
1 
 

A Permutation Test for Assessing the Presence of Individual Differences in Treatment 

Effects 

Chi Chang – Michigan State University 

Thomas Jaki – Lancaster University and University of Cambridge 

Muhammad Saad Sadiq – University of Miami 

Alena Kuhlemeier – University of New Mexico 

Daniel Feaster – University of Miami 

  Natalie Cole – University of New Mexico 

Andrea Lamont – University of South Carolina 

Daniel Oberski – Utrecht University 

Yasin Desai – Lancaster University 

The Pooled Resource Open-Access ALS Clinical Trials Consortium* 

M. Lee Van Horn – University of New Mexico 

 

Running Head: A Permutation Test for Assessing Heterogeneity in Treatment Effects 

 

Corresponding Author:  

M. Lee Van Horn, PhD. Tech 274, 1 University of New Mexico, Albuquerque, NM 87131 

mlvh@unm.edu; (505) 277-4535 

 

*Data used in the preparation of this article were obtained from the Pooled Resource Open-

Access ALS Clinical Trials (PRO-ACT) Database. As such, the following organizations and 

individuals within the PRO-ACT Consortium contributed to the design and implementation of 

the PRO-ACT Database and/or provided data, but did not participate in the analysis of the data 

or the writing of this report: 

 Neurological Clinical Research Institute, MGH 

 Northeast ALS Consortium 

 Novartis 

 Prize4Life 

 Regeneron Pharmaceuticals, Inc. 

 Sanofi 

 Teva Pharmaceutical Industries, Ltd. 

 

This paper was partially supported by grant # MR/L010658/1 awarded to Thomas Jaki by the 

United Kingdom Medical Research Council. For further information or comments please contact 

the senior author, M. Lee Van Horn at mlvh@unm.edu 

 

  

mailto:mlvh@unm.edu


2 
 

Abstract 

An important goal of personalized medicine is to identify heterogeneity in treatments 

effects and then use that heterogeneity to target the intervention to those most likely to benefit. 

Heterogeneity is assessed using the predicted individual treatment effects (PITE) framework, and 

a permutation test is proposed to establish if significant heterogeneity is present given the 

covariates and predictive model or algorithm used for PITEs. We first show evidence for 

heterogeneity in the effects of Riluzole acrossan illustrative example data set. We then use 

simulations with two different predictive methods (linear regression model and Random Forests) 

to show that the permutation test has adequate type-I error control. Next, we use the example 

dataset as the basis for simulations to demonstrate the ability of the permutation test to find 

heterogeneity in treatment effects for a PITE estimate as a function of both effect size and 

sample size. We find that the proposed test has good power for detecting heterogeneity in 

treatment effects when the heterogeneity was due primarily to a single predictor, or when it was 

spread across the predictors. Power was found to be greater for predictions from a linear model 

than from random forests. This non-parametric permutation test can be used to test for significant 

differences across individuals in PITEs obtained with a given set of covariates using any 

predictive method with no additional assumptions. 

 

 

Keywords: Predicted individual treatment effects, heterogeneity in treatment effects, 

personalized medicine, permutation test, Random Forests 
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1. Introduction 

The key premise of personalized medicine is the identification and targeting of 

individuals most likely to benefit from a given intervention, (1) with the goal of improving health 

care outcomes and decreasing costs.(1,2) Much recent research has focused on statistical 

approaches for identifying a small number of subgroups of individuals who differ in their 

response to interventions, (3 –13) while a smaller body of research has focused on predicting 

intervention responses at an individual level. (4,14–19) For situations in which treatment 

response is related to a set of covariates, which is not a small number of clearly defined 

subgroups, individual-level predictions are particularly appropriate. Even if most covariates were 

categorical, with high dimensional data and finite samples, individual-level predictions may 

contain more information about heterogeneity in treatment effects than is contained in 

subgroups. This study focuses on the use of predicted individual treatment effects (PITE) 

(20,21), which builds on the potential outcomes framework (22,23) and results in predictions of 

the intervention response for individual patients.  

The PITE approach utilizes data from a randomized clinical trial with a potentially large 

number of baseline covariates to generate predictions from a model or algorithm, which are then 

used in estimating PITEs. The same model or algorithm can then be used to generate treatment 

effect estimates for new subjects not used in training. Given that predictive algorithms have been 

trained, the next question becomes whether the data reveal more variability in individual 

predictions than would be expected due to chance. In other words, ‘Do individuals differ in the 

predicted effects of the intervention?’ is a question that should be answered before a given set of 

PITE estimates are used to ensure that this personalized method is only used when there are 

individual differences. This paper proposes a permutation test to answer this question. An 

advantage of the proposed method is that it can be generally applied to any method for 

estimating predictions for the treated group and the control group. While methods exist for 

estimating the significance of heterogeneity in treatment effects using kernel regression and 

instrumental variable regression (24,25) and for estimating whether subgroups identified by 

treatment response improve on group means, (26) the proposed permutation test provides 

flexibility in choosing the estimator and can use machine learning to estimate potential outcomes 

while retaining frequentist properties. The next section describes the PITE approach in general 

terms before providing details of our proposed permutation test. In Section 3, we use the PITE 

framework and the proposed test to evaluate heterogeneity in the effects of interventions for 

ALS; Section 4 uses this test on simulated data to show the type I error rates of the PITE 

permutation test using two different predictive models with and without main effects of 

covariates. In Section 5, we use the ALS example as the basis for simulations that demonstrate 

the ability of the permutation test to find heterogeneity in treatment effects as a function of both 

effect size and sample size. Section 6 concludes with a discussion of results. 

2. Permutation test for PITE 
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Potential outcomes (23,27,28) provide a powerful way for understanding causal effects. 

In the context of a two-arm randomized trial, before treatment assignment, each individual has a 

potential outcome under both treatment conditions, which is the outcome that they would obtain 

if assigned to treatment (𝑌𝑖
𝑡) and the outcome they would obtain under control (𝑌𝑖

𝑐). The causal 

effect of treatment for an individual is defined as: 

𝑌𝑖
𝑡 – 𝑌𝑖

𝑐          (1) 

The “fundamental problem of causal inference” (29) is that this effect is never observed because 

once an individual is assigned to a condition, the outcome can only be realized for that condition. 

The PITE framework proposes that we can use a predictive function to capture some proportion 

of the potential outcomes1: 

 𝑌𝑖
𝑡 = 𝑓𝑡(𝑥𝑖) + 𝜀𝑖𝑡,          (2) 

 𝑌𝑖
𝑐 = 𝑓𝑐(𝑥𝑖) + 𝜀𝑖𝑐, 

where 𝑥𝑖 contains covariates for individual i, 𝜀𝑖𝑡~N(0, σ𝑡
2) is a patient-level random effect if 

treated, and 𝜀𝑖𝑐~N(0, σ𝑐
2) is a patient-level random effect if control, and 𝑓(. ) indicates any 

predictive function. Following Lamont et al. (20), PITE is defined as the difference between the 

predicted outcome under treatment and the predicted outcome under control for each patient i 

given their observed covariates.   

 PITEi  = 𝑌̂𝑖
𝑡 – 𝑌̂𝑖

𝑐= 𝑓_𝑡(𝑥𝑖) − 𝑓𝑐(𝑥𝑖)       (3) 

The PITE, therefore, is an estimate of the treatment effect for a particular individual given the 

covariates and predictive model or algorithm used. The PITE is equal to the potential outcomes 

definition of an individual causal effect only in the unlikely, and unknowable, scenario that the 

random effects for both conditions are equal to zero. It should be noted that even if the average 

treatment effect equals zero, it is still possible that there are some individuals who would be 

expected to do better given the treatment than control and others who would be expected to do 

better under control. Therefore, in this paper, we exclude the expected value of the PITE from 

the test, as this value is an estimate of the average treatment effect and not evidence of individual 

differences. Because the PITE is defined very generally as the difference between two 

predictions, it can be used with any predictive model that provides outcome prediction on a 

patient-level (e.g., the General Linear Model, random forests,(30) Bayesian additive regression 

trees,(31) neural networks (32)). In addition, PITE can be used for predicting treatment effects 

given information on covariates for patients who are not originally part of the clinical trial.  

 The presence of individual differences has implications for how a treatment would be 

implemented: if there are individual differences in the treatment effect, it suggests that it may be 

worthwhile to collect and use individual-level data to help guide treatment decisions. Therefore, 

                                                           
1 We gratefully acknowledge an anonymous reviewer who suggested this notation. 
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we propose a permutation test to evaluate whether there are individual differences in PITEs. This 

paper demonstrates the use of a permutation test with two different predictive approaches, 

Random Forests(30) and linear regression. 

Following equation 2, we begin by using data from those randomized to treatment to 

estimate 𝑓𝑡(𝑥) which allows estimation of predicted values of the outcome under treatment (𝑌̂𝑖
𝑡) 

from a set of covariates x. Note that while the random effects, 𝜀𝑖𝑡, are observed for those in the 

treatment group, we do not use these because 1) the random effect under control (𝜀𝑖𝑐) is not 

known, and 2) the random effects for new individuals are unknown. The function for estimating 

the predicted potential outcome under control can be estimated in the same way. In the sense that 

PITE attempts to estimate potential outcomes from other variables, it can be considered a latent 

variable model. PITE is one method for personalized medicine that uses latent variables to 

investigate heterogeneity in treatment response; others include methods to estimate the 

proportion of subjects who benefit from treatment. (33) The example includes 1) latent classes 

defined by heterogeneity in treatment response, (34) and 2) Bayesian analyses that assess 

differential treatment response as a function of continuous and categorical latent variables. (35) 

Once 𝑓𝑡(𝑥) and 𝑓𝑐(𝑥) are estimated from the trial data, individual-level PITE estimates 

for patients in the original trial and those who did not take part in it, can be obtained using 

Equation 3. It should also be noted that the algorithm or model used for prediction will determine 

both the assumptions made and the efficiency of the predictions (e.g., linear models assume 

linearity in the parameters and that all multiway interactions are included in the covariates and 

tend to have increased efficiency when those assumptions are met). This paper uses both 

Random Forests and the linear model to obtain predictions. We expect that the best model will 

be situation dependent. 

We propose a permutation test (23,36–39) be used to test for individual differences in 

PITEs. Our test focuses on the standard deviation (SD) of the PITEs, because this estimate 

quantifies individual differences in the predicted treatment effects. More specifically, we test the 

hypothesis: 

 H0: PITEi = PITEj for all pairs of individuals (𝑖, 𝑗) ∈ {1, . . , 𝑛} 

HA: PITEi ≠ PITEj for at least one pair of individuals  (𝑖, 𝑗) ∈ {1, . . , 𝑛} 

In other words, the null hypothesis is that there are no individual differences in the PITEs 

obtained. To test this hypothesis, the permutation test first approximates the sampling 

distribution of PITEs’ SDs under the null hypothesis, i.e., when the set of covariates in the PITE 

prediction models have the same effect on the outcome across treatment groups (the covariates 

may be prognostic, but not predictive). This is done by permuting treatment assignment. The 

observed SD of the PITEs from the data is compared against the resulting distribution.  

The following algorithm describes the procedure in detail. 
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1) Estimate PITE models and compute 𝑃𝐼𝑇𝐸̂𝑖,  for all 𝑛 individuals in the dataset using a 

prediction method and set of covariates 

2) Estimate the standard deviation of the estimated PITEs as 

𝜎̂𝑃𝐼𝑇𝐸 =
1

𝑛 − 1
∑(𝑃𝐼𝑇𝐸𝑖

̂ − 𝑃𝐼𝑇𝐸𝑖
̂ )2

𝑛

𝑖=1

 

 where 𝑃𝐼𝑇𝐸𝑖
̂ =

1

𝑛
∑ 𝑃𝐼𝑇𝐸𝑖

̂𝑛
𝑖=1 . 

3) Randomly permute the treatment assignment of all patients in the study. 

4) Estimate the PITE model and compute 𝑃𝐼𝑇𝐸̂𝑖
𝑝

, using the permuted data and the same 

prediction method as used in step 1. 

5) Estimate the standard deviation, 𝜎̂𝑃𝐼𝑇𝐸
𝑃   of 𝑃𝐼𝑇𝐸̂𝑖

𝑝
, in the same manner as in step 2. 

6) Repeat steps 3 through 5, P times.   

7) Obtain the p-value, pP, associated with the above hypothesis as 𝑝𝑃 =
∑ 𝐼(𝜎̂𝑃𝐼𝑇𝐸

𝑃 >𝜎̂𝑃𝐼𝑇𝐸)𝑃
𝑝=1

𝑃
,  

with I(.) being an indicator function equal to 1 if the condition in the parenthesis is 

satisfied, and 0 otherwise.  

8) Reject the above hypothesis at level α if pP < α. 

The proposed PITE permutation test is intended to be conducted once per dataset and does 

not inherently involve multiple comparisons or multiple testing, which requires strong 

assumptions for permutation tests. (40)  

For each of 1,000 replications in this study, 1,000 permutations were used in our subsequent 

evaluations. Following binomial arguments, this yields a .007% uncertainty in estimated p-values 

of which the true value should be 5%.    

3. Demonstration of the permutation test: An intervention for individuals with ALS 

 

 Amyotrophic Lateral Sclerosis (ALS, also known as Motor Neuron Disease) is a 

neurodegenerative disorder that affects motor neurons in the brain and spinal cord. We use the 

Pooled Resource Open-Access ALS Clinical Trials database (PRO-ACT), (41) which is publicly 

available at their website: http://nctu.partners.org/ProACT. In 2011, Prize4Life, in collaboration 

with the Northeast ALS Consortium formed the PRO-ACT Consortium, which makes data from 

23randomized trials of the drug Riluzole available. We note that one other study has used this 

data to evaluate a personalized approach based on the identification of subgroups of responders 

(26,42), finding evidence for significant individual differences in response to Riluzole. 

 

The advantage of this dataset is that it pools data from many randomized trials of 

Riluzole and thus has the sample size needed to test for heterogeneity in treatment effects. 

However, to maintain confidentiality, the data does not include a study identifier, and thus it is 

http://nctu.partners.org/ProACT


7 
 

impossible to model study-specific effects. This is potentially problematic because it is possible 

that systematic differences in subject populations as well as outcomes between studies exist, 

which could themselves result in the identification of heterogeneity in treatment effects. More 

generally, achieving personalized medicine in practice is likely to be the end result of a program 

of research involving many steps of which this is a preliminary example. 

 

After estimating PITEs using a linear model with the PRO-ACT data, we then use the 

permutation test to examine heterogeneity in individual treatment effects. PRO-ACT includes 

information from more than 8,500 patients with ALS. Each of them participated in a clinical trial 

and received either a placebo or treatment. Following Küffner et al., (41) we used the slope of 

the ALSFRS score from a repeated measures model for each patient as the primary outcome, and 

the 2,910 patients (1,766 in experimental treatments and 1,144 in control ones) who had 

complete data for 17 covariates, treatment condition, and the outcome. 

 

To avoid overfitting the data, we advocate either choosing both the predictive method and 

the covariates for the PITEs a priori, or adjusting for the variable selection process. (43) Here, 

we demonstrate the permutation test based on a linear model that included 7 (out of 17) 

covariates found to have significant interactions with treatment. In its simplest form, with a 

linear model, PITE captures baseline by treatment interactions; thus, we used this as the criteria 

for variable selection. PITEs, however, are much more general than these interactions as they 

capture the joint effect of many predictors and, depending on the predictive method used, 

implicitly capture non-linear and higher-order interactions. The seven covariates used for 

obtaining PITE estimates were: respiratory rate, systolic blood pressure, age, gender, limb only 

(coded 1 if the onset location was only in the limb), use of Riluzole, and delayed medication 

(coded 1 if the time duration between the first time the patient was assessed during the trial and 

the time medication was first given was more than a year, zero otherwise).  

Results 

Appendix B and C showed the descriptive statistics of the 7 covariates that were found to 

have significant interactions with treatment. Appendix A showed the linear regression model’s 

coefficients and standard errors for both treatment and control conditions with all 17 covariates 

in the ALS dataset. The results for the control group can be considered to be the main effects, in 

the absence of treatment, from the linear model and the differences between the treatment and 

control groups are the linear interactions that contribute to predicted individual differences in 

treatment effects. Figure 1 includes the permutation distribution of SDs of PITEs based on the 

procedure outlined above together with the observed SD from the ALS dataset, which at .127 is 

on the upper tail of this distribution. The p-value for the permutation test was .005, providing 

evidence for individual-level treatment heterogeneity based on the linear model and the 7 

covariates included. 

[Insert Figure 1 Here] 
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Figure 1. Permutation distribution of PITEs’ SDs and the observed PITE’s SD in the ALS study. 

4. Type I error rates for the permutation test 

The promise of this permutation test is that one can use any conventional or machine 

learning function and still get correct frequency properties. In this section, we investigate if this 

promise is fulfilled. We begin our evaluation of the proposed test by examining the type I error 

rate of the permutation test under the null hypothesis, i.e., that the treatment effect is the same for 

all individuals. Simulations were conducted with the true PITE for each individual being equal to 

the average treatment effect, meaning that covariates had no impact on the PITE. When the type 

I error is .05, the p-value obtained from step 7, above, should be below .05 in only 5% of the 

simulations. 

In this phase of our investigation, PITE was estimated with sample sizes of 100, 250, 

500, 1,000, and 5,000 using both linear regression (via the lm function in R) and Random Forests 

(via the randomForestSRC package in R, (44) tuned to have a node depth of 10). To make the 

simulation more realistic, we included five prognostic covariates that had the same effects across 

the treatment and control conditions. These included three normally distributed covariates with 

means of 0 and variances of 1, and two binary variables, each with a 0.5 probability of endorsing 

1 or 0. The covariate effects of 0.406, -0.239, 0.703, -0.090, and -0.299, respectively, were 

identical across the treatment and the control groups – implying that they did not predict 

differential responses to the treatment - and were included in all analyses. To show type I error 

rates when many additional variables were included in the predictive model, we ran analyses 

with varying numbers of continuous variables with standard normal distribution and binary 

variables with binomial distributions with a probability of success of .5. They were generated to 

be unrelated to the outcome, hereafter called ‘nuisance variables.’ Because sample size limits the 

number of nuisance variables that can be included in a linear regression model, we examined an 

increased number of nuisance variables with larger samples. Analyses also varied the true 

treatment effect to show that the PITE, as described above, does not capture the main effects of 

treatment. For the Random Forest model, we used 500 trees and 10 random split points to split a 

node.  

 

Results 

The results (see Table 1) established that across all conditions, the permutation test 

rejected the null hypothesis between 4.7% and 6.3 % of the time with the linear regression 

model, and 2.9% to 6.3% of the time with Random Forests. The estimated type I errors appear to 

be mostly within simulation error (±0.007) with no discernable pattern detectable in relation to 

the number of nuisance variables, main effect, or total sample size. 

 

[Insert Table 1 Here] 

 

5. Power of the permutation test  
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Next, we used the ALS results in section 3 as the basis for simulations examining some 

of the factors that influence the permutation test’s statistical power. In the data generation model 

for the power simulations, the parameters from the predictive linear model using the ALS 

example (shown in Appendix A) were used as the starting point. To mimic the real-world 

scenario, we included only the seven covariates that were found to have significant interactions 

with treatment in the simulation. The first three of these, respiratory rate, systolic blood pressure, 

and age, were generated as normally distributed random variables with means and SDs equal to 

the corresponding values estimated from the ALS dataset (details provided in Appendix B). 

Similarly, the remaining four binary random variables, gender, limb only, use of Riluzole, and 

Delayed Medication, were generated as binomial with the same probabilities as observed (in 

Appendix C). The covariance matrix was generated by mimicking that of the ALS data. The 

outcome was generated with the effect size scaled to mimic the ALS example with sample sizes 

of 1,000 (to examine if the effects could have been found with a smaller sample) and 3,000 (as in 

the ALS example), with equal size for the treatment and placebo groups.  To assess the impact of 

adding further covariates when fitting PITE, we evaluated statistical power with 0, 20, 50, or 100 

nuisance variables, all of which were generated either from standard normal distributions or 

binomial distributions with a probability of success of .5. The nuisance variables were included 

when estimating PITEs despite not being related to the outcome.  

A challenge in estimating power was that measures of effect size for PITE have not been 

previously defined. In this study, we used the average PITE estimate divided by the pooled SD of 

the outcome as follows:  

𝑃𝐼𝑇𝐸 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒 =

Σ|𝑃𝐼𝑇𝐸𝑖|
𝑁

√
(𝑁𝑇 − 1) × (σ𝑇

2 ) + (𝑁𝐶 − 1) × (𝜎𝐶
2)

𝑁𝑇 + 𝑁𝐶 − 1

  

This resulted in an estimated effect size of 0.19 for the PITEs in the ALS example, 

meaning that the average person was 0.19 SD from the average effect size. When estimating 

power, data were generated with effect sizes of either 0.19 or 0.38, with the latter included to 

examine the method’s ability to identify a larger effect.  

We also examined the permutation test’s power to detect heterogeneity that is mostly due 

to a single variable as well as when heterogeneity was spread across multiple variables which 

each contribute a small amount. Power simulations were run for six conditions, which differed 

from one another in the relative contributions of the 7 predictors. Specifically, these 6 conditions 

were: 1) the total heterogeneous effect is evenly spread across all 7 covariates (“Spread”); 2) 

90% of the total heterogeneous effect is due to the first continuous variable, and 10% to the other 

6 covariates (“90/10 Cont.”); 3) as 90/10 Cont., but with 75%/25% split between the first 

continuous variable and the other 6 covariates (“75/25 Cont.”); 4) as above, but with a 50%/50% 

split (“50/50 Cont.”); 5) as above, but with a 25%/75% split (“25/75 Cont.”); and 6) 90% of the 
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total heterogeneous effect is due to the first binary variable, and 10% to the other 6 covariates 

(“90/10 Bin.”). Thus, the power of PITE prediction was examined in a total of 96 conditions, i.e., 

in 2 (sample sizes) × 4 (numbers of nuisance variables) × 2 (effect sizes) × 6 (heterogeneity 

effect distributions). 

Once data was generated, both the linear model and Random Forests were run for each 

dataset and under each condition using the procedures described above. For the Random Forest 

model, the depth was restricted to 10. The percentage of times that the permutation test was 

significant for each condition was recorded as the power estimate.  

Results  

Power for each of the 96 conditions was estimated as the proportion of 1000 simulations 

for which the permutation test was significant. The results obtained with an effect size of 0.19 

are presented in Table 2, and those obtained with an effect size of 0.38 in Table 3. As expected, 

power increased both when sample size increased and when effect size increased. Our results 

also indicated that increasing the number of nuisance variables decreased power substantially, 

highlighting the importance of selecting meaningful covariates. With the ALS observed effect 

size and sample size, the predictive (post-hoc) power obtained from the linear regression model 

was adequate (>.80) when there were 50 nuisance variables, but not when there were 100. When 

using Random Forests for predictions, on the other hand, power was adequate with 20 nuisance 

variables at the same sample size. However, with a sample size of 1,000, the linear regression 

model’s power was poor even with 20 nuisance variables and would be inadequate with Random 

Forests using the same tuning parameters.  

[Insert Table 2 Here] 

[Insert Table 3 Here] 

With an effect size twice as great as observed, the power of the permutation test using 

linear regression model was low only when the sample size was 1,000, and there were 50 or 100 

nuisance variables, but Random Forests’ power was marginal even with a sample size of 3,000 if 

there were 100 nuisance variables. We note that power estimates for Random Forests were 

expected to be lower than those for the linear regression model given that the data were 

simulated using the latter method and that no higher-order interactions or non-linear effects were 

included.  

The other factor that we varied across the simulations was how the effect of the 

covariates on heterogeneity in treatment effects was spread out. The reason for this is to show a 

core advantage of PITE, which is its ability to detect many small effects that add up to something 

meaningful rather than just one large effect. When looking across the six different spreads of the 

PITE effect, it was striking that when there was adequate power for one of them, there was 

usually adequate power for all. The only two exceptions to this were 1) when the effect was 

carried primarily by one binary variable (i.e., there are only two different kinds of responses), in 
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which case, power was higher than for the other conditions; and 2) for random forests the power 

is lower for the binary predictor. The key result here is that, in the ALS example, power was 

about the same regardless of whether the heterogeneity in treatment effects is attributed primarily 

to one of the 7 important variables or when it is spread out across all 7.  

One apparently inconsistent finding in these results was that in some conditions, power 

was less than 5%, the type I error rate. The reason for this is that any random variable will cause 

variability in the PITE to a certain extent. In some cases, with many nuisance variables, the 

effects of the predictors we were simulating were smaller than effects due to chance, resulting in 

a lower probability of finding heterogeneity in the effects of the predictor than would have been 

expected due to chance. Importantly, this implies that adding more predictors will increase the 

noise in PITE estimates and result in larger heterogeneity being estimated.  

Finally, in order to illustrate that PITEs do not capture heterogeneity due to variables not 

included in the predictive models, we reran several sets of simulations, dropping the predictor 

accounting for most of the individual differences. Looking at the linear model with a sample size 

of 1000 and effect size of .38, we found that when the continuous variable accounting for the 

most heterogeneity was dropped, power went from 1, .94, .18, and 0 across levels of nuisance 

variables to under .05 for all conditions. When the binary indicator accounting for most of the 

variance was dropped, power went from 1, 1, .94, and .71 across levels of nuisance variables to 

1, .96, .83, and .45. When even 1 important variable is left out of the PITE predictive model, the 

ability of the permutation test to find heterogeneity in treatment effects is reduced. 

6. Discussion 

For PITEs to be useful for quantifying individual differences in the effects of an 

intervention, it is necessary to have a test that can show that there are differences larger than 

chance between individuals. The proposed permutation test is therefore very important. Under 

the 96 conditions we examined, the test was shown to have appropriate, nominal type I error 

rates, practical utility in an applied example, and adequate power given a moderately sized 

sample and 20 to 50 nuisance covariates. The effect size observed in our applied example was 

fairly small (the average individual was 0.19 SD from the average treatment effect). However, if 

the effect size had been doubled, then the permutation test would have had adequate power even 

with 100 nuisance covariates. The permutation test also demonstrated an ability to detect 

heterogeneity in treatment effects due primarily to a single predictor, or when it was spread 

across the 7 predictors that had an impact in the ALS example. It also worked reasonably well 

when either the linear regression model or Random Forests were used as the predictive method. 

These are important because in practice, it means the test can be used with a large number of 

covariates when heterogeneity is due to just a small set of covariates, and it can be used with any 

predictive method while making no assumptions beyond those of that method. A final set of 

simulations illustrated that, while PITEs are inspired by potential outcomes, neither PITEs nor 

the permutation test allow us to detect the true individual-level causal effect. Instead, these 
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methods detect only those individual differences which arise from the variables included in 

obtaining the predictions, the null hypothesis for the permutation test is that there are no 

individual differences for a given predictive method and set of covariates. 

The permutation test was also found to have an unexpected benefit in that the variance of 

the PITEs across permuted datasets provides an estimate of the variability in PITEs that, due to 

chance, can be attributed to the number and distribution of the covariates used in a given 

application and to the model or algorithm used to obtain predictions. Thus, this test can help 

assess the amount of noise in PITEs for a given number of covariates and predictive methods.  

We noted that for Random Forests with nuisance variables, the choice of tuning 

parameters made a meaningful difference in the results. If there is heterogeneity in treatment 

effects or added nuisance variables, the Random Forest requires more tuning or corrections for 

bias, irrespective of sample size. For instance, allowing deep trees led to high levels of 

overfitting, with many nuisance variables being identified as important. In this case, we chose a 

maximum node depth of 10 to reduce overfitting. While how to appropriately tune random 

forests when estimating PITEs is beyond the scope of this study, it is a non-trivial issue which 

merits further research. 

Consistent with other studies finding evidence for heterogeneity in the effects of Riluzole 

with the PRO-ACT dataset (26,42), PITEs used with the permutation test suggest the possibility 

of individual differences in the effects of treatment. While our results suggest significant 

heterogeneity in the ALS dataset, the effect sizes were modest. Since this dataset consists of 

information pooled across a large number of clinical trials without an identifier for the clinical 

trial, we would like to stress that suggesting the heterogenetiy in practice is not our original 

intention. the result of the example dataset showed that the observed effects can be due to 

heterogeneity in both covariates and outcomes across trials rather than individual differences in 

the effects of treatment. However, further step would be needed in practice and in the substantive 

area, if researchers are interested in identifying the source of the heterogeneity in the ALS 

dataset.   that We concur with others who have warned against seeing personalized medicine as a 

panacea, which will result in effective treatments for everyone. (34) .  

Other limitations of this study are that we examined the proposed PITE permutation test 

using predictions from only the linear regression model and Random Forests (with one set of 

tuning parameters), and under a set of conditions that were designed to clarify our understanding 

of its power via an applied example. In principle, we see no reason why this test should not work 

well with any method chosen but cannot claim that the present paper has established this. We 

should also note that, in the ALS example, the permutation test required a relatively large sample 

to attain adequate power. While the observed effect size was small in this case, even with a 

larger effect, the test required an N of 3,000 if many covariates were included. Because the 

outcome of interest is individual predictions, we believe that PITEs will generally require 

substantial sample sizes, unless the effects are very large. Nevertheless, as a very flexible test for 
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the presence of individual differences, this permutation test is an important tool for personalized 

medicine.  
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Table 1. Type 1 error rates for the PITE permutation test, the linear regression model and 

Random Forests. 

Sample 

Size 

Number of 

Nuisance 

Continuous 

Covariates 

Number of 

Nuisance 

Binary 

Covariates 

Average 

Treatment 

Effects 

Upper-sided 

Type I Error 

Rate- LM 

Upper-sided 

Type I Error 

Rate- RF 

100 0 0 0 0.049 0.046 

100 0 0 0.5 0.047 0.029 

250 0 0 0 0.047 0.053 

250 75 35 0 0.052 0.060 

250 0 0 0.5 0.063 0.054 

250 75 35 0.5 0.061 0.030 

500 0 0 0 0.048 0.053 

500 75 35 0 0.056 0.047 

500 150 70 0 0.052 0.048 

500 0 0 0.5 0.053 0.051 

500 75 35 0.5 0.054 0.035 

500 150 70 0.5 0.050 0.047 

1000 0 0 0 0.043 0.051 

1000 75 35 0 0.043 0.046 

1000 150 70 0 0.053 0.039 

1000 0 0 0.5 0.050 0.038 

1000 70 35 0.5 0.046 0.042 

1000 150 70 0.5 0.062 0.041 

 

 

  



19 
 

Table 2. Power to detect heterogeneity in treatment effects, based on the linear regression model 

and the Random Forest predictions from the ALS example with an effect size of 0.19 

Model 

Prediction 

Sample 

Size 

Number of 

Nuisance 

Variables 

Effect Distribution 

Spread 
90/10 

Cont. 

75/25 

Cont. 

50/50 

Cont. 

25/75 

Cont. 

90/10 

Bin. 

Linear 

Regression  

3,000 

0 1 1 1 1 1 1 

20 1 1 1 1 1 0.958 

50 0.924 1 0.998 0.968 0.988 0.878 

100 0.256 0.002 0.002 0.002 0.498 0.658 

1,000 

0 0.908 1 1 1 0.996 0.648 

20 0.294 0.062 0.058 0.098 0.496 0.392 

50 0.008 0 0 0 0.006 0.182 

100 0 0 0 0 0 0.112 

Random 

Forest  

3,000 

0  0.96 1 1 0.97 1 0.99 

20 0.94 0.91 0.91 0.90 0.97 0.91 

50 0.46 0.28 0.32 0.29 0.47 0.26 

100 0.01 0.00 0.00 0.02 0.01 0.00 

1,000 

0 0.23 0.08 0.06    0.10    0.44     0.42 

20 0.16 0.03 0.06 0.09 0.19 0.12 

50 0 0 0 0 0 0 

100  0 0 0 0 0 0 
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Ignoring One 

Heterogeneous 

Variable 

Effect 

Size 

Number 

of 

Nuisance 

Variables 

Effect Distribution 

Spread 
90/10 

Cont. 

75/25 

Cont. 

50/50 

Cont. 

25/75 

Cont. 

90/10 

Bin. 

Ignoring the 

Last Binary 

Variable  

0.38 

0 1 1 1 1 1 0.998 

20 1 1 1 1 1 0.962 

50 0.488 0.046 0.044 0.082 0.322 0.828 

100 0 0 0 0 0 0.452 

0.19 

0 0.996 1 1 1 0.998 0.972 

20 0.548 0.128 0.152 0.242 0.694 0.804 

50 0.012 0 0 0 0.016 0.544 

100 0 0 0 0 0 0.276 

Ignoring the 

First 

Continuous 

Variable 

0.38 

0 0.96 0.044 0.048 0.106 0.476 0.9 

20 0.554 0.046 0.052 0.066 0.156 0.666 

50 0.142 0.048 0.046 0.058 0.05 0.388 

100 0.008 0.044 0.046 0.04 0.01 0.196 

0.19 

0 0.504 0.036 0.038 0.048 0.12 0.65 

20 0.144 0.04 0.046 0.05 0.042 0.408 

50 0.042 0.046 0.046 0.044 0.016 0.222 

100 0.006 0.038 0.038 0.036 0.006 0.124 
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Table 3. Power to detect heterogeneity in treatment effects, based on the linear regression model 

and the Random Forests predictions from the ALS example with an effect size of 0.38 

Model 

Prediction 

Sample 

Size 

Number 

of 

Nuisance 

Variables 

Effect Distribution 

Spread 
90/10 

Cont. 

75/25 

Cont. 

50/50 

Cont. 

25/75 

Cont. 

90/10 

Bin. 

Linear 

Regression  

3,000 

0 1 1 1 1 1 1 

20 1 1 1 1 1 1 

50 1 1 1 1 1 1 

100 1 1 1 1 1 1 

1,000 

0 1 1 1 1 1 1 

20 1 1 1 1 1 0.996 

50 0.682 0.106 0.108 0.158 0.582 0.944 

100 0 0 0 0 0 0.706 

Random 

Forest  

3,000 

0 1 1 1 1 1 1 

20 1 1 1 1 1 1 

50 1 1 1 1 1 1 

100 0.81 0.60 0.55 0.52 0.66 0.74 

1,000 

0 1 1 1 1 1 0.99 

20 0.97 0.94 0.98 0.98 0.99 0.99 

50 0.29 0.18 0.11 0.16 0.24 0.24 

100 0 0 0 0 0 0 
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APPENDIX 

A. Parameter estimates from the linear regression model using the ALS example with 17 selected 

covariates. 

Covariates Treatment Group  Control Group  

 Coefficients SE Coefficients SE 

(Intercept) -3.56945 1.16889 -2.88826 1.45050 

Delayed Medication 0.01969 0.07101 0.17810 0.11253 

Respiratory Rate -0.00099 0.00422 0.01067 0.00501 

Temperature 0.10752 0.02962 0.09247 0.03714 

Weight(kg) 0.00226 0.00102 0.00166 0.00129 

Height(cm) -0.00555 0.00208 -0.00442 0.00271 

Diastolic Blood Pressure -0.00311 0.00160 -0.00204 0.00211 

Systolic Blood Pressure 0.00110 0.00105 -0.00113 0.00133 

Pulse -0.00365 0.00117 -0.00431 0.00150 

Gender 0.00712 0.03857 -0.03439 0.04959 

Age 0.00130 0.00131 -0.00327 0.00162 

White 0.03524 0.06360 -0.01493 0.06223 

severity -0.04591 0.02726 -0.06893 0.03656 

Diagnosis Delta -0.00036 0.00009 -0.00022 0.00011 

Limb Only -0.08336 0.11539 0.08838 0.04050 

Bulbar Only -0.33667 0.11856 -0.08348 0.04985 

Start Delta -0.00019 0.00011 -0.00037 0.00018 

Use Riluzole -0.07150 0.03861 -0.22549 0.05578 

 

B. Means and SDs of the continuous covariates in the ALS example 

 Mean SD Median Min. Max. 

Systolic Blood Pressure 131.88 16.63 130 85 206 

Age 54.70 11.35 55 18 80 

Respiratory Rate 17.19 3.27 16 6 42 

 

C. Distribution of binary covariates in the ALS example 

 Category N Percentage 

Delayed Medication (longer than 1 year) Yes 93 3.20% 

 No 2817 96.80% 

Limb Only Yes 1952 67.08% 
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 No 958 32.92% 

Gender Male 1848 63.51% 

 Female 1062 36.49% 

Use Riluzole Yes 1112 38.21% 

 No 1798 61.79% 

 

 

 

 

Figure 1. Permutation distribution of PITEs’ SDs and the observed PITE’s SD in the ALS study. 

 


