Review on the design and mechanics of bonded marine hoses for Catenary Anchor Leg Mooring (CALM) buoys

Chiemela Amaechi Victor^{1,5,*}, Cole Chesterton², Harrison Obed Butler³, Facheng Wang⁴, Jianqiao Ye^{1,*}

¹ Engineering Department, Lancaster University, Lancaster, LA1 4YR, United Kingdom.
 ²EDF Energy, Power Plant Development, United Kingdom.
 ³Danmarks Tekniske Universitet (Technical University of Denmark), DTU, Lyngby, Denmark.

⁴Tsinghua University, Department of Civil Engineering, Beijing, 100084, China.

⁵Standards Organisation of Nigeria (SON), 52 Lome Crescent, Wuse Zone 7, Abuja, Nigeria.

*Correspondence: <u>chiemelavic@gmail.com</u> or <u>c.amaechi@lancaster.ac.uk</u> (Amaechi); and <u>j.ye2@lancaster.ac.uk</u> (Ye)

Abstract

In recent times, there is a rise in the application of bonded marine hoses on floating offshore structures (FOS). These increased developments on bonded marine hoses have led to their deployment on CALM, SALM, and other conventional offshore buoy systems. Classification of bonded marine hoses includes floating hoses, submarine hoses, and reeling hoses. The mechanics of hose motion is relative to different operations, such as twists, turns, torques, reeling, pipe-laying, etc. However, despite having multi-layers, the hose response is susceptible to high hose curvatures, kinking, and crushing loads. This paper presents a comprehensive review on the design and mechanics of bonded marine hoses for CALM buoys. The study also explores fluid transfer via these bonded flexible risers (or marine hoses). Governing mathematical formulations on bonded marine hoses attached to CALM buoy systems were presented. This paper presents a review of theoretical, numerical, and experimental investigations on hoses. Discussions were made on recent developments, structural connections, industrial operations, field applications, and dynamic responses, concluding on the merits of marine hoses.

Keywords:

Bonded Marine Hose; Bonded Flexible Composite Risers; Mechanics; Catenary Anchor Leg Mooring (CALM) buoy: Oil and Gas Platform; Floating and Submarine Hoses

Abbreviation List:

3D – Three Dimensional ABS – American Bureau of Shipping ADCP -Acoustic Doppler Current Profiler API – American Petroleum Institution BSI - British Standards Institution *CAE* - *computer-aided engineering* CALM - Catenary Anchor Leg Mooring CAPEX -Capital Expenditure CBM - Conventional buov mooring CFD Computational Fluid Dynamics CFRP - Carbon Fibre Reinforced Polymer *CL* - *Chinese-lantern (hose configuration) CoG – Centre of Gravity* DC - Double Carcass DNVGL - Det Norkse Veritas & Germanischer Lloyd DOE - Design Of Experiment DP - Dynamic Position EN- Europäische Norm ("European Norm") Standards FAT - factory acceptance test FE- Finite Element FEA- Finite Element Analysis FEM- Finite Element Modelling FOS - Floating Offshore Structure *FPSO – Floating, Production, Storage and Offloading* FRP - Fibre Reinforced Polymer FSO - Floating storage and offloading FSP - Floating storage and processing FTM - Fixed tower mooring systems

GMPHOM – Guide to Manufacturing and Purchasing Hoses for Offshore Moorings *GoM – Gulf of Mexico* Hechanics – Hose Mechanics HEV - Hose End Valve Hose1, Hose2 – Leeside1, Weatherside2 of Hose-String HPHT - High Pressure -High Temperature IMO – International Maritime Organisation IMS - Integrated Monitoring Systems ISO- International Standards Organisation LNG - Liquified Natural Gas LPG - Liquid Petroleum Gas MBR - Minimum Bending Radius MCI - Metal Composite Interface NIS - Nigerian Industrial Standards OCIMF - Oil Companies International Marine Forum PLEM - Pipeline End Manifold PLUTO - PipeLine Across The Ocean RHS - Right Hand Side SALM - Single Anchor Leg Mooring S.F - Safety Factor SC - Single Carcass SCR - Steel Catenary Risers SLF - Stress Loading Factors SPM - Single Point Mooring SPM - Single Point Mooring STD - Standard Type SURP - Subsea Umbilical Risers And Pipelines

Pre-Print: Submitted to Elsevier's *Ocean Engineering Journal*. 2021, **242**, <u>https://doi.org/10.1016/j.oceaneng.2021.110062</u>

SWIR - Sea-Water Intake Riser TDS - Touch Down Sites UF - Utilization Factors UK - United Kingdom UM - Utilization Matrix UTS - Universal Transfer System VIV - Vortex-Induced Vibration WA - Weight-Added WWII - World War II

1.0 Introduction

Over the past few decades, offshore engineering has relatively advanced in both knowledge base and technology. First and foremost, the increasing global energy demand has been the main driver within the offshore sector. More than 60% of energy consumption within the United States, for instance, is based on oil and gas products achieved by the offshore industry (CSS 2020, EIA 2017, IEA 2017). With the need to transport these fluid from seabeds and oil wells offshore, it is pertinent to have conduits such as composite marine risers (Amaechi C.V 2021, Amaechi C.V et al. 2017, 2019a, 2019b, 2021a, 2021b, 2021c; Pham D.C. et al. 2016), reinforced thermoplastic pipes (Kuang Yu et al. 2015, 2017) and offshore/marine hoses (Yokohama 2016; EMSTEC 2016; Amaechi C.V. et al. 2019c, 2019d, 2021d, 2021e, 2021f). Different activities within the oil and gas industry mostly require these marine hoses and SURP (subsea umbilicals, risers, and pipelines) devices. These activities include loading, offloading, exploration, and extraction of oil and gas, offshore mining, gas liquefaction, seawater intake, and sea minerals transportation. As such, there is the need for the application of steel catenary risers (SCR), composite marine risers, unbonded flexible risers cum bonded flexible risers (also called bonded marine hoses). Due to the slender-flexible nature of these tubular structures, fluid transfer techniques have improved. In offshore fields, submarine pipelines, marine hoses and marine risers are usually the commonly used conduits. They are utilised in water injection, product transfer, and fluid transport. These structures have to be manufactured to withstand high pressure -high temperature (HPHT) environments. These HPHT marine hoses are deployed on different mooring terminals for un(loading) operations (Bai Y. & Bai Q., 2005, 2010). A typical CALM Buoy hose system with its components using the Chinese-Lantern (CL) Configuration is represented in Figure 1.

Figure 1 Offloading system via marine hoses showing CALM Buoy in Chinese-Lantern (CL) Configuration.

In recent times, there are improvements in the manufacturing processes for these HPHT tubular marine. Application of these structures also has increased utilisation on different moored marine platforms and floating offshore structures (FOS). These structures include Catenary Anchor Leg Mooring (CALM) buoys, Single Anchor Leg Mooring (SALM) buoys, and other conventional offshore buoy systems. These are usually attached to bonded marine hoses, ranging from floating, submarine, reeling, catenary to sea-water intake riser (SWIR) hoses (Yokohama 2016; Technip 2006; ContiTech 2017, 2019, 2020; EMSTEC 2016). Since hose utilisation has been increasingly popular in recent years, it is necessary to review the hose mechanics (or hechanics), design configurations, and developments. A particular niche for marine hoses is the short-term production in shallow water and other loading/unloading applications. Different environmental conditions require specific needs, connections, and mooring configurations. Generally, these mooring systems include SALM, CALM, and tandem mooring (OIL 2014, 2015; Trelleborg 2016, 2017; SBMO 2012). There are other conventional mooring designs and deepwater export line configurations deployed on marine hoses. Figure 2 is an illustration of some design arrangements for marine hoses and marine risers. Concerning the marine hoses, their application has been increasingly used to link CALM buoys to the transporting FPSOs (Wang 2015; Eriksson et al. 2006; Berteaux et al. 1977, Amaechi C.V. et al. 2019b). The hose is also attached to the pipeline end module (PLEM) to enable the transfer of oil products to shuttle tankers from offshore platforms. CALM buoy hose configurations include Lazy-S, Steep-S, Chinese-lantern (CL), and weight-added (WA) configurations (Stearns 1975; Nooij 2006, Amaechi C.V. et al. 2021g, 2019c). As shown in Figure 1, the CALM buoy hose system is connected to a shuttle tanker with floating and submarine hoses. Usually, a standard hose-string is made up of an assembly for the hose-housing having rubberised layers, reinforced fibres and end-fittings of steel (HoseCo 2017; OCIMF 2009; Bluewater 2009b, 2011). In principle, the hose-housing assemblies have to be well reinforced to withstand different environmental conditions. Thus, improvements in recent marine hoses, such as Trelleborg's dual carcass hoses and the inclusion of composite materials in the assembly of offshore hoses (Trelleborg 2016, Zhou et al. 2018, Tonatto et al. 2018). There is a gap on the control of marine hoses, however recent studies exist on the control of flexible risers (Hu X. et al. 2021, Zhao Z. et al. 2019, 2021a, 2021b). Another issue of hose application is crushing load effect on hoseline reeling. Installing subsea pipelines with diameter of about 20 inches using reeling is a rapid, dependable, and cost-saving technique, as shown in Figure 3. In a nutshell, Despite the availability of newly developed structural designs, advances and design recommendations, the challenges related to flexible bonded marine hoses on single point mooring (SPM) terminals have not been extensively studied. Thus, the need for this comprehensive review emphasising theoretical, numerical, and experimental investigations of the marine hoses.

In this paper, the review on the mechanics and design of bonded flexible risers (or bonded marine hoses) and offshore offloading hose systems has been carried out. A comprehensive review of hose development, hose structures, industry application, recent developments, design criteria, mechanicals behaviour, and hose failures has been presented. Section 1 presents the introduction, Section 2 presents aspects of background and development, Section 3 presents design criteria, testing and analysis of marine hoses, Section 4 presents mechanical behaviour model of marine hoses, while Section 5 gives the conclusion with application benefits (or merits) of marine hoses. This review is necessary for hose manufacturers, SPM designers, and industry standards. The recommendations on this review were drawn based on recent developments and presented according to current industry standards like OCIMF, IMO, NIS, BSI, EN, ABS, API, DNVGL and ISO standards.

(j) Pipe with several buoyancy waves (k) Pipe with a subsurface offloading buoy (I) Single catenary shape or U configuration Figure 2 State-of-the-art configurations for marine hoses and marine risers

2.0 Background on Bonded Marine Hoses

In this section, the background on hose development, purchase requirements, and fluid transfer are presented.

2.1 Historical Timeline on Marine Hoses

For offshore oil and gas production, flexible marine hoses, flexible risers, and pipeline technology are still being developed. Flexible pipes, on the other hand, have a wide range of applications in other industries before being brought to the renewable-offshore industry. Flexible pipelines were formerly assumed to be low-maintenance and didn't require routine inspection. Recent studies on hose failures, riser failures, and flexible pipe failures, on the other hand, have revealed that some documented occurrences of these installations and assets have occurred offshore. As a result, there is a pressing need to improve design, manufacturing, service delivery procedures, and production grades. Hoses, pipes, end-terminations, and accessories are all in need of improvement. Recent studies, on the other hand, demonstrate that tremendous progress has been made since their inception. The historical timeline is detailed in literature (Yokohama 2016, Amaechi et al. 2021b, 2021c, 2021c, Sparks C. 2018). The PLUTO (PipeLine Across The Ocean) project, which delivered petroleum from the United Kingdom (UK) to Normandy, France, under the English Channel during World War II (WWII), was the first to introduce and implement the concept of a flexible armoured maritime pipeline on a significant scale. The design incorporated high-voltage maritime power line technology. The historical timeline on progress made in the development of bonded hoses shows new innovations over the years by different hose manufacturers, such as Yokohama, as shown in Figure 3. There are a number of projects that use marine hoses by various hose manufacturers, presented in Appendix A, Table 11. It shows forty (40) current offloading hose systems, CALM buoys, and industry operators.

Submitted to: Elsevier's Ocean Engineering Journal

Figure 3 Historical timeline of bonded marine hoses by Yokohama-hose manufacturer (Reproduced, Courtesy: Yokohama)

2.2 Product Development on Marine Hoses

Product development is a key stage in manufacturing bonded marine hoses. The development of bonded marine hoses are based on different design techniques, design loads, and marine hose models. Early designs were reported over six (6) decades ago in literature as patent publications. A documented foremost-related patent was on a robust drilling riser of fibre reinforced polymer (FRP) composite material with glass fibre and coat-painted using epoxy (Ahlstone 1973, Salama and Spencer, 2010, Sparks 2018). Details on the patent development on marine hoses and related SURP components are presented in Section 2.3. However, marine structures are designed based on the design requirements, operating conditions, design loadings, test development/qualification, mechanical behaviour, and structural design. The design requirement of different hose-riser-pipe systems is summarised in Table 1. These cover marine risers (production risers and drilling risers), hoses (floating, submarine, catenary and reeling) and generic tubular pipes (umbilicals, flow-lines, jumpers, choke and kill lines).

However, marine hoses are susceptible to different failure issues (Li X., et al. 2018, Patel and Seyed 1995, Chakrabarti and Frampton 1982, Zhou et al. 2018). The hose failures can be due to kinking, excessive burst pressure, wrong operational use (such as transfer of fluid that it was not designed for), corrosion damage from end-fitting or nipple, and failure due to induced bending moments cum internal pressure loadings. As such, it is important to have working offshore loading and discharging systems that has large flexibility, high feasibility and efficient operational utility. Thus, the importance of the application of multi-layered offshore hoses with capacity to withstand various challenges, including high pressure, high moments, heavy load impacts and harsh environment. To this end, the main load-bearing components of the marine hose layer, that is, the end fitting (Toh

W. et al. 2018, Pham D.C. et al. 2016, Chen Y. et al. 2016, Lassen T. et al. 2014), the core reinforcement normally a steel helical wire (Cao Q. 2018, Van Den Horn & Kuipers, 1988, Kuipers & van der Veen, 1989, Molnár et al. 1990, Bregman et al. 1993) or tensile carcass (Gautam M. et al. 2016, Drumond G.P., et al. 2018, Løtveit S.A. 2009, 2018) and the reinforcement layers (Amaechi C.V. et al. 2019a, Zhou Y. et al. 2018) are very important. However, there is a limitation on the vortex-induced vibration (VIV) studies on bonded flexible risers (such as bonded marine hoses), unlike the VIV of other marine risers (such as SCRs and unbonded flexible risers) which have been extensively researched (Wu X. et al 2012, Hong et al. 2018).

Other hose products are Trelleborg's Reeline and dual carcass hoses, which have a unique offering in the hose market (Trelleborg 2020, 2019, 2018, 2016a, 2016b, 2012). According to Lagarrigue V. et al. (2018), Trelleborg cryogenic hoses can produce turnkey solutions that dramatically lower the CAPEX (capital expenditure) and environmental effect of liquified natural gas (LNG) import infrastructure. They also enable ship-to-shore and shipto-ship transfers in new places, even in adverse weather. In October 2017, this technology was put to the test in the first sea launch of the Universal Transfer System (UTS), which was developed in collaboration with Connect LNG and Gas Natural Fenosa. This launch's success highlighted the enormous potential of floating cryogenic pipes in terms of unleashing new infrastructural options. To reduce boil-off and assure safety, Trelleborg's dual carcass hoses were designed by incorporating integrated monitoring systems (IMS). Another aspect of hose-riser development is the control systems which has had high traction in recent times. Adaptive robust control of flexible riser systems have been modelled separately (Zhao et al. 2021a, 2021b, 2019a, 2019b, 2017), and coupled models with vessel dynamics (He et al. 2021, 2015a, 2015b, Ge et al. 2010) and during hose-riser installation (He et al. 2014, 2013, 2011, Nguyen et al. 2013, Do 2017a, 2017b). These control systems have been incorporated in marine hoses risers. For the hose's buoyancy floats used in export hoses and other marine hose configurations, an adjustable buoyancy system was devised by Trelleborg (Lai, L. S. H. 2018, Gaskill C. et al. 2018). The hose manufacturer's commitment to innovation in oil transfer systems is demonstrated by Reeline hoses. Reeline hoses are reeling hoses, which also provide optimal operability, lifetime, and safety. These hoses are made with Trelleborg's nippleless hose technology, which results in a flexible bonded oil hose that is specifically suited for reeling operations, making installation easier, lowering opex, and freeing up valuable deck space for offshore operations. They feature Trelleborg's dual-carcass structure, which ensures safety and long service life even in the most extreme environments.

General Requirement	Hose Requirement	Riser Requirement	Flowline Requirement
	(Loading & Discharge)		
Connection systems	Connection systems	Connection systems	Crossover requirements
Corrosion protection	Design load cases	Design load cases	Design load cases
Exothermal chemical reaction cleaning	Hose Configuration	Interference	Routing of flowlines
Fire requirement	Hose installation	requirements	Supports and guides
Gas absorption and RGD (rapid gas decompression)	Guides and supports	Pipe attachments	Pipe attachments
Gas venting	Mooring line design	Riser Configuration	Upheaval buckling
Inspection and condition monitoring	Operational procedures	Vessel data	On-bottom stability
Installation requirements	Pipe attachments		Criteria for Protection
Interface definitions	Vessel data		
Pigging and TFL requirements			
Piggyback lines			
Thermal insulation			

Table 1 Hose-riser-pipe related system design requirement, adapted from API 17K

2.3 Patent Development on Marine Hoses

Different design patents on the advances made in marine hoses exist in patent publications. Figure 4 shows a shipto-ship hose system, having different hose components and hose types. These hoses were invented under various hose patents (Horvath et al. 1970, 1977; Witz J. A. et al., 2011, 2013). However, these advances stem from other systems like composite marine riser pipes (Amaechi 2021; Amaechi et al. 2019a, 2019b, 2021a, 2021b, 2021c), and marine riser deployed on semisubmersibles (Amaechi et al. 2021m, 2021n, 2021o, 2021p). Over the years, there has been significant growth in developing reinforced hoses (Terashima et al. 1996, Nakane 1935, Istvan G. et al. 2005), hose connections (Andrick et al. 1997, Maclachlan 1940, Muller 1941, 1949) and hose couplings (Castelbaum et al. 1984, Eisenzimmer 1982, Feiler et al. 1999, 1950, Goddard 1998, Goodall 1940). In same vein, there has also been developments achieved in other SURP components like composite marine riser (Pierce 1989, Gallagher 1995, Humphreys 2006), rigid FRP pipes (Pierce 1989, Starita 2005, Humphreys 2006), the end connections (Policelli 1989, 1993, Simmons 1993, Friedrich et al. 1998, Anderson et al. 1998, Baldwin et al. 2000), and bonded flexible risers (Ambrose 1979, Asano et al. 1986, Secher et al. 2000, Winzen et al. 1999).

Other advances based on offshore hose connection systems have also been reported in filed patents. Schirtzinger (1969) patented an apparatus for loading and offloading vessels. Morgan and Lilly (1974) patented a transfer system for suboceanic oil production. Joubert et al. (1981) patented a device that uses a flexible pipe to move fluid across a liquid body. Remery (1981) patented a device for transporting a material from a designated location on a bottom beneath the sea surface to the body of a buoy. In recent times, Brown and Poldervaart (1996) patented an offshore fluid transfer mechanism for a moored floating unit. Antal et al. (2001) patented a construction on high-pressure flexible hose and the manufacturing process. Isnard et al. 1999 patented a vessel with a disconnectable riser supporting buoy. Other related developments include CALM buoys (Braud et al. 1998, Nandakumar et al. 2002, Busch 1987), mooring systems (Hampton 1991, De Baan 1991, Urdshals et al. 1994, Flory 1976, Coppens and Poldervaart, 1984) and marine risers (Mungall et al. 1997, Olufsen et al. 1997, Panicker et al. 1984). These technologies all stem from the earlier developments on flexible pipes and flexible risers transfer systems (Shotbolt 1988, Yamada 1987, Blanchard and Anastasio 2016). Several (un)loading components can be seen on Figure 4.

Some of these (un)loading hoses and flexible pipese are made of composite materials. The selection of fibre reinforcements and materials for the cover or liner differs among these patented designs of rigid composite pipes and flexible hoses. Flexible composite risers and flexible offshore hoses have also gotten a lot of interest since they are less expensive and take less time to instal than rigid riser pipes for marine systems. Goldsworthy and Hardesty (1973) proposed a technique and device on fabricating FRP pipes that were filament wound with continuous length in the early 1970s. Carter (1985) described a machine that may be used to make continuously created longitudinally reinforcing plastic pipes. Two separate designs on end-connection plus FRP spoolable pipes for it were patented by SasJaworsky and Williams (1994, 1999). Quigley et al. (2000) invented a composite spoolable tube with an outside protective layer, a pressure barrier, fibre composite layers, interface layer and an inner liner. Song and Estep (2006) created a spoolable composite coiled tubing connector with two housing types that could be put together to connect the coiled tubes. These advances led to the hose-riser configurations in Figures 1-4. However, different hose problems have been solved from these developed hoses concepts, which led to advances in single point moorings (Sao et al. 1987; Wichers 2013; Obokata 1987; Obokata & Nakajima 1988)

and various forms of offloading hose systems (Cao Q. et al. 2017, 2018; Amaechi et al. 2019a, 2019b, 2021g, 2021h). These were achieved by different studies, such as scaled models (Ricbourg et al. 2006; Cunff et al. 2007; Ryu et al. 2006; O'Donoghue & Halliwell 1990; Quash & Burgess 1979; Pinkster & Remery 1975), experiment on test rigs (Tschoepe & Wolfe 1981; Young et al. 1980), field measurements (Brady et al. 1974; Saito et al. 1980; Lebon & Remery 2002), mathematical modelling (Brown & Elliott 1988; Zhang et al. 2015; Bree et al. 1989; Huang & Leonard 1989; Brown 1985a; Brown 1985b; Donoghue & Halliwell 1990) and numerical simulations (Duggal & Ryu 2005; Roveri et al. 2002; Amaechi et al. 2021i, 2021j, 2021k, 2021l). In subsequent sections, more discussion on marine hoses will be conducted.

Figure 4 Offshore ship-to-ship transfer using loading & offloading marine hoses, showing various OCIMF-type hoses (Adapted, Courtesy: Offspring International).

2.4 Loading conditions of Marine hoses

The mechanical behaviour of marine hoses is dependent on the loading conditions. Pavlou (2013) identified the loads acting on offshore pipes, riser and hoses and classified them into two main categories: installation phase and operational phase, as presented in Table 2. Like other marine riser systems, marine hoses respond to the motion of the floating offshore structure (FOS) asnd other loadings (Odijie et al. 2017, Amaechi et al. 2021m, 2021n, 2021o, 2021p). The loads are static during the installation stage, but both static and dynamic loading situations can exist during the operational stage. Regarding the mechanical performance of bonded marine hoses, it has to pass some tests as identified in GMPHOM OCIMF (2009) specification. Figure 5 shows the typical duration for OCIMF recommended hydrostatic pressure test of bonded marine hoses. Another issue that occurs during loading tests of bonded marine hoses is the body of the hoses may rupture under burst tests. Figure 6 shows typical experimental load tests on hoses for (a) bending, (b) hydrostatic pressure, (c) torsion and (d) burst. Based on failure due to dynamic loadings, damage analysis, particularly on hose fatigue, is recommended to guarantee that the sustainability and safety of the marine hose or riser system is ensured. This is used in calculating the marine hose' design life. Other issues that can affect the loading include deformation and possible rupture due to creep and should be taken into account in loading history having long-term cases (Yu K. et al., 2017, 2015). Based on the design of offshore hoses and flexible risers as identified in Table 1, there are different material fatigue and creep theories based on damage mechanics. These can be used as benchmarking hose designs, thus effective

design tools with different levels of checks. Since operational loads are usually less critical than installation loads for offshore pipelines (Pavlou, 2003), it is also important to do critical checks. Installation loads are a function of the installation method used as identified on Table 2.

Classification of	Loading types		Ch	ecks	
loads		Buckling	Creep	Fatigue	Failure Criteria
Installation Loads	Bending	+			+
	Axial tension				+
	External pressure	+			+
	Torsion	+			+
	Combination of bending and axial tension	+			+
	Combination of external pressure and axial tension	+			+
	Combination of bending, external pressure and axial tension	+			+
	Combination of torsion, bending axial tension and external pressure.	+			+
Operational Loads	Constant internal fluid pressure		+		+
	Fluctuating internal fluid pressure			+	+
	Hydrodynamic forces due to internal axial flow			+	+
	Hydrodynamic forces due to external cross flow			+	+
	Impact pressure due to fluid hammer				+
	Thermal stresses due to temperature gradient	+	+		+
	Uniform elevated temperature effects		+		+
	Local impact by foreign objects				+
	External pressure due to pipe-soil interaction	+			+
	Bending due to soil differential settlement	+			+
	Moisture strain effects				+
NOTE: + means it is	included in the design load, while means it	is excluded in th	e design load		

Table 2 Classification of loads acting on composite pipes, flexible risers and offshore hoses

Figure 5 Typical duration for applied pressure on bonded marine hoses in OCIMF recommended hydrostatic pressure test

Figure 6 Experimental load tests on hose fatigue from (a) bending, (b) hydrostatic pressure, (c) torsion, and (d) burst. (Reproduced, Hose Courtesy: Tonatto et al. 2017, 2018)

2.5 Suitability and Purchase of Marine hoses

The appropriate selection of offshore hoses to be used on any offshore/marine project is dependent on specific considerations, as summarised in Table 3. These factors include the process route, nearness of the shore, the number of discharge hose-lines required, offshore offloading, storage capacity, the environmental conditions in that ocean or offshore site. An essential aspect of hose design is its suitability and purchase requirements. Every hose manufacturer aims to deliver the best product according to the OCIMF guidelines for bonded marine hoses. As such, it must have high quality to ensure a high volume of hose product sales. The industry recommendation - OCIMF GMPHOM 2009 (OCIMF 2009) standard also covers the purchase of these hoses. Presently, the API (API 2020) database has the following approved hose manufacturers: 4 suppliers with API 17K approved products, 13 suppliers of approved API 16C flexible choke and kill lines, 43 manufacturers of approved API 7K high pressure mud and cement hoses, as presented in Table 4. The details of the service delivered by each of these hoses is presented in Table 5. It is noteworthy that marine hoses have markings imprinted by the manufacturers to show the ratings, specification, and hose nomenclature, as depicted in Figure 7. According to PSA (2018) report, it was avowed that it is the manufacturer's responsibility to document that the product fulfills the requirements. At the same time, it is the purchaser's responsibility to check that the product is suitable for the intended application. However, the supply of GMPHOM 2009 hoses does not require any certification.

1	rume of Type	Selection options on Officialing Systems	Observations
1	Offloading	Fixed tower mooring systems.	Immersed flexibles (or those
	Offshore		submerged) are not required.
	system lacking	Disconnectable turret mooring systems, Tripod catenary	Permanently submerged high-
	buffered	mooring/loading system, Single anchor loading,	pressure flexibles or universal
	storages	Floating tower/platform systems, Vertical anchor leg	flowline joints are required for
		mooring, Catenary anchor leg mooring systems,	every one of them. Most of these
		Articulated loading column/platform, Single anchor leg	might be used by DP vessels.
		mooring system, are all available for ships lacking	
		Dynamic Position (DP) systems.	
		Offshore offloading system, Single leg hybrid riser,	Each one necessitates submerged
		Hybrid riser tower and Submerged loading systems, are	high-pressure flexibles or
		all available for ships having Dynamic Position (DP)	universal flowline joints that are
		systems.	fully immersed in permanent
-	0.00 1		positions.
2	Offloading	Storage tanks integrated into the base of Fixed tower	The amount of storage space
	Offshore	mooring systems (FTM).	available may be restricted.
	system naving	Floating storage and offloading (FSO) vessel; Floating	Weathervaning storage vessel
	bullered	storage and processing (FSP) vessel.	anchored in permanent positions
	(reconditioning		with tandem transfer mooring
	(reconditioning		
	facility)		
3	Offloading	Fits into Fixed tower mooring systems (FTM).	No requirement for submerged
	Near-shore to		flexibles
	pipe/hose	Tripod catenary mooring/loading system, Single anchor	Each of these necessitate the use
			C 1 11'1
	terminals	loading, Vertical anchor leg mooring, Catenary anchor	of submerged high-pressure
	terminals lacking	loading, Vertical anchor leg mooring, Catenary anchor leg mooring systems, Single anchor leg mooring system,	flexibles. Considering insufficient
	terminals lacking buffered	loading, Vertical anchor leg mooring, Catenary anchor leg mooring systems, Single anchor leg mooring system, are available for every type of ship.	flexibles. Considering insufficient water depth, systems for DP
	terminals lacking buffered storages	leg mooring systems, Single anchor leg mooring system, are available for every type of ship.	flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option
	terminals lacking buffered storages	loading, Vertical anchor leg mooring, Catenary anchor leg mooring systems, Single anchor leg mooring system, are available for every type of ship.	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1.
	terminals lacking buffered storages	Fits into Conventional buoy mooring (CBM).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this
	terminals lacking buffered storages	Fits into Conventional buoy mooring (CBM).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged
	terminals lacking buffered storages	Fits into Conventional buoy mooring (CBM).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored
	terminals lacking buffered storages	Fits into Conventional buoy mooring (CBM).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are
	terminals lacking buffered storages	Fits into Conventional buoy mooring (CBM).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required.
4	terminals lacking buffered storages Offloading	Fixed tower mooring systems with storage tanks	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted
4	terminals lacking buffered storages Offloading Near-shore to	Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted.
4	terminals lacking buffered storages Offloading Near-shore to pipe/hose terminals	Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted. Weathervaning storage vessel anabored in permanent positions
4	terminals lacking buffered storages Offloading Near-shore to pipe/hose terminals having	Ioading, Vertical anchor leg mooring, Catenary anchor leg mooring systems, Single anchor leg mooring system, are available for every type of ship. Fits into Conventional buoy mooring (CBM). Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility). Floating storage and processing vessel, (reconditioned on storage facility).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted. Weathervaning storage vessel anchored in permanent positions with tandem transfer mooring
4	terminals lacking buffered storages Offloading Near-shore to pipe/hose terminals having buffered	Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted. Weathervaning storage vessel anchored in permanent positions with tandem transfer mooring.
4	terminals lacking buffered storages Offloading Near-shore to pipe/hose terminals having buffered storages	Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility). Floating storage and processing vessel, (reconditioned on storage facility).	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted. Weathervaning storage vessel anchored in permanent positions with tandem transfer mooring. Using rigid pipe-in-pipe for refrigerated liquid transfer to
4	terminals lacking buffered storages	Ioading, Vertical anchor leg mooring, Catenary anchor leg mooring systems, Single anchor leg mooring system, are available for every type of ship. Fits into Conventional buoy mooring (CBM). Fixed tower mooring systems with storage tanks integrated into base, (reconditioning on storage facility). Floating storage and processing vessel, (reconditioned on storage facility). Fixed tower mooring systems having buffered storages reconditioned onshore or onshore in-situ buffers.	of submerged high-pressure flexibles. Considering insufficient water depth, systems for DP vessels are specified under Option 1. Only in sheltered seas should this be used. Perpetually submerged high-pressure flexibles anchored in permanent positions are required. The amount of storage space available may be restricted. Weathervaning storage vessel anchored in permanent positions with tandem transfer mooring. Using rigid pipe-in-pipe for refrigerated liquid transfer to shore storage

 Table 3 Offloading hose system selection outcome/option

 Ontions
 Name of Type
 Selection options on Offloading Systems
 Observations

Figure 7 Hose Nomenclature - Example of Seaflex Marine Hose (Reproduced, Courtesy: Yokohama)

Figure 8 Bonga CALM buoy in Nigerian waters located Offshore West Africa (Courtesy: Offshore Magazine).

2.6 Fluid Transfer via Bonded Marine Hoses

The fluid transfer operations of LNG products via bonded marine hoses have received some attention in recent times due to innovative hoses been developed (Gaskill C. et al. 2018, Humphreys, V. et al. 2004, van Bokhorst et al. 2014, Witz et al. 2004). A particular advancement is the hose monitoring systems used for better performance, longer serviceability life and lesser hose failures. The monitoring systems utilise sensors incorporated onto hoses, and other floating offshore structures (FOS). Their functions include sending data on hose tension, CALM buoy heave motion and other gyrometric motion data, such as the CALM buoy in Figure 8. In ocean engineering, environmental factors can have a significant impact on CALM (or SPM) buoy operations. SPM tanker loading movements have a lot of operational requirements. As the vessel's draught grows, the major meteorological and oceanographic (metocean) forces operating on it are likely to shift from wind-induced to surface current. In such cases, it is becoming increasingly important to monitor metocean conditions, as well as the associated stresses on the anchor chain and tanker mooring hawsers at the SPM loading buoys. The information can be utilised to enhance tanker operations, reduce the risk of accidents, and generate site-specific reports to aid future planning. For offshore loading operations, CALM buoys are more commonly used. The tanker approaches the SPM into the dominating force (wind or current), moors to the SPM, and picks up the floating hoses to commence loading, as per conventional berthing practise. In the case of a sudden shift in external forces, a tug pulls the tanker from the stern to ensure it does not ride over the SPM (e.g. wind or current). In practice, marine hose applications have led to advancements in various mooring methods used in fluid transfer. Examples are single point moorings, ship-toship hose transfer, and other conventional methods, as shown in Figures 9-10.

During fluid transfer operation, the tanker is empty or partially filled (depending on cargo parcel size) when it initially moors to the SPM and its draught is at a minimum. The angle at which the tanker leans to the SPM is dictated by the wind force, which usually outweighs the current force. As the tanker fills up with oil, its draught rises, and the topsides height drops, thus making the current its dominant force. However, the vectors for current and wind forces often fluctuate in amplitude and direction. This fluctuation alters the tanker's position relative to the SPM. The SPM is obscured from view beneath the tanker's stern, so personnel aboard the tug may not detect the change. Since the SPM is located beneath the tanker's bow, it may not be visible from the bridge. If the tanker moves, there is a risk of a forward collision with the SPM, which could result in damage that prevents unloading while the SPM is repaired. Thus, in certain seas like Nigeria's Bonga Field in Offshore West Africa, such nearsurface currents are usually powerful and varies with time and location. These location are also typified with prevalent squall weathers, seen acting on the tanker attached to a CALM buoy or an SPM terminal (Hans H. 2004, Quinnell M. 2006). This buoy facility might be subjected to intense and changing stresses due to the rising waves in the sea and backwashing currents. This is confirmed in studies on CALM buoy hoses (Amaechi et al. 2019a, 2019b, 2021e, 2021f, 2021g). Thus, the inclusion of motion monitoring, response monitoring, tension monitoring, and real-time metocean monitoring sensors are good practice over the past two decades. The system was developed to capture a large amount of raw, high-frequency metocean and tension data. It also helps to conduct detailed future investigations into metocean conditions (e.g., wave steepness, squall monitoring), hose response, and SPM motion (e.g., CALM buoy pitch, roll, and heave), hawser tension (e.g., tanker mooring hawser 'snagging,'), and mooring line tension (e.g., anchor chain tensions). According to Quinnell M. (2006), the 12-m diameter buoy on Total's Djeno field offshore Congo was the first real-time monitoring system Fugro GEOS

supplied to a West African SPM in 2004. The next was installed in 2005 on the Bonga field's "Stella," which is one of the world's largest CALM buoys. The Bonga CALM buoy is shown in Figure 8. Surface-recoverable ADCP (Acoustic Doppler Current Profiler) deployment frames are used in most monitoring systems, as are cross-turntable real-time radio modem linkages for all anchor tension and current profile data. They also have a downward-looking ADCP on an SPM, as well as an H-ADCP (Horizontal ADCP) deployed on a rotating turntable to capture near-surface current speed and direction, all of which are adjusted for turntable heading. Monitoring motion changes and material behaviour of the hoses is necessary, as hose strength assessment helps to increase the service life of the SPM (Amaechi et al. 2019a, 2019b, 2021h, 2021i). The risk of colliding with the SPM can be reduced if the tanker pilot can precisely analyse the strength and directions of these forces during approach and connection to the SPM.

Specification	Hose Description	Hose Type	No. of Suppliers				
API 17K	Bonded flexible risers	Production jumper	1 supplier				
API 17K	Crude Oil Loading hoses	Flexible risers	1 supplier				
GMPHOM 2009		Challenging offshore loading of crude oil	4 suppliers				
EN 1762 (API 17K)	LPG offloading hoses	Offshore and terminal loading of LPG	Over 5 suppliers				
EN 1474-2 (API 17K)	LNG offloading hoses	Offshore and terminal loading of LNG	2 suppliers				
API 17K	Seawater Intake hoses	Large bore and high strength suction hoses	2 suppliers				
API 7K	Hoses for exploration	Rotary hoses	Over 5 suppliers				
		Vibrator hoses	Over 5 suppliers				
		Cementing hoses	Over 5 suppliers				
API 16C	1	Choke and Kill hoses	Over 5 suppliers				
*Suppliers and manufacturers mean the same thing in this context. (Source: PSA 2018)							

Table 4 Manufacturers for various types of bonded flexible hoses and bonded flexible pipes

Table 5 Summary of industry standard specifications on hoses, the ratings and services

Standard/ Code	Diameter of	Pressure Rating	Reinfo	rcement	Suction or	Service
	flexibles	_	Wire	Textile	discharge	
OCIMF	150-600mm (6"-	15-21 bar (1.5-	Х	Х	Suction &	Oil
GMPHOM 2009	24"NB)	2.1MPa)			Discharge	
ISO 1403	10-100	<2.5 bar (<2.5MPa)		Х	Discharge	Oil
ISO 28017	100-1200mm	<40 bar	Х	Х	Suction &	Sea Water,
	(4"-48"NB)	(<4.0MPa)			Discharge	Fresh water,
						Silt, etc
API 17K	NS	15-21 bar (1.5-	Х	NAS	Discharge	Production
		2.1MPa)				Products like
						oil
API 17B	NS	15-21 bar (1.5-	Х	NAS	Discharge	Production
		2.1MPa)				Products like
						oil
API 16C	50-100mm (2"-	15-21 bar (1.5-	Х		Discharge	Choke & Kill
	4")	2.1MPa)				fluid
API 7K	50-150mm (2"-	15-21 bar (1.5-	Х		Discharge	Mud &
	6")	2.1MPa)				Cement
*SWIR Code	500-1000mm	<10 bar [typ.],		Preferred	Suction	Sea water
	(20"-40"NB)	(<4.0MPa)				
NB- Nominal bore.	NS-Not specified, N	AS- Not addressed s	pecifically, SWIR- S	Sea Water Intake Ris	er, *SWIR Code -	no standard yet

Figure 9 Application of hose (a) Single Anchor Leg Mooring (SALM), (b) Catenary loading system, (c) Conventional buoy mooring (CBM), (d) Floating hose tandem loading, (e)long length midwater systems and (f) Catenary Anchor Leg Mooring (CALM) systems. (Courtesy: ContiTech Dunlop).

Figure 10 Application of hose (a) Specialist hose for Liquid Petroleum Gas (LPG) transfer, (b) CALM buoy floating hose on FSO, (c) reeling hose (d) specialist hose on soft yoke for tower catenary loading system, (e) API 17k offloading hoses on Yoke, (f) catenary hose on ship-to-ship transfer (Courtesy: ContiTech Dunlop).

3.0 Design Criteria on Bonded marine Hoses

In this section, the design criteria and test methods on hoses are presented.

3.1 Body of Marine Hose

The design criteria for designing marine hoses are conducted based on the hose section. The hose assembly typically consists of vulcanised rubber, reinforced fibre, and a steel fitting at the end. However, due to induced

internal pressures and bending forces, marine hoses are prone to failures. On this basis, for effective operations, practical offshore systems with a lot of flexibility are required. This challenge necessitates the use of multi-layered marine hoses that can handle the pressure and moments. Steel helical wire and reinforcing layers are very significant among the available marine hose layers. Gonzalez et al. (2016) modelled a 20" marine hose, with properties in Table 6. Reinforced layers are made up of synthetic fibres with different winding angles in each layer. As a result, the composite layers have several advantages over traditional constructions. Despite creating various structural design recommendations, the difficulties connected with bonded flexible marine hoses have not been adequately investigated. As a result, the theoretical investigation of maritime hoses has received less attention. On the other hand, theoretical studies will overcome the mechanical complexity of the structures by focusing on the primary layers and therefore giving a reference base, according to the researcher.

Zhou et al. (2018) examined reinforced layers in bonded flexible marine hoses that were under internal pressure. They wanted to create a theoretical solution to elucidate the mechanical behaviours of the reinforcement layers and present a mathematical strategy for multi-layer synthetic fibre composites in structures. In the models by Zhou et al. (2018) and Gonzalez et al. (2016), the feasibility and correctness of both methods were confirmed by comparing the results to those found in the literature. Typical mechanical properties of marine hoses are given in Table 7. Distinctive layers of the hose's body can be observed in Figure 11, with material attributes in Table 6. The method enhances the determination of reinforcing fibre layers, giving necessary information for designing the hose. It is valuable guidance during the design, optimization, and verification of the behaviours of marine hoses. As a result, due to the combination of the winding angles, internal pressure, and the number of layers, it was required to explore parameter and failure analyses, which generated distinctly different conclusions. For example, Zhou et al. (2018) obtained a winding angle of ± 55 as ideal for their marine hose model. Furthermore, these methodologies considerably lowered the computing time due to programming. Additionally, the post-processed findings could be simplified and then efficiently exported.

Layers	Particulars	Reinforcement	Thickness	Cross-sectional	Laying angle	Number of	Number of
			(mm)	area (mm²)		fibre filament	sheets
1	Liner-1		17.5				
2	Cord-1	Nylon 66	30.0	0.126	+45°/-45°	29,402	22
3	Bend Stiffener	Stainless steel	23.0	176.71	+88,9°	1	1
4	Cord-2	Nylon 66	15.0	0.126	+45°/-45°	16,827	11
5	Cover		5.0				
6	Cord-3	Polyester	6.0	0.126	+45°/-45°	14,556	2
7	Elastomer-1		13.0				
8	Cord-4	Polyester	40.0	0.126	+45°/-45°	15,421	16
9	Elastomer-2		5.0				
NOTE:‡1	Distance between co	nsecutives fibers co	ords are 1,05mm;	[†] See layers definitio	ons on Figure 12;	Purpose- Offloadin	g/loading

Table 6 Material properties of the 20" marine hose (Gonzalez et al. 2016)

Material	Young's modulus	Maximum elongation (%)	Ultimate stress (MPa)	Poisson ratio
	(MPa)			
Stainless steel AISI 304 ^{1,4}	193,000.00	40.00	520.00	0.29
Nitrile rubber (NBR) ^{2,4}	6.50	450.00	12.40	0.50
Polyester 120 SMC ^{3,4}	3500.00	13.00	89.70	0.42
Polyamide nylon 66 ^{3,4}	3500.00	19.00	94.50	0.42
¹ API (2016); ² Flexomarine	e (2013); ³ TRELLE	BORG (2016); ⁴ Matw	veb (2021); † Material n	nodelling, 0.499 used

Table 7 Mechanical properties of the materials used in the 20" marine hose

¹API (2016); ²Flexomarine (2013); ³TRELLEBORG (2016); ⁴Matweb (2021); [†]Material modelling, 0.499 use Source: Gonzalez et al. 2016, LACEO (2011) and Chesteron (2020).

Figure 11 Hose Layer showing the hose cross-section design for hose body modelling (Courtesy: Gonzalez et al. 2016)

3.2 End-Fitting of Marine Hoses

Generally, hoses can be classified based on the application and the pressure loadings. This classification is considered during the design of the body of the hoses and the end-fitting. Figure 11 shows the typical end-fitting and hose body for two marine hoses with the stiffened end. The GMPHOM OCIMF 2009 (OCIMF 2009) is the industry standard for manufacturing and purchasing marine hoses. It is also the principal guide for designing and testing both loading and discharging hoses. However, since hose manufacturers have other industry specifications, there is no explicit guideline for the design of GMPHOM hose-lines considered but OCIMF (2009). Different studies on end fittings for hoses have been carried out, as illustrated in Figures 11, 13 and 14. A comprehensive investigation on end fitting geometry design and swaging parameter optimization (Cho et al. 2005; Cho and Song, 2007) is pertinent to generate any hose end-fitting (Lee G. C. et al. 2011, Han S.R. et al. 2012, Toh W. et al. 2018). In a numerical study conducted by Lee G. C. et al. (2011) with experimental validation, the leakage path was observed in high-pressure hose assembly, tested using fluorescent material for internal pressure of 15 MPa. In a similar study, Han S. R. et al. (2012) presented a computer-aided engineering (CAE) simulation study on a swagged end fitting geometry optimized for automobile power steering hoses. The design of experiment (DOE) was performed to optimised the model. It was also verified by comparing two different end fittings by experimental tests on 19.8 inches hoses. The results showed that optimized model had some economical savings during production of swaged end fitting. The design philosophy is built on hose serviceability, which should approach 20 years if all set standards are met, including extensive static and dynamic tests for certification. In practice, the service life of marine hoses is typically five (5) years, and preventative maintenance is utilised to evaluate the hose's integrity. Based on the standard, there are typical specifications as follows: (a) Burst test: The inner (first) carcass has a minimum burst pressure of 105 bar, whereas the outer (second) carcass has a minimum burst pressure of 42 bar. (b) Minimum bending radius (MBR): The hose must be able to bear an MBR of six times (6D) its inner diameter for floating hoses and four times (4D) its inner diameter for submarine hoses. (c) Hydrostatic test results: 0.7% maximum permanent elongation and 2.5% maximum transient elongation. (d) Buoyancy: A minimum of 20% buoyancy, with a maximum of 25%–30%; (e) The Inner diameter or bore: Determined by the rate of transmission or transfer rate; (f) Depending on the operational unit, the hose length is 9.3m, 10.7m, or 12.2m. (g) Maximum environmental condition: The storm with annual recurrence is the limit condition used in oil offloading operations. A hundred-year recurrence condition is used for line storage.

Figure 12 Main parts of stiffened marine hoses (Reproduced; Courtesy: Gao Q. et al. 2018; Tonatto M.L.P. et al. 2018).

3.3 Helix reinforcement of Marine Hoses

The effect of hose reinforcements have been investigated by different studies, in three different design concepts. These concepts are the helical spring reinforcements, the ring reinforcements and the wire braid reinforcements. Miller, J. & Chermak, M. A. (1997) investigated on wire hose reinforcement arranged the proximal and distal braids of a two-wire braid hose being laid across symmetrical angles at \pm 54.74°. The authors concluded that the causes of premature hose failures were nonuniform load profile distributed between the proximal and distal braids of the hose layers, minimum bend radius, securement and fitting retention. Entwistle K. M. (1980) investigated hydraulic hoses having braids with steel wire reinforcements, measurements on pressure variation against elastic strain in the wires of the outer braid of the two-braid high pressure hydraulic hose. Another aspect that is very important in the design of the reinforcement in marine hoses is the choice of material. Tonatto et al. (2018) proposed the use of hybrid polyamide/aramid reinforcement cords in a floating hose achieved by considering the hyperelastic effects of nonlinear structural response of the hose. The material and geometry models were included in a 3D meso-scale model in ABAQUS. Using beam elements, the hydrodynamic loads were examined in the macro-scale model to evaluate the hose line forces and the authors found that the hybrid cords showed that they

can minimise the hose's internal loads. Hybrid cords offered a 15% weight decrease by reducing the number of layers in the hose compared to regular cords. It also resulted in respective reductions of 21.6% in bending stiffness, 52.2% in torsional stiffness, and 43.9% in specific axial stiffness. It was concluded that the structural response of the hose-line was well predicted by the multi-scale study, and the reduced potential for failure may extend the service life of the hose. The reinforcement in an unloading hose is integrated into the polymer matrix, making it a bonded pipe construction. The liner, reinforcing cords, and coil make up the inner carcass, which is responsible for fluid containment under normal working conditions. The liner should therefore endure close contact with oil hydrocarbons, the reinforcement cords give the hose strength and stiffness, and the coil, which is often constructed from steel, must withstand crushing effects on the construction. The outer carcass is made up of liner and reinforcing cords, and its primary function is to prevent liquids from leaking into the environment if the inner carcass fails. The hose also has flanges at the end fittings to facilitate connecting with other hoses, as well as a floating layer to provide buoyancy. A typical hose sections and marine single/double carcass hose used for unloading operations is shown in Figures 8 and 9, respectively. In current hose developments, the aromatic polyamide structure, which consists of poly (m-phenylene isophthalamide) (like Nomex®) and poly (p-phenylene terephthalamide) (like Kevlar®) with over 85% of the amide groups explicitly connected by two aromatic rings, is a more current material for the cords used to reinforce elastomers in a variety of hoses Seretis et al. (2015). However, these polymeric fibres possess outstanding aggregate qualities. As Zandiyeh (2006) points out, the service life of hoses whereby a pure Kevlar cords are exposed to compression load is decreased relative to hybrid cords, producing a decent distribution of attributes. Onbilger et al. (2008) found that hybrid cords containing two Kevlar and one nylon yarn have better compression fatigue capabilities than pure 3-yarn Kevlar cables in another study. Tonatto et al. (2017) and others have found kink bands forming caused by a lack of transverse reinforcement in between strongly orientated polymeric chains, resulting in strength reduction upon compressive fatigue (Onbilger et al. 2008, Leal et al. 2009, Seretis et al. 2015, Tonatto et al. 2017).

Lassen T. et al. (2014) conducted another major study on the load response of offshore hoses, which included numerical FE modelling and experimental test on a 20" bonded hose having end-fittings of steel. The study includes limitations for extreme load capacity assessments for full-scale tests based on API 17K standards. For the bonded loading hoses subjected to bending, tension and high pressure under catenary design, a fatigue life prediction methodology was developed, as well as repetitive reeling under high hose tension. The current study emphasises the load impacts upon the hose subjected to reeling loads, as well as the prediction methods for the fatigue life considering the rubber and steel components. According to their investigation, the highest helix diameter change achieved the acceptable value of 1% at a tension of 750 kN excluding cradles on the reel. After the cradles were installed, the mid-section helix diameter change for Hose1 reached 1.8% after an applied tension of 1200 kN and subsequent unloading. In contrast, the diameter change for Hose2 was close to 1.7% after the same applied tension, as some of the diameter modification was due to the initial test cases excluding cradles. The authors believe that in service for a hose permanently placed in a cradle position, the local peak strain in the helix will not be this high, but that the local peak strain in the helix was 17,000s at the 12 o'clock location at an applied tension of 1200 kN; and that an applied tension of 750 kN is permissible, based on the API 17K and API 17B requirements. As a result, an increasing trend in tension beyond this level on a hose supported by cradles will retain its integral functionality. However, after applying a tension of 1200 kN, final ovalisation will approach

1.8%. Their study proved permissible from a structural integrity standpoint. Still, it did not conform to the API 17K's low usage criteria called the Utilization Factors (UF), as such will become an issue during repeated reeling.

3.4 Utilization of Marine Hose materials

Different studies have been carried out on the materials used for manufacturing hose and optimizing offshore hoses, as presented in Sections 3.1-3.3. Different designs were also carried out on marine hoses, both in the designs such as Trelleborg's single and dual carcass end fittings in Figures 13(a-b) and the finite element analysis of end fitting in Figure 14(c-d). The finite element models are used to obtain the hose end-fitting stress profiles. These profiles can used to ascertain the strength behaviour, fatigue or failure of the hose. This assessment can be achieved by using utilization factor (UF) or Safety Factor (S.F) as a limit. Both U.F and S.F can also be used to ascertain the amount of material used in a section of the hose, such as between the mainline and the reinforced end of the hose (Amaechi C.V. et al. 2019a, 2019b, 2019c). When analysed, the stress loading factors (SLF) in Figure 15(a) show the highest tension of 51 in SLF and the highest bending of 42 in SLF, which occurs in the ring-in-bumper profile. The utilization matrix (UM) in Figure 15(b) shows a maximum UM of 0.372 in rubber utilisation. It can be observed that rubber has the highest utilization matrix of 0.372 in comparison to other hose materials. Next to the rubber is the ring and the lamella. However, since the ring-in-bumper has the highest tension and bending stress loading factors, it shows that it experienced more loadings in the hose structure (Antal D. et al. 2001, 2003, 2012). Thus, it is essential to model the hose correctly. Hose materials can also differ, such as the hose reinforcements can be rings and spirals, and the hose covers can be smooth, corrugated or gimbals.

Figure 13 Hose designs showing (a) single carcass hose, (b) dual/double carcass hose, (Reproduced, Courtesy: Trelleborg)

Figure 14 Finite element analysis of bonded marine hose with end-fitting

Figure 15 Offshore hose design (a) Stress loading factors and (b) Utilization matrix (Antal D. et al., 2012)

Table	o Standarus, nunabooks and guidetines on marine noses and retated systems
Standards / Guideline	Title
OCIMF 2009, 5 th Ed.	Guide to manufacturing and purchasing Hoses for offshore moorings (GMPHOM), 2009
OCIMF 1995	Guideline for the Handing, Storage, Inspection and Testing of the Hose
OCIMF 1991, 4th Ed.	Guide to purchasing, manufacturing and testing Hoses for offshore moorings
SMOG OCIMF 1995	Single Point Mooring Maintenance and Operations Guide (SMOG), 1995
OCIMF 2000	Guidelines for the purchasing & testing of SPM hawsers
OCIMF 1997	Recommendations for equipment employed in the bow mooring of Conventional tankers at Single Point
	Moorings
OCIMF 2019	Dynamic torsion load tests for offshore hoses: An update to the Guide to manufacturing and purchasing Hoses for
	offshore moorings (GMPHOM 2009), section 3.4.10.3
ISO 13628-11: 2007	Flexible pipe systems for subsea and marine applications.
ISO 3821: 2019	Gas welding equipment — Rubber hoses for welding, cutting and allied processes
ISO 1307: 2006	Rubber and plastics hoses — Hose sizes, minimum and maximum inside diameters, and tolerances on cut-to-
	length hoses
ISO 1403: 2019	Rubber hoses, textile-reinforced, for general-purpose water applications — Specification
ISO 28017: 2018	Rubber hoses and hose assemblies, wire or textile reinforced, for dredging applications Specification
ISO 7840: 2021	Small craft — Fire-resistant fuel hoses
ISO 15156-3: 2020	Petroleum & natural gas industries- Materials for use in H ₂ S-containing environments in oil & gas production
ISO 2006 (& API 2006)	Rubber latex, synthetic — Determination of mechanical stability — Part 1: High-speed method
EN 1762: 2018	Rubber hoses and hose assemblies for liquefied petroleum gas, LPG (liquid or gaseous phase), and natural gas up
	to 25 bar (2,5 MPa) - Specification
EN 1474-1:2009	Installation and equipment for liquefied natural gas - Design and testing of marine transfer systems Part 1: Design
	and testing of transfer arms
EN 559: 2003	Gas welding equipment - Rubber hoses for welding, cutting and allied processes
EN 1762-1: 2017	Rubber hoses and hose assemblies for liquified petroleum gas, LPG, and natural gas up to 25 bar.
EN 1762-2: 2017	Installation and equipment for liquified natural gas – Design and testing of marine transfer systems – Part 2:
	Design and Testing of transfer hoses
BS EN 1765-TC: 2020	Rubber hose assemblies for oil suction and discharge services — Specification for the assemblies
BS EN 12115: 2021	Rubber and thermoplastics hoses and hose assemblies for liquid or gaseous chemicals - Specification
BS EN ISO 16904: 2016	Petroleum & natural gas industries - Design and testing of LNG marine transfer arms for conventional onshore
	terminals
ANSI/ NACE MR0175/	Selection and qualification of carbon and low-alloy steels, corrosion-resistant alloys, and other alloys for service
ISO 15156-2015	in equipment in oil and natural gas production and NG treatment plants in H2S-containing
API 17B	Recommended practice for unbonded flexible pipe, 4 th ed.
API 17J: 2014	Specification for unbonded flexible pipe, 5 th ed.
API 17K	Specification for bonded flexible Pipe
API 16C	Specification for Choke and Kill Systems
API 7K	Specification for drilling and well servicing equipment
DNVGL-RP-115: 2015	Pre-commissioning of submarine pipelines
DNVGL-RP-119: 2015	Thermoplastic composite pipes
DNVGL-OS-E403: 2015	Offshore loading units- Rules and
DNVGL-CP-0183	Flexible hoses - Rules and standards
4Subsea, NTNU, Marintek	Handbook on design and operation of flexible pipes (Fergestad et al. 2017)
MERL & HSE (HSE 2005)	Elastomers for fluid containment in offshore oil and gas production: Guidelines and review.

Table 8 Standards, handbooks and guidelines on marine hoses and related systems

3.5 Standards on Marine Hose

The development of standards and design specifications on marine risers have received entirely sustainable progress. Currently, there are industry-acceptable standards for most bonded marine hoses, but some are still pending acceptance in the market. These include bonded marine hoses with high percentage of composite materials. As such, the hoses with high composites mixed with elastomers are still under some qualification. A list of some related standards on bonded marine hoses currently in circulation is presented in Table 8. Generally, most marine hoses have standards, except the sea water intake riser (SWIR) hoses. These recommendations and related standards cover their design, as with other types of hoses. However, it does not cover SWIR in totality, so there is the need to elaborate a standard that considers SWIR hoses (Craig 2016, Katona et al. 2009).

3.6 Factory Acceptance Test (FAT)

The factory acceptance test (FAT) requirements for testing bonded marine hoses are prepared based on design practice and field performance. Within the specifications of API 17K, the FAT that can be carried out on flexible pipes, composite risers, and bonded marine hoses are summarised in Table 9. These tests are essential in the design and manufacture process for these flexibles. However, some FATs are based on a request, while others are mandatory requirements. While there is a considerable body of research on bonded marine hoses and composite tube assessments under various load applications, investigations on the Metal Composite Interface (MCI) are still restricted. A related test result of the end-fitting design for composite riser joint, similar to that of marine hoses, was presented by Cederberg (2011) of Lincoln Composites. A general-purpose FE code was used to describe composite and steel components, and their interaction was characterised by a surface contact. Cederberg (2011) published experimental and numerical assessments of a composite riser joint, which included the MCI for an autofrettage pre-stressing stage and a FAT. Following FAT and autofrettage, both pressures and tension were applied in five steps: a) pulling the steel pipe in an axial direction; b) applying internal pressure at a level greater than its yielding strength; c) removing the internal pressure; d) reapplying the pressure at a lower level; and e) releasing the pressure. Figure 16 shows the stress-strain responses of the CFRP tube and steel pipe (X80) for each phase. During autofrettage and FAT, the material responses anticipate a high hoop stress and a relatively reduced axial stress for the composite layers. An interference fit between the steel and composite components is established at the end of the autofrettage stage, leaving the composite tube in tension and the pipe in compression.

Test	Without cathodic Protection		With cathodic Pro	With cathodic Protection		
	With Carcass	Without	With Carcass	Without Carcass		
		Carcass				
Hydrostatic Test	X	Х	X			
Electrical Resistance Test			X			
Electrical Resistance Test			Х	Х		
Electrical Continuity Test			X			
Gauge Test	X		X			
Vacuum Test		Х		X	Upon request	
Kerosene Test		Х		Х	Upon request	

Table 9 API 17K recommended factory acceptance tests (FAT) on flexibles (flexible pipes, composite risers, bonded hoses)

Figure 16 Stress-strain profile of composite pipes vs steel material for (a) FAT and (b) autofrettage tests (Cederberg 2011).

4.0 Mechanical Behaviour Model of Marine Hoses

4.1 Models on Rubberised Marine Hoses

Different models related to rubberised marine hoses or stiffened rubber hoses are based on rubbers and elastomers. Rubbers are usually made from a long chain of molecules known as polymers (Ali et al., 2010), while elastomers are a combination of elastic and polymeric materials (Smith, 1993). Rubber materials are utilized on hoses due to the high elastic properties, flexibility, extensibility, durability, and resilience. In addition, it can endure massive strains of up very high percentage without fracture or deformation occurring permanently (Mars, 2002, Ali A. et al. 2010), as such it has good application (Milad. M. et al. 2017, Abashio A. et al. 2016, Gao Q. et al. 2018). Elastomers have complicated mechanical behaviour. High plastic/plasticity properties, large deformations, stress softening and viscoelastic qualities, are all characteristics of elastomers that go beyond the linear elastic theory. (Naser et al., 2005; Chagnon et al., 2004; Ali A. et al. 2010). Other effects such as the Mullins effect or Stress softening has been reported to exist during initial loading. However, the strain energy function is used to account for residual strains in rubber, as detailed in some literature (Cheng & Chen, 2003, Dorfmann & Ogden, 2004; Horgan et al., 2004). Different constitutive rubber models were reviewed in literature (Ali et al. 2010, Boyce & Arruda 2000), as they differ from composite materials (Amaechi et al. 2019a, 2019e, 2019f). Ali et al. (2010) compared five models for explaining deformation behaviour with experimental data, while Boyce & Arruda (2000) compared models among several rubber models. Boyce & Arruda (2000) and Seibert & Schoche (2000) examined six alternative models for describing deformation behaviour with experimental data (2000). Approaches to deduce rubber's stress-strain attributes from various other idealised models macromolecularly based on statistical or kinetic theory. According to Yeoh & Fleming (1997), the phenomenological theories solves the condition relying upon continuum mechanics rather than molecular theories. Markmann & Verron (2006) comparatively studied rubber-like materials using twenty hyperelastic models and graded these based on fitting it with experimental data.

(c) OdgenPET-a hose – Top view (d) YeohPET-b hose – Top view Figure 17 Load in cords at failure pressure at 7.5MPa and 13.5MPa (Reproduced, Courtesy: Gao Q. et al. 2018).

In a study by Gao Q. et al. (2018) on rubber hoses, the Arruda-Boyce fitting model had highest stress, as shown in Figure 17(a) while the Test-PET-a model had highest load-strain curve as shown in Figure 17(b). These models were used to investigate the hyperelasticity of the rubber material, however, hardening factor could also be applied in modelling the rubberised hoses. The 3D FE model, presented in a recent research by Tonatto et al. (2017), was updated to analyse torsional stiffness, bending stiffness and axial stiffness of the hose line, as well as undertook strain and stress evaluations, using a central piece of the hose in Tonatto et al. (2018). Reinforcements and elastomer were evaluated, using hyperelastic model parameters in Tonatto et al. (2017), with the Marlow's model for reinforcing cords and the Arruda Boyce's model for elastomer layers. The micromechanical parameters used in Arruda Boyce's model were: $D = 6.43e^{-3}$, $\lambda_m = 4.05$, $\mu_0 = 0.622$ and $\mu = 0.599$. The Marlow's model, relied on experiments on the reinforcing cord samples, as represented in Figure 17(c). With a sample length of 750 mm, load/length against strain curves were constructed. Using the yield stress of 725 MPa, a Poisson's ratio of 0.3, a Young's modulus of 140 GPa, the steel coiled helix was represented as possessing isotropic attributes. In the uniaxial and wide-strip tension tests conducted on the carbon-black filled vulcanised PVC/nitrile compound of fibre-reinforced composite and nylon cord fabric with two-directional warp and weft by Milad M. et al. (2018), the micromechanical properties considered in the hyperelastic model include: Ogden N1 with $\mu_i = 18.60$, $\alpha_i = 25.0$, $\mu_1 = 8.31$, $\alpha_1 = 13.50$; while Yeoh N2 with $C_{10} = 4.31$, $C_{20} = 18.66$. It was concluded that over the extended regimes tested, the Yeoh and Ogden correlation was shown to best model the experimental data, resulting in the best agreement between experimental data and numerical fit, as shown in Figure 3 (d). In summary, hyperplastic models have been utilised for modelling the rubber materials in recent times, such as rubberised models in Figure 18 for Odgen rubber and Yeoh rubber subjected to burst loads and performed well. This is because these offshore rubberised hoses have both composite materials and rubber materials, as such, hyperplastic models are highly utilized on marine hoses as they correctly model the performance of the hoses (Svein Are Løtveit, 2009, 2018, Tonatto M. et al. 2018, 2019, 2020).

Figure 18 Plots showing (a) stress-strain curves of different rubbers and respective model fitting, and (b) load-strain curves of hyper-elastic fibers, (c) hyperelastic models loaded in weft direction, and (d) hyperelastic curves of the reinforcement chord (Courtesy: Gao Q. et al. 2018, Tonatto M.L.P. et al. 2018, Milad M. et al. 2018)

4.2 Hose Bending and Lateral Deflection

Different studies have been conducted on the material modelling of marine bonded hoses (Gonzalez et al. 2016, Zhou et al. 2018, Tonatto M. et al. 2018, Amaechi et al. 2021a, 2021d). These are similar to material modelling of composite marine riser modelling, except different in material hardening models and rubber models for the elastomers (Amaechi et al. 2019a, 2019b, 2021m, 2021o, 2021p). Thus, the mechanics of the hose-string is considered here, based on hose motion behaviour (or dynamics). The lateral stability of these hoses have already been considered in a study by Huang and Leonard (1989, 1990). However, this review will discuss the hose

bending and lateral deflection aspect. In the case of the terminus at point A in Figure 19, the distance is x=0. We

have an asymptotic connection as the submarine hose-strings change due to wave and vibration motions. Equation

(1), which describes the motion at the end of the hose-string, which yields Equation (1);

$u(x = 0) = a_h \cos \sigma t$

(1)

Where a_h is the amplitude of the buoy motion, σ is the circular frequency of the wave, ω is the angular frequency, k is the wave number. This equation is only real, when there is a steady harmonic motion that is relative to the configuration that can be represented straight and lateral to the buoy when it is positioned deeply backwards. Thus,

$$u(x=0) = a_h(1 - \cos\sigma t)$$

(2)

(10)

Consider a beam model with an element having the forces and moments with longitudinal displacement u, and lateral displacement w, as depicted in Figure 26. The equations of motion along x-direction and z-direction can be represented as in Equation (3).

Along the x-direction, the equation of motion is:

$$S\theta - [S + \left(\frac{\partial S}{\partial \theta}\right)d\theta](\theta - d\theta) = mRd\theta \frac{\partial^2 u}{\partial t^2}$$
(3)
Diving both sides by d Θ , and simplifying gives:
$$S - \left(\frac{\partial S(\theta + d\theta)}{\partial \theta}\right) = mR \frac{\partial^2 u}{\partial t^2}$$
(4)
Along the z-direction, the equation of motion is:

$$-S + [S + \left(\frac{\partial S}{\partial \theta}\right) d\theta] = mRd\theta \frac{\partial^2 w}{\partial t^2}$$
(5)

Diving both sides by $d\Theta$, and simplifying gives:

$$\left(\frac{\partial S}{\partial \theta}\right) = mR \frac{\partial^2 u}{\partial t^2} \tag{6}$$

Taking moments about the edge of the elements in LHS:

$$M - \left[M + \left(\frac{\partial M}{\partial \theta}\right) d\theta\right] + \left[S + \left(\frac{\partial M}{\partial \theta}\right) d\theta\right] R d\theta = 0$$
(7)
Diving both sides by dO, and simplifying gives:
$$-\left[\left(\frac{\partial M}{\partial \theta}\right)\right] + SR + \left[\left(\frac{\partial S}{\partial \theta}\right) d\theta\right] = 0$$
(8)

As
$$\delta S$$
 limits to 0, gives:
 $\frac{\partial M}{\partial \theta} = SR$
(9)

$$\frac{M}{EI} = \frac{1}{R} = -\frac{\partial^2 z}{\partial x^2}$$

Figure 19 A displaced beam element showing moments and forces

Applying the hose modelling method by O'Donoghue (1987) by assuming that $\theta = \frac{\partial z}{\partial x}$, $Rd\theta = dx$, and w = z; and applying these into Equations (9) and (10), the equation of motion along the longitudinal or x-direction, gives rise to Equation (11) and the lateral or y-direction in Equation (12):

$$EI \frac{\partial}{\partial x} \left(\frac{\partial^3 z}{\partial x^3}, \frac{\partial z}{\partial x} \right) = m \frac{\partial^2 u}{\partial t^2}$$
(11)

$$EI \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} = 0$$
(12)

Equation (12) gives the equation of motion for beam bending for the lateral deflection z(x,t) along the length of the beam section. While Equation (11) presents the longitudinal motion of the beam, with the point of force applied at only x = 0, which is position on the beam model for the free lateral vibration's inertial end condition.

4.3 Hose Snaking Phenomenon

The CALM buoy and the associated hoses are also affected by hydrodynamics. When the hose-string is subjected to induced hydrodynamic forces, the hose will bend. It will bend on the water surface if it is a floating hose, but it will bend inside the water body if it is a submarine hose. The damping force is the proportionate part of the hydrodynamic force to hose velocity, whereas the additional mass force is proportional to acceleration. The damping force and additional mass force components along the z-axis were modelled respectively using the Euler

beam approximation, as $(-Q\frac{\partial z}{\partial t})$ and $(-C_a m \frac{\partial^2 z}{\partial t^2})$, where the damping constant is denoted by Q and the coefficient of added mass is C_a . By applying these terms into Equation (12); thus yields:

$$EI\frac{\partial^4 y}{\partial x^4} + Q\frac{\partial z}{\partial t} + (1 + C_a) m\frac{\partial^2 z}{\partial t^2} = 0$$
(13)
In the same line with the Fully beam expression the hydrodynamic domains and added mass for

In the same line with the Euler beam approximation, the hydrodynamic damping and added mass forces is seen as insignificant to the contribution of the inertial end condition.

However, O'Donoghue (1987) defined C and K with Equations (14) and (15);

$$c^{2} = \frac{EI}{(1+C_{a})m}$$
(14)

$$K = \frac{Q}{EI}$$
(15)
By applying Equation (12), the equation of motion becomes:

$$\frac{\partial^{4}z}{\partial x^{4}} + K \frac{\partial z}{\partial t} + \left(\frac{1}{c^{2}}\right) \frac{\partial^{2}z}{\partial t^{2}} = 0$$
(16)
By considering the inertia end condition, gives:

$$\left[\frac{\partial}{\partial x}\left(\frac{\partial^{3}z}{\partial x^{3}} \cdot \frac{\partial z}{\partial x}\right)\right]_{x=0} = \frac{a_{s}}{(1+C_{a})} \left(\frac{\sigma^{2}}{c^{2}}\right) \cos(\sigma t)$$
(17)

Figure 20 Definition sketch of the floating hose showing (a) the 'snaking' hose model, and (b) the vertical displacement and bending model

Taking the illustration of the snaking model in Figure 20, the solution without damping can be considered by taking V = z(x,t) + iy(x,t); by assuming that the Euler beam equation without damping is represented by V as K approaches 0 (Bree J. et al. (1987)), thus gives;

(18)

$$\frac{\partial^4 v}{\partial x^4} + \left(\frac{1}{c^2}\right)\frac{\partial^2 v}{\partial t^2} = 0$$
(And when the inertial end condition is satisfied by $z(x,t)$, it gives same Equation (16), thus:

$$\left[\frac{\partial}{\partial x}\left(\frac{\partial^3 z}{\partial x^3},\frac{\partial z}{\partial x}\right)\right]_{x=0} = \frac{a_s}{1+C_a} \left(\frac{\sigma^2}{c^2}\right) \cos \sigma t \tag{19}$$

Consider the solution in the form $V = Ae^{-i\omega t}$ when Equation (17) requires values of $k=+k = \pm \frac{\sqrt{\omega}}{c}, \pm \frac{i\sqrt{\omega}}{c}$. Thus, Equation (17) presents a new solution for the waves in the floating buoy system, where the constants considered are A.B.C and D. as expressed:

$$V = Ae^{i\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x-\omega t\right]} + Be^{-i\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x-\omega t\right]} + Ce^{-\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x-\omega t\right]e^{-i\omega t}} + De^{\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x\right]e^{-i\omega t}}$$
(20)

The terms of B and D can tend to zero in this mathematical expression based on physical grounds, whereby B=D=0, as they negative the terms for the waves in terms in A and C, thus:

$$V = Ae^{i\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x - \omega t\right]} + Ce^{-\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x - \omega t\right]e^{-i\omega t}}$$
(21)
Where the first term of the PHS of Equation (21) is the travelling wave propagating away via the file

Where the first term of the RHS of Equation (21) is the travelling wave propagating away via the floating buoy while the standing wave is represented by the second term, which exponentially gets lower as x decreases. By considering the inertial end condition, thus obtains:

$$C = 0; \ \omega = \frac{\sigma}{2}; \ A = 2^{\frac{5}{4}} \left(\frac{a_s}{1+c_a}\right)^{\frac{1}{2}} \left(\frac{c}{\sigma}\right)^{\frac{1}{4}} e^{-i\frac{\pi}{4}}$$
(22)

Applying Equation (22) into Equation (21), then obtains:

$$V = 2^{\frac{5}{4}} \left(\frac{a_{s}}{1+C_{a}}\right)^{\frac{1}{2}} \left(\frac{c}{\sigma}\right)^{\frac{1}{4}} e^{i\left[\left(\frac{\omega}{c}\right)^{\frac{1}{2}}x - \omega t\right]\frac{\pi}{4}}$$
(23)
$$V = 2^{\frac{5}{4}} \left(\frac{a_{s}}{1+C_{a}}\right)^{\frac{1}{2}} \left(\frac{c}{\sigma}\right)^{\frac{1}{4}} e^{i\left[\left(\frac{\sigma}{2c}\right)^{\frac{1}{2}}x - \frac{\sigma}{2}t - \frac{\pi}{4}\right]}$$
(24)

An accurate depiction for the motion of hose-string without damping can be represented as Equation (24), with consideration of the uniqueness of the equation, by taking the real part, thus:

$$z(x,t) = 2^{\frac{5}{4}} \left(\frac{a_s}{1+C_a}\right)^{\frac{1}{2}} \left(\frac{c}{\sigma}\right)^{\frac{1}{4}} \cos\left[\left(\frac{\sigma}{2c}\right)^{\frac{1}{2}} x - \frac{\sigma}{2}t - \frac{\pi}{4}\right]$$
(25)

Although, while the hose -string approaches a narrow end towards x=0, when $x>x_0$, then $x_0>2a_s$. In the other hand, the solution with damping is considered by taking V = z(x,t) + iy(x,t); by assuming that the Euler beam equation with damping is represented by V as K approaches 0 at inertial end conditions (Bree J. et al. 1987), thus gives;

$$\frac{\partial^4 V}{\partial x^4} + K \frac{\partial V}{\partial t} + \left(\frac{1}{c^2}\right) \frac{\partial^2 V}{\partial t^2} = 0$$
(26)

Consider the solution in the form $V = Ae^{-i\omega t}$ in Equation (26), presents the solution of the following form in Equation (27), where all the constants are depicted by A, B, C and D, while the values of α , β , H and φ are given by Bree J. et al. (1987);

$$V = Ae^{-\beta x}e^{i(\alpha x - \omega t)} + Be^{\beta x}e^{i(-\alpha x - \omega t)} + Ce^{-\alpha x}e^{i(-\beta x - \omega t)} + De^{\alpha x}e^{i(\beta x - \omega t)}$$
(27)

4.4 Hydrodynamic Hose Load

Considering the CALM Buoy submarine hoses in Chinese-lantern configurations for SPM in Figures 14-16, the hose motion is subject to bending and environmental forces (Amaechi et al. 2019a, 2019b, OCIMF 2009). As depicted in Figures 21(a-d) and 22(a-d), the floats on the hoses influence the buoyancy and the configuration of the submarine hoses. Figures 22(a-b) shows that the hoses move relative to waves at different times while Figure 22(c-d) shows the parametric profiles, as it depicts that the maximum profile is highest for both the effective tension and curvature, followed by the mean and the least is the minimum profile. The parameters considered in hose design can be seen in hose studies. These parameters include the bending moment, curvature and effective tension distributions of the submarine hose-strings. In the model by Amaechi et al. (2019a), the hose profile was investigated for the effect of hydrodynamic loads on the submarine hose behaviour of hoses under different flow angles. By altering the flow angle, the results of the flow angle and hose hydrodynamic loads on the structural

-1 2 1 Conventional 1st Off Buoy Hose System 1 2 1 (d) (c) 2nd Off Buoy Hos e Floating Syst 3 2 0

response of the hose were investigated. The influence of increased flexural stiffness at both top connections and bottom touch down sites (TDS) was studied, as were the patterns of bending and tension along hose arc lengths.

Figure 21 Marine hoses on (a) Chinese-lantern, (b) Steep-S, (c) Lazy-S, and (d) Off buoy hose configurations

Figure 22 Marine hose model in Orcaflex configured as (a-b) Chinese-lantern, with its (c) tension and (d) curvature curves.

4.5 Hose Contact Pressure

Contact load is pertinent in bonded flexible risers and offshore hoses. Based on the component analysis, four key parameters are considered, namely the hose reinforcement, the end fitting and the contact and Metal Composite Interface (MCI). In the study by Cho and Song (2007), the contact pressure effect on a hose with three (3) layers was investigated, and they found that the pressure increased after relaxation. It was also highest at the innermost layer of the hose, as observed on the contact in Figure 23(a-c). The stress relaxation was computed starting from the point of release of Jaw 2 to 7.0×10^3 s. The study results showed that the peak stress in the inner rubber layer decreases suddenly and greatly just after the release of Jaw 2, implying that the stress relaxation was maximum within the inner rubber layer of the hose. In Figure 23(d), it can also be seen that when hose is pressurized, the bending moment profile is highest in Hosel, next to Hose2, while the empty hoses are the least which shows the effect of contact pressure holding the layers together to be able to hold the hydrostatic pressure in place. As such, the effect of contact is a very important parameter in the bonding of bonded marine hoses. The pressurised hose's increased bending stiffness is due to the cross-section ovalization caused by the bending moment. As a result, the inertial moment and bending stiffness are lower in the ovalized cross-section. According to Polenta et al. (2015), this increase in bending stiffness happens because the pressure acting on the inner surface tends to keep the crosssection round. As demonstrated in Figure 23(d), the model of Tonatto et al. (2018) can likewise capture the increase in stiffness owing to internal pressure. Due to the ovalization of the hose, there was no non-linear behaviour. This behaviour is due to the way the curvature in the bending test was assessed.

Figure 23 Effect of contact pressure on reinforced hoses, showing (a)stress relaxation history, (b) contact pressure at the bottom surface and (c) contact pressure at the top surface (Courtesy: [a-c] Cho and Song, 2007 & [d] Tonatto et al. 2018)

4.6 Hose Pressure & Flow Velocity

Industry hose pressures are designed with respect to the flow rate, as given in Figure 24(a-c), shows that pressure loss increases as flow rate increase over time. For each nominal hose diameter, the graphs below show the relationship between pressure loss and flow rate. Under some conditions, the pressure loss and flow rate can be estimated using the Darcy – Weisbach equation and Mise's experiment. In this case, the parameters include a 100m hose-line lengthwise, the fluid's specific gravity is 0.85, the rheological properties for kinematic viscosity as 6.0×10^{-6} and the result Mise's experiment was 0.3×10^{-6} . It can be observed that the least hose diameter of 150mm has the maximum pressure loss of 15bar while the highest hose diameter of 600mm has the least pressure loss of 2.5bar. GMPHOM OCIMF (2009) recommends a maximum flow velocity of 21 m/sec (70 ft/sec). The plot in Figure 24(d) depicts the relationship between flow rate and flow velocity for each nominal hose diameter. Thus, it can be concluded that the pressure loss is a function of the hose diameter and flow rate.

Figure 24 Pressure against flow rate of offshore hoses, showing (a-c) pressure loss against flow rate, for different sizes of hoses, and (d) flow velocity against flow rate (Courtesy: Yokohama & Trelleborg)

4.7 Failure modes of Bonded marine Hoses

Due to the HPHT requirement of marine hoses and the industry specifications such as the GMPHOM (OCIMF 2009) standard, it is crucial to inspect hoses regularly from manufacturing to certification, storage, transportation, installation, to operation stages. Bonded flexible risers and offshore hoses have also been identified to have failure issues such as corrosion on rubberised offshore hoses (Løtveit S. A. 2009, 2018, PSA 2018, PSA 2013). As seen on Figure 25 and Table 10, there are different issues that may lead to the issues of failure on offshore hoses. However, failures identified on rubberised hoses can be due to operation loads from flange corrosion, liner leakages, cuts from propeller, as summarised in Figure 25. Due to the multi-layers of offshore hoses and bonded flexible risers, the damages caused can be complex, and not always repairable. As such, there is the need to investigate these hoses against these failures, using more advanced modelling methods.

Figure 25 Collage of different hose failure modes, showing (a) pressure test with leaking liner, (b) floating hose after a propeller cut, (c) excess cover damage down to breaker fabric, (d) corrosion and heavy wear of the hose flange that had a service life of 14 years, (e) hose damage from abrasion cut on cover (f) crushed 16 inches submarine hoses after excessive load landed on it, (Courtesy: PSI, 4Subsea, Continental Dunlop & Trelleborg)

Figure 26 A Hose monitoring system called failure alert device (FAD) on (a) Manuli's Dual Anti-pollution Safety Hose (DASH), (b) FAD during normal operation, and (c) FAD after activation (Courtesy of: Manuli & Offspring International)

Recent advances include the incorpaoration of sensors and Offshore Monitoring Systems (OMS) on hoses and CALM buoys to have real-time reporting on failure propagation, failure inception, and failure modes on these hose systems. According to OIL (2020), most leak detection systems just keep an eye on the primary carcass, but the challenge is on the effect of failure from the secondary carcass. Figure 26 shows a failure alert device (FAD)

on Manuli's Dual Anti-pollution Safety Hose (DASH), which monitors the integrity of both the primary and secondary hose. A stainless-steel base is covered with a clear plastic lens and protected by a stainless-steel cage in the mechanical FAD. The pressure between the primary and secondary sections of the hose makes the system work. Whenever a leak from the original carcass develops, the secondary carcass contains it, increasing the pressure. When the fluid reaches the FAD base, it activates, raising the coloured piston that can be seen from afar.

Failure Mode	Description	Observations & Recommendations
Hose line failure	Hoses can have some failures when the nipple or	Different industry hose manuals specify that
due to Nipple or	end fitting of the hose starts to corrode. In that	routine checks be carried out. Also, the hose-
End-fitting	case, the service life will be shortened. This will	string be designed according to OCIMF
corrosion	weaken the adhesion and contact forces between	GMPHOM and API 17K standards.
	the hoses and these bonded steel.	
Elastomeric-steel	The elastomeric layers must be properly bonded	GMPHOM OCIMF (2009) and API 17K
bonds and fabric-	to both the end connection and the reinforcing	specifications include:
reinforcement-cord	cable in bonded pipes.	- Specifications for each length of hose
bonds having failure	End terminations have been blown off the hose	- Handling and documentation of materials
in the bonding	due to bonding failure during pressure testing.	- Bonding agents and surface preparation
	Rejection has also been induced by leakage and	
	perspiration.	
	Dissections are usually the only way to detect	
	bonding breakdown between the armour or	
	reinforcement layers.	
Hose test failures	Only hoses with an elastomeric liners are subject	Each hose length is subjected to a hydrostatic
	to pipe rejection owing to vacuum testing.	pressure test, as well as adhesion testing for
	For high-pressure gas applications, kerosene tests	each batch of material and every tenth hose
	and cyclic gas decompression tests have resulted	length.
	in hose rejection owing to de-bonding and/or	Each pipe length is vacuum tested;
	scorching.	For each hose length, the purchaser specifies
		a kerosene test.
Operation damages	It is important to carry out routine checks on the	Different marine brochures by industry
	hoses. There could be wear and tear on the hose	manufacturers also recommend these checks,
	due to contact with other hoses as when reeled, or	such as by Dunlop Continental, Yokohama
	impact during transfer. This can cause abrasion	Seaflex, Trelleborg, EMSTEC, etc.
	damages.	
Surface damages	It is important to do physical inspection of the	GMPHOM OCIMF (2009) and API 17K
	hoses. Occasionally, hose lengths can be rejected	specifications on surface damage:
	from visual inspection due to surface damage	- Generally, liner repair is not permitted.
	found on the cover.	- Minor repair of outer cover is permitted
		with an approved procedure
Liner leak	Pressure will build up in the pipe wall as a result	Burst (internal pressure) test is usually
	of a leaky liner.	recommended.
	Such flaws are usually detected by pressure	
	resistance test.	
Damages due to	Storage, maintenance, and handling advice are	The hose must be stored and managed
improper handling	included with every bonded hoses. Failure due to	according to the manufacturer's guidelines,
or storage	inappropriate handling and storage does not seem	as stated in the specifications.
	to be a problem if these guidelines are followed.	
	Incorrect handling, on the other side, has	
	culminated in crushing and kinking failures.	
Connection point to	Some failure have been reported largely that	Both marine hose operators and the hose
Valves leakages	occur due to failure of valves or connection	manufaturers conduct adequate checks and
	points of the valves to the marine hoses. As such,	tests on this before delivery, and deployment
	it is advised that the operators and manufaturers	on the oil-field or (un)loading terminal. It is
	do enough checks and tests on this before	recommended that this checks should include
1	delivery and deployment on the field	service usage with hose-valve connections

Table 10 Failure modes of offshore hoses and unbonded flexible risers

5.0 Conclusion

A detailed review on the design and mechanics of bonded marine hoses for CALM buoys has been conducted. This is necessary, considering the large amount of applications currently existing that use CALM buoys, marine hoses and other single point (SPM) moorings, as represented in Appendix A, Table 11. It shows 40 current offloading hose systems, CALM buoys, and industry operators, but the list is not limited to these 40 projects. The state-of-the-art on hose structures application, recent developments, advanced applications of hose structures are also presented. This study shows that environmental loads like wind and the ocean currents influence hose performance. Also, the hose model and environmental conditions like the peak periods, influence the hose behaviour. With the application of bonded flexible risers and bonded flexible pipes, the transfer of oil and gas products in FLNG (Floating LNG production unit) has been possible, despite being relatively new. The FLNG applications use the long and large bore seawater intake hoses and the LNG offloading hoses, while others use specialist marine hoses. As discussed, the development of marine hoses in the industry has accelerated in recent decades. This trend is due to the utilisation of marine hoses on various platform and mooring designs, enabling fluid products' offloading. Currently, marine hose users have not presented many hose failures; however, this area has a limited experience base (Svein Are Løtveit 2009, 2018, PSA 2018, 2013). There are some in-service failures on crude offloading hoses reported. However, the application is in high demand. More mathematical theories, formulations, and solutions have also been proffered to solve these issues in this review.

The main highlights of this review are as follows:

- Design criteria, developmental trends, tests, standards, and mechanics of bonded marine hoses.
- Numerical modelling review, and marine hoses assessment on CALM buoy hose systems.
- Theoretical models on load responses of marine hoses, effect of waves and hydrodynamics
- Marine industry application of hose configurations, hose models and material models.
- Overview on failure modes of bonded marine hoses and their merits for marine applications.

During marine hose qualification, all the checks have to be carried out, and necessary test conducted. Also, quality checks, safety checks, qualification and service assurance are done on each in-service offloading hose projects based on the industry guidelines. Despite the extensive qualification programs on marine hoses, there are still recent reports of new in-service failure modes not identified in the qualification. As such, more investigation - both numerically using FEA and CFD should be carried out. Failure of offshore hoses can lead to oil spills, such as the oil spill in 2010. Oil spillage can increase the CAPEX (capital expenditure), increase maintenance cost and increase the production down time. It is always advised also to have consultants check these hose designs from manufacturing to installation stages. There are still some challenges on numerical investigations on marine hoses that were lacking from the review study. These include researches of offshore hoses on nonlinear seabeds, comparative study of configuration of submarine and floating hose string with Orcaflex (Ocina 2014, 2019, 2020, 2021) and Flexcom and other analytical dedicated software for hoses, study of pressure losses and determination of optimal diameter on offshore hoses, study on fatigue estimation of offshore hoses on Orcaflex or similar platforms, surge pressure analysis with FEA on ANSYS (ANSYS 2016a, 2016b) and ABAQUS or similar FEM codes, study of new configuration on identification of hoses, analysis of optimal length of strings and the identification and supply of proper hose ancillaries, hose replacement dynamics, hose abandonment dynamics,

and the effect of hose ancillaries like HEV on reeling hoses, lastly the impact of crushing load on reeling hoses. In conclusion, the hose behaviour when attached to the host FOS is relative to the operational activity. As such, some designs done are analytical estimations rather than a full design on the offshore hoses. However, having better design methods implies that these hoses will have increased service life during operation. This review was effective in developing a theoretical solution to explain the mechanical behaviour of the reinforcing layers for loading and offloading hoses. It presents developments from industrial hose manufacturers, as such, has excellent industrial relevance. This review advocates for more synergies between industry and academia. It also serves as the guidance for standard elaboration, future study on the useful art of hoses and for funding applications. It aims towards the growth of hose technology in ocean engineering and related fields. It will also ensure that marine hoses are designed efficiently with a longer lifespan.

Conflict of Interest

The authors declare no conflict of interest in this review.

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Authorship CRediT Contribution Statement

Conceptualization, C.V., F.W. and J.Y.; methodology, C.V., C.C., H.O.B., J.Y., and F.W.; software, C.V., C.C., H.O.B., and J.Y.; validation, C.V., C.C., H.O.B., F.W., and J.Y.; formal analysis, C.V., C.C., H.O.B., F.W. and J.Y.; investigation, C.V., C.C., H.O.B., and J.Y.; resources, C.V. and J.Y.; data curation, C.V., C.C., H.O.B., and J.Y.; writing—original draft preparation, C.V.; writing—review and editing, C.V, C.C., H.O.B., F.W., and J.Y.; visualization, C.V, C.C., H.O.B., and J.Y.; supervision, C.V., J.Y., and F.W; project administration, C.V., J.Y. and F.W.; funding acquisition, C.V., J.Y., and F.W.

Funding

The Department of Engineering, Lancaster University, UK is highly appreciated. In addition, the funding of Overseas Scholarships by Nigeria's NDDC (Niger Delta Development Commission) is also appreciated and the support of Standards Organisation of Nigeria (SON), Abuja, Nigeria. Also, acknowledge National Natural Science Foundation of China (NSFC) for supporting the Projects 51922064 and 51879143, including this study.

Acknowledgement

The authors acknowledge the technical support from the Library and Engineering Departments of Lancaster University UK. This review was not funded by any industry or hose manufacturer. However, the authors appreciate the permission from the industry hose manufacturers to use images in this paper. We also particularly appreciate the permission and feedback from Jonathan Petit of Trelleborg. We also appreciate Gemma Hornby of ContiTech Continental for assistance with permissions to use images. We also acknowledge the review feedback

by Dr. Oyetunji K. Abiodun of Lancaster University, Lancaster Environment Centre (LEC), Lancaster, UK. Lastly, the peer-review by the journal editor and the reviewers on this paper are immensely appreciated.

References

- Aboshio A., Ye J. (2016). Numerical study of the dynamic response of Inflatable Offshore Fender Barrier Structures using the Coupled Eulerian – Lagrangian discretization technique. Ocean Engineering, Vol. 112, pp.265-276. <u>https://doi.org/10.1016/j.oceaneng.2015.12.020</u>
- Aboshio A, Green S, Ye J. (2014). Dynamic response of Inflatable Offshore Fender Barrier Structures under Impact Loading. Paper 148, Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing, B.H.V. Topping and P. Iványi, (Editors), Civil-Comp Press, Stirlingshire, Scotland. <u>https://doi.org/10.4203/ccp.102.148</u>
- Aboshio A, Green S, Ye J. (2014). New constitutive model for anisotropic hyperelastic biased woven fibre reinforced composite. Plastics, Rubber and Composites, 43(7):225–34. https://doi.org/10.1179/1743289814Y.0000000097
- Aboshio A, Green S, Ye J. (2015). Experimental investigation of the mechanical properties of neoprene coated nylon woven reinforced composites. Composite Structures, Volume 120, February 2015, Pages 386-393 https://doi.org/10.1016/j.compstruct.2014.10.015
- Aboshio, A. (2014). Dynamic Study of Inflatable Offshore Barrier Structures under Impact and Environmental Loadings (Ph.D. thesis) Engineering Department, Lancaster University, United Kingdom.
- ABS (2020). Rules for building and classing single point moorings, American Bureau of Shipping. Available at: <u>https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/8-single-point-moorings/spm-rules-july20.pdf</u>
- ABS (2017). *Rules for building and classing subsea riser systems*, American Bureau of Shipping. Available at: https://ww2.eagle.org/content/dam/eagle/rules-andguides/current/offshore/123_guide_building_and_classing_subsea_riser_systems_2017/Riser_Guide_e-Mar18.pdf
- Ahlstone A. (1973). Light weight marine riser pipe. Patent 3768842 A, USA, 30 October 1973.
- Alfagomma, 2016. Industrial hose & fittings, Vimercate, Italy: Alphagomma SpA
- Ali A., M. Hosseini, B.B. Sahari (2010). A review of constitutive models for rubber-like materials, American Journal of Engineering and Applied Sciences, Volume 3 (1) 232–239. DOI: <u>https://doi.org/10.3844/ajeassp.2010.232.239</u>
- Amaechi, C.V. and Ye J. (2017). A numerical modeling approach of composite risers for deep waters. ICCS20 20th International Conference on Composite Structures; 2017-09-04 | conference-paper; ISBN 9788893850414., Paris, France
- Amaechi, C.V., Gillett, N., Odijie, A. C., Hou, X., & Ye, J., 2019a. Composite risers for deep waters using a numerical modelling approach. *Composite Structures*, Volume 210. https://doi.org/10.1016/j.compstruct.2018.11.057
- Amaechi C. V., Gillett N., Odijie A. C., Wang F., Hou X., and Ye J., 2019b. "Local and Global Design of Composite Risers on Truss SPAR Platform in Deep waters". In Proceedings of 5th International Conference on Mechanics of Composites, 2019, no. 20005, pp. 1–3.
- Amaechi, C.V., Wang, F., Xiaonan, H., & Ye, J., 2019c. Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy. *Ocean Engineering*, 171, PP. 429-442. https://doi.org/10.1016/j.oceaneng.2018.11.010.
- Amaechi, C. V., Ye, J., Hou, X., & Wang, F.-C. 2019d. Sensitivity Studies on Offshore Submarine Hoses on CALM Buoy with Comparisons for Chinese-Lantern and Lazy-S Configuration OMAE2019-96755. 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, Scotland, June 9–14, 2019. https://doi.org/OMAE2019-96755
- Amaechi C.V., Odijie C., Sotayo A., Wang F., Hou X., Ye J., 2019e. Recycling of Renewable Composite Materials in the Offshore Industry. Encyclopedia of Renewable and Sustainable Materials; Reference Module in Materials Science and Materials Engineering. DOI: https://doi.org/10.1016/B978-0-12-803581-8.11445-6
- Amaechi C.V., Odijie C., Etim O., Ye J., 2019f. Economic Aspects of Fiber Reinforced Polymer Composite Recycling. Encyclopedia of Renewable and Sustainable Materials; Reference Module in Materials Science and Materials Engineering. DOI: https://doi.org/10.1016/B978-0-12-803581-8.10738-6
- Amaechi C.V. 2021. Novel design, hydrodynamics and mechanics of composite risers in oil/gas applications: case study of marine hoses. PhD Thesis. Lancaster University, Engineering Department, Lancaster, UK (in view).
- Amaechi C.V. et al. 2021a. A review of state-of-the-art and meta-science analysis on composite risers for deep

seas. Ocean Engineering 2021. (under review).

- Amaechi C.V. et al. 2021b. Development of composite risers for offshore applications with review on design and mechanics. Ships and Offshore Structures. 2021. (under review).
- Amaechi C.V. 2021c. Local tailored design of deep water composite risers subjected to burst, collapse and tension loads. Ocean Engineering 2021. (under review).
- Amaechi C.V., Chesterton C., Butler H.O., Wang F., Ye J. 2021d. An Overview on Bonded Marine Hoses for sustainable fluid transfer and (un)loading operations via Floating Offshore Structures (FOS). J. Mar. Sci. Eng. 2021, 9. (under review).
- Amaechi C.V. et al. 2021e. Development of bonded marine hoses for sustainable loading and discharging operations in the offshore-renewable industry. *J. Petrol.Science and Engineering* 2021. (under review).
- Amaechi C.V., Wang F., & Ye, J.2021f. Mathematical Modelling of Bonded Marine Hoses for Single Point Mooring (SPM) Systems, with Catenary Anchor Leg Mooring (CALM) Buoy application - A Review. J. Mar. Sci. Eng. 2021, 9.
- Amaechi, C.V., Wang F., & Ye, J. 2021g. Numerical Assessment on the Dynamic Behaviour of Submarine Hoses Attached to CALM Buoy Configured as Lazy-S Under Water Waves. J. Mar. Sci. Eng. 2021, 9(10), 1130; https://doi.org/10.3390/jmse9101130
- Amaechi C.V., Chesterton C., Butler H.O., Wang F., Ye J. 2021h. Investigation on Hydrodynamic Characteristics, Wave-Current Interaction and Sensitivity Analysis of Submarine Hoses Attached to a CALM Buoy. J. Mar. Sci. Eng. 2021, 9. (under review).
- Amaechi C.V. et al. 2021h. Numerical studies on CALM buoy motion responses and the effect of buoy geometry cum skirt dimensions with its hydrodynamic waves-current interactions. Ocean Engineering 2021. (under review).
- Amaechi C.V., et al. 2021i. Analytical cum numerical solutions on added mass and damping of a CALM buoy towards understanding the fluid-structure interaction of marine bonded hose under random waves. Marine Structures. 2021 (Under review)
- Amaechi C.V., et al. 2021j. Understanding the fluid-structure interaction from wave diffraction forces on CALM buoys: Numerical and analytical solutions. Ships and Offshore Structures. (under review).
- Amaechi C.V. et al. 2021k. Experimental, analytical and numerical study on the hydrodynamic behaviour of CALM buoy with motion response and the hose-snaking phenomenon of the attached marine hoses under water waves. J. Mar. Sci. Eng. 2021, 9. (under review).
- Amaechi C.V. et al. 20211. Numerical assessment of offshore hose load response during reeling and free-hanging operations under ocean waves. Ocean Engineering 2021. (under review).
- Amaechi C.V., et al. 2021m. Effect of marine riser integration for characteristic motion response studies on a Paired Column Semisubmersible in deep waters. *Marine Structures 2021*, 9. (under review).
- Amaechi C.V. et al. 2021n. Numerical investigation on mooring line configurations of a Paired Column Semisubmersible for its global performance in deep water condition. Ocean Engineering 2021. (under review).
- Amaechi C.V. et al. 2021o. Parametric investigation on tensioner stroke analysis, recoil analysis and disconnect for the marine drilling riser of a Paired Column Semisubmersible under deep water waves. Ocean Engineering 2021. (under review).
- Amaechi C.V. et al. 2021p. Dynamic analysis of tensioner model applied on global response with marine riser recoil and disconnect. Ocean Engineering 2021. (under review).
- Ambrose (1979). Flexible hose lines. Patent 4153079, USA, 1979-05-08.
- Anderson J. J., Nance D. A. and Mickelson C. S. (1998). Composite cylinder termination formed using snap ring. Patent 5813467 A, USA, 29 September 1998.
- Andrick et al. (1997). Symmetrical gasket for a pipe joint. Patent 5687976, USA, 1997-11-18.
- ANSYS, 2016a. ANSYS Aqwa Theory Manual, Release 17.2, Canonsburg, USA: ANSYS Inc.
- ANSYS, 2016b. ANSYS Aqwa User's Manual, Release 17.2, Canonsburg, USA: ANSYS Inc.
- Antal et al. (2001). High pressure flexible hose structure and method of manufacture. Patent 6315002, USA, 2001-11-13
- Antal S., Tibor Nagy T., and Boros A. (2003). Improvement of bonded flexible pipes acc. to new API Standard 17K. Offshore Technology Conference, 5-8 May, Houston, Texas, USA. Paper No. OTC-15167-MS. DOI: <u>https://doi.org/10.4043/15167-MS</u>
- Antal D., Imre D., Gyula B., Tamas K. (2012). Finite Element Analysis of seawater intake hoses. Continental ContiTech. Presented at SIMDAY 2012, Budapest.
- API (2014). API 17J: Specification for Unbonded Flexible Pipe. Fourth Edition. American Petroleum Institute, API Publishing Services, Washington D.C, USA.
- API (2016). API 17K: Specification for Bonded Flexible Pipe. Third Edition. American Petroleum Institute, API Publishing Services, Washington D.C,USA
- API (2015). API Spec. 7K. Specification for Drilling and Well Service Equipment. Sixth Edition, American

Petroleum Institute, API Publishing Services, Washington D.C, USA.

- API (2014). API RP 17B. Recommended Practice for flexible pipe. Fifth Edition, American Petroleum Institute, API Publishing Services, Washington D.C, USA.
- ARPM, 2015. *Hose Handbook; IP-2* Ninth., Shadeland Station Way, Indianapolis: Association for Rubber Products Manufacturers.
- Asano et al. (1986). Hydraulic brake hose. Patent 4617213, USA, 1986-10-14.
- ASTM D412-16, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension, ASTM International, West Conshohocken, PA, 2016.
- ASTM D885 / D885M-10A (2014) e1, Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers, ASTM International, West Conshohocken, PA, 2014.
- ASTM E111-04. Standard test method for young's modulus, tangent modulus, and chord modulus. West Conshohocken, PA: ASTM International; 2004.
- Avery A. and Martin S. (2003). Reinforced thermoplastic pipe: Innovative technology for onshore field developments. In: Proceedings of the 22nd international conference on offshore mechanics & arctic engineering. Volume 3: Materials Technology; Ocean Engineering; Polar and Arctic Sciences and Technology. Cancun, Mexico, June 8-13, 2003, pp. 787-794. <u>https://doi.org/10.1115/OMAE2003-37041</u>
- Bai Yong and Bai Qiang (2005). Subsea pipelines and risers. First Ed. Elsevier, Oxford, UK.

Bai, Y., Bai, Q. (2012). Subsea Engineering Handbook. Gulf Professional Publishers (Elsevier), Waltham.

- Baldwin DD, Reigle JA and Drey MD. Interface system between composite tubing and end fittings. Patent 6042152 A, USA, 28 March 2000.
- Barbero E.J. (2010). Introduction to composite materials design. Boca Raton: CRC Press.
- Barnard (1938). Hose end structure. Patent 2122126, USA, 1938-06-28.
- Bastien, S.P. et al., 2009. Ocean Wave Energy Harvesting Buoy for Sensors. , pp.3718–3725.
- Bernitsas, M.M. & Kokkinis, T., 1983. Buckling of Risers in Tension due to Internal Pressure: Nonmovable Boundaries. *Journal of Energy Resources Technology*, 105(September 1983), pp.277–281.
- Berteaux, H.O., 1976. Buoy engineering, New York, USA: John Wiley and Sons.
- Berteaux, H.O., Goldsmith, R.A. & Schott III, W.E., 1977. *Heave and Roll response of free floating bodies of cylindrical shape*, Massachusetts, USA.
- Blanchard C. J., Anastasio F. L. (2016). Floating systems and method for storing produced fluids recovered from oil and gas wells. US5885028A, USA, 10 December, 2016.
- Bluewater, 2011. Bluewater Turret Buoy- Technical Description, Amsterdam, The Netherlands: Bluewater Energy Services.
- Bluewater (2020). Comprehensive Experience Overview: Oceans of knowledge. Bluewater, pp. 1-15. Available at: <u>https://www.bluewater.com/wp-content/uploads/2020/05/Experience-Overview-May-2020.pdf</u> Retrieved on 30th July, 2020.
- Bluewater, 2009a. *Buoyed Up: The future of tanker loading/offloading operations*, Amsterdam, The Netherlands: Bluewater Energy Services. Available at: <u>https://www.bluewater.com/wp-</u> content/uploads/2013/04/CALM-Buoy-brochure-English.pdf Retrieved on 30th July, 2020.
- Bluewater, 2009b. Conventional Buoy Mooring Systems, Amsterdam, The Netherlands: Bluewater Energy Services.
- Bluewater, 2016. Turret Buoy, Amsterdam, The Netherlands: Bluewater Energy Services.
- Boatman L. T. (2003). Flowline termination buoy with counterweight for a single point mooring and fluid transfer system. US6558215B1, USA, 06 May 2003.
- Boccotti, P., 2015. Wave Mechanics and Wave Loads on Marine Structures, USA: Elsevier B.V.
- Boccotti, P., 2000. Wave Mechanics for Ocean Engineering, Amsterdam, The Netherlands: Elsevier B.V.
- Bok-Lok Choi, Byoung-Ho Choi (2015). Numerical method for optimizing design variables of carbon-fiberreinforced epoxy composite coil springs. Composites Part B: Engineering, Volume 82, pp. 42-49. <u>https://doi.org/10.1016/j.compositesb.2015.08.005</u>
- Brady, I., Williams, S. & Golby, P., 1974. A study of the Forces Acting on Hoses at a Monobuoy Due to Environmental Conditions. In *Offshore Technology Conference Proceeding -OTC 2136*. Dallas, Texas, USA: OnePetro, pp. 1–10.
- Braud J., Brown PA. and O'Nion G. (1998). Submerged CALM buoy. US5816183A, USA, 06 October, 1998.
- Bree, J., Halliwell, A.R. & Tom O'Donoghue, 1989. Snaking of floating marine oil hose attached to SPM buoy. *Journal of Engineering Mechanics*, 115(2), pp.265–284.
- Bregman, P.C., Kuipers, M., Teerling, H.L.J., van der Veen W.A. Strength and stiffness of a flexible high-pressure spiral hose. *Acta Mechanica* 97, 185–204 (1993). https://doi.org/10.1007/BF01176525
- Bridgestone, 2017. Hydraulic hose: couplings, accessories and equipment, Bensheim, Germany: Bridgestone Company.
- Bridgestone, J., 1976. Study of causes of kinking in floating hoses at Petrobras/Tefran terminal. Report No. 6YMT-

0011, Japan.

- Briggs (1990). Graduated friction anchor. Patent 4950001, USA, 1990-08-21.
- Brown, M.J., 1985a. Mathematical Model of a Marine Hose-String at a Buoy- Part 1 Static Problem. In P. Dyke, A. O. Moscardini, & E. H. Robson, eds. *Offshore and Coastal Modelling*. England: Springer, pp. 251–277.
- Brown, M.J., 1985b. Mathematical Model of a Marine Hose-String at a Buoy- Part 2 Dynamic Problem. In P. Dyke, A. O. Moscardini, & E. H. Robson, eds. *Offshore and Coastal Modelling*. England: Springer, pp. 279–301.
- Brown, M.J. & Elliott, L., 1988. Two-dimensional dynamic analysis of a floating hose string. *Applied Ocean Research*, 10(1), pp.20–34.
- Brown P. A. and Poldervaart L. (1996) Fluid transfer system for an offshore moored floating unit. US5505560A, USA, 09 April, 1996.
- BS 903-5:2004 Physical testing of rubber. Guide to the application of rubber testing to finite element analysis. (2004) BSI, London.
- BSI (2008). BS EN 1474-2: 2008. European Standard 1474: Installation and equipment for liquefied natural gas – Design and testing of marine transfer systems. Part 2: Design and testing of transfer hoses. British Standards Institution.
- Busch R. A. (1987). Spar buoy fluid transfer system. US4648848A, USA, 10 March, 1987.
- Camozzato, G., Poirier, N., Hiller, D., Acheritobehere, A., Xavier, M., Romeu, N. B., Seize E., Silva, A. L. (2015). Execution Challenges for a First of its Kind Project in Santos Basin Brazil. Offshore Technology Conference, 04-07 May, Houston, Texas, USA. DOI: <u>https://doi.org/10.4043/25843-MS</u>
- Cao, P., Xiang, S., He, J., Kibbee, S., & Bian, S. (2015). Advancing Cold Water Intake Riser Design through Model Test. Offshore Technology Conference, 04-07 May, Houston, Texas, USA. DOI: <u>https://doi.org/10.4043/25917-MS</u>
- Cao Q. et al. 2017. Analysis of multi-layered fiber-wound offshore rubber hose under internal pressure. ICCS17 Conference, Paris, France.
- Carpenter, E.B. et al., 1994. Behaviour of a moored Discus Buoy in an Ochi-Hubble Wave Spectrum OMAE1994. In *Offshore Technology Conference Proceeding*. ASME, pp. 347–354.
- Carter J. W. (1985). Method and apparatus for longitudinally reinforcing continuously generated plastic pipe. Patent 4887, Editor, USA, 1985.
- Castelbaum et al. (1984). Flexible hose having an end connection fitting. Patent 4477108, USA, 1984-10-16.
- Cederberg, C., (2011). Design and Verification Testing Composite-Reinforced Steel Drilling Riser, Final Report, RPSEA 07121-1401. Lincoln Composites, Inc.
- Cees van Rhee, Edwin Munts, Jochem van den Bosch, Rick Lotman, John Heeren (2013). New Developments in the Simulation of Slurry Behaviour in Spooled Hoses for Offshore Mining Applications. Offshore Technology Conference, 6-9 May, Houston, Texas, USA. Paper Number OTC-24082-MS, DOI: <u>https://doi.org/10.4043/24082-MS</u>
- Chakrabarti, S.K., 2001. Hydrodynamics of offshore structures Reprint., Southampton, UK: WIT Press.
- Chakrabarti, S.K., 1994. Offshore Structure Modeling -Advanced Series on Ocean Engineering -Volume 9, Singapore: World Scientific.
- Chakrabarti, S.K., 2002. The Theory and Practice of Hydrodynamics and Vibration -Advanced Series on Ocean Engineering -Volume 20, Singapore: World Scientific.
- Chakrabarti, S.K., (2005). Handbook of Offshore Engineering. Elsevier, UK.
- Chakrabarti, S.K., Frampton, R.E., (1982). Review of riser analysis techniques. Appl. Ocean Res. 4 (2), 73–90. https://doi.org/10.1016/S0141-1187(82)80002-3
- Chen Y., Seemann R., Krause D., Tay T.E., Tan V.B.C. (2016). Prototyping and testing of composite riser joints for deepwater application. Journal of Reinforced Plastics and Composites, Vol. 35, Issue 2, 95-110. DOI: 10.1177/0731684415607392
- Chesterton C. (2020). A global and local analysis of offshore composite material reeling pipeline hose, with FPSO mounted reel drum. BEng Dissertation. Lancaster University, Engineering Department.
- Chevalier et al. (1974). Couplings of reduced size and capable of transmitting high mechanical stresses between an armoured flexible member and a rigid element. Patent 3799587, USA, 1974-03-26.
- Chibueze, N.O., Ossia, C.V. & Okoli, J.U., (2016). On the Fatigue of Steel Catenary Risers. *Strojniški vestnik Journal of Mechanical Engineering*, 62(12), pp.751–756. https://doi.org/10.5545/sv-jme.2015.3060
- Chiu C., Hwan C., Tsai H., Lee W., (2007). An experimental investigation into the mechanical behaviors of helical composite springs, Compos. Struct. Vol. 77 331–340. https://doi.org/10.1016/j.compstruct.2005.07.022
- Cho J.R. and Yoon Y.H. (2016). Large deformation analysis of anisotropic rubber hose along cyclic path by homogenization and path interpolation methods. Journal of Mechanical Science and Technology 30 (2), pp. 789-795. DOI 10.1007/s12206-016-0134-5
- Cho J.R., Song J.I. (2007). Swaging process of power steering hose: Its finite element analysis considering the

stress relaxation. Journal of Materials Processing Technology, Volumes 187–188, 12 June 2007, Pages 497-501. <u>https://doi.org/10.1016/j.jmatprotec.2006.11.113</u>

- Cho J.R., Yoon Y.H., Seo C.W., Kim Y.G. (2015). Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion. Finite Elements in Analysis and Design, Volume 100, August 2015, Pages 65-76 <u>https://doi.org/10.1016/j.finel.2015.03.002</u>
- Cho, J. R., Song, J. I., Noh, K. T. and Jeon, D. H. (2005). Nonlinear finite element analysis of swaging process for automobile power steering hose. J. Materials Processing Technology 170, 1–2, 50–57. https://doi.org/10.1016/j.jmatprotec.2005.04.077
- Chung J S, White A K, Loden W A. (1981). Nonlinear transient motion of deep ocean mining pipe[J]. Journal of Energy Resources Technology, 103(3): 2–10.
- Chung J. S., Cheng B. R., Huttelmaier H. P. (1994). Three-dimensional coupled responses of a vertical deepocean pipe: Part I. Excitation at pipe ends and external torsion[J]. International Journal of Offshore and Polar Engineering, 4(4): 320–330.
- Chung J. S., Cheng B. R., Huttelmaier H. P. (1994). Three-dimensional coupled responses of a vertical deepocean pipe: Part II. Excitation at pipe top and external torsion[J]. International Journal of Offshore and Polar Engineering, 4(4): 331–339.
- Chung J. S., Felippa C. A. (1981). Nonlinear static analysis of deep ocean mining pipe Part II: Numerical studies[J]. Journal of Energy Resources Technology, 103(3): 16–25.
- Cristescu, N. (1964). Rapid motions of extensible strings. Journal of the Mechanics and Physics of Solids, 12(5), 269–278. DOI:10.1016/0022-5096(64)90025-0.
- ContiTech (2017). Marine Hoses Offshore Fluid Transfer. *Contitech Oil & Gas*. Continental ContiTech, Grimbsy, UK. Available at: http://www.contitech-oil-gas.com/pages/marine-hoses/marine-hoses_en.html [Accessed September 30, 2017].
- ContiTech (2019). Dunlop Oil & Marine ContiTech Marine Hose Brochure. Continental ContiTech, Grimbsy, UK. Available at: <u>https://aosoffshore.com/wp-content/uploads/2020/02/ContiTech_Marine-Brochure.pdf</u> Retrieved on: 9th April 2021
- ContiTech (2020). Dunlop Oil & Marine ContiTech Offshore Product Catalogue: GMPHOM 2009 Hoses Brochure. Continental ContiTech, Grimbsy, UK. Available at: <u>https://www.jst-group.com/wp-content/uploads/2020/01/Brochure-Dunlop-Oil-and-Marine-GMPHOM.pdf</u> Retrieved on: 9th April 2021
- Coppens A., Poldervaart L. (1984). Mooring system. 25 December, 1984.
- Cruz, I., Claro, C., Gouveia, J., Lemos, L., Câmara, M., Pereira, L., Mair J.A., de Paula M. T. R. and Escudero, C. C. (2015). The New Technology Enablers Developed and Deployed on a Live Project. Offshore Technology Conference, 04-07 May, Houston, Texas, USA. DOI: <u>https://doi.org/10.4043/25832-MS</u>
- Cruz, I., Claro, C., Sahonero, D., Otani, L., & Pagot, J. (2015). The Buoy Supporting Risers (BSR) System: A Novel Riser Solution for Ultra-Deep Water Subsea Developments in Harsh Environments. Offshore Technology Conference, OTC Brasil, 27-29 October, Rio de Janeiro, Brazil. DOI: <u>https://doi.org/10.4043/26330-MS</u>
- Cruz, I., Hepner, G., Karunakaran, D., Claro, C., Nicoletti, F., Fontaine, E., Hesar M., de Paula M. T. R. and Trovoado, L. C. (2015). The Buoy Supporting Risers (BSR) System: Engineering a Solution for Ultra-Deep Water Subsea Developments in Harsh Environments. Offshore Technology Conference, 04-07 May, Houston, Texas, USA. DOI: <u>https://doi.org/10.4043/25865-MS</u>
- CSS (2020). US Energy System Factsheet: Patterns of use. "U.S. Energy System Factsheet." Pub. No. CSS03-11. Center for Sustainable Systems, University of Michigan. USA. Available at: http://css.umich.edu/factsheets/us-energy-system-factsheet. (Accessed on 29th June, 2021).
- Cunff, C. Le et al., 2007. Derivation of CALM Buoy coupled motion RAOs in Frequency Domain and Experimental Validation. *International Journal of Offshore and Polar Engineering*, (2007-JSC-594), pp.1–8.
- Danyi Antal, Domonkos Imre, Bétéri Gyula, Katona Tamás (2012). Finite Element Analysis of seawater intake hoses. Continental ContiTech. Simday 2012, Budapest. Available at: <u>https://docplayer.net/3495153-Finite-element-analysis-of-seawater-intake-hoses.html</u> Retrieved on: 24th January, 2020
- Dareing D.W. (2012). Mechanics of drillstrings and marine risers. First Edition. ASME Press, New York, USA. DOI: <u>https://doi.org/10.1115/1.859995</u>
- Davidson, J. & Ringwood, J. V, 2017. Mathematical Modelling of Mooring Systems for Wave Energy Converters — A Review. *Energies*, 10(666).
- De Baan J. and van Heijst W. J. (1991). Disconnectable mooring system for deep water. US5044297A, USA, 03 September, 1991.
- De Baan J. and van Heijst W. J. (1994). Offshore tanker loading system. US5275510A, USA, 04 January 1994.
- De Baan J., 2007. Off-shore mooring and fluid transfer system. Patent US7179144B2, USA. 2007-02-20.
- De Sousa, J. R. M., Lima, E. C. P., Ellwanger, G. B., and Papaleo, A., 2001, "Local Mechanical Behavior of Flexible Pipes Subjected to Installation Loads," Proceedings of the 20th International Conference on

Offshore Mechanics and Arctic Engineering.

- Dean, R.G. & Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists Advanced Series on Ocean Engineering, Volume 2, Singapore: World Scientific.
- DNV, (2014). DNV-OS-C201 Structural Design of Offshore Units (WSD Method) -Offshore Standard, Oslo, Norway: Det Norske Veritas.
- DNV (2007). DNV-OS-F101 Offshore Standard. Submarine pipeline systems. Det Norske Veritas, Oslo, Norway.
- DNV (2010). DNV-OS-F201 Dynamic Risers: offshore standard. Det Norske Veritas, Oslo, Norway.
- Do K.D. (2017). Boundary control design for extensible marine risers in three dimensional space. Journal of Sound and Vibration, Volume 388, 2017, pp. 1-19. <u>https://doi.org/10.1016/j.jsv.2016.10.011</u>
- Do K.D. (2017). Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica, Volume 77, 2017, pp. 184-197 <u>https://doi.org/10.1016/j.automatica.2016.11.032</u>
- Drumond G.P., Pasqualino I.P., Pinheiro B.C., Segen F.E. (2018). Pipelines, risers and umbilicals failures: A literature review. Ocean Engineering, Volume 148, 15 January 2018, Pages 412-425 <u>https://doi.org/10.1016/j.oceaneng.2017.11.035</u>
- Duggal, A. & Ryu, S., 2005. The dynamics of deepwater offloading buoys. In *WIT Transactions on The Built Environment*. WIT Press.
- Dunlop, 1971. Dunlop Offshore hose manual, Grimsby, England: Dunlop Oil and Marine Division.
- EIA (2017). Frequently Asked Questions (FAQS): What is U.S. electricity generation by energy source? U.S. Energy Information Administration (EIA), Washington, USA. Available at: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3. (Accessed on 29th June, 2021).
- Eisenzimmer (1982). Hose coupling. Patent 4353581, USA, 1982-10-12.
- Ellis, S. E., Wadsworth, T. M., Lee, K., Gerdes, M., & Altizer, S. (2008). Connection Fatigue Index (CFI): An Engineered Solution for Connection Selection and a Replacement for BSR. Society of Petroleum Engineers, IADC/SPE Drilling Conference, 4-6 March, Orlando, Florida, USA. DOI: <u>https://doi.org/10.2118/112105-MS</u>
- EMSTEC, 2016. EMSTEC Loading & Discharge Hoses for Offshore Moorings, Rosengarten: EMSTEC. Available at:

https://www.emstec.net/fileadmin/files/product/downloads/EMSTEC_Loading_and_Discharge_HOM_20 09_5th_Edition-open-file_10.pdf (Accessed on 29th June, 2021).

- Entwistle, K. M. (1981). "The behaviour of braided hydraulic hose reinforced with steel wires," International Journal of Mechanical Sciences, Vol. 23, No. 4, pp. 229-241. <u>https://doi.org/10.1016/0020-7403(81)90048-5</u>
- Eriksson, M., Isberg, J. & Leijon, M., 2006. Theory and Experiment on an Elastically Moored Cylindrical Buoy. , 31(4), pp.959–963.
- Frederico Eggers, José Humberto S. Almeida Jr., Cristiano B. Azevedo, Sandro C. Amico (2019). Mechanical response of filament wound composite rings under tension and compression. Polymer Testing, Volume 78, 105951 <u>https://doi.org/10.1016/j.polymertesting.2019.105951</u>

Feiler et al. (1950). Coupling assembly for rotary drill hose. Patent 2506494, USA, 1950-05-02.

- Felippa C. A., Chung J. S. (1981). Nonlinear static analysis of deep ocean mining pipe-Part I: Modeling and formulation[J]. Journal of Energy Resources Technology, 103(3): 11-15.
- Fergestad D. and Løtveit S. A. (2017): "Handbook on Design and Operation of Flexible Pipes", Sintef MARINTEK / NTNU / 4Subsea, 3rd Edition, ISBN: 978-82-7174-285-0. Available at: https://www.4subsea.com/wp-content/uploads/2017/07/Handbook-2017_Flexible-pipes_4Subsea-SINTEF-NTNU lo-res.pdf [Last accessed 25th August 2021.]
- Fernando, S. U., Sheldrake, T., Tan, Z., and Clements, R., 2004, "The Stress Analysis and Residual Stress Evaluation of Pressure Armour Layers in Flexible Pipes Using 3D Finite Element Models," Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004. <u>https://doi.org/10.1115/OMAE2004-51200</u>
- Fisher et al. (1999). Gasket assembly with elastomer expansion area. Patent 5947533, USA, 1999-09-07.
- Flexomarine, Product Catalogue—Hoses for Offshore Loading and Discharge Operations (2013), Available at: www.flexomarine.com.br
- Fluid-Tec, 2015. Anflex Industrial hose, Singapore: Fluid-Tec Engineering & Trading.
- Flory J. F. (1976). Combined catenary and single anchor leg mooring system. US3979785A, USA, 14 September 1976.
- Francesca Brindle (2016). Trelleborg launches new seawater intake hoses for FLNG. Available at: <u>https://www.hydrocarbonengineering.com/product-news/22032016/trelleborg-launches-new-seawater-intake-hoses-for-flng-applications-2835/</u> Retrieved on 19th July, 2020.
- Friedrich R., Kuo M. and Smyth K. (1998). High-pressure fiber reinforced composite pipe joint. Patent 5785092 A, USA, 28 July 1998.
- Gallagher W. P. (1995). Marine riser. Patent 5474132 A, USA, 12 December 1995.

- Gao Q., Zhang P., Duan M., Yang X., Shi W., An C., Li Z. (2018). Investigation on structural behavior of ringstiffened composite offshore rubber hose under internal pressure. *Applied Ocean Research*, 79 (1), 7-19. <u>https://doi.org/10.1016/j.apor.2018.07.007</u>
- Gaskill, Collin G., Carlisle, Kipp B., Schroeder, Art J., Chitwood, James E., Gay, Tom A., and Wenhua Zhao. "Technology Qualification of Deepwater Transport Shuttle Adjustable Buoyancy System." Paper presented at the Offshore Technology Conference, Houston, Texas, USA, April 2018. doi: <u>https://doi.org/10.4043/28924-MS</u>
- Ge S. S., W. He, B. V. E. How and Y. S. Choo, "Boundary Control of a Coupled Nonlinear Flexible Marine Riser," in IEEE Transactions on Control Systems Technology, vol. 18, no. 5, pp. 1080-1091, Sept. 2010, DOI: 10.1109/TCST.2009.2033574.
- Giacosa A., Mauriès B., Lagarrigue V. 2016. Joining forces to unlock LNG tandem offloading using 20" LNG floating hoses: An example of industrial collaboration. Presented at the Offshore Technology Conference, Houston, 2-5 May 2016. OTC-27132-MS.
- Giorgi, G. et al., 2016. Nonlinear Hydrodynamic Models for Heaving Buoy Wave Energy Converters. AWTEC Asian Wave and Tidal Energy Conference, Singapore. Available at: <u>http://www.eeng.nuim.ie/jringwood/Respubs/C264AWTm.pdf</u>. Retrieved on 26th June, 2020.
- Goddard (1998). Pipe coupler. Patent 5765880, USA, 1998-06-16.
- Goldsworthy W. and Hardesty E. (1973). Method and apparatus for producing filament reinforced tubular products on a continuous basis. Patent 3769127 A, USA, 30 October 1973.
- Gong, S., P. Xu, S. Bao, W. Zhong, N. He, and H. Yan. 2014. Numerical Modelling on Dynamic Behaviour of Deepwater S-lay Pipeline. Ocean Engineering 88: 393–408. doi:10.1016/j.oceaneng. 2014.07.016.
- Gonzalez, G.M., de Sousa, J.R.M. & Sagrilo, L.V.S. (2016) A study on the axial behavior of bonded flexible marine hoses. Marine Systems & Ocean Technology, 11:31–43. DOI: 10.1007/s40868-016-0015-x
- Goodall (1940). Rotary hose coupling construction. Patent 2220785, USA, 1940-11-05.
- Gouveia, J. et al., (2015). Steel Catenary Risers (SCRs): From Design to Installation of the First Reeled CRA Lined Pipes. Part I - Risers Design. OTC-25839-MS. In Offshore Technology Conference Proceeding. Houston, Texas, USA: OnePetro. <u>https://doi.org/10.4043/25839-MS</u>
- Gouveia, J., Sriskandarajah, T., Karunakaran, D., Manso, D., Chiodo, M., Maneschy, R., Pedrosa J. and Cruz, I. (2015). The Buoy Supporting Risers (BSR) System: Steel Catenary Risers (SCRs) From Design to Installation of the First Reel CRA Lined Pipes. Offshore Technology Conference, OTC Brasil, 27-29 October, Rio de Janeiro, Brazil. DOI: <u>https://doi.org/10.4043/26332-MS</u>
- Graber, H.C. et al., 2000. ASIS A New Air–Sea Interaction Spar Buoy: Design and Performance at Sea. *Journal* of Atmospheric and Oceanic Technology, pp.708–720.
- Graham, H., 1982. Newcastle model hose tests, Grimsby, England.
- Grepaly, Istvan et al. (2005). High-pressure hose with adhesively bonded hose coupling which can be postassembled. United States Patent 6938932, USA, 9th June, 2005.
- Han S. R., Choi J. H. and Kwak J. S. (2012). New metal fitting geometry and optimization of the swaging parameters for an automobile power steering hose. International Journal of Automotive Technology, Vol. 13, No. 4, pp. 637–644. DOI: 10.1007/s12239–012–0062–z
- Harkleroad W. I. (1969). Basic Principles of Hose Design. *Rubber Chemistry and Technology* 42 (3): 666–674. https://doi.org/10.5254/1.3539247
- Hayes G. and Lemond J. (2013), Reducing noise in hydraulic systems. Parker Hannifin Corporation. Available at: https://pdfs.semanticscholar.org/4632/3432ab9d101393f6ae7beea7e01f86f09d0f.pdf
- Hiller, D., Karunakaran, D., Cruz, I., & Tadeu, M. (2015). Developing an Innovative Deepwater Riser System: From Concept to the Full Production of Buoy Supporting Risers (BSR). Offshore Technology Conference, 04-07 May, Houston, Texas, USA. DOI: <u>https://doi.org/10.4043/25850-MS</u>
- Haid, L. et al., 2013. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines Preprint. In 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France: ASME.
- Hampton J. E. (1991). Mooring system. US5065687A, USA, 19 November, 1991.
- Hans H. (2004). Bonga CALM Buoy 2004. HRB Nautique, Netherlands. Available at: <u>http://www.hrbnautique.nl/bonga-calm-buoy-2004</u> Accessed on 4th September, 2021.
- Hasselmann, K. et al., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutsche Hydrographische Zeitschrift; Ergänzungsheft; Reihe A, 12(8 0).
- Hattori et al. (1989). Corrugated plastic pipe coupling. Patent 4871198, USA. 1989-10-03.
- He W, C Sun, SS Ge (2014). Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Transactions on Mechatronics. Volume: 20, Issue: 2, Pages 497 505. DOI: 10.1109/TMECH.2014.2331713
- He W, S Nie, T Meng, YJ Liu (2016). Modeling and vibration control for a moving beam with application in a

drilling riser. IEEE Transactions on Control Systems Technology. Volume: 25, Issue: 3, Pages 1036 – 1043. DOI: 10.1109/TCST.2016.2577001

- He W, SS Ge, BVE How, YS Choo, KS Hong (2011). Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica. Volume 47, Issue 4, April 2011, Pages 722-732 https://doi.org/10.1016/j.automatica.2011.01.064
- He W, X He, SS Ge (2015). Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transactions on Mechatronics. Volume: 21, Issue: 1, Pages 254 – 265. DOI: 10.1109/TMECH.2015.2431118
- He W., B. V. E. How, S. S. Ge and Y. S. Choo, "Boundary control of a flexible marine riser with vessel dynamics," Proceedings of the 2010 American Control Conference, 2010, pp. 1532-1537, doi: 10.1109/ACC.2010.5531295.
- He W., S. Nie, T. Meng and Y. Liu, "Modeling and Vibration Control for a Moving Beam With Application in a Drilling Riser," in IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 1036-1043, May 2017, doi: 10.1109/TCST.2016.2577001.
- He W., S. Zhang and S. S. Ge, "Boundary Control of a Flexible Riser With the Application to Marine Installation," in IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5802-5810, Dec. 2013, doi: 10.1109/TIE.2013.2238873.
- He W., X. He and S. Sam Ge, "Modeling and Vibration Control of a Coupled Vessel-Mooring-Riser System," in IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2832-2840, Dec. 2015, doi: 10.1109/TMECH.2015.2396034.
- He X., Zhao Z., Su J., Yang Q. and Zhu D. (2021). "Adaptive Inverse Control of a Vibrating Coupled Vessel-Riser System With Input Backlash," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 51, no. 8, pp. 4706-4715, Aug. 2021, DOI: 10.1109/TSMC.2019.2944999.
- Hefler et al. (1992). Flexible coupling device for use in an engine manifold system. Patent 5159811, USA, 1992-11-03.
- Holthuijsen, L.H., 2007. *Waves in oceanic and coastal waters* 1st ed., New York, USA: Cambridge University Press.
- Hong S. and Hong S. W. (1994). A three-dimensional dynamic analysis of towed system, Part 1. A Mathematical Formulation, Journal of Ocean Engineering and Technology, 8 (1), pp. 16-22. Available at: https://www.koreascience.or.kr/article/JAKO199411920577005.pdf (Accessed on 9th July, 2021).
- Hong K.S. and Shah U. H. (2018). Vortex-induced vibrations and control of marine risers: A review. Ocean Engineering 152 (2018) 300–315. <u>https://doi.org/10.1016/j.oceaneng.2018.01.086</u>
- Horvath et al. (1970). Head-formation of flexible hoses, especially for deep-drilling hoses. Patent 3531143, USA, 1970-09-29.
- Horvath et al. (1977). Coupling for reinforced flexible hoses. Patent 4000920, USA, 1977-01-04.
- HoseCo, 2017. HoseCo Oil, Gas & Marine solutions, Canning Vale, Australia: HoseCo Oil.
- Huang, T.S. & Leonard, J.W., 1990. Lateral Stability of a flexible submarine hoseline, Ocean Engng, Vol. 17, No 1/2, pp. 35-52, 1990. https://doi.org/10.1016/0029-8018(90)90013-V
- Huang, T.S. & Leonard, J.W., 1989. *Lateral Stability of a flexible submarine hoseline*, Naval Civil Engineering Laboratory, Port Hueneme, California, USA. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.866.1125&rep=rep1&type=pdf
- Humphreys, Vaughan, and Nicholas Jones. "Offshore LNG Transfer, A Practical System Based on Proven Oil Transfer Principles." Paper presented at the Offshore Technology Conference, Houston, Texas, May 2004. doi: <u>https://doi.org/10.4043/16281-MS</u>
- Humphreys G. (2006). Composite marine riser. Patent 7144048A1, USA, 25 December 2006.
- Hursa A, Rolich T, RažićSE (2009). Determining pseudo Poisson's ratio of woven fabric with a digital image correlation method. Textile Research Journal; 79(17): 1588–1598. https://doi.org/10.1177%2F0040517509104316.
- IEA (2017). World Energy Outlook 2017. International Energy Agency (IEA), Paris, France. Available at: https://iea.blob.core.windows.net/assets/4a50d774-5e8c-457e-bcc9-
 - 513357f9b2fb/World_Energy_Outlook_2017.pdf Accessed on 29th June, 2021
- Irvine H. Max, 1981. Cable Structures. Mit Press, Cambridge, Massachusett, USA.
- IMCA (2001). Failure of cable socks (chinese fingers) on subsea rigging. IMCA SF 12/01 Report. Available at: https://www.imca-int.com/alert/136/failure-of-cable-socks-chinese-fingers-on-subsea-rigging/
- ISO (2006). ISO 13628-10: Petroleum and natural gas industries-Design and operation of subsea production systems-Part 10: Specification for bonded flexible pipe.
- ISO (1991). ISO 1436: Rubber Hose and Hose Assemblies-Wire-Reinforced Hydraulic Type-Specification, International Standard.
- ISO (1997). ISO 8032: Rubber and Plastics Hose Assemblies Flexing Combined Hydraulic Impulse Test Half-Omega Test," International Standard.

- Jae-Won Oh, Chang-Ho Lee, Sup Hong, Dae-Sung Bae, Hui-Je Cho, Hyung-Woo Kim (2014). A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deepseabed mining system. International Journal of Naval Architecture and Ocean Engineering, Volume 6, Issue 3, September 2014, Pages 652-669. https://doi.org/10.2478/IJNAOE-2013-0203
- Jansen M.B. (1985). Fixed turret subsea hydrocarbon production terminal. US4301840A, USA, 24 November, 1981.
- Jean-Loup Isnard, Patrick Ducousso, Rene Perratone (1999). Vessel with a disconnectable riser supporting buoy. US5941746A, USA, 24 August, 1999.
- Jean-Louis Poisson, Florian Lacroix, Stephane Meo, Gaëlle Berton, Naranayaswami Ranganathan (2011). Biaxial fatigue behavior of a polychloroprene rubber. International Journal of Fatigue, Volume 33, Issue 8, August 2011, pp. 1151-1157 https://doi.org/10.1016/j.ijfatigue.2011.01.014
- Jiang, D., Ma, L., et al., 2017. Design and analysis of a wave-piercing buoy. In *Automotive, Mechanical and Electrical Engineering*. CRC Press, pp. 69–73. Available at: https://doi.org/10.1201/9781315210445-16.
- Jiang, D., Zhang, J., et al., 2017. Effect of heave plate on wave piercing buoy. In *Automotive, Mechanical and Electrical Engineering*. CRC Press, pp. 367–370.
- Jiang, D., Li, W., et al., 2017. The strength analysis of the wave piercing buoy. In AIP Conference Proceedings.
- Johansson et al. (1991). Method of joining tubes having a corrugated wall of plastic material. Patent 5053097, USA, 1991-10-01.
- Jonathan Petit (2016). Trelleborg seawater intake hoses meet unique demands of FLNG applications. Available at: <u>https://news.cision.com/trelleborg/r/trelleborg-seawater-intake-hoses-meet-unique-demands-of-flng-applications,c9939506</u> and <u>https://mb.cision.com/Main/584/9939506/491456.pdf</u> Retrieved on 19th July, 2020.
- Jones R. M. (1998). Mechanics of composite materials. CSC Press, USA.
- Jorge, P. et al. (2014). Design and analysis of buoy geometries for a wave energy converter. Int J Energy Environ Eng (2014) 5:91, DOI 10.1007/s40095-014-0091-7
- Joubert P. and Falcimaigne J. (1989). Device for preventing a flexible line from twisting. US4820217A, USA, 11 April, 1989.
- Joubert P., Loupias M., Durando P. (1981). Device for transferring a fluid through a liquid body by means of a flexible pipe. US4263004A, USA, 21 April, 1981.
- Kaiser (1960). Fitting for a large-diameter rubber or plastic hose subjected to high loads Patent 2940778, USA, 1960-06-14.
- Kalogirou, A. & Bokhove, O., 2016. Mathematical and numerical modelling of wave impact on wave-energy buoys; OMAE2016-54937. In *International Conference on Ocean, Offshore and Arctic Engineering*. Busan, South Korea: ASME, pp. 1–8.
- Kang, Y. et al., 2014. Coupled analysis of FPSO and CALM buoy offloading system in West Africa. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE2014-23118. California, USA: ASME.
- Katayama, T. & Hashimoto, K., 2015. Development of a Motion Stabilizer for a Shallow-Sea-Area Spar Buoy in Wind , Tidal Current and Waves. , 2(3), pp.182–192.
- Kim, J. et al., 2015. Design of the dual-buoy wave energy converter based on actual wave data of East Sea. *International Journal of Naval Architecture and Ocean Engineering*, 7(4), pp.739–749. Available at: http://dx.doi.org/10.1515/ijnaoe-2015-0052.
- Kim, Sung-Soo, Yun, Hong-seon, Lee, Chang-Ho, Kim, Hyung-Woo, and Hong, Sup. "Efficient Analysis of a Deep-Seabed Integrated Mining System Using a Subsystem Synthesis Method." Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. Boston, Massachusetts, USA. August 2–5, 2015. V006T10A014. ASME. https://doi.org/10.1115/DETC2015-46700
- Kim, B. T. and Kim, H. J. (2003). A study on the deformation characteristics of a high-pressure hose with respect to the swaging strokes. J. Korea Society for Power System Engineering 17, 4, 37–42. Kim,
- Kim, B. T. and Kim, H. J. (2003). Nonlinear finite element analysis for the swaging of a high-pressure hose. J. Korea Society for Power System Engineering 7, 2, 44–50.
- Krismer, S. Hydraulic hose failures caused by corrosion of the reinforcing strands. *Practical Failure Analysis* **3**, 33–39 (2003). https://doi.org/10.1007/BF02717420
- Kunio Hasegawa, Yinsheng Li, Kazuya Osakabe (2014). Collapse loads for circumferentially through-wall cracked pipes subjected to combined torsion and bending moments. Engineering Fracture Mechanics, Volume 123, June 2014, Pages 77-85 <u>https://doi.org/10.1016/j.engfracmech.2013.12.013</u>
- Kwak, S. B. and Choi, N. S. (2009). Micro-damage formation of a rubber hose assembly for automotive hydraulic brakes under a durability test. Engineering Failure Analysis 16, 4, 1262–1269
- Kwak, S. B. and Choi, N. S. (2009). Micro-damage formation of a rubber hose assembly for automotive hydraulic

brakes under a durability test. Engineering Failure Analysis 16, 4, 1262–1269.

- Kwong A.H.M and Edge K.A. (1998). A method to reduce noise in hydraulic systems by optimizing pipe clamp locations. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol 212, Issue 4. <u>https://doi.org/10.1243%2F0959651981539451</u>
- Kuiper, G.L., Metrikine, A.V. and J.A. Battjes, A New Time-domain Drag Description and its Influence on the Dynamic Behavior of a Cantilever Pipe Conveying Fluid. Journal of Fluids and Structures 23 (2007) 429– 445.
- Kuipers, M., van der Veen, M. On stresses in reinforced high-pressure hoses. *Acta Mechanica* **80**, 313–322 (1989). https://doi.org/10.1007/BF01176167
- LACEO, 2011. Análise de configurações alternativas para linhas de transferência de óleo em terminais oceânicos. (Analysis of Alternative Configurations for Transfering Oil Lines in Ocean Terminals). COPPE/UFRJ, Rio de Janeiro, 2011. [In Portuguese]
- Lagarrigue, Vincent, and James Hermary. "Re-Shaping LNG Transfer." Paper presented at the Offshore Technology Conference, Houston, Texas, USA, April 2018. doi: <u>https://doi.org/10.4043/28780-MS</u>
- Lagarrigue V., Hermary J., Mauriès B. 2014. Qualification Of A Cryogenic Floating Flexible Hose Enabling Safe And Reliable Offshore LNG Transfer For Tandem FLNG Offloading Systems. Presented at the Offshore Technology Conference, Houston, 5-8 May 2014. Paper No. OTC-25413-MS. DOI: 10.4043/25413-MS.
- Lai, Lawrence S. H. "VIV-Mitigating Buoyancy Module Performance Characterization Using Computational Fluid Dynamics." Paper presented at the Offshore Technology Conference, Houston, Texas, USA, April 2018. doi: <u>https://doi.org/10.4043/29032-MS</u>
- Langkjaer (2002). Assembly of an end-fitting and a flexible pipe. Patent 6412825, USA, 2002-07-02.
- Lassen, T., Eide, A. L., & Meling, T. S. (2010). Ultimate Strength and Fatigue Durability of Steel Reinforced Rubber Loading Hoses. Proceedings of 29th International Conference on Ocean, Offshore and Arctic Engineering: *Volume 5, Parts A and B.* DOI:10.1115/omae2010-20236
- Lassen T., Lem A.I., Imingen G. (2014). Load Response and Finite Element Modelling of Bonded Loading Hoses. Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, June 8–13, 2014, San Francisco, California, USA. Volume 6A, Paper No: OMAE2014-23545, V06AT04A034; pp. 1-17, <u>https://doi.org/10.1115/OMAE2014-23545</u>
- Leal A.A., Deitzel J.M., Gillespie Jr. J.W. (2009). Compressive strength analysis for high performance fibers with different modulus in tension and compression. J Compos Mater, 43 (2009), pp. 661-674. https://doi.org/10.1177%2F0021998308088589
- Lebon, L. & Remery, J., 2002. Bonga: Oil Off-loading System using Flexible Pipe. In *Offshore Technology Conference Proceeding -OTC 14307*. Houston, Texas, USA: OnePetro, pp. 1–12.
- Lee C.H. et al. (2015). A Study of Dynamic Analysis for Deep-seabed Integrated Mining System using Subsystem Synthesis Method. ECCOMAS Thematic Conference on Multibody Dynamics June 29 - July 2, 2015, Barcelona, Catalonia, Spain. Available at: <u>http://congress.cimne.com/multibody2015/admin/files/fileabstract/a211.pdf</u>
- Lee, C., Hong, S., Kim, H. *et al.* (2015). A comparative study on effective dynamic modeling methods for flexible pipe. Journal of Mechanical Science and Technology 29 (7), pp. 2721-2727. DOI: https://doi.org/10.1007/s12206-015-0520-4
- Lee G. C. et al. (2011). A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model. Journal of Applied Reliability, Volume 11 Issue 3, Pages 235-244. Available at: <u>https://www.koreascience.or.kr/article/JAKO201136151483093.pdf</u>
- Lee, G. C., Kim, H. E., Park, J. W., Jin, H. L., Lee, Y. S. and Kim, J. H. (2011). An experimental study and finite element analysis for finding leakage path in high pressure hose assembly. International Journal of Precision Engineering and Manufacturing Vol. 12, No. 3, pp. 537-542. DOI: 10.1007/s12541-011-0067-y
- Lenci, S., Callegari, M. (2005). Simple analytical models for the J-lay problem. *Acta Mechanica* **178**, 23–39. DOI: https://doi.org/10.1007/s00707-005-0239-x
- Longmore D.K. and Schlesinger A. (1991). Transmission of Vibration and Pressure Fluctuations Through Hydraulic Hoses. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. Volume 205, Issue 2, pp. 97-104. https://doi.org/10.1243/PIME PROC 1991 205 319 02
- Løtveit S. A. et al. (2009). PSA Norway State of the art Bonded Flexible Pipes: 5662 PSA Norway. 4Subsea AS, Asker, Norway. Report Number 2008-4SUB-0189, Revision 2.0. Available at: <u>https://www.ptil.no/contentassets/cc69bb9245ca41dfab2e3e635f22f58b/report-on-bonded-flexible-pipes2009.pdf</u> Retrieved on 21st April, 2020.
- Løtveit S.A. et al. (2018). State of the art Bonded Flexible Pipes 2018: 1255 PSA Norway- Bonded flexibles. 4Subsea AS, Asker, Norway. Report Number 26583U-1161480945-354, Revision 2.0. Available at: <u>https://www.4subsea.com/wp-content/uploads/2019/01/PSA-Norway-State-of-the-art-Bonded-Flexible-Pipes-2018</u> 4Subsea.pdf and https://www.ptil.no/contentassets/0e4d166cf8524bf8ae81ceb9d34d8a39/psa-

norway-state-of-the-art-bonded-flexible-pipes-2018.pdf. Retrieved on 21st April, 2020.

- Li X., Jiang X. and Hopman H. (2018). A review on predicting critical collapse pressure of flexible risers for ultra-deep oil and gas production. Applied Ocean Research 80 (2018), 1-10. <u>https://doi.org/10.1016/j.apor.2018.08.013</u>
- Li Yuanwen, Liu Shaojun, Hu Xiaozhou. (2018). Research on rotating speed's influence on performance of Deep-Sea lifting motor pump based on DEM-CFD. *Marine Georesources & Geotechnology* 38:6, pages 744-752. <u>https://doi.org/10.1080/1064119X.2018.1514550</u>
- Li Yuanwen, Liu Shaojun, Hu Xiaozhou. (2019). Research on reflux in deep-sea mining pump based on DEM-CFD. *Marine Georesources & Geotechnology* 38:6, pages 744-752. https://doi.org/10.1080/1064119X.2019.1632995
- Li, Y., S. J. Liu, and L. Li. 2007. Dynamic Analysis of Deep-Ocean Mining Pipe System by Discrete Element Method. China Ocean Engineering 21 (1): 175–185.
- Li, F. S., and Kyriakides, S., 1991, "On the Response and Stability of Two Concentric, Contacting Rings Under External Pressure," Int. J. Solids Struct., 27(1), pp. 1-14. <u>https://doi.org/10.1016/0020-7683(91)90141-2</u>
- Lighthill, J., 1986. Fundamentals concerning wave loading on offshore structures. J. Fluid Mechanics, 173(1), pp.667–681.
- Lighthill, J., 1979. waves and hydrodynamic loading. In Proc. 2nd. Int. Conf. Behavior of Offshore Structures (BOSS '79). London, pp. 1–40.
- Liu, Y., Huang, H., Gao, H., & Wu, X. (2013). Modeling and boundary control of a flexible marine riser coupled with internal fluid dynamics. 11(61203060), 316–323. https://doi.org/10.1007/s11768-013-1245-5
- Lu, J., Frank, M. A., Tan, Z., and Sheldrake, T., 2008, "Bent Collapse of an Unbonded Rough Bore Flexible Pipe," Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Paper No: OMAE2008-57063, pp. 27-31; <u>https://doi.org/10.1115/OMAE2008-57063</u>
- Maclachlan (1940). Hose and coupling structure. Patent 2219047, USA, 1940-10-22.
- Maneschy, R. et al., (2015). Steel Catenary Risers (SCRs): From Design to Installation of the First Reeled CRA Lined Pipes. Part II - Fabrication and Installation. OTC-25857-MS. In Offshore Technology Conference Proceeding. Houston, Texas, USA: OnePetro. <u>https://doi.org/10.4043/25857-MS</u>
- Manouchehr, S. (2012). A discussion of practical aspects of reeled flowline installation. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2012, July 1-6, 2012, Rio de Janeiro, Brazil. Paper No. OMAE2012-83649.
- Mars W. and Fatemi A. (2001). "Experimental Investigation of Multiaxial Fatigue in Rubber", 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Lisboa.
- Mars, W. V., & Fatemi, A. (2004). Observations of the Constitutive Response and Characterization of Filled Natural Rubber Under Monotonic and Cyclic Multiaxial Stress States. *Journal of Engineering Materials* and Technology, 126(1), 19-28. Transactions of the ASME. DOI:10.1115/1.1631432
- Mars, W. V., & Fatemi, A. (2005). Multiaxial fatigue of rubber: Part II: experimental observations and life predictions. Fatigue & Fracture of Engineering Materials & Structures, Volume 28, Issue 6, pp. 523-538. <u>https://doi.org/10.1111/j.1460-2695.2005.00895.x</u>
- Mars, W. V., & Fatemi, A. (2005). Multiaxial fatigue of rubber: Part I: equivalence criteria and theoretical aspects. Fatigue & Fracture of Engineering Materials & Structures, Volume 28, Issue 6, pp. 523-538. <u>https://doi.org/10.1111/j.1460-2695.2005.00891.x</u>
- Martins, C. A., Pesce, C. P., and Aranha, J. A. P., 2003, "Structural Behavior of Flexible Pipe Carcass During Launching," ASME Paper No. OMAE2003- 37053.
- Maslin, E., 2014. Unmanned buoy concepts grow. *Offshore Engineer*, 1(05). Available at: http://www.oedigital.com/component/k2/item/5621-unmanned-buoy-concepts-grow.
- Matweb (2021). Elastomer Material property. Matweb Available at: www.matweb.com. Accessed on: 5th September, 2021.
- Mauriès B. 2014. Development of an LNG Tandem Offloading System Using Floating Cryogenic Hoses -Breaking the Boundaries of LNG Transfer in Open Seas. Presented at the Offshore Technology Conference, 5-8 May 2014, Houston, USA. Paper No. OTC-25342-MS. <u>https://doi.org/10.4043/25342-MS</u>
- McCormick, M.E., 2010. *Ocean Engineering Mechanics with applications*, New York, USA: Cambridge University Press.
- Milad, M., Green, S., Ye, J., (2018). Mechanical properties of reinforced composite materials under uniaxial and planar tension loading regimes measured using a non-contact optical method, Composite Structures, Vol. 202, pp. 1145-1154. DOI: <u>https://doi.org/10.1016/j.compstruct.2018.05.070</u>
- Miller, J. and Chermak, M. A. (1997). Wire braid angle response characteristics in hydraulic hose. SAE Technical Paper 972706, SAE Trans. 106, 2, 107–126 <u>https://doi.org/10.4271/972706</u>
- Minguez, M., Clergue, S., Van Kessel, J., Bessière, L., Pattedoie, S., Renaud, M., Skledar M., Lange F., Miller E., Masterton, S. (2020). Water Intake Riser WIR – from Design to Installation, an Example of Complex Structure Requiring Multi-Disciplinary Approach. Offshore Technology Conference, 04-07 May, Houston,

Texas, USA. DOI: https://doi.org/10.4043/30708-MS

- Molnár, L., Váradi, K., Kovács, F. "FEM STRESS ANALYSIS OF HIGH-PRESSURE WIRE REINFORCED HOSES", Periodica Polytechnica Mechanical Engineering, 34(3-4), pp. 139–152, 1990. Available at: https://pp.bme.hu/me/article/view/5617/4722 (Accessed on 12th October, 2021).
- Morgan G. and Lilly H. (1974). Transfer system for suboceanic oil production. US3834432A, USA, 10 September, 1974.
- Morison, J.R. et al., 1950. The Force Exerted by Surface Waves on Piles. *Petroleum Transactions, AIME*, 189, pp.149–154.
- Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1987;1(5):365-74.
- Muller (1941). Hose and coupling structure. Patent 2234350, USA, 1941-03-11.
- Muller (1949). Hose coupling. Patent 2473441, USA, 1949-06-14.
- Mungall J. C. H., Garrett D. L., and Alexander C. H. (1997). Marine steel catenary riser system. US5639187A, USA, 17 June, 1997.
- Murphy et al. (1979). Hose coupling. Patent 4143892, USA, 1979-03-13.
- Mustoe G. G., Hettelmaier H. P., Chung J. S. (1992). Assessment of dynamic coupled bending-axial effects for two-dimensional deep-ocean pipes by the discrete element method[J]. International Journal of Offshore and Polar Engineering, 2(4): 289–296.

Nakane (1935). Flexible hose. Patent 1994587, USA, 1935-03-19.

- Nandakumar B. N., Hooper A., Hvide H. J. (2002). Cantenary anchor leg mooring buoy. US5651709A, USA, 20 June, 2002.
- Neto A.G., C.A. Martins, E.R. Malta, R.L. Tanaka, C.A.F. Godinho, (2017). Simplified Finite Element Models to Study the Wet Collapse of Straight and Curved Flexible Pipes, *ASME J.* Offshore Mech. Arct. Eng. 139 (6): 061701, pp. 1-9.
- Neto A.G., C.A. Martins, E.R. Malta, R.L. Tanaka, C.A.F. Godinho, (2016). Simplified Finite Element Models to Study the Dry Collapse of Straight and Curved Flexible Pipes, ASME J. Offshore Mech. Arct. Eng. 138 (2), p.021701
- Neto A.G., C.A. Martins (2014). Flexible pipes: influence of the pressure armor in the wet collapse resistance, J. Offshore Mech. Arct. Eng. 136 031401-1-8. **Paper No:** OMAE-11-1085 <u>https://doi.org/10.1115/1.4027476</u>
- Neto, A.G., and Martins, C. A., 2010, "Burst Prediction of Flexible Pipes," Proceedings of the 29th International Conference on Offshore Mechanics and Arctic Engineering, 2010.
- Neto, A.G., and Martins, C. A., 2012, "A Comparative Wet Collapse Buckling Study for the Carcass Layer of Flexible Pipes," ASME J. Offshore Mech. Arct. Eng., 134(3), p. 031701
- Neto, A.G., Martins, C. A., Pesce, C. P., Meirelles, C. O. C., Malta, E. R., Barbosa Neto, T. F., and Godinho, C. A. F., (2013). "Prediction of Burst in Flexible Pipes," ASME J. Offshore Mech. Arct. Eng., 135 (011401), pp. 1-9.
- Newman, J.N., 1963. The motions of a spar buoy in regular waves, Report No. 1499, Virginia, USA.
- Nguyen T.L., K.D. Do, J. Pan (2013). Boundary control of two-dimensional marine risers with bending couplings. Journal of Sound and Vibration, Volume 332, Issue 16, 2013, pp. 3605-3622. <u>https://doi.org/10.1016/j.jsv.2013.02.026</u>
- Nooij, S., 2006. Feasibility of IGW technology in offloading hoses. Delft University of Technology.
- O'Donoghe, T. & Halliwell, A.R., 1988. Floating Hose-Strings Attached to a CALM Buoy. In *Offshore Technology Conference Proceeding OTC 5717*. Houston, Texas, USA: OnePetro, pp. 313–320
- O'Donoghue, T. (1987). The dynamic behaviour of a surface hose attached to a CALM buoy . PhD Thesis. *Heriot-Watt University, Edinburgh. Offshore Engineering Department*, UK, pp. 1-197.
- O'Donoghue, T., & Halliwell, A. R. (1990). Vertical bending moments and axial forces in a floating marine hosestring. *Engineering Structures*, 12(4), 124–133.
- O'Sullivan, M., 2003. Predicting interactive effects of CALM buoys with deepwater offloading systems. *Offshore Magazine*, 63(1).
- O'Sullivan, M., 2002. West of Africa CALM Buoy Offloading Systems. *MCS Kenny Offshore Article*. Available at: http://www.mcskenny.com/downloads/Software Offshore Article.pdf.
- Obokata, J., 1987. On the basic design of single point mooring (1st Report)-Applications of the Dynamic Stability Analysis to the Primary Planning of the System. *Journal of the Society of Naval Architects of Japan*, 1987(161), pp.183–195.
- Obokata, J. & Nakajima, T., 1988. On the basic design of single point mooring system (2nd report) Estimation of the Mooring Force. *Journal of the Society of Naval Architects of Japan*, 1988(163), pp.252–260.
- OCIMF, 2009. *Guide to Manufacturing and Purchasing Hoses for Offshore Moorings (GMPHOM)*. Oil Companies International Marine Forum, Witherby Seamanship International Ltd, Livingstone, UK.
- Odijie, A.C., Wang, F. & Ye, J., 2017b. A review of floating semisubmersible hull systems: column stabilized unit. Ocean Eng., 144(October 2016), pp.191-202. Available at:

https://doi.org/10.1016/j.oceaneng.2017.08.020.

- Oh J.W. et al. (2015). A study of integration framework for co-simulation with optimization design and multibody dynamics. ECCOMAS Thematic Conference on Multibody Dynamics June 29 - July 2, 2015, Barcelona, Catalonia, Spain. Available at: http://congress.cimne.com/multibody2015/admin/files/fileabstract/a145.pdf
- Oh, J.-W., C.-H. Lee, S. Hong, D.-S. Bae, H.-J. Cho, and H.-W. Kim. 2014. A study of the Kinematic Characteristic of a Coupling Device Between the Buffer System and the Flexible Pipe of a Deep-Seabed Mining System. International Journal of Naval Architecture and Ocean Engineering 6 (3): 652–669. doi:10.2478/IJNAOE-2013-0203
- OIL, 2014. Floating & submarine hoses (EMSTEC)- OIL hoses brochure, Dudley, UK: Offspring International Limited.
- OIL, 2015. *Mooring and Offloading Systems*, Dudley, UK: Offspring International Limited. Available at: http://www.offspringinternational.com/wp-content/uploads/2015/04/OIL-SPM-Brochure-2015.pdf Retrieved on 21st April, 2021.
- OIL (2020). OIL Offloading Hoses Brochure. Offspring International Limited. Dudley, UK. Available at: <u>https://www.offspringinternational.com/wp-content/uploads/2020/06/OIL-Offloading-Hoses-Brochure-</u>2020-W.pdf Retrieved on 21st April, 2021.
- Oliveira, M.C., 2003. Ultradeepwater Monobuoys, OMAE2003-37103. In *International Conference on Offshore* Mechanics & Arctic Engineering. Cancun, Mexico: ASME, pp. 1–10.
- Olufsen A., Nordsve NT., and Karunakaran D. (1997). Riser. WO1997006341A1, USA, 20 February, 1997.
- Onbilger D.G., Gopez F. (2008). Aramid yarn as a tensile menber in products. Rubber & plastic news (February, 2008), pp. 14-16.
- Orcina Ltd, (2014). OrcaFlex Manual, Version 9.8a, Ulverton, Cumbria, UK.
- Orcina (2019). OrcaFlex version 10.3d. Software Technical Specification. Orcina Ltd, Ulverston, Cumbria.
- Orcina Ltd (2020). Orcina Orcaflex, Retrieved from: http://www.orcina.com/SoftwareProducts/OrcaFlex/index.php, Accessed on 2019-12-22.
- Orcina (2021). Vessel theory: RAOs and phases. Available at: <u>https://www.orcina.com/webhelp/OrcaFlex10.3d</u> Accessed 21st Mar. 2021
- Orcina, 2020. OrcaFlex Version 10.3d Documentation, Orcina Ltd, Ulverton, Cumbria, UK. Available at: https://www.orcina.com/SoftwareProducts/OrcaFlex/Documentation/index.php. Accessed 10th Jan. 2020
- Padua M. M., Goulart M. P., Mastrangelo C. F., Loureiro R. R., Castro G. A. V., João L. V., Maddalena M. A. (2020). A Journey of Floating Production Systems in Brazil. Offshore Technology Conference, 4-7 May, Houston, Texas, USA. https://doi.org/10.4043/30554-MS.
- Païdoussis, M.P., 2014. *Fluid-Structure Interactions: Slender Structures and Axial Flow* 2nd Ed., Oxford, UK: Elsevier Ltd.
- Panicker N. N., Gentry L. L., Moss H. H. (1984). Marine compliant riser system. 03 January, 1984.
- Pan B, Qian K, Xie H, Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 2009;20(6):6–20.
- Papusha, A.N., 2015. Beam Theory for Subsea Pipelines: Analysis and Practical Applications, Wiley-Scrivener.
- Patel M.H. and Seyed F.B. (1995). Review of flexible riser modelling and analysis techniques. Engineering Structures, Vol. 17, No. 4, pp. 293-304, 1995 <u>https://doi.org/10.1016/0141-0296(95)00027-5</u>
- Paumier, L., Averbuch, D., and Felix-Henry, A., 2009, "Flexible Pipe Curved Collapse Resistance Calculation," ASME Paper No. OMAE2009-79117 <u>https://doi.org/10.1115/OMAE2009-79117</u>
- Pavlou G. D. (2013). Composite materials in piping applications. DEStech Publications Inc., Lancaster, Pennsylvania, USA. ISBN: 978-1-60595-0297
- Pesce C.P., Martins C.A., A.G. Neto, et al., Crushing and wet collapse of flowline carcasses: a theoreticalexperimental approach, ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, (2010), pp. 521–529.
- Peter Brownsort (2015). Offshore offloading of CO₂: Review of single point mooring types and suitability. Scottish Carbon Capture & Storage (SCCS). Available at: <u>https://era.ed.ac.uk/bitstream/handle/1842/15712/SCCS-CO2-EOR-JIP-Offshore-offloading.pdf?sequence=1&isAllowed=y</u>
- Pham D.C., Sridhar N., Qian X., Sobey A.J., Achintha M., Shenoi A. (2016). A review on design, manufacture and mechanics of composite risers. Ocean Engineering Vol. 112(2016)82–96. http://dx.doi.org/10.1016/j.oceaneng.2015.12.004.
- Picard, D., Hudson, W., Bouquier, L., Dupupet, G., & Zivanovic, I. (2007). Composite Carbon Thermoplastic Tubes for Deepwater Applications, OTC 19111. *Offshore Technology Conference*, 1–9.
- Piccoli D.E. (1976). Hose Design for Unusual Hose Applications. Journal of elastomers & plastics. Vol. 8, Issue 4. <u>https://doi.org/10.1177/009524437600800404</u>
- Pierce R. H. (1987). Composite marine riser system. Patent 4634314 A, USA, 6 January 1987.

- Pierson, W.J. & Moskowitz, L., 1964. A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. *Journal of Geographical Research*, 69(24), pp.5181–5190.
- Pinkster, J.A. & Remery, G.F.M., 1975. The role of Model Tests in the design of Single Point Mooring Terminals. In Offshore Technology Conference Proceeding -OTC 2212. Dallas, Texas, USA: OnePetro, pp. 679–702.
- Policelli F. J. (1989). End connectors for filament wound tubes. Patent 4813715 A, USA, 21 March 1989.
- Policelli F. J. (1993). Filament wound threaded tube connection. Patent 5233737 A, USA, 10 August 1993.
- Potluri P, Thammandra VS. Influence of uniaxial and biaxial tension on meso-scale geometry and strain fields in a woven composite. Compos Struct2007;77(3):405–18.
- PSA & 4Subsea (2018). Bonded Flexibles State of the art bonded flexible pipes. 0389-26583-U-0032, Revision 5, For PSA Norway. Available at: <u>https://www.4subsea.com/wp-content/uploads/2019/01/PSA-Norway-State-of-the-art-Bonded-Flexible-Pipes-2018_4Subsea.pdf</u> [Last accessed 17th June 2021.]
- PSA & 4Subsea (2013). Un-bonded Flexible Risers Recent Field Experience and Actions for Increased Robustness. 0389-26583-U-0032, Revision 5, For PSA Norway. Available at: https://www.ptil.no/contentassets/c2a5bd00e8214411ad5c4966009d6ade/un-bonded-flexible-risers--recent-field-experience-and-actions--for-increased-robustness.pdf [Last accessed 17th June 2021.]
- Quash, J.E. & Burgess, S., 1979. Improving underbuoy hose system design using relaxed storm design criteria. In *Offshore Technology Conference Proceeding*. pp. 1827–1836.
- Quigley P. A., Nolet S. C. and Williams J. G. (2000) Composite spoolable tube. Patent 6016845, USA, 25 January 2000.
- Quinnell M. (2006). System monitors multiple forces to guard SPM, tanker maneuvers. Offshore Magazine, Article 16754290, Issue 09. Published on Sep 1st, 2006. Available at: <u>https://www.offshore-mag.com/rigs-vessels/article/16754290/system-monitors-multiple-forces-to-guard-spm-tanker-maneuvers</u>
- Ramos, R. (2016). A Consistent Analytical Model to Predict the Structural Behavior of Flexible Risers Subjected to. 126(May 2004), 141–146. https://doi.org/10.1115/1.1710869.
- Raheem, S.E.A., 2013. Nonlinear response of fixed jacket offshore platform under structural and wave loads. , 2(1), pp.111–126.
- Rahman, M., 1981. Non-linear wave loads on large circular cylinders: a perturbation technique. *Advances in Water Resources*, 4(1), pp.9–19.
- Rahman, M., 1984. Second order wave interaction with large structures.pdf. In T. B. M. C. Rogers, ed. *Wave Phenomena: Modern Theory and Applications*. Holland: Elsevier B.V., pp. 49–69.
- Rattensperger H., Eberhardsteiner J., Mang H.A. (2003) Numerical Investigation of High-Pressure Hydraulic Hoses with Steel Wire Braid. In: Miehe C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_37
- Remery G. F. M. (1981). Device for conveying a medium from means provided in a fixed position on a bottom below the water surface to a buoy body. US4279543A, USA, 21 July, 1981.
- Rey, V. & Calve, O. Le, 2003. Experimental survey of the hydrodynamic performance of a small spar buoy. , 24(2002), pp.309–320.
- Ricbourg, C. et al., 2006. Numerical and Experimental Investigations on Deepwater CALM Buoys Hydrodynamics Loads. In *Offshore Technology Conference Proceeding -OTC 18254 -PP*. Houston, Texas, USA: OnePetro, pp. 1–8.
- Rong-Tai Ho (2008). Engineering Considerations for Offshore FSRU LNG Receiving Terminals. Offshore Technology Conference (OTC), 5-8 May, Houston, Texas, USA. Paper OTC 19439. DOI: <u>https://doi.org/10.4043/19439-MS</u>
- Roveri, F. E., Volnei, Luís Sagrilo, S., & Cicilia, F. B. (2002). A Case Study on the Evaluation of Floating Hose Forces in a C.A.L.M. System. *Internation Offshore and Polar Engineering Conference*, 3, 190–197.
- Rudnick, B.P., 1967. Motion of a Large Spar Buoy in Sea Waves '. Journal of Ship Research, pp.257-267.
- Ruiz MJG, Gonzalez LYS. Comparison of hyperelastic material models in the analysis of fabrics. Int J Cloth Sci Technol 2006;18:314–25.
- Rychlik, I., 1987. A new definition of the rainflow cycle counting method. Int. J. Fatigue 9, 2(2), pp.119-121.
- Ryu, S. et al., 2006. Prediction of Deepwater Oil Offloading Buoy Response and Experimental Validation. *International Journal of Offshore and Polar Engineering*, 16(3), pp.1–7.
- SAE (2001), "Test and Test Procedures for SAE100R Series Hydraulic Hose and Hose Assemblies SAE J343," SAE Standard REV Jul 2001.
- SAE(2008), "Hydraulic Hose," SAE J517. Society of Automotive Engineers
- Saito, H. et al., 1980. Actual measurement of external forces on marine hoses for SPM. In *Offshore Technology Conference Proceeding -OTC 3803*. Houston, Texas, USA: OnePetro, pp. 89–97.
- Salama M. M. and Mercier J. A. (1987). Aramid composite well riser for deep water offshore structures. Patent 0244048A2, USA, 4 November 1987.
- Salama M. M. and Spencer B. E. (2010). Method of manufacturing composite riser. Patent 7662251B2, USA, 16

February 2010.

- Sa'nchez, S. H. A., and Salas, C. C., 2006, "Risers Stability under External Pressure, Axial Compression and Bending Moment Considering the Welded as Geometrical Imperfection," Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, 2006.
- Sanders J. V. (1982). A three-dimensional dynamic analysis of a towed system. Ocean Engineering, Volume 9, Issue 5, pp. 483-499. <u>https://doi.org/10.1016/0029-8018(82)90038-5</u>
- Sandip Patil et al (2020). The effect of thermostatic test environment on the flexural fatigue performance of hydraulic hose assemblies. IOP Conference Series: Materials Science and Engineering, Volume 804, Issue 012001. International Symposium on Fusion of Science and Technology (ISFT 2020) 6-10 January 2020, New Delhi, India. <u>https://doi.org/10.1088/1757-899X/804/1/012001</u>
- Sao, K., Member, S.K. & Numata, T., 1987. Basic Equation and SALM Buoy Motion Analysis Method for Single Point Mooring (Report 1). *Journal of the Society of Naval Architects of Japan*, 1987(182), pp.257– 266.
- Sarpkaya, T., 2014. Wave forces on offshore structures 1st ed., New York, USA: Cambridge University Press.
- Sas-Jaworsky A. (1999). Composite coiled tubing end connector. Patent 5988702, USA, 23 November 1999.
- Sas-Jaworsky A. and Williams J. G. (1994). Spoolable composite tubular member with integrated conductors. Patent 5285008, USA, 8 February 1994.
- SBMO, 2012. SBMO CALM Brochure, Amsterdam, The Netherlands: SBM Offshore.
- Schirtzinger J.F. (1969). Apparatus for loading and unloading offshore vessels. US3466680A, USA, 16 September, 1969.
- Schram, J. W., & Reyle, S. P. (1968). A Three-Dimensional Dynamic Analysis of a Towed System. Journal of Hydronautics, 2(4), 213–220. DOI:10.2514/3.62793
- Selvadurai A. (2006). Deflections of a rubber membrane. J Mech Phys Solids;54(6):1093–119.
- Seretis, G.V., Kostazos P.K., Manolakos D.E., Provatidis C.G. (2015). On the mechanical response of woven para-aramid protection fabrics. Composites Part B, 79 (2015), pp. 67-73 https://doi.org/10.1016/j.compositesb.2015.04.025
- Seyed, F.B. & Patel, M.H., 1992. Mathematics of Flexible Risers Including Pressure and Internal Flow Effects. *Marine Structures*, 5(2-3), pp.121–150.
- Shabana, A. A., and Yakoub, R. Y. (2001). "Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory." ASME. Journal of Mechanical Design. December 2001; 123(4): 606– 613. <u>https://doi.org/10.1115/1.1410100</u>
- Sherry Xiang, Peimin Cao, Richard Erwin and Steven Kibbee, OTEC Cold Water Pipe Global Dynamic Design For Ship-Shaped Vessels. OMAE2013-10927, Nantes, France, 2013.
- Shotbolt K. (1988). Flexible riser system. US4793737A, USA, 27 December, 1988.
- Shunfeng Gong, Pu Xu, Sheng Bao, Wenjun Zhong, Ning He, Hui Yan (2014). Numerical modelling on dynamic behaviour of deepwater S-lay pipeline. Ocean Engineering, Volume 88, 15 September 2014, Pages 393-408 DOI: <u>https://doi.org/10.1016/j.oceaneng.2014.07.016</u>
- Simmons P. (1993). Composite threaded pipe connectors and method. Patent 5233737 A, USA, 10 August 1993.
- Sobrinho, L. L., Bastian, F. L., Materiais, E. De, Cariri, C., Janeiro, R. De, & Janeiro, R. De. (2011). Composite tubes for riser application in deep water † †. 1–17.
- Song H. and Estep J. W. (2006). Spoolable composite coiled tubing connector. Patent 7059881 B2, USA, 13 July 2006.
- Sousa, J. R. M. De, Magluta, C., Roitman, N., Ellwanger, G. B., Lima, E. C. P., & Papaleo, A. (2009). On the response of flexible risers to loads imposed by hydraulic collars. *Applied Ocean Research*, 31(3), 157–170. https://doi.org/10.1016/j.apor.2009.07.005.
- Sparks, C.P. (2018). Fundamentals of Marine Riser Mechancis: Basic principles and simplified analyses. Second Edition. *PennWell Corporation, Tulsa, Oklahoma, USA*.
- Stanton, P., 2014. Dynamic Risers for Floating Production Systems API Standard 2RD Second Edition, September 2013.
- Starita, Joseph M. (2005). Corrugated plastic pipe sections having flanged ends and structurally tight joints thereof. United States Patent 6938933, USA. 09/06/2005.
- Stearns, T. de B., 1975. Computer simulation of underbuoy hoses. California State University, Northridge, USA; Thesis.
- Sun, Liping, Zhang, Xu, Kang, Youwei, and Chai, Shuhong (2015). "Motion Response Analysis of FPSO's CALM Buoy Offloading System." Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Volume 11: Prof. Robert F. Beck Honoring Symposium on Marine Hydrodynamics. St. John's, Newfoundland, Canada. May 31–June 5, 2015. V011T12A008. ASME., https://doi.org/10.1115/OMAE2015-41725
- Sweeney, T.E., (1977). The concept of an unmanned transatlantic sailing buoy (NOAA's Ark), AMS Report No. 1358, New Jersey, USA.

- Szabó, G., Váradi, K. and Felhős, D. (2017) Finite Element Model of a Filament-Wound Composite Tube Subjected to Uniaxial Tension. Modern Mechanical Engineering, 7, 91-112. DOI: <u>10.4236/mme.2017.74007</u>
- Szekely Gergely and Peixoto Eduardo (2018). Flexible Hose Technology Benefits for Ship-to-Shore High Pressure Natural Gas Transfer. Offshore Technology Conference, 30 April - 3 May, Houston, Texas, USA. Paper OTC-28893-MS. DOI: <u>https://doi.org/10.4043/28893-MS</u>
- Szekely, G., Peixoto, E., Czovek, Z., & Mezo, T. (2017). Managed Pressure Drilling Flexible Mud Return Line Advances. Society of Petroleum Engineers, IADC/SPE Managed Pressure Drilling & Underbalanced Operations Conference & Exhibition, 28-29 March, Rio de Janeiro, Brazil. DOI: <u>https://doi.org/10.2118/185280-MS</u>
- Tang M.G., Lu Q.Z., Yan J., Yue Q.J. (2016). Buckling collapse study for the carcass layer of flexible pipes using a strain energy equivalence method, Ocean Engineering, Vol. 111 (2016) 209–217. http://dx.doi.org/10.1016/j.oceaneng.2015.10.057
- Technip, 2006. Coflexip® Flexible Steel Pipes for Drilling and Service Applications: User's Guide, Paris, France: Technip.
- Terashima et al. (1996). Reinforced rubber hose, Patent 5526848, USA, 1996-06-18.
- Timoshenko, S. P., and Gere, J. M., 1961, Theory of Elastic Stability, McGraw Hill International Book Company, Inc., New York, USA.
- Toh W., Tan L.B., Jaiman R.K., Tay T.E., Tan V.B.C. (2018). A comprehensive study on composite risers: material solution, local end fitting design and local design. Marine Structures 61 (2018), 155-169. <u>https://doi.org/10.1016/j.marstruc.2018.05.005</u>
- Tonatto, M. L., Tita, V., & Amico, S. C. (2020). Composite spirals and rings under flexural loading: Experimental and numerical analysis. *Journal of Composite Materials*, 54(20), 2697–2705. https://doi.org/10.1177/0021998320902504
- Tonatto, M. L., Tita, V., Forte M. M. C. & Amico, S. C. (2018). Multi-scale analyses of a floating marine hose with hybrid polyaramid/polyamide reinforcement cords. <u>Marine Structures</u>, <u>Volume 60</u>, Pages 279-292 <u>https://doi.org/10.1016/j.marstruc.2018.04.005</u>
- Tonatto, MLP, Roese, PB, Tita, V, et al. (2019). Offloading marine hoses: computational and experimental analyses. In book: Marine Composites, pp. 389–416. DOI: <u>10.1016/B978-0-08-102264-1.00014-5</u>
- Tonatto, M. L., Tita, V., Araujo R. T., Forte M. M. C., & Amico, S. C. (2017). Parametric analysis of an offloading hose under internal pressure via computational modelling. Marine Structures, Volume 51, Issue 2017, Pages 174-187 <u>https://doi.org/10.1016/j.marstruc.2016.10.008</u>
- Tonatto, M. L., Forte M. M. C., Tita, V., & Amico, S. C. (2016). Progressive damage modeling of spiral and ring composite structures for offloading hoses. Materials & Design, Volume 108, Issue 2016, Pages 374-382. <u>https://doi.org/10.1016/j.matdes.2016.06.124</u>
- Tonatto, M. L., Forte M. M. C. & Amico, S. C. (2016). Compressive-tensile fatigue behavior of cords/rubber composites. Polymer Testing, Volume 61, August 2017, Pages 185-190 https://doi.org/10.1016/j.polymertesting.2017.05.024
- Trelleborg (2019). Oil & Marine Hoses: Innovation and Safety for Oil & Gas Transfer Systems. Trelleborg, BU Fluid Handling Solutions, France, pp. 1-30.
- Trelleborg (2012). Trelline hoses Catalogue 2012. Available at: http://www.irpc.com.co/docs/TRELLEBORG/TRELLEBORG%20TRELLINE%20HOSES%202012.pdf
- Trelleborg (2016a). CALM Buoy /Chinese Lantern Configuration. *Trelleborg*. Available at: http://www.trelleborg.com/en/fluidhandling/products--and--solutions/offshore--oil--and--gas--solutions/oil/calm--buoy chinese--lantern--configuration. (Accessed on 16th October, 2018).
- Trelleborg (2016b). Oil & Gas Solutions: Oil & Gas Hoses for enhanced fluid transfer solutions, Clemont-Ferrand, France: Trelleborg. Available at: https://www.trelleborg.com/fluidhandling/~/media/fluid-handling--solutions/brochures/gb/oil gas lr.pdf (Accessed on 5th September, 2021).
- Trelleborg (2018). Trelleborg Seeks to Connect its Past with its Future at OTC 2018. Available online at: <u>https://www.trelleborg.com/en/seals/news-and-events/news/offshore-technology-conference-2018</u> (Accessed on 5th September, 2021).
- Trelleborg (2020). Hose Design. Available at: <u>https://www.trelleborg.com/en/fluidhandling/products--and--solutions/oil--and--marine/hose--design (Accessed on 5th September, 2021).</u>
- Tschoepe, E.C. & Wolfe, G.K., 1981. SPM Hose Test Program. In *Offshore Technology Conference Proceeding* - *OTC 4015*. Houston, Texas, USA: OnePetro, pp. 71–80.
- Urdshals K. A. B., Hvide J. H. and Hooper A. G. (1994). Single point mooring system employing a submerged buoy and a vessel mounted fluid swivel. US5288253A, USA, 22 February, 1994.
- van Diemen, J., et al., 2015. BSR Installation: Displacing 10,000t of Water to Install 2,500t of Steel Buoy at 250m Below Sea Level. Paper OTC-25887-MS presented at the Offshore Technology Conference, Houston, 4 – 7 May

- van Bokhorst, Evert, and Aris Twerda. "Integrity and Efficiency in LNG Transfer Operations with Flexibles.." Paper presented at the International Petroleum Technology Conference, Doha, Qatar, January 2014. doi: <u>https://doi.org/10.2523/IPTC-17662-MS</u>
- Van Den Horn and Kuipers, M.G. 1988 Strength and stiffness of a reinforced flexible hose. Applied Scientific Research 45, 251–281 (1988). https://doi.org/10.1007/BF00384690
- Wang Gang, Liu Shao-jun (2005). Dynamic analysis on 3-D motions of deep-ocean mining pipe system for 1000m sea trial [C]// Proceedings of the Sixth ISOPE Ocean Mining Symposium. Changsha, China, pp. 81–87.
- Wang Zhi, Rao Qiu-hua, Liu Shao-jun (2009). Interaction of fluid-solid coupled flexible hose and mining machine in deep-ocean mining system [C]// Proceedings of the Eighth ISOPE Ocean Mining Symposium. Chennai, India, pp. 263–269.
- Wang Zhi, RAO Qiu-hua, Liu Shao-jun (2011). Analysis of seabed-mining machine-flexible hose coupling in deep sea mining [C]// Proceedings of the Ninth ISOPE Ocean Mining Symposium. Maui, Hawaii, USA, pp. 143–148.
- Wang, G., Liu, S. & Li, L. (2007). FEM modeling for 3D dynamic analysis of deep-ocean mining pipeline and its experimental verification. J. Cent. South Univ. Technol. 14, 808–813. <u>https://doi.org/10.1007/s11771-007-0154-5</u>
- Wang, Y., H. Tuo, L. Li, Y. Zhao, H. Qin, and C. An. (2018). Dynamic Simulation of Installation of the Subsea Cluster Manifold by Drilling Pipe in Deep Water Based on Orcaflex. Journal of Petroleum Science and Engineering 163: 67–78. doi:10.1016/j.petrol.2017.12.049.
- Wang, Z., Q.-H. Rao, and S.-J. Liu (2012). Fluid-Solid Interaction of Resistance Loss of Flexible Hose in Deep Ocean Mining. Journal of Central South University 19 (11), pp. 3188–3193. doi:10.1007/s11771-012-1394-6.
- Wang, Y., 2015. Design of a cylindrical buoy for a wave energy converter. *Ocean Engineering*, 108, pp.350–355. Available at: http://dx.doi.org/10.1016/j.oceaneng.2015.08.012.
- Wang, C., Shankar, K., Ashraf, M. A., Morozov, E. V, & Ray, T. (2016). Surrogate-assisted optimisation design of composite riser. *Journal of Materials: Design and Applications*, 230(1), 18–34. https://doi.org/10.1177/1464420714539304
- Wichers, I.J., 2013. Guide to Single Point Moorings, Houston, USA: WMooring Inc.
- Wilson, J.F., 2003. Dynamics of offshore structures 2nd ed., New Jersey, USA: John Wiley and Sons.
- Winzen et al. (1999). Connection between a building component and a pipe-shaped line element. Patent 5865475, USA, 1999-02-02.
- Witz, Joel Aron, Ridolfi, Matthew Vernon, and Gerard Anthony Hall. "Offshore LNG Transfer A New Flexible Cryogenic Hose for Dynamic Service." Paper presented at the Offshore Technology Conference, Houston, Texas, May 2004. doi: <u>https://doi.org/10.4043/16270-MS</u>
- Witz, A.J., Cox, D.C., Hall, G.A., Ridolfi M.V., Wort A.J., & Smith R.J.A. (2011). Hose end fitting. Patent US8079619B2, USA.
- Witz, A.J. & Cox, D.C., 2013. Improvements relating to hose. Patent US20100183371A1, USA.
- Wu X., Ge F., Hong Y. (2012). A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and Structures, Volume 28, January 2012, Pages 292-308 <u>https://doi.org/10.1016/j.jfluidstructs.2011.11.010</u>
- Xiangqian, Z.H.U. & Wan-suk, Y.O.O., 2016. Numerical Modeling of a Spherical Buoy Moored by a Cable in Three Dimensions. , 29, pp.588–597.
- Yamada K. (1987). Submarine conduit connection apparatus. GB2153332B, UK, 04 March, 1987.
- Yang Ning, Chen Guang-guo, Tang Da-sheng. Behavior of single particle and group particles in vertical lifting pipe in china [C]// Proceedings of the Ninth ISOPE Ocean Mining Symposium. Maui, Hawaii, USA, 2011: 153–157.
- Yang, H., and S. Liu. 2018. Measuring Method of Solid-Liquid Two-Phase Flow in Slurry Pipeline for Deep-Sea Mining. Thalassas: An International Journal of Marine Sciences 34 (2): 459–469. doi:10.1007/s41208-018-0093-y.
- Ye, J., 2016. Structural and Stress Analysis: Theories, tutorials and examples Second., New York, USA: CRC Press.
- Yeoh OH (1993). Some forms of the strain energy function for rubber. *Rubber Chemistry and Technology* 66 (5): 754–771. <u>https://doi.org/10.5254/1.3538343</u>
- Yingying Wang, <u>Haohu Tuo, Liwei Li, Yu Zhao, Hua Qin, Chen An</u> (2018). Dynamic simulation of installation of the subsea cluster manifold by drilling pipe in deep water based on OrcaFlex. Journal of Petroleum Science and Engineering, Volume 163, April 2018, Pages 67-78 <u>https://doi.org/10.1016/j.petrol.2017.12.049</u>
- Yokohama, 2016. Seaflex Yokohama Offshore loading & discharge hose, Hiratsuka City, Japan: The Yokohama Rubber Co. Ltd. Available at: <u>https://www.y-yokohama.com/global/product/mb/pdf/resource/seaflex.pdf</u> (Accessed on 5th September, 2021).

- Yoon C H, Park Y C, Park J. Solid-liquid flow experiment with real and artificial manganese nodules in flexible hoses [J]. International Journal of Offshore and Polar Engineering, 2009, 19(1): 77–79.
- Young, R.A., Brogren, E.E. & Chakrabarti, S.K., 1980. Behavior Of Loading Hose Models In Laboratory Waves And Currents. In Offshore Technology Conference Proceeding, OTC-3842-MS. Houston, Texas, USA, pp. 421–428
- Yu Dai, Xuyang Li, Wanwu Yin, Zhonghua Huang & Ya Xie (2019): Dynamics analysis of deep-sea mining pipeline system considering both internal and external flow, Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2019.1708517
- Yu Dai, Xuyang Li, Wanwu Yin, Zhonghua Huang & Ya Xie (2019) Dynamics analysis of deep-sea mining pipeline system considering both internal and external flow, Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2019.1708517
- Yu, K., Morozova, E. V, Ashrafa, M. A., & Shankar, K. (2015). Numerical analysis of the mechanical behaviour of reinforced thermoplastic pipes under combined external pressure and bending. *Composite Structures, Vol. 131*, 453–461.
- Yu, K., Morozova, E. V, Ashrafa, M. A., & Shankar, K. (2017). A review of the design and analysis of reinforced thermoplastic pipes for offshore applications. Journal of Reinforced Plastics and Composites 2017, Vol. 36(20) 1514–1530 <u>https://doi.org/10.1177/0731684417713666</u>
- Yun H.S., Kim S.S., Lee C.H., Kim H.W. (2015). A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method. Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 12, pp. 1213 -1220. DOI <u>http://dx.doi.org/10.3795/KSME-A.2015.39.12.1213</u>
- Zandiyeh ARK (2006). Hybrid cord reinforcement. Patent: WO 2006/000735, 2006, January, p. 1-19.
- Zeidler et al. (1993). Pipe coupling. Patent 5257834, USA, 1993-11-02.
- Zewen Gu, Xiaonan Hou, Elspeth Keating, Jianqiao Ye (2020). Non-linear finite element model for dynamic analysis of high-speed valve train and coil collisions. International Journal of Mechanical Sciences, Volume 173, 1 May 2020, 105476. <u>https://doi.org/10.1016/j.ijmecsci.2020.105476</u>
- Zhang, S., Chen, C., Zhang, Q., Zhang, D., & Zhang, F. (2015). Wave Loads Computation for Offshore Floating Hose Based on Partially Immersed Cylinder Model of Improved Morison Formula. *The Open Petroleum Engineering Journal*, 8, 130–137.
- Zhao Z., He X., Wen G. (2021). Boundary robust adaptive anti-saturation control of vibrating flexible riser systems. Ocean Engineering, Volume 179, 1 May 2019, Pages 298-306 <u>https://doi.org/10.1016/j.oceaneng.2019.01.020</u>
- Zhao Z., Liu Y., Zou T. and Hong K. -S. (2021). "Robust Adaptive Control of a Riser-Vessel System in Three-Dimensional Space," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, DOI: 10.1109/TSMC.2021.3094668.
- Zhao Z., He X., Ren Z. and Wen G. (2019). "Boundary Adaptive Robust Control of a Flexible Riser System With Input Nonlinearities," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 49, no. 10, pp. 1971-1980, Oct. 2019, DOI: 10.1109/TSMC.2018.2882734.
- Zhao Z., He X., Ren Z. and Wen G. (2019). "Boundary Adaptive Robust Control of a Flexible Riser System With Input Nonlinearities," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 49, no. 10, pp. 1971-1980, Oct. 2019, DOI: 10.1109/TSMC.2018.2882734.
- Zhao Z., He X., Wen G. (2021). Boundary robust adaptive anti-saturation control of vibrating flexible riser systems. Ocean Engineering, Volume 179, 1 May 2019, Pages 298-306 <u>https://doi.org/10.1016/j.oceaneng.2019.01.020</u>
- Zhao Z., Liu Y., Li Z., Wang N., Yang J. (2019). Control design for a vibrating flexible marine riser system. Journal of the Franklin Institute. Volume 354, Issue 18, December 2017, Pages 8117-8133. <u>https://doi.org/10.1016/j.jfranklin.2017.10.004</u>
- Zhao Z., Liu Y., Zou T. and Hong K. -S. (2021). "Robust Adaptive Control of a Riser-Vessel System in Three-Dimensional Space," in *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, DOI: 10.1109/TSMC.2021.3094668.
- Zhao Z., X. He, Z. Ren and G. Wen, "Boundary Adaptive Robust Control of a Flexible Riser System With Input Nonlinearities," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 10, pp. 1971-1980, Oct. 2019, doi: 10.1109/TSMC.2018.2882734.
- Zhao Z., Yu Liu, Fei Luo (2017). Output feedback boundary control of an axially moving system with input saturation constraint. ISA Transactions, Volume 68, 2017, pp. 22-32 <u>https://doi.org/10.1016/j.isatra.2017.02.009</u>
- Zhu, X. & Suk, W., 2016. Dynamic analysis of a floating spherical buoy fastened by mooring cables. Ocean Engineering, 121, pp.462–471. Available at: http://dx.doi.org/10.1016/j.oceaneng.2016.06.009.
- Zhou, Y., Duan, M., Ma, J., & Sun, G. (2018). Theoretical analysis of reinforcement layers in bonded flexible marine hose under internal pressure. Engineering Structures, 168, 384-398.

https://doi.org/10.1016/j.engstruct.2018.04.061

- Ziccardi, J.J. & Robbins, H.J., 1970. Selection of Hose Systems for SPM Tanker Terminals. In Offshore Technology Conference Proceeding -OTC 1152. Dallas, Texas, USA: OnePetro, pp. 83–94.
- Zine A., N.Benseddiq N., Naït M. Abdelaziz (2011). Rubber fatigue life under multiaxial loading: Numerical and experimental investigations. International Journal of Fatigue, Volume 33, Issue 10, pp. 1360-1368 https://doi.org/10.1016/j.ijfatigue.2011.05.005

Appendix

Table 11 Existing	offloading h	ose systems o	ind industry	operators

S/ N	Name	Water Depth	Location	Year Installed	Tanker Range	Buoy Dimension	Hoses & the Configuration	Operato r
1	Dangote CALM	36m,	Port of Lekki,	2017	(DWT) 320,000	Ø=12.5m	Floating Hose =	Dangote
	Buoys SPM-C1, SPM-C2,	40m	Nigeria			h=5.3m	60.96cm, Submarine Hose=60.96cm; Double carcass;	Petroleu m
2	Dangote CALM Buoys SPM-P1, SPM-P2 & SPM-P3	22m, 24m & 22m	Port of Lekki, Nigeria	2017	160,000	Ø=11.5m h=5.0m	Floating Hose = 60.96cm, Submarine Hose=60.96cm; Double carcass;	Dangote Petroleu m
3	Jazan CALM Buoy	27.4m	Jazan, Saudi Arabia	2017	320,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm, 50.8cm; Submarine Hose=60.96cm; Chinese Lantern	Saudi Arabian Oil Company
4	SEPOC RAS ISSA CALM Buoy	32.5m	Ras Issa Penninsula, Red Sea, Yemen	2017	300,000	Ø=12.5m h=5.3m	Floating Hose = 50.8cm; Submarine Hose=50.8cm; Chinese Lantern	SAFER Expl. & Produc. Oper. Company
5	Ngih Son CALM Buoy	27m	Ngih Son, Vietnam	2015	320,000	NA	NA	JGC Corporati on
6	PNG – Kumul CALM Buoy	35m	Gulf of Papua, New Guinea	2012	120,000	Ø=12.5m h=5.3m	Floating Hose = 40.64cm, 30.48cm; Submarine Hose=30.48cm;	Oil Search Limited
7	PEMEX Tuxpan CALM Buoy	18m	Tuxpan Terminal, Mexico	2013	60,000	Ø=11m h=4.5m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm, Chinese Lantern	PEMEX Refinacio n
8	PEMEX Rosarito CALM Buoy	23m	Rosarito Terminal, Baja California, Mexico	2013	60,000	Ø=11m h=4.5m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm, Chinese Lantern	PEMEX Refinacio n
9	PEMEX Salina Cruz CALM	23m	Salina Cruz Terminal, Mexico	2013	60,000	Ø=11m h=4.5m	Floating Hose = 40.64cm, 25.4cm Submarine Hose= 40.64cm, 25.4cm; & Chinese Lantern	PEMEX Refinacio n
10	Barber's Point (Tesoro) CALM	31m	Barber's Point, Hawaii, USA	2012	150,000	Ø=11m h=4.5m	Floating Hose = 40.64cm, 30.48cm Submarine Hose= 40.64cm, 30.48cm; & Chinese Lantern	Tesoro Hawaiian Corporati on
11	Malampaya CALM buoy	75m	Palawan Island, offshore South China Sea, Philippines	2001	40,000 – 110,000	Ø=12.5m h=5.3m	Floating Hose = 40.64cm, Submarine Hose=30.48cm; Lazy-S	Shell
12	Nagarjuna CALM	31m	Nagarjuna, India	2012	300,000	Ø=11.0m h=5.8m	Floating Hose = 60.96cm, Submarine Hose=60.96cm;	Nagarjun a Oil Corporati on Limited- NOCL

13	NuStar CALM buoy	64m	N.V. in Tumble Down Dick Bay, St. Eustatius, Netherland Antilles	2008	520,000	Ø=12.5m h=5.8m	Floating Hose = 60.96cm, 50.80cm; Submarine Hose=60.96cm, 50.8cm; & Lazy-S	NuStar Energy
14	Statia Terminal CALM Buoy	64m	St. Eustatius, Netherland Antilles	1994		Ø=12.5m h=5.8m	Floating Hose = 60.96cm, 50.80cm; Submarine Hose=60.96cm, 50.8cm; & Lazy-S	NuStar Energy
15	St. Eustatius CALM Buoy	65m	St. Eustatius, Netherland Antilles	1993	520,000	Ø=12.5m h=5.8m	Floating Hose = 60.96cm, 50.80cm; Submarine Hose=60.96cm, 50.8cm; & Lazy-S	Chicago Bridge & Iron (CBI) / Statia Terminal s
16	EIL/Bharat CALM Buoy	35m	Bina Refinery Field (BORL 1), Jamnagar, India	2009	320,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm	EIL/Bhar at Oman Refinery
17	Pertamina 150 CALM Buoy #2	24.6m	TTU, Tuban Field, Indonesia	2008	150,000	Ø=11.0m h=5.0m	Floating Hose = 60.96cm, Submarine Hose= 50.8cm;	Inti Karya Persada Tehnik (IKPT)
18	Pertamina 035 CALM Buoy #1	18.6m	TTU, Tuban Field, Indonesia	2008	150,000	Ø=11.0m h=5.0m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm;	Inti Karya Persada Tehnik (IKPT)
19	Pagerungan CALM Buoy	65m	Kangean Islands, Indonesia	1993	125,000	Ø=11.0m h=5.0m	Floating Hose = 30.48cm; Submarine Hose= 30.48cm & Lazy-S	ARCO Bali North Inc.
20	Termap S.A. CALM buoys #1 & #2	37m, 42.3m	Caleta Cordova & Caleta Olivia Fields, Argentina	2009	160,000	Ø=12.5m h=5.3m	Floating Hose = 50.8cm, Submarine Hose= 50.8cm;	Termap S.A.
23	CFE CALM Buoy	16m	Tuxpan, Mexico	1994	45,000	Ø=9.5m h=3.0m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm; Chinese Lantern	Comision Federal de Electricid ad (CFE)
24	Butinge CALM Buoys #1 & #2	20m	Butinge Terminal in Baltic Sea, Lithuania	1998 & 2006	35,000 - 80,000	Ø=12.5m h=5.3m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm; Chinese Lantern	Butinge Nafta
25	Mina al Ahmadi CALM Buoys #1 & #2	31m	Mina al Ahmadi, Kuwait	1995 & 2008	456,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm, 50.80cm; Submarine Hose=60.96cm, 50.80cm; & Chinese Lantern	HHI /NPCC / Kuwait Oil Company (KOC)
26	Sonatrach Arzew #1 & #2 CALM Buoys	62m, 53m	Algeria- North Africa	2005	NA	Ø=12.5m h=5.3m	Floating Hose = 60.96cm, 40.64cm; Submarine Hose=60.96cm, 40.64cm	Sonatrac h TRC
27	Sonatrach Skikda #1 & #2 CALM Buoys	61m, 81m	Algeria- North Africa	2005	320,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm, 40.64cm; Submarine Hose=60.96cm, 40.64cm	Sonatrac h TRC
28	Sonatrach Bejaia CALM Buoy	41m	Algeria- North Africa	2005	80,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm, 40.64cm; Submarine Hose=60.96cm, 40.64cm	Sonatrac h TRC
29	Vehop CALM Buoy	25m	Jose Terminal, Venzuela	1997	96,920	Ø=12.5m h=5.3m	Floating Hose = 50.8cm;	Petrozuat a

							Submarine Hose= 50.8cm; Chinese	
30	Jehel Dhanna	21m &	lehel	1995 &	450.000	Ø=11.0m	Lantern Floating Hose =	Abu
30	CALM Buoy #1 & #2	23m	Dhanna, UAE	1995 æ 1999	450,000	h=4.5m	50.8cm; Submarine Hose= 50.8cm; Chinese Lantern	Abu Dhabi Company (ADCO)
31	OCP #1 (Charlie) CALM Buoy	31m	Balao terminal, Ecuador	2003	130,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm; Submarine Hose= 60.96cm & Chinese Lantern	OCP/ Techint
32	OCP #2 (Papa) CALM Buoy	41m	Balao terminal, Ecuador	2003	250,000	Ø=12.5m h=5.3m	Floating Hose = 60.96cm; Submarine Hose= 60.96cm & Lazy-S	OCP/ Techint
33	RAVVA CALM Buoy	25m	RAVVA Field, Andhra Pradesh, India	1998	120,000	Ø=12.5m h=5.3m	Floating Hose = 50.8cm, Submarine Hose= 50.8cm, 40.64cm;	Cairn Energy India Pty. Ltd.
34	Terrunganu CALM Buoys #1 & #2	20m	Kerteh, West Malaysia	1982 & 1999	85,000	Ø=11.5m h=3.3m	Floating Hose = 50.8cm, Submarine Hose= 40.64cm; Chinese Lantern	Petronas Carigali
35	CPC Ta Lin Pu CALM Buoys #3 & #4	36m & 26m	Kaohsiung, Taiwan	1991 & 1992	300,000 & 100,000	Ø=12.5m h=4.8m	Floating Hose = 50.8cm, Submarine Hose= 50.8cm, Chinese Lantern	Chinese Petroleu m Corp. (CPC)
36	Hazira CALM Buoy	29.4m	Surat, India	1990	50,000	Ø=9.5m h=3.8m	Floating Hose = 40.64cm, 25.4m; Submarine Hose= 40.64cm, 25.4m; Chinese Lantern	Oil & Natural Gas Commiss ion (ONGC)
37	HIRI CALM Buoy	31m	Oahu Island, Hawaii, USA	1987	150,000	Ø=11.5m h=4.0m	Floating Hose = 40.64cm, 30.48m; Submarine Hose= 40.64cm, 50.8m; Chinese Lantern	Hawaiian Independ ent Refinery Inc. (HIRI)
38	Palenque CALM Buoy	25m	Palenque, Rafidonsa Refinery, Dominican Republic	1985	100,000	Ø=10.5m h=4.0m	Floating Hose = 40.64cm, Submarine Hose= 40.64cm; Chinese Lantern	Shell
39	ADMA/ OPCO SARB CALM Buoy	28m	Satah Al- Razboot (SARB), Zirku, UAE	2015	320,000	Ø=12.5m h=4.8m	Floating Hose = 50.8cm, Submarine Hose= 50.8cm, Chinese Lantern	ADMA/ OPCO
40	ADMA/ OPCO CALM Buoy #1 & #2	28m & 26m	Das Island, UAE	1991 & 2005	500,000 & 360,000	Ø=12.5m h=4.8m	Floating Hose = 50.8cm, Submarine Hose= 50.8cm, Chinese Lantern	ADMA/ OPCO