the
toolkit. Finally, we reflect on and discuss the features
and implications of the toolkit.

BACKGROUND
Our work builds on different areas of related work
including Tangible UI, cubic tangibles, fabrication
methods, capacitive sensing, and toolkit research.

Tangible Prototyping & Cubes
Tangible User Interfaces (TUI) provide a physical means
of representing and manipulating digital information [9,
27, 31], and there has been considerable work around
prototyping TUIs without the need for instrumentation.
For example, the work of Kelly et al. [17] and Zheng
et al. [36] focused on producing popular TUI elements,
such as knobs and sliders, using a combination of low
fidelity material and fiducial-based computer vision
tracking. Beyond low-fidelity prototyping, there are table
top approaches that also use external computer vision
tracking to build toolkits and development platforms
for TUIs such as: reacTable [15] and reacTIVision
[16], Madgets [32], and SLAP Widgets [33]. Rather
than constructing tangible interface components from
composite objects, another approach is to have an
interactive artefact. For example, Savage et al. focused
on interaction with physical objects while utilizing a
computer-vision based tracking approach to detect user
gestures and create ‘active’ objects [24].

Artefact-based interfaces are commonly used in Mixed
Reality environments due to their manipulability and
ability to be used as a proxy [2, 7, 8, 21, 37]. The work
of Feick et al. [8] produced a toolkit for prototyping
such tangible artefacts for virtual environments, using
low-fidelity and modular ‘shape primitives’, to support
proxy-based interactions. Beyond proxy interaction,
the work of Angelini [1] and Van den Hoven et al. [14]
shows how combining a tangible artefact with gestures,
both motion and surface-based, can effectively recreate
common UI elements using a single artefact. In addition,
the benefits of cubes as tangible interaction devices

have previously been explored [19, 28]. Particularly
the work of Lefeuvre et al. [19] categorises the distinct
affordances and properties of cubes by “manipulation,
placement in space, arrangement, multi-functionality,
randomness, togetherness, physical qualities,
containers, and pedestal for output”. Inspired by this
work, TangibleTouch aims to build upon previous
tangible prototyping toolkits with a first exploration of
an emergent design space for prototyping surface-based
gestures leveraging the benefits of cube affordance.

Capacitive Sensing & Fabricating Interactivity
Considering the above related work, we can describe two
general approaches to sensing tangible interaction: (i)
using an external tracking system or (ii) instrumenting an
interface or user. While both approaches have limiting
factors for prototyping, external tracking has challenges
and requirements when detecting surface interaction on
objects, primarily down to occlusion of the object and
gestures [3, 12, 35]. Considering detecting interaction
on instrumented objects, capacitive sensing is a common
and well-documented approach, with particular benefits
for rabid fabrication and prototyping [5, 11, 23, 25,
26]. The work of Schmitz et al. [26] and Burstyn et al.
[5] explored capacitive input on 3D printed interactive
objects, specifically leveraging conductive filament and
dual-extrusion printing, to create discrete touch-sensitive
areas on any 3D object. Capricate [26] in particular
provided tools for designers to modify virtual models to
be printed and instrumented with touch-sensitive areas.

Beyond 3D printing of capacitive objects, so-called
‘loading mode’ capacitive sensing has been adopted
for gesture recognition [11]. Commonly, a number
of capacitive areas are used to form capacitive sensor
arrays to track touch across a designated area over time
[10, 22, 29, 30]. Nelson at al. [22] incorporated 4 to 12
interactive areas to detect gestures on fabric and provided
an initial exploration of different capacitive plate shapes
and designs. For TangibleTouch, we aim to combine the
fabrication techniques of 3D printed interactive objects
with previous work on capacitive sensing for gesture
recognition into one rapid prototyping toolkit.

https://unity.com

Figure 2. A visualisation of the interaction and output space combining cubes and surface-based gestures.

Toolkits
For prototyping tangible interaction, toolkits have
been proposed as a productive approach to mitigate
engineering challenges in building interfaces [18].
These toolkits range in levels of fidelity from paper
prototyping [17, 36] to sophisticated electronic toolkits
[8, 2]. For gesture recognition on physical objects, there
is a significant barrier to entry regarding the time to
design and develop such interfaces. There is also a lack
of transferability across application contexts as tangible
devices are often designed for bespoke tasks. Our work
aims to provide a scalable and modular toolkit, both in
hardware and software, for prototyping surface-based
gestures on tangibles objects deployable to a variety of
different application contexts.

A common evaluation approach for understanding the
feasibility and generalisability of toolkits is to actually
use the toolkit to design and develop a number of
demonstrative applications [13, 18, 20]. We adopt this
approach for TangibleTouch and develop 3 demonstrative
applications using the toolkit.

INTERACTION SPACE
As a starting point, we explore the potential of a
cubic tangible as an interaction device to highlight
the interactions it can afford, as well as illustrate the
challenges in detecting these interactions (see Figure 2).
The space is divided into surface-based input, combining
gestures, interactions beyond gesture, and output space.

1. Surface-based Input
The design space of single and multi-touch surface
gestures is based on cubic tangible and surface-based
computing literature [19, 34]. The surface interactions
described in Figure 2, while not an exhaustive list,
demonstrates the range of touch gestures that can be
performed on a simple cube: single touch gestures such as
taps, swipes, and path gestures, and multi-touch gestures
such as multi-finger taps and pinch gestures. Due to the
stable form factor of cubes and the inherent graspability,
these gestures can be performed in hand or while the
cube is at rest. By combining cube affordance and

simple surface-based gestures, common TUI metaphors
can be mimicked: swipes to represent a slider, taps as
button input, path traces as directional input or as a dial,
and pinch gestures to replicate common touchpad input.

2. Combining Gestures for Input
Cubes are multiplexers of interaction by virtue of their
form factor. Each face, while appearing identical to one
another, can be leveraged as a separate area for input and
even configured on the fly depending on the context of
interaction. In the case of surface-based gestures a cube
can support simultaneous and heterogeneous surface-
based gestures on any face. Further to this, a cubic
tangible can support modal or state-based interactions
depending on whether the cube is on a surface, in hand,
or actively touched on a particular area.

3. Other Interactions
There are multitudes of other interactions that are
significant for the design space of cubic tangible
interaction. Based on the work of Lefeuvre et al [19],
cube affordance alone has interesting properties such
as manipulability, spatial arrangement, and multi-
functionality. Additional interactions are afforded when
you instrument an object using a particular sensing
approach. In our work, capacitive sensing enables the
detection of proxemic interactions such as non-surface-
based gestures, or even other capacitive devices.

4. Output Space
Depending on the interaction context, different
advantages of cube affordance can be leveraged in
addition to surface-based interactions. For example,
a cube’s dimensionality, manipulability, and ability to
be a pedestal for output make them ideal candidates
as interaction devices in Mixed Reality applications.
Combine these inherent advantages with gesture
detection and a wide variety of unique interactions
can be supported. Moreover, the inherent tangibility of
cubes makes them an ideal interaction device to support
collaboration, having the ability to be freely passed from
one user to another or placed in the environment. Cubes
are also suited in output spaces that leverage physical

surfaces, such as desktops or interactive surfaces. The
stability and space afforded by a surface not only allows
users to easily arrange and configure cubic tangibles, but
also combine surface-gestures simultaneously.

A rich design space for cubic interaction devices exists
across a number of different output spaces (see Figure
2). However, supporting a wide array of surface-based
gestures without adorning the user or using external
tracking is complex to fabricate and often lacks scalability.
Gesture recognition using capacitive sensing is also
non-trivial and requires different sensing configurations
depending on the surface-gesture being detected. To
address this we developed the TangibleTouch toolkit that
provides a method for fabricating extended and modular
capacitive cubes to detect distinct on-surface gestures.

TOOLKIT DESIGN
To address key challenges that exist in fabricating
interactive tangible cubes, we developed TangibleTouch.
The goal of this toolkit is to provide a rapid fabrication
method that uses simple single-extrusion 3D printing to
support the prototyping of modular cubic tangibles with
interchangeable capacitive faces with different sensor
configurations. Additionally, the toolkit aims to provide
a software platform for digitally configuring the faces
of a cube, training a particular face to detect one or more
surface-gestures using machine learning, and a means of
deploying those interactions in a variety of interaction
contexts and applications. The toolkit consists of 3 parts:
i) A face design space for divvying up the surface area
of a cube to design for single and multi-touch gesture
recognition using capacitive sensing. ii) An extendable
hardware platform using conventional 3D printing
that allows for interchangeable faces with different
capacitive configurations. iii) A software platform that
provides a user interface to add and configure interactive
faces to a cube, record data of surface gestures and train
a machine-learning model for gesture detection, and
deploy designed interactions into a variety of different
Unity based applications.

Figure 3. Capacitive face design space showing the configuration of sensors and the touch interactions afforded.

Face Design
To guide the design of the capacitive faces, we started
with five general interactions that we wanted to detect
using the lowest number of touch-sensitive areas: tap,
swipe, pinch, path, and hover (see Figure 2). Figure
3 shows a number of different sensor configurations,
varied by the number of interactive areas and their
placement on a given face, followed by which surface-
gestures these can support. The concept for each face
design follows a principle of low complexity in terms
of number of discrete touch areas. Instead, we rely on
the multiplexed nature of a cube, with dedicated faces
for particular interactions. While the toolkit can support
more complex face designs, we focus on 10 simple
face designs with 4 different sensor quantities (0, 1,
2, and 4), and 4 different face configurations: square,
radial, rectangle, and cross. Figure 3 demonstrates how
these variables determine if a surface gesture can be
supported. For example, face2 supports a tap but not a
swipe as opposed to face3 which supports a tap or swipe
but requires double the amount of touch-areas. For
detecting a swipe gesture in practice, face3’s sensor0 is
triggered at the start of a swipe gesture and sensor1 at
the end and vice versa for a different swipe direction.
Generally, if more complex gestures are to be detected
the number of touch areas on a single face increases, or
if a face needs to support more than one surface gesture.
Another example is that both face3 and face5 support
swipes, but the directionality of the swipe relative to
the rest of the cube would be different, i.e. face3 cannot
support ‘top-to-bottom’ swipes whereas face5 can.

Hardware Platform and Fabrication
The hardware platform for TangibleTouch (see Figure
5) consists of three main components all of which can
be fabricated using a conventional, single-extrusion 3D
printer: i) non-conductive face bases, ii) conductive face
components, and iii) cube chassis. In the face design,
we explicitly chose to design the conductive and non-
conductive parts to be printed separately to make
fabrication more viable for single-extrusion printers,
which are generally more accessible and commercially

available, opposed to dual-extrusion printers. We also
use a capacitive sensor board, Arduino microcontroller,
and lithium battery to instrument the cube.

Non-conductive face bases and cube chassis can be
printed using generic PLA or ABS. The conductive
components can be printed using either conductive PLA
or ABS with conductance of at least 4.6*102 Ohms/cm.
For the tangible cube prototypes we developed using
the toolkit, the non-conductive parts were printed using
white Filamentive PLA and the conductive parts were
printed using U3 conductive ABS with a conductance
of 4.64*102 Ohms/cm. We recommend ABS for the
conductive components as acetone can be used as a
means of adhering the conductive pieces to the non-
conductive base plate giving reliable adhesion with less
impact on the surface capacitance. Conductive PLA
can be used, and can often provide better conductivity,
but an adhesive agent is needed to mount conductive
components to the non-conductive face base plate,
which may affect the surface capacitance.

All 3D printed parts were printed on an Ender3 V2 at
50mm/s and a layer height of 0.16mm. The cube chassis
took 8 hours to print and each face base plate took 30
minutes (11 hours total for non-conductive parts).
Conductive part print times can vary depending on the
surface coverage, from 30 minutes to 1 hour.

Dupont cables were used to connect the conductive
parts to the capacitive sensor board, by heating a male
connector using a soldering iron and inserting it into the
mounting points. The prototype conductive components
were measured at around 30kohm resistance across the
conductive surface, and 10kohm from the conductive
surface to the connecting cable. We also tested ProtoPasta
conductive PLA mounted to the base plate using hot
glue, which measured at 6kohm resistance across the
conductive surface and 4kohm from the surface to the
connecting dupont cable.

Once conductive components are mounted to the face
base plate and the cables have been connected to the
conductive mounting points, the face can be simply

Figure 4. The snap connectors to mount capacitive faces.
attached to the cube chassis using ‘snap-fit’ connectors
and the cables routed to the 12-channel capacitive sensor
board (see Figure 4). In this case, a single cube can have
a maximum of 12 discrete touch areas and, using the
modular faces, distributed in any manner across the
cube. For example, 2 faces with 4 touch areas, 2 faces
with 2, and 2 with 0 or 6 faces with 2 touch areas.

We used an Adafruit MPR121 12-Key Capacitive
Touch Sensor breakout board for detecting capacitance,

 Figure 5. The toolkit’s hardware components and design. A) The face design and fabrication, B) the cube components and modular design, and C) the controller design, and
connection to the conductive faces.

connected to an Adafruit Feather nRF52840 Express
microcontroller powered by a small 3.7v 110mah
lithium polymer battery, all of which can be mounted
inside the cube chassis using M2 screws and nuts. The
Adafruit Feather has low energy Bluetooth capabilities
for transmitting data to other devices, which using the
110mah battery can run for 11 hours on a single charge.

We experimented with an additional gyroscope module
that also has space for mounting within the cube chassis.
The purpose of this is to make configuring the cube
using the software interface easier, as a designer can
determine which faces map to the digital representation
by simply tilting the cube. However, this is optional and
is not necessary for configuring the cube.

Software Platform
The TangibleTouch software platform is used to digitally
configure the cube with the appropriate interactive
faces, train a particular surface gesture for a given face
using machine learning, and deploy the trained model
of a surface gesture to an application (see Figure 6).
The software platform consists of three modules: i) An
Interface library, ii) a gesture-training library, and iii) a
data processing and hardware library.

TT Interface and Configuration
The Unity-based interface can be loaded as a scene in a
developer’s application to then configure a cube, train
gestures, and deploy interactions packaged as Unity
events, which applications can subscribe to. On loading
the interface, a designer scans for Bluetooth devices or
selects the cube directly if connected via UART. Once
the cube is found and selected, the designer is taken to the
configuration screen. Here, a designer can see the virtual
representation of the cube device with 6 blank faces and
a side panel with faces of varying sensor configurations.
If a gyroscope module is connected to the cube, then the
virtual cube will mimic the rotation of the physical cube
to decipher the face positions, otherwise a developer can
manipulate the cube using the mouse. Developers can
easily add additional face configurations by invoking
the face class and providing an ‘.obj’ file.

To first configure the cube, a developer needs to
select each face on the virtual model and assign a
face configuration. Once all face configurations have
been assigned the designer then cycles through each
interactive touch area on the virtual model and touches
the corresponding capacitive areas on the physical cube
to calibrate the sensor channels on the capacitive sensor
to the face configurations. If a previous configuration
has been made, then a designer can load this into Unity
from file by selecting the ‘Load Previous’ button. A
cube configuration is cleared by clicking the ‘Reset
Cube’ button. Once a designer is happy with their cube
configuration, they can move to the gesture-training
screen by clicking ‘Continue’.

A designer adds a new gesture to the cube by uniquely
naming the gesture and selecting ‘Add New Gesture’. An
optional keyboard binding can be added for that gesture
that will be triggered on gesture detection. The designer
then selects the newly added gesture and selects ‘Record
Gesture’. Now the designer performs the desired
gesture 20 times, each with a sample size of 200 over a
3 second window. The number of gesture samples, the
sample size, and duration can all be altered, but these
were the most optimal settings considering the time to
set up and accuracy. Once any number of new gestures
are recorded, the model can be retrained to include
the newly added gestures by selecting ‘Train Model’.
‘Start Detection’ then deploys the trained model and
firing Unity events or triggers keyboard input depending
on whether any gestures are detected. Developers can
have an external class subscribe to the events fired by
the gesture detection class, with each event containing
the unique gesture name. Figure 6 shows an example of
recording data for a swipe gesture and then deploying
this interaction to a simple slider.

TT Data Processing and Gesture Training
For the capacitive sensor board, the default firmware
settings were sufficient for the most part, but after
testing it was found that the non-conductive base plate
covering the conductive areas causes the baseline signal
to not adjust quickly enough when a sensor is touched,

which affected the performance of gesture detection.
Setting the filter delay register (MPR121_FDLF) to
the maximum value of 255 greatly improved the touch
sensitivity and baseline stability.

Gesture detection was implemented using TensorFlow2,
a recurrent neural network, incorporated into the Unity
environment using a standalone Python program. Once
the model is ready to be trained, recorded data is loaded
from a CSV file, and any non-configured sensors are
zeroed. To account for a user holding the cube or the
cube resting on a surface while performing a gesture,
any sensor channels that are triggered for more than
40% of a gesture sample are disregarded and zeroed.
The model itself consists of 5 layers.

First, the data goes through feature extraction, consisting
of maximum and minimum pool layers. These are
typically used to down-sample and extract features
from images by partitioning them into a set of non-
overlapping rectangles and, for each such sub-region,
outputs the maximum/average or minimum. In this case,
max-pooling is used to increase the sequence length to
smooth out any anomalous samples. As max-pooling
decreases the number of lows, i.e. timesteps where the
sensors are not touched, between touches, min-pooling
had to be performed to increase these gaps between
touches. Setting the strides to 2 also down-sampled the
data from 200 timesteps to 96. Pool sizes were selected
by experimentation.

The main processing is done via the Gated recurrent
unit (GRU) layer. We chose GRU as related work
shows better temporal performance while maintaining
equivalent accuracy [6]. Best accuracy was achieved
with a unit count of 3 * number of labels. A Gaussian
noise layer was added to prevent overfitting and an
RMSprop optimizer was used, with a learning rate of
0.02. Nadam and Adam optimizers were also tested, but
they were slightly worse in terms of prediction accuracy.
Learning rates up to 0.03 can be used to improve the
speed at the cost of less stable changes between epochs.

2 https://www.tensorflow.org/

https://www.tensorflow.org

Figure 6. The software platform to configure, design, train, and test surface gestures including some examples of deployable interactions.

A learning rate schedule was used to decrease the
learning rate over time.

Categorical cross-entropy was used as the loss function
and Softmax was used as the activation for the output
layer. The model is trained over 50 epochs with a batch
size of 32. The batch size can be increased to increase
speed, but it will reduce the maximum accuracy that
could be achieved and the model will converge slower,
requiring more epochs. The epoch count can also be
decreased, at the cost of stability. An average accuracy
of 93% was recorded, with the validation and training
producing similar accuracy. The trained gesture is then
loaded as a frozen graph.

For live gesture detection, the capacitive data is filtered
and then sent to the model by using TensorFlowSharp3.
TensorFlowSharp is a runtime that allows for
TensorFlow models to run from C# and therefore in
Unity. Two 100 sample rolling-windows were used for
continuous detection, one with 100 latest samples and
the other with 100 samples from the previous window.
Once a gesture is detected, a Unity event is fired with the
corresponding gesture name. Finally, the toolkit source
code and 3D-models of the hardware components are
entirely open source4.

Gesture Detection Accuracy
To test the gesture detection accuracy, we conducted
a small preliminary study involving 4 participants.
Participants would test 3 pre-trained gestures, double-
tap finger, double-tap hand, and finger swipe, and 1
custom gesture they create and trained themselves (for
a total of 40 recordings). The entire study was done
using the 2-sensor radial face configuration. Each of
the 4 gestures was tested 20 times by each participant.
The detection accuracy for double-tap finger was 93%,
double-tap hand was 100%, finger swipe was 85%, and
the custom gesture was 85%.

3 https://github.com/migueldeicaza/TensorFlowSharp
4 https://github.com/TangibleTouch/Toolkit

APPLICATIONS
To evaluate the functionality of TangibleTouch, we
employ a Type 1 evaluation strategy [18] to demonstrate
the feasibility of the toolkit and its ability to rapidly
prototype a tangible interface. We created three exemplar
applications developed in Unity and deployed across
3 different output spaces: Model Inspector (Mixed
Reality), 2D Platformer (Desktop), and a Media Player
(Public display). Figure 7, 8, and 9 show the generative
breadth of the TangibleTouch toolkit, illustrating
different touch gestures used in each application.

Application 1: Model Inspector
This application allows the cube to manipulate a 3D
model, loaded into Unity, via rotation and scaling. The
cube designed for this application uses 4 blank faces and
2 interactive faces: a 4-sensor square, and a 2-sensor
rectangle. The model inspector was deployed in Mixed
Reality, a popular medium for Tangible Interaction, using
a Microsoft Hololens2 as shown in Figure 7. A 3D model
is rotated by performing a circular path gesture on the
cubes 4-sensor square face, with the direction of rotation
mapped to the direction of the gesture performed. The
user can cycle through the 3 different axes for rotation,
roll, pitch, and yaw, by tapping either of the two sensors
on the rectangle face. Object scaling is performed by
swiping from one sensor on the rectangle face to the
other, and the direction of the swipe determines whether
the object grows or shrinks. The Model Inspector allows
users to manipulate and separate the rotational degrees
of freedom of a virtual model over distance.

Application 2: 2D Platformer
This application demonstrates a simple platformer game
controlling a 2D character to jump, move, draw, and
release an arrow. The cube uses 2 interactive faces and
4 blank faces: a 4-sensor cross, and a 2-sensor radial.
The application was deployed to a desktop PC shown
in Figure 8. In this application, we make use of the key
mapping function in the toolkit software to map touch
input on the cube’s 4-sensor square face to key bindings
in Unity, W, A, S, and D, for character movement. The
user can perform an additional action of drawing the Figure 7. Model Inspector application in mixed reality.

https://github.com/TangibleTouch/Toolkit
https://github.com/migueldeicaza/TensorFlowSharp

Figure 8. 2D Platformer application on a desktop PC. Figure 9. Media Player application on a public display.

bow by swiping in any direction on the 2-sensor radial
face and then firing the bow by releasing the finger from
the sensor.

Application 3: Media Player
The final application demonstrates a simple media
controller for playing, pausing, forwarding, and
rewinding a video deployed on a public display. The
cube designed for this application makes use of 4 blank
faces and 2 interactive faces: two 2-sensor radials. This
application also makes use of the key mapping function
to work with web-based video players. As shown in
Figure 9, a user can double-tap the centre of one radial
face with a single finger to toggle pause and play, and
perform a whole-hand double tap to fast forward. The
same whole-hand gesture is performed on the other
radial face to rewind a video.

DISCUSSION
Prototyping tangible objects with touch capabilities
is complex, and designing for intricate surface-based
gestures is non-trivial. Our toolkit, TangibleTouch,
addresses these challenges by providing an extendable
and modular hardware platform, that leverages cube
affordance, and a software platform for configuring
and designing tangible gesture interfaces across many
different output spaces. Designers can: i) design their
own bespoke sensor configurations for a cube, ii) create,
train, and test in real-time a machine-learning model for
a set of surface-gestures using the provided interface
components, and iii) effortlessly deploy interactions to
a variety of applications built in Unity.

Expert designers can build upon the capacitive face
design space introduced, as well as the hardware platform,
to build entirely new face configurations for different
or more complex surface gestures. The TangibleTouch
interface and cube configuration software can support
any number of face designs, and gestures can be trained
with any sensor configuration. To ensure accessible
fabrication, we designed the toolkit components to be
produced entirely using single extrusion 3D printing.

Using three demonstrative applications that include
a number of different sensor configurations and
surface-based gestures, we highlight the generality
of interactions supported as well as the versatility of
deployment in different output spaces. Additionally,
we show the toolkit’s ability to rapidly prototype and
explore rich and expressive input in tangible interaction.
A fundamental limitation, but also a distinct advantage,
is the use of a cubic form factor. The abstract nature
of cubes means that any designed gestures can often
be transferrable to other, more complex tangible form
factors. Furthermore, designers can multiplex surface
gestures in a single artefact by simply using the discrete
faces inherent to the cubic form factor. Additionally,
the modular nature of the cube allows for on-the-fly
reconfiguration of the interaction device, ideal for
exploring a breadth of interactions during prototyping
stages of a tangible interface.

Building upon TangibleTouch
There is a clear avenue for future work building on
the foundational elements of TangibleTouch. Firstly,
to develop more face designs in terms of capacitive
sensor configurations but also explore face surface
texture, form, and colour. By using the same modularity
principles, there is potential to not only design and
explore further surface-gestures, but also explore haptic
experiences and output. For example, to differentiate
and communicate gesture mappings to faces or better
convey desired interactions to novice users through the
materiality and affordance of a face. To achieve this,
more sophisticated fabrication approaches could be
incorporated to expand the toolkits design space further.

In terms of leveraging cube affordance in tangible
interaction, our toolkit has scratched the surface.
Previous work has touched on the benefits of cube
affordance in interaction [19], and the TangibleTouch
toolkit could be expanded to explore cubes
manipulability, spatial stability and arrangement, and
capacity as a pedestal for output. The highly decoupled
nature of the toolkit enables the surface-based gesture
detection to be incorporated with additional sensing

approaches or devices such as inertia-measurement,
proximity sensors, and visual displays. Furthermore,
our initial characterisation of the interaction space
briefly touched on the implications of multiple cubes.
The interplay between multiple interactive cubes and
their utility in collaborative tasks warrants exploration
in of itself. The cube form factor could be condensed,
by adjusting the level of instrumentation, opening up a
design space for 100s of stackable, miniaturised cubes
that can be configured into new and unique geometries.
Finally, while we have evaluated TangibleTouch through
demonstrative applications [18], future work could
employ different evaluation methodologies such as
case-studies, a usability study, or heurisitic evaluation.

CONCLUSION
Through our toolkit, TangibleTouch, designers can
prototype and develop bespoke surface-based gestures
for tangible interfaces using a modular and easily
fabricated hardware platform and a software framework
that abstracts away complex data processing and
machine learning. The toolkit also reduces testing
complexity using a run-time environment to detect
designed gestures in real-time. Both the hardware and
software platforms are highly decoupled and extendable
for expert designers to create other capacitive face
designs, incorporate additional sensors, and implement
into any Unity-based applications. Future work includes
building on the basis the toolkit has provided to explore:
cube affordance beyond surface-based gestures,
supporting multi-cube interactions, and different types
of sensors and instrumentation.

REFERENCES
[1] Leonardo Angelini, Denis Lalanne, Elise Van den

Hoven, Khaled Omar Abou, Elena Mugellini. 2015.
Move, Hold and Touch: A Framework for Tangible
Gesture Interactive Systems. Machines, 3(3), 173-
207. https://doi.org/10.3390/machines3030173

[2] Jatin Arora, Aryan Saini, Nirmita Mehra, Varnit
Jain, Shwetank Shrey, and Aman Parnami. 2019.
VirtualBricks: Exploring a Scalable, Modular

Toolkit for Enabling Physical Manipulation in VR.
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, Paper
56, 1–12. https://doi.org/10.1145/3290605.3300286

[3] Daniel Avrahami, Jacob O. Wobbrock, and Shahram
Izadi. 2011. Portico: tangible interaction on and
around a tablet. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (UIST ‘11). Association for Computing
Machinery, New York, NY, USA, 347–356. https://
doi.org/10.1145/2047196.2047241

[4] Till Ballendat, Nicolai Marquardt, and Saul Green-
berg. 2010. Proxemic interaction: designing for
a proximity and orientation-aware environment.
In ACM International Conference on Interactive
Tabletops and Surfaces (ITS ‘10). Association
for Computing Machinery, New York, NY, USA,
121–130. https://doi.org/10.1145/1936652.1936676

[5] Jesse Burstyn, Nicholas Fellion, Paul Strohmeier,
Roel Vertegaal. 2015. PrintPut: Resistive and
Capacitive Input Widgets for Interactive 3D Prints.
15th Human-Computer Interaction (INTERACT),
Sep 2015, Bamberg, Germany. pp.332-339, https://
doi.org/10.1007/978-3-319-22701-6_25

[6] Junyoung Chung, Caglar Gulcehre, Kyunghyun
Cho, Yoshua Bengio. 2014. Empirical evaluation
of gated recurrent neural networks on sequence
modeling. NIPS 2014 Workshop on Deep Learning,
December 2014. https://arxiv.org/abs/1412.3555

[7] David Englmeier, Julia Dörner, Andreas Butz and
Tobias Höllerer, 2020 A Tangible Spherical Proxy
for Object Manipulation in Augmented Reality.
2020 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), 2020, pp. 221-229, https://
doi.org/10.1109/VR46266.2020.00041

[8] Martin Feick, Scott Bateman, Anthony Tang, André

https://doi.org/10.1109/VR46266.2020.00041
https://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-3-319-22701-6_25
https://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/2047196.2047241
https://doi.org/10.1145/3290605.3300286
https://doi.org/10.3390/machines3030173

Miede and Nicolai Marquardt. 2020 Tangi: Tan-
gible Proxies For Embodied Object Exploration
And Manipulation In Virtual Reality. 2020 IEEE
International Symposium on Mixed and Augmented
Reality (ISMAR), 2020, pp. 195-206, https://doi.
org/10.1109/ISMAR50242.2020.00042

[9] Kenneth P. Fishkin. 2004. A taxonomy for and
analysis of tangible interfaces. Personal Ubiquitous
Computing 8, 5 (September 2004), 347–358. https://
doi.org/10.1007/s00779-004-0297-4

[10] Tobias Grosse-Puppendahl, Yannick Berghoefer,
Andreas Braun, Raphael Wimmer and Arjan
Kuijper, 2013. OpenCapSense: A rapid prototyp-
ing toolkit for pervasive interaction using capaci-
tive sensing. 2013 IEEE International Conference
on Pervasive Computing and Communications
(PerCom), pp. 152-159, https://doi.org/10.1109/Per-
Com.2013.6526726

[11] Tobias Grosse-Puppendahl, Christian Holz, Gabe
Cohn, Raphael Wimmer, Oskar Bechtold, Steve
Hodges, Matthew S. Reynolds, and Joshua R.
Smith. 2017. Finding Common Ground: A Survey
of Capacitive Sensing in Human-Computer Inter-
action. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems
(CHI ‘17). Association for Computing Machinery,
New York, NY, USA, 3293–3315. https://doi.
org/10.1145/3025453.3025808

[12] David Holman and Hrvoje Benko. 2011. Sketch-
Space: designing interactive behaviors with
passive materials. In CHI ‘11 Extended Abstracts
on Human Factors in Computing Systems (CHI
EA ‘11). Association for Computing Machinery,
New York, NY, USA, 1987–1992. https://doi.
org/10.1145/1979742.1979867

[13] Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping Smart-
watch-Centric Cross-Device Applications. In

Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems
(CHI ‘15). Association for Computing Machinery,
New York, NY, USA, 1247–1256. https://doi.
org/10.1145/2702123.2702215

[14] Elise Van den Hoven and Ali Mazalek. 2011. Grasp-
ing gestures: Gesturing with physical artifacts. Ar-
tificial Intelligence for Engineering Design, Analy-
sis and Manufacturing, vol. 25, no. 3, pp. 255–271,
2011. https://doi.org/10.1017/S0890060411000072

[15] Sergi Jordà, Günter Geiger, Marcos Alonso, and
Martin Kaltenbrunner. 2007. The reacTable: explor-
ing the synergy between live music performance
and tabletop tangible interfaces. In Proceedings
of the 1st international conference on Tangible
and embedded interaction (TEI ‘07). Association
for Computing Machinery, New York, NY, USA,
139–146. https://doi.org/10.1145/1226969.1226998

[16] Martin Kaltenbrunner and Ross Bencina. 2007. Re-
acTIVision: a computer-vision framework for table-
based tangible interaction. In Proceedings of the 1st
international conference on Tangible and embedded
interaction (TEI ‘07). Association for Computing
Machinery, New York, NY, USA, 69–74. https://doi.
org/10.1145/1226969.1226983

[17] Annie Kelly, R. Benjamin Shapiro, Jonathan de
Halleux, and Thomas Ball. 2018. ARcadia: A
Rapid Prototyping Platform for Real-time Tangible
Interfaces. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems
(CHI’18). Association for Computing Machinery,
New York, NY, USA, Paper 409, 1–8. https://doi.
org/10.1145/3173574.3173983

[18] David Ledo, Steven Houben, Jo Vermeulen, Nicolai
Marquardt, Lora Oehlberg, and Saul Greenberg.
2018. Evaluation Strategies for HCI Toolkit
Research. Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems

(CHI’18). Association for Computing Machinery,
New York, NY, USA, Paper 36, 1–17. https://doi.
org/10.1145/3173574.3173610

[19] Kevin Lefeuvre, Soeren Totzauer, Michael Storz,
Albrecht Kurze, Andreas Bischof, and Arne Berger.
2018. Bricks, Blocks, Boxes, Cubes, and Dice: On
the Role of Cubic Shapes for the Design of Tan-
gible Interactive Devices. In Proceedings of the
2018 Designing Interactive Systems Conference
(DIS ‘18). Association for Computing Machin-
ery, New York, NY, USA, 485–496. https://doi.
org/10.1145/3196709.3196768

[20] Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proxim-
ity toolkit: prototyping proxemic interactions in
ubiquitous computing ecologies. In Proceedings of
the 24th annual ACM symposium on User interface
software and technology (UIST ‘11). Association
for Computing Machinery, New York, NY, USA,
315–326. https://doi.org/10.1145/2047196.2047238

[21] Thomas Muender, Anke V. Reinschluessel, Sean
Drewes, Dirk Wenig, Tanja Döring, and Rainer
Malaka. 2019. Does It Feel Real? Using Tangibles
with Different Fidelities to Build and Explore
Scenes in Virtual Reality. Proceedings of the 2019
CHI Conference on Human Factors in Comput-
ing Systems (CHI’19). Association for Computing
Machinery, New York, NY, USA, Paper 673, 1–12.
https://doi.org/10.1145/3290605.3300903

[22] Alexander Nelson, Gurashish Singh, Ryan Robucci,
Chintan Patel and Nilanjan Banerjee. 2015. Adap-
tive and Personalized Gesture Recognition Using
Textile Capacitive Sensor Arrays. IEEE Transac-
tions on Multi-Scale Computing Systems, vol. 1,
no. 2, pp. 62-75, 1 April-June 2015, https://doi.
org/10.1109/TMSCS.2015.2495100

[23] Simon Olberding, Nan-Wei Gong, John Tiab, Jo-
seph A. Paradiso, and Jürgen Steimle. 2013. A cut-

https://doi
https://doi.org/10.1145/3290605.3300903
https://doi.org/10.1145/2047196.2047238
https://doi
https://doi
https://doi
https://doi
https://doi.org/10.1145/1226969.1226998
https://doi.org/10.1017/S0890060411000072
https://doi
https://doi
https://doi
https://doi.org/10.1109/Per
https://doi.org/10.1007/s00779-004-0297-4
https://doi

table multi-touch sensor. In Proceedings of the 26th
annual ACM symposium on User interface software
and technology (UIST ‘13). Association for Com-
puting Machinery, New York, NY, USA, 245–254.
https://doi.org/10.1145/2501988.2502048

[24] Valkyrie Savage, Colin Chang, and Björn Hart-
mann. 2013. Sauron: embedded single-camera
sensing of printed physical user interfaces. In
Proceedings of the 26th annual ACM sympo-
sium on User interface software and technology
(UIST ‘13). Association for Computing Machin-
ery, New York, NY, USA, 447–456. https://doi.
org/10.1145/2501988.2501992

[25] Valkyrie Savage, Xiaohan Zhang, and Björn Hart-
mann. 2012. Midas: fabricating custom capacitive
touch sensors to prototype interactive objects.
In Proceedings of the 25th annual ACM sympo-
sium on User interface software and technology
(UIST ‘12). Association for Computing Machin-
ery, New York, NY, USA, 579–588. https://doi.
org/10.1145/2380116.2380189

[26] Martin Schmitz, Mohammadreza Khalilbeigi,
Matthias Balwierz, Roman Lissermann, Max
Mühlhäuser, and Jürgen Steimle. 2015. Capricate:
A Fabrication Pipeline to Design and 3D Print
Capacitive Touch Sensors for Interactive Objects.
In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology
(UIST ‘15). Association for Computing Machin-
ery, New York, NY, USA, 253–258. https://doi.
org/10.1145/2807442.2807503

[27] Orit Shaer and Eva Hornecker. 2010. Tangible
User Interfaces: Past, Present, and Future Di-
rections. Found. Trends Hum.-Comput. Inter-
act. 3, 1–2 (January 2010), 1–137. https://doi.
org/10.1561/1100000026

[28] Jennifer G. Sheridan, B. W. Short, Kristof Van
Laerhoven, Nicolas Villar and Gerd Kortuem. 2003.

Exploring cube affordance: towards a classification
of non-verbal dynamics of physical interfaces for
wearable computing. IEE Eurowearable, 2003, pp.
113-118, https://doi.org/10.1049/ic:20030156

[29] Gurashish Singh, Alexander Nelson, Ryan Ro-
bucci, Chintan Patel and Nilanjan Banerjee. 2015.
Inviz: Low-power personalized gesture recog-
nition using wearable textile capacitive sensor
arrays. 2015 IEEE International Conference on
Pervasive Computing and Communications (Per-
Com), pp. 198-206, https://doi.org/10.1109/PER-
COM.2015.7146529

[30] Christian Stetco, Stephan Mühlbacher-Karrer,
Matteo Lucchi, Matthias Weyrer, Lisa-Marie Faller
and Hubert Zangl. 2020 Gesture-based Contactless
Control of Mobile Manipulators using Capacitive
Sensing. 2020 IEEE International Instrumen-
tation and Measurement Technology Confer-
ence (I2MTC), pp. 1-6, https://doi.org/10.1109/
I2MTC43012.2020.9128751

[31] Brygg Ullmer and Hiroshi Ishii. 2000. Emerg-
ing frameworks for tangible user interfaces. IBM
Syst. J. 39, 3–4 (July 2000), 915–931. https://doi.
org/10.1147/sj.393.0915

[32] Malte Weiss, Florian Schwarz, Simon Jakubowski,
and Jan Borchers. 2010. Madgets: actuating widgets
on interactive tabletops. In Proceedings of the 23nd
annual ACM symposium on User interface software
and technology (UIST ‘10). Association for Com-
puting Machinery, New York, NY, USA, 293–302.
https://doi.org/10.1145/1866029.1866075

[33] Malte Weiss, Julie Wagner, Yvonne Jansen, Roger
Jennings, Ramsin Khoshabeh, James D. Hollan,
and Jan Borchers. 2009. SLAP widgets: bridging
the gap between virtual and physical controls on
tabletops. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems
(CHI ‘09). Association for Computing Machin-

ery, New York, NY, USA, 481–490. https://doi.
org/10.1145/1518701.1518779

[34] Jacob O. Wobbrock, Meredith Ringel Morris, and
Andrew D. Wilson. 2009. User-defined gestures for
surface computing. In Proceedings of the SIG-
CHI Conference on Human Factors in Computing
Systems (CHI ‘09). Association for Computing Ma-
chinery, New York, NY, USA, 1083–1092. https://
doi.org/10.1145/1518701.1518866

[35] Hui-Shyong Yeo, Ryosuke Minami, Kirill Rodri-
guez, George Shaker, and Aaron Quigley. 2018.
Exploring Tangible Interactions with Radar Sens-
ing. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 2, 4, Article 200 (December 2018), 25
pages. https://doi.org/10.1145/3287078

[36] Clement Zheng, Peter Gyory, and Ellen Yi-Luen
Do. 2020. Tangible Interfaces with Printed Pa-
per Markers. In Proceedings of the 2020 ACM
Designing Interactive Systems Conference
(DIS ‘20). Association for Computing Machin-
ery, New York, NY, USA, 909–923. https://doi.
org/10.1145/3357236.3395578

[37] Kening Zhu, Taizhou Chen, Feng Han, and Yi-
Shiun Wu. 2019. HapTwist: Creating Interactive
Haptic Proxies in Virtual Reality Using Low-cost
Twistable Artefacts. Proceedings of the 2019 CHI
Conference on Human Factors in Computing
Systems. Association for Computing Machinery,
New York, NY, USA, Paper 693, 1–13. https://doi.
org/10.1145/3290605.3300923

https://doi
https://doi
https://doi.org/10.1145/3287078
https://doi.org/10.1145/1518701.1518866
https://doi
https://doi.org/10.1145/1866029.1866075
https://doi
https://doi.org/10.1109
https://doi.org/10.1109/PER
https://doi.org/10.1049/ic:20030156
https://doi
https://doi
https://doi
https://doi
https://doi.org/10.1145/2501988.2502048

