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Key Points: 11 

 The distribution of over 200 mare domes in Mare Tranquillitatis shows a concentration in a 12 

broad rise in eastern Tranquillitatis 13 

 The broad volcanic rise was formed by shield plains volcanism, differing from volcanism 14 

in younger mascon basins 15 

 Differences between Mare Tranquillitatis and younger maria are due to greater ages of the 16 

basin and mare, and a shallower source region  17 
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Abstract 18 

Mare domes, small shield volcanoes typically <~30 km diameter, are part of the spectrum of 19 

lunar volcanic features that characterize extrusive basalt deposits. We used new spacecraft data 20 

to document these in Mare Tranquillitatis, among the oldest maria and the site commonly 21 

interpreted as an ancient degraded non-mascon impact basin. We found 283 known and 22 

suspected mare domes, with the majority (n = 229) concentrated on a broad, ~450 km circular 23 

topographic rise in eastern Mare Tranquillitatis. The domes (median diameter 5.6 km, height 68 24 

m, volume 0.7 km
3
) contain summit pits (74%; median diameter 0.8 km), and exhibit minor 25 

compositional variability between domes and surrounding flows, suggesting that domes both 26 

supply and are embayed by these flows. Based on their characteristics and associations, we 27 

interpret the small shield volcanoes to have been built from individual low-volume (<~10–100 28 

km
3
), low volatile content, short duration, cooling-limited eruptions. The ~450 km broad 29 

volcanic rise is ~920 m high (volume ~1.6 × 10
5
 km

3
) and is interpreted to be built from multiple 30 

occurrences of small shield eruptions, a shield plains volcanism style. This implies a shallow 31 

mantle source region capable of supplying distributed dike-emplacement and eruption events 32 

over an area of 1.75 × 10
5
 km

2
 early in mare volcanism history (~3.7 Ga). The difference 33 

between Mare Tranquillitatis and younger mare-filled mascon basins is attributed to the more 34 

ancient thermal state and crustal structure of the viscously relaxed Tranquillitatis basin, and a 35 

shallower broad magma source region present in earlier lunar thermal history. 36 

Plain Language Summary 37 

Lunar mare volcanic activity spans several billion years in early-middle lunar history and 38 

involves melting in the mantle, ascent in blade-like cracks (dikes) and eruption to the surface to 39 

form basaltic lava flows. The features surrounding the eruption vent (e.g., flows, channels, 40 

sinuous rilles, cones, domes, pyroclastics, etc.) provide important information about eruption 41 

conditions (e.g., magma volume, rate of eruption, cooling behavior, composition, volatile content, 42 

etc.). The array of these features in specific mare locations and with differing ages provides 43 

critical information on the evolution of mantle source regions and the thermal evolution of the 44 

Moon. We studied ~3.7 Ga-aged lava deposits in Mare Tranquillitatis and found over 200 small 45 

shield volcanoes clustered in a ~450 km broad volcanic rise, and formed from a series of 46 

eruptions in a distinctive shield plains volcanism style. Missing or rare were other types of 47 

volcanic features (sinuous rilles, steep flow fronts, pyroclastics, cones, lava channels). Individual 48 

small shield volcanos are interpreted to have formed from relatively low-volume, low-volatile 49 

content, short-duration, cooling-limited eruptions. This unusual concentration in eastern Mare 50 

Tranquillitatis implies broad, relatively shallow source regions below this possible ancient, 51 

non-mascon impact basin, in contrast to later mascon-basin maria (Crisium, Serenitatis, 52 

Imbrium). 53 
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1. Introduction 54 

Volcanism is one of the major geological process on the Moon, directly reflecting the 55 

composition and thermal state of the lunar interior and its evolution, and it serves as an important 56 

window into the geological and thermal evolution of the Moon. Investigation of the spatial 57 

distribution and characteristics of the resultant volcanic deposits can provide fundamental 58 

evidence for constraining eruption processes (style, mechanism, flux), magma composition 59 

(especially volatile species and contents) and physical properties, and the nature of magma 60 

source regions and their evolution (e.g., Head et al., 1981; Shearer et al., 2006; National 61 

Research Council, 2007; Spudis, 2015). 62 

Mare domes, small (diameter mostly less than ~30 km) and generally circular structures 63 

with convex-upward profiles (Head & Gifford, 1980), are among the most common volcanic 64 

landforms on the Moon (Head & Wilson, 2017). Mare domes usually have very gentle slopes 65 

(generally less than 5°, many even <1°) and summit pit craters are often observed. Several 66 

hundred mare domes have been previously identified, mainly from telescope and orbital 67 

photographs (e.g., Head & Gifford, 1980; Wöhler et al., 2006, 2007; Tye & Head, 2013). 68 

However, due to their low topographic slopes, many of them can only be detected from images 69 

obtained at very low Sun illumination (for example near-terminator and in Earthshine; Head & 70 

Lloyd, 1971; Lloyd & Head, 1972), on which the shadows are long and the features are more 71 

apparent, thus enhancing detectability and morphologic identification. However, it is often very 72 

difficult to obtain very low-Sun spacecraft images for various reasons, including the very few 73 

illuminated areas under very low Sun elevations due to massive shadows and the requirement of 74 

long exposure time, off-nadir slews of orbital spacecraft, sophisticated panning of cameras and 75 

cumbersome data processing. Telescopic observation can obtain images of the lunar surface 76 

under very low Sun conditions, but the effective ground resolution is generally coarser than ~1 77 

km due to atmospheric effects, making it very challenging for identifying smaller mare dome 78 

features (Lena et al., 2007; Kreslavsky et al., 2017). 79 

Newly-obtained global high-resolution and high-precision lunar topographic data, for 80 

instance, the Kaguya/SELENE-TC (Terrain Camera) + LRO-LOLA (Lunar Orbiter Laser 81 

Altimeter) merged topography (SLDEM2015) with ~60 m spatial sampling and ~3–4 m vertical 82 

altimetric accuracy (Barker et al., 2016), provide an unprecedented tool for identifying and 83 

characterizing low-amplitude gently-sloping geomorphic features on the Moon, including mare 84 

domes. These data sets provide direct altimetric measurements of lunar surface topographic relief, 85 

enabling straightforward identification of geological features on the Moon, rather than 86 

geomorphologic interpretations from optical imagery via shadow patterns and albedo variations. 87 

Compared with conventional low-Sun image-based investigations, topographic data-based 88 

geological interpretations are free of illumination condition variations, imperfect mosaicking and 89 

the resultant potentially biased interpretation results. 90 
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The origin of lunar mare domes has been investigated by many authors and several 91 

formation mechanisms have been proposed. On the basis of many prior investigations and an 92 

improved knowledge of lunar geology in general (especially water content in lunar basalts), mare 93 

domes are generally regarded as magmatic in origin, and many other scenarios have been largely 94 

ruled out (e.g., partial degassing of lunar interior and gigantic bubbles beneath the surface, and 95 

serpentinization of olivine; Salisbury, 1961; Spurr, 1945). Many investigators interpreted lunar 96 

domes to be analogues to small terrestrial shield volcanoes and to be built up through multiple 97 

phases of flows erupted from a common pit crater source, dominated by accumulating 98 

low-effusion rate, cooling-limited flows (e.g., Head & Wilson, 2017, and references therein), 99 

though other formation mechanisms have also been proposed, for instance, laccolithic intrusions 100 

(e.g., Wöhler et al., 2007). 101 

We initiated a global search campaign for mare domes, plotting their distribution, modes 102 

of occurrence, local and regional clustering, range of characteristics (diameter, height, shape, 103 

presence of pit craters, etc.) and associations (terrain, volcanic, structural, mineralogy, and age). 104 

As the first step of this project, we focused on Mare Tranquillitatis, which has one of the greatest 105 

concentrations of mare domes on the Moon (e.g., Head & Gifford, 1980; Tye & Head, 2013) and 106 

is an area identified by Spudis et al. (2013) as a potential large lunar shield volcano. In this 107 

analysis, we assess the characteristics, distribution and origin of mare domes in Mare 108 

Tranquillitatis, analyze hypotheses for their origin, place the population into the context of the 109 

generation, ascent, and eruption of basalt magma on the Moon (e.g., Wilson & Head, 2017a) and 110 

lunar geologic and thermal evolution (e.g., Shearer et al., 2006; Wieczorek et al., 2006). 111 

2. Data and Methodology 112 

We first employ the SLDEM2015 topography (Barker et al., 2016), with assistance from 113 

other multi-source altimetric (including the Kaguya TC stereogrammetry digital terrain model 114 

(DTM) (10 m spatial sampling size and ~3–4 m altimetric accuracy; Haruyama et al., 2012) and 115 

LRO LOLA Gridded Data Record (1024 pixel/degree; Smith et al., 2010)) and imaging 116 

(including LRO Wide-Angle Camera (LROC WAC, 100 m/pixel, Robinson et al., 2010) and 117 

Kaguya TC (10 m pixel size; Haruyama et al., 2008) low-Sun mosaics) data sets to (1) evaluate 118 

each mare dome identified in previous investigations and (2) search for new mare dome features 119 

in Mare Tranquillitatis. The SLDEM2015 and other topography data are represented as 120 

color-coded images with variable stretches using statistics from the local surface studied (for 121 

instance, a potential mare dome and its adjacent mare), not the entire extent of the data. This 122 

manner of topographic representation can maximize the available color ranges for each local area 123 

studied, because the human eye can easily distinguish many different colors more readily than 124 

many shades of a certain color, thus facilitating the identification of many gently-sloping mare 125 

dome features.  126 
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We delineate the base outline of each identified mare dome from color-coded topography 127 

and optical images. We then characterize the detailed morphology, morphometry, and 128 

topography of each catalogued mare dome using SLDEM2015 topography and TC low-Sun 129 

images, including dome base diameter, dome height, flank slope, dome volume, shape outline, 130 

cross-sectional topographic profiles, presence and nature (shape, size, depth, volume, etc.) of 131 

summit pit features, and associated volcanic features (including pyroclastic deposits, volcanic 132 

cones, lava flow fronts, sinuous rilles, irregular mare patches (IMPs), ring-moat dome structures 133 

(RMDSs), floor-fractured craters (FFCs), etc.). We also investigate the iron and titanium 134 

elemental abundances of these domes and the surrounding maria using FeO content maps 135 

calculated from Clementine Ultraviolet-Visible (UVVIS) data (100 m/pixel) and algorithms of 136 

Lucey et al. (2000) (1σ = ~1 wt.%), and TiO2 content maps derived from LROC WAC 137 

multi-band reflectance (Sato et al., 2017; 400 m/pixel, 1σ < 0.3 wt. % offset from Lunar 138 

Prospector TiO2 contents for Mare Tranquillitatis), respectively. We do not use Kaguya 139 

Multiband Imager (MI) spectrometer data to study the chemical composition of Mare 140 

Tranquillitatis domes as the MI data set has relatively poor coverage in Mare Tranquillitatis, 141 

despite its higher spatial resolution (20 m/pixel; Otake et al., 2012). The ages of the background 142 

mare units of each dome are also catalogued from dating results calculated by the impact crater 143 

size-frequency distribution (CSFD) method (Hiesinger, Head, et al., 2011). 144 

3. Geologic Setting of Mare Tranquillitatis: The Oldest Mare on the Moon 145 

As the landing target of the first human exploration mission to the Moon, NASA’s 146 

Apollo 11 in 1969, Mare Tranquillitatis is one of the best-studied maria on the Moon (Figures 147 

1A and 1B). Apollo 11 collected and returned 22 kg of lunar samples from the southwestern 148 

edge of Mare Tranquillitatis, testifying to its unique importance in geologic studies of the Moon 149 

in various aspects, including characterizing mare volcanism and “ground-truthing” telescopic 150 

and orbital observations of the lunar surface. 151 

The Tranquillitatis basin, the impact basin whose interior floor had been flooded by Mare 152 

Tranquillitatis basalts, has irregular outlines and lacks the well-defined, concentric topographic 153 

rings typical for many impact basins on the Moon (Figure 1B; although a recent global analysis 154 

of lunar basins by Neumann et al. (2015) found that Tranquillitatis did not meet their criteria as a 155 

basin of impact origin). Its degraded topographic and morphologic signature has been attributed 156 

to the intersection and overlap of rims of surrounding relatively younger basins (including 157 

Serenitatis, Crisium, Fecunditatis, Nectaris; De Hon, 2017) and significant viscous relaxation 158 

(Solomon et al., 1982). Previous photogeologic studies had designated it as a pre-Nectarian-aged 159 

basin (Wilhelms, 1987) with a main ring measuring 700 km in diameter (Spudis, 1993). A 160 

possible outer ring with an estimated diameter of 950 km, while poorly discernable, had also 161 

been interpreted (Spudis, 1993). These unusual characteristics led to the hypothesis of two 162 

overlapping basins (De Hon, 2017). Tranquillitatis basin is also distinctive in being a 163 

non-mascon basin: no basin-scale gravity anomalies (mass concentrations or mascons) are 164 
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observed within the basin interior (Zuber et al., 2013). However, one local positive Bouguer 165 

anomaly with a diameter of ~200 km occurs at the Lamont ridge-ring structure in western Mare 166 

Tranquillitatis, interpreted to be either a buried igneous intrusion (Dvorak & Phillips, 1979) or a 167 

buried 370 km-diameter impact basin (Dvorak and Phillips, 1979; Neumann et al., 2015). In 168 

addition, another impact basin, Asperitatis, with an estimated main ring diameter of 730 km, has 169 

also been revealed in the southern part of the Tranquillitatis basin by gravity analyses (Neumann 170 

et al., 2015). 171 

By measuring the diameter and rim height of partially buried impact craters, De Hon 172 

(1974) estimated the infilled mare basalts within Mare Tranquillitatis to be 500–600 m thick on 173 

average. The thickest basalts occur in a broad arc-shaped area between craters Lamont and 174 

Jansen in western Mare Tranquillitatis, with a projected thickness of 1740 m. However, an 175 

updated analysis incorporating a new crater shape model and topographic degradation process 176 

(Du et al., 2019) yielded a median thickness of ~25 m for Mare Tranquillitatis basalts (2–218 m 177 

range, from measurements at eight craters), over one order of magnitudes thinner than De Hon’s 178 

result. 179 

Mare Tranquillitatis is distinctive in its compositional characteristics of the mare basalt 180 

fill. Preliminary chemical analyses of the returned Apollo 11 basalt samples found that one of the 181 

most striking compositional characteristics of lunar basalts in comparison with terrestrial basalts 182 

is the unusually high concentration of titanium (7–12.5 wt. % TiO2; LSPET, 1969). Post-Apollo 183 

telescopic spectral studies revealed that Mare Tranquillitatis contained some of the most 184 

titanium-rich basalts within the lunar nearside maria (HDWA basalts; Pieters, 1978). Staid et al. 185 

(1996) conducted spectral mixing analysis of Galileo multi-band images and estimated titanium 186 

abundances up to 8–10 wt.% TiO2 for Tranquillitatis basalts. Global high-resolution 187 

multispectral mapping from Clementine enabled quantitative geochemical analyses of the lunar 188 

surface at the global scale. Lucey et al. (1998, 2000) established mathematic relationships 189 

between Clementine angular spectral parameters and titanium contents, and produced the first 190 

TiO2 abundance map of the entire Moon. This analysis further verified that Mare Tranquillitatis 191 

was indeed the most titanium-rich mare on the Moon (Plate 3 in Lucey et al., 1998), although 192 

their algorithms may produce greater errors at high titanium contents. Reconstruction of the 193 

titanium content map using Clementine data and the equations of Lucey et al. (2000) shows that 194 

extensive areas of the mare surface surrounding craters Ross and Maclear in northwestern Mare 195 

Tranquillitatis have extremely high TiO2 contents of up to ~18 wt.% (Figure S1). These 196 

estimated TiO2 content values exceed the compositional range of returned basalt samples and 197 

basaltic lunar meteorites (McKay et al., 1991; Korotev & Irving, 2021) and are likely of greater 198 

inaccuracy due to the limitation of the algorithm and artifacts in the Clementine global data sets 199 

(e.g., imperfect mosaicking and photometric calibration). Sato et al. (2017) collected over five 200 

years of repeat reflectance measurements of sample-return sites acquired by LROC WAC and 201 

found a linear correlation between TiO2 contents and the 321/415 nm band ratio, from which a 202 

new near-global TiO2 abundance map was constructed. This new titanium map is more 203 
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consistent with compositions of lunar basalt samples and Lunar Prospector Gamma-Ray 204 

Spectrometer titanium measurement (generally within ±0.3 wt. % for Tranquillitatis basalts). 205 

This new map shows clearly that the northwestern portion of Mare Tranquillitatis indeed has the 206 

highest TiO2 content on the entire Moon, with a refined value of ∼12.6 wt. % (Figure 1C). 207 

The basalt deposits of Mare Tranquillitatis are also characterized by significant 208 

compositional variation (Figure 1C) and the stratigraphic relationships reveal the complicated 209 

and multi-phase volcanic infilling events. First examinations of Apollo 11 samples recognized 210 

two groups of high-Ti mare basalts (types A and B; LSPET, 1969): Group A is high-K basalt and 211 

dated to be 3.57 Ga; Group B is low-K basalts and dated at 3.66-3.85 Ga (Wilhelms, 1987 and 212 

references therein). Subsequent detailed characterizations divided Group B samples into three 213 

sub-groups (B1, B2 and B3; Beaty & Albee, 1978) and identified an additional group (Group D, 214 

also low-K but more REE-enriched; Beaty et al., 1979). Integrating chronological and 215 

geochemical measurements suggested three major volcanic eruptions at the Apollo 11 site: the 216 

earliest eruption occurred at ~3.85 Ga and emplaced basalts represented by Group B2 and D 217 

basalts (8.4–8.9 wt. % TiO2); subsequent activity produced the B1 and B3 basalts (~10.2 wt. % 218 

TiO2) at 3.69–3.75 Ga, and the final phase of eruption took place at 3.58 Ga and produced Group 219 

A basalts (11.0 wt. % TiO2) (Jerde et al., 1994; Snape et al., 2019). This context is important as a 220 

baseline in interpreting the formation of mare domes and their relation to the infilling history of 221 

Mare Tranquillitatis. 222 

Analyses of remote sensing imaging and spectral data enable the characterization of the 223 

stratigraphy and chronology of the entire Mare Tranquillitatis beyond the very local surface area 224 

represented by the Apollo 11 samples. During the 1960s and 1970s, the lunar nearside was 225 

geologically mapped in 44 quadrangles using mainly Lunar Orbiter imager data (each quadrangle 226 

covers an area of 20°×16°). In these maps, the basalt deposits of Mare Tranquillitatis were 227 

mainly interpreted as Imbrian-aged mare flows, with multiple infilling sequences (Im1-3 or 228 

Ipm1-4; Carr, 1966; Morris & Wilhelms, 1967; Milton, 1968; Elston, 1972; Wilhelms, 1972; 229 

Scott & Pohn, 1972). In addition, some possible Eratosthenian mare units (Em) were identified 230 

in the northeast (Scott & Pohn, 1972) and along the southeastern margin (Wilhelms, 1972). 231 

Boyce (1976) divided Mare Tranquillitatis into four units on Lunar Orbiter photographs and 232 

estimated two ages (3.6 ± 0.1 and 3.75 ± 0.05 Ga) from crater degradation studies. On the basis 233 

of spectral parameters derived from telescope spectroscopic measurements, Pieters (1978) 234 

subdivided the Mare Tranquillitatis basalts into three major spectral units (HDWA, mIG-, and 235 

“undivided” units). Staid et al. (1996) analyzed the Galileo multi-spectral data of Mare 236 

Tranquillitatis and divided the mare basalt fill into four distinct mare types, and found that the 237 

younger mare units were generally more titanium-rich than the older maria. 238 

The development of the planetary surface dating method using crater statistics enabled 239 

the determination of the absolute ages of abundant lunar mare units (despite many existing 240 

challenges). Hiesinger et al. (2000) identified 27 stratigraphic units in Mare Tranquillitatis from 241 
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Galileo spectral data and dated these units to be 3.39–3.80 Ga from crater population 242 

measurements on Lunar Orbiter IV images (60-150 m/pixel), which placed the entire Mare 243 

Tranquillitatis basalts in the Imbrian system (Figure 1D). Putting these ages in the context of the 244 

global lunar maria dated subsequently showed unequivocally that Mare Tranquillitatis is the 245 

oldest major mare on the Moon (Figure 2A and references in the caption). We investigated the 246 

age variations of basalt units identified in 19 out of 23 maria on the entire Moon (Andersson & 247 

Whitaker, 1982; the other four maria, Anguis, Spumans, Undarum and Nectaris, are not dated) 248 

and plot them in quartile values (Figure 2B). All but one of the basalt units in Mare 249 

Tranquillitatis are older than 3.5 Ga, with a median value of ~3.7 Ga. Only Mare 250 

Humboldtianum basalts are of ages similar to Mare Tranquillitatis (3.4–3.84 Ga, median value of 251 

~3.7 Ga). However, Mare Humboldtianum basalts occur as several small and sporadic mare 252 

ponds, and the mare is nearly one order of magnitude smaller (total surface area 5.45×10
4
 km

2
) 253 

than the extensive (3.97×10
5
 km

2
) and continuous Mare Tranquillitatis basalt deposits. In 254 

summary, mare deposits in Mare Tranquillitatis represent the earliest major phase of exposed 255 

mare volcanism, and investigation of their detailed characteristics should provide fundamental 256 

insights into the early geologic and thermal evolution of the Moon. 257 
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 258 

Figure 1. Maps of Mare Tranquillitatis: (A) LROC WAC low-Sun mosaic (100 m/pixel), (B) 259 

colorized SLDEM2015 topography (512 pixels per degree), (C) TiO2 content calculated from 260 

LROC WAC multi-band reflectance image (Sato et al., 2017), and (D) absolute model age of 261 

mare units derived from the crater population method (Hiesinger et al., 2000). The landing 262 

locations of several landed missions (Apollo 11 and 17, Luna 21 and Surveyor 7) are labeled in 263 

panel A. The outline of Mare Tranquillitatis and adjacent maria (Nelson et al., 2014) are 264 

delineated by white and black lines, respectively. All the maps for the Mare Tranquillitatis region 265 

in this paper are projected into a Lambert conformal conic projection with a central meridian of 266 

30° and two standard parallels of 2° and 16°, and north is up. 267 
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 268 

Figure 2. (A) Global map of model ages of mare basalts units (n = 482) estimated from crater 269 

population measurements (Cho et al., 2012; Haruyama et al., 2009; Hiesinger et al., 2006; 270 

Hiesinger, Head, et al., 2011; Hiesinger, van der Bogert, et al., 2011; Morota et al., 2009, 2011; 271 

Pasckert et al., 2015, 2018; Tyrie, 1998; Whitten et al., 2011). The basemap is a hillshade 272 

rendering (315° azimuth and 45° altitude) of LOLA 128 pixel/degree topography. (B) The 273 

minimum, first quartile, median, third quartile, and maximum age of mare units in each maria are 274 

shown. Mare Tranquillitatis is pointed out by black arrows in both panels. 275 

4. Mare Dome Identification in Mare Tranquillitatis 276 

We conducted a preliminary survey of previously catalogued mare domes (Head & 277 

Gifford, 1980; Wöhler et al., 2006, 2007; Tye & Head, 2013) using the latest high-precision and 278 

high-resolution altimetric and imaging data sets (Section 2), and defined some fundamental 279 

characteristics of mare domes. A typical well-developed mare dome is characterized by a 280 
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domical raised structure with a generally convex-upward shape and low-slope (<5°) profile, and 281 

a (quasi-)circular or elliptical outline. Some domes have summit pit craters, while many lack 282 

them, possibly being filled up by the last extruded lavas. The development of the circular mound 283 

shape of mare domes is sometimes influenced by pre-existing topography; in these cases, the 284 

outline of the dome on the side near the pre-existing topography will be poorly defined, while at 285 

the side distal to the pre-existing topography, the circular mound shape will be relatively well 286 

developed, forming an arc-shaped shield base outline. On the basis of these observations and 287 

documentation, we first evaluated each mare dome identification in previous investigations and 288 

then searched for new mare dome features in Mare Tranquillitatis. The recognition of these 289 

typical characteristics of mare domes, including the (quasi-)circular or elliptical map-view 290 

outline and domical raised structure, help confirm a mare dome identification (definite domes). 291 

The lack of parts of, or the irregularity of these dome characteristics, such as domes occurring in 292 

sloped or complex terrains, decreases the dome identification reliability (possible domes). 293 

Summit pit features are not the key criteria for dome identification, as many mare domes lack 294 

summit pits (e.g., Head & Gifford, 1980), although their presence enhances the identification 295 

reliability of the subjacent mare dome. The absence of most of these dome characteristics would 296 

prevent the confident identification of a dome feature (questionable domes). 297 

4.1 Evaluations of Previous Mare Dome Identifications in Mare Tranquillitatis 298 

There are three prior dedicated mare dome identification contributions in Mare 299 

Tranquillitatis (Table S1), and each is re-evaluated as follows: 300 

(1) Head and Gifford (1980) identified 36 mare domes in Mare Tranquillitatis, informally 301 

named as Cauchy 1-5, Sina 1-3, Jansen 1-8, Arago 1-6, Maskelyne 1 and Vitruvius 1-13, using 302 

telescopic (Consolidated Lunar Atlas) and orbital photographs (Apollo) obtained under variable 303 

illumination conditions (especially low-Sun illumination). Of these catalogued domes, all but 304 

one (Cauchy 3) are re-confirmed in our new data-based investigations (Figure 3). The majority 305 

of these domes are found in northern Mare Tranquillitatis, and this observational discrepancy 306 

(compared with the abundant domes identified in later studies in the south) is probably due to the 307 

coverage and illumination condition variations of the images employed. 308 

(2) Tye and Head (2013) identified 67 additional (other than those in Head and Gifford 309 

(1980)) domes in Mare Tranquillitatis using LOLA topography data (another 12 additional 310 

domes occur in Mare Fecunditatis and Crisium). Of their reported additional Tranquillitatis 311 

domes, 54 domes are re-confirmed on our new data sets, five are relatively poorly defined and 312 

eight are of questionable existence (Figure 3). Over half of these domes (n = 35) occur on the 313 

large broad rise in eastern Mare Tranquillitatis (Figure 1B), elevated up to 2.2 km above the 314 

surrounding maria (Tye & Head, 2013). 315 

(3) Wöhler, Lena, and their colleagues conducted a series of independent identifications 316 

of lunar mare domes using their own Earth-based telescopic images (Wöhler et al., 2006, 2007, 317 
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2009). Among their 28 detected mare domes (termed as A1-7, C1-13, Ca1, D and NTA1-6) in 318 

Mare Tranquillitatis, 16 were previously documented in Head and Gifford (1980), another five 319 

were catalogued in Tye and Head (2013), and the remaining seven domes are new identifications 320 

not listed elsewhere. Of the seven new domes, four are re-confirmed in our investigations, two 321 

are poorly defined, and one is of questionable existence (Figure 3). 322 

Note that in some very early telescope-based mare dome identification reports (e.g., 323 

Jamieson, 1965; Rae, 1966; Smith, 1973), the dome locations were usually not reported in lunar 324 

latitude and longitude, but in coordinates relative to the photo frames margins and other forms. 325 

These locations have great uncertainties and relocating these domes is very challenging and these 326 

dome identifications were not re-assessed here. 327 

4.2 New Mare Domes Identified in Mare Tranquillitatis 328 

Using new SLDEM2015 topography and other new data sets for Mare Tranquillitatis 329 

described above, we conducted a systematic search for mare dome features in this region. We 330 

identified 96 new domes in Mare Tranquillitatis (Figure 3), which brings the total number of 331 

confirmed domes in this region to 189. We also find evidence for another 87 possible mare 332 

domes, in addition to seven possible domes catalogued previously (Section 4.1 and Figure 3). 333 

These observations show that Mare Tranquillitatis contains one of the highest densities of mare 334 

domes among the entire lunar maria (Head & Gifford, 1980). Crater count dating has shown that 335 

Mare Tranquillitatis is the oldest major mare on the Moon, with ~90% of mare units emplaced 336 

between 3.5 and 3.8 Ga ago (Hiesinger et al., 2000), indicating that shield-building eruptions 337 

may be a prevalent volcanic eruption style in the earliest stage of lunar volcanism, providing a 338 

potentially important constraint into the relation of mare volcanism and lunar thermal evolution 339 

history (e.g., Head & Wilson, 2017). 340 

By using the locations of the 283 domes (189 definite and 94 possible), we calculated 341 

their areal density in a moving neighbor circle of 50 km in radius (Figure S2). The density map 342 

shows clearly that the spatial distribution of mare domes in Mare Tranquillitatis is highly 343 

inhomogeneous. Two regions of significant concentration of mare domes are observed. One is at 344 

the northern mare margin and east of Jansen crater (Figures 3 and S2), which occurs as a broad 345 

arc-shaped area, with a size of ~300 × 150 km. This area was shown previously to be populated 346 

by many mare domes (e.g., Head & Gifford, 1980), while our updated survey expands 347 

significantly the number of domes by four times to over 90. Another prominent region of dome 348 

concentration is in the southern part of Mare Tranquillitatis, between craters Maskelyne and 349 

Sinas (Figures 3 and S2), which was recognized previously as a broad rise (Tye & Head, 2013). 350 

In this local area, ~300 × 200 km in size, 133 mare domes are identified, nearly 50% more 351 

domes than in the northern area. Most of our newly-identified mare domes (103/183) also occur 352 

in this southern area. In addition, two smaller areas (diameter <100 km), one north of crater 353 
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Arago and another west of Carrell crater, also show regional concentration of nearly ten dome 354 

features (Figures 3 and S2). 355 

 356 

Figure 3. Spatial distribution of mare domes in Mare Tranquillitatis identified by prior studies 357 

(Table S1) and this analysis (Table 1). Confirmed domes are marked with solid circles, possible 358 

domes are marked with colored open circles, and questionable dome identifications are white 359 

circles. Names of prominent impact craters used for dome nomenclature are labelled. 360 

4.3 Nomenclature  361 

Hundreds of domes have been discovered in Mare Tranquillitatis in this study (Figure 3). 362 

To facilitate communications, we propose an informal nomenclature for these domes. First, 363 

dome names previously designated by Head and Gifford (1980) are adopted (Table S1). Other 364 

unnamed dome features identified (including both definite and possible identifications) in the 365 
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vicinity of a significant IAU-named crater (the “parent” or “patronymic” crater) are designated 366 

by the name of the crater and a numeral. The numbering starts from the dome or dome cluster at 367 

the north point and then proceeds clockwise, similar to the scheme for letter-designed craters on 368 

the Moon (Andersson & Whitaker, 1982). Questionable dome identifications are also similarly 369 

numbered (Table 1). 370 
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Table 1. List of Catalogued Mare Domes in Mare Tranquillitatis and Their Characteristics. 371 

  Mare Dome  Summit Pit Crater 

Name Lat 

[°] 

Long 

[°] 

Reliab

ility1 

Shape
2 

Diame

ter 

(km) 

Ellipti

city 

Height 

(m) 

Volume 

(km3) 

Mean 

slope 

[°] 

Host 

mare 

age 

[Ga] 

Reliab

ility1 

Shape
2 

Diame

ter 

(km) 

Ellipti

city 

Depth 

(m) 

Volume 

(km3) 

Arago 1 6.14 20.03 A I 12.4 1.22 305.5 21.08 3.3 3.7 C – – – – – 

Arago 2 7.55 21.56 A I 21.0 1.29 397.9 44.42 3.5 3.7 B E 0.8 1.91 23.4 0.00235 

Arago 3 8.53 21.20 A C~ 12.6 1.12 122.9 8.86 2.3 3.7 A E~ 0.8 1.38 28.5 0.00390 

Arago 4 8.93 20.89 A C~ 9.1 1.10 81.1 3.03 2.3 3.7 A G 1.6 2.48 27.6 0.00792 

Arago 5 9.27 20.76 A E~ 7.2 1.44 113.1 2.54 2.6 3.7 A G 1.9 2.38 145.2 0.10533 

Arago 6 11.28 24.12 A C~ 5.6 1.16 103.1 1.17 3.2 3.7 A E~ 0.9 1.64 36.8 0.00878 

Arago 7 7.55 21.00 B E~ 5.2 2.14 103.8 1.11 3.0 3.7 A I 0.9 1.43 18.9 0.00164 

Arago 8 7.91 21.53 B E~ 4.6 1.53 83.5 0.79 2.6 3.7 A C~ 0.7 1.29 27.2 0.00313 

Arago 9 7.71 22.05 A C~ 3.7 1.16 93.1 0.41 3.4 3.7 A E~ 0.9 1.52 49.3 0.00645 

Arago 10 8.48 22.29 B E 5.3 2.40 81.1 0.87 2.9 3.7 B E 0.7 1.43 37.0 0.00510 

Arago 11 8.31 22.50 B E 11.6 2.66 123.8 6.27 2.6 3.7 B E~ 0.6 1.22 22.9 0.00225 

Arago 12 4.62 24.77 B E~ 10.6 1.63 133.5 6.09 2.8 3.6 A C 1.2 1.07 149.6 0.05773 

Arago 13 3.35 22.34 A I 10.4 1.16 118.7 4.46 2.3 3.7 B C 0.5 1.13 48.9 0.00279 

Aryabhata 1 7.23 34.48 A E 4.8 1.31 38.4 0.29 2.3 3.6 C – – – – – 

Aryabhata 2 7.28 34.61 A E~ 3.7 1.26 36.6 0.17 2.1 3.6 C – – – – – 

Aryabhata 3 6.90 35.06 A E~ 8.0 1.35 46.8 0.74 2.4 3.6 A E 0.7 1.72 23.4 0.00307 

Aryabhata 4 7.35 35.24 A I 3.9 1.12 53.9 0.26 2.8 3.6 A E~ 0.6 1.24 32.9 0.00324 

Aryabhata 5 7.75 35.06 A C~ 2.9 1.09 49.1 0.09 2.4 3.6 C – – – – – 

Aryabhata 6 8.46 34.01 A E 5.9 1.33 43.2 0.48 2.4 3.6 B I 0.7 1.98 16.3 0.00145 

Aryabhata 7 8.61 34.62 A E~ 4.6 1.33 45.6 0.24 2.2 3.6 A G 1.0 4.47 23.0 0.00374 

Aryabhata 8 9.02 34.92 B I 16.6 1.49 57.7 4.02 2.3 3.6 A E~ 0.8 1.32 73.0 0.01471 

Aryabhata 9 6.97 36.02 A C~ 5.3 1.12 37.6 0.30 2.0 3.6 B G 0.6 2.75 16.6 0.00171 

Aryabhata 10 6.20 35.95 A I 11.5 1.37 155.0 8.64 2.6 3.6 A G 0.7 2.52 26.0 0.00288 

Aryabhata 11 5.80 36.53 A I 10.0 1.45 192.0 6.98 3.1 3.6 C – – – – – 

Aryabhata 12 5.50 35.73 A C 3.4 1.10 51.2 0.18 2.8 3.6 A E 0.9 1.33 70.2 0.01453 

Aryabhata 13 5.28 35.92 A I 3.9 1.55 51.7 0.29 2.4 3.6 A I 0.7 1.43 51.0 0.00483 
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  Mare Dome  Summit Pit Crater 

Name Lat 

[°] 

Long 

[°] 

Reliab

ility1 

Shape
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Diame

ter 

(km) 

Ellipti

city 

Height 

(m) 

Volume 

(km3) 
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slope 

[°] 
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mare 

age 

[Ga] 

Reliab
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Shape
2 
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Ellipti

city 

Depth 

(m) 

Volume 

(km3) 

Aryabhata 14 5.39 36.08 B C~ 7.5 1.13 67.9 1.45 2.6 3.6 B C 0.9 1.02 108.1 0.02338 

Aryabhata 15 6.01 35.12 A C~ 8.8 1.12 83.7 2.02 2.8 3.6 A E~ 1.8 2.09 115.5 0.11553 

Aryabhata 16 5.12 35.25 A C~ 6.5 1.09 112.6 1.46 3.0 3.6 A I 0.7 1.17 13.5 0.00108 

Aryabhata 17 5.38 34.95 A E~ 2.8 1.56 39.2 0.09 2.6 3.6 A E 0.8 1.42 53.7 0.01119 

Aryabhata 18 5.36 34.79 A E~ 4.3 1.36 82.7 0.48 2.7 3.6 A G 1.0 2.56 12.7 – 

Aryabhata 19 5.78 34.88 A E~ 11.3 1.85 103.4 3.28 2.3 3.6 A C~ 0.4 1.25 17.6 0.00046 

Aryabhata 20 5.65 34.46 A I 5.0 1.44 43.7 0.36 2.4 3.6 B G 0.4 13.94 12.5 – 

Aryabhata 21 5.80 34.31 A E~ 2.8 1.28 26.0 0.07 2.3 3.6 B C 0.3 1.14 25.5 0.00080 

Aryabhata 22 6.05 33.93 A C~ 5.9 1.06 57.5 0.80 2.5 3.6 C – – – – – 

Aryabhata 23 6.26 33.76 A E~ 5.4 1.27 66.2 0.67 2.4 3.6 A I 0.7 1.55 32.7 0.00351 

Aryabhata 24 6.28 33.50 B C~ 2.9 1.17 47.2 0.14 2.4 3.6 B C 0.3 1.14 14.3 0.00031 

Aryabhata 25 6.12 33.20 A E 2.0 1.25 71.0 0.08 4.3 3.6 B C 0.4 1.06 3.8 – 

Aryabhata 26 6.02 33.33 A C~ 4.2 1.14 38.0 0.23 2.1 3.6 C – – – – – 

Aryabhata 27 6.50 33.97 A C 10.6 1.06 104.9 3.06 2.5 3.6 A E 1.1 1.78 78.6 0.02502 

Aryabhata 28 6.58 33.34 A C~ 5.5 1.18 53.8 0.41 2.4 3.6 C – – – – – 

Aryabhata 29 6.64 32.72 A E 2.8 1.23 56.0 0.14 3.4 3.6 A E~ 1.2 1.76 78.1 0.03936 

Aryabhata 30 6.87 33.76 A E 3.4 1.17 69.5 0.23 3.1 3.6 A I 0.9 1.76 43.1 0.00677 

Aryabhata 31 7.01 33.56 B I 6.3 1.30 48.4 0.37 2.5 3.6 B G 0.8 2.22 23.4 0.00363 

Aryabhata 32 7.14 33.56 B I 4.4 1.24 62.6 0.35 2.7 3.6 A C~ 1.1 1.13 129.6 0.04894 

Aryabhata 33 7.27 33.33 B I 3.7 1.35 25.4 0.08 2.3 3.6 A E 0.5 1.63 31.9 0.00151 

Aryabhata 34 7.23 33.14 B I 9.3 1.32 36.3 0.84 2.0 3.6 C – – – – – 

Aryabhata 35 7.57 33.00 A E~ 10.6 1.23 61.3 2.33 2.4 3.6 C – – – – – 

Aryabhata 36 7.89 33.70 A E~ 5.1 1.17 80.0 0.58 2.8 3.6 A G 0.5 2.92 16.1 0.00064 

Beketov 1 16.82 29.29 A I 11.1 1.21 111.0 5.68 3.1 3.7 C – – – – – 

Beketov 2 16.88 28.89 B I 8.8 1.35 104.2 3.50 2.6 3.7 C – – – – – 

Carrel 1 11.74 26.93 A E~ 6.0 1.58 46.6 0.49 2.5 3.7 A E~ 0.9 1.38 99.4 0.02512 

Carrel 2 10.11 27.08 B I 2.6 1.03 67.4 0.14 3.6 3.7 C – – – – – 
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  Mare Dome  Summit Pit Crater 
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[°] 

Long 
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ility1 

Shape
2 

Diame

ter 

(km) 

Ellipti

city 

Height 

(m) 

Volume 

(km3) 

Mean 

slope 

[°] 

Host 

mare 

age 

[Ga] 

Reliab

ility1 

Shape
2 

Diame

ter 

(km) 

Ellipti
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Depth 

(m) 

Volume 

(km3) 

Carrel 3 9.44 26.31 A I 6.1 1.16 56.2 0.83 2.1 3.7 A I 0.7 1.51 21.9 0.00234 

Carrel 4 10.32 25.12 B I 2.6 1.55 71.1 0.14 3.3 3.7 B C 0.8 1.09 96.5 0.01808 

Carrel 5 10.39 25.08 A E~ 3.7 1.39 80.0 0.34 3.1 3.7 C – – – – – 

Carrel 6 10.64 25.20 A I 3.5 1.31 40.2 0.16 2.4 3.7 C – – – – – 

Carrel 7 9.77 24.43 A I 5.2 1.66 82.7 0.86 3.0 3.7 B C 0.6 1.12 75.4 0.00666 

Carrel 8 9.88 24.25 A E 8.1 1.90 144.7 3.61 3.0 3.7 A E~ 2.4 1.71 322.9 0.53307 

Cauchy 1 7.22 38.31 A C 8.9 1.04 122.5 4.80 2.9 3.6 A E 1.6 1.22 209.1 0.17737 

Cauchy 2 7.52 36.76 A C 9.9 1.19 249.2 8.44 3.9 3.6 C – – – – – 

Cauchy 4 8.50 36.93 A E 9.2 1.13 70.8 2.07 2.3 3.6 A E 1.7 1.76 108.8 0.11674 

Cauchy 5 7.14 37.60 A C 5.7 1.14 56.3 0.49 2.9 3.6 A E 1.8 2.63 63.7 0.05545 

Cauchy 6 6.90 37.12 A C~ 1.8 1.09 76.5 0.07 4.8 3.6 C – – – – – 

Cauchy 7 6.78 37.20 A E 3.1 1.24 73.7 0.25 3.6 3.6 B C~ 0.4 1.16 11.5 0.00054 

Cauchy 8 6.28 38.37 B E~ 4.6 1.72 56.6 0.40 2.4 3.6 B C 0.9 1.18 47.8 0.00919 

Cauchy 9 6.39 38.94 B I 3.1 1.34 38.2 0.08 2.3 3.6 B C~ 0.4 1.09 18.4 0.00065 

Cauchy 10 10.00 35.19 A C~ 5.2 1.19 70.8 0.70 2.6 3.6 A E 1.5 1.44 168.6 0.10405 

Cauchy 11 9.96 36.25 B I 15.3 1.38 58.2 3.08 2.6 3.6 B E 0.5 1.07 23.6 0.00120 

Cauchy 12 10.86 37.02 A I 20.9 1.40 125.6 23.24 2.7 3.6 B C~ 0.5 1.18 47.0 0.00373 

Jansen 1 11.55 31.44 A I 12.1 1.23 168.5 4.95 2.7 3.6 C – – – – – 

Jansen 2 11.11 30.28 A E 6.3 1.53 85.2 0.88 2.7 3.6 B C 0.4 1.10 14.2 0.00064 

Jansen 3 11.77 30.98 A C~ 4.3 1.11 80.2 0.35 2.5 3.6 C – – – – – 

Jansen 4 11.96 31.27 A C~ 4.8 1.09 73.1 0.44 2.7 3.6 A E 0.8 1.37 70.7 0.01670 

Jansen 5 12.48 32.46 A C~ 6.1 1.14 63.6 0.82 2.3 3.6 C – – – – – 

Jansen 6 11.94 32.35 A E~ 14.1 1.25 119.8 8.11 2.7 3.6 A E 3.3 1.49 625.8 1.91094 

Jansen 7 11.76 33.21 A E 11.5 1.21 53.5 1.96 2.3 3.6 A G 2.4 3.95 162.2 0.27897 

Jansen 8 10.62 33.97 A E 6.7 1.15 74.3 0.95 2.6 3.6 A C 0.5 1.15 34.5 0.00324 

Jansen 9 14.47 28.67 B I 3.9 1.27 106.0 0.36 3.5 3.8 A G~ 2.1 2.19 83.6 0.05201 

Jansen 10 14.57 28.77 A I 4.6 1.10 89.6 0.81 2.6 3.8 A E 0.7 1.23 49.9 0.00695 

Jansen 11 14.43 29.97 A E 3.0 1.34 71.0 0.25 3.4 3.7 C – – – – – 
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Jansen 12 14.34 30.75 A E 10.3 1.33 374.1 17.23 5.0 3.8 A I 0.9 1.15 37.2 0.00593 

Jansen 13 13.53 30.62 A E~ 5.5 1.24 124.7 1.70 3.1 3.8 B C 0.6 1.06 43.0 0.00305 

Jansen 14 13.77 31.11 A C~ 4.0 1.18 55.9 0.21 2.4 3.8 B C 0.4 1.20 9.5 0.00037 

Jansen 15 13.79 31.33 A I 5.3 1.35 78.2 0.94 2.7 3.8 A C~ 0.9 1.15 71.3 0.01640 

Jansen 16 13.39 31.65 A C~ 5.0 1.15 49.2 0.27 2.6 3.6 A G 1.4 2.39 101.4 0.04161 

Jansen 17 13.25 31.69 B I 5.2 1.21 24.7 0.18 2.1 3.6 B C 0.6 1.14 41.8 0.00509 

Jansen 18 13.17 31.01 A I 6.1 1.19 167.5 3.15 3.5 3.8 B E~ 0.8 1.17 29.7 0.00535 

Jansen 19 12.96 30.64 A I 20.0 1.35 252.9 37.42 3.0 3.8 B E~ 1.2 1.22 86.8 0.03788 

Jansen 20 12.77 30.26 A E 3.1 1.46 86.6 0.27 3.6 3.8 B E~ 0.5 1.22 10.4 0.00010 

Jansen 21 12.13 30.16 A C~ 4.2 1.08 81.9 0.45 3.3 3.8 B I 0.5 1.20 12.3 0.00080 

Jansen 22 12.09 29.74 A E 4.0 1.61 148.6 0.91 5.2 3.8 B E 0.5 1.28 18.3 0.00120 

Jansen 23 11.74 29.91 A I 5.5 1.13 61.7 0.52 2.8 3.8 C – – – – – 

Jansen 24 11.62 29.97 A C~ 2.1 1.16 36.3 0.06 2.7 3.8 C – – – – – 

Jansen 25 11.57 30.27 A C~ 3.6 1.14 84.0 0.40 3.3 3.6 A E 0.4 1.76 8.3 0.00008 

Jansen 26 11.36 30.58 B E~ 2.1 1.20 40.5 0.05 3.1 3.6 B E~ 0.5 1.73 17.8 0.00036 

Jansen 27 11.41 31.16 B E~ 6.3 1.49 27.8 0.36 2.0 3.6 C – – – – – 

Jansen 28 12.12 31.16 A I 4.8 1.48 51.6 0.30 2.3 3.6 C – – – – – 

Jansen 29 11.78 31.72 A C~ 8.4 1.11 58.9 1.42 2.2 3.6 C – – – – – 

Jansen 30 12.53 34.09 B I 5.7 1.53 30.0 0.13 2.1 3.6 C – – – – – 

Jansen 31 15.02 27.75 A C~ 5.2 1.05 47.5 0.40 2.3 3.7 B E 0.4 1.58 16.3 0.00081 

Jansen 32 15.33 27.31 A I 7.1 1.09 120.3 1.59 3.3 3.7 A C 0.9 1.08 71.3 0.01899 

Jansen 33 15.55 27.31 B I 5.5 1.28 59.4 0.66 2.5 3.7 A G 1.2 2.65 15.6 0.00223 

Jansen 34 16.13 27.92 B E 3.3 1.34 46.3 0.14 2.9 3.7 A C 0.7 1.08 31.4 0.00449 

Maclear 1 11.93 18.78 B E 4.2 1.18 59.6 0.28 2.7 3.7 B G 0.8 2.24 27.7 0.00411 

Maclear 2 12.06 18.99 B I 5.1 1.14 35.7 0.23 2.6 3.7 B C 0.5 1.20 15.8 0.00070 

Maclear 3 11.71 17.75 B I 5.0 1.36 122.3 0.99 3.7 3.6 A C 1.6 1.04 182.8 0.12205 

Maclear 4 13.64 16.57 A C~ 3.7 1.11 60.1 0.23 2.3 0 B C~ 0.6 1.10 23.2 0.00205 

Maraldi 1 21.77 36.22 B I 12.2 1.57 82.9 2.64 2.2 0 A G 2.9 2.59 130.4 0.22606 
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Maraldi 2 19.79 36.55 A E~ 6.3 1.21 89.5 1.05 2.6 0 A I 0.8 1.69 36.5 0.00496 

Maraldi 3 19.49 37.98 B E~ 9.4 1.93 73.9 2.55 2.5 0 C – – – – – 

Maraldi 4 19.12 37.46 A I 6.2 1.28 144.6 1.35 3.6 0 A I 0.8 1.17 31.0 0.00372 

Maraldi 5 21.45 39.07 A I 6.9 1.23 123.5 1.17 3.4 0 A I 2.1 1.50 78.7 0.09784 

Maraldi 6 21.11 39.44 A C 7.6 1.04 143.6 1.74 3.0 0 A I 2.2 2.00 108.6 0.11002 

Maskelyne 1 2.31 33.89 A C 7.8 1.09 106.9 2.49 3.2 3.6 A G 2.9 3.28 108.1 0.13705 

Maskelyne 2 3.50 28.36 B E~ 7.7 1.95 81.4 1.73 2.6 3.6 C – – – – – 

Maskelyne 3 3.38 28.92 B E~ 8.6 2.05 83.3 2.27 2.4 3.6 C – – – – – 

Maskelyne 4 3.68 28.70 A E~ 5.4 1.27 47.4 0.43 2.4 3.6 C – – – – – 

Maskelyne 5 3.89 28.93 B I 7.7 1.22 67.8 0.88 2.5 3.6 A G 2.7 2.92 183.9 0.26180 

Maskelyne 6 4.08 28.10 B I 12.7 1.50 75.9 3.40 2.3 3.6 A C~ 0.7 1.11 40.1 0.00613 

Maskelyne 7 3.48 29.38 B I 6.7 1.14 44.6 0.60 2.4 3.6 C – – – – – 

Maskelyne 8 3.68 29.84 B C~ 9.2 1.17 47.4 1.31 2.1 3.6 C – – – – – 

Maskelyne 9 3.61 30.45 B I 6.1 1.19 33.0 0.30 2.3 3.6 C – – – – – 

Maskelyne 10 3.27 30.46 B I 17.6 1.20 77.4 8.17 2.5 3.6 B E 0.7 1.31 31.5 0.00415 

Maskelyne 11 3.05 34.14 A I 11.9 1.16 120.8 4.58 2.6 3.6 C – – – – – 

Maskelyne 12 2.78 34.13 A E~ 8.6 1.51 114.9 3.86 2.3 3.6 B G 1.2 2.33 32.0 0.00734 

Maskelyne 13 2.00 33.65 B I 19.3 1.25 333.8 18.31 2.7 3.6 B G 1.0 1.98 28.0 0.00669 

Maskelyne 14 -0.14 31.72 B I 15.1 1.24 64.8 4.92 2.8 3.8 A I 1.2 1.50 54.5 0.01924 

Maskelyne 15 -0.66 29.71 A I 22.8 1.11 244.0 48.92 2.9 3.8 A I 1.3 1.52 47.7 0.01549 

Maskelyne 16 -1.87 25.64 B I 15.3 1.25 231.9 17.52 2.6 3.8 B G 2.8 5.97 71.7 0.05588 

Maskelyne 17 0.63 26.60 B I 38.3 1.54 289.3 140.14 3.1 3.6 A E 3.4 2.19 398.7 1.18823 

Maskelyne 18 3.54 26.83 A E~ 11.7 1.27 89.4 3.09 2.4 3.6 A G 1.7 2.08 44.2 0.02531 

Menzel 1 4.12 36.88 B I 4.1 1.22 34.4 0.18 2.1 3.6 B E~ 0.5 1.36 10.7 0.00057 

Menzel 2 4.35 36.69 A I 5.0 1.22 30.5 0.21 2.0 3.6 A E~ 0.5 1.40 14.2 0.00077 

Menzel 3 4.32 36.91 B I 5.5 1.52 30.1 0.19 2.2 3.6 B C 0.8 1.10 41.1 0.00752 

Menzel 4 4.47 37.67 A C~ 2.5 1.11 33.8 0.07 2.6 3.5 A G 0.5 1.85 14.0 0.00057 
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Menzel 5 5.00 36.69 A E~ 8.1 1.39 36.1 0.52 2.1 3.6 C – – – – – 

Menzel 6 5.01 37.05 A E~ 13.8 1.26 69.9 3.38 2.3 3.6 C – – – – – 

Menzel 7 4.07 36.00 A I 4.3 1.19 81.3 0.35 3.0 3.6 C – – – – – 

Menzel 8 4.18 35.92 A E 4.3 1.38 64.1 0.40 2.6 3.6 B E 0.6 1.29 20.9 0.00141 

Menzel 9 4.22 35.81 A E~ 4.6 1.53 38.1 0.23 2.3 3.6 B E 0.5 1.33 32.2 0.00192 

Menzel 10 4.62 35.77 A E~ 2.9 1.30 74.4 0.20 3.1 3.6 C – – – – – 

Menzel 11 4.69 35.64 A E~ 6.2 1.23 59.8 0.71 2.6 3.6 A I 0.7 2.11 40.2 0.00225 

Menzel 12 4.60 35.06 A E~ 2.4 1.40 35.1 0.06 2.7 3.6 C – – – – – 

Menzel 13 4.56 34.76 A I 6.9 1.14 79.2 0.84 3.2 3.6 A E 1.2 1.38 55.2 0.01730 

Menzel 14 4.37 34.59 A E 3.4 1.22 76.4 0.22 3.1 3.6 A I 0.7 1.45 33.1 0.00506 

Menzel 15 4.31 34.65 A C 2.1 1.11 51.8 0.06 4.2 3.6 C – – – – – 

Menzel 16 3.99 34.51 A E 4.4 1.32 72.3 0.36 3.2 3.6 B E~ 0.7 1.35 19.3 – 

Menzel 17 3.57 34.60 A I 11.6 1.22 89.5 5.07 2.7 3.6 B C 0.5 1.06 27.2 0.00215 

Menzel 18 3.72 34.97 B I 10.1 1.11 93.8 2.32 2.4 3.6 C – – – – – 

Menzel 19 3.42 34.95 B E~ 8.2 1.27 73.9 1.66 2.3 3.6 C – – – – – 

Menzel 20 3.27 35.09 B I 6.5 1.49 62.2 0.67 2.6 3.5 A E 0.6 1.19 25.0 0.00319 

Menzel 21 2.94 35.15 A E~ 14.7 1.40 113.0 7.27 2.4 3.5 B I 0.6 1.40 26.3 0.00287 

Menzel 22 3.14 36.02 A I 8.6 1.24 63.4 1.37 2.5 3.6 A G 1.3 4.45 39.1 0.00792 

Menzel 23 3.05 36.44 A C~ 4.4 1.12 53.0 0.31 2.5 3.6 B E 0.4 1.41 11.5 0.00044 

Menzel 24 2.84 35.83 B I 9.9 1.39 58.8 1.68 2.3 3.5 C – – – – – 

Menzel 25 2.54 36.10 A E~ 11.6 1.20 58.7 2.05 2.6 3.5 B C 0.5 1.13 21.5 0.00239 

Menzel 26 2.13 35.99 B E~ 10.9 1.24 118.0 4.94 2.9 3.5 C – – – – – 

Menzel 27 2.27 35.50 B I 4.1 1.50 27.7 0.12 2.5 3.5 B E~ 0.4 2.41 4.4 – 

Menzel 28 2.46 35.37 A E~ 8.4 1.22 46.8 0.91 2.5 3.5 B C~ 0.4 1.27 18.3 0.00073 

Menzel 29 1.91 35.08 A C~ 9.8 1.09 111.0 3.20 2.4 3.6 B G 0.9 3.22 30.2 0.00233 

Menzel 30 1.97 34.85 A C~ 3.9 1.14 104.1 0.45 3.5 3.6 C – – – – – 

Menzel 31 0.70 36.26 A I 14.7 1.50 157.6 6.35 2.6 3.5 C – – – – – 
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Sinas 1 10.53 33.05 A C 8.1 1.07 99.8 2.79 2.9 3.6 A C~ 1.9 1.19 51.8 0.04354 

Sinas 2 10.72 32.35 A E~ 4.3 1.27 111.4 0.65 3.3 3.6 A E~ 0.5 1.72 38.0 0.00325 

Sinas 3 10.71 31.92 A C 6.5 1.06 74.1 1.21 2.5 3.6 A E 1.5 1.82 85.6 0.04518 

Sinas 4 9.94 30.43 B E~ 7.4 1.74 71.6 1.57 2.2 3.6 C – – – – – 

Sinas 5 10.50 30.94 A I 7.8 1.32 59.8 0.93 2.2 3.6 B I 0.6 1.47 7.9 0.00039 

Sinas 6 10.78 30.98 A C~ 12.6 1.19 97.7 6.30 2.4 3.6 A E 1.1 1.91 57.4 0.02465 

Sinas 7 9.86 32.08 A I 2.7 1.61 42.9 0.10 2.8 3.6 C – – – – – 

Sinas 8 10.33 31.90 A C~ 5.8 1.08 40.3 0.31 2.4 3.6 A C 0.8 1.12 63.3 0.01179 

Sinas 9 10.61 32.40 A I 5.0 1.25 62.9 0.57 2.7 3.6 C – – – – – 

Sinas 10 10.46 32.67 B E~ 3.9 1.29 29.2 0.15 2.0 3.6 B C~ 0.6 1.07 53.9 0.00515 

Sinas 11 11.10 32.92 B I 3.5 1.18 29.2 0.09 2.5 3.6 A C~ 0.8 1.06 59.4 0.01145 

Sinas 12 9.06 33.11 A C~ 4.0 1.07 40.9 0.16 2.1 3.6 C – – – – – 

Sinas 13 8.81 33.12 B I 4.0 1.28 28.0 0.10 2.5 3.6 B C 0.3 1.09 9.6 0.00001 

Sinas 14 7.60 31.59 B C~ 2.5 1.06 33.2 0.05 2.8 3.6 C – – – – – 

Sinas 15 7.53 31.40 B I 9.3 1.43 63.6 1.61 2.4 3.6 B C~ 0.5 1.15 18.9 0.00092 

Sinas 16 7.76 31.20 B I 5.5 1.18 37.1 0.30 2.5 3.6 B I 1.0 1.91 57.8 0.01351 

Sinas 17 7.43 31.10 B E~ 4.9 1.36 26.3 0.12 2.3 3.6 B E 0.5 1.60 16.5 0.00077 

Sinas 18 7.14 31.14 A C~ 5.6 1.04 58.6 0.44 2.5 3.6 A E 1.2 1.29 159.4 0.06896 

Sinas 19 6.91 30.88 A E~ 4.2 1.58 67.6 0.22 3.0 3.6 A C~ 0.4 1.29 15.3 0.00086 

Sinas 20 6.54 30.95 A E 3.5 1.26 96.1 0.30 3.9 3.6 B G 0.6 4.21 26.2 – 

Sinas 21 6.50 31.32 B I 3.7 1.16 22.0 0.07 2.0 3.6 A C 0.7 1.11 40.3 0.00482 

Sinas 22 6.69 31.52 B I 4.2 1.19 34.6 0.14 2.1 3.6 C – – – – – 

Sinas 23 7.05 31.77 B I 8.1 1.13 34.8 0.40 2.1 3.6 C – – – – – 

Sinas 24 6.55 31.88 B I 5.0 1.24 21.3 0.10 2.3 3.6 A E 0.5 1.33 21.6 0.00076 

Sinas 25 6.40 30.33 B E~ 9.1 1.34 57.1 1.23 2.6 3.6 B G 1.0 2.41 37.7 0.00863 

Sinas 26 6.08 30.20 A C 5.3 1.07 98.5 0.72 3.3 3.6 A E 1.2 1.71 93.7 0.03297 

Sinas 27 7.61 30.31 B E~ 8.4 1.48 41.9 0.80 2.2 3.6 B C 0.6 1.17 66.9 0.00621 
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Sinas 28 8.31 30.26 B I 8.5 1.87 51.8 1.00 2.4 3.6 C – – – – – 

Sinas 29 7.96 28.87 B I 11.0 1.49 95.2 3.17 2.4 3.5 B C~ 0.7 1.23 38.2 0.00556 

Sinas 30 8.25 28.94 B I 5.3 1.12 47.6 0.37 2.2 3.6 C – – – – – 

Theophilus 1 -6.80 24.58 B E~ 86.9 1.35 540.7 1141.42 5.5 3.8 A E~ 3.8 1.45 328.6 1.36519 

Vitruvius 1 14.21 35.88 A C 6.7 1.07 140.9 2.81 3.4 3.6 A I 1.3 1.44 71.1 0.04254 

Vitruvius 2 14.29 35.65 A E~ 6.1 1.37 107.7 1.43 2.7 3.6 A E~ 1.4 1.57 168.2 0.09872 

Vitruvius 3 14.76 35.10 A C 9.2 1.12 81.0 2.09 2.5 3.6 C – – – – – 

Vitruvius 4 14.44 34.74 A I 6.0 1.39 124.9 1.09 3.2 3.6 A E 1.3 1.89 98.5 0.04914 

Vitruvius 5 14.16 34.17 A E~ 10.1 1.24 64.5 2.33 2.1 3.6 A G 2.2 2.82 199.2 0.28487 

Vitruvius 6 14.00 33.47 A C~ 7.5 1.09 68.9 0.96 2.2 3.6 A E~ 0.6 1.46 38.1 0.00317 

Vitruvius 7 14.30 32.29 A C~ 7.0 1.04 169.3 2.66 3.4 3.6 A E 1.2 1.35 103.8 0.04433 

Vitruvius 8 14.53 32.51 A I 6.8 1.35 122.0 1.79 2.8 3.6 A G 1.1 3.16 54.0 0.02517 

Vitruvius 9 13.89 32.47 A C~ 5.0 1.10 91.2 0.78 2.8 3.6 B C 0.7 1.04 55.3 0.00780 

Vitruvius 10 14.23 32.76 A E 11.3 1.45 107.8 3.73 2.5 3.6 A E~ 0.5 1.11 31.6 0.00265 

Vitruvius 11 15.80 35.50 A I 5.9 1.26 149.2 2.19 3.7 3.6 A I 1.4 1.28 70.6 0.03664 

Vitruvius 12 15.15 37.69 A E 5.2 1.38 94.2 0.95 3.3 3.6 C – – – – – 

Vitruvius 13 13.43 39.38 A C~ 13.0 1.14 337.0 11.94 4.0 3.6 A E 1.2 2.10 66.0 0.03052 

Vitruvius 14 16.53 35.34 A C~ 2.5 1.15 78.5 0.15 3.8 3.6 C – – – – – 

Vitruvius 15 16.86 36.32 B I 7.0 1.09 75.8 0.92 3.2 3.6 B E~ 0.8 1.67 58.7 0.00752 

Vitruvius 16 15.93 34.61 A C~ 4.0 1.17 129.2 0.65 3.9 3.6 A C 0.6 1.05 31.6 0.00326 

Vitruvius 17 15.61 35.61 A C~ 4.5 1.09 85.8 0.45 3.2 3.6 B I 0.5 1.57 16.0 0.00094 

Vitruvius 18 15.59 36.03 A E~ 6.0 1.18 166.7 1.61 3.7 3.6 B I 0.4 1.43 14.7 0.00069 

Vitruvius 19 15.91 36.66 A E 3.4 1.22 94.3 0.30 3.8 3.6 A C 0.6 1.16 27.5 0.00182 

Vitruvius 20 15.64 36.56 B E~ 5.7 1.50 42.6 0.53 2.3 3.6 C – – – – – 

Vitruvius 21 15.34 36.74 B I 5.5 1.32 53.9 0.26 2.4 3.6 B E~ 0.7 1.68 30.7 0.00472 

Vitruvius 22 15.26 36.49 A I 10.0 1.19 41.0 1.09 2.3 3.6 A E 0.7 1.59 62.3 0.01044 

Vitruvius 23 15.97 37.49 A C~ 6.1 1.13 54.7 0.70 2.5 3.6 A C~ 0.9 1.05 61.5 0.01323 

Vitruvius 24 16.22 37.81 B E~ 4.9 1.29 37.1 0.19 2.3 3.6 A E~ 0.3 2.09 9.6 0.00029 
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Vitruvius 25 15.99 38.12 A C 3.6 1.10 149.7 0.71 5.9 3.6 A C~ 0.7 1.37 49.8 0.00691 

Vitruvius 26 15.94 39.13 B I 32.4 2.00 207.4 69.69 2.6 3.6 B C 1.1 1.06 130.8 0.05031 

Vitruvius 27 15.25 37.83 A I 8.1 1.56 87.4 1.85 2.8 3.6 B E~ 0.9 1.64 62.3 0.01543 

Vitruvius 28 15.10 38.03 B I 7.7 1.37 35.2 0.47 2.5 3.6 A E~ 0.6 1.48 54.9 0.00521 

Vitruvius 29 15.24 38.41 A E~ 7.4 1.41 35.0 0.44 2.5 3.6 C – – – – – 

Vitruvius 30 14.66 38.00 A I 13.0 1.20 58.4 2.67 2.3 3.6 B E 0.9 1.13 140.6 0.03379 

Vitruvius 31 14.34 37.16 B I 7.2 1.23 91.4 0.80 3.0 3.6 A E 1.0 1.14 79.5 0.02152 

Vitruvius 32 14.62 35.42 A E 4.9 1.22 42.8 0.34 2.2 3.6 A E~ 0.7 1.15 31.6 0.00425 

Vitruvius 33 14.32 35.40 A C~ 4.3 1.19 48.6 0.26 2.2 3.6 A G 0.7 3.32 7.4 – 

Vitruvius 34 14.16 35.42 A C~ 4.3 1.12 56.0 0.28 2.5 3.6 A I 1.2 1.35 109.4 0.04500 

Vitruvius 35 14.15 35.61 A E~ 3.8 1.71 56.1 0.29 2.2 3.6 C – – – – – 

Vitruvius 36 13.96 36.22 A E~ 9.2 1.32 68.0 2.01 2.5 3.6 A E~ 1.5 1.41 191.4 0.13260 

Vitruvius 37 13.82 36.35 A E 3.2 1.70 41.9 0.14 2.5 3.6 B E~ 0.3 1.30 8.4 0.00020 

Vitruvius 38 13.74 36.39 A C~ 2.9 1.13 31.2 0.10 2.1 3.6 C – – – – – 

Vitruvius 39 13.62 36.51 A E~ 7.0 1.56 122.8 1.45 2.9 3.6 A E 1.5 1.62 121.7 0.07984 

Vitruvius 40 13.57 36.71 B I 5.3 1.11 78.6 0.78 2.7 3.6 B I 0.7 1.66 16.9 0.00150 

Vitruvius 41 13.79 36.97 A C 6.5 1.08 48.4 0.36 2.4 3.6 A E 0.5 1.30 35.6 0.00322 

Vitruvius 42 13.34 36.77 B I 11.2 1.38 38.8 1.31 2.3 3.6 A G 1.7 3.14 143.8 0.13286 

Vitruvius 43 13.04 37.45 A C~ 6.5 1.10 57.1 0.61 2.2 3.6 A E~ 0.9 2.07 66.3 0.01158 

Vitruvius 44 12.64 37.33 A I 8.0 1.83 64.1 1.25 2.6 3.6 A E 1.3 1.89 137.7 0.07114 

Vitruvius 45 12.38 37.16 A E~ 5.3 1.27 26.0 0.15 2.3 3.6 B I 1.0 1.50 43.6 0.00977 

Vitruvius 46 12.22 37.36 B C~ 3.6 1.02 25.8 0.09 2.0 3.6 A C~ 0.7 1.20 39.9 0.00582 

Vitruvius 47 13.01 35.21 B I 6.2 1.14 44.3 0.53 2.1 3.6 C – – – – – 

Vitruvius 48 14.62 33.59 A C 6.0 1.06 58.9 0.55 2.2 3.6 B E~ 0.5 1.25 10.4 0.00059 

Vitruvius 49 14.52 33.28 B E~ 7.4 1.48 47.1 0.75 2.4 3.6 B C 1.0 1.06 89.1 0.02877 

Vitruvius 50 14.02 33.06 B I 4.2 1.31 31.9 0.16 2.2 3.6 B G 0.6 2.99 24.6 0.00187 

Vitruvius 51 13.71 32.91 B I 8.3 1.72 43.4 0.78 2.3 3.6 C – – – – – 

Vitruvius 52 13.59 32.69 A I 5.2 1.48 21.0 0.13 2.1 3.6 A E 1.8 1.97 201.7 0.19426 
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Vitruvius 53 13.67 32.59 A I 5.5 1.22 63.2 0.47 2.2 3.6 A G 0.8 1.83 29.4 0.00532 

Vitruvius 54 15.14 33.00 A C 4.3 1.02 230.8 1.41 6.4 3.6 C – – – – – 

Vitruvius 55 15.66 31.92 A E~ 4.3 1.28 88.0 0.51 3.3 3.6 A E 0.9 1.50 43.9 0.00831 

Vitruvius 56 16.21 31.61 A I 4.3 1.20 94.4 0.58 2.8 3.6 B C~ 0.6 1.28 24.5 0.00192 

Vitruvius 57 17.89 30.18 B C~ 21.6 1.15 229.1 27.19 3.1 3.7 B I 3.4 1.67 276.0 0.70863 

Wallach 1 5.45 32.18 A C~ 3.7 1.03 85.5 0.49 3.4 3.6 A I 0.7 1.65 21.1 0.00248 

Wallach 2 5.50 32.11 B I 2.7 1.56 60.0 0.13 2.8 3.6 B C 0.8 1.12 58.6 0.00937 

Wallach 3 5.47 33.40 A I 5.6 1.13 70.2 0.69 2.4 3.6 A C~ 1.2 1.02 119.3 0.04869 

Wallach 4 4.93 32.97 A E 3.0 1.19 72.0 0.14 3.0 3.6 A C~ 0.4 1.12 20.4 0.00096 

Wallach 5 4.81 33.21 A I 8.2 1.04 118.2 2.48 3.0 3.6 B G 0.6 4.36 13.2 – 

Wallach 6 4.55 33.24 B I 4.1 1.35 99.7 0.57 4.1 3.6 A C~ 1.5 1.18 129.7 0.08277 

Wallach 7 4.70 33.55 A E~ 5.1 1.33 69.4 0.54 2.5 3.6 B E 0.7 1.97 22.5 0.00218 

Wallach 8 4.52 34.22 A E~ 9.2 1.47 88.5 2.86 3.0 3.6 A G 0.8 2.81 39.5 0.00300 

Wallach 9 4.27 33.84 B I 5.1 1.49 35.3 0.23 2.4 3.6 C – – – – – 

Wallach 10 4.02 33.82 A E~ 6.2 1.38 54.0 0.65 2.3 3.6 B E 0.4 1.30 16.5 – 

Wallach 11 4.14 33.56 A C~ 6.5 1.15 98.5 0.87 2.9 3.6 A E 0.7 1.20 58.3 0.01015 

Wallach 12 3.86 33.57 A E~ 10.6 1.50 86.1 3.11 2.5 3.6 B E 0.7 1.30 38.0 0.00460 

Wallach 13 3.60 33.48 B E 2.9 1.27 35.9 0.07 2.3 3.6 A E 0.5 1.80 6.1 – 

Wallach 14 3.99 32.86 A E~ 4.4 1.33 84.2 0.52 3.5 3.6 B I 0.4 1.24 4.5 – 

Wallach 15 3.98 32.18 A I 6.6 1.16 39.6 0.30 2.6 3.6 B C 0.6 1.09 23.9 0.00269 

Wallach 16 3.80 31.98 B I 3.4 1.19 26.3 0.10 2.2 3.6 B I 0.7 1.81 26.9 0.00141 

Wallach 17 4.02 31.99 B C~ 5.3 1.14 39.9 0.33 2.1 3.6 C – – – – – 

Wallach 18 4.12 30.60 B I 5.7 1.29 41.2 0.32 2.1 3.6 C – – – – – 

Wallach 19 4.57 31.04 A E 5.4 1.43 242.1 2.31 6.4 3.6 B I 0.8 1.14 47.1 0.00302 

Wallach 20 4.70 31.41 A E 4.5 1.21 32.2 0.13 2.7 3.6 A E~ 0.9 1.21 81.2 0.01742 

Wallach 21 4.84 31.12 A E~ 5.5 1.34 81.2 0.92 3.3 3.6 A I 0.9 1.47 32.3 0.00454 

Wallach 22 5.05 31.83 A E 3.8 1.15 72.7 0.29 2.8 3.6 C – – – – – 
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Wallach 23 5.23 31.22 B I 3.3 1.28 26.2 0.07 2.2 3.6 C – – – – – 

Wallach 24 5.33 30.84 A C~ 3.9 1.01 97.8 0.34 3.5 3.6 A I 0.9 1.57 55.9 0.00947 

Wallach 25 5.47 31.49 B E~ 4.7 1.47 35.4 0.22 2.2 3.6 C – – – – – 

Wallach 26 5.69 31.59 A E~ 3.9 1.24 32.8 0.13 1.9 3.6 A C 0.6 1.20 20.8 0.00165 

Wallach 27 6.04 31.67 A I 4.1 1.20 69.1 0.36 2.6 3.6 C – – – – – 

Zahringer 1 6.64 40.99 A C~ 6.7 1.13 60.9 0.87 2.9 3.6 A E~ 1.6 1.47 157.2 0.09906 

Zahringer 2 6.50 41.23 A C~ 2.8 1.10 52.1 0.12 2.9 3.6 B C 0.7 1.09 66.7 0.01064 

Zahringer 3 4.99 42.09 B I 3.8 1.40 67.7 0.26 3.1 3.6 A C 1.0 1.04 105.0 0.02938 

Zahringer 4 4.33 41.91 A C~ 5.6 1.15 108.6 1.06 3.2 3.6 C – – – – – 

Zahringer 5 4.49 41.02 B E~ 5.0 1.25 28.8 0.12 2.1 3.6 A E 1.0 2.86 47.2 0.01554 
1Mare dome or summit pit crater identification reliability: A = definite dome structures; B = possible mare dome; C = questionable dome identifications. 
2Mare dome or summit pit crater shape types: C = circular, E = elliptical, I = irregular, and G = elongated, the tilde (“~”) symbol indicate quasi shapes. 
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5. Characteristics of Mare Domes in Mare Tranquillitatis 373 

5.1 Morphology, Morphometry, and Topography 374 

Representative samples of mare domes of variable identification reliability and shapes are 375 
shown in Figure 4. Cauchy 1 represents one of the most well-developed mare dome structures on 376 
the Moon (Figures 4A-C), with a nearly perfectly circular base outline ~9 km in diameter. An 377 
SLDEM2015-derived topographic profile shows that this dome summit is ~120 m above the 378 
adjacent mare, with a clear convex-upward profile (Figure 4C). An apparent elliptical summit pit 379 
feature is observed at the top of the dome. Menzel 30 is an example of newly-discovered mare 380 
domes reported in this contribution (Figures 4E-F). Due to its very gentle topographic flank 381 
slope (2.2 ± 1.5°, measured from SLDEM2015 topography), it is very challenging to detect it 382 
from optical imagery data, even on low-Sun images (Figure 4D). High-resolution and 383 
high-precision SLDEM2015 topography data clearly identify it as having an approximately 384 
circular outline (Figure 4E) and convex profile (Figure 4F). This dome is measured to be 3.7 × 385 
4.2 km in base size and ~104 m in height, and no summit pit feature is observed (Figures 4E and 386 
4F). Many quasi-elliptical domes are also very apparent on the topographic maps (e.g., Vitruvius 387 
10 in Figure 4G). Summit pit features are commonly observed on these elliptical mare domes 388 
(e.g., Aryabhata 29 in Figures 4H and 4I), and their presence enhances the identification 389 
reliability of the subjacent mare dome. A considerable proportion of our catalogued domes are 390 
irregular in outline shape (e.g., Vitruvius 4 in Figure 4J). In some cases, the irregular shape is 391 
attributed to the effect of the adjacent pre-existing topography, such as pre-mare highland 392 
terrains (such as Menzel 13 in Figures 4K and 4L). Maskelyne 8 (Figures 4M and 4O) is an 393 
example of dome features with relatively lower identification reliability (possible domes). It 394 
occurs as a raised structure from the background mare, but its irregular outline, being near to 395 
other topographic highs, and the absence of a summit pit feature, prevent the confident 396 
confirmation of its dome nature. An example of a questionable identification of a mare dome is 397 
also shown (Dawes 1 in Figure 4N): image and altimetric data suggest that the raised topography 398 
is more likely due to other factors, such as an impact crater ejecta deposit, rather than mare dome 399 
formation.  400 

By using the dome base outlines mapped in our data sets (section 4), we build minimum 401 
rectangles bounding each dome and measured the length and width of each bounding rectangle 402 
as the major and minor axes of the domes (in kilometers), respectively. The geometric mean of 403 
the major and minor axes is determined as the dome diameter (Table 1). The base diameters of 404 
confirmed mare domes in Mare Tranquillitatis were measured as between ~2 and 23 km (Figure 405 
5A), within the size range of lunar mare domes documented previously (e.g., Head & Gifford, 406 
1980; Wöhler et al., 2006, 2007). (Note that three possible dome features were measured to be 407 
over 30 km in diameter, especially Theophilus 1, ~87 km diameter; these are significantly larger 408 
than typical mare domes on the Moon.) The histogram of diameters of Tranquillitatis domes is 409 
characterized by a unimodal and leptokurtic distribution pattern, peaking at 4–6 km (Figure 5A). 410 
The median diameter of Tranquillitatis domes is 5.6 km (n = 283), with ~90% of domes smaller 411 
than 12 km. These measurements are smaller than the sizes of global lunar mare dome 412 
distributions catalogued previously (Head and Gifford (1980): median diameter 8.0 km, n = 83; 413 
Wöhler et al. (e.g., 2006, 2007): median diameter 9.7 km, n = 133), suggesting that our usage of 414 
high-resolution (better than 100 m/pixel, Section 2) altimetric and imaging data enables the 415 
discovery and characterization of abundant smaller domes. 416 
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We also determined the shape of the dome base outlines, including (quasi-)circular, 417 
(quasi-)elliptical, and irregular domes, and dome base outline ellipticity (ratio of major to minor 418 
axes) (Table 1). We found that most elliptical domes have dome outline ellipticities greater than 419 
1.2, as well as a part of irregularly-outlined domes. The frequency distribution of dome shapes 420 
(Figure S3A) shows that Tranquillitatis domes of the three shape types are comparable in 421 
quantity. For confirmed mare dome occurrences, circular and elliptical domes are relatively more 422 
common than irregular ones, suggesting that these domes are relatively well developed. Domes 423 
of lower identification reliability are predominantly irregular in shape, suggesting that their 424 
irregular shapes and relationship with other terrains have affected the dome identification 425 
procedure. The ellipticity of confirmed mare domes varies between 1.0 and 2.0 (Table 1 and 426 
Figure S3B), while several (n = 5) domes of lower identification reliability are more elliptical 427 
(ellipticity >2.5). The ellipticity-frequency plot of Tranquillitatis domes shows a leptokurtic 428 
distribution, with a positive skewness toward elevated ellipticities, with mean value of 1.29 and 429 
median value of 1.24. 430 

We constructed exterior buffer areas around each cataloged dome feature, with a distance 431 
of 20% of dome diameter, as the proximal adjacent mare surface (some topographic anomalies, 432 
usually relatively large impact craters and dome summit pits, were excluded). The elevation 433 
difference between the dome feature and the surrounding mare was calculated from 434 
SLDEM2015 topography as the height of each dome. The heights of Tranquillitatis domes range 435 
from ~20 m to ~400 m, with a leptokurtic distribution histogram, peaking at 25–70 m (Figure 436 
5B). Domes of lower identification reliability (median height ~53 m) are relatively shorter than 437 
confirmed domes (median height ~74 m; Figure 5B). This dome height disparity is clearly 438 
observed in the plot of dome height with respect to base diameter (Figure 5C, or 439 
height-to-diameter ratio in Figure S3C): height-to-diameter ratio values of confirmed domes vary 440 
from 0.004 to ~0.05 (median value of 0.013), while ratios of possible domes are less than ~0.03 441 
(median value of ~0.008). Topographic slope measurements from SLDEM2015 data at a 442 
baseline of ~180 m show that dome features in Mare Tranquillitatis are generally very gentle in 443 
slope (Figure S3D). The vast majority (268/283 = ~95%) of these domes have average flank 444 
slopes between 2° and 4°, confirming that most domes on the Moon are indeed very 445 
gently-sloping. Elevated flank slopes (up to ~6°, but still not steep) only occur at a very few 446 
dome features. 447 

The calculated volumes of Mare Tranquillitatis domes range over nearly three orders of 448 
magnitude, from ~0.05 to nearly 50 km

3
, with a median volume 0.7 km

3 
(Figure 5D). Smaller 449 

volume domes are much more common than larger domes: ~65% of the dome population are less 450 
than 1 km

3
 in volume (Figure 5D). For domes with volumes less than 1 km

3
, the 451 

volume-frequency distribution is also concentrated at smaller volumes, peaking between 0.1 and 452 
0.3 km

3
 (Figure S3E). (Note that the three possible mare domes with significantly larger sizes 453 

mentioned above also have much larger calculated volumes: ranging from two to three orders of 454 
magnitude greater than the median volume values.) In addition, the dome volume-diameter plot 455 
(Figure S3F) displays an apparent log-linear distribution pattern, especially for confirmed domes, 456 
which permits the derivation of an exponential relationship: volume = 0.0867*e

0.3356*diameter
 (R

2
 = 457 

0.7841), where the volume is in km
3
 and the diameter is in km. 458 
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Figure 4. Kaguya TC morning images, SLDEM2015 topography maps, and profiles of 460 
representative mare domes in Mare Tranquillitatis: (A-C) Cauchy-1, (D-F) Menzel 30, (G) 461 
Vitruvius 10 (the dashed white box is the extent of Figure 6K), (H and I) Aryabhata 29, (J) 462 
Vitruvius 4, (K and L) Menzel 13, (M and O) Maskelyne 8, and (N) Dawes 1. The locations of 463 
topographic profiles (all in a west-east direction) are shown as dashed lines on their respective 464 
topographic maps. The vertical exaggeration (VEX) is indicated in each topographic profile. 465 

 466 

Figure 5. Basic statistics of the main morphometric parameters of mare domes in Mare 467 
Tranquillitatis: frequency histograms of (A) dome base outline diameter, (B) dome height 468 
relative to the surrounding mare surface and (D) dome volume; (C) plot of dome height against 469 
dome base diameter. Note that the three possible domes with unusually large size (>30 km in 470 
diameter, Table 1) do not fall within the diameter and height extent of panel C (same for Figures 471 
7B, S3C, S3D, and S3F). 472 

5.2 Summit Pit Craters 473 

Summit pit features are commonly, though not always, observed at the topographic 474 
summits of mare domes. These pit craters are important characteristics of the structure of lunar 475 
domes, and provide important information for constraining the mechanism of mare dome 476 
emplacement. We surveyed the occurrence of summit pits at each catalogued dome feature in 477 
Mare Tranquillitatis (Section 4.3 and Figure 3). Among the 283 mare domes, 124 domes are 478 
observed to host apparent summit pit features and 85 domes have possible summit pits (lower 479 
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identification reliability) (Table 1 and Figure S4), revealing that 74% of Tranquillitatis domes are 480 
characterized by summit pit features. Summit pits are not observed on 74 catalogued domes in 481 
Mare Tranquillitatis (Table 1 and Figure S4). The presence or absence of summit pit features 482 
seems to be independent of the diameter, height, and shape of the host mare dome. Both the 483 
diameter (median value = 5.6 km, n=209) and height (median value = 71 m) of mare domes that 484 
host summit pit features are comparable to those of domes without summit pit features (median 485 
diameter = 5.6 km, median height = 58 m, n = 74). The probability of summit pit occurrence is 486 
also indistinguishable (all between 70-80%) among mare domes of different base shapes 487 
(circular, elliptical, and irregular). 488 

During the summit pit survey procedures, we also determined the outline shape of the 489 
summit pit features, including (quasi-)circular, (quasi-)elliptical, (quasi-)elongated, and irregular 490 
shapes. The histogram of summit pit occurrences (Figure S5A) shows that an ellipse is the most 491 
common shape (~40% of the catalogued 209 summit pit craters); this pattern is different from 492 
base shapes of the Tranquillitatis domes, where the three dome shapes are comparable in 493 
frequency. A good example of such elliptical summit pits is present on the well-developed 494 
Cauchy 1 dome (Figures 4A-C). The pit crater is measured as 1.5 × 1.8 km in size and ~210 m 495 
deep below the pit rim, which yields a depth/diameter ratio of ~0.13, comparable with that of 496 
relatively fresh lunar impact craters (Type AB or B, Basilevsky, 1976). However, this dome 497 
summit pit lacks the raised rim and exterior ejecta deposits typical of fresh lunar impact craters. 498 
Distinct summit pits are also observed at the summit of some relatively poorly-developed or 499 
irregular mare domes, for instance, Vitruvius 36 (Figure 6A) and Sinas 18 (Figures 6B and 6M). 500 
In these cases, the presence of summit pit features helps increase the identification reliability of 501 
the host dome. A considerable proportion of the identified summit pits are generally circular in 502 
shape (for example, Sinas 1 in Figures 6C and 6N, and Vitruvius 25 in Figure 6D). In a manner 503 
similar to the previously mentioned Cauchy 1 summit pit, their unique position at the dome crest 504 
and the lack of rim and ejecta still distinguish them from the numerous impact craters on the 505 
nearly mare surface (Figures 6C and 6D). 506 

An unusual shape type of dome summit pit is the elongated pit, whose length is generally 507 
more than two times its width (e.g., Jansen 7 in Figures 6E and 6O, and Vitruvius 5 in Figure 6F). 508 
In addition, some summit pits are irregular in shape (e.g., Menzel 11 in Figure 6G and Maraldi 6 509 
in Figure 6H). In the case of Maraldi 6 summit pit, its irregular shape is mainly due to the 510 
extension of the ellipse-shaped pit crater to the northwest. Summit pit crater features are 511 
generally centrally located on the dome crest (Figures 6A-H), while some pits are offset from the 512 
dome crest (e.g., Aryabhata 4 in Figure 6I). In addition, two or more pit craters are observed to 513 
co-occur on tens of mare domes (for instance: Aryabhata 27 in Figure 6J and Vitruvius 10 in 514 
Figures 6K and 4G). On the Aryabhata 27 small dome, an elliptical and another irregular pit 515 
crater are present on the dome summit and northern flank (near to the dome base), respectively. 516 
In the case of Vitruvius 10 dome, a chain of seven small pits, generally circular or elliptical in 517 
shape, are aligned from the dome summit to the dome base in a NW-trending direction. An 518 
example of a possible summit pit crater is present on the Aryabhata 6 dome (Figure 6L). The 519 
small pit indeed occurs at the dome summit position, but its very small size (0.5 × 0.9 km) and 520 
shallow depth (~16 m) prevent us from distinguishing it from other depression features, such as 521 
topographic irregularities in basaltic lava flows. 522 

In a manner similar to the procedure for morphometric and topographic analyses of mare 523 
domes (Section 5.1), we also mapped out the rim positions of dome summit pit features and 524 
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calculated their size, ellipticity, height, volume, and inner wall slopes. The diameter of mare 525 
dome summit pits was estimated to be between ~0.3 and ~3.8 km (Figure 7A). The histogram of 526 
summit pit diameter is characterized by a unimodal distribution pattern, peaking at 0.5–1 km, 527 
with a median value of 0.8 km. Prior morphometric measurements suggested that dome summit 528 
pit diameter (Dc) is correlated with the dome base diameter (D) (Head & Gifford, 1980: Dc = 529 
0.16 × D + 0.52; Wöhler et al., 2006: Dc = 0.12 × D + 1.17). To explore this potential diameter 530 
correlation, we plotted the measured diameter of all confirmed (n = 124) and possible (n = 85) 531 
summit pit features against the host dome diameter (Figure 7B). The ratio of the summit pit 532 
diameter to the dome base diameter varies widely from 0.01 to nearly 0.8, although most 533 
(191/209) are between 0.05 to 0.5 (Figures 7B and S5B). However, we did not observe any 534 
simple correlation between summit pit diameter and host mare dome diameter: linear fitting of 535 
either all summit pits or confirmed pits only yielded correlation coefficients less than 0.3. We 536 
suggest that the previously reported correlations are probably biased by their much smaller 537 
sampling size, n = 12 (Head & Gifford, 1980) or n = 19 (Wöhler et al., 2016), both over one 538 
order of magnitude smaller than our catalogue. The ellipticity of dome summit pit craters shows 539 
a much wider range (up to over five; Figure S5C) than that of the host domes (all less than two; 540 
Figure S3B), although the majority (~80%) of the summit pits still have ellipticities less than two. 541 
The unusually high ellipticity values of summit pits are seen at dozens of elongated pit craters, 542 
for instance, Jansen 7 (Figure 6E and ellipticity = 3.9) and Vitruvius 5 (Figure 6F and ellipticity 543 
= 2.8). 544 

The depth of summit pits is measured to be between ~4 m to over 600 m, with a skewed 545 
distribution, showing that shallower pit craters are more common than deeper ones (Figure 7C). 546 
Over 80% of these summit pits are shallower than 100 m. The deepest summit pit crater occurs at 547 
the summit of the Jansen 6 small dome, which is elliptical in shape, 2.7 × 4.0 km in size and 626 548 
m deep. Confirmed summit pits (median depth ~54 m) are generally deeper than summit pits of 549 
lower identification reliability (median depth ~25 m). The depth/diameter ratio of dome summit 550 
pits vary from ~0.01 to ~0.19, with a unimodal histogram distribution pattern peaking at 0.02–551 
0.06 (Figures 7D and S5D). The majority of dome summit pits (84%) have depth/diameter ratios 552 
between 0.02 and 0.1 (Figure S5D). Dome summit pits are widely scattered on the 553 
diameter-depth plot (Figure 7D) and no simple mathematical relationship can be derived. These 554 
statistics of dome summit pit craters are very different from those of meteoritic impact craters of 555 
comparable sizes on the Moon. Depending on the degradations state, lunar impact crater 556 
depth/diameter ratio generally varies from 0.05 to 0.25 (e.g., Robbins et al., 2018; Stopar et al., 557 
2017). However, about half (52%) of the dome summit pits have depth/diameter ratios smaller 558 
than 0.05 (Figure S5D), revealing that a considerable proportion of dome summit pits are 559 
significantly shallower than lunar impact craters.  560 

We also found that the bottom of nearly half (46%) of the summit pit craters are 561 
topographically lower than the surrounding mare surface (Figure 7E; for instance, Cauchy 1, 562 
Aryabhata 29 and Menzel 13 in Figure 4, and Vitruvius 36, Sinas 18, Jansen 7, Vitruvius 5 and 563 
Maraldi 6 in Figure 6). This observation is clearly seen from topographic maps and profiles, 564 
although not easily perceived from optical images. The summit pit depth relative to the 565 
surrounding mare surface seems to be correlated with the summit pit diameter (Figure S5E), 566 
suggesting that larger pit diameter may be due to wider feeder dikes, and/or that significant 567 
summit pit collapse may occur in larger summit pit craters. 568 
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The cavity volume of individual dome summit pit craters varies over five orders of 569 
magnitude, from ~10

-5
 to 1.91 km

3
, with mean and median volume of 0.051 and 0.005 km

3
, 570 

respectively (Figure 7F). Nearly half (~43%) of the summit pit craters have cavity volumes 571 
between 0.001 and 0.01 km

3
. The cavity volume seems to follow a power function of the summit 572 

pit diameter: volume = 0.0141*diameter
3.3568

 (fitting for confirmed summit pits, R
2
 = 0.8588; 573 

Figure S5F), where the volume is in km
3
 and the diameter is in km. The maximum topographic 574 

slope of the summit pit crater interior wall (also calculated from SLDEM2015 topography at a 575 
baseline of ~180 m) ranges from 4 to 36° (Figure S5G), with a median value of 13°. These 576 
maximum slopes are comparable to those of the inner walls of lunar impact craters of various 577 
degradation states (e.g., Basilevsky, 1976), though dome summit pit craters seem shallower than 578 
impact craters. Very steep slopes, steeper or comparable to the angle of repose (32°) of dry 579 
materials (such as lunar regolith) are only measured in two dome summit pit craters: one at the 580 
summit of Jansen 6 dome, also the deepest summit pit in Mare Tranquillitatis (626 m), and 581 
another at the summit of Carrel 8 dome, which is 323 m deep. 582 

 583 
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Figure 6. Colorized SLDEM2015 topography overlain on Kaguya TC morning images of 584 
representative samples of mare dome summit pit craters in Mare Tranquillitatis: (A) Vitruvius 36, 585 
(B) Sinas 18, (C) Sinas 1, (D) Vitruvius 25, (E) Jansen 7, (F) Vitruvius 5, (G) Menzel 11, (H) 586 
Maraldi 6, (I) Aryabhata 4, (J) Aryabhata 27, and (L) Aryabhata 6. (K) Kaguya TC image of a 587 
chain of pit craters on the Vitruvius 10 dome (see the topographic map of the entire dome in 588 
Figure 4G). SLDEM2015 topographic profiles of typical summit pit features: (M) Sinas 18, (N) 589 
Sinas 11 (O) Jansen 7; the locations of these profiles (all in a west-east direction) are shown in 590 
panels B, C, and E. The vertical exaggeration (VEX) is indicated in each topographic profile. 591 
 592 
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 593 

Figure 7. Basic statistics of the main morphometric parameters of mare dome summit pit craters 594 
in Mare Tranquillitatis: frequency histograms of summit pit (A) diameter, (C) depth (relative to 595 
the summit pit rim), (E) depth relative to the surrounding mare, and (F) cavity volume, and plots 596 
of summit pit diameter against (B) host dome diameter and (D) summit pit depth. Note that five 597 
summit pits deeper than 0.25 km are not plotted in panel D. 598 
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5.3 Chemical Composition 599 

The mare basalts forming Mare Tranquillitatis are characterized by extreme 600 
compositional characteristics and significant compositional variations (especially titanium 601 
content; Section 3 and Figure 1C). But what are the compositional characteristics of the abundant 602 
dome features in Mare Tranquillitatis and how do they compare with those of the surrounding 603 
mare basaltic deposits? We calculated the average iron and titanium content of each catalogued 604 
mare dome on the basis of FeO and TiO2 abundance maps derived from Clementine UVVIS (100 605 
m/pixel) and LROC WAC (400 m/pixel) spectrometer data, respectively (Figures 8A, S6A, and 606 
S6B). These data show that mare domes in Mare Tranquillitatis are relatively homogeneous in 607 
iron content: the vast majority (268/283 = ~95%) of mare domes have average FeO content 608 
between 16 and 20 wt.% (Figure S6A). However, the titanium content of Tranquillitatis domes is 609 
characterized by considerable variation (Figures 8A and S6B), with average TiO2 content of 610 
individual domes ranging from ~1 to ~11 wt.% (median value = 6.5 wt.%). About 75% of the 611 
Tranquillitatis domes have surface TiO2 content between 4 and 9 wt.%. Although extensive mare 612 
basalts in Mare Tranquillitatis (mainly in the northwestern portion) are the most titanium-rich 613 
basalts (TiO2>10 wt.%) on the entire Moon (Figure 1C), high-titanium mare domes are relatively 614 
uncommon: only a very small proportion (n = 9 or ~3%) of the domes in Mare Tranquillitatis 615 
have average TiO2 content higher than 10 wt.%. A comparison of the titanium content map 616 
(Figure 1C) and the spatial distribution map of mare domes (Figure 3) found that only seven 617 
domes and five possible domes occur on or adjacent to the high-titanium basalts in northwestern 618 
Mare Tranquillitatis, in an area where the spatial density of mare domes is much lower than in 619 
other dome-concentration areas in Mare Tranquillitatis (Figure S2). 620 

We then plotted the iron and titanium contents of each catalogued dome against the 621 
composition of the surrounding mare surface (exterior buffer areas with widths of 50% of each 622 
dome base diameter) (Figures 8B and 8C). We found that the iron content of mare domes in 623 
Mare Tranquillitatis is generally indistinguishable from that of the surrounding mare: the FeO 624 
abundance difference between mare domes and their surrounding mare are all within 5% of the 625 
surrounding mare FeO content, and the difference is within 3% for 95% (269/283) of these 626 
domes (Figure 8B). The titanium content of Mare Tranquillitatis domes, however, shows 627 
variations in differences from that of the surrounding mare deposits (Figures 8C and S6C). 628 
Though the majority of mare domes (210/283 = 74%) have similar (within ±10%) TiO2 content 629 
to that of the surrounding mare, nearly 30 mare domes show clear TiO2 content differences from 630 
the surrounding mare surface (beyond ±20% of the mare TiO2 content). Several examples of 631 
mare domes with apparently different titanium abundance than the surrounding mare are shown 632 
in Figure 9. 633 
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 634 

Figure 8. (A) Average iron and titanium content of mare domes in Mare Tranquillitatis, and (B 635 
and C) comparison with that of the surrounding mare surface. 636 
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 637 

Figure 9. Examples of mare domes (with dome base outlined by dashed lines) in Mare 638 
Tranquillitatis with apparently different TiO2 content compared with the surrounding mare: (A) 639 
Jansen 7, (B) Menzel 21, (C) Sinas 1, and (D) Vitruvius 6. Each panel is shown as a 640 
WAC-derived TiO2 content map overlain on a Kaguya TC morning image. 641 

5.4 Ages of the Background Mare Units 642 

Finally, we survey and assess the ages of the mare dome host units in Mare Tranquillitatis. 643 
Of the 283 catalogued domes, the background mare units of 273 domes have been dated by the 644 
CSFD method, and three domes (Theophilus 1, Vitruvius 11, and Zahringer 4) occur in undated 645 
mare units, although adjacent to other dated mare units. Seven domes (Maclear 4 and Maraldi 646 
1-6) are neither on or near any dated mare units; these domes all occur along the northern edges 647 
of Mare Tranquillitatis. Overall, 276 domes are located in or near 19 CSFD-dated mare units 648 
(Table 1). All but one (Sinas 29, background mare 3.46 Ga) of the mare domes are hosted in 649 
mare units that were emplaced more than 3.5 Ga ago (Figure 10A). Compared with the temporal 650 
distribution of model ages of global lunar mare units (grey columns in Figure 10B), the ages of 651 
dome-hosting mare units (black columns in Figure 10B) are contemporaneous with the peak 652 
period of global lunar volcanism, while the background mare ages only span a very narrow 653 
temporal range (0.3 Ga), just one tenth of the total duration of extrusive lunar mare volcanism. 654 
The identification of abundant mare domes in the most ancient maria strongly supports the 655 
hypothesis that small shield-building mare-basalt eruptions may have been a prevalent volcanic 656 
eruption style in the earliest stage of lunar volcanism, a potentially very important constraint on 657 
lunar thermal evolution history. 658 
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 659 

Figure 10. Histogram of host mare unit ages of Tranquillitatis domes counted by (A) the number 660 
of dome features and (B) the number of mare units (black columns) in the context of global lunar 661 
mare units (grey columns). 662 

6. Discussion and Interpretation 663 

Mare domes, generally interpreted as small shield volcanoes with typical diameters <~30 664 
km (Head & Gifford, 1980), are among the most common types of lunar volcanic source vents 665 
(Head & Wilson, 2017). In order to assess their detailed nature and origin, we undertook an 666 
extensive analysis of the distribution, nature, associations, and modes of origin of mare domes in 667 
Mare Tranquillitatis, known as the location of the highest concentration of mare domes on the 668 
Moon (Head & Gifford, 1980; Spudis et al., 2013; Section 4), and one of the oldest lunar maria 669 
(~3.5-3.8 Ga; Hiesinger, Head, et al., 2011; Section 3). 670 

6.1 Nature of Small Mare Domes in Mare Tranquillitatis 671 

New high-resolution orbital imaging, topography, and compositional data permitted the 672 
documentation of the location and nature of a total of 283 known and suspected mare domes in 673 
Mare Tranquillitatis, a significant increase over previous studies (Head & Gifford, 1980; Tye & 674 
Head, 2013; Spudis et al., 2013). The Tranquillitatis mare dome population is characterized by a 675 
median diameter of 5.6 km, height of 68 m, volume of 0.7 km

3
, and ellipticity of 1.2. Summit 676 

pits occur in 74% of the population (median pit diameter of 0.8 km, ~14% of mean dome 677 
diameter). The deepest pits extend below the level of the surrounding mare surface, and this, 678 
together with significant dome ellipticity, suggest the presence of linear source dikes at depth. 679 
Mineralogies are dominated by those of intermediate-Ti basalts, and are relatively homogeneous 680 
in FeO content, but are variable in TiO2 content, exhibiting minor variability between the domes 681 
and surrounding flow areas. These relationships suggest that the domes both supply and are 682 
embayed by flows. Thus, the statistics of dome diameters and heights may be influenced by 683 
flooding and embayment by younger lava flows, potentially decreasing diameters and lowering 684 
heights. 685 

6.2 Associations of Mare Domes Mare Tranquillitatis 686 

Our detailed regional mapping of Mare Tranquillitatis and the mare dome population 687 
revealed that while the region was characterized by an unusual abundance of mare domes, it 688 
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exhibited a lack or paucity of other features commonly associated with mare basalt source 689 
regions and deposits in other parts of the Moon (Head et al., 1981). No evidence for regional 690 
dark-mantling deposits, or dark-halo craters of volcanic origin (e.g., Gaddis et al. 2003; Figure 691 
S7A) was observed, suggesting that pyroclastic activity was not a major factor in the 692 
emplacement of the mare domes. The closest regional dark-mantling deposit occurs in Sulpicius 693 
Gallus and at Taurus-Littrow (Apollo 17, Figure S7A), both associated with the edge of the 694 
younger Serenitatis impact basin, north of Mare Tranquillitatis. Furthermore, no evidence was 695 
observed for dark-halo impact craters (e.g., Figure 6 of Schultz & Spudis, 1979) that might 696 
suggest the presence of buried pyroclastic deposits. In addition, we found no evidence for small 697 
pyroclastic cones in association with mare domes, dome summit pit craters, or surrounding mare 698 
deposits, an association that is common in the Marius Hills in Oceanus Procellarum (e.g., 699 
Whitford-Stark & Head, 1977; Lawrence et al., 2013). Taken together, these observations and 700 
associations suggest that the volatile content of the magmas that produced the Tranquillitatis 701 
domes was low (e.g., Wilson & Head, 2018a), relative to those which produced pyroclastic 702 
deposits elsewhere on the Moon. 703 

Two associations suggest that the mare dome magmas may not have been completely 704 
devoid of volatiles, however. First, IMPs (Braden et al., 2014; Qiao, Head, Ling, Wilson, 2020), 705 
small optically immature features with unusual surface morphologies, were found in association 706 
with (within summit pits or on dome flanks) four mare domes (Cauchy 5, Carrell 3, Arago 5 and 707 
7; Figure S7A), most notably Cauchy 5 (Braden et al., 2014; Qiao, Head, Wilson, Ling, 2020). 708 
Some workers interpret IMPs to have formed in the last hundred million years (e.g., Braden et al., 709 
2014), and thus to be unrelated in origin to the host mare deposits. Others have interpreted IMPs 710 
to be contemporaneous with the host lava flows (Qiao et al., 2017, 2018, 2019; Wilson & Head, 711 
2017b) and, in the case of Cauchy 5 small shield, to be the result of late-stage volatile release and 712 
concentration in the final strombolian stages (Wilson & Head, 2017b) of an eruption (e.g., Qiao, 713 
Head, Wilson, Ling, 2020). In addition, Zhang et al. (2017, 2020) documented the abundant 714 
occurrence (n = 3488) of RMDSs in Mare Tranquillitatis. A considerable proportion (n = 73) of 715 
mare domes are observed to have variable numbers of RMDS on their flank, with four domes 716 
having over 20 RMDSs (Figure S7B). These small mound features, surrounded by a narrow moat, 717 
are found in clusters across the lunar maria and have also been interpreted to be either formed 718 
contemporaneously with the host mare unit by second boiling of cooling basalt flows (e.g., 719 
Wilson et al., 2019), or emplaced over longer post-host unit time periods, up to the last several 720 
hundred million years (e.g., Basilevsky et al., 2019). If the theories of IMP and RMDS origins 721 
that suggest formation in association with host lavas are correct, this suggests that at least some 722 
of the Tranquillitatis mare dome magmas may have released some volatiles as evidenced by 723 
secondary concentration at vent sites and/or in late-stage second boiling in associated lava flows.  724 

We used high-resolution altimetry and topography data to search for lava flow-fronts and 725 
estimate their heights. Although regolith thicknesses in mare basalts of this ancient age preclude 726 
the ready detection of flow fronts of less than a few meters height, we detected no evidence of 727 
flow fronts in excess of a few meters height, for example, comparable to the distinctive 10-30 m 728 
high lava flow fronts observed in SW Mare Imbrium (e.g., Schaber, 1973; Bugiolacchi & Guest, 729 
2008; Zhang et al., 2016; Chen et al., 2017), and interpreted to represent very high-volume, 730 
high-effusion rate eruptions. The implication is that the Mare Tranquillitatis lava flows are 731 
predominantly much thinner, in the range of a few meters, consistent with the flow thickness 732 
estimates from the Apollo 11 site in SW Mare Tranquillitatis (Beaty & Albee, 1980) and typical 733 
of lower-volume, lower-effusion rate eruptions.  734 
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We documented a general lack of sinuous rilles in the interior of Mare Tranquillitatis 735 
(Figure S7A), and in association with mare domes, supporting the global studies of Hurwitz et al 736 
(2013). The few sinuous depressions that we did observe were narrow, short, and few in number, 737 
suggesting that they were more likely to be lava channels than the larger sinuous rilles that are 738 
thought to be formed by thermal and mechanical erosion in association with high-volume, 739 
high-effusion rate, and long-duration eruptions (e.g., Hurwitz et al., 2013).  740 

We found no evidence for the occurrence of FFCs in Mare Tranquillitatis (Figure S7A), 741 
consistent with the findings of Schultz (1976) and Jozwiak et al. (2012). FFCs are evidence of 742 
shallow intrusion of large quantities of basaltic magma below impact crater floors, and its 743 
associated thermal and volatile evolution (e.g., Wilson & Head, 2018b). The lack of FFCs in 744 
Mare Tranquillitatis, together with the absence of calderas, suggests that large-volume shallow 745 
sill intrusions and focused magma staging areas were absent in the shallow crust below Mare 746 
Tranquillitatis. 747 

In summary, these observations and associations strongly suggest that the eruptions that 748 
produced the Tranquillitatis domes were characterized by a large number of individual 749 
low-volume, low-volatile content, low-effusion rate, short-duration eruptions. The lack of 750 
floor-fractured craters and calderas suggests that shallow sill intrusions and shallow magma 751 
staging areas were unimportant. The similarity in morphometry of small shields, their abundance, 752 
and high concentration does, however, point to a broad, relatively shallow mantle source region 753 
from which many relatively small, similar dike emplacement events originated.  754 

6.3 Implications for Mare Dome Eruption Conditions 755 

These characteristics and associations support the interpretation that the mare domes are 756 
small shield volcanoes (Head & Gifford, 1980; Wöhler et al., 2006) that were built from 757 
individual low-volume (<~10-100 km

3
), low-volatile content, short-duration, cooling-limited 758 

eruptions that formed the shields and supplied lava flows to the immediate surroundings (Head & 759 
Wilson, 2017) (Figure 11). These eruption conditions are similar to those of small shields on 760 
Earth (e.g., Greeley & King, 1977; Greeley, 1982) which form from low effusion rate episodic 761 
eruptions characterized by intermittent supply of magma from sources in the shallow mantle or 762 
shallow magma reservoirs in the crust or in a larger edifice (e.g., Iceland, Hawai’i, and the Snake 763 
River Plains).  764 

On the Moon (e.g., Wilson & Head, 2017a) magma is predicted to arrive at the surface in 765 
dikes at initially relatively higher effusion rates, followed by a decrease in effusion rate with time 766 
(Wilson & Head, 2018a; their Fig. 1). For mare domes, initial fissure eruptions from linear dikes 767 
penetrating the surface are interpreted to produce relatively more extensive flows, and as the 768 
eruption decreases in flux and the vent centralizes (Head & Wilson, 2017; their Fig. 27c), the lower 769 
effusion rate causes flows to undergo cooling and become cooling-limited, halting their advance. 770 
The succession of cooling-limited flows in the <10 km length range then contributes to the small 771 
shield construction. The ellipticities of many shields and shield summit pit craters, and the depths 772 
of many pits below the surrounding maria, all support this model and its prediction of a transition, 773 
from initial linear dike formation, to fissure eruptions, and finally to small shields with summit pit 774 
craters representing eruptions from the centralization of the original linear vent (see Head & 775 
Wilson, 2017; their Figs. 13, 17). According to this model, final shield diameter variations are due 776 
to small variations in magma cooling and cooling-limited flow lengths. Variations in shield 777 
heights may thus be related to eruption duration and total flow volume. Similarities of spectral 778 
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properties of small shields and surrounding plains documented here and by Wöhler et al. (2006) 779 
also support this interpretation. Of course, caution should be exercised in direct application of 780 
small shield morphometry in individual shields to eruption conditions, because subsequent 781 
adjacent small shield and flow formation may alter the initial shield diameter and height. 782 

The lack of pit craters in some domes is consistent with the predicted relatively low 783 
volatile content of the Mare Tranquillitatis small shields. In terrestrial pit craters, the magnitude 784 
of floor subsidence and depth is often related to magma withdrawal due to degassing of 785 
volatile-rich magmas (e.g., Tilling et al., 1987), and this mechanism has been called upon to 786 
explain the characteristics of one of the deepest of the Mare Tranquillitatis pit craters, the 787 
Cauchy 5 summit pit crater (e.g., Qiao, Head, Wilson, Ling, 2020). Very low magma volatile 788 
contents would minimize such subsidence and the formation of pit craters.  789 

Wöhler et al. (2006) studied over forty domes in four areas of the lunar nearside maria and 790 
classified six domes as “lava swells” or intrusive domes (laccoliths) due to the absence of a summit 791 
pit crater and their low slopes. Such low-sloped small shield occurrences lacking summit pit 792 
craters do not necessarily imply an intrusive origin for the shield; eruptions with lower volatile 793 
content could readily lead to lack of a robust strombolian stage and no summit pit crater (e.g., Head 794 
& Wilson, 2017). In addition, we found no evidence for the presence of fresh or degraded radial or 795 
circumferential cracks that might be produced during a process of intrusion and laccolithic uplift. 796 

Minor occurrences of IMPs on the summits and flanks of some domes, and RMDSs in 797 
flanking flows, suggest the presence in a few cases of minor late stage magmatic gas production 798 
and concentration (pit craters, Qiao, Head, Wilson, Ling, 2020; and second boiling, Wilson et al., 799 
2019). 800 

 801 

Figure 11. Diagrammatic representation of the sequence of events in the building of small lunar 802 
shield volcanoes by cooling limited flows (after Wilson and Head (2017). 803 

6.4 Distribution of Mare Domes in Mare Tranquillitatis and the Style of Volcanism 804 

Our analysis confirmed earlier findings (Head & Gifford, 1980; Spudis et al., 2013; Tye 805 
et al., 2013) of a major difference in concentration of mare domes between eastern and western 806 
Mare Tranquillitatis, with a very high concentration in eastern Tranquillitatis (Figures 3 and S2). 807 
This broad eastern Tranquillitatis concentration formed an ~450 km diameter circular 808 
topographic rise (Figure 1B), with several further linear and equidimensional dome clusters 809 
within the rise. The rise extends to ~920 m above the surrounding plains, with a corresponding 810 
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volume of ~1.6 × 10
5
 km

3
, and is interpreted to have been built from multiple occurrences of 811 

these types of small-shield related eruptions. 812 

This style of eruption characteristic of this broad volcanic rise differs significantly from 813 
the flood basalt style of volcanism seen in the younger mascon basins such as Serenitatis, 814 
Crisium, and Imbrium, basins that have undergone significant subsidence during their filling, and 815 
the very large, long late-stage flows seen in southwest Mare Imbrium (e.g., Schaber, 1973). The 816 
eastern Tranquillitatis broad volcanic rise occurrences are most similar to the shield plans 817 
volcanism style documented by Greeley (1982) and Greeley and King (1977) in the Snake River 818 
Plains of Idaho. Here, fissure eruptions are closely associated with small shield volcanoes and 819 
together form vertical accumulations of basaltic plains (Figures 3-12 in Greeley & King, 1977). 820 
The broad distribution of the small-shield magma source vents, the very low-rise topography, 821 
and the lack of a central caldera in eastern Tranquillitatis support the interpretation of this feature 822 
as a broad volcanic rise formed by shield plains style volcanism rather than a large shield 823 
volcano as suggested by Spudis et al. (2013). 824 

Implied by the interpretation that the broad volcanic rise was formed by shield plains 825 
style volcanism is the presence of a relatively shallow mantle source region capable of supplying 826 
distributed dike-emplacement and eruption events forming small shields and associated flanking 827 
lava deposits over an area of 1.75×10

5
 km

2
 for several hundred million years early in mare 828 

volcanism history (~3.5-3.8 Ga). These characteristics stand in contrast to western Mare 829 
Tranquillitatis, site of similar-aged maria, a broad topographic low, the Lamont mascon and 830 
associated tectonic features, and a relative paucity of small shield volcanoes.  831 

We are currently investigating candidate reasons for these stark differences between 832 
eastern and western Tranquillitatis, and the younger mascon mare basins. Observed differences 833 
in the time, gravity and crustal thickness characteristics, volcanic style, total volumes, and 834 
eruption histories may be attributed to the more ancient thermal and crustal structure of the 835 
apparently viscously relaxed Tranquillitatis basin, and a shallower broad magma source region 836 
present in earlier lunar thermal history due to a thinner lithosphere (e.g., Wilson & Head, 2017a). 837 
These results suggest that additional detailed analysis and characterization of volcanic source 838 
regions and styles in other lunar maria may provide important evidence for the detailed thermal 839 
and magmatic evolution of the Moon. 840 

7. Conclusions 841 

Mare domes, small shield volcanoes typically less than ~30 km in diameter, are part of 842 
the spectrum of lunar volcanic source vents (fissures, pits, calderas, dark-halo craters, cones, 843 
sinuous rilles, etc.) that characterize extrusive basalt deposits in the lunar maria. We used new 844 
spacecraft data to characterize mare domes in Mare Tranquillitatis, among the oldest mare 845 
surfaces on the Moon and the site commonly interpreted as an ancient highly morphologically 846 
and topographically degraded non-mascon impact basin.  847 

1) We found a total of 283 known and suspected mare domes in Mare Tranquillitatis, 848 
with the majority (n = 229) concentrated on a broad, ~450 km diameter circular topographic rise 849 
in eastern Tranquillitatis, with several further linear and equidimensional dome clusters within 850 
the rise.  851 

2) The mare domes in the Mare Tranquillitatis population are characterized by a median 852 
diameter of 5.6 km, height of 68 m, volume of 0.7 km

3
, and ellipticity of 1.2. Summit pits occur 853 
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in 74% of the population (median pit diameter of 0.8 km, with some pits extending below the 854 
level of the surrounding mare surface), supporting an extrusive, rather than intrusive, origin.  855 

3) Detailed mapping revealed an absence of associated calderas, sinuous rilles, cones, and 856 
dark mantle/pyroclastic deposits.  857 

4) Compositions are overall relatively homogeneous in FeO content, while variable in 858 
TiO2 content, with minor variability between domes and surrounding flows, suggesting that 859 
domes both supply and are embayed by these flows. 860 

5) These characteristics and associations support the interpretation that the mare domes 861 
are small shield volcanoes that were built from individual low-volume (<~10-100 km

3
), low 862 

volatile content, short duration, cooling-limited eruptions that built the shields and supplied lava 863 
flows to the immediate surroundings.  864 

6) Minor occurrences of IMPs on the summits and flanks of some domes, and RMDSs in 865 
flanking flows, suggest the infrequent presence of minor late stage magmatic gas production and 866 
concentration (strombolian activity in pit craters and second boiling in flanking flows).  867 

7) There is a major difference between the distribution of mare domes in eastern and 868 
western Mare Tranquillitatis; domes in eastern Tranquillitatis are superposed on a broad volcanic 869 
rise, ~450 km in diameter, ~920 m high, with a volume of ~1.6 × 10

5
 km

3
. We interpret the rise 870 

to have been built from multiple occurrences of these types of eruptions, known from terrestrial 871 
occurrences as shield plains volcanism.  872 

8) The broad distribution of the small-shield magma source vents and the lack of a central 873 
caldera support the interpretation of this feature as a broad volcanic rise rather than a large 874 
shield volcano.  875 

9) Implied is a shallow mantle source region capable of supplying distributed 876 
dike-emplacement and eruption events over an area of 1.75 × 10

5
 km

2
 for several hundred 877 

million years early in mare volcanism history (~3.7 Ga). These characteristics stand in contrast to 878 
western Tranquillitatis, site of similar-aged maria, the Lamont mascon and associated tectonic 879 
features, and a relative paucity of small shield volcanoes.  880 

10) Differences in the time, volcanic style, total volumes, and eruption histories between 881 
eastern Tranquillitatis and younger impact basins (e.g., Crisium, Serenitatis, Imbrium mascon 882 
basins) are attributed to the more ancient thermal and crustal structure of the apparently 883 
viscously relaxed Tranquillitatis basin, and a shallower broad magma source region present in 884 
earlier lunar thermal history.  885 

11) These results suggest that additional detailed analysis and characterization of 886 
volcanic source regions and styles in other lunar maria may provide important evidence for the 887 
detailed thermal and magmatic evolution of the Moon.  888 
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