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Chapter 1 

 

1.1 Molecular electronics and Thermopower 

 

 

Molecular electronics studies molecular building blocks to design electronic components or 

electronic devices [1]. These electronic ingredients, such as self-assembled monolayer (SAM) 

[2] and single-molecule [3] junction, have the potential to deliver: logic gates [4], sensors [5-

6], memories [7], and thermoelectric energy with ultralow power requirements and sub 10 nm 

device footprint. These are also interested in their ability to probe room-temperature quantum 

properties at a molecular scale, including quantum interference [8] and thermoelectricity [9, 

10]. In 1974, the first molecular rectifier was proposed by Aviram and Ratner [11]. These 

Single molecular electronics has attracted great attention from various researchers. A vast 

number of molecules are investigated by modifying their chemical structure, some of which 

act as fundamental electronic elementary devices, including rectifiers, [12] conducting wires, 

[13-14] and negative differential resistance devices, [15]. Molecular electronics faces a critical 

challenge, such as utilizing specific intermolecular interactions to assemble molecular devices 

appropriately. As a result, having a comprehensive explanation of electron transport between 

adjacent molecules is necessary. 

A simple electrode/molecule/electrode system, is studied mainly by theoretical and 

experimental techniques, which will be discussed in this thesis. These systems can be measured 

experimentally utilizing two types of equipment such as Scanning Tunneling Microscopy 

Break Junctions (STM-BJ) [16] and Mechanically Controllable Break Junctions MCBJ [17]. 

Such methods have been used and developed for contacting single molecules, graphene-based 

junctions [18], and silicene-based junctions [19]. On the other hand, structural defects in 2D 
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hexagonal materials, as expected several years earlier [20], indicate that their use as electrodes 

is still in its infancy. For the moment, gold break junctions remain the contacting method of 

choice. Because of these constraints, various ways of controlling electron transport have been 

developed, such as mechanical gating [21] and electrochemical gating [22].  

Single-molecule electronic devices face many challenges, which summarises as follows:  

1-     The length of molecules use in the studied field is in order of 1-2 nm. Furthermore, 

electrodes separated by 1-2 nm, which are typically made from noble metals, are beyond the 

capabilities of classical top-down lithographic techniques. 

2-     The tiny dimensions of the molecule are considered, where direct manipulation of the 

molecule in the nanogap is typically impractical. To place the molecule in a gap between 

electrodes, the chemical interaction between the molecule and the electrode is essential. 

3-     The electrodes’ sizes are much larger than molecules; thus, it is challenging to place a 

single molecule in each functional device.  

Additionally, there are not only these three issues, but also there are other significant challenges 

including: device stability, uniformity, yield, and scalability. 

 

Furthermore, there has been a lot of improvement in understanding the thermoelectrical 

properties of single-molecule junctions [23], stimulated in part by observations of high Seebeck 

coefficient 𝑆	of order 161 µVK!"	for PEDOT: PSS organic films [24]. Recently, it was found 

that the sign of the 𝑆	 in fullerenes and nanotubes can be changed through pressure, strain, and 

intermolecular interactions [25]. Significantly, many of the quantum interaction effects found 

and predicted in single-molecule junctions are now being scaled up to self-assembled 

monolayers SAM [26-27], resulting in the development of novel thin-film materials with room-
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temperature quantum effects controlling transport properties. Therefore, these developments 

indicate that the world of single-molecule electronics has a bright future in developing novel 

functional materials.  

Recent studies of the Seebeck coefficient 𝑆 on anthracene molecules have been demonstrated 

in the following references [58-59]. The Seebeck coefficient 𝑆	for anthracene molecule (2SMe 

anchor groups) with two connectivities 9, 10 and 1, 5 were found to be negative -20 and -33.0 

#$
%

, respectively. This group also calculated the 𝑆	for the same molecule, but with different 

linker (2SAc anchor groups), of the same connectivities and found a positive 𝑆 +12.5 and +16.3 

#$
%

   respectively [26-27]. 

SAM is an important section of molecular-scale electronics. Presently, there are mainly three 

global designs for forming ensemble molecular junction for large-area electrical 

measurements: First: direct formation of metal leads utilizing either electron beam/thermal 

evaporation or electrochemical deposition, secondly: incorporation of electrically conducting 

polymers/nanomaterials as an electrode and thirdly: employment of liquid metals as electrodes. 

To fabricate ensemble molecular junctions using different state-of-art methods, there are many 

methods such as liquid metal contact, lift-and-float, nanopore and nanowell, on-wire 

lithography, nanoimprint lithography, crossbar or crosswire, self-aligned lithography, buffer 

interlayer-based junctions, and on-edge molecular junctions. 

In this part, we aim to demonstrate a simple rule for defining the value of electrical conductance 

that appears from constructive quantum interference in molecules. In general, when a single 

molecule attaches to metallic leads, electrons entering through the molecule from one electrode 

to the other can stay phase-coherent, even at room temperature [28-29]. As a result, there has 

been a lot of discussion about quantum interference (QI). This QI can determine the electrical 
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conductance of single molecules [30-31]. Thus, both experiment and theory have concentrated 

on explaining the conditions for the appearance of QI for two cases constructive or destructive 

interference. The constructive quantum interference (CQI) occurs when it coincides with the 

molecule's delocalized energy level. In contrast, destructive quantum interference (DQI) occurs 

when it coincides with a bound state's energy located on a pendant moiety [32, 33]. Since it is 

typically situated in the HOMO and LUMO (H-L) gap, molecules inside a junction seldom 

show these QI conditions unless the energy levels are controlled by electrostatic, 

electrochemical, or mechanical gating. Consequently, the studies have considered the two 

conditions CQI and DQI when they are defined or located at the H-L gap centre [31,34-37].  

Therefore, I demonstrate a Magic ratio rule (MRR) based on the table of quantum numbers. 

This MRR study contributes connectivity to the studied molecule's electrical conductance, such 

as the examples below. When one electrode is attached to a site i and the other to a site i′ of the 

same molecule, the molecule is assigned the "magic integer" 𝑀𝑖𝑖′. 

Magic integers (MIs) can capture the complexity of interference patterns created by electrons 

at the center of the HOMO-LUMO gap. Thus, the conductance ratio can be predicted by magic 

ratio rules (MRR). MRR states that "the ratio of conductances of two molecules is equal to the 

squares of the ratios of their magic integers." When studying the aromatic core's conductances 

but different contacts, the MI's signs are irrelevant.  

 The MRR can be considered an exact formula for conductance ratios of tight-binding 

representations of molecules; this happened in the weak coupling limit when Fermi energy is 

located between the H-L gap. In this case, there is no dependence on the size of the H-L gap 

and is independent of asymmetries in the contact between the leads and the molecule. The 

MRR can apply for a tight-binding, bipartite lattice of identical sites with identical couplings; 

when the 𝐸&	 is defining at the centre of the H-L gap, the number of odd sites equals the number 
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of even sites. In this case we are describing a simple system of tight-binding Hamiltonian that 

possess -1 for nearest neighbour couplings and zeroes for on-site energies. 

Generally, the mid-gap principle explains how the transmission coefficient at the gap centre is 

determined if the electrons with energy traveling through the core molecule are equated to the 

middle of the HOMO-LUMO gap. This depends on the connectivity that is connected to the 

external electrodes. This shows that it is essential and useful to consider the connectivity to 

begin with to fabricate single-molecule junctions with good electrical properties. In the case of 

binding molecules to the electrodes, high conductivity is preferable.   

However, to prevent leakage currents when attaching to an electrostatic gate, a low 

conductance is required. This study provides connectivities with high and low MIs to be 

obtained utilizing the same molecule.  

 

The examination of the entire Magic number for a molecule core allows us to understand the 

effect of connectivity on electrical conductance. Consequently, this electrical conductance is 

proportional to, where is the 𝑖, the entry in the magic number table. The following is the 

simplest example for applying the magic ratio theory based on this paper Magic Ratios for 

Connectivities-Driven Electrical Conductance of Graphene-like Molecule by YAN Geng and 

others (9 authors) etc [38].  

 

Example 1: we aim to apply the magic ratio theory on a bipartite lattice (benzene ring) 

consisting of six atoms [38]. To apply this theory, two connectivities are required in the same 

molecule. Thus, (1, 4) and (1, 2) are chosen in this example, as shown in the Figure 1.1.  
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Figure 1.1: Simple example of bipartite lattice such as benzene with the magnitude of its magic 

number. (1, 2): first connectivity; (1, 4) the second connectivity.  

 

Table 1.1: magic numbers for Benzene ring. 
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Table 1.2: connectivity table 

 

 

 

 

 

 

 

 

 

 

 

To determine the ratio of these two connectivities shown in table 1.2, electrical conductance 

considered to be proportional to	(𝑀(	))*, where 𝑖 and 𝑗 the entry and the out. In our case, 𝑖 and 

𝑗 are (1, 2) for first connectivity and (1, 3) for the second connectivity choice. Therefore, the 

magic ratio rule (MMR) can be determined for the two connectivities (1, 2) and (1, 4)   by: 

MRR= +!,#
+!,$

= (")#

(!")#
= 𝟏. 

 

Example 2 aims to compare the theory and experiment with the magic ratio theory as reported 

in this paper [38]. Anthanthrene core has been chosen to study. Two connectivities are studied 

in the same molecule. Thus, (1, 5’) and (7, 2’) are selected in this example, as shown in the 

Figure 1.2.   

 

 

M= 
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Figure 1.2: Representation of studied Anthanthrene core. Two connectivities for 1: (1, 5’- Red) 

and 2: (2’, 7 -blue). 

 

Table 1.3: magic numbers for Anthanthrene core. 
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MRR=  
+%,#&

+!,'&
= (!.)#

(!")#
= 𝟖𝟏 , (Theoretical value). 

Next, does this value, 81, agree with the experiment or not? 

The experiment below shows the ratio number of the Anthanthrene core. Anthanthrene's 

measurement is studied for the same molecule with different connectivities represented 

by 1 and 2, as shown in Figure 1.2.  

 

The experiment measurement shows that the electrical conductances for 1 and 2 are 

10!/.1±3.1𝐺3 and 10!4.5±3./𝐺3 , respectively.   

As results, the conductance ratio between 1 and 2 can be determined as follow: 

 

𝐺1
𝐺2 =

10!4.5

10!/.1 = 𝟕𝟗. 

In summary, the theoretical conductance value (81) for 1 and 2 has a good agreement with the 

experiment value (79). 

 

Magic ratio rules for symmetric Anthracene Molecule. 

 

Example 3 aims to show the magic ratio theory for our studied molecule, core anthracene. 

Anthracene core has been chosen to study [26-27]. Two connectivities are studied in the same 

molecule. Thus, (2’, 6) and (3’, 7) are selected in this example, as shown in the Figure 1.3.  
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Figure 1.3: Representation of studied anthracene core. Two connectivities (2’, 6), (blue) and 

(3, 7’) (Red).   

Table 1.4: Magic Number Table 𝑀𝑖𝑗 for anthracene core (C10H8). 
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Table 1.5: connectivity table 

 

 

 

 

 

 

 

 

 

 

 

𝑀 = 	𝑑𝑒𝑡(𝐶) × 𝐶!" 

𝐷𝑒𝑡	(𝐶) = 4 

 

MRR= 
+#&,(
+$&,%

= (4)#

(")#
= 16. 

Table 1.6: the magic ratio for the previous study of Anthracene. 

Anthracene
’s anchor 

Theory 
𝐺
𝐺3

 

Theory 
ratios 

Experiment 

	
𝐺
𝐺3

 

Experimen
t ratios 

Ref 

2 SMe (1, 
9) 

1.66 e-4  
15.8 

7.01 e-5  
10.19 

 
 
 
 
 
[26,27] 

2 SMe (1, 
5) 

1.05 e-5 6.88 e-6 

2 SAc (1, 9) 1.59 e-4  
15.9 

1.28 e-4  
14.22 

2 SAc (1, 5) 1 e-5 9 e-6 

2 Py (1, 9) 0.9 e-4  
15.7 

  

2 Py (1, 5) 0.57 e-5  

 

𝑴= 
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In the current study, I will discuss the experiment and theory ratios for the anthracene 

molecule with the Porphyrin and the graphene sheet in the following parts. 

 

1.2 Thesis Outline 

 

In this thesis, the theoretical studies introduce two-terminal molecular junctions' electrical 

properties; this can be described as gold electrodes that form gold |molecule| gold structures. 

Theoretical methods employ density functional theory (DFT). Thus, Chapter 2 provides 

theoretical concept of DFT and the implementation utilized in this study, mainly the SIESTA 

code. The second tool is the quantum transport code GOLLUM. To introduce this technique, I 

present in chapter 3 solutions of Green's functions for infinite and semi-infinite1D chains and 

the transmission coefficient equations, which forms this code's theoretical basis. The charge 

transport at the single-molecule scale is investigated. Recently, quantum interference effects 

have attracted great interest in facilitating the charge transport. Within this framework, I 

theoretically study two primary results, electrical and thermoelectrical properties of studied 

structures represented in chapters 4 and 5.  

In chapter 4, I began this chapter by exploring 4 bare anthracene-based molecules, those 

molecules classified into two connectivities 9, 10 and 1, 5 and two anchor groups including 

thioether and pyridyl. Then this research was narrowed down to two molecules as two of them 

do not bind to a graphene sheet. I divide this research into 4 steps. In step-1, I looked only at 

the bare molecule with the pyridyl anchor groups as the binding energy calculations suggested 

that the thioether linker does not bind to a graphene sheet. Step-2 explored the case of 

combining the bare molecules with either 9, 10 or 1, 5 geometries to a finite graphene sheet 
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(Gr), where the binding energy calculations demonstrated that the pyridyl anchor strongly bind 

to a Gr. In step-3, I repeated the step-2 procedure however with a porphyrin layer ZnTTP. 

Eventually, both the graphene sheet and porphyrin complexed to the bare anthracene-based 

molecules and that was step-4. My theoretical simulations of this research were tested against 

the measured parameters including the binding energies, conductances and Seebeck 

coefficients and excellent agreements were found.                  

Chapter 5, represented a theoretical based on the same molecules that explored in chapter 4, 

however, in different directions. This research introduced a variety of anchor groups to include 

alkynyl, thiol and pyridyl. Furthermore, the anthracene-based molecules were chosen to be 

asymmetric, meaning with different different anchors at the ends of the molecule. This chapter 

is also constructed in three sections. First-section dealt with the bare molecules, where three 

asymmetric anthracene-based molecules were nominated such as alkynyl -Py, alkynyl -thiol 

and Py-thiol. The electronic properties of this sites of molecules were envisaged and assorted 

as either HOMO- or LUMO-dominated molecules. 

The second section i dedicated to combine the bare molecules to a finite graphene sheet (Gr) 

to form multicomponent and placed it between metallic electrodes.  The Gr. pulled out in the 

junction in several binding locations, however, in each position the anchor and the tip were 

aligned and passed through a C atom in the sheet. The outcome of this pulling technique is an 

oscillation in the conductance.  

Third section concentrated on the “flipping characteristic” as the molecules are asymmetric 

when they form multicomponent with the Gr, there will be two multicomponent. For example, 

an asymmetric molecule with Py and thiol anchors produced Py-graphene multicomponent and 

thiol-graphene multicomponent (flipping the anchor in regard to the sheet). The flipping 
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technique yields a positive and negative Seebeck coefficient for the different multicomponent. 

Switching the sign of the Seebeck coefficient of the same molecule is such an important feature.      
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Chapter 2  

 

2. Density Functional Theory 

 

This chapter has shown the mathematical principle of Density Functional Theory (DFT). I will 

also illustrate general concepts of DFT code SIESTA, which is applied to all studied electronic 

structure calculations in this thesis. The first step in learning electronic transport to extract the 

Hamiltonian of an isolated molecule and relax it. We then attach this isolated molecule to 

metallic electrodes to calculate the transport properties. I will briefly introduce the calculation 

of the transport properties carried out during an ab initio transport calculation. The details will 

discuss in chapter 3.  

 

2.1 introduction  

 

DFT is a discipline used mainly by experts in chemistry and physics to research the ground 

state of interacting many-particle systems such as molecules, atoms, and crystals. It is a 

computational quantum mechanics method that utilizes many-body systems into one of the 

non-interacting fermions in an effective field. Similarly, the electrical properties of many 

interacting particle systems can be described as a function of ground-state density [1, 2]. In 

1998, the importance of DFT was affirmed by a Nobel Prize in Chemistry being awarded to 

Walter Kohn. This was awarded due to his achievements in developing concepts of DFT. DFT 

is a reliable methodology that has been used for many molecular systems. 

Additionally, many books regarding relevant literature elaborating comprehensive descriptions 

of the principles of density functional theory and its application have been documented [1-6]. 
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The DFT was started by the Thomas-Fermi model back in the 1920s, in which they provided 

the basic steps to obtain density functionality for total energy based on wave functions [1, 6-

8]. In addition to the work of Thomas Fermi model, further improvement was made by Dirac, 

Hartree, Slater, and Fock, nearly four decades after their work was put forward work. The DFT 

foundation was then given an effective start by the Hohenberg-Kohn theorems and Kohn-Sham 

methods [1, 3, 4, 7-11]. The primary objective of this chapter is to give a brief introduction to 

density functional theory and give an outline of the leading mathematical equations as a method 

of obtaining a solution of the non-relativistic many-particles time-independent Schrödinger 

equation TISE. This is because the properties of a many-electron system can be determined by 

using the function of electron density. This chapter will summarize the DFT code ‘SIESTA’, 

which has been largely used throughout this Ph.D. research as a theoretical tool to find a way 

for structure optimization. 

 

2.2 The Schrödinger Equation and Variational Principle. 

 

 

Non-relativistic many particles system is systematically described by the time-independent, 

non-relativistic Schrödinger equation in the equation 2.1: 

H𝛹((𝑟", 𝑟*, … , 𝑟6 , 𝑅I⃗ ", 𝑅I⃗ *, … , 𝑅I⃗7)

= 𝐸(𝛹((𝑟", 𝑟⃗*, … , 𝑟⃗6 , 𝑅I⃗ ", 𝑅I⃗ *, … , 𝑅I⃗7)										 

(2.1) 

 

H is the Hamiltonian operator of a system consisting of N-electrons, M-nuclei is the interaction 

of particles,	𝛹( is the wave-function of the state of the system, 𝐸( 	which describes the numerical 

value energy of the state. The  Hamiltonian operator (H) is: 
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(2.2) 

 

The equation 2.2: 𝑖	and	𝑗	represent the N-electrons while 𝑛	and	𝑛? represent a run over the M-

nuclei in the system, 𝑚8 	and	𝑚; represent the mass of electron and nucleus respectively. 

Additionally, 𝑒	and	𝑍; represent the electron and nuclear charge in the system respectively, 

while  𝑟@II⃗ 	and	𝑅I⃗ ; is the position of the electrons and nuclei in the system respectively. The 

equation below 𝛻(* is the Laplacian operator, mathematically, it is outlined in a Cartesian 

coordinate 𝛻(* which is given by the equation below. 

𝛻(* =
𝜕*

𝜕𝑥(*
+
𝜕*

𝜕𝑦(*
+
𝜕*

𝜕𝑧(*
 

According to the illustration given by the Eq. (2.2), the terms, 𝑇8 	is the kinetic energy of 

electrons, while	𝑇;	 is denoted as kinetic energy of nuclei in the system. Additionally, the last 

three terms describe the potential part of the Hamiltonian; the term 𝑈8; represents the attractive 

electrostatic interaction between nuclei and electrons in the system. The electron-electron (𝑈88) 

and nuclear-nuclear (𝑈;;) are the repulsive part of the potential respectively [1,  3,  6,  9, 13]. 
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The Born-Oppenheimer approximation, which is also referred to as the clamped nuclei 

approximation can be applied in the analysis because about 99.9% of atom's mass is contained 

in the nucleus, additionally, the nuclei in the system can be considered fixed as compared to 

the electrons. This means, for example, concentration of mass of the hydrogen atom is 

illustrated by the fact that the nucleus weigh about 1800 times more than the electron. In the 

given case, if the nuclei of the treated atoms are held fixed it indicates that the resulting kinetic 

energy sums to zero, this directly means that they do not contribute to the full wave-function 

anymore. 

The results of the above assumption is that the Hamiltonian expression of the electron system 

reduces the Hamiltonian to a different figure, similarly, the electronic Hamiltonian	H8A8 which 

in a fixed nuclear representation can be given by [1, 3, 6, 13-15]: 
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(2.3) 

 

Where; the 𝑈;; is an obtained constant for the system. 

In the above a system, the Schrödinger equation for ‘clamped-nuclei’ is represented as: 

H8A8𝛹8A8 =	𝐸8A8𝛹8A8 								 (2.4) 
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Where; 𝛹8A8 	is dependent on the electron coordinates for the system, while the nuclear part 

enters only dimensionally and does not clearly appear in	𝛹8A8. 

Total energy 𝐸B<BCA is given as the sum of  𝐸8A8 and the constant nuclear repulsion term for the 

system which is given as: 

𝐸B<BCA = 𝐸8A8 + 𝑈;;								 (2.5) 

 

Wave-function for a system is not an observable quantity, its modulus squared can be written 

in the form as: 

|𝛹(𝑟", 𝑟*, … , 𝑟6)|*𝑑𝑟"	𝑑𝑟*…𝑑𝑟6							 (2.6) 

 

The above expression represents the fact that the probability that electrons 1, 2… N are found 

in the volume elements𝑑𝑟"	𝑑𝑟*… . . 𝑑𝑟6, this is because the electrons are indistinguishable, and 

this probability is unchangeable if the coordinates of any two of electrons (i and j) are swapped 

[12]: 

U𝛹(𝑟", 𝑟*, … 𝑟( , 𝑟) , … , 𝑟6)U
* = U𝛹(𝑟⃗", 𝑟*, … 𝑟) , 𝑟( , … , 𝑟6)U

*				 (2.7) 

 

Because of the reason that electrons are fermions with spins of a half then the value of 𝛹 must 

therefore be anti-symmetric with respect to the interchange of the spatial and the spin 

coordinates as well in any pair of electrons: 

𝛹(𝑟", 𝑟*, … 𝑟( , 𝑟) , … , 𝑟6) = −𝛹(𝑟", 𝑟*, … 𝑟( , 𝑟) , … , 𝑟6)				 (2.8) 
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A logical result of probability interpretation format of the wave-function is that the integral of 

equation 2.6 over the full range of all variables gives an output of one. This mean, the 

probability of finding the N-electron at any position in a space must be exactly unity, 

 

e…e|𝛹(𝑟", 𝑟*, … , 𝑟6)|
*
𝑑𝑟"	𝑑𝑟*…𝑑𝑟6 = 1 (2.9) 

 

A wave-function that meets the requirements for equation (2.9) is a normalized one. 

 

Since the Schrödinger wave-equation does not have an exact solution, several theories have 

been developed to fulfil this objective; this effort start with Hartree, Hartree-Fock and many 

others. A large number of these theories were based on a significant theoretical principle 

referred to as variational principle of the wave-function where this principle leads an analysts 

on how to look for solutions by using suitable trial wave-functions	𝛹:D( [1, 2, 5, 6, 12]. The 

above principle is meaningful in the study of the ground state, but is not very fruitful in the 

study of excited states. When a system is in the state	𝛹:D(, the expectation value of the energy 

is given by the expression:  

〈𝐸:D(〉 =
∫𝛹:D( H	𝛹:D(	∗ 𝑑𝑟
∫𝛹:D( 	𝛹:D(∗ 	𝑑𝑟

 (2.10) 

 

Variational principle that is given in the equation 2.10 implies that the energy computes as the 

expectation value of the Hamiltonian operator from any 𝛹:D( that is an upper bound of the true 

ground-state energy	𝛹+F. Suppose 𝛹:D( 	is normalized as per the equation 2.9 while 𝛹:D( 	then 

it equals to the ground state (𝛹:D( = 𝛹+F). This indicates that entity	𝐸:D( is equal to the exact 
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ground state energy	𝐸+F, additionally, we can reconfigure the equation 2.10 for the ground state 

as: 

〈𝐸+F〉 = e𝛹+F H	𝛹+F	∗ 𝑑𝑟 (2.11) 

 

From the normalized 𝛹:D( 	 we can clarify that 𝐸:D( > 𝐸+F or	𝐸:D( = 𝐸+F. The best choice for 

𝐸:D( is therefore the one in which 𝐸:D( is reduced [3, 4, 6]. 

 

 

2.3 The Hohenberg-Kohn Theorems. 

 

 

Essentially, DFT is based on Hohenberg-Kohn theorems; whereby in 1964, Hohenberg and 

Kohn validated the use of the electron density 𝑛(	𝑟	II⃗ ) to calculate the ground state energy. These 

theorems can be clarified by two powerful statements.  

The first theory: For any interacting many particle systems in external potential	𝑉8GB(	𝑟	II⃗ ), 

density of the system is uniquely defined. Additionally, this can be computed because it 

illustrates that the density 𝑛(	𝑟	II⃗ ) is used instead of the potential as a basic function uniquely 

giving a description of the system, and be stated as the ground state density 	𝑛+F(	𝑟	II⃗ ) that is 

expressly relied upon to establish the potential up to an arbitrary constant [6, 10, 17, 19].  

 

This theorem is approved by considering two different external potentials: 

𝑉8GB(	𝑟	II⃗ )	(")And 	𝑉8GB(	𝑟	II⃗ )	(*).The two differ by more than a constant but results in the same 

ground state density	𝑛+F(	𝑟	II⃗ ). It is clear that these the above two potentials correspond to 
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different Hamiltonians which are 𝐻8GB[(	𝑟	II⃗ )]	(") and		𝐻8GB[(	𝑟	II⃗ )]	(*), and they give rise to 

distinct wave-functions  𝛹8GB[(	𝑟	II⃗ )]	(") and 𝛹8GB[(	𝑟	II⃗ )]	(*) . 

Since ground state of the systems is the same and going according to the variational principle 

which informs us that there is no wave-function that gives energy that is less than the energy 

of  𝛹8GB[(	𝑟	II⃗ )]	(") for	𝐻8GB[(	𝑟	II⃗ )]	("). 

This is expressed as: 

〈𝐸(")〉 = e𝛹(")	𝐻(")	𝛹(")∗ 	𝑑𝑟 < 	e𝛹(*)	𝐻(*)	𝛹(*)∗ 	𝑑𝑟 (2.12) 

 

Therefore, for non-degenerate ground state with regard to identical ground state densities for 

the two Hamiltonians, the equation 2.12 is given as:  

 

e𝛹(*)	𝐻(")	𝛹(*)
∗ 	𝑑𝑟 

= ∫𝛹(*)	𝐻(*)	𝛹(*)
∗ 	𝑑𝑟OPPPPPQPPPPPR

〈I(#)〉

 

+ ∫o[𝑉8GB(	𝑟	)](") − [𝑉8GB(	𝑟	)](*)p 𝑛+F(	𝑟	II⃗ )	𝑑𝑟 

(2.13) 

 

Exchanging of the labels in the equation 2.13, we obtain: 

e𝛹(")	𝐻(*)	𝛹(")
∗ 𝑑𝑟 (2.14) 
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= ∫𝛹(")	𝐻(")	𝛹(")
∗ 	𝑑𝑟OPPPPPQPPPPPR

〈I(!)〉

	 

+eo[𝑉8GB(	𝑟⃗	)](*) − [𝑉8GB(	𝑟	)](")p 𝑛+F(	𝑟	II⃗ )	𝑑𝑟 

 

By addition of the equations 2.13 and 2.14, the results obtained are given by: 

〈𝐸(")〉 + 〈𝐸(*)〉 < 	 〈𝐸(*)〉 + 〈𝐸(")〉 (2.15) 

 

The equation (2.15) shows a logical contradiction. Hence, the theorem has been confirmed by 

reductio ad absurdum.  

The second theorem avails a variational ansatz for obtaining the value for	𝑛(	𝑟	II⃗ ), this is applied 

in searching for 𝑛(	𝑟	II⃗ ) which minimizes the energy. This is also meant to say that expressing 

in terms of the density	𝑛(	𝑟	II⃗ ), we can describe a universal functional expression for the given 

energy	𝐸[𝑛(	𝑟	II⃗ )]. The ground state energy of the system (𝑉8GB(	𝑟	)) is the global minimum 

value of this functional and the density 𝑛(	𝑟	II⃗ ) which minimizes the function, it also signifies 

the actual ground state density	𝑛+F(	𝑟	II⃗ ). 

Regarding the second proof, the first theorem informs us that the total energy of the system is 

expressed as a function of the density	𝑛(	𝑟	II⃗ ) and is provided by:  

							𝐸B<BCA[𝑛(	𝑟	II⃗ )]= 

      𝑇(;B[𝑛(	𝑟	)] + 𝑈88[𝑛(	𝑟	)]qrrsrrt
9K8D<,			M<D	

;<;!(;B8DCNB(;O	
PQPB8R

OPPPPPPPPQPPPPPPPPR	
&-./[;(	D⃗	)]

+ ∫𝑉8GB(	𝑟	) 	𝑛(	𝑟	)	𝑑𝑟 
(2.16) 

 



 35    
 
 

The first two terms of equation (2.16) (	𝐹V!%[𝑛(	𝑟	)]) are kinetic energy	(𝑇(;B) and electron-

electron interaction energy (𝑈88), they are evaluated as the same for the whole system. Hence 

𝐹V!%[𝑛(	𝑟	)] is a universal function which has been uniquely illustrated as the Holy Grail of 

density functional theory[12]. Taking the assumption that the system is in the ground state, the 

energy can be particularly illustrated by the ground state density 	𝑛+F(	𝑟	II⃗ ) as: 

																						〈𝐸+F〉 = 〈𝐸[𝑛+F(	𝑟	)]〉 = e𝛹+F	𝐻+F	𝛹+F∗ 	𝑑𝑟       (2.17) 

According to variational principle, the ground state energy which has a direct correspondence 

to the ground state density is the minimum energy and any different density will essentially 

provide a higher energy: 

〈𝐸+F〉 = 〈𝐸[𝑛+F(	𝑟	)]〉 

  = ∫𝛹+F	𝐻+F	𝛹+F∗ 	𝑑𝑟 < 	∫𝛹	𝐻	𝛹∗ 	𝑑𝑟 

  = 〈𝐸[𝑛(	𝑟⃗	)]〉 			= 〈𝐸〉 

Once we have evaluated the functional𝐹V!%[𝑛(	𝑟	)], we can compute the total energy to be 

minimized with respect to variations in the density function as shown in the equation 2.16. It 

results in finding the exact ground state properties of the system that we are pursuing, for most 

practical calculations, the direct minimization does not give a vivid guide to the ground state 

energy as provided by Kohn-Sham method.  

 

2.4 Kohn-Sham Method and Self-Consistent Field SFC. 

 

 

Efforts of Kohn and Sham observed that Hohenberg-Kohn theory is usable at both interacting 

and non-interacting systems. Density function theory (DFT) is skeptical at giving an 
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elaboration on interacting many particles problem. The non-interacting system has one great 

advantage over the interacting system because it is easily used in finding the ground-state 

energy for a non-interacting system. Kohn and Sham developed the idea in 1965, they found 

out that it is possible to replace the original Hamiltonian of the system by an effective 

Hamiltonian (𝐻8MM) of the non-interacting system in an effective external potential𝑉8MM(	𝑟	), 

they also added that the system gives rise to the same ground state density as the initial system. 

There is no clear procedure for performing the calculations, the outcome of the efforts of Kohn-

Sham method is considered as an ansatz, significantly, it is considerably easier to solve it than 

the non-interacting problem. Kohn-Sham method is founded on the Hohenberg-Kohn universal 

density [6, 9, 10, 20]: 

																						𝐹V!%[𝑛(	𝑟	II⃗ )] = 𝑇(;B[𝑛(	𝑟⃗	)] + 𝑈88[𝑛(	𝑟	)]       (2.18) 

 

The Hohenberg-Kohn functional for non-interacting electrons in a system can be scaled down 

to compute only the kinetic energy. Additionally, the energy function of the Kohn-Sham 

ansatz	𝐹%!F[𝑛(	𝑟	II⃗ )] in contrast with the computation evaluated in the equation 2.16 is thereby 

given the mathematical computation below:  

																						𝐹%!F[𝑛(	𝑟	II⃗ )] = 𝑇;<;[𝑛(	𝑟	)] + 𝐸VCDB[𝑛(	𝑟	)] +

∫𝑉8GB(	𝑟	) 	𝑛(	𝑟	)	𝑑𝑟+ 𝐸GN[𝑛(	𝑟	)].  
      (2.19) 

 

Where 𝑇;<;	denotes the kinetic energy of the non-interacting system that differs from 𝑇(;B	for 

interaction system given by the equation 2.16, while 𝐸VCDB denotes the classical electrostatic 

energy also referred to as classical self-interaction energy of the electron gas which is linked 
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to the density	𝑛(	𝑟	) in the system. The term 𝐸GN in the system is the exchange-correlation 

energy functional and given by: 

																𝐸GN[𝑛(	𝑟	)]=𝐹V!%[𝑛(	𝑟	) −
"
*∫

;(	D⃗!	);(	D⃗#	)
|D⃗!!D⃗#|

𝑑𝑟"𝑑𝑟*
OPPPPPQPPPPPR

I-012[;(	D⃗	)]

−

	𝑇;<;[𝑛(	𝑟	)]  

      (2.20) 

 

In the equation 2.19, the first three consecutive terms can be trivially cast into a functional 

form. Conversely, this is given generally with no exact functional form for the	𝐸GN.  In the last 

couple of years in the recent past, multiple efforts have been intensively explored into finding 

a better computation of	𝐸GN. At this time, the physical properties of a large variety of solid-state 

systems and molecules can investigate and predict by the functional. Additionally, for the last 

three terms in the equation 2.19, the functional derivatives are taken to construct an effective 

single particle potential	𝑉8MM(	𝑟	): 

𝑉8MM(	𝑟	) = 𝑉8GB(	𝑟	) +
𝜕𝐸VCDB[𝑛(	𝑟	)]

𝜕𝑛(	𝑟	) +
𝜕𝐸GN[𝑛(	𝑟	)]
𝜕𝑛(	𝑟	)   (2.21) 

 

Significantly, we can logically use this potential to give the Hamiltonian of the single particle: 

𝐻%!F = 𝑇;<; + 𝑉8MM  (2.22) 

 

The Schrödinger equation, for this Hamiltonian, can obtained by:  

[𝑇;<; + 𝑉8MM]𝛹%!F = 𝐸𝛹%!F  (2.23) 
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Expression represented by the equation 2.23 is referred to as Kohn-Sham equation. 

Additionally, the ground state density 𝑛+F%!F(	𝑟⃗	) corresponds to the ground state wave-function 

𝛹+F%!F  by which its evaluation minimizes the Kohn-Sham functional subject to the ortho-

normalization constraints	v𝛹(U𝛹)w = 𝛿(); it is established by a self-consistent calculation.  

Density functional theory (DFT) makes significant use of a self-consistent field procedure, an 

example is that which supposed that 𝐸VCDB and 𝐸GN can be precisely calculated. The major 

challenge now is that 𝑉8MM cannot be calculated until the correct ground state density is 

determined, the actual density can’t be determined from the Kohn-Sham wave-functions until 

the equation 2.23 is solved to obtain the actual value of 𝑉8MM	for a particular system. Therefore, 

the circular problem can be effectively determined by carrying out a self-consistent cycle as 

shown in the Figure 2.1. 
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Figure 2.1: A Schematic illustration of the self-consistent DFT cycle. 

According to the figure 2.1, the primary step in the study is to generate the pseudo-potential 

which represents electrostatic interaction between the valence electrons, the nuclei and core 

electrons in a system. The following step is to make the required basis set with a selected kinetic 

energy cutoff to be plugged in; this is a step that is designed deliberately to broaden density 

functional quantities.  

Obviously, the energy functional can be fully calculated if the system’s density is known. A 

trial electronic density 𝑛(;(B(CA 	(𝑟) is considered as an initial guess. Thus, the following quantity 

can be calculated by using the initial guess:  

Construct pseudo-
potential for each element 

Choose basis set cutoff 
energy 

Construct initial density 

𝑛(;(B(CA(𝑟) 

Calculate the effective 
potential 𝑉8MM(𝑟) 

Solve Kohan-sham Eq. by 
diagonazation of the 
Hamiltonian 

Calculate the electron 
density 

Is the solution self-
consistent? 

Density mixing to 
generate 𝑛;8X 	(𝑟) 

Calculate the total 
energy and force, 
and then exit 

Yes No 
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𝐺 = 𝐸VCDB[𝑛(;(B(CA 	(𝑟)] + 𝐸GN[𝑛(;(B(CA 	(𝑟)]  (2.24) 

 

The parameters 𝝏𝑮
𝝏𝒏𝒊𝒏𝒊𝒕𝒊𝒂𝒍	(𝒓]⃗ )

 and the effective potential 𝑉8MM is determined. The effective𝑉8MM 

potential is used to obtain a solution for Kohn-Sham equation 2.23 which provides an outline 

to a solution of the electron Hamiltonian. Upon obtaining the Hamiltonian, it is subsequently 

diagonalised to obtain the Eigen functions and the new electron density𝑛;8X(𝑟) . The term 

𝑛;8X(𝑟) is closer to true ground state and it is verified. 

For self-consistency, if it is found out that new updated electron density 𝑛;8X(𝑟) agrees 

numerically with the density 𝑛(;(B(CA 	(𝑟) used to build the Hamiltonian at the beginning of the 

SCF cycle where one terminates at the end of the loop. It follows then that we exit the 

operations, and calculate all the desired converged quantities, that includes the total energy, the 

electronic band structure, and density of states. Conversely, the new density 𝑛;8X(𝑟) does not 

match with the initial density𝑛(;(B(CA 	(𝑟⃗), one has to generate a new input density and begins 

another SCF cycle: it then follows again that one has to build a new density-dependent 

Hamiltonian that is used to calculate the density and verify its self-consistency [3, 17, 23]. 

The illustration of the Kohn-Sham approach clearly shows that a complicated multiple body 

system can be mapped onto a set of simple non-interacting equations precisely as it can be if 

the exchange correlation functional is known. It is notable that, the exchange-correlation 

functional is undetermined precisely, thus approximations need to be considered. 
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2.5 The Exchange-Correlation Potential. 

 

 

The DFT is a very reliable and proven method used in the analysis although it still uses an 

approximation for the kinetic energy functional and the exchange-correlation functional in 

terms of the density for studied the system. Significantly huge amount of efforts have been 

oriented at finding reliable expressions for those functionals. The most commonly utilized 

exchange-correlation functional approximations are the Local Density Approximation (LDA) 

that depends primarily on the density, and more complicated Generalized Gradient 

Approximation (GGA) that includes the derivative of the density. This GGA contains 

information about the environment hence making it is semi-local.  

 

2.6 Local Density Approximation (LDA). 

 

 

According to Kohn-Sham theory, the functional 𝐸GN parameter could be calculated in a 

homogenous electron gas to approximate the multiple body particle problem as a less 

complicated system [11].  Kohn-Sham showed in the studies that by slowly but systematically 

varying the density of a system, the functional 𝐸GN at point 𝑟	can be represented as acting in a 

uniform density. Additionally, the 𝐸GN functional is given by a uniform electron gas 

𝐸GN^<R<[𝑛(	𝑟⃗	)] with a density	𝑛(	𝑟	).  

It is generally that the local density approximation (LDA) does not work for systems with 

which they are largely dominated by electron-electron interactions. Nonetheless, LDA assumes 

that the density is a constant a local region around any considered position.  
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The local density approximation (LDA) is shown by the expression for 𝐸GN_`a[𝑛(	𝑟	)] in the 

illustration below.  

𝐸GN_`a[𝑛(	𝑟	)] = e𝐸GN^<R<[𝑛(	𝑟⃗	)]𝑛(	𝑟	)𝑑𝑟	  (2.25) 

 

The exchange-correlation energy 𝐸GN^<R<[𝑛(	𝑟	)] can be separated into two different parts; that 

is as the sum of the exchange𝐸G^<R<[𝑛(	𝑟	)] and the correlation energies𝐸N^<R<[𝑛(	𝑟	)]; this can 

be found separately. Thus, the exchange-correlation energy 𝐸GN^<R<[𝑛(	𝑟	)]  can be evaluated 

as: 

𝐸GN^<R<[𝑛(	𝑟	)] = 𝐸G^<R<[𝑛(	𝑟	)] + 𝐸N^<R<[𝑛(	𝑟⃗	)]  (2.26) 

 

Analytically, the exchange term can be found; it is well determined and can be found in many 

academic books: [6, 12] 

𝐸G^<R<[𝑛(	𝑟	)] = −	
3
4	(

3𝑛(	𝑟	)
𝜋 )"/c  (2.27) 

 

Correlation energy for the system (𝐸N^<R<[𝑛(	𝑟	)]) term cannot be evaluated for analytically, 

but it can be obtained precisely utilizing numerical steps. The most prevalent and accurate 

method was done by Ceperly and Alder (CA) utilizing quantum Monte-Carlo simulations. 

There are multiple interpretations of the Monte Carlo data, an example is that the most used 

model was calculated by Perdew and Punger (PZ), who fitted the numerical data into an 

analytical expression and obtained [25, 26].  

𝐸N^<R<[𝑛(	𝑟	)]= 

z
−0.048 + 0.031 𝑙𝑛(𝑟<) − 0.0116	𝑟< + 0.002	 𝑙𝑛(𝑟<) 				𝑖𝑓	𝑟< < 1

					
		

																− 3."4*c
("d"..e*.	fD8d3.ccc4	D8

																																							𝑖𝑓	𝑟< > 1
~ 
 (1.28) 
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The above equation is done for values of r0 > 1 and that of r0 < 1. Where 𝑟< denotes the average 

radius of the electrons in the homogenous electron gas. r0 defined as( c
4g;

)"/c. 

The local density approximation (LDA) is simple although it is a well-known powerful 

functional which is accurate for graphite and carbon nanotubes where the electron density does 

not rapidly change. For atoms with d and f orbitals, a large error is predicted. The above 

functional to some reasonable extent has many problems, an example is that the band gap in 

semiconductors and insulators is typically not accurate with a large error within the range of 

0.5 to 2eV or 10-30%. For the above reason it is highly appropriate to utilize better functional 

[25, 27, 28]. 

 

 

2.7 Generalized Gradient Approximation (GGA). 

 

 

Local density function (LDA) considers all systems as units of homogenous systems, but the 

reality is that the systems are non-homogeneous. For one to constructively take this into 

account, a step may be taken beyond the LDA to expand it by including derivative of the density 

into the exchange-correlation functional. The workable way to do this is to include the gradient 

and the higher spatial derivatives of the total charge density. 

I.e. (|𝛻𝑛(	𝑟	)|, |𝛻*𝑛(	𝑟	)|, …) 

The total charge density is evaluated with the help of higher spatial derivatives into the 

approximation layout. The above functional is referred to as the generalized gradient 

approximation (GGA). For this scenario, there is conclusive expression for the exchange part 

of the functional and hence it has to be calculated along with the correlation contributions using 
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numerical analysis methods. Exactly as in the case of the local density function (LDA) many 

parameterizations are available for the exchange-correlation energies in the generalized 

gradient approximation (GGA) [29-32]. 

In this particular part, we will address the proposed functional from which is put forward by 

(PBE) Perdew, Burke and Ernzerhof [29]. There are two separated expressions in the given 

parameterization, the first expression is the exchange 𝐸G++a[𝑛(	𝑟	)] and demonstrated by:  

𝐸G++a[𝑛(	𝑟	)]𝐸G++a[𝑛(	𝑟	)] = e𝑛(	𝑟	)	𝐸G^<R<[𝑛(	𝑟⃗	)] 	𝐹G(𝑠)𝑑𝑟  (2.29) 

 

 

Additionally, 

𝐹G(𝑠) = 1 + 𝜅 − h
("d#P#)/h

  

Where  𝐹G(𝑠) is referred to as the enhancement factor,	𝜅 = 0.804, 𝜇 = 0.21951	, 𝑠 =

|𝛻𝑛(	𝑟	)/2𝑘P𝑛(	𝑟	)| denotes the dimensionless density gradient,𝑘P = �4	i9.:
gC8

, and  𝑘:!& =

("*/g)!/$

fD<
 is the Thomas-Fermi screening wavenumber, 𝑟P is the local Seitz radius. 

 

The next expression is the correlation energy	𝐸G++a[𝑛(	𝑟	)]. 

The correlation energy 𝐸G++a[𝑛(	𝑟	)]	is expressed by: 

𝐸N++a[𝑛(	𝑟	)] = e(𝐸N^<R<[𝑛(	𝑟	)] + 𝜒	[𝑛(	𝑟	)])𝑑𝑟⃗  (2.30) 

 

𝜒	[𝑛(	𝑟	)] = 8#

C8
	𝛾	𝑙𝑛	 �1 + j

k
	𝑡* 	 "daB#

"daB#da#B=
�	,  

𝐴 = j
k
	[	𝑒

l>?
@8A8[*(	1DD⃗ 	)]

G m!"
	]!"       
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Where:	𝛾 = (1 − 𝑙𝑛(2)/𝜋*, 𝑡 = |𝛻𝑛(	𝑟	)/2𝑘:!&𝑛(	𝑟	)| is another dimensionless density 

gradient, 

	𝛽 = 0.066725, and  𝑎3 =
ℏ

R8#
 . 

 LDA and GGA are the two most preferred and used approximations for the estimation of 

exchange-correlation energies in the DFT. Similarly, there are several other functionals that 

dominate both LDA and GGA. In the illustration, it is mathematically true that there is no 

robust theory for the validity of these functionals. It is calculated through testing the functional 

for various materials over a large range of systems then compared with results of provable 

empirical information for similar cases. 

 

2.8 SIESTA. 

 

 

In this thesis all calculations were done by the implementation of DFT in the SIESTA code. 

The calculations are used to obtain a relaxed geometry of the studied structures and to carry 

out the calculations to investigate their electronic properties.  SIESTA is a common acronym 

that was obtained from the Spanish Initiative for Electronic Simulations with Thousands of 

Atoms. The concept of SIESTA is a self-consistent density functional theory (DFT) method 

that utilize norm-conserving pseudo-potentials and a Linear Combination of Atomic Orbital 

Basis set (LCAOB) to obtain dependable outcomes for the calculations [33-40] . There are 

significantly two different modes to perform density function theory (DFT) simulations using 

SIESTA. The first one is that in which a conventional self-consistent field diagonalisation 

method to solve the Kohn-Sham equations while the second one is that whereby direct 

minimization of a modified energy functional [36].  This section is meant to give a description 

of some of the SIESTA’s components and how they are implemented within the given code.  
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Chapter 3  

 

3. Theory of single particle transport  

 

After representing the density Functional Theory concept for an isolated molecule's electronic 

structure, the next step is to link the isolated molecule to semi-infinite leads and then compute 

the probability of transmission through the system. This can be explained by using Green's 

function scattering equation.  

Here, I will discuss the methods based on scattering theory and Green's function methods. 

These methods describe the electric and thermoelectric properties of nanosized systems placed 

between two metallic electrodes. 
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3.1 Introduction  

 

As the primary numerical tool for studying a range of molecular geometrics, single-particle 

transport theory is introduced and includes a detailed investigation of electronic properties, [1]. 

The focus of molecular electronics is to understand molecular junctions' electronic structure. 

This molecule is connected between electrodes, and ballistic transport occurs through the 

molecules' energy levels. The lead and molecule are coupled weakly compared to an intra- 

electrode and inter-molecular binding strengths. One of the main problems in molecular 

electronics is how to bind the molecule to metallic or some other electrodes to probe its 

electronic properties. A scattering mechanism is involved because of the movement from the 

electrode to molecule and from molecule to electrode. The scattering mechanism from the 

electrode and the molecular bridge can be described by using a general Green's function 

formalism which successfully achieves this process. In this chapter, the derivation of the 

Landauer formula will be discussed, then a basic procedure of a retarded Green's function will 

be added, which is valid for a one-dimensional tight-binding chain. It is seen that the Green’s 

function is directly linked to the transmission coefficient via the scattering area by breaking the 

periodicity of this lattice at a single link. 
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3.2 The Landauer Formula  

 

To describe the transport to describe transport phenomena, The Landauer formula, [1-4], is 

used, and that happened in ballistic mesoscopic systems and is applicable for phase coherent 

systems, in which a single wave function sufficiently explains electronic flow resulting in an 

equation or formula that relates the conductance of system to the S-matrix of a scattering region 

connected to two semi-infinite leads. This method will be discussed in this chapter to calculate 

the transmission properties.  

 

 

 

  

 

 

Figure 3.1: A mesoscopic scatterer linked to contacts. Where 𝜇_	and 𝜇o 	 are the chemical 

potential in the left and right lead respectively. When an incident wave  𝑖(; collides with the 

scatterer from the left, the wave will be transmitted to the right with probability 𝑇 = U𝑡U
*
and 

reflected with probability 𝑅 = |𝑟|*. The fact that the incident electrons must be either reflected 

or transmitted, thus the probability conservation is 𝑇 + 𝑅 = 1. 

 

To understand the formula's main principles, I begin by considering a mesoscopic scatterer 

connected to two contacts, which work as electron reservoirs, resulting from two ideal ballistic 

leads as shown on the Figure 3.1. The reservoirs 3 are limited to all inelastic relaxation 

methods. These reservoirs contain slightly chemically different potentials that move electrons 

Scattering 
region 

Right Lead Left lead 

𝑡 𝑖(; 
 

𝑟 

Right contact 

𝜇o  

Left contact 

𝜇_  
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from the left reservoir to the right. In the case of one open channel, the zero-temperature 

incident electric current produced by the potential chemical difference:   

δI = e𝑣O 	�	
∂n
∂E	�

(µL − µR) 

 

(3.1) 

  

Where, e denotes the electronic charge,  𝑣O  is the group velocity, and 𝜕𝑛/𝜕𝐸 is the density of 

states (DOS). The system is defined as one dimensional, then we can write: 

 
∂n
∂E =

∂n
∂k	

∂k
∂E =

∂n
∂k

1
𝑣ℏ 

 

(3.2) 

   

!"
!#
= $

%
 ,  !"

!#
= $

&ℏ
  (3.3) 

 

 The equation 3.3 is one-dimension, since the group velocity is defined as	𝜐 = "
ℏ
	pq
pr
	, where a 

factor of two for spin is added, the equation cab be written as: 

𝛿𝐼 =
2𝑒
ℎ
(𝜇_ − 𝜇o) =

2𝑒*

ℎ 𝛿𝑉 

 

(3.4) 

 

Here, 𝛿𝑉  denotes voltage which corresponds to the potential chemical difference. It is 

noticeable from the equation 3.4, in the absence of a scattering region, the conductance of one 

open channel is	*8
#

^
, and this around 77	𝜇𝑆,	where the resistance is ^

8#
, this approximately 
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12.9	𝑘Ω.  When the scattering region is assumed in the system, the current is partially reflected 

with a probability 𝑅 = |𝑟|* and partially transmitted with a probability 𝑇 = U𝑡U
*
. The current 

that will travel to the scatterer to the right side of the lead is: 

 

δI =
2𝑒*

ℎ 	𝑇𝛿𝑉 →
𝛿𝐼
𝛿𝑉 =

2𝑒*

ℎ 	𝑇 
(3.5) 

 

The equation 3.5 is the Landauer formula where conductance is	𝐺 = �*8
#

ℎ
	� 𝑇 . And the 

transmission coefficient is predicted at the Fermi energy [5]. Then, Buttiker, in 1985, has 

generalized the Landauer formula to more than one open channel [3].  Here the transmission 

coefficient can be replaced by the sum of all the transmission amplitudes representing the 

electrons going from the left contact and reaching to the right contact.  

The equation 3.5 of Landauer formula for many open channels becomes:  

δI
𝛿𝑉 = 𝐺 =

2𝑒*

ℎ M |𝑡(,)|*
(,)

=
2𝑒*

ℎ 𝑇𝑟𝑎𝑐𝑒(𝑡𝑡s) 
(3.6) 

 

Where 𝑡(,) denotes the amplitude of transmission representing scattering from the jth channel 

of the left lead to ith channel of the right lead, G is the electrical conductance and 𝑟(,)	is the 

reflection amplitudes which describe how the electron travels through scattering region in the 

opposite direction. The scattering S matrix involving the electron coming from the left lead and 

the right lead can be described by combining the transmission and reflection amplitudes as 

follows: 

𝑆 = �𝑟 t′
𝑡 r′

�  (3.7) 



 55    
 
 

 

Where, 𝑟	and 𝑡 describe the electrons coming from the left, while r′ and t′ represent electrons 

coming from the right. In the equation 3.8	𝑟,𝑡,	r′and t′ are consider as complex matrices that 

for more than one open channel and because of the conservation satisfy SS+=I. 

 

3.3 Thermoelectric Coefficients 

 

 

The Seebeck, Peltier, and Thompson effects at the turn of the nineteenth century formed the 

links between heat, current, temperature, and voltage [1]. The Seebeck effect describes the 

generation of electrical current due to a temperature difference, while the Thompson and Peltier 

effects explain the cooling or heating of a current-carrying conductor [6]. A more general 

mechanism can be considered in which the temperature differential is	∆𝒯, and there is a 

theoretical drop ∆𝑉 in the system, causing the flow of both heat currents and charge. The 

generalized Landauer-Büttiker formulae will be shown for heat (Q) and charge (I) and currents 

within the linear basis and temperature regime to establish expressions for the thermoelectric 

coefficients of a device having two terminals. The system is comprised of a scattering region 

that has connections to two leads, which are themselves connected to a pair of electron 

reservoirs. These reservoirs are constructed using the chemical potential  𝜇_ and	𝜇o, 

temperature 𝒯_ and𝒯o, and the Fermi distribution function [6]: 

𝑓( 	(𝐸) = ¦1 + 𝑒
I!#H
iI𝒯H §

!"

        (3.8) 
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Assuming that the reservoirs and leads are connected so that scattering does not occur at their 

interface, this can be claimed that the central scattering area is the cause of all scattering effects. 

The right moving charge current of an individual k-state emerging from the left reservoir can 

be expressed in terms of the number of electrons per unit length𝑛, the Fermi distribution	𝑓_, the 

group velocity	𝜈O, and the transmission coefficient 𝑇(𝐸) of the scattering zone (𝐸). 

		𝐼id = 𝑛𝑒𝜈O(𝐸(𝑘))	𝑇©𝐸(𝑘)ª		𝑓_(𝐸(𝑘))                         (3.9) 

 

Thus, the total charge current can be determined from the right moving states by summing all 

positive k states, then converting the result into the integral form, where 𝑛	 = 	1/𝐿 for the 

electron density and 𝜈O =
"
ℏ
	uI(i)
ui

. 

𝐼id =M𝑒	
1
𝐿	
1
ℏ	
𝜕𝐸(𝑘)
𝜕𝑘 	𝑇(𝐸(𝑘))	𝑓_(𝐸(𝑘)) =

i

	e
2𝑒
ℎ 	𝑇(𝐸)

dv

!v
𝑓_(𝐸)	𝑑𝐸      (3.10) 

 

Similarly, we obtain the following for the left moving states: 

𝐼i! =	e
2𝑒
ℎ 	𝑇(𝐸)

dv

!v
𝑓o(𝐸)	𝑑𝐸       (3.11) 

 

Thus, the total right-moving current can be represented as: 

𝐼 = 𝐼d − 𝐼! =	
2𝑒
ℎ e 	𝑇(𝐸)

dv

!v
(𝑓_(𝐸) − 𝑓o(𝐸))	𝑑𝐸       (3.12) 

 



 57    
 
 

 

The equation 3.12 is denoted by the Landauer-Bttiker formula.  

An equivalent derivation can be provided for the identical system's heat current (alternatively, 

energy current) by starting with the relation 𝒬 = 𝐸𝑛𝜈O	rather than = 𝑛𝑒𝜈O.  The final result is 

close to the previous results, but it involves two additional energy terms: 

𝒬 = 𝒬d − 𝒬! =	
2
ℎe 	𝑇(𝐸)

dv

!v
((𝐸 − 𝜇_)𝑓_(𝐸) − (𝐸 − 𝜇o)𝑓o(𝐸))	𝑑𝐸 

Where,  

𝑓_(𝐸) = ­1 + 𝑒
>.J.∆J#
LIM𝒯O

∆𝒯
# P®

!"

,  𝑓_(𝐸) = ­1 + 𝑒
>.J.∆J#
LIM𝒯O

∆𝒯
# P®

!"

, 

𝜇_ = 	𝜇 +
∆𝜇
2 , 𝜇o = 	𝜇 −

∆𝜇
2  

Buttiker, Imry, Landauer, et al. [7-10], relate the electric current I and heat current (Q) flowing 

through a system to the voltage difference ∆𝑉 and temperature difference ∆	𝒯 in the linear-

response regime. As a result, the thermoelectric coefficients	𝐺, 𝐿,𝑀, and 𝐾 are related to both 

currents and temperature and potential differences [1 and 11-12]: 

�
𝐼
𝑄̇� = �𝐺 𝐿

𝑀 𝐾� �
∆𝑉
∆𝒯� 

 
          (3.13) 

 

In the absence of a magnetic field, the thermoelectric coefficients 𝐿 and 𝑀 are related by the 

Onsager relation:  

𝑀 = −𝐿𝒯 
 

              (3.14) 
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  In the equation 3.14, 𝒯 denotes temperature. In the rearranging of these equations, the 

measurable thermoelectric coefficients, electrical resistance𝑅	 = 	1/𝐺, thermopower	𝑆 =

−∆𝑉 ∆𝒯⁄ , Peltier coefficient, and the thermal constant 𝑘 can be used to express the current 

relations: 

�
∆𝑉
𝑄̇ � = ³

1
𝐺

−
𝐿
𝐺

𝑀
𝐺 𝐾 −

𝐿𝑀
𝐺

´� 1∆𝒯� = �𝑅 𝑆
𝛱 −𝐾� �

1
∆𝒯� 

 

          (3.15) 

 

In the absence of an electrical current, the thermopower 𝑆 is described as the potential decrease 

due to a temperature difference: 

𝑆 = −�∆𝑉∆𝒯�w93
=
𝐿
𝐺′ 

 

           (3.16) 

 

In the absence of a temperature differential, the Peltier coefficient 𝛱 is described as the heat 

transferred solely due to the charge current: 

𝛱 = ¦
𝑄̇
𝐼 §

x𝒯93
=
𝑀
𝐺 = −𝑆𝒯 

 

        (3.17) 

 

Eventually, in the absence of an electric current, thermal conductance k is described as the heat 

current due to temperature drop: 

𝑘 = −� 𝑄̇
∆𝒯
�
w93

= −¦1 +
𝑆*𝐺𝒯
𝑘 § 

 

(3.18) 
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Consequently, evaluating 𝑆 or 𝛱 provides insight into the system's ability to perform as a heat-

driven current generator or a current-driven cooling device. 

Furthermore, the thermoelectric figure of merit, 𝑍𝒯 [13, 14], can be described in terms of these 

measurable thermoelectric coefficients: 

𝑍𝒯 =
𝑆*𝐺𝒯
𝑘  (3.19) 

 

The 𝑍𝒯 is determined in classical electronics by calculating the maximum induced temperature 

difference caused by an applied electrical current in the presence of Joule heating. By 

considering a current-carrying conductor is placed between two heat baths  𝒯_ and	𝒯o, and 

electrical potentials 𝑉_ and	𝑉o, respectively. 

The thermoelectric figure of merit can be calculated by determining the conductor's maximum 

induced temperature difference caused by an electrical current. By defining (𝑄̇̇ ) as the gain in 

heat from bath  𝐿 to	𝑅, then from equation (3.13) we obtain: 

𝑄̇ = 𝛱	𝐼 − 𝑘𝛥𝒯 
 

  (3.20) 

 

This heat transfer results in the left bath cooling and the right bath heating, causing 𝛥𝒯 

increases. The sum of Joule heating can be calculated using the formula	𝑄̇y = 𝑅𝐼*, which is 

proportional to both the electrical resistance and the current square. This Joule heating also 

affects the temperature difference generated by heat transfer, and therefore in the steady state 

case: 

𝛱	𝐼 − 𝑘𝛥𝑇 =
𝑅	𝐼*

2  
 

  (3.21) 
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Where 𝑅/2 denotes the sum of two parallel resistances (internal and external resistance). 

The temperature difference becomes:  

𝛥𝒯 =
1
𝑘 ¦𝛱	𝐼 −

𝑅	𝐼*

2 § 
     
(3.22) 

 

The equation 3.15 represents the relationship between temperature difference and current. The 

derivative of the equation 3.16 can determine the maximum	∆𝒯: 

𝜕∆𝒯
𝜕𝐼 =

𝛱 − 𝐼𝑅
𝑘 = 0 

                       (3.23) 

 

To obtain the maximum	∆𝒯, we insert 𝐼 = Π	/𝑅  and substituting the equation 3.17 into the 

equation 3.23. 

(∆𝒯)RCG =
𝛱*

2𝑘𝑅 =
𝑆*𝒯*𝐺
2𝑘                 (3.24) 

 

(∆𝒯)RCG
𝒯 =

𝑆*𝒯*𝐺𝒯
2𝑘 =

1
2𝑍 

  (3.25) 

 

Giving a dimensionless number that can be used to describe a molecular device's 'efficiency'. 
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3.3 Theory of electron transport 

 

To investigate electron transport, it is important to understand the transmission probability, 

which is related to the conductance 𝐺 at the Fermi energy 𝐸 by the Landauer formula [15, 16]. 

𝐺 = 𝐺3𝑇(𝐸) 

   

(3.26) 

 

The equation 3.26 shows the electric conductance 𝐺 as a function of energy and the quantum 

conductance is described by 𝐺3 =
*8#

^
	 where e represents the electron charge and ℎ is the 

Planck’s constant. Also, 𝑇(𝐸) is the transmission coefficient as a function of energy, and it can 

be defined as the probability that an electron with energy E can transfer from one electrode to 

the other. This refers to the scattering formalism seen in the schematic below 

 

 

 

 

 

 

 

 

Figure 3.2: Representation of the transport mechanism. It shows combination of mathematical 

and physical structure. This mechanism contains two types of probabilities as of 𝑅	and	𝑇. 

U𝑡U
*
+ |𝑟|* = 1            𝑇 + 𝑅 = 1 



 62    
 
 

 

 

3.4 Scattering Theory  

 
3.4.1 One dimensional (1-D) linear crystalline lattice 
 

It helps calculate the scattering matrix for a simple one-dimensional structure to provide a 

simple and straightforward outline of the methodology used before representing a generalized 

methodology, [1]. In this calculation, Green’s function is utilized for derivation. Moreover, a 

simple tight-binding model in periodic systems is considered to provide a qualitative view of 

electronic systems' calculations. Each atom contains a single atomic orbital of energy and is 

the first nearest neighbour coupling or hopping element, as shown in the Figure 3.3.  

 

 

 

 

Figure 3.3: Representation of a tight-binding model of a (1-D) periodic lattice with energy site 

and hopping elements is the label of our atoms. 

The system is described by the Hamiltonian H, which is  

𝐻 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−∞ . . . . . . . .
. . . . . . . . .
. . 𝜀0 −𝛾 0 0 0 . .
. . −𝛾 𝜀0 −𝛾 0 0 . .
. . 0 −𝛾 𝜀0 −𝛾 0 . .
. . 0 0 −𝛾 𝜀0 −𝛾 . .
. . 0 0 0 −𝛾 𝜀0 . .
. . . . . 0 −𝛾 . .
. . . . . . . . +∞⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

Then, the Schrodinger equation is used to obtain 𝑍 row of the Hamiltonian: 

𝒁 − 𝟏 𝒁 𝒁 + 𝟏 
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𝜀3	𝜓z − γ𝜓zd"– 	γ	𝜓z!" = 		𝐸	𝜓z 

   

(3.27) 

 

𝜓z = 𝑒(iz   

 

(3.28) 

 

Where,  𝜓z is a wave function of this system, this only needs to satisfy criteria of the 

Schrodinger equation 3.28.  

By substituting a plane wave the equation 3.28 into the equation 3.27 leads to the dispersion 

relation in the equation 3.30. Where we assume γ= γ*.   

 

𝐸 = 𝜀3 − 2γ	cos	(k) 

   

(3.29) 

 

Here, the wave number is described by the quantum number (k), while the wave function is 

related to the retarded Greens function defined as	g(z, z′). The method solves the same 

equation, as the Schrödinger equation. 

(𝐸 − 𝐻)	𝑔(𝑧, 𝑧?) = 𝛿{K,K&|
−𝛾𝑔(𝑧 − 1, 𝑧?) + (𝐸 − 𝜀3)	𝑔(𝑧, 𝑧?) − 𝛾	𝑔(𝑧 + 1, 𝑧?) = 𝛿(K,K&)

È 

   

(3.30) 

 

Where	𝛿(K,K&) = 1, if 𝑧 = 𝑧? , And	𝛿(K,K&) = 0, if 𝑧 ≠ 𝑧? . 
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The amplitude at the point z is consider to be the Green's function g (z,z') of a system , caused 

by an excitation at point z'. Two waves would be produced due to this excitation, and travel 

through the points of the excitation. The Figure 3.3 shows the amplitudes B and D. 

 

 

 

 

 

 

Figure 3.3: Representation of retarded Green’s function. This contains an infinite one- 

dimensional lattice. Through excitation point at z=z', the wave is propagated towards the left 

and right sides. These waves have amplitude 𝐵 and 𝐷 respectively. 

 

Figure 3.3 shows the two waves moves outward from the excitation point with their amplitudes  

𝐵 and	𝐷	. Consequently, the two waves can be written as: 

𝑔(𝑧, 𝑧?) = Ë 𝐷	𝑒
(iK , 𝑧 ≥ 𝑧?

𝐵	𝑒!(iK , 𝑧 ≤ 𝑧?
					 

							   

(3.31) 

 

The fact that the equation 3.31 satisfy the equation 3.30 at every point. However, the conditions 

at point	𝑧 = 𝑧? is not satisfied where the Green’s function must be continuous at this point (𝑧 =

𝑧?). 

 

𝐷 𝐵 

Moving to the right Moving to the left 

𝑧 = 𝑧? 
𝑍 

Excitation point 
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[𝑔(𝑧, 𝑧?)	]_8MB = [𝑔(𝑧, 𝑧?)]o(O^B	 

							   

(3.32) 

  

𝐵	𝑒!(iK& = 𝐷	𝑒(iK& 		 

						   

(3.33) 

 

𝐵 = 𝑒*(iK& 	 

								   

(3.34) 

 

Now, we obtain the following: 

𝑔"𝑧, 𝑧′#

= $𝐷	𝑒
𝑖𝑘𝑧 	= 𝐷	𝑒𝑖𝑘𝑧′𝑒𝑖𝑘(𝑧−𝑧′)																																																					𝑧 ≥ 𝑧′

𝐷	𝑒2𝑖𝑘𝑧′𝐷	𝑒2𝑖𝑘𝑧′ = 𝐷	𝑒𝑖𝑘𝑧′𝑒𝑖𝑘(𝑧
′−𝑧) = 𝐷	𝑒𝑖𝑘𝑧′𝑒𝑖𝑘(𝑧

′−𝑧)							𝑧 ≥ 𝑧′
	 

								   

(3.35) 

 

We can see that the power of the complex exponent is always positive, thus the simplified 

form can be described as: 

𝑔"𝑧, 𝑧′# = 	𝐷	𝑒𝑖𝑘𝑧′𝑒𝑖𝑘	|𝑧
′−𝑧|						   (3.36) 

 

In addition, this equation must fulfil the Green's function, (𝐸 − 𝐻)𝑔(𝑧 − 𝑧?) = 	𝛿(K,K&): 

𝛿𝑧,𝑧′ = 𝐸𝑔"𝑧, 𝑧′#− 𝜀0𝑔"𝑧 − 𝑧′#+ 𝛾𝑔"𝑧 + 1, 𝑧′#+ 𝛾𝑔"𝑧 − 1, 𝑧′#	 

								   

(3.37) 
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Thus, we obtain the solution at 𝑧 = 𝑧? to be: 

1 = (𝐸 − 𝜀3)𝑔(𝑧, 𝑧) + 𝛾𝑔(𝑧 + 1, 𝑧?) + 𝛾𝑔(𝑧 − 1, 𝑧?) 

				 

					= 𝐷	𝑒(iK&[(𝐸 − 𝜀3)]𝑒(i	|K!K| + 𝛾𝑒(i	|Kd"	K| + 𝛾𝑒(i	|K!"	K|								   

(3.38) 

 

When we solve it for 𝐷	𝑒(iK& .	we get: 

1
𝐷	𝑒(iK&

= (𝐸 − 𝜀3) + 𝛾𝑒(i + 𝛾𝑒(i 

= (𝐸 − 𝜀3) + 𝛾𝑒(i + 𝛾𝑒(i + 𝛾𝑒!(i + 𝛾𝑒!(i 

= 𝛾𝑒𝑖𝑘 − 𝛾𝑒−𝑖𝑘																																																																					 

𝐷𝑒!"#! =
1

2𝑖𝛾sin	(𝑘)			 
(3.39) 

 

Starting from the group velocity	ℎ𝑣O = 2𝛾	sin	(𝑘), we can express the Green’s function for a 

one-dimensional chain as: 

𝑔o(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

𝑒(i	|K!K&|				 (3.40) 

 

Here, several solutions of this problem are reported in the literature [4, 17- 19]. In the equation 

above, we solved this problem using the retarded Green’s function 	𝑔o(𝑧, 𝑧?) . Nevertheless, 

the advanced Green’s function 𝑔a(𝑧, 𝑧?) is an equally true solution; 

𝑔a(𝑧, 𝑧?) =
−1
𝑖ℏ𝑣O

𝑒(i	�K!K&� =
−𝑖
ℏ𝑣O

𝑒(i	�K!K&� 

		 

(3.41) 
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We can say that, Outgoing waves from an excitation point (z=z ') are represented by the 

retarded Green function, however two incoming waves that vanish at the excitation point is 

represented by the advanced Greens’ function. Thus, the retarded Green’s function will be used 

for the simplicity. We Then delete the 𝑅 from the expression to be as (𝑧 − 𝑧?) = 𝑔o(𝑧, 𝑧?) ,[1]. 

3.4.2 Semi-infinite one-dimensional lattice 
 

 

 

 

Figure 3.4: Representation of tight-binding model of a semi-infinite one-dimensional lattice. 

This system contains of energy site 𝜀3	and hopping elements (𝛾). 

 

First, we aim to satisfy the boundary condition (B.C). This will be done by introducing another 

plane wave component with a new amplitude [1]: 

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

𝑒(i	|K!K&|	 + 𝐴𝑒!(i	|K!K&|				 

			 

(3.42) 

 

  By using the condition (z, 𝑧3) = 0	, z ≤ z′ , we obtain: 

𝑔(𝑧, 𝑧3) =
1
𝑖ℎ𝑣O

𝑒(i	(KR!�)	 + 𝐴𝑒!(i(KR!�)	  

														… 				𝑍 − 3				𝑍 − 2				𝑍 − 1   𝑍3 



 68    
 
 

𝐴 =
1
𝑖ℎ𝑣O

𝑒*(i	(KR!�)				 

 

 

(3.43) 

 

Now, we substituting this back into the Green’s function to find: 

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

𝑒(i	{K&!�| −
1
𝑖ℎ𝑣O

𝑒*(i	(K!KR)𝑒!(i	{K&!�| 

 

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

[𝑒(i	(K&!�)	 − 𝑒(i	{*KR!K!K&|]		 

			 

(3.44) 

 

Then, we apply the second condition which is any any point beyond (𝑧3 − 1)	does not have 

effect from a source in the chain. Thus, it is expected that g(𝑧3, z) 	= 	0	 if if z ≥ z′	and	z	 =

z3	. According to this condition, we find: 

𝑔(𝑧3, 𝑧) =
1
𝑖ℎ𝑣O

𝑒(i	(KR!K&)	 − 𝐴𝑒!(i	(KR!K&)	 

𝐴 = −
1
𝑖ℎ𝑣O

𝑒*(i	{KR!K&|			 

			 

 

(3.45) 

 

When we substituting this back into the Green’s function, we obtain: 

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

𝑒(i	(K!K&)	 −
1
𝑖ℎ𝑣O

𝑒*(i	{KR!K&|	𝑒!(i	{K!K&|														 

 

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

Î𝑒(i	{K!K&| − 𝑒(i	{*KR!K!K&|Ï			 (3.46) 
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In order to summarize these two equations, we write the following: 

⎩
⎪
⎨

⎪
⎧ 1
𝑖ℎ𝑣O

Î𝑒(i	{K!K&| − 𝑒(i	{*KR!K!K&|Ï, 𝑧 ≥ 𝑧?

1
𝑖ℎ𝑣O

Î𝑒(i	{K&!K| − 𝑒(i	{*KR!K!K&|Ï, 𝑧 ≤ 𝑧?	
					 

(3.47) 

 

Moreover, the above equation can be expressed as  

𝑔(𝑧, 𝑧?) =
1
𝑖ℎ𝑣O

Î𝑒(i	�K!K&� − 𝑒(i	{*KR!K!K&|Ï = 𝑔K,K&
v +ΨK,K&

KR 					 (3.48) 

 

 

3.4.3 One dimensional (1-D) scattering 
 

 

In this section, we will give a simple example, the surface Green’s function is calculated with 

the site𝑧 = 𝑧3 − 1. So, the surface Green’s function can be expressed as the following [1]: 

𝑔(𝑧3 − 1, 𝑧3 − 1	)

=
1
𝑖ℎ𝑣O

Î𝑒(i	|KR!",KR!"| − 𝑒(i	(*KR!KRd"!KRO!)Ï			 

(3.49) 

 

Now, we simplified this form to get: 

𝑔(𝑧3 − 1, 𝑧3 − 1	) = 	
1
𝑖ℎ𝑣O

− 2𝑖 sin(𝑘) 𝑒(i					 (3.50) 

 

𝑔(𝑧3 − 1, 𝑧3 − 1	) = 	
2𝑖	sin	(𝑘)
2𝑖	𝛾	sin	(𝑘) 𝑒

(i	 =	−
𝑒(i	

𝛾 				 
(3.51) 
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3.4.4 One-dimensional (1-D) Scattering Using Green’s functions 
 

 

 

 

 

Figure 3.5: Representation of tight binding model of two semi-infinite leads with one site 

energies 𝜀3 and couplings –γ, coupled by hopping element –α. 

 

Here in this example, we two semi-infinite one-dimensional leads both leads are equal with 

𝜀3	on-site potential and –γ hopping elements. In the case of decoupled leads	(𝛼 = 0)	, the total 

Green function is obtained and it is described by [1]; 

𝑔 =

⎝

⎜
⎛
𝑒(i

𝛾 0

0 −
𝑒(i

𝛾 ⎠

⎟
⎞
				 

(3.52) 

 

Since we have the two decoupled semi-infinite leads, the Green’s function is written as 𝑔 =

(𝐸 − ℎ")!"	where ℎ"	is the Hamiltonian of two decoupled semi-infinite leads. Thus, we have 

created an infinite matrix for determining this Hamiltonian ℎ"	as: 

ℎ" =

⎝

⎜
⎛
. . 0 0 0
. 𝜀3 −𝛾 0 0
0 −𝛾 𝜀3 −𝛾 0
0 0 −𝛾 𝜀3 −𝛾
0 0 0 0 . ⎠

⎟
⎞
								 

(3.53) 

𝜀3 
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By connecting the two leads by a hopping element, the Hamiltonian for whole system is 𝐻 =

ℎ" + ℎ3 where ℎ3	represents the coupling parameters 

ℎ3 = �0 𝛼
𝛼 0� 

																																																			 

(3.54) 

 

Now we use Dyson’s equation to obtain The Green’s function for coupled system: 

𝐺 = (𝐸 − 𝐻)!" = (𝐸 − ℎ" − ℎ3)!" 

 

(3.55) 

 

𝐺 = (𝑔!" − ℎ3)!" 

 

(3.56) 

 

The solution would be as follows: 

𝐺 =

⎝

⎜
⎛

⎝

⎜
⎛−

𝑒(i

𝛾 0

0 −
𝑒(i

𝛾 ⎠

⎟
⎞

!"

−�0 𝛼
𝛼 0�

⎠

⎟
⎞

!"

				 

(3.57) 

 

𝐺 =
1

𝛾*𝑒!*(i − 𝛼 ¦
−𝛾𝑒!(i 𝛼
𝛼∗ −𝛾𝑒!(i

§	 
(3.58) 

 

Now, we calculate the Greens’ function described in the equation (3.58) and apply them to the 

Fisher Lee relation to calculate transmission t⃗ and reflection r⃖ amplitudes. Fisher Lee relation 
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determines the scattering amplitudes of the scattering problem by relating it to the Green’s 

function of the same problem. 

By determining the Green’s function components from equation (3.58), transmission and 

reflection coefficients can be defined. When we send two waves moving outwards starting from 

source (the excitation point), one away from the scatter and one towards the scatter with 

amplitude B and D respectively. Consequently, the Green's function represents two waves: a 

left wave or a reflected wave (𝐷𝑒!�q��!�&� + 𝐵𝑟𝑒�q��!�&�)	and a right wave or a transmitted 

wave	(𝐵𝑟𝑒�q��!�&�). Here we use 𝑡 to describe transmitted right wave and 𝑟⃖ to represent 

reflected left wave where arrows are pointing directions of amplitudes. 

1 + 𝑟 = −𝑖ℎ𝑣O
𝛾	𝑒!(i

𝛾*𝑒!*(i − 𝛼*	 
(3.59) 

 

𝑡 = 𝑖ℎ𝑣O
𝛼	𝑒(i

𝛾*𝑒!*(i − 𝛼*		 
(3.60) 

 

Now, we calculate the transmission and reflection probabilities as the following: 

𝑇 = |t|* and 𝑇 = |r|* 

Finally, the conductance of the system can be calculated by using the Landauer formula 

 𝐺 = 𝐺3𝑇(𝐸). 
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Chapter 4 

 

Multi-Component Self-Assembled Molecular-Electronic Films - Towards New High-

Performance Thermoelectric Systems. 

 

This work was a collaboration between the group of Prof. Nicholas Long (Department of 

Chemistry, Imperial College London), who synthesised the anthracene molecules and Dr. 

Benjamin Robinson (Physics Department, Lancaster University), who conducted the 

experiments. Theoretical work was carried out at Lancaster as well. This work will be 

published soon in the name of Multi-Component Self-Assembly on a Surface - Towards New 

Thermoelectric Systems. 

 

Troy L. R. Bennett, Majed Alshammari, Ahmad Almutlg, Xintai Wang, Ali Ismael, Luke A. 

Wilkinson, Andrew J. P. White, Tim Albrecht, Samuel Jarvis, Lesley F. Cohen, Colin J. 

Lambert, Benjamin J. Robinson and Nicholas J. Long (2021). Multi-Component Self-Assembly 

on a Surface - Towards New Thermoelectric Systems. 
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4.1 Motivation  

 

 

The thermoelectric properties of parallel arrays of organic molecules on a surface offer the 

potential for large-area, flexible, solution processed, energy harvesting thin-films, whose room-

temperature transport properties are controlled by quantum interference (QI). Recently, it has 

been demonstrated that constructive QI (CQI) can be translated from single molecules to self-

assembled monolayers (SAMs), boosting both electrical conductivities and Seebeck 

coefficients 𝑆. However, these CQI-enhanced systems are limited by rigid coupling of the 

component molecules to metallic electrodes, preventing the introduction of additional layers 

which would be advantageous for their further development. These rigid couplings also limit 

our ability to suppress the transport of phonons through these systems, which could act to boost 

their thermoelectric output, without comprising on their impressive electronic features. Here, 

through a combined experimental and theoretical study, we show that cross-plane 

thermoelectricity in SAMs can be enhanced by incorporating extra molecular layers. We utilize 

a bottom-up approach to assemble multi-component thin-films that combine a rigid, highly 

conductive ‘sticky’-linker, formed from alkynyl-functionalised anthracenes, and a ‘slippery’-

linker consisting of a functionalized metalloporphyrin. Starting from an anthracene-based 

SAM, we demonstrate that subsequent addition of either a porphyrin layer or a graphene layer 

increases the Seebeck coefficient 𝑆, and addition of both porphyrin and graphene leads to a 

further boost in their Seebeck coefficients. This demonstration of Seebeck-enhanced multi-

component SAMs is the first of its kind and presents a new strategy towards the design of thin-

film thermoelectric materials. 
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4.2 Studied Molecules  

 

Starting with the DFT code SIESTA [1], the isolated molecules' optimum geometries are 

achieved by relaxing the molecules. These relaxed molecules are obtained until all atoms' 

forces were less than 0.01 eV / Å [2-5]. A double-zeta plus polarization orbital basis set, norm-

conserving pseudopotentials, and energy cut-off of 250 Rydbergs defining the real space grid 

were used and the Generalized Gradient Approximation (GGA) was chosen as the exchange-

correlation functional [6-7]. Figure 4.1 illustrates the studied structures, where 1, 2 and 3 are 

9,10 anthracene-based molecules with Py-SMe, pristine 2SMe and 2Py anchor groups 

respectively, while 4 is 1, 5 anthracene-based molecule with 2Py anchor group.  

 

 

 

 

 

 

 

 

Figure 4.1. 1: 9, 10 Anthracene-based molecule with pyridyl and thioether anchor groups (Py-

SMe), 2. 1, 9 Anthracene-based molecule with pristine thioether anchor group (2SMe), 3: 9, 

10 Anthracene-based molecule with pristine pyridyl anchor group (2Py), 4. 1, 5 Anthracene-

based molecule with pristine pyridyl anchor group (2Py). 

 

 

3 2 4 1 
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4.3 Frontier orbitals 

 

To have a better understanding of the electronic properties of these structures (see Figure 4.1), 

the methods introduced in chapter 2 have been employed. Thus, I will investigate the wave 

functions of the four anthracene-based molecules  

 Figures 4.2-4.5, illustrate the frontier orbital for the studied molecules 1-4 (see Figure 4.1). 

Highest occupied molecular orbitals (HOMO), lowest unoccupied orbitals (LUMO), HOMO-

1 and LUM+1 along with their energies are calculated. The red and blue colour correspond to 

the regions in space of positive and negative orbital amplitude. Quantum interference (QI) is 

expected to occur in this type of molecules (multipath). According to the product rule (PR), 

[8]. Figures 4.2-4.5 predict there is a constructive quantum interference (CQI), for the four 

molecules. Later on, I will check this prediction against the DFT results. 

 

 

 

 

 

 

 

 

 

1 
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Figure 4.2: Wave function of 1. Top panel: fully optimised geometry of 1. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 1 along with their energies. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Wave function of 2. Top panel: fully optimised geometry of 2. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 2 along with their energies. 
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EF =-3.99 eV 

HOMO= -4.70 eV  LUMO= -3.20 eV 

HOMO-1= -5.30 eV LUMO+1= -1.81 eV 
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Figure 4.4: Wave function of 3. Top panel: fully optimised geometry of 3. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 3 along with their energies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Wave function of 4. Top panel: fully optimised geometry of 4. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 4 along with their energies. 

 

I aim to combine these four anthracene-based molecules (see Figure 4.1) with porphyrin (Zn-

TPP), graphene sheet (G), and both (Zn-TPP+ G), as shown in Figure 4.6. Thus, I consider 

three cases, case-1 bare anthracene-based molecules, case-2 anthracene-based molecules with 

Zn-TPP, and case-3 combine both Zn-TPP and G with the anthracene-based molecules. To do 

this, I start first by calculating the binding energy to know whether in real life the 

multicomponent prefers to combine or not? I will discuss that thoroughly, in the next section.   

HOMO= -4.82 
eV LUMO= -2.96 eV  

LUMO+1=-2.30 eV 
HOMO-1= -5.28 eV 

4 
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Figure 4.6: Top panel: 1: 9, 10 Anthracene-based molecule (Py-SMe), 2: 9, 10 Anthracene-

based molecule (2SMe), 3: 9, 10 Anthracene-based molecule(2Py), 4: 1, 5 Anthracene-based 

molecule (2Py).  Lower panel: Finite graphene sheet (Gr), porphyrin Zn-TPP (P), left to right.  

 

 

 

4.4 Counterpoise method  
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 The DFT method can be used to calculate the binding energy between different parts of a 

configuration. This is achieved by calculating the ground state energy of the whole and then 

the energy of the individual components. However, these calculations are subject to errors 

using a DFT code such as SIESTA, [1]. which uses localised basis sets that are focused on the 

nuclei. When atoms are close to each other, their basis functions will overlap, which leads to 

the strengthening of atomic interactions, and this could affect the total energy of the system. 

Generally, the Basis Set Superposition Error correction (BSSE) [9] or the counterpoise 

correction [10] helps to solve this type of error.   

    Let us consider two component systems which are labelled as A and B; the binding energy 

of the interaction can be defined as: 

 

Where	𝐸a�a� is the total energy for the dimer system A and B, and the 𝐸SS	, 𝐸TT is the total energy 

of the total isolated components. Here the superscript denotes the basis set used in each 

calculation i.e. 𝐴 is just the basis set of system 𝐴, 𝐵 is the basis set of 𝐵 and 𝐴𝐵	is the combined 

basis set of both 𝐴 and 𝐵. 

   To remove the numerical errors, the energy calculations are performed in the same total basis 

set 𝐴𝐵. This is achieved in SIESTA by using ‘ghost’ states; (basis set functions which have no 

electrons or protons); to evaluate the total energy of the systems A and B in the dimer basis. 

This is formulated by the following equation,  

	

Here the 𝐸SST	, 𝐸TST, is both the energy of the system A and B evaluated based on the dimer. This 

method provides accurate and reliable results for different systems. 

∆𝐸(𝐴𝐵) = 𝐸a�a� − 𝐸aa − 𝐸��  4.1  

∆𝐸(𝐴𝐵) = 𝐸a�a� − 𝐸aa� − 𝐸�a�  4.2 
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4.4.1 Binding energy of multicomponent 
 

 

In this section, four binding energies are calculated to find the optimum distance between the 

components, B1: anthracene molecule and graphene sheet (Gr), B2: anthracene molecule and 

porphyrin molecule (Zn-TPP), B3: B2 (anthracene+ Zn-TPP), and Gr. B4: anthracene (2SMe) 

and (Zn-TPP), as shown in Figures 4.7- 4.10.  

 

In Figure 4.7, a graphene sheet (Gr) is attached to the anthracene, as shown in the right 

panel. The binding energy as a function of the optimum distances has been obtained. B1 (Py-

Gr) shows that a value of 𝑑 = 3.0 Å gives the optimum distance between the anthracene and 

Gr, at approximately 0.15 eV. In Figure 4.8, B2 (Py- ZnTPP) the anthracene molecule and 

(ZnTPP), the optimum distance is found to be 𝑑 = 2.3 Å, at approximately 0.5 eV. After binding 

the optimum distance of B2, this new component is attached again to Gr sheet to be B3. The 

optimum distance of B3 (Zn-Gr) is found to be 4.0 Å, and at approximately 0.15 eV, as shown 

in Figure 4.9.  

B4; I repeat the same calculation however with different anchor group (more precisely 

thioether), to find whether this anchor binds to a porphyrin molecule through SMe-ZnTPP.    

Figure 4.10 proves the SMe- ZnTPP to be the weakest bond among the four bonds (see B1, B2, 

B3 and B4). No wonder, as the 𝐶𝐻c group hinders the S atom from binding to Zn and the actual 

binding energy is 0.05 eV. This result suggests that SMe does not like to bind to ZnTPP.    
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Figure 4.7: Right panel: Anthracene-based molecule with 2Py anchors and graphene sheet 

(Gr). Left panel: Binding energy versus distance plot of B1 (Py-Gr), where the optimum 

distance 𝑑 is found to be 3 Å, at approximately 0.15 eV.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Right panel: Anthracene-based molecule with 2Py anchors and (Zn-TPP). Left 

panel: Binding energy versus distance plot of B2 (Py-Zn-TTP), where the optimum distance 

𝑑 is found to be 2.3 Å, at approximately 0.50 eV. 
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Figure 4.9: Right panel: Anthracene-based molecule combined with porphyrin (Zn-TPP), 

linked to Gr. Left panel: Binding energy versus distance plot of B3 (Zn-TTP-Gr), where the 

optimum distance 𝑑 is found to be 4 Å, at approximately 0.15 eV. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Right panel: Anthracene-based molecule with 2SMe anchors and (Zn-TPP). Left 

panel: Binding energy versus distance plot of B4 (SMe-Zn-TTP), where the optimum distance 

𝑑 is found to be 4 Å, at approximately 0.05 eV. 
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Figures 4.7- 4.10 above determine the optimum distance between the two components of the 

four systems B1, B2, B3, and B4 and as follows,  𝑑 = (3, 2.3, 4.0 and 4.0 Å) and their 

corresponding binding energies (0.15, 0.50, 0.15 and 0.05 eV) of B1, B2, B3, and B4 

respectively. By comparing B2 and B4 one could tell that the pyridyl anchor binds 10 times 

stronger that the thioether (0.5 and 0.05 eV). This result is in excellent agreement with the XPS 

experimental measurements (see Figures 4.8 and 4.10).  Based on these calculations, molecules 

1 and 2 (SMe), are eliminated from this study and focus on molecules 3 and 4, a pyridyl-

terminated anthracene with two different connectivities.          

 

4.4.2 Binding energy on gold substrate  
 

After obtaining the optimum structures of the multicomponent shown in Figures 4.7-4.9 above, 

the next step is to find the optimum distance between the Au electrode and the anthracene or 

multicomponent.  

In this section, another four binding energies B5-B8 are calculated. B5 is to find the optimum 

distance between the bare anthracene molecule and gold lead, B6 is the optimum distance 

between (anthracene molecule + Gr, B6) and the gold lead, B7 between (anthracene molecule 

+ Zn-TTP, B7) and Au, B8 between (B7+Gr) and Au.  

The right panels of Figures 4.11-4.14 illustrate the four structures, while the left panels show 

the binding energy plots of B5, B6, B7 and B8.  The optimum distances are found to be 2.3, 

2.4, 2.7, 2.4 Å and the corresponding binding energies are 0.4, 1, 0.50, 1.0 eV, of B5, B6, B7 

and B8 respectively.    
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Figure 4.11: Right panel: Molecule configuration at the Au lead interface, anthracene-based 

molecule (2Py) linked to Au electrode. Left panel: B5; Binding energy plots as a function of 

distance 𝑑. This distance is found to be 2.3 Å, at approximately 0.4 eV. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Right panel: Multicomponent configuration at the Au lead interface, anthracene-

based molecule (2Py) with Gr sheet linked to Au electrode. Left panel: B5; Binding energy 

plots as a function of distance 𝑑. This distance is found to be 2.4 Å, at approximately 1 eV. 
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Figure 4.13: Right panel: Multicomponent configuration at the Au lead interface, anthracene-

based molecule (2Py) with Zn-TTP molecule linked to Au electrode. Left panel: B5; Binding 

energy plots as a function of distance 𝑑. This distance is found to be 2.7 Å, at approximately 

0.50 eV. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Right panel: Multicomponent configuration at the Au lead interface, anthracene-

based molecule (2Py) with Zn-TTP+Gr linked to Au electrode. Left panel: B5; Binding energy 

plots as a function of distance 𝑑. This distance is found to be 2.4 Å, at approximately 1.00 eV.  
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Table 4.1 represents the optimum separation distance and binding energy of the eight studied 

structures B1-B8. B1-B4 show the optimum separation distances and their corresponding 

binding energies of the multicomponent, means without Au substrate, while B5-B8 show the 

optimum separation distances and their corresponding binding energies of the multicomponent 

bind to Au substrate. Based on the multicomponent calculations, I eliminate the thioether-

terminated molecules 1 and 2 from this study as their binging energies to Zn-TTP are 10 times 

lower than the pyridyl-terminated. This theoretical result supports experimentally by the XPS 

measurements (see Figures 4.8 and 4.10). Comparing the multicomponent results against the 

Au results one can tell that Au binds stronger to these components than they bind to each other 

as shown in the second column of Table 4.1.           

Table 4.1: Summarises the optimum separation distance and the binding energy calculations 

for the eight cases. 

 

Compound B.E (eV) 

 

d (Å) 

B1 0.15 3.0 

B2 0.50 2.3 

B3 0.15 4.0 

B4 0.05 4.0 

B5 0.40 2.3 

B6 1.00 2.4 

B7 0.50 2.7 

B8 1.00 2.4 
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  4.5 Tilt angle model  

  

This section determines the tilt angle 𝜃	of each compound on a gold substrate, which 

corresponds to the experimentally measured most probable break-off distance (see table 4.2). 

Figure 4.15 illustrates a theoretical model of how the tilt angle 𝜃 varies between the tip and Au 

substrate. 

 

 

 

 

 

 

Figure 4.15: Representation of a tilt angle model, the more loading the larger tilt angle.  

 

After eliminating molecules 1 and 2, and for simplicity's sake, I am going to refer to the eight 

junctions as follows: Au/3/Au and Au/4/Au (3 and 4 are bare molecules with 9-10 and 1-5 

connectivities, respectively), Au/3/P/Au and Au/4/P/Au (3 and 4 plus porphyrin), 

Au/3/Gr/Au and Au/4/Gr/Au (3 and 4 plus graphene),  Au/3/P/Gr/Au and Au/4/P/Gr/Au (3 

and 4 plus porphyrin and graphene).  Table 4.3 shows the tilt angle of the eight compounds on 

Au substrate. Figure 4.16 represents the optimised structures of the eight compounds.  
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Table 4.2: Experimental break-off distance and equivalent tilt angle (θ), of the eight junctions. 

 

Junction Experimental 
film thickness 
(nm) 
 

Experimental 
film roughness 
(nm) 

Equivalent 
experimental tilt 
angle (θ) 

Au/3/Au 1.23 0.2 38 o-55o 
Au/4/Au 1.14 0.2 42 o-58o 
Au/3/P/Au 1.81 0.4 38 o-55o 
Au/4/P/Au 1.73 0.3 42 o-58o 
Au/3/Gr/Au 1.23 0.2 38 o-55o 
Au/4/Gr/Au 1.14 0.2 42 o-58o 
Au/3/P/Gr/Au 1.81 0.4 38 o-55o 
Au/4/P/Gr/Au 1.73 0.3 42 o-58o 
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Figure 4.16: Optimised structures of the eight junctions, demonstrating the tilt-angle of the 

anthracene (side-view). Au/3/Au: Anthracene of 9, 10 connectivity, Au/4/Au: Anthracene of 

1, 5 connectivity, Au/3/Gr/Au: anthracene 9, 10 connectivity with graphene sheet (G), 

Au/4/Gr/Au: anthracene 1, 5 connectivity with graphene sheet (G), Au/3/P/Au: anthracene 9, 

10) connectivity with ZnTPP (P), Au/4/P/Au: anthracene 1, 5 connectivity with ZnTPP (P), 

Au/3/P/Gr/Au: anthracene 9, 10 connectivity with P and G respectively, Au/4/P/Gr/Au : 

anthracene 1, 5 connectivitywith P and G respectively as well.  

 

 

4.6 Tilt angle versus the conductance  

 

This section aims to study the relation between the conductance 𝐺 and the tilt angle 𝜃, [15]. I 

am going to use two simple examples for this purpose: anthracene with two different 

connectivities 9, 10 and 1, 5. In this model, I choose a range of tilt angle from 	0< to 	90< (step 

of 2 degrees). 

Figures 4.17 and 4.19 prove that the relation between the transmission coefficient curve 𝑇(𝐸) 

and the tilt angle 𝜃 is to be a linear, means, the conductance increases with increasing the tilt 

angle as indicted by the green arrows. It is well-known that the Seebeck coefficient 𝑆 is related 

to the slope of transmission coefficient curve.  On the other hand, Figs. 4.18 and 4.20 determine 

the relation between the 𝑆 and the tilt angle to be inverse, means large tilt angle possesses a 

small 𝑆.  
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Figure 4.17: a: Representation of molecular junction with 9, 10 connectivity. b: Zero bias 

transmission coefficient 𝑇	(𝐸) as a function of the tilt angle 𝜃. The tilt angle varies from 

approximately 	0< (black curve) to	90< (orange curve), here Fermi energy is chosen to be at 

mid-gap 𝐸& − 𝐸&`&:= -0.77 eV, (black-line light pressure and green arrow points to towards 

heavy pressure, for).  
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4.18: Seebeck coefficient 𝑆	as a function pressure. The tilt angle varies from approximately 	0< 

(black curve) to	90< (orange curve), at mid-gap 𝐸& − 𝐸&`&:= -0.769 eV, (black-line light 

pressure and green arrow points to toward heavy pressure.  
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Figure 4.19: a: Representation of molecular junction with 1,5 connectivity. b: Zero bias 

transmission coefficient 𝑇	(𝐸) as a function of the tilt angle 𝜃. The tilt angle varies from 

approximately 	0< (black curve) to	90< (orange curve), here Fermi energy is chosen to be at 

mid-gap 𝐸& − 𝐸&`&:= -0.80 eV, (black-line light pressure and green arrow points to towards 

heavy pressure).  
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Figure 4.20 Seebeck coefficient 𝑆	as a function pressure. The tilt angle varies from 

approximately 	0< (black curve) to	90< (orange curve), at mid-gap 𝐸& − 𝐸&`&:= -0.80 eV (black 

-line light pressure and green arrow points to toward heavy pressure).  
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4.7 Transmission coefficient 𝑻	(𝑬) 

 

The transmission coefficient curves T(E) were calculated for the eight junctions using the 

Gollum transport code [11], based on the tilt angles (Table 4.2). Despite the fact that the LUMO 

resonance is predicted to be pinned near the Fermi Level 𝐸 − 𝐸&`&:of the electrodes for these 

eight junctions due to the present of the pyridyl anchor group, previous comparisons between 

theory and experiment suggest that better agreement is obtained when the Fermi level is closer 

to the mid gap (𝐸 − 𝐸&`&:~𝑚𝑖𝑑	𝑔𝑎𝑝), [12-15], (see black-dashed lines in the bottom panels of 

the Figures. 4.21- 4.24).  

Furthermore, a change in the connectivity is expected to cause a change in the conductance 

with a ratio of 16, as predicts by the magic ratio theory [16]. This ratio has been measured and 

calculated to be around 15 for four anthracene-based molecules with two different anchors 

including thioacetate and thioether (SAc and SMe), [12]. The present study employs the same 

anthracene-based molecule with the same connectivities 1, 5 and 9, 10 only differs by the 

anchor where the pyridyl replaces the SAc or SMe.  

Changing the anchor from thioacetate or thioether to pyridyl leads to change the transmission 

coefficient T(E) from a HOMO-dominated curve to a LUMO-dominated curve as demonstrates 

in the present study (Figure 4.21-4.24), [13]. It is worth mentioning, that the Seebeck 

coefficient is related to the slope of the transmission as shown in equation 4.3: 

 

Thus, changing the curve from HOMO to LUMO or vice versa resulting in switching the sign 

of the Seebeck coefficient, I will discuss this later.  

 𝑆 = −
𝜋*𝑘�*𝑇
3𝑒

𝜕𝑙𝑛©𝑇(𝐸)ª
𝜕𝐸 Ý

I9I:

  4.3 
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In the present study the ratio between the two connectivies 9, 10 and 1, 5 (simply 3 and 4), 

depends on whether the junction contains bare molecule or multicomponent and the tilt angle 

𝜃. For example, the ratio of the bare molecule is approximately 11, and when it binds to 

porphyrin this ratio decreases to about 2, then increases to 20 when it combines with graphene 

Gr. This ratio reduced significantly when both porphyrin and graphene Gr combine with the 

bare molecule to be roughly 2 (note: this ratio varies depending on Fermi energy location, here, 

𝐸 − 𝐸&`&:~𝑚𝑖𝑑	𝑔𝑎𝑝).  The magic ratio broke down because my junctions become complex.  

           

After determining the optimum separation distance d of the multicomponent and between them 

and the Au substrate using the counterpoise method (section 4.5). I then investigate the role of 

the tilt angle 𝜃, by employing a theoretical model (section 4.7), and take a guide from the 

experimental measurements to determine the right tilt angle for each junction.  Eventually, I 

calculate the transmission coefficient of the 8 junctions and as follows:  

      

The top panel of Figure 4.21, shows the bare anthracene-based molecules Au/3/Au and 

Au/4/Au of different connectivities 9, 10 and 1, 5 respectively, with the Py anchor groups.  

The transmission coefficient 𝑇(𝐸) curve calculates based on the tilt angle	𝜃 shown in Table 

4.2, where different curves of the same colour correspond to different title angles and the 

yellow line is the average. As it mentioned above, the Fermi energy is placed approximately in 

the mid-way between the HOMO and LUMO resonances. For these junctions (Au/3/Au and 

Au/4/Au), the Fermi Energy is 𝐸 − 𝐸&`&: = -0.8 eV (black dashed-line), and the conductance 

are calculated to be 3.8 and 4.6, respectively. The product rule predicts a constructive quantum 

interference CQI for both connectivities as discussed previously (Figs 4.2-4.5, section 4.4 
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Frontier orbitals), DFT results prove this prediction to be correct. It is worth mentioning, that 

the HOMO-LUMO gap for Au/3/Au is about -0.3 eV smaller than Au/4/Au, as shown in the 

lower panel of Figure. 4.21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: (Top panel): Schematic illustrations of molecular junctions of Au/3/Au and 

Au/4/Au. (Bottom panel): Zero bias transmission coefficient 𝑇(𝐸) of molecules Au/3/Au and 

Au/4/Au against electron energy E. Au/3/Au (blue solid-line) and Au/4/Au (red solid-line). 

Different curves of the same colour correspond to different tilt angle 𝜃, (the yellow line is the 

average).  
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The next step is to combine the ZnTPP with anthracene-based molecules Au/3/P/Au and 

Au/4/P/Au of different connectivities 9, 10 and 1, 5 respectively as shown in the top panel 

Figure 4.22. Also, this 𝑇(𝐸) demonstrates based on the tilt angle	𝜃 shown in Table 4.2, where 

different curves of the same colour correspond to different title angles and the yellow line is 

the average. As previously indicated, the Fermi energy is considered approximately in the 

vicinity of the mid gap. This (Fermi energy) can be defined at 𝐸 − 𝐸&`&: = -0.76 eV (black 

dashed-line), for Au/3/P/Au and Au/4/P/Au. For these junctions (Au/3/P/Au and Au/4/P/Au), 

the conductance is calculated to be -4.0 and -4.9 eV, respectively. It is worth pointing out that 

the HOMO-LUMO gap for Au/3/P/Au is about -1.41 eV, and it is a slightly smaller than 

Au/4/P/Au, as shown in the lower panel of Figure. 4.22.  
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Figure 4.22 :(Top panel): Schematic illustrations of molecular junctions for Au/3/P/Au and 

Au/4/P/Au. (Bottom panel): Zero bias transmission coefficient T(E) of Au/3/P/Au and 

Au/4/P/Au against electron energy E. Au/3/P/Au (light blue solid-line) and Au/4/P/Au (black 

solid-line). Different curves of the same colour correspond to different tilt angles. The yellow 

line is the average of the four curves. 

 

 

 

 

Adding a graphene sheet Gr to the anthracene-based molecule with both connectivities 9, 10 

and 1, 5 is also investigated as shown in Figure 4.23 the top panel represents Au/3/Gr/Au and 

Au/4/Gr/Au based on the binding energy of multicomponent (Figs. 4.23). The bottom panel 

of Figure 4.23 shows the transmission curves, based on tilt angles, 𝑇(𝐸) as a function of energy. 

The Fermi energy is located to be approximately -0.48 eV as consider to be in the vicinity of 

the mid gap. The values of conductance are 3.9 and 4.8 of Au/3/Gr/Au and Au/4/Gr/Au, 

respectively. It is worth pointing out that the HOMO-LUMO gaps of Au/3/Gr/Au and 

Au/4/Gr/Au are roughly identical with -0.98 eV and -1.04 eV, respectively.     
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Figure 4.23: (Top panel): Schematic illustrations of molecular junctions for Au/3/Gr/Au and 

Au/4/Gr/Au. (Bottom panel): Zero bias transmission coefficient 𝑇(𝐸) of Au/3/Gr/Au and 

Au/4/Gr/Au against electron energy E. Au/3/Gr/Au (orange solid-line) and Au/4/Gr/Au (grey 

solid-line). Different curves of the same colour correspond to different tilt angles. The yellow 

line is the average of the four curves. 

The last junction is more complex, as I combine both Porphyrin (ZnTPP) and graphene sheet, 

to the anthracene-based cores then I connecte them to gold electrodes, as shown in the top panel 

of Figure 4.24. The bottom panel represents the transmission curves, based on tilt angles, 𝑇(𝐸) 

as a function of energy. and the Fermi energy value locate at the mid gab, 𝐸 − 𝐸&`&: = -0.70 

eV. The transmission coefficient 𝑇(𝐸)  values are 5.5 and 6.4 Au/3/P/Gr/Au 

Au/3/Gr/Au 
Au/4/Gr/Au 
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and Au/4/P/Gr/Au, respectively. One could notice a destructive quantum interference DQI for 

both junctions at approximately 𝐸 − 𝐸&`&: = -1.3 eV, however, this feature is not useful 

because it locates close to HOMO resonance and junction is a LUMO dominated (far away 

from 𝐸 − 𝐸&`&:). Again, the HOMO-LUMO gaps of Au/3/P/Gr/Au and Au/4/P/Gr/Au are 

identical -1.25 and -1.28 eV, respectively.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: (Top panel): Schematic illustrations of molecular junctions for Au/3/P/Gr/Au 

and Au/4/P/Gr/Au. (Bottom panel): Zero bias transmission coefficient T (E) of 

Au/3/P/Gr/Au and Au/4/P/Gr/Au against electron energy E. Au/3/P/Gr/Au (pink solid-line) 

Au/3/P/Gr/Au                        Au/4/P/Gr/Au 
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and Au/4/P/Gr/Au (green solid-line). Different curves of the same colour correspond to 

different title angles and the yellow line is the average of the four curves. 

 

 

4.8 Seebeck coefficient 𝑺	 

 

After computing the electronic transmission coefficient for the eight junctions, I now compute 

their Seebeck coefficients  𝑆	 . To this end, it is useful to introduce the non-normalised 

probability distribution 𝑃(𝐸) defined by 

 

Where 𝑓(𝐸) the Fermi is function and 𝑇(𝐸) are the transmission coefficients and whose 

moments 𝐿( are denoted as follows 

 

Where, 𝐸& is the Fermi energy. The Seebeck coefficient, 𝑆 and electrical conductance 𝐺 are 

then given by  

 

 

 

 𝑃(𝐸) = −𝑇(𝐸)
𝑑𝑓(𝐸)
𝑑𝐸   4.4 

 𝐿( = e𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸&)(  4.5 

 𝑆(𝑇) = −
1
|𝑒|𝑇

𝐿"
𝐿3

  4.6 

 𝐺 =
2𝑒*

ℎ 𝐿3  4.7 
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Where, 𝑒 is the electronic charge. Figures 4.25-4.28 show the Seebeck coefficient 𝑆 evaluated 

at room temperature for different energy range	𝐸& − 𝐸&`&:.  

To calculate the Seebeck coefficient 𝑆	 for the studied junctions below, I used DFT combined 

with the quantum transport code Gollum. Figures 4.25-4.28 show the corresponding the 𝑆 as a 

function of the Fermi energy	𝐸& using the tilt angle model.  

 

The thermopower has been calculated for the eight junctions (Figure 4.16), where the 	𝐸& is 

placed at the mid gap of HOMO-LUMO. These calculations are based on tilt angles, (different 

curves of the same colour correspond to different title angles, and the yellow line is the 

average).  

 Firstly, Figure 4.25 illustrates the bare anthracene molecule with the two connectivities 9, 10 

and 1, 5 (Au/3/Au and Au/4/Au, respectively). The Seebeck coefficients 𝑆 for these junctions 

are determined at 𝐸& − 𝐸&`&:= -0.8 eV. The blue solid-line and the red solid-line correspond to 

different tilt angles (Tilt angle model). The 𝑆	 sign the two junctions were found to be negative. 

The 𝑆 value for Au/3/Au is -2.5 𝑉/𝐾 , whereas -9.9 𝜇𝑉/𝐾 for Au/4/Au. Secondly, Figure 4.26 

shows the anthracene-based molecule with the connectivities linked to the graphene sheet (top 

panel labelled Au/3/P/Au and Au/4/P/Au). The 𝑆 is obtained at 𝐸& − 𝐸&`&:= -0.48 eV. It is 

found to be -11 and -12 𝜇𝑉/𝐾 for Au/3/P/Au and Au/4/P/Au, respectively. While, the 

anthracene molecules attached to Zn-TPP are represented by Au/3/Gr/Au and Au/4/Gr/Au, as 

shown in Figure 4.27 (top panel). The bottom panel, the 𝑆	 values (at 𝐸& − 𝐸&`&:= -0.76 eV) 

are -10 and -11 𝜇𝑉/𝐾  for Au/3/Gr/Au and Au/4/Gr/Au, respectively. Finally, I linked the 

bare molecules to both Zn-TPP and graphene sheet Gr, as represented in Figure 4.28 (top 
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panel). Then, in the bottom panel, the 𝑆 is determined at 𝐸& − 𝐸&`&:= -0.70 eV. Its values are -

16 and -20 𝜇𝑉/𝐾  for Au/3/P/Gr/Au and Au/4/P/Gr/Au. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: (Top panel): Schematic illustrations of molecular junctions for Au/3/Au and 

Au/4/Au. (Bottom panel): Seebeck coefficient 𝑆 of molecules Au/3/Au and Au/4/Au against 

electron energy E. Au/3/Au (blue solid-line) and Au/4/Au (red solid-line). Different curves of 

the same colour correspond to different title angles and the yellow line is the average of the 

four curves. 
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Figure 4.26: (Top panel): Schematic illustrations of molecular junctions for Au/3/P/Au and 

Au/4/P/Au. (Bottom panel): Seebeck coefficient 𝑆 of molecules Au/3/P/Au and Au/4/P/Au 

against electron energy E. Au/3/P/Au (light blue solid-line) and Au/4/P/Au (black solid-line). 

Different curves of the same colour correspond to different title angles and the yellow line is 

the average of the four curves. 
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Figure 4.27: (Top panel): Schematic illustrations of molecular junctions for Au/3/Gr/Au and 

Au/4/Gr/Au. (Bottom panel): Seebeck coefficient 𝑆 of molecules Au/3/Gr/Au and 

Au/4/Gr/Au against electron energy E. Au/3/Gr/Au (orange solid-line) and Au/4/Gr/Au (gray 

solid-line). Different curves of the same colour correspond to different title angles and the 

yellow line is the average of the four curves. 
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Figure 4.28: (Top panel): Schematic illustrations of molecular junctions for Au/3/P/Gr/Au 

and Au/4/P/Gr/Au. (Bottom panel): Seebeck coefficient 𝑆 of molecules Au/3/P/Gr/Au and 

Au/4/P/Gr/Au against electron energy E. Au/3/P/Gr/Au (pink solid-line) and Au/4/P/Gr/Au 

(green solid-line). Different curves of the same colour correspond to different title angles and 

the yellow line is the average of the four curves. 
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4.9 Theory versus experiment  

 

As it mentioned at the beginning of this chapter, this is a joint study with experimental groups. 

Here, I am going to test my theoretical simulation against the measurements. I will begin with 

the prediction first, as the binding energy calculations suggest that the anthracene-based 

molecule with thioether linker group does not bind to a porphyrin slippery anchor through the 

Zn.  This calculation performs in gas phase with multicomponent for two anthracene-based 

molecules. The two anthracene molecules mainly differ by the linker groups, one with pyridyl 

and one with thioether. The total energy difference points out that Py linker binds 10 times 

stronger than SMe. The XPS measurement proves the theoretical simulations to be accurate.  

The second prediction is led by the magic ratio theory [16], where it predicts this ratio for the 

two connectivities (3 and 4), to be 16. My DFT calculations were 11 for the bare molecules, 

14 when I add Zn-TPP, 13 when it combines with Gr, and this ratio reduced significantly when 

both porphyrin and graphene Gr combine with the bare molecule to be roughly 2. Nevertheless, 

the case is more complicated when there is a multicomponent, however, the theory and 

experiment agree that the room temperature low bias conductance for 9, 10 connectivity is 

always greater than the conductance for 1, 5 connectivity. This is a signature of quantum 

interference [13-16], which again predicts by product rule [8]. (Figs. 4.2 – 4.5 wavefunctions 

plots). 

Up to this point, I covered the theory predictions against the experimental measurements.  Next, 

I compute the theoretical electrical conductance and Seebeck coefficient of the 8 junctions and 

compare them to the corresponding measured ones.  Figure 4.29 shows the computed room-

temperature Seebeck coefficients of the 8 different molecular structures given in Figure 4.16. 

Previous comparisons,[17], between experiment and theory revealed that electron transport 
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through poly-aromatic hydrocarbons takes place near the middle of the energy gap between the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 

(LUMO), and indeed we find that the closest agreement between theory and experiment is 

obtained for a Fermi energy near the mid-gap, as indicated by the vertical dashed lines in Figure 

4.21-4.24. As expected from literature studies of single molecules, electron transport through 

the eight junctions is LUMO dominated (due to the presence of pyridyl anchors), leading to the 

negative sign of the Seebeck coefficient for the 8 molecules, as shown in the lower panel of 

Figure 4.29, [12-15]. As shown in Figure 4.29, both experiment and theory reveal that addition 

of Zn-TPP tends to decrease the conductance of the Au/3/Pt and Au/4/Pt SAMs whilst 

increasing the magnitude of their Seebeck coefficients. Furthermore, the conductances of 

SAMs formed from 3 are generally higher than those formed from 4, reflecting the higher 

degree of CQI in the former. Experimentally, the conductances of Au/3/P/Gr/Pt and 

Au/4/P/Gr/Pt were measured to be close to those of Au/3/P/Pt and Au/4/P/Pt respectively and 

similarly, the conductances of Au/3/Gr/Pt and Au/4/Gr/Pt were measured to be close to those 

of Au/3/Pt and Au/4/Pt respectively, revealing that inclusion of the graphene layer had a 

negligible effect on electrical conductance. In contrast, theory reveals that if the fraction of 

molecules making contact with the electrodes is unchanged by the inclusion of the graphene 

layer, then inclusion of the latter would be expected to decrease the conductance. This suggests 

that the higher binding energy associated with the graphene layer increases the fraction of 

molecules making contact with the top electrode. The experimental observation that inclusion 

of graphene barely affects electrical conductance is of interest, because it may present an 

opportunity for independently tuning thermal conductance by varying the phonon mismatch 

across the electrode-molecule boundary.  
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Figure 4.29: Electrical and thermoelectrical properties of the eight junctions. A comparison 

between experiment and theory (black-circles experiment and red-squares theory). 
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4.10 Conclusion  

 
We have utilized multi-layered self-assembly and asymmetric design to boost the Seebeck 

coefficient’s of self-assembled monolayers. Solution-based NMR experiments were used to 

successfully predict the ability of a series of anthracene-based molecular wires to bind to a 

porphyrin. Through this binding, SAMs of these molecules were able to stabilize addition of a 

porphyrin layer to their top-face. These SAMs were characterized extensively through the use 

of AFM and XPS both with and without the inclusion of Zn-TPP, confirming the discrete 

structure of these systems and demonstrating a clear translation between the binding behaviour 

of the molecules in solution and at the mesoscopic scale on a surface. Figure 4.29 demonstrates 

that when starting from an anthracene-based SAM formed from 3 or 4, subsequent addition of 

either a porphyrin layer or a graphene layer can act to significantly increase their Seebeck 

coefficients, and addition of both porphyrin and graphene can lead to further increases.  We 

also note that a number of these multi-component systems retain strong features associated 

with CQI. Finally, our experimental work shows that this methodology can be applied to tailor 

each end of a molecular junction to different electrode materials. The fabrication of these novel 

‘sticky’ to ‘slippery’ linker systems presents a significant breakthrough in the field of molecular 

electronics, overcoming the need for rigid-contacts to metallic electrodes, a critical step in the 

design of future thin film devices. This study could also reasonably be extended to further work 

in tailoring different ends of a multicomponent system to different materials, as a route towards 

decoupling electronic and thermal contributions in the generation of thermopower. We are 

currently undertaking work to simulate new ‘sticky’ and ‘slippery’ linkers and engineer more 

efficient devices utilizing this methodology.  
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Chapter 5 

 

Orientational control of Molecular scale thermoelectricity 

 

 

This chapter is based on two theoretical studies studying the core asymmetric anthracene 

molecule and flipping molecule with a finite graphene sheet (Gr). I will explore the following. 

Firstly, I will study the asymmetric anthracene core with different anchoring groups such as 

alkynyl -Py, alkynyl -S, and S-Py. Secondly, I studied the asymmetric anthracene linked to the 

Gr sheet, where we consider flipping these anthracenes in this part. For these two studies, we 

calculate the wave function and binding energy to predict and investigate the electronic 

properties. Finally, the thermoelectric properties such as the transmission coefficient 𝑇(𝐸) and 

the Seebeck coefficient	𝑆 have been calculated by Siesta [1] (Gollum Code) [2].  

5.1 Motivation  

 

It is chemically proven that varying the anchor group type of single molecules to external 

electrodes will control their electrical conductance in a deterministic manner, [3-6]. Synthetic 

methodologies were used to vary the terminal anchor groups, three different combinations 

including alkynyl, thiol and pyridine, across aromatic anthracene-based cores. In this work, I 

present a novel research, where I am able to control the sign of the Seebeck coefficient 𝑆 by 

changing the orientation of some asymmetric molecules in regard to the top-Gr sheet (flipping). 

It is worth mention that, an asymmetric molecule is essential for the flipping process, however, 

not all asymmetric molecules lead to switching the sign of the Seebeck coefficient 𝑆,	[5-13]. 

Thus, I demonstrate that the thermoelectric properties of some asymmetric molecules can be 

controlled by flipping these molecules with regard to a graphene sheet.  
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 It is well-known, that the 𝑆 controls the conversion of a temperature gradient to a voltage 

differential. Due to limit global sources, common inorganic thermoelectric materials such as 

Co, Ni, Bi, Sb, and Pb are toxic and costly. As a result, various techniques for using the 

thermoelectric properties of nanostructured organic materials or organic molecules have been 

suggested in recent years. 

 

5.2 Studied Molecules 

 

This work is a continuous investigation about anthracene-based molecules that have been 

studied in chapter 4. In this chapter, the transport properties of asymmetric anthracene-based 

molecules have been explored [7-10]. Three structures of asymmetric anthracene-based built 

from figure 5.1. These structures are fully relaxed as described in section 4.2 of chapter 4, and 

known as follows, 1: anthracene-based molecule with two different anchors including alkynyl 

and Py (alkynyl -Py), 2: anthracene-based with alkynyl and thiol (alkynyl-thiol), 3: anthracene-

based with thiol and Py (thiol-Py), and a graphene sheet (Gr). The three asymmetric 

anthracene-based molecules combine with Gr and placed between Au electrodes to study the 

flipping feature as I will discuss later. Notice: I have used finite graphene sheet. it has been 

terminated as Zigzag shape in z-direction or transport direction with dimensions (18.7 Å, 20.3 

Å).   
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Figure 5.1: a: Three asymmetric anthracene-based molecules; 1: alkynyl -Py anchor, 2: 

alkynyl - thiol anchor, and 3: Py-thiol anchor. b: Graphene sheet (Gr.)  

 

5.3 Frontier orbitals of the molecules. 

To have a good understanding of electronic properties, the frontier orbital of studied molecules: 

highest occupied molecular orbitals (HOMO) and lowest unoccupied orbitals (LUMO), in 

addition to (HOMO+1), and (LUMO-1), along with their energies are investigated. I 

investigate three asymmetric anthracene core molecules including (alkynyl -Py), (alkynyl -

thiol), and (Py-thiol) anchor groups, as shown in Figure 5.2-5.4. The red and blue colours 

represent the positive and negative orbital amplitude. According to the product rule [11], one 

1 2 3 

a 

20.3 Å 

18.7 Å b 



 120    
 
 

can predict whether a molecule possesses a high or low conductance based on the colours on 

the HOMO and LUMO, as it discussed in previous chapter (see section 4.3).  

 

  

 

 

 

 

  

 

 

 

 

Figure 5.2: Wave function for 1. Top panel: fully optimised geometry of 1. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 1 along with their energies. 

 

 

 

 

HOMO= -4.50 eV LUMO= -2.80 eV 

HOMO-1= 5.15 eV LUMO+1= 1.55 eV 

1 
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Figure 5.3.: Wave function for 2. Top panel: fully optimised geometry of 2. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 2 along with their energies. 

 

 

 

 

HOMO= -4.32 eV LUMO= -2.70 eV 

HOMO-1= -5.12 eV LUMU+1= -1.39 eV 
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Figure 5.4: Wave function for 3. Top panel: fully optimised geometry of 3. Lower panel: 

HOMO, LUMO, HOMO-1, LUMO+1 of molecule 3 along with their energies. 

  

 

HOMO= -4.40 eV LUMO= -2.92 eV 

HOMO-1= -5.17 eV LUMU+1= -1.69 eV 
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5.4 Binding Energies 

 

This section uses a combination of DFT and the counterpoise method, as it described in section 

4.3 of chapter 4. Briefly, it removes the basis set superposition errors to calculate the optimum 

binding distance of two objects [12-13].  

 

5.4.1 Binding Energy of Anthracene Core to Gold electrode: 

 

 

Here, I calculated the binding energy of the three molecules (Fig. 5.1) on gold electrodes where 

asymmetric anthracene core linked to Au lead. These asymmetric anthracene cores have 

different anchor groups including: Py, thiol, and alkynyl, as shown in Figures (5.5-5.7).  

Figure 5.5 shows that the optimum binding distance 𝑑a;N^. between the Py anchor group and 

the Au to be 2.3 Å, and at approximately -0.4 eV. Similarly, Figure 5.6 represents the binding 

energy between the thiol anchor group and the gold lead and	𝑑a;N^. is 2.4 Å, at approximately 

-1.2 eV. This suggests the binding energy of the thiol anchor group is much stronger than that 

the Py anchor to Au electrode (this result is in agreement with the literature review). Finally, 

the alkynyl's binding energy lies between the thiol and Py, however, it is more towards the 

stronger binding energy (i.e. thiol) to Au with binding energy of -1 eV at d1= 2.3 Å, as shown 

in the Figure 5.7. These calculations suggest that both thiol and alkynyl bind to Au substrate 

approximately 3 times stronger than that Py with 2.3 Å separation distance as shown in Table 

5.1, (Note the optimum distance between the Au and Anchor labelled 𝑑a;N^.).  
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Figure 5.5: Right: An asymmetric anthracene-based molecule configuration with thiol and Py 

anchors at the Au lead interface. Left: Binding energy as a function of the optimum binding 

distance 𝑑a;N^.	between the gold electrode and an asymmetric anthracene core. This distance 

is found to be 2.3 Å, at approximately 0.4 eV. 
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Figure 5.6: Right: An asymmetric anthracene-based molecule configuration with Py and thiol 

anchors. Left: Binding energy as a function of the optimum binding distance 	

𝑑a;N^.	between the gold electrode and an asymmetric anthracene core. This distance is found 

to be 2.4 Å, at approximately 1.2 eV. 

 

 

 

 

 

 

 

 

 

Figure 5.7: Right: An asymmetric anthracene-based molecule configuration with 2 alkynyl 

anchors. Left: Binding energy as a function of the optimum binding distance 	

𝑑a;N^.	between the gold electrode and an asymmetric anthracene core. This distance is found 

to be 2.3 Å, at approximately 1.0 eV. 

 

 

 

 

 

𝑑a;N^. 

B3 

𝐵
.𝐸
	(𝑒
𝑉
) 

𝑑1234.	(Å) 



 126    
 
 

Table 5.1: Summarises the binding energy (B.E), and optimum distance (𝑑a;N^.), calculations 

for three different anchor groups bind to gold electrode. 

 
Au-anchor bound  

B1 (Au-Py) B2 (Au-thiol) B3 (Au- 
alkynyl) 

B.E (eV) -0.4 -1.2 -1.0 

𝑑a;N^.(Å) 2.3 2.4 2.2 

 

 

5.4.2 Binding Energy of Anthracene Core to Graphene sheet: 

 

Here, another three binding energies have been calculated where, I demonstrate how an 

asymmetric anthracene-based molecule of different anchor groups binds to a graphene sheet. 

Thus, I calculate the binding energy as a function of the optimum binding distance of a Gr sheet 

to Py or alkynyl or thiol anchor group.  

 

The binding energy between a Gr sheet and pyridine anchor is shown in Figure 5.8, where the 

right panel shows an asymmetric anthracene molecule linked to a graphene sheet (Gr-Py). The 

left panel represents the binding energy plot as a function of the optimum binding distance 	

𝑑&A(�.. In this case, 𝑑&A(�. is found to be 3Å, and the B.E is approximately -0.14 eV. (Note the 

optimum distance between the graphene sheet and anchor labelled𝑑&A(�. ). 

Next, I connect the Gr sheet with an asymmetric anthracene Gr-thiol, this time, and I calculate 

the binding energy, as shown in Figure 5.9. The right panel represents an asymmetric 

anthracene molecule linked to a graphene sheet (Gr-thiol). The left panel shows the binding 
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energy as a function of the optimum distance 𝑑&A(�. and 𝑑&A(�. is 3Å, with B.E approximately -

0.22 eV. 

Finally, I attach the G sheet to an asymmetric anthracene (Gr- alkynyl), as shown in Figure 

5.10. The right panel is an asymmetric anthracene molecule linked to a G sheet (Gr- alkynyl). 

In the left panel, 𝑑&A(�. is found to be 1.4Å, and the B.E approximately -0.44 eV.  

 

 

 

 

 

 

 

 

 

Figure 5.8: Right: An asymmetric anthracene-based molecule configuration with thiol and Py 

anchors at the Gr interface. Left: Binding energy as a function of the optimum binding distance 	

𝑑&A(�. (Py-Gr). This distance is found to be 3.0 Å, at approximately 0.14 eV. 
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Figure 5.9: Right: An asymmetric anthracene-based molecule configuration with Py and thiol 

anchors at the Gr interface. Left: Binding energy as a function of the optimum binding distance 	

𝑑&A(�.(thiol-Gr). This distance is found to be 3.0 Å, at approximately 0.22 eV. 

 

 

 

 

 

 

 

 

 

Figure 5.10: Right: An asymmetric anthracene-based molecule configuration with 2 alkynyl 

anchors at the Gr interface. Left: Binding energy as a function of the optimum binding distance 

𝑑&A(�.(TMS-Gr). This distance is found to be 1.4 Å, at approximately 0.44 eV. 
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Figures 5.8-5.10 results suggest that the alkynyl anchor binds to Gr sheet 2 times stronger than 

that thiol and with reducing the separation distance 𝑑&A(�. to a half, whereas the B.E reduces to 

a half for the pyridyl anchor at the same distance, 𝑑&A(�. =3.0 Å as shown in Table 5.2.      

  

Table 5.2: Summarises the binding energy (B.E), and optimum distance (𝑑&A(�.), calculations 

for three different anchor groups bind to Gr. 

 

 
Gr-anchor bound 

B4 (Py-Gr) B5 (thiol-Gr) B6 (alkynyl -
Gr) 

B.E (eV) -0.14 -0.22 -0.44 

𝑑&A(�. (Å) 3.0 3.0 1.4 
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Table 5.4: Summarises all the binding energies (B.E), and optimum distances 

(𝑑a;N^.𝑎𝑛𝑑	𝑑&A(�.), calculations for three different anchor groups bind to Au or Gr. 

 
(Au)-anchor bounds 

𝑑a;N^. and 𝑑&A(�. 
(Å) B.E (eV) 

B1 2.3 -0.4 

B2 2.4 -1.2 

B3 3.0 -1.0 

B4 3.0 -0.14 

B5 3.0 -0.22 

B6 1.4 -0.44 

 

 

 

 

 

5.5 Investigating Three Asymmetric Anthracene-based Cores 

 

In this section, I explore three different asymmetric anthracene-based molecules with different 

anchor groups including: alkynyl, Py and thiol. The electronic properties of these molecules 

have been investigated. I firstly, calculate the wave functions to assist the prediction whether 

these molecules possess a high or low conductance based on the QI, through the product rule 

as discussed in chapter 4. Then the binding energy to find the optimum distance between the 

Au and anchors, so that I can calculate the transport properties such as the transmission 

coefficient 𝑇(𝐸) and Seebeck coefficient 𝑆 . Wave functions and biding energies have been 

already discussed in sections 4.3 and 5.3, I shall begin with the 𝑇(𝐸).       
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5.6 Transmission coefficient 𝑻(𝑬) 

 

This section aims to study the transmission function of asymmetric anthracene-based cores 

with different anchor groups such as alkynyl, Py, and thiol, for this purpose I investigate three 

cases:  

Case 1: Anthracene-based of alkynyl -Py anchoring groups:   

 

Anthracene with two different anchors including alkynyl and Py, has been studied as shown in 

Figure 5.11. If the two anchors were pyridine, one would expect this molecule to be a LUMO-

dominated due to the presence of the pyridyl anchor.  However, it seems the case is still true 

even if the molecule is an asymmetric, means two different anchors.  I think this is due to that 

Py anchor overcomes alkynyl even though that the binding energy of alkynyl is stronger than 

that Py (see Table 5.1). It is worth mentioning, that alkynyl is a HOMO-dominated anchor and 

that is clearly shown in Figure 5.11, where the alkynyl pulls the DFT-predicted Fermi energy 

(E-EFDFT=0 eV) slightly away from LUMO resonance, as the pyridyl anchor is pinning E-

EFDFT=0 right at the LUMO resonance.   
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Figure 5.11: Right panel:  Schematic illustrations of an asymmetric molecular junction for 1. 

Left panel: Zero-bias transmission coefficient 𝑇(𝐸) of molecule 1 against electron energy E, 

an example of a LUMO-dominated curve of asymmetric molecule.   

 

Case 2: Anthracene-based of alkynyl -thiol anchoring groups:  

 

In this case, I consider anthracene with two different anchors including alkynyl and thiol 

anchors.  Figure 5.12 shows that this molecule is a HOMO-dominated and that is what one 

would expect due to the fact that the both anchors (alkynyl and thiol), are HOMO-dominated. 

E-EFDFT=0 sits so close to the HOMO resonance because both anchors are pinning in the same 

direction toward HOMO resonance.   
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Figure 5.12: Right panel:  Schematic illustrations of an asymmetric molecular junction for 2. 

Left panel: Zero-bias transmission coefficient 𝑇(𝐸) of molecule 2 against electron energy E, 

an example of a HOMO-dominated curve of asymmetric molecule.   

 

Case 3: Anthracene-based of Py-thiol anchoring groups:  

 

Case 3 is an asymmetric anthracene with two different anchors including thiol and Py, as shown 

in Figure 5.13. As the two anchors well-known to pin down in an opposite direction, in other 

words, HOMO- or LUMO-dominated. Furthermore, both anchors are strong so one would 

expect this molecule to possess a mid-gap Fermi energy (E-EFDFT=0 eV), rather than being 

HOMO- or LUMO-dominated.  Figure 5.13, proves this prediction to be accurate as clearly 

shown that E-EFDFT=0 eV sits in mid-way between the HOMO and LUMO resonances.   

 

 

2 
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Figure 5.13: Right panel:  Schematic illustrations of an asymmetric molecular junction for 3. 

Left panel: Zero-bias transmission coefficient 𝑇(𝐸) of molecule 3 against electron energy E, 

an example of a HOMO or LUMO-dominated curve of asymmetric molecule.   

 

Actual conductance values of the three asymmetric anthracene-based molecules are shown in 

table 5.5. It also contains some extra information about these junctions such as HOMO-LUMO 

gaps, molecular length, G and total binding energy of asymmetric molecules.   
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Table 5.5: HOMO-LUMO gap of isolated molecules and in junctions, molecular length, 

conductance and total binding energy. 

EF 
Molecule 

Log (G/G0) Eg, DFT  
(Isolated Mo.) 

Eg, DFT  
(Au/M/Au) 

Length 
(Å) 

Total B.E 
(eV) 

1 -7.3  1.70 eV 1.41 eV 12.3 Au-C= -1 
Au-N=-0.4 
Total= -1.4 

2 -7.7 1.62 eV 1.28 eV 14.0 Au-C=-1 
Au-S=-1.2 
Total=-2.2 

3 -8.4 1.50 eV 0.70 eV 18.27 Au-S=-1.2 
Au-N=-0.4 
Total=-1.6 
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5.7 Seebeck coefficient 𝑺   

 

The Seebeck coefficient of the three cases above, calculates using equatins 4.6 as discussed in 

chapter 4, the three cases.   

Case 1: Anthracene of alkynyl -Py anchoring groups. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Right panel:  Schematic illustrations of molecular junction of 1. Left panel: 

Seebeck coefficient 𝑆 of molecule 1 against electron energy E.  
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Case 2: Anthracene of alkynyl -thiol anchoring groups. 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Right panel:  Schematic illustrations of molecular junction for 2. Left panel: 

Seebeck coefficient 𝑆	of molecule 2 against electron energy E. 

Case 3: Anthracene of Py-thiol anchoring groups. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Right panel:  Schematic illustrations of molecular junction for 3. Left panel: 

Seebeck coefficient 𝑆 of molecule 3 against electron energy E.  
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As it discussed in chapter 4, the slope of the transmission coefficient 𝑇(𝐸) determines the sign 

and magnitude of the Seebeck coefficient 𝑆. In other words, whether the curve is HOMO or 

LUMO dominated.   Figure 5.14, shows a negative Seebeck coefficient at DFT-predicted Fermi 

E-EFDFT=0 eV and this is due to the fact that this molecule is a LUMO-dominated as shown in 

Figure 5.11 (anthracene of alkynyl -Py anchors). In contrast, Figure 5.15 shows a positive 𝑆 at 

E-EFDFT=0 eV and this is because it is a HOMO-dominated molecule as shown in Figure 5.12 

(anthracene of alkynyl -Thiol anchors).  Figure 5.16 shows a negative 𝑆 at E-EFDFT=0 eV and 

this is again because it is a LUMO-dominated molecule as shown in Figure 5.12 (anthracene 

of alkynyl -Thiol anchors).    

 

5.8 Quantum oscillation in asymmetric multicomponent. 

  

In this section, I aim to study the oscillation in conductance for asymmetric anthracene, with 

different anchors including alkynyl, Py and thiol, linked to finite Gr sheet (multicomponent). 

Firstly, I combine the Gr sheet with the asymmetric anthracene to form the multicomponent, 

then place the multicomponent between Au electrodes. The Au tip and the anchor of the 

molecule are aligned in a way that passes through a carbon atom of the Gr sheet as shown in 

Figure (5.17-a). Secondly, I repeat the first step but in different positions (i.e. 1, 2, 3 and 4) as 

shown in Figure 5.17-b. Finally, I determine the transmissions coefficient 𝑇(𝐸), in 4 different 

alignment locations as shown in Figure (5.17-a and -b). 
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Figure 5.17: Representation of multicomponent junction; a: An asymmetric molecule attached 

to Gr sheet (multicomponent), placed between Au electrodes, b: Side-view shows the 

alignment movement through the graphene sheet (Gr).     

 

To keep the tip and the molecule aligned to each other via the anchor group, I pull only the 

graphene sheet in different positions. In these pulling positions there is always a carbon atom 

aligned with the tip and anchor, means tip, C atom and anchor are all aligned. For the oscillation 

calculations, I investigate three cases, where three different asymmetric anthracene molecules 

are employed and combine with Gr sheet to form multicomponent and as follows:   
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Case 1: Multicomponent alkynyl -Gr  

 

Here, the oscillation of asymmetric anthracene of alkynyl and Py groups has been studied in 

four positions 1, 2, 3 and 4. In these calculations, I move only the Gr sheet, while the whole 

junction is kept stationary as shown in Figure 5.18-a. The 𝑇(𝐸) curves (black, green, red and 

blue) are determined for 1, 2, 3 and 4 positions respectively as shown in Figure 5.18-b. These 

calculations show that the alkynyl -Gr multicomponent is a LUMO-dominated and the reason 

for that is the presence of the pyridyl anchor that binds to Au electrode at the other end. alkynyl 

-Gr multicomponent presents a uniform oscillation with a ratio of approximately 0.4, at DFT-

predicted Fermi energy (E-EFDFT=0 eV), as shown in Figure 5.18-c. It also shows, that the odd 

positions 1, 3 yield a high conductance while the even positions 2, 4 have a low conductance.      
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Figure 5.18: a: Representation of alkynyl -Gr multicomponent junction in four positions; b: 

Transmission coefficient curves against electron energy 𝐸 for 1, 2, 3 positions and 4.c: 

Conductance versus the pulling distance on the carbon atoms in the Gr sheet (black and red 

odd while green and blue even positions).  

 

Case 2: Multicomponent Thiol-Gr 

 

Multicomponent of asymmetric anthracene of alkynyl and thiol anchor groups attach to Gr 

sheet is shown in Figure 5.19-a. 𝑇(𝐸) curves of this case have been calculated in the four 

positions 1, 2, 3 and 4 (black, green, red and blue), respectively. These calculations show that 

the Multicomponent-thiol is a HOMO-dominated at the DFT-predicted Fermi energy (E-

EFDFT=0 eV). This is because the alkynyl that binds to Au (at the other end), is a HOMO-

dominated anchor as clearly shown in Figure 5.19-b. In this case the oscillation is less uniform 

and again the odd positions 1, 3 have higher conductance than that the even positions 2, 4. The 

oscillation ratio is 0.34, (average is taken for the odd and even values).  
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Figure 5.19: a: Representation of thiol-Gr multicomponent junction in four positions; b: 

Transmission coefficient curves against electron energy 𝐸 for 1, 2, 3 positions and 4.c: 

Conductance versus the pulling distance on the carbon atoms in the Gr sheet (black and red 

odd while green and blue even positions). 

Case 3: Multicomponent pyridyl-Gr 

 

For this case, I consider a multicomponent of asymmetric anthracene of Py and thiol groups as 

shown in Figure 5.20-a. The 𝑇(𝐸) curves calculate for 1, 2, 3 and 4 positions (black, green, red 

and blue curve, respectively). These calculations suggest that this case is a LUMO-dominated 

at E-EFDFT=0 eV, as shown in Figure 5.20-b. This multicomponent is a LUMO-dominated 
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because of the present of thiol anchor that binds to the Au electrode at the other end of the 

junction. The oscillation in this case again is less uniform and the oscillation ratio is larger than 

that other two cases by 0.2 (i.e. 0.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: a: Representation of Py-Gr multicomponent junction in four positions; b: 

Transmission coefficient curves against electron energy 𝐸 for 1, 2, 3 positions and 4.c: 

Conductance versus the pulling distance on the carbon atoms in the Gr sheet (black and red 

odd while green and blue even positions). 
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5.9 Flipping characteristic 

 

After studying the oscillation behaviour in three cases of asymmetric anthracene-based 

molecules including alkynyl-Py, alkynyl -thiol, and Py-thiol anchor groups attached to Gr sheet 

in several locations to form multicomponent. In this section, I am going to employ the same 3 

multicomponent discussed in section 5.8.  In the present research, the Gr sheet is stationary 

while the asymmetric molecule flips between the Au and Gr sheet. 

   

Figure 5.21 illustrates the components that use to build the flipping junction. It also shows 

molecule where it consists of spacers and two different anchors groups (blue and red). Then 

adding a Gr sheet to form the multicomponent compound. Finally, this structure places between 

two gold electrodes. To achieve the flipping feature, firstly, I link anchor-2 to the Gr sheet and 

then place this structure between the Au electrodes, (Figure 5.22-a). Secondly, I flip the 

molecule where anchor-1 is now attached to the Gr sheet, and again place the multicomponent 

between electrodes (Figure 5.22-b). Thus, I have two case labelled a and b as showing in the 

following section.        
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Figure 5.21: Representation of multicomponent junction, highlighting the key components 

such as anchor groups, spacers, Gr and Au electrodes.   

After demonstrating how the flipping feature achieves, I am going to investigate three cases 

named Scenario: A, Scenario: B and Scenario: C, as follows:   
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5.9.1 Scenario A:  

 

In this scenario, I choose an asymmetric anthracene-based molecule of two different anchors 

including alkynyl and Py, then I attach it to a Gr sheet in two separate cases. Case a, when the 

pyridyl anchor binds to the Gr sheet while alkynyl binds to Au at the other end. Case b, is the 

opposite of case a, means the alkynyl binds to Gr and Py to Au, as shown in Figure 5.22.  

If the two anchors were pyridyl, then one would expect this junction to be a LUMO-dominated, 

as pyridyl is a typical LUMO-dominated anchor. However, this expectation is still valid for 

both cases a and b even though the molecule is an asymmetric, means two different anchors 

Py- alkynyl, as shown in Figure 5.23. 

  

This is because the Py anchor overcomes alkynyl even though that the binding energy of 

alkynyl is stronger (see Table 5.1). Furthermore, the case here is more complicated due to the 

presence of the graphene sheet.  

Figure 5.23-c, shows the DFT-predict Fermi energy E-EFDFT=0 locates at 0.07 eV away from 

the LUMO resonance, this happens when the pyridyl anchor attaches to Gr sheet. This location 

(0.07 eV), has been doubly pushed away from the LUMO resonance (0.13 eV), when the 

anthracene flips. Some studies, [14], show that the alkynyl is a HOMO-dominated anchor, and 

this explains why the E-EFDFT=0 doubly downshifted towards the HOMO resonance as shown 

Figure 5.23-d,          
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Figure 5.22: Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when Py linked to the Gr and b is when 

alkynyl linked to the Gr. 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Zero bias transmission coefficient T(E) against electron energy E. The black curve 

is the average of the four curves in Figure 5.18. The flipping feature shifts the E-EFDFT=0 from 

0.07 to 0.13 eV towards a HOMO resonance (c to d). 	
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5.9.2 Scenario B:  

 

I consider an asymmetric anthracene of two different anchors including alkynyl and thiol attach 

to a Gr sheet to form the multicomponent in two cases (a and b), and place them between Au 

electrodes, as shown in Figure 5.24-a and -b.  

In this scenario, case a, is when the thiol anchor binds to the Gr sheet while alkynyl binds to 

Au at the other end. Case b, is the opposite of case a, means the alkynyl binds to G and thiol 

to Au, as shown in Figure 5.24-a and -b.  

Since, the two anchors are HOMO-dominated, so it is expected to see the DFT-predicted Fermi 

energy to be biased towards one resonance than the other [14]. However, I would not expect 

the E-EFDFT=0, to locate at the same position from that resonance when the molecule flips. This 

position should be changed due to the fact that the two anchors have different binding energy 

towards the Gr sheet. In fact, the alkynyl anchor binds 2 times stronger to Gr sheet than that 

thiol and the separation distance 𝑑&A(�. is half of the thiol anchor (see Table 5.2).     

Figure 5.25-c shows that the E-EFDFT=0 sits so close to the HOMO resonance with a value of 

0.01 eV, while it displaces from the HOMO location by 0.15 eV to the right, as shown in Figure 

5.25-d. Thus, even though the both anchors alkynyl and thiol are HOMO-dominated, however 

they pin the Fermi energy in different locations as the molecule flips [14]. 
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Figure 5.24: Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when thiol linked to the Gr and b is when 

alkynyl linked to the Gr. 

 

 

 

 

 

 

 

Figure 5.25:	Zero bias transmission coefficient T(E) against electron energy E. The black curve 

is the average of the four curves in Fig. 5.19. The flipping feature shifts the E-EFDFT=0 from 

0.01 to 0.15 eV towards a LUMO resonance (c to d).	
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5.9.3 Scenario C: 

Scenario C is an asymmetric anthracene with two different anchors thiol and Py attach to Gr 

sheet to form a multicomponent in two different cases (a and b), and place them between Au 

electrodes, as shown in Figure 5.26-a and -b.  

In this scenario, case a, is when the pyridyl anchor binds to the Gr sheet while thiol binds to 

Au at the other end. Case b, is the opposite of case a, means the thiol binds to Gr and pyridyl 

to Au, as shown in Figure 5.26-a and -b.   

As the two anchors are typically known to pin down in an opposite direction. In other words, 

HOMO- and LUMO-dominated for thiol and Py anchors respectively. Figure 5.27-c, shows a 

LUMO dominated transmission curve, and this is due to the presence of the pyridyl anchor 

where the E-EFDFT=0 sits close to the LUMO resonance with a value of 0.07 eV.  

On the other hand, Figure 5.27-d, shows a HOMO dominated transmission curve. This is due 

to the presence of the thiol anchor where the E-EFDFT=0 sits close to the HOMO resonance and 

it displaces by 0.31 eV away from the LUMO resonance.  This displacement such an important 

characteristic because it causes the slope of the transmission curve to change from positive to 

negative or vice versa. Flipping an asymmetric molecule in a junction is the technique to switch 

the slope of the transmission function, which is a desirable feature in the thermopower 

generation as I will discuss later. Table 5.6 summarises the flipping calculations. 
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Figure 5.26: Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when Py linked to the Gr and b is when thiol 

linked to the Gr. 

 

 

 

 

 

 

 

 
 

Figure 5.27:	Zero bias transmission coefficient T(E) against electron energy E. The black curve 

is the average of the four curves in Fig. 5.20. The flipping feature shifts the E-EFDFT=0 from 

0.07 to 0.31 eV towards a HOMO resonance (c to d). 
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Table 5.6: Summarises all the multicomponent calculations including displacement and type 

domination.  

Multicomponent Displacement (eV) Type domination 

Au-Py-Anthracene- alkynyl -Gr-Au. 0.13 LUMO 

Au- alkynyl -Anthracene-Py-Gr-Au 0.07 LUMO 

Au-Thiol-Anthracene- alkynyl -Gr-Au 0.15 HOMO 

Au- alkynyl -Anthracene-Thiol-Gr-Au. 0.01 HOMO 

Au-Thiol-Anthracene-Py-Gr-Au. 0.07 LUMO 

Au-Py-Anthracene-Thiol-Gr-Au. 
 

0.31  HOMO  

 

 

5.10 Seebeck coefficient 𝑺 . 

 

In section 5.9, the transmission curve has been calculated at different locations on a Gr sheet 

then the average is taken as shown in the 3 scenarios (Figures 5.23, 5.25 and 5.27). In this 

section, the Seebeck coefficient 𝑆 for the same locations calculates and the average is taken for 

the 3 flipping scenarios.  

By using equations (4.2-4.5) mentioned in chapter 4, the 𝑆 calculate for cases labelled a, as 

shown in Figures (5.28, 5.30, 5.32)-a, and cases labelled b, as shown in Figures (5.28, 5.30, 

5.32)-b.     

 

 

 

 



 153    
 
 

5.10.1 Scenario A:  

 

The Seebeck coefficient 𝑆 calculate for both cases a and b of Figure 5.28 below. Panels c and 

d of Figure 5.29 both show a negative 𝑆 at the DFT-predicted Fermi energy (E-EFDFT=0 eV), 

as junctions a and b possess LUMO dominated transmission curves as shown Figure 5.23-a 

and -b. Since no switching in the sign of 𝑆  while the molecule is flipped, this suggests that an 

asymmetric anthracene molecule with Py and alkynyl anchors is not the proper candidate for 

producing a flipping feature.   

 

 

 

 

 

 

 

 

 

 

Figure 5.28: Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when Py linked to the Gr and b is when 

alkynyl linked to the Gr. 
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Figure 5.29:  Average Seebeck coefficient 𝑆 as a function of the energy for junctions 

a and b of Figure 5.28. c: Py attaches Gr sheet. d: alkynyl attaches to Gr sheet. Both 

junctions show a negative 𝑆.  

 

5.10.2 Scenario B:  

 

I repeat the same calculations of scenario-A, however, different anchors including alkynyl, and 

thiol for both cases a and b of Figure 5.30 below. Panels c and d of Figure 5.31 both show a 

positive 𝑆 at the DFT-predicted Fermi energy (E-EFDFT=0 eV), as junctions a and b possess 

HOMO dominated transmission curves as shown Figure 5.25-a and -b. Since no switching 

again in the sign of 𝑆  while the molecule is flipped, this suggests that an asymmetric anthracene 

molecule with thiol and alkynyl anchors is not the proper candidate for producing a flipping 

feature.   
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Figure 5.30: Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when thiol linked to the Gr and b is when 

alkynyl linked to the Gr. 

 

 
 
 
 
 

 

 

 

 

 

 

Figure 5.31: Average Seebeck coefficient 𝑆 as a function of the energy for junctions a 

and b of Figure 5.30. c: alkynyl attaches Gr sheet. d: Thiol attaches to Gr sheet. Both 

junctions show a positive 𝑆. 
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5.10.3 Scenario C:  

 

The calculations of scenarios-A and -B are repeat, however, different anchors including Py, 

and thiol for both cases a and b of Figure 5.32 below. Upper and lower panels (c and d) of 

Figure 5.33 demonstrate an opposite sign. Means, a positive and negative 𝑆 at wide range of 

energy around the DFT-predicted Fermi energy (E-EFDFT=0 eV), as junctions a and b possess 

a LUMO and HOMO dominated transmission curves as shown Figure 5.27-a and -b. This 

scenario illustrates a clear example of switching the sign of 𝑆  while the molecule is flipped.  

Scenario-C provides a proper candidate for producing a flipping feature through employing an 

asymmetric anthracene molecule with thiol and pyridyl anchors.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32:  Schematic illustration of molecular junctions for a and b. a and b shows how the 

molecule flips between the Gr sheet and Au.   a is when Py linked to the G and b is when thiol 

linked to the Gr. 
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Figure 5.33:  Average Seebeck coefficient 𝑆 as a function of the energy for junctions 

a and b of Figure 5.32. c: Py attaches G sheet. d: Thiol attaches to Gr sheet. Junction a 

shows a negative 𝑆 while b shows positive 𝑆.  

 

 

 

5.11 Conclusion 

 

Overall, I have investigated novel theoretical results by studying asymmetric anthracene of 

different anchor groups including alkynyl, thiol and Py. Firstly, I studied three asymmetric 

anthracene without graphene sheet, meaning that I connect them to the Au electrodes. I have 

demonstrated that the 𝑇(𝐸) and the 𝑆 for these asymmetric anthracene molecules at the DFT-

predicted Fermi energy (E-EFDFT=0 eV), have interested features including oscillation and 

flipping. I found that the anthracene of alkynyl -Py anchors is a HOMO-dominated with 
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negative 𝑆; while the anthracene of alkynyl -thiol is a LUMO-dominated with positive 𝑆. While 

An anthracene of Py-thiol anchors is more mid-gap than a HOMO- or LUMO-dominated.  

 By adding a graphene sheet Gr to these asymmetric anthracenes, I was able to investigate the 

oscillation by pulling the Gr sheet on the molecule in four different locations. I employ for this 

purpose three asymmetric molecules containing different anchor group including alkynyl, thiol 

and Py. I have calculated the transmission coefficient curves (black, green, red and blue curves) 

for four the positions 1, 2, 3 and 4, respectively. I also found that the oscillation for the first 

case (alkynyl -G) is uniform while it is less uniform for the last two cases (thiol-Gr) and (Py-

Gr), respectively. The oscillation ratio is found to be 0.4, 0.34 and 0.6 for the three cases 

respectively. 

Finally, I consider the flipping technique for an asymmetric molecule; where I first linked 

anchor-1 to a Gr sheet form multicomponent and then placed it between two Au electrodes. 

Secondly, I flipped the asymmetric molecule where the anchor-2 is now linked to the Gr sheet 

to form multicomponent, then placed it between two Au electrodes. For this purpose, three 

asymmetric anthracene molecules including (alkynyl -Py) anchor group, (alkynyl -Thiol) 

anchor group, and (Py-Thiol) anchor group were employed. Thus, I found that by flipping a 

proper asymmetric anthracene molecule to the graphene sheet, I can control the sign of the 

Seebeck coefficient 𝑆.  
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

 

This thesis has focused on the following chapters: 

 

Chapter 1 represents a general picture of molecular electronics, thermoelectricity, and the 

thesis outline.   

Chapter 2 introduces general concepts of DFT code SIESTA, which is applied to all studied 

electronic structure calculations in this thesis. In the stimulation work, I extracted the 

Hamiltonian of an isolated molecule and relaxing it, and then connecting this isolated molecule 

to metallic electrodes to calculate the transport properties. 

Chapter 3 is the single-particle transport theory, including the landau formula, thermoelectric 

coefficients, and scattering theory. 

Chapter 4 is the DFT calculations compared with the experimental measurements, where I 

focus intensely on the electronic properties of anthracene molecules having two pyridyl anchor 

groups. I studied this molecule, called Di (4-(ethynyl) phenylthioacetate), with different 

connectivities including (9, 10) and (1, 5). I have demonstrated the wave function plots of both 

connectivities to predict whether they possess a constructive or destructive QI, the binding 

energy to find the optimum separation distance between the molecule and the metallic 

electrodes, the transmission coefficient	𝑇(𝐸), and the Seebeck coefficient	𝑆	. Through a 

theoretical model, I found that the tilt angle 𝜃 plays a role as a pivotal parameter in increasing 

the conductance 𝐺 and decreasing the thermopower 𝑆 as well.  My theoretical simulations have 
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been checked against experimental measurements via several parameters and as follows: 

anthracene molecule with thioether liker group does not bind to a porphyrin molecule while 

the same molecule with pyridyl linker does bind. Both connectivities (9, 10) and (1, 5) have a 

CQI and the ratio between them about 16 for the bare molecules. This ratio decreases (less than 

16) when they molecule combine with either graphene sheet or porphyrin or both of them. This 

combination decreases the conductance 𝐺, however, it boosts the Seebeck coefficient 𝑆. 

Finally, an excellent agreement is found between my simulations and the measurements.      

 

Chapter 5 is based on the same core molecules that have been studied in chapter 4, however 

in different directions. This chapter presents novel theoretical results of asymmetric anthracene 

molecules linked to the graphene sheet to form multicomponent. I investigate asymmetric 

anthracene molecules with different anchor groups, such as alkynyl, thiol, and pyridyl. Firstly, 

I have studied the oscillation behaviour of the multicomponent in four different positions 1, 2, 

3 and 4 while pulling a graphene sheet in the junction in a way that the Au tip and the anchor 

are aligned and passes through a C atom in the Gr sheet., Secondly, I proposed the flipping 

technique when an asymmetric molecule is attached to a Gr sheet via anchor-1 to form 

multicomponent-1, and then the same molecule again attaches to the same sheet, however this 

time via anchor-2 (anchor-1 and anchor-2 are different), to form multicomponent-2. Both 

multicomponent placed between Au electrodes to calculate 𝑇(𝐸), and eventually 𝑆.  The two 

different multicomponent show positive and negative signs of 𝑆 which is of interest to have bi-

thermal material just by flipping the same molecule.       
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 6.2 Future work 

 

In this thesis I have concentrated on the Seebeck coefficient and the electrical conductance of 

the self-assemble monolayer (SAMs) for the anthracene molecule. I studied symmetric 

molecule, chapter4, the following: the anthracene-based molecule, anthracene +Gr, 

anthracene+Zn-TTP and anthracene+Zn-TTP + Gr. In chapter 5, I have studied asymmetric 

molecule for three different anchor group Alkynyl, Py and thiol linked to Gr sheet. For the 

future work, one can envisage extending these in a number of directions. First it is interesting 

to investigate how the calculations change when the gold leads are replaced by alternative 

metals such as platinum, palladium and iron. Secondly, it would be interesting to examine the 

electronic properties of different molecules such as OPE3 linked to a Porphyrin or graphene 

sheet (multicomponent molecules attached to gold electrodes). Also, these multicomponent 

molecules can be studied with alternative metals such as platinum. Then, it would be motivated 

to examine the flipping feature of other asymmetric molecules such as anthracene others with 

the different type of porphyrin including Co, F and Zn. Similarly, employing other anchor 

groups for example, amine (NH2), BDT and CN. Studying the flipping feature at different 

alignment sites including hollow, on-top and bridge. Finally, Studying the flipping (molecule 

attached to Gr sheet) can be studied at different alignment sites including hollow, on-top and 

bride. These can be summarized as the following: (a)aligned though hexagon, (b)aligned on 

carbon atom (on top), (c) nun-aligned on through hexagon ring and (d) non-aligned on the top 

of carbon atom.     

 

 


