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Abstract

We analyse the time-series evolution of the cumulative number of confirmed cases of
COVID-19, the novel coronavirus disease, for some African countries. We propose a
mathematical model, incorporating non-pharmaceutical interventions to unravel the
disease transmission dynamics. Analysis of the stability of the model’s steady states
was carried out, and the reproduction number R0, a vital key for flattening the
time-evolution of COVID-19 cases, was obtained by means of the next generation
matrix technique. By dividing the time evolution of the pandemic for the cumulative
number of confirmed infected cases into different regimes or intervals, hereafter re-
ferred to as phases, numerical simulations were performed to fit the proposed model
to the cumulative number of confirmed infections for different phases of COVID-19
during its first wave. The estimated R0 declined from 2.452 – 9.179 during the first
phase of the infection to 1.374 – 2.417 in the last phase. Using the Atangana-Baleanu
fractional derivative, a fractional COVID-19 model is proposed and numerical simu-
lations performed to establish the dependence of the disease dynamics on the order
of the fractional derivatives. An elasticity and sensitivity analysis of R0 was carried
out to determine the most significant parameters for combating the disease out-
break. These were found to be the effective disease transmission rate, the disease
diagnosis or case detection rate, the proportion of susceptible individuals taking
precautions, and the disease infection rate. Our results show that if the disease in-
fection rate is less than 0.082/day, then R0 is always less than 1; and if at least
55.29% of the susceptible population take precautions such as regular hand washing
with soap, use of sanitizers, and the wearing of face masks, then the reproduction
number R0 remains below unity irrespective of the disease infection rate. Keeping
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R0 values below unity leads to a decrease in COVID-19 prevalence.

Key words: COVID-19, Africa, Mathematical Modelling, Stability analysis,
Fractional derivatives

1 Introduction

Towards the end of December 2019, the infectious Coronavirus disease known
as COVID-19 was first detected in Wuhan, the capital city of the Hubei
province in China. Caused by the severe acute respiratory syndrome coro-
navirus SARS-CoV-2 [1], COVID-19 has caused a global health emergency.
The World Health Organization (WHO) declared it to be a public health
emergency of international concern on 30 January 2020 [2], and as a pan-
demic on 11 March 2020 [3]. By 15 June 2020, the outbreak had infected
around 7.8 million people globally with total fatalities of around 430,000 peo-
ple. Following Africa’s first case recorded in Egypt on 14 February 2020, there
had been over 246,636 confirmed cases with over 6571 deaths by 16 June 2020.
COVID-19 is a rapidly spreading contagious zoonotic disease with symptoms
that manifest after an incubation period of approximately 5 days following
infection. Symptoms are highly variable, but range from fever, dry cough, and
fatigue to less common ones like aches, sore throat, conjunctivitis, diarrhoea,
and loss of smell and taste. Because efficient vaccination is not yet widely
available, and there are few validated medications for treatment, COVID-19
control strategies employed by government agencies are still largely dominated
by non-pharmaceutical interventions such as social distancing, wearing of face
masks, regular washing of hands with soap, and use of hand sanitizer. However,
the efficacy of these control strategies are not yet well-quantified, and their
effectiveness is likely to change as new COVID-19 mutants take the stage.

Infectious disease modeling is a very active scientific research field. The ac-
tivity is motivated, in part, by the need to gain deeper insight into disease
dynamics in order to predict the trend of an epidemic outbreak, through be-
ing able to validate and test the effectiveness of control measures proposed to
check the spread of the disease [4]. In recent years, mathematical modeling has
been playing a key role in understanding the dynamics of infectious diseases
and their control measures. It has recently been applied to study, for example
Ebola [5–9], Dengue fever [10–14], Zika virus [15–20], and Tuberculosis [21–24].
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Research on comprehending and predicting the trend of COVID-19 has been
focused mainly on Europe [25–30], Asia [31–37], and the Americas [38, 39]
due partly to the degree of spread and impact on these continents. However,
a few research papers have appeared on cases in Africa, and in Nigeria in
particular [40–43], while earlier, Gilbert et al. [44] evaluated the vulnerabil-
ity and preparedness of the African continent against the risk of importing
the disease. The importance of investigating the dynamics of COVID-19 in
Africa can hardly be overemphasized, not only for the sake of Africa itself,
but also because the people of the African continent are constantly visiting or
migrating to other continents in the pursuit of further education, business, or
other bilateral purposes; thereby creating a high risk of spreading the disease,
as already witnessed and reported. Moreover, the investigation of COVID-19
dynamics will provide reliable information to decision-makers on the imple-
mentation of possible strategies and control measures aimed at stemming the
spread of the pandemic [42, 43]. Recently, Manchein et al. [45] analysed the
growth of the cumulative number of confirmed infected cases of COVID-19 up
to March 27, 2020, from countries of Asia, Europe, North America, and South
America using the power-law: α + βtµ, where α is a deviation accounting for
the uncertainty in the observed values. They found values of α, β and µ for
nine countries of Asia, Europe, North America, and South America and em-
ployed a distance correlation to show that the power-law curves between the
countries are statistically highly correlated [45]; but African countries were
not considered.

Partly inspired by the work of Manchein et al. [45], this present paper anal-
yses the time-series evolution of COVID-19 for 6 African countries: Egypt,
Ethiopia, Kenya, Nigeria, Senegal and South Africa. A modified SEIR model
with integer order derivatives is proposed, incorporating some non-pharmaceutical
interventions, to estimate the reproduction number of the infection in the var-
ious countries, and also to highlight the effectiveness of the interventions in
flattening the time-evolution of new COVID-19 cases. In addition, a fractional
order equivalent is considered using the Atangana-Baleanu derivative [46]. This
derivative is to be preferred over other fractional derivatives, such as the Ca-
puto and Caputo-Fabrizio, because of its non-singular and non-local kernel. It
has already found numerous applications in diverse models arising in science,
engineering and medicine [47–58].

The paper is organized as follows: in Section 2, we carry out an analysis of data
collected for the countries to be studied. In Section 3, the model and its basic
dynamical properties are presented. Section 4 provides a qualitative analysis
of the model, including a determination of the stability properties of the equi-
librium points based on the next generation matrix method [59, 60] employed
in obtaining the reproduction number. Numerical simulations, elasticity and
sensitivity analysis, and fractional numerical simulations, are presented in Sec-
tions 5 – 7, respectively. The work is summarised and conclusions drawn in
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Section 8. Section 8 is an Appendix providing details of the numerical scheme
used for solution of the fractional derivative model.

Fig. 1. Map of Africa showing the locations of the countries studied and the corre-
sponding numbers of confirmed cases (NOC) and numbers of deaths (NOD) due to
COVID-19 [61].
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2 Data Analysis

The data for the countries to be analysed were collected from the daily situ-
ation reports published by the World Health Organization (WHO) [61]. The
choice of countries to be analysed was made so as to ensure geographical
spread, as well as relatively high population densities. Nigeria and Senegal
were chosen in the West Africa zone, Ethiopia and Kenya in East Africa,
Egypt in North Africa and South Africa in Southern Africa (Figure 1). Fig-
ure 2 shows the cumulative number of confirmed infected COVID-19 cases as
a function of days since first case was recorded up till 20th June 2020 for the
selected countries. Note that the values on the horizontal and vertical axes are
different for each country due to the different levels of disease progression and
different inception dates. The black-continuous and the blue-dashed curves in
Figure 2 represent, respectively, the cubic function, α0 + α1t + α2t

2 + α3t
3

and the power law function, β1t
β2 that was fitted to the time-series. Numeri-

cal values of the fitted parameters αi, βi, i = 1, 2, 3 for the cubic and power
law equation for each country are given in Table 1. It is clear that the cubic
equation fits best to the actual data for the cumulative number of confirmed
cases in comparison with the power law equation of Manchein et al. [45]. How-
ever, the results of the cubic and power law fitting were comparable during
the early stages of disease progression for all the countries. It is noteworthy
that the fitted cubic equation for each country is such that there exists no
maximum point for the curve beyond t > 25 days. Such a maximum point
would correspond to a time when a maximum in the cumulative number of in-
fections is being approached so that the curve begins to flatten. The fact that
no maximum value is approached reduces the usefulness of the cubic equation
for investigating future dynamics of the pandemic and possible actions needed
to flatten the curve of disease progression. Nevertheless, it can be adopted as
a tool for forecasting the expected number of new infections.

The cubic equation was used to predict the expected cumulative number of
confirmed infected cases from June 21 to June 30 with Root Mean Square Error
(RMSE) and Mean Percentage Error (MPE) used as performance indicators
for the prediction (Table 2):

RMSE=

[

1

n

n
∑

1

(Est.−Obs.)2
]1/2

,

MPE=
1

n

n
∑

1

(

Est.−Obs.

Obs.
× 100

)2

,

where Obs. and Est. are, respectively, the observed and estimated values of the
cumulative number of confirmed infected cases and n is the number of observa-
tions used. In general, the lower the RMSE and MPE, the better the model. A
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positive MPE value indicates overestimation in calculated values, while a neg-
ative MPE value indicate underestimation. From Table 2, we observe that the
lowest and highest RMSE were obtained for Ethiopia and South Africa respec-
tively and the MPEs obtained were of magnitude between 1.022% − 4.290%
of the actual cumulative number of confirmed infected cases.
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Fig. 2. Cumulative number of confirmed infected cases with COVID-19 as a func-
tion of time from inception (first case) for South Africa, Egypt, Nigeria, Senegal,
Ethiopia and Kenya. The black-continuous and the blue-dashed curves represent re-
spectively the functions α0+α1t+α2t

2+α3t
3 and β1t

β2 that fit the actual time-series
represented by the red dots. The parameters αi, βi, i = 1, 2, 3 for each country are
described in Table I.
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Table 1
Parameters of the cubic and power-law fitting curves.

Country α0 α1 α2 α3 β1 β2

South Africa -4223.492 671.706 -21.445 0.214 0.072 2.875

Egypt -1911.406 258.244 -7.608 0.070 0.001 3.522

Nigeria 186.931 -14.660 -0.324 0.017 0.002 3.260

Senegal 226.162 -28.806 0.739 -0.000196 0.062 2.365

Ethiopia -299.237 51.666 -1.771 0.017 0.092 2.046

Kenya -155.907 28.809 -0.903 0.011 0.133 2.142

Table 2
Performance indicator for the cubic equation.

South Africa Egypt Nigeria

RMSE MPE % RMSE MPE % RMSE MPE %

6488.75 -3.005 2616.93 2.716 335.16 1.022

Senegal Ethiopia Kenya

RMSE MPE % RMSE MPE % RMSE MPE %

279.72 3.047 276.00 2.806 324.42 4.290

3 Model Formulation

Here, we propose a new epidemiological model for the COVID-19 epidemic.
The proposed model is an extended form of the well-known Susceptible Ex-
posed Infected Recovered (SEIR) compartmental model that takes into ac-
count some features such as quarantine, isolation and asymptomatic infections,
commonly employed in epidemiological studies of communicable diseases such
as, Ebola, Zika, COVID-19, etc[62–64]. An asymptomatic transmission refers
to transmission of the virus through a person, who does not develop any symp-
toms despite having been infected. The model contains seven epidemiological
compartments namely: Susceptible S(t), Exposed E(t), Infected I(t), Asymp-
tomatic IA(t), Quarantined Q(t), Hospitalized H(t) and Recovered R(t). The
complete flow chart of the interactions between different classes of the pro-
posed model is shown in Figure 3. The susceptible population S(t) represents
the totality of the entire population that is at risk of being infected with the
virus. This population is assumed to be increasing at a constant rate Ω. The
increase is not a net increase because µ is the natural death rate common
to all the classes of the population. Exposure and transmission of the virus
to the susceptible population involves the action of individuals in the infected
class I(t) and the asymptomatic class IA(t). We assume that the infected class
consists of people that develop symptoms while the asymptomatic class IA(t)
involves people that are without symptoms and therefore unaware of their
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positive COVID-19 status. β denotes the rate of disease transmission with α
representing a measure of the relative (reduced) effectiveness of individuals in
the asymptomatic class as disease spreaders. The spread of the disease to the
susceptible population can be controlled by several precautionary measures
such as use of soap and sanitizers, lockdown, social distancing and use of face
masks and other Personal Protective Equipment (PPE). We assume that h
(0 < h < 1) represents the portion of the population that maintains these
precautions with the disease only transmitted to (1 − h) portion of the sus-
ceptible population. θ is the infection rate for the model with pθ and (1− p)θ
the portions of the exposed class E(t) that go into the infected class I(t) and
asymptomatic class IA(t), respectively. The quarantine class Q(t) involves the
quarantining of exposed individuals usually through contact tracing, at a rate
η1 and people who develop symptoms in quarantine are also hospitalized at a
rate ρ1. As the current procedure in most African countries is to limit test-
ing mostly to people who develop COVID-19 symptoms, we assume that the
infectious and symptomatic class I(t) are tested at a rate η2 (diagnosis or
detection rate of infected symptomatic individuals) and moved into the hos-
pitalized class H(t). Also, quarantined individuals who develop symptoms are
moved to the hospitalized class H(t) at a rate ρ1 while those who do not
develop symptoms after 1/ρ2 days are back into the susceptible population.
Let δ1 and δ2 be respectively, the recovery rate of the isolated/hospitalized
infected population H(t) and untreated asymptomatic population IA(t) into
the recovered population R(t). γ1 and γ2 denote the COVID-19 induced death
from the hospitalized and asymptomatic class, respectively with γ2 usually
very small compared to γ1. µ is the natural death rate common to all the
classes of the population. We assume, based on current scientific evidence,
that the COVID-19 deceased are not infectious, and that individuals develop
antibodies and become immune to the disease once they are recovered.

On the basis of the above assumptions, the nonlinear system of differential
equations describing the COVID-19 model used to analyzed data from African
countries can be written mathematically as:
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dS

dt
=Ω− β(1− h)SI − αβ(1− h)SIA + ρ2Q− µS

= f1(S,E, I, IA, Q,H,R),

dE

dt
= β(1− h)SI + αβ(1− h)SIA − θE − η1E − µE

= f2(S,E, I, IA, Q,H,R),

dI

dt
= pθE − η2I − µI = f3(S,E, I, IA, Q,H,R)

dIA
dt

= (1− p)θE − δ2IA − γ2IA − µIA

= f4(S,E, I, IA, Q,H,R),

dQ

dt
= η1E − ρ1Q− ρ2Q− µQ = f5(S,E, I, IA, Q,H,R),

dH

dt
= η2I − δ1H − γ1H + ρ1Q− µH

= f6(S,E, I, IA, Q,H,R),

dR

dt
= δ1H + δ2IA − µR = f7(S,E, I, IA, Q,H,R), (1)

with the initial conditions S(0) > 0, E(0) ≥ 0, I(0) > 0, IA(0) ≥ 0, Q(0) ≥ 0,
H(0) ≥ 0 and R(0) ≥ 0. At every instant of time, the quantity D(t) =
γ1H(t) + γ2IA(t) represents the number of deaths caused by the disease at
time t while C(t) = η2I(t) + ρ1Q(t) + δ1H(t) represents the total number
of confirmed COVID-19 cases at time t. Furthermore, let the total size of the
population be N(t) = S(t)+E(t)+I(t)+IA(t)+Q(t)+H(t)+R(t). Definitions
of the model parameters (1) are presented in Table 3.

4 Qualitative analysis of the system

4.1 Positivity of the solutions

Theorem 1 If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, IA(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0
and R(0) ≥ 0, then the solutions of system (1); S(t), E(t), I(t), IA(t), Q(t),
H(t) and R(t) are positive for all t > 0.

Proof 1 From the first equation of system (1), we have

dS

dt
= Ω+ ρ2Q(t)− S(t) [β(1− h)I(t) + αβ(1− h)IA(t) + µ]

= Ω + ρ2Q(t)− P1(t)S(t), (2)
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Fig. 3. Flowchart of the COVID-19 Africa model (1)

Table 3
Description and unit of model parameters.

Parameter Description Unit

Ω Constant population growth rate Persons day−1

µ Natural population death rate day−1

β Effective disease transmission rate Persons−1 day−1

α Relative infectiousness of class IA with respect to I dimensionless

h Portion of S(t) taking precautionary measures dimensionless

θ Infection rate (1/Incubation Period) day−1

p Proportion of symptomatic infections dimensionless

η1 Quarantine rate of exposed individuals day−1

η2 Diagnosis or case detection rate day−1

δ1 Recovery rate of isolated/hospitalized individuals day−1

δ2 Recovery rate of the untreated asymptomatic day−1

ρ1 Isolation rate of individuals from class Q to class H day−1

ρ2 Transition rate from class Q to class S day−1

γ1, γ2 COVID-19 death rate day−1
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where P1(t) = β(1− h)I(t) + αβ(1− h)IA(t) + µ. From Eq. (2), we have

dS

dt
e

t
∫

0

P1(τ)dτ

+ P1(t)S(t)e

t
∫

0

P1(τ)dτ

= [Ω + ρ2Q(t)] e

t
∫

0

P1(τ)dτ

,

d

dt





S(t)e

t
∫

0

P1(τ)dτ





 = [Ω + ρ2Q(t)] e

t
∫

0

P1(τ)dτ

,

S(t)e

t
∫

0

P1(τ)dτ

− S(0) =

t
∫

0

[Ω + ρ2Q(t)] e

t
∫

0

P1(τ)dτ

dt,

S(t) = S(0)e
−

t
∫

0

P1(τ)dτ

+ e
−

t
∫

0

P1(τ)dτ
t
∫

0

[Ω + ρ2Q(t)] e

t
∫

0

P1(τ)dτ

dt ≥ 0. (3)

Eq. (3) means that the solution of system (1) for S(t) is positive. Similar
expressions for E(t), I(t), IA(t), Q(t), H(t) and R(t) can be obtained from
system (1) as

E(t) = E(0)e−P2t + e−P2tβ(1− h)

t
∫

0

[S(t)I(t) + αS(t)IA(t)] e
P2tdt ≥ 0, (4)

I(t) = I(0)e−(µ+η2)t + e−(µ+η2)tpθ

t
∫

0

E(t)e(µ+η2)tdt ≥ 0, (5)

IA(t) = IA(0)e
−P3t + e−P3t(1− p)θ

t
∫

0

E(t)eP3tdt ≥ 0, (6)

Q(t) = Q(0)e−(µ+ρ1+ρ2)t + e−(µ+ρ1+ρ2)tη1

t
∫

0

E(t)e(µ+δ2+γ2)tdt ≥ 0, (7)

H(t) = H(0)e−P4t + e−P4t

t
∫

0

[η2I(t) + ρ1Q(t)] eP4tdt ≥ 0, (8)

R(t) = R(0)e−µt + e−µt

t
∫

0

[δ1H(t) + δ2IA(t)] e
µtdt ≥ 0, (9)

where P2 = µ+ θ + η1, P3 = µ+ δ2 + γ2 and P4 = µ+ δ1 + γ1. Therefore, we
can say that S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, IA(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0
and R(0) ≥ 0 for all t > 0. This completes the proof.
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4.2 Boundedness of the System

Theorem 2 All solutions of system (1) that initiate in ℜ7
+ are bounded uni-

formly in the region χ = {(S,E, I, IA, Q,H,R) ∈ ℜ7
+ : 0 ≤ S + E + I + IA +

Q+H +R ≤ Ω/µ}.

Proof 2 Let (S(t), E(t), I(t), IA(t), Q(t), H(t), R(t)) be any solution of sys-
tem (1) with any given non-negative initial condition. Also, let N(0) = S(0)+
E(0) + I(0) + IA(0) +Q(0) +H(0) +R(0) > 0. Then

dN

dt
= Ω− µ(S + E + I + IA + Q+H +R)− γ1H − γ2IA

≤ Ω− µN. (10)

Thus, by the differential inequality theory [65], we obtain

N ≤ N(0)e−µt +

t
∫

0

e−µ(t−x)Ωdx,

N ≤ N(0)e−µt +
Ω

µ

(

1− e−µt
)

.

It thus follows that, for t → ∞,

0 ≤ N(t) ≤
Ω

µ
. (11)

This implies that, χ is positively invariant so that all solutions of (1) with
initial conditions in ℜ7

+ are confined in χ.

Furthermore, the interacting functions fi(S,E, I, IA, Q,H,R), i = 1 − 7 of
the system (1) are continuous and have continuous partial derivatives on ℜ7

+.
Hence, they are Lipschitzian on ℜ7

+. Additionally, Theorem 2 implies that
the solutions of Eq. (1) with initial conditions in ℜ7

+ are uniformly bounded.
Therefore, the initial value problem (IVP) is well posed.

4.3 Basic reproduction number

Here, we employ the next generation matrix technique to determine the basic
reproduction number R0, representing the number of secondary infections
caused by a single infected individual in the entire duration of their infection
[59, 60]. The classes which are directly involved in the spread of disease are E,
I, IA and Q. Therefore, from the system equation (1), we obtain the reduced
system:
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dE

dt
= β(1− h)SI + αβ(1− h)SIA − θE − η1E − µE,

dI

dt
= pθE − η2I − µI,

dIA
dt

= (1− p)θE − δ2IA − γ2IA − µIA,

dQ

dt
= η1E − ρ1Q− ρ2Q− µQ. (12)

In compact matrix form, system (1) can be written as:

dX

dt
= F (X)− V (X) , (13)

where X = (E, I, IA, Q)T ,

F =

















β(1− h)SI + αβ(1− h)SIA

0

0

0

















and

V =

















θE + η1E + µE

−pθE + η2I + µI

−(1− p)θE + δ2IA + γ2IA + µIA

−η1E + ρ1Q + ρ2Q+ µQ

















.

In epidemiology, the matrix F is referred to as the matrix of new infections and
V is the transfer matrix of individuals between compartments. The transition
matrices V and F are obtained from the partial derivatives of V and F with
respect to E, I, IA and Q, evaluated at the disease-free equilibrium X0 =
(Ω/µ, 0, 0, 0)T .

F =

















0 Ω
µ
β(1− h) Ω

µ
αβ(1− h) 0

0 0 0 0

0 0 0 0

0 0 0 0

















,

V =

















µ+ θ + η1 0 0 0

−pθ µ+ η2 0 0

−(1 − p)θ 0 µ+ δ2 + γ2 0

−η1 0 0 µ+ ρ1 + ρ2

















.
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We define the next generation matrix by FV −1, where the reproduction num-
ber R0 is given by the spectral radius of FV −1 [60].

R0 = ρ(FV −1) =
(1− h)βθΩ

µ(µ+ θ + η1)

[

p

µ+ η2
+

(1− p)α

µ+ δ2 + γ2

]

. (14)

The reproduction number R0 obtained for the model is the sum of two other
reproduction numbers RA

0 and RB
0 , where

RA
0 =

(1− h)βθΩp

µ(µ+ θ + η1)(µ+ η2)
,

RB
0 =

(1− h)βθΩ(1− p)α

µ(µ+ θ + η1)(µ+ δ2 + γ2)
. (15)

RA
0 represents the number of secondary infections caused by an infected in-

dividual during their time spent in the infected population. It is a measure
of the number of the (1 − h)Ω/µ susceptible population that are infected
by θp people in the infected group with a bilinear transmission rate β, with
1/(µ+ η2) being the time an infected individual remains in the infected group
and 1/(µ+ θ+η1) being the time an individual remains in the exposed group.
RB

0 represents the number of secondary infections because of an asymptomatic
individual during their time spent in the asymptotic group. It represents the
number of the (1−h)Ω/µ susceptible population that are infected by (1−p)θ
people in the asymptomatic group with an enhanced transmission rate αβ
with 1/(µ+δ2+γ2) being the time an individual remains in the asymptomatic
group.

4.4 Equilibria of the system

The equilibrium points of the model system (1) are obtained by setting the
interacting functions fi(S,E, I, IA, Q,R), i = 1 − 7 = 0. The disease-free
equilibrium is given by X0(Ω/µ, 0, 0, 0, 0, 0, 0), while the endemic equilibrium
is given by X1(S

∗, E∗, I∗, I∗A, Q
∗, H∗, R∗), where

S∗=
Ω

µR0
, E∗ =

Ω(R0 − 1)

R0 [(µ+ θ + η1)−∆1]
,

I∗=
pθ

µ+ η2
E∗, I∗A =

(1− p)θ

µ+ δ2 + γ2
E∗,

Q∗=
η1

µ+ ρ1 + ρ2
E∗, H∗ =

1

µ+ δ1 + γ1
∆2E

∗,

R∗=
1

µ

[

δ1
µ+ δ1 + γ1

∆2 +
δ2(1− p)θ

µ+ δ2 + γ2

]

E∗;
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with ∆1 = ρ2η1/(µ + ρ1 + ρ2) and ∆2 =
(

η2pθ
µ+η2

+ ρ1η1
µ+ρ1+ρ2

)

. We find that the
disease-free equilibrium X0 always exists, whereas, the endemic equilibrium
X1 is only feasible if R0 > 1 and (µ+ θ + η1) > ∆1.

4.5 Local Stability Analysis

Here, we discuss the local asymptotic stability criteria of the equilibria of
system (1) by evaluating the Jacobian or community matrix and the resulting
characteristic equation. We then examine the signs of the eigenvalues based
on the Routh-Hurwitz conditions and/or Descartes rule of sign. It is easy to
show that the Jacobian of system (1) is given as:

J =





























−∆2 − µ 0 ∆3 ∆4 ρ2 0 0

∆2 ∆5 −∆3 −∆4 0 0 0

0 pθ −µ− η2 0 0 0 0

0 (1− p)θ 0 ∆6 0 0 0

0 η1 0 0 ∆7 0 0

0 0 η2 0 ρ1 ∆8 0

0 0 0 δ2 0 δ1 −µ





























, (16)

where ∆2 = (1− h)βI + (1− h)αβIA, ∆3 = −(1− h)βS, ∆4 = −(1− h)αβS,
∆5 = −µ−θ−η1, ∆6 = −µ−δ2−γ2, ∆7 = −µ−ρ1−ρ2 and ∆8 = −µ−δ1−γ1.

Theorem 3 The disease-free equilibrium X0 (Ω/µ, 0, 0, 0, 0, 0, 0) is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1.

Proof 3 The Jacobian matrix of system (1) evaluated at the disease-free equi-
librium, X0 is given by

JX0
=





























ω1 0 ω2 ω3 ω4 0 0

0 ω5 −ω2 −ω3 0 0 0

0 ω6 ω7 0 0 0 0

0 ω8 0 ω9 0 0 0

0 ω10 0 0 ω11 0 0

0 0 ω12 0 ω13 ω14 0

0 0 0 ω15 0 ω16 ω17





























, (17)

where, ω1 = −µ, ω2 = −(1 − h)βΩ/µ, ω3 = −(1 − h)αβΩ/µ, ω4 = ρ2,
ω5 = −µ− θ − η1, ω6 = pθ, ω7 = −µ− η2, ω8 = (1− p)θ, ω9 = −µ− δ2 − γ2,
ω10 = η1, ω11 = −µ − ρ1 − ρ2, ω12 = η2, ω13 = ρ1, ω14 = −µ − δ1 − γ1,
ω15 = δ2, ω16 = δ1 and ω17 = −µ. The characteristic equation of model
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system (1) evaluated at the disease free equilibrium point, X0, is given by

(λ− ω1)(λ− ω11)(λ− ω14)(λ− ω17)(λ
3 + Aλ2 +Bλ + C) = 0, (18)

where, A = −ω5 − ω7 − ω9, B = ω2ω6 + ω5ω7 + ω3ω8 + ω5ω9 + ω7ω9 and
C = −ω3ω7ω8 − ω2ω6ω9 − ω5ω7ω9. It is clear from equation (18) that the
four eigenvalues, ω1, ω11, ω14 and ω17 have negative values and the remaining
eigenvalues can be easily obtained by finding the roots of the cubic polynomial
in Eq. (18). Applying the Routh-Hurwitz criteria on the cubic polynomial in
(18) requires that A > 0, C > 0 and AB > C for the other three eigenvalues
to be negative or have negative real parts.

A=−ω5 − ω7 − ω9 = 3µ+ θ + η1 + η2 + δ2 + γ2 > 0,

C =−ω3ω7ω8 − ω2ω6ω9 − ω5ω7ω9

=(µ+ θ + η1)(µ+ η2)(µ+ δ2 + γ2)(1−R0),

AB=(−ω5 − ω7 − ω9)(ω2ω6 + ω5ω7 + ω3ω8 + ω5ω9 + ω7ω9)

= (µ+ η2)
2(µ+ δ2 + γ2) + (µ+ η2)(µ+ δ2 + γ2)

2

+(µ+ θ + η1)(µ+ η2)(µ+ δ2 + γ2)

+(µ+ θ + η1)
2(µ+ η2)(1−RA

0 )

+(µ+ η2)
2(µ+ θ + η1)(1−RA

0 )

+(µ+ θ + η1)(µ+ η2)(µ+ δ2 + γ2)(1−RA
0 )

+(µ+ θ + η1)
2(µ+ δ2 + γ2)(1−RB

0 )

+(µ+ θ + η1)(µ+ η2)(µ+ δ2 + γ2)(1−RB
0 )

+(µ+ θ + η1)(µ+ δ2 + γ2)
2(1−RB

0 ) > C.

Hence, the Routh-Hurwitz criterion is satisfied if, R0 < 1 and we may con-
clude that the COVID-19 model (1) is locally asymptotically stable at the free
equilibrium point, X0.

Theorem 4 The disease-endemic equilibrium X1(S
∗, E∗, I∗, I∗A, Q

∗, H∗, R∗) is
locally asymptotically stable, if R0 > 1 and δ2 + γ2 − η2 > 0 and unstable oth-
erwise.

Proof 4 The Jacobian matrix of system (1) evaluated at the endemic equilib-
rium, X1 is given by

16



JX1
=





























ω1 0 ω2 ω3 ω4 0 0

ω5 ω6 −ω2 −ω3 0 0 0

0 ω7 ω8 0 0 0 0

0 ω9 0 ω10 0 0 0

0 ω11 0 0 ω12 0 0

0 0 ω13 0 ω14 ω15 0

0 0 0 ω16 0 ω17 ω18





























, (19)

where,

ω1=−µ(R0 − 1)
(

ω6ω12

ω6ω12 − ω4ω11

)

− µ, ω2 = −(1 − h)βΩ/(µR0),

ω3=−(1− h)αβΩ/(µR0), ω4 = ρ2, ω5 = µ(R0 − 1)
(

ω6ω12

ω6ω12 − ω4ω11

)

,

ω6=−µ− θ − η1, ω7 = pθ, ω8 = −µ− η2, ω9 = (1− p)θ,

ω10=−µ− δ2 − γ2, ω11 = η1, ω12 = −µ− ρ1 − ρ2, ω13 = η2,

ω14= ρ1, ω15 = −µ− δ1 − γ1, ω16 = δ2, ω17 = δ1, and ω18 = −µ.

The characteristic equation of system (1) evaluated at the disease-endemic
equilibrium, X1, is given by

(λ− ω15)(λ− ω18)(a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0) = 0, (20)

where

a0=ω5ω8ω10(−ω4ω11 + ω6ω12),

a1=−ω5 (ω8ω10ω12 + ω6ω8ω10 + (ω8 + ω10)(−ω4ω11 + ω6ω12))

+
ω12

ω8

(ω8 + ω13)
(

ω2ω7(ω8 − ω10) + ω2
8(ω6 + ω10)

)

,

a2=−ω8(ω6 + ω10) (ω8 + ω13)− ω12 (ω8 + ω13) (ω6 + ω8 + ω10)

−ω8ω12(ω6 + ω10) + ω5 (ω8ω10 + (ω6 + ω12)(ω8 + ω10))

+ω5(−ω4ω11 + ω6ω12)−
ω2ω7

ω8
(ω8 − ω10) (ω8 + ω12 + ω13) ,

a3=ω2
8 + ω10ω12 − ω5(ω6 + ω8 + ω10 + ω12) + ω6(2ω8 + ω12 + ω13)

+ (ω8 + ω13) (ω10 + ω12) + ω8(ω10 + ω12 + ω13) +
ω2ω7

ω8
(ω8 − ω10),

a4=−ω1 − ω6 − ω8 − ω10 − ω12 > 0,

a5=1 > 0.

It is clear from equation (20) that the two eigenvalues, ω15 and ω18 are nega-
tive, and that the remaining five eigenvalues are roots of the quintic polynomial
in (20). Using R0 > 1, ω8 − ω10 = δ2 + γ2 − η2 > 0 and −ω4ω11 + ω6ω12 > 0
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guaranteed by the feasibility condition (µ+ θ + η1) > ∆1 of the endemic equi-
librium, we observe that ai, i = 1− 5 > 0. By employing the Descartes’ rule of
signs, we find that the number of positive eigenvalues of the quintic polynomial
given in Eq. (20) is equal to the number of sign-changes from a5 to a1, which
equals zero. Hence, the system (1) is locally asymptotically stable if R0 > 1
and δ2 + γ2 − η2 > 0.

4.6 Global Stability Analysis

Theorem 5 The disease-free equilibrium X0 (Ω/µ, 0, 0, 0, 0, 0, 0) is globally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof 5 Consider the Lyapunov function L(E, I) = κ1E+κ2I, where κ1 and
κ2 are non-negative parameters. It is easy to see that L(E, I) ∈ C1. Also,
LX0

(E, I) = 0 and it is positive definite ∀ (S,E, I, IA, Q,H,R) ∈ ℜ7
+.

dL

dt
= κ1Ė + κ2İ . (21)

Substituting Ė and İ from system (1) into Eq. (21) yields

dL

dt
= κ1β(1− h)SI + κ2αβ(1− h)SIA − κ2(µ+ η2)I

−(κ1(µ+ θ + η1)− κ2pθ)E. (22)

Choosing κ1 = pθ, κ2 = (µ + θ + η1) and inserting S = Ω/µ and IA = 0, we
have

dL

dt
=

[

β(1− h)
Ω

µ
pθ − (µ+ η2)(µ+ θ + η1)

]

I

= (µ+ η2)(µ+ θ + η1)(R
A
0 − 1)I. (23)

Since RA
0 < 1 follows from R0 < 1, therefore, it is clear that dL/dt < 0, when

R0 < 1 and also dL/dt = 0, if I = 0. Hence, by LaSalle’s Invariance principle
[66, 67], the disease-free equilibrium X0 is globally asymptotically stable.

Theorem 6 If R0 > 1, then there exist a disease-endemic equilibrium X1 and
it is globally asymptotically stable in the interior of χ.

Proof 6 Given that R0 > 1, then the existence and local asymptotic stabil-
ity of the disease-endemic equilibrium is guaranteed. Consider the Lyapunov
function
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L(E, I, IA, Q,H) = E − E∗ − E∗ ln
(

E

E∗

)

+ I − I∗ − I∗ ln
(

I

I∗

)

+IA − I∗A − I∗A ln

(

IA
I∗A

)

+Q−Q∗ −Q∗ ln

(

Q

Q∗

)

+H −H∗ −H∗ ln
(

H

H∗

)

. (24)

The time derivative of L is given by

L̇ =
(

1−
E∗

E

)

Ė +
(

1−
I∗

I

)

İ +
(

1−
I∗A
IA

)

˙IA

+

(

1−
Q∗

Q

)

Q̇ +
(

1−
H∗

H

)

Ḣ

=
(

1−
E∗

E

)

[β(1− h)SI + αβ(1− h)SIA − (µ+ θ + η1)E]

+
(

1−
I∗

I

)

[pθE − (µ+ η2)I]

+
(

1−
I∗A
IA

)

[(1− p)θE − (µ+ γ2 + δ2)IA]

+

(

1−
Q∗

Q

)

[η1E − (µ+ ρ1 + ρ2)Q]

+
(

1−
H∗

H

)

[η2I + ρ1Q− (µ+ γ1 + δ1)H ] . (25)

However, in the endemic state, we have

β(1− h)S∗I∗ + αβ(1− h)S∗I∗A = (µ+ θ + η1)E
∗, pθE∗ = (µ+ η2)I

∗

(1− p)θE∗ = (µ+ γ2 + δ2)I
∗

A, η1E
∗ = (µ+ ρ1 + ρ2)Q

∗,

η2I
∗ + ρ1Q

∗ = (µ+ γ1 + δ1)H
∗. (26)

Then using Eq. (26) in Eq. (25), we have
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L̇ = β(1− h)SI
(

1−
E∗

E

)

+ β(1− h)S∗I∗
(

1−
E

E∗

)

+αβ(1− h)SIA

(

1−
E∗

E

)

+ αβ(1− h)S∗I∗A

(

1−
E

E∗

)

+pθE
(

1−
I∗

I

)

+ pθE∗

(

1−
I

I∗

)

+(1− p)θE
(

1−
I∗A
IA

)

+ (1− p)θE∗

(

1−
IA
I∗A

)

+η1E

(

1−
Q∗

Q

)

+ η1E
∗

(

1−
Q

Q∗

)

+η2I
(

1−
H∗

H

)

+ η2I
∗

(

1−
H

H∗

)

+ρ1Q
(

1−
H∗

H

)

+ ρ1Q
∗

(

1−
H

H∗

)

. (27)

Because E ≤ E∗, I ≤ I∗, IA ≤ I∗A, Q ≤ Q∗ and H ≤ H∗, Eq. (27) then
becomes

L̇≤ β(1− h)S∗I∗
(

2−
E∗

E
−

E

E∗

)

+ αβ(1− h)S∗I∗A

(

2−
E∗

E
−

E

E∗

)

+ pθE∗

(

2−
I∗

I
−

I

I∗

)

+ (1− p)θE∗

(

2−
I∗A
IA

−
IA
I∗A

)

+ η1E
∗

(

2−
Q∗

Q
−

Q

Q∗

)

+ η2I
∗

(

2−
H∗

H
−

H

H∗

)

+ ρ1Q
∗

(

2−
H∗

H
−

H

H∗

)

. (28)

It follows from arithmetic-geometric inequality that

(

2−
E∗

E
−

E

E∗

)

≤ 0,
(

2−
I∗

I
−

I

I∗

)

≤ 0,

(

2−
I∗A
IA

−
IA
I∗A

)

≤ 0,

(

2−
Q∗

Q
−

Q

Q∗

)

≤ 0,
(

2−
H∗

H
−

H

H∗

)

≤ 0. (29)

Therefore, L̇ ≤ 0 and also L̇ = 0, only if E = E∗, I = I∗, IA = I∗A, Q = Q∗

and H = H∗. Hence, by LaSalle’s Invariance principle [66, 67], the endemic
equilibrium X1 is globally asymptotically stable.
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5 Numerical Simulations

We now carry out numerical simulations to compare our proposed COVID-19
Africa model (1) to the data for cumulative number of confirmed infected cases
obtained from the World Health Organization (WHO) [61] for South Africa,
Egypt, Nigeria, Senegal, Ethiopia and Kenya. The starting point of our sim-
ulation will be a day before the index case was recorded in each country. The
demographical parameters Ω and µ are estimated from the total population
size (N0) and life expectancy (L.E.) data obtained from the 2018 United Na-
tions data bank [68]. For example, Nigeria has a life expectancy of 54.332 years
with population size estimate of 200, 963, 599. Hence, the average death rate,
(µ), used for the simulation will be 1/(54.332× 365) = 5.04× 10−5/day with
constant population growth rate, Ω = µN0 = 10, 128.57. We assume that the
proportion of new infections that are symptomatic, (p), is 60% and the portion
of the susceptible population taking precautionary measures, (h), is 30% for
all the countries except 40% used for South Africa and Egypt [69, 70]. The
relative infectiousness of the asymptomatic class, (α), is set to 0.5 [40, 71].
It is assumed that individuals in quarantine, either develop symptoms after
an average of 7 days and are moved to isolation/hospitalization at a rate
ρ1 = (1/7) = 0.143/day or are released from quarantine, after an average of
14 days without developing symptoms, into the susceptible population at a
rate ρ2 = (1/14) = 0.0714/day. The average remission time is set to 14 days
and 7 days for individuals in the hospitalized and asymptomatic classes re-
spectively. Hence, the recovery rates δ1 = 0.0714/day and δ2 = 0.143/day were
used in the model simulations. The COVID-19-induced death rates (γ1, γ2)
are estimated from the percentage of case fatalities recorded. The remaining
parameters, the effective disease transmission rate (β), infection rate (θ), quar-
antine rate of exposed individuals (η1) and diagnosis/case detection rate (η2)
are obtained from fitting the model to the data using the NonlinearModelFit
function in Mathematica. Table 4 gives the values of the parameters used in
the simulations. The following values of the initial conditions were also used
for all the simulated countries: S(0) = N0, E(0) = 0, I(0) = 1, IA(0) = 0,
Q(0) = 0, H(0) = 0 and R(0) = 0. Moreover, the simulations and parameter
estimations were performed such that new initial conditions and new values
of fitting parameters were obtained whenever the percentage daily increase in
cases was more than 30%. This approach divided the time evolution of the
pandemic for the cumulative number of confirmed infected cases into different
regimes or intervals, which we refer to as phases. (Note that this definition of
phase is quite distinct from an interval of constant conditions determined by
e.g. a particular “Tier” or level of lockdown restrictions as used in the UK.)
South Africa, Egypt, Nigeria and Kenya all have two phases of the infection,
and Senegal has three phases, while Ethiopia has only one phase of the in-
fection. Table 5 gives the estimated values of the parameters β, θ, η1 and η2,
as well as the calculated reproduction number R0 for the different phases of
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the infection for all the countries. Figure 4 gives the results of the numerical
simulations for the different phases of the infection for all the countries. From
Figure 4, we observe that our model (1) was well-fitted to the actual data for
cumulative number of confirmed infected cases for all the countries, with val-
ues of R0 between 1.374 and 9.179 and R0 highest during the first phase of the
infection for all the countries. The observed decrease in the R0 values beyond
the first phase may be due to the impact of the strict lockdown measure and
other preventive policies enforced by the authorities.
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Table 4
Parameters used for numerical simulation.

Parameters South Africa Egypt Nigeria Senegal Ethiopia Kenya Status

L.E. 63.857 71.825 54.332 67.665 66.240 66.342 [68]

N0 58, 558, 270 100, 388, 073 200, 963, 599 16, 296, 364 112, 078, 730 52, 573, 973 [68]

µ 4.290 × 10−5 3.814 × 10−5 5.040 × 10−5 4.049 × 10−5 4.136 × 10−5 4.130 × 10−5 (365L.E.)−1

Ω 2512.389 3829.249 10128.565 659.833 4635.643 2171.148 µN0

α 0.5 0.5 0.5 0.5 0.5 0.5 Assumed

h 0.4 0.4 0.3 0.3 0.3 0.3 Assumed

p 0.6 0.6 0.6 0.6 0.6 0.6 Assumed

δ1 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14

δ2 0.143 0.143 0.143 0.143 0.143 0.143 1/7

ρ1 0.143 0.143 0.143 0.143 0.143 0.143 1/7

ρ2 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14

γ1 0.02 0.039 0.021 0.014 0.016 0.027 Assumed

γ2 0.005 0.0098 0.005 0.004 0.004 0.007 Assumed
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Table 5
Fitted parameters for different phases of the infection.

Countries Phase β θ η1 η2 R0

South Africa
1 7.663 × 10−8 0.226 0.487 0.072 8.290

2 5.268 × 10−8 0.0095 0.035 0.073 3.794

Egypt
1 1.426 × 10−8 0.243 0.073 0.079 5.906

2 4.385 × 10−9 0.246 0.059 0.083 1.825

Nigeria
1 5.201 × 10−9 0.264 0.058 0.153 3.162

2 2.509 × 10−9 0.438 0.124 0.165 1.374

Senegal

1 1.284 × 10−7 0.252 0.200 0.078 7.409

2 3.478 × 10−8 0.362 0.329 0.107 1.453

3 4.429 × 10−8 0.234 0.478 0.071 1.623

Ethiopia
1 1.016 × 10−8 0.258 0.538 0.074 2.452

2 2.121 × 10−8 0.130 0.350 0.287 1.559

Kenya
1 4.249 × 10−8 0.240 0.106 0.084 9.179

2 9.998 × 10−9 0.064 0.028 0.074 2.417

6 Elasticity and Sensitivity Analysis of R0

Here, we analyse the elasticity and sensitivity of the reproduction number,
R0. Sensitivity analysis is a well known technique for identifying the critical
parameters or inputs of a model and quantifying their importance relative
to one another [58]. For the purpose of elasticity and sensitivity analysis, we
used data from Nigeria as a case study. The baseline values and ranges of the
system parameters used here are given in Table 6.

Table 6
Baseline values and ranges of the system parameters.

Parameter Baseline value Range

Ω 10128.565 day−1 [10000, 10200] day−1

µ 5.040 × 10−5 day−1
[

4.8× 10−5, 5.2× 10−5
]

day−1

β 2.509 × 10−9 day−1
[

1× 10−9, 4× 10−9
]

day−1

α 0.5 [0.3, 0.7]

h 0.3 [0.2, 0.5]

θ 0.438 day−1 [0.2, 0.6] day−1

p 0.6 [0.4, 0.75]

η1 0.124 day−1 [0.05, 0.2] day−1

η2 0.165 day−1 [0.08, 0.25] day−1

δ2 0.143 day−1 [0.05, 0.2] day−1

γ2 0.005 day−1 [0.0035, 0.008] day−1

In order to perform the elasticity analysis ofR0, we first calculated the normal-
ized forward sensitivity index. In general, the elasticity (normalized forward
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Fig. 4. Cumulative number of confirmed infected cases of COVID-19 as a function of
time for South Africa, Egypt, Nigeria, Senegal, Ethiopia and Kenya. The black dots
corresponds to the real data while the blue continuous line represents the simulation
from model (1).

sensitivity index) of a variable, u, that depends differentiably on a parameter,
ϕ, is given as [72]:

̟u
ϕ =

∂u

∂ϕ
×

ϕ

u
. (30)

A negative (or positive) sensitivity index indicates a decrease (or an increase)
in the value of the parameter ϕ resulting in a decrease (or an increase) in the
value of u. For, R0, we obtain the following:

̟R0

Ω = 1, ̟R0

µ = −1−
µ

µ+ θ + η1
−

µ
(

(1−p)α
(µ+δ2+γ2)2

+ p
(µ+η2)2

)

(1−p)α
µ+δ2+γ2

+ p
µ+η2

, ̟R0

β = 1,

̟R0

α =
α(1− p)(µ+ η2)

α(1− p)(µ+ η2) + p(µ+ δ2 + γ2)
, ̟R0

h =
h

h− 1
, ̟R0

θ =
µ+ η1

µ+ θ + η1
.
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̟R0

p =
− pα

µ+δ2+γ2
+ p

µ+η2
(1−p)α
µ+δ2+γ2

+ p
µ+η2

, ̟R0

η1
=

−η1
µ+ θ + η1

, ̟R0

η2
=

−pη2

(µ+ η2)2
(

(1−p)α
µ+δ2+γ2

+ p
µ+η2

) ,

̟R0

δ2
=

−(1− p)αδ2

(µ+ δ2 + γ2)2
(

(1−p)α
µ+δ2+γ2

+ p
µ+η2

) , ̟R0

γ2
=

−(1− p)αγ2

(µ+ δ2 + γ2)2
(

(1−p)α
µ+δ2+γ2

+ p
µ+η2

) .

The elasticity or sensitivity index shows the influence of change in one pa-
rameter while keeping all other parameters constant. Note that the sensitivity
indices of Ω and β do not depend on any parameter value. Interestingly, the
reproduction number R0 does not depend on the recovery rate of the hospital-
ized individuals (δ1), or on the isolation rate of quarantined individuals (ρ1),
or on the transition rate from quarantine class to susceptible class after quar-
antine (ρ2), or on the COVID-19-induced death rate of the hospitalized cases
(γ1). We proceed to evaluate the above sensitivity indices using the baseline
parameter values in Table 6. A plot showing the sensitivity indices for R0 with
respect to its constituent parameters is presented in Figure 5, from which we
can state that R0 increases whenever Ω, β α, θ, or p increase. On the other
hand, whenever µ, h, η1, η2, δ2 or γ2 increase, then R0 decreases. For example,
̟R0

α = 0.271 implies that increasing α by 10% will increase R0 by 2.71%.
Hence, a similar interpretation can be inferred for the remaining parameters
in Table 6. Following the elasticity analysis, the most positive sensitivity index
was obtained for β with a 10% increase in β leading to the same proportional
increase in R0. Note that the same value of positive sensitivity index as β
was obtained for Ω. However, Ω is a demographic variable that cannot be
changed in the field. The controllable parameter with the most negative sen-
sitivity index was η2. With a 10% increase in η2, a decrease of 7.29% in R0

was found. We observe that the most significant parameters are the effective
disease transmission rate (β), the disease diagnosis or case detection rate (η2),
and the proportion of susceptible individuals taking precautions (h). There-
fore, we can conclude that efforts at controlling the disease should concentrate
on decreasing the transmission rate through contact reduction via lockdown
and social distancing measures. In addition, h can be increased by encour-
aging social campaigns aimed at increasing the number of individuals taking
precautionary measures such as regular hand washing with soap and use of
sanitizers, use of face mask and other PPEs.

For the sensitivity analysis of the reproduction number, R0, the Latin Hyper-
cube Sampling (LHS) technique [73] was implemented for the parameters of
the model. The correlation between R0 and the input parameter values ob-
tained from 1000 simulations was quantified using Partial Rank Correlation
Coefficients (PRCC). The sensitivity analysis results of R0, shown in Figure 6
demonstrate that the parameters with the greatest influence on R0 are β, η2,
h, δ2, and θ in order of decreasing sensitivity. Clearly, the sensitivity analysis
results are similar to those of the elasticity analysis, as the parameters β, η2,
and h, identified via sensitivity indices as being the most significant parame-
ters, are also the most sensitive parameters. It is noteworthy that, though the
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Fig. 5. Plot showing sensitivity indices of R0 as a function of its constituent param-
eters.

demographic parameters, Ω and µ had sensitivity indices of 1 and −1, respec-
tively, the results of the sensitivity analysis shows that they have insignificant
influence on R0 due to their very low PRCC values.

Figure 7 and 8 provide contour plots of the reproduction number R0 as a
function of the parameter pairs (β, η2) and (θ, h), respectively. From Figure 7,
we observe that for an effective disease transmission rate, β < 6.839× 10−10,
R0 is always less than 1, indicating that, eventually the disease will die out
in the population regardless of the value of the diagnosic or case detection
rate (η2). For increase in the value of β, R0 can be kept under 1 by also
increasing η2. If β > 1.368 × 10−9 and η2 < 0.187/day, then R0 > 2. Also, if
β > 2.052 × 10−9 and η2 < 0.109/day, then R0 > 3. Figure 8 shows that if
the disease infection rate, θ is less than 0.082/day, then R0 is always less than
1 regardless of the proportion of susceptible individuals taking precautions
(h). Another remarkable observation from Figure 8 is that, if at least 55.29%
of the susceptible population adheres to the prescribed precautions, such as
regular hand washing with the use of soap, use of sanitizers and face masks,
then the reproduction number R0 can be kept below unity regardless of the
value of the disease infection rate. This result is in agreement with previous
studies carried out for Lagos, Nigeria, where at least 55% of the population
effectively making use of face masks while in public was recommended for the
reproduction number of the disease to be brought below 1 [40]. Moreover, if
less than 10.58% of the susceptible population take the prescribed precautions
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Fig. 6. Plot of partial rank correlation coefficient showing the influence of input
parameters on R0.

with a disease infection rate greater than 0.483, then R0 > 2.

Figure 9 shows the influence of the variation in the model parameters on the
progression of the number of active cases. The plots in Figure 9 were obtained
by simulating the model (1) numerically using different values of the system
parameters, β, η2, θ and h, while other parameters were kept constant. We
observe that variations in the parameters have significant influence on the
maximum of the infection and the number of days taken to reach this maxi-
mum. Notably, for an increase in the values of β and θ, there is a corresponding
increase in the maximum infection in addition to this value being attained on a
later day. For infection rates of 0.4, 0.5, 0.6 and 0.7, maxima of about 850, 000,
750, 000, 610, 000 and 460, 000 may be reached after about 280, 310, 350 and
420 days, respectively. For diagnostic or case detection rates of 0.10, 0.13, 0.16
and 0.18, maxima of about 1.5 million, 1 million, 590, 000 and 370, 000 may be
reached after about 220, 280, 370 and 460 days, respectively. If 15% of the sus-
ceptible population takes precautions, then the projection in Figure 9 shows
that the number of active cases may attain about 1.2 million by around the
240th day of the infection. Alternatively, with 35% of the population taking
precautionary measures, then the number of active cases may reach around
320, 000 by around the 510th day of the infection.

28



5.×10-10 1.5×10-9 2.5×10-9 3.5×10-9
0.05

0.10

0.15

0.20

0.25

β

η
2

ℛ0

1

2

3

4

5

Fig. 7. Contour plot of R0 as a function of β and η2.

7 Fractional model with Atangana-Balenau derivative

Fractional models with the Atangana-Balenau fractional derivative provide
more efficient results than the ordinary derivative models [46, 47, 51, 57, 74–
78]. We begin here by defining the Atangana-Balenau fractional derivative and
its integral.

Definition 7.1 Let g ∈ H1(a1, a2), a2 > a1, σ ∈ [0, 1],. The Atangana-
Balenau fractional derivative is then defined [46] as:

ABC
a1 Dσ

t g(t) =
B(σ)

1− σ

∫ t

a1
g′(ζ)Eσ

[

− σ
(t− ζ)σ

1− σ

]

dζ, (31)

and the associated fractional integral of the Atangana-Balenau derivative is
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defined as [46]:

ABC
a1

Iσt g(t) =
1− σ

B(σ)
g(t) +

σ

B(σ)Γ(σ)

∫ t

a1
g(ζ)(t− ζ)σ−1dζ, (32)

where B(σ) is the normalization function satisfying B(0) = B(1) = 1, and
Eσ(.) is the Mittag-Leffer function with one parameter.

Definition 7.2 The Mittag-Leffler function with one parameter is defined [46]
as

Eσ(z) =
∞
∑

k=0

zk

Γ(σk + 1)
, σ > 0, z ∈ C. (33)

We generalize the model (1) by applying the Atangana-Baleanu derivative and
thus obtain the following fractional COVID-19 model for Africa:
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Fig. 9. Figure showing the effect of the model parameters (β, η2, θ, h) on the number
of active cases.
ABC
0 Dσ

t S =Ω− β(1− h)SI − αβ(1− h)SIA + ρ2Q− µS = f1(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t E =β(1− h)SI + αβ(1− h)SIA − θE − η1E − µE = f2(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t I = pθE − η2I − µI = f3(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t IA =(1− p)θE − δ2IA − γ2IA − µIA = f4(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t Q= η1E − ρ1Q− ρ2Q− µQ = f5(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t H = η2I − δ1H − γ1H + ρ1Q− µH = f6(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t R= δ1H + δ2IA − µR = f7(S,E, I, IA, Q,H,R), (34)

where Dσ
t is the fractional derivative and σ represents the fractional order

parameter.

The numerical results for the fractional model (34) were obtained by following
the procedure described in the Appendix Section 8 in which the modified
Adams-Bashforth scheme developed by Toufik and Atangana [78] was adopted.
Readers are referred to some very recent applications of the modified Adams-
Bashforth scheme [47–49, 79]. Figure 10 shows the dependence of the number
of active cases, infectious and symptomatic class, asymptomatic class and
the hospitalized class from the fractional model (36) on the magnitude of the
order of the fractional derivative, σ. Figure 10 was obtained by using the initial
conditions S(0) = N0, E(0) = 0, I(0) = 1, IA(0) = 0, Q(0) = 0, H(0) = 0 and
R(0) = 0 and performing numerical simulation of the fractional model (36)
using the modified Adams-Bashforth scheme (39) - (45) for σ = 1.0, 0.95 and
0.9. The result shows that the magnitude of σ has a marked impact on the day
the maximum is reached, with a right shift in the time at which this happens
as σ decreases from 1.0. However, the order of the fractional derivative (σ)
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Fig. 10. The dynamics of the active cases, infectious and symptomatic class I(t),
asymptomatic class IA(t) and hospitalized class H(t) of the fractional model (36)
for different values of the order of the fractional derivative σ.

has only an insignificant effect on the projected peak numbers of active cases.
Specifically, for σ = 1.0, 0.95 and 0.9, the peak numbers of active cases were
approximately 590, 000, 570, 000, 550, 000 by about the 370th, 440th and 540th

day after the first case of the infection was recorded, respectively. Hence, the
order of the fractional derivative (σ) can be used as an effective delay variable
for the peak of the infection.

The results of the numerical simulations showing the effect of the order of the
fractional derivative σ on the cumulative number of confirmed infected cases
by COVID-19 for the different phases of the infection for all the countries are
presented in Figure 11.

The effective reproduction numberRe(t), defined as the actual average number
of secondary cases per primary case at time t (for t > 0) is a useful time-
varying threshold in epidemiology for measuring the trajectory and rate of
spread of the disease at any point in time during the course of the epidemic.
The effective reproduction number for Eq. (1) is given by

Re(t) = R0

(

S(t)

N(t)

)

. (35)

In general, the number of disease cases rises when Re(t) > 1, attains a peak
when Re(t) = 1, and declines when Re(t) < 1 [80? ? ]. Figures 12 and 13
illustrate the impact of different orders of the fractional derivative σ on the
effective reproduction number Re(t). It is evident from Figures 12 and 13 that
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Fig. 11. Effect of the order of the fractional derivative σ on the cumulative number
of confirmed infected cases with COVID-19 as a function of time for South Africa,
Egypt, Nigeria, Senegal, Ethiopia and Kenya.

the COVID-19 epidemic had an effective reproduction number that generally
decreases with time for the different phases of the infection for all the countries.
In addition, the effective reproduction number falls more rapidly with time for
σ = 1.00 and less so for σ = 0.95. This observation is consistent with Figure 10
which shows that the peak number of active cases was reached earliest for
σ = 1.00.

8 Conclusion

In this paper, a mathematical model for the novel coronavirus (COVID-19)
disease which incorporates some non-pharmaceutical interventions was pro-
posed and used to investigate the transmission dynamics in selected African
countries, namely, South Africa, Egypt, Nigeria, Senegal, Ethiopia and Kenya.
The model contains seven epidemiological compartments namely: Susceptible
S(t), Exposed E(t), Infected I(t), Asymptomatic IA(t), Quarantine Q(t), Hos-
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Fig. 12. Evolution of the effective reproduction number Re(t) with time for South
Africa, Egypt and Nigeria for different values of the order of the fractional derivative
σ.

pitalized H(t) and Recovered R(t) and also takes into account some specific
features of the COVID-19 epidemic such as quarantine, isolation and asymp-
tomatic infections. We obtained the critical points, identified the disease-free
states and the endemic states. The basic reproduction number, R0 was com-
puted using the next generation matrix approach. Numerical simulations to
fit the proposed model to the actual data for cumulative number of confirmed
infected cases was performed for the different phases of the infection for all the
countries, with values of R0 between 1.311 and 9.179 obtained. Notably, the
condition R0 < 1 is necessary for the stability (or instability) of the disease-
free(or endemic state). A fractional version of the model was introduced using
the Atangana-Baleanu derivative and numerical simulations were performed
for better understanding of the dependence of the dynamics of the disease on
the order of the fractional derivative, σ. The result shows that the magnitude
of σ has a pronounced effect on the day the maximum is reached with a right
shift observed in the time taken for the maximum to be attained as σ decreases
from 1.0. However, the order of the fractional derivative has insignificant ef-
fect on the projected peak number of active cases. Hence, σ can be used as an
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Fig. 13. Evolution of the effective reproduction numberRe(t) with time for Ethiopia,
Kenya and Senegal for different values of the order of the fractional derivative σ.

effective delay variable for the peak of the infection. Elasticity and sensitivity
analyses show that the most significant parameters are the effective disease
transmission rate (β), disease diagnosis or case detection rate (η2), proportion
of susceptible taking precautions (h) and the disease infection rate (θ). If the
disease infection rate, θ is less than 0.082/day, then R0 is always less than
1 regardless of the proportion of susceptible taking precautions (h). Another
remarkable inference from the study is that, if at least 55.29% of the suscep-
tible population take precautions such as regular hand washing with the use
of soap, use of sanitizers and wearing of face masks, then, the reproduction
number R0 can be kept below 1 irrespective of the value of the disease infec-
tion rate. The most important practical conclusion is that efforts to control
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the disease should concentrate on decreasing the transmission rate by contact
reduction, via lockdown and social distancing measures. In addition, h can be
increased by encouraging social campaigns aimed at increasing the number of
individuals taking prescribed precautionary measures.

Appendix: Numerical Scheme

We now describe the numerical procedure used for solution of the fractional
model (34) by adopting the modified Adams-Bashforth scheme developed by
Toufik and Atangana [78]. Some recent applications of the modified Adams-
Bashforth scheme, include [47–49, 79]. Before applying the procedure in Toufik
and Atangana [78], we write the fractional COVID-19 model (34) in the fol-
lowing form:

ABC
0 Dσ

t S = f1(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t E = f2(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t I = f3(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t IA = f4(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t Q= f5(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t H = f6(S,E, I, IA, Q,H,R),
ABC
0 Dσ

t R= f7(S,E, I, IA, Q,H,R). (36)

Following the procedure in Toufik and Atangana [78], the fractional model can
take the form:

S(t)− S(0)=
1− σ

B(σ)
f1(t, S) +

σ

B(σ)Γ(σ)

∫ t

0
f1(t, S)(t− ζ)σ−1dζ,

E(t)− E(0)=
1− σ

B(σ)
f2(t, E) +

σ

B(σ)Γ(σ)

∫ t

0
f2(t, E)(t− ζ)σ−1dζ,

I(t)− I(0)=
1− σ

B(σ)
f3(t, I) +

σ

B(σ)Γ(σ)

∫ t

0
f3(t, I)(t− ζ)σ−1dζ,

IA(t)− IA(0)=
1− σ

B(σ)
f4(t, IA) +

σ

B(σ)Γ(σ)

∫ t

0
f4(t, IA)(t− ζ)σ−1dζ,

Q(t)−Q(0)=
1− σ

B(σ)
f5(t, Q) +

σ

B(σ)Γ(σ)

∫ t

0
f5(t, Q)(t− ζ)σ−1dζ,

H(t)−H(0)=
1− σ

B(σ)
f6(t, H) +

σ

B(σ)Γ(σ)

∫ t

0
f6(t, H)(t− ζ)σ−1dζ,

R(t)− R(0)=
1− σ

B(σ)
f7(t, R) +

σ

B(σ)Γ(σ)

∫ t

0
f7(t, R)(t− ζ)σ−1dζ, (37)
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Using t = tn+1, n = 0, 1, 2, . . ., in (37), we obtain:

S(tn+1)− S(t0)=
1− σ

B(σ)
f1(tn, S)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk

f1(t, S)(tk+1 − ζ)σ−1dζ,

E(tn+1)− E(t0)=
1− σ

B(σ)
f2(tn, E)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk
f2(t, E)(tk+1 − ζ)σ−1dζ,

I(tn+1)− I(t0)=
1− σ

B(σ)
f3(tn, I)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk
f3(t, I)(tk+1 − ζ)σ−1dζ,

IA(tn+1)− IA(t0)=
1− σ

B(σ)
f4(tn, IA)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk
f4(t, IA)(tk+1 − ζ)σ−1dζ,

Q(tn+1)−Q(t0)=
1− σ

B(σ)
f5(tn, Q)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk
f5(t, Q)(tk+1 − ζ)σ−1dζ,

H(tn+1)−H(t0)=
1− σ

B(σ)
f6(tn, H)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk

f6(t, H)(tk+1 − ζ)σ−1dζ,

R(tn+1)− R(t0)=
1− σ

B(σ)
f7(tn, R)

+
σ

B(σ)Γ(σ)

n
∑

k=0

∫ tk+1

tk

f7(t, R)(tk+1 − ζ)σ−1dζ, (38)

Employing the two-step Lagrange-polynomial approximation for the integral
in (38), we obtain the following the numerical scheme for the fractional model (34):
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S(tn+1) = S(t0) +
1− σ

B(σ)
f1(tn, S)

+
σ

B(σ)
×

n
∑

k=0

[

φσf1(tk, S)

Γ(σ + 2)
((n+ 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf1(tk−1, S)

Γ(σ + 2)

×
(

(n + 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (39)

E(tn+1) = E(t0) +
1− σ

B(σ)
f2(tn, E)

+
σ

B(σ)
×

n
∑

k=0

[

φσf2(tk, E)

Γ(σ + 2)
((n + 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf2(tk−1, S)

Γ(σ + 2)

×
(

(n+ 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (40)

I(tn+1) = I(t0) +
1− σ

B(σ)
f3(tn, I)

+
σ

B(σ)
×

n
∑

k=0

[

φσf3(tk, I)

Γ(σ + 2)
((n + 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf3(tk−1, I)

Γ(σ + 2)

×
(

(n+ 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (41)

IA(tn+1) = IA(t0) +
1− σ

B(σ)
f4(tn, IA)

+
σ

B(σ)
×

n
∑

k=0

[

φσf4(tk, IA)

Γ(σ + 2)
((n + 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf4(tk−1, IA)

Γ(σ + 2)

×
(

(n+ 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (42)
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Q(tn+1) = Q(t0) +
1− σ

B(σ)
f5(tn, Q)

+
σ

B(σ)
×

n
∑

k=0

[

φσf5(tk, Q)

Γ(σ + 2)
((n+ 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf5(tk−1, Q)

Γ(σ + 2)

×
(

(n+ 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (43)

H(tn+1) = H(t0) +
1− σ

B(σ)
f6(tn, H)

+
σ

B(σ)
×

n
∑

k=0

[

φσf6(tk, H)

Γ(σ + 2)
((n+ 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf6(tk−1, H)

Γ(σ + 2)

×
(

(n + 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (44)

R(tn+1) = R(t0) +
1− σ

B(σ)
f7(tn, R)

+
σ

B(σ)
×

n
∑

k=0

[

φσf7(tk, R)

Γ(σ + 2)
((n + 1− k)σ(n− k + 2 + σ)

− (n− k)σ(n− k + 2 + 2σ))−
φσf7(tk−1, R)

Γ(σ + 2)

×
(

(n+ 1− k)σ+1 − (n− k)σ(n− k + 1 + σ)
)]

, (45)

where φ = tn+1 − tn.
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