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Abstract

In this paper we propose the use of stochastic frontier models to impose theoretical regularity constraints (like

monotonicity and concavity) on flexible functional forms. These constraints take the form of inequalities involving

the data and the parameters of the model. We address a major concern when statistically endogenous variables

are present in these inequalities. We present results with and without endogeneity in the inequality constraints.

In the system case (e.g. cost-share equations) or more generally, in production function-first order conditions

case, we detect an econometric problem which we solve successfully. We provide an empirical application to U.S.

electric power generation plants during 1986 − 1997, previously used by several authors.
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1 Introduction

In many areas of applied economics operations research and applied economics , equations or systems of equations

are often estimated that must satisfy certain theoretical constraints either globally or locally (that is at a specific

point of approximation). Other times the equations must satisfy certain motononicity or other constraints at each

observation. Although globally flexible functional forms that satisfy the constraints (globally), often practitioners

use flexible forms that cannot satisfy these restrictions using only parametric restrictions. Instead, the constraints

also involve the data. Suppose, for example, we have a translog production function of the form:

y = β1 + β2x1 + β3x2 +
1
2β4x

2
1 +

1
2β5x

2
2 + β6x1x2, (1)

where y, x1, x2 denote the logs of output, capital and labor. The input elasticities must be positive so we have the

constraints:
β2 + β4x1 + β6x2 > 0,

β3 + β6x1 + β5x2 > 0.
(2)

For problems related to the use of the translog see, for example, O’Donnell (2018, p. 286, footnote 11). We

expand on this point below.

Imposing constraints has given rise to a significant literature including O’Donnell, Rambaldi and Doran (2001)

and O’Donnell and Coelli (2005). McCausland (2008) uses orthogonal polynomials while other authors proposed the

use of neural networks (Vouldis, Michaelides and Tsionas, 2010). Diewert and Wales (1987) spell out the conditions

that must be satisfied while Gallant and Golub (1984), and Lau (1978) represent earlier attempts. Ivaldi, Ladoux,

Ossard and Simioni (1996) compare different functional forms in a concise way.

The dominant approach seems to be the one adopted by O’Donnell, Rambaldi and Doran (2001) and O’Donnell

and Coelli (2005) who impose the constraints by assuming a different technology for each firm. Terrell (1996) is

more in line with Geweke (1986) while Wolff, Heckelei, and Mittelhammer (2010) present new “local” approaches.

In this paper we retain the original problem: Given an equation or a system of equations of the traditional form, is

it possible to use standard Markov Chain Monte Carlo (MCMC) methods to perform Bayesian inference subject to

many data– and parameter–specific inequality constraints? This problem is fundamentally different from Geweke

(1991) since we have, more often than not, a number of constraints exceeding the number of equations, and the

inequality constraints must be imposed exactly without regard for their posterior probability. Surely, the constraints

must not be imposed at all data points when they depend on the data as, for example, a translog cost or production

function would reduce to a Cobb-Douglas which is not second-order flexible.

It turns out that there are two approaches to solve the problem. In the first approach that we call “naive”, all

inequality constraints are converted to equalities using a surplus formulation. The surpluses are modeled within
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the stochastic frontier approach. This is, essentially, the approach in Huang and Huang (2019) which has been

proposed independently of this paper. In the second approach, we take up a major problem with this model; viz.

the fact that endogenous variables may appear in the inequality constraints. To the best of our knowledge, the

problem (and a potential solution) has not been realized before. As we mentioned, the first approach has been

proposed independently by Huang and Huang (2019) where the surpluses are assumed to follow independent half-

normal distributions. The problems with this approach are: First, the surpluses cannot be independent as violation

of some constraints (say monotonicity) are known to have effects on other constraints (like curvature). Second,

endogeneity is not taken into account although endogenous variables appear in the frontier equations that impose

the constraints. In turn, specialized methods can be used. Third, it is well known that imposition of theoretical

constraints (which is necessary in any functional form to account for the information provided by neoclassical

production theory) affects estimates of technical inefficiency, so the surpluses should be correlated with the one-sided

error term in the production or cost function.

Moreover, we apply the new techniques to the translog as it is used widely. If researchers want to use globally

flexible functional forms that satisfy monotonicity and curvature via only parametric restrictions (e.g. Koop et al.,

1997 and the Generalized McFadden functional form), they can certainly do it and the methods in this paper are

not necessary. However, as the translog is quite popular, we use it here as our benchmark case. Another case of

flexible functional forms where the constraints also depend on the data has been analyzed in Tsionas (2016).

2 Equations and constraints linear in the parameters

2.1 General

Let us consider the simplest case of an equation which is linear in the parameters:

yi = g (zi)
′
β + vi − ui, i = 1, ..., n, (3)

where zi is an m× 1 vector of basic covariates, β is a k× 1 vector of parameters, g : Rm → Rk is a vector function,

and ui is a nonnegative error component representing technical inefficiency. The translog or polynomials in certain

variables zi, are leading examples. Apparently we can write:

yi = x′iβ + vi − ui, (4)

where xi = g(zi) is k × 1. Suppose we require the function g (z)
′
β to be monotonic, and without loss of generality

assume that all first order partial derivatives must be nonnegative, that is Dg (z)β ≥ 0(m×1). Since no parameters

are involved in g, it is clear that the (transposed) Jacobian Dg (z) ≡ X0, which is m× k, is a simple function of z

and, therefore, a simple function of X.
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Suppose that for the ith observation, we have Xi0 =

 0 1 0 xi1 0 xi2

0 0 1 0 xi2 xi1

, (i = 1, . . . , n).

Bayesian inference in the linear model subject to a few inequality constraints has been considered by Geweke

using both importance sampling (Geweke, 1986) and Gibbs sampling (Geweke, 1996). Here we follow a different

approach, independently proposed by Huang and Huang (2019).

Suppose we write the constraints as follows:

0(m×1) = X ′
i0β + vi0 − ũi0, i = 1, ..., n, (5)

where vi0 is an m× 1 two-sided error term and ũi0 is an m× 1 nonnegative error component. Here, vi0 represents

noise in the inequality constraints and inequality constraints themselves are represented by ũi0. So, (5) imposes the

constraints X ′
i0β ≥ 0m×1 up to measurement errors (vi0). Moreover, ũi0 represents slacks in the constraints.

If we write the equations together we have:

yi = x′iβ + vi − ui, i = 1, ..., n,

0(m×1) = Xi0β + vi0 − ũi0, i = 1, ..., n.
(6)

We are now ready to specify our distributional assumptions on the error components:

vi = [vi, v
′
i0]

′ ∼ Nm+1(0,Σ), ui = [ui, ũ
′
i0]

′ ∼ N+
m+1(0,Φ), i = 1, . . . , n. (7)

In this specification the two-sided and one-sided error components are correlated across equations. This speci-

fication, unlike the one in Huang and Huang (2019), has certain advantages. First, the error terms vi and vi0 are

allowed to be correlated, as the imposition of theoretical constraints affects parameter estimates in the first equation

of (6). Second, the one-sided error terms ui and ũi0 are allowed to be correlated, since the extent of violation of

certain constraints is very likely to affect the degree of violation of other constraints.

2.2 Simplified example

For ease of presentation and to establish the techniques, we assume Σ =

 σ2

ω2Im

, and Φ =

 0

φ2Im

.

In this case, we have no technical inefficiency (viz. ui = 0) and the scale parameter of surpluses, ũi, have the same

scale parameter (φ). Clearly, the scales could have been different (Huang and Huang, 2019) but most importantly Φ

should allow for correlations between the violations of different constraints. Here, we focus on the simplest possible

case to provide the background of the new approach. For a fixed value of ω, which controls the degree of satisfaction
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of the constraints, the posterior distribution of this model is given by:

p (β, σ, φ, u|y,X, ω) ∝

σ−(n+1)φ−(n+1) exp
[
− (y−Xβ)′(y−Xβ)

2σ2 − (u−X0β)
′(u−X0β)

2ω2 − u′u
2φ2

]
· p (β, σ, φ) ,

(8)

where

X0 (nm×k) =



X10

X20

· · ·

Xn0


. (9)

For the prior, we have:

p (β, σ, φ) ∝ p(β|σ, φ)p(σ|φ)p(φ) ∝ p(β)p(σ)p(φ). (10)

The only parameters of interest are the elements of β, and possibly σ, but not φ, which like u, are artificial

parameters introduced to facilitate Bayesian inference. Alternatively, u represents prior parameters with a prior

given by (5) in which φ and ω are parameters. The user may have high relative prior precision with respect to the

degree of satisfaction of the constraints (so parameter ω can be set in advance) but in other respects the user does

not particularly care about how far in the acceptable region are the parameters. Of course, if this is not the case

it can always be controlled via choice of an informative prior of β.

Suppose for simplicity that p (β, σ, φ) ∝ σ−1φ−1. Then we can use the Gibbs sampler based on the following

standard full posterior conditional distributions:

β|σ, φ, u, y,X ∼ Nk

(
β̄, V̄

)
, (11)

where β̄ =
(
ω2X ′X + σ2X ′

0X0

)−1 (
ω2X ′y + σ2X ′

0u
)
, and V̄ = σ2ω2

(
ω2X ′X + σ2X ′X

)−1,

(y −Xβ)
′
(y −Xβ)

σ2
|β, φ, u, y,X ∼ χ2

n, (12)

u′u

φ2
|σ, u, y,X ∼ χ2

n, (13)

and finally:

ui|β, σ, φ, y,X ∼ N+

(
φ2

φ2 + ω2
X0β,

φ2ω2

φ2 + ω2
1nm

)
, i = 1, . . . , n, (14)

where 1nm is a vector of ones whose dimensionality is nm × 1. For details on the derivations, see Tsionas (2000).

Generating random draws from these full posterior conditional distributions is straightforward. The last distribution

5



is quite standard in Bayesian analysis of the normal – half normal stochastic model. So far we have assumed that

ω can be set in advance. This is, of course, a possibility. If the user does not feel comfortable about this choice

then one can use the following prior:
q

ω2
∼ χ2

n, (15)

where n, q ≥ 0 are prior parameters. In this case, the posterior conditional of ω is:

q + (u−X0β)
′
(u−X0β)

ω2
|β, σ, φ, u, y,X ∼ χ2

n+n. (16)

The interpretation of (15) is that from a fictitious sample of size n the average ω2 would be close to (u−X0β)
′(u−X0β)
n .

There is nothing wrong with setting these parameters so that the prior is extremely informative if that is necessary;

for example n = n, and q = 0.001. The interpretation, in this case, is that we need the errors v0 to be quite

small so that the constraints satisfy “exactly” the inequality constraints. Of course, this is related to Theil’s mixed

estimator.

2.3 An artificial example

Following Parmeter, Sun, Henderson and Kumbhakar (2009) we have the following model:

y = 10 + 3x+ x2 − 3x3 + x4 + v,

where the x’s are generated as uniform in the interval [0, 2.5], and v ∼ N
(
0, 0.12

)
. We have n = 100 observations

and the x’s are sorted. The constraint is that we need this function to be non-decreasing that is 3+2x−9x2+4x3 > 0

at all observed data points.

In this case xi =
[
1, x, x2, x3, x4

]
, and x0i =

[
0, 1, 2x,−9x2, 4x3

]′. So the model is yi = x′iβ + vi subject to

the constraints x′0iβ > 0. For this example we set n = 50 and Q = 0.001. Gibbs sampling is implemented using

15,000 passes the first 5,000 of which are discarded to mitigate possible start up effects. The Least Squares (LS)

fit has 22 violations of the constraints, while the Bayes fit has none. The Bayes fit is computed as follows. For

each draw β(s) we compute f (s)i = X1β
(s). After the burn–in period our estimate of the fit is f̂i = S−1

S∑
s=1

x′i1β
(s)

which is equivalent to f̂i = x′iβ̂ where β̂ = E (β|y,X) is the posterior expectation of β that can be approximated

arbitrarily well (since it is simulation – consistent) by β̂ = S−1
S∑

s=1
β(s). The same is true for the derivative. These

computations involve only a standard Gibbs sampling scheme and the trivial computation of the posterior mean of

β. In Figure 1 we present the original data points, the LS fit, the Bayes fit and the constrained least squares (LS)

fit as it is more appropriate to compare restricted LS with the Bayesian estimates.

Even in this case one may argue that the selection of parameters results in satisfaction of the constraints but
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Figure 1: LS and Bayes fit in an artificial example
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it does not guarantee the best fit. This criticism is not totally unfounded. For example, it would be possible to

select these parameters so as to pass a line with positive slope through the points that would, apparently, satisfy

all the constraints. Therefore, it may be necessary to device a mechanism by which ω is truly adjusted to the data

so as to guarantee the best possible fit and also satisfying the constraints. Therefore, we search directly over the

minimum value of ω that guarantees satisfaction of all constraints. It turns out that this value is 1.076 (when we

use 15,000 Gibbs passes and the first 5,000 are discarded). It turned out that this problem requires a fine grid of

values (of the order 10−4) in the relevant range which is determined empirically by trial-and-error.

Despite the effort it does not appear that the results are any better compared to standard Bayes analysis when

ω is assigned a prior. The results are presented in panel (b) of Figure 1. By “full Bayes fit” we mean the fit when

ω is drawn from its full conditional distribution. By “conditional Bayes fit” we mean the fit when a detailed search

is made over ω to determine the optimal value ω∗ = 1.076 that constitutes the value for which all constraints are

satisfied along with fully Bayesian solutions for β, σ, φ, and u.

3 The general formulation

3.1 Posterior

In the general case of technical inefficiency and correlated error components we can write the posterior of the model

in (6) as follows:

p(β,Σ,Φ,u|y,X) ∝

|Σ|−n/2|Φ|−n/2 exp
{
− 1

2

∑n
i=1 (ψi −Xiβ + ui)

′
Σ−1 (ψi −Xiβ + ui)− 1

2

∑n
i=1 u

′
iΦ

−1ui

}
·

p(β,Σ,Φ),

(17)
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where p(β,Σ,Φ) denotes the prior, ψi =

 yi

0(m×1)

 , and Xi =

 x′i

X ′
io

. As we mentioned above, ui =

 ui

ũi (m×1)

, for all i = 1, . . . , n. Our prior is a reference flat prior:1

p(β,Σ,Φ) ∝ |Σ|−(m+2)/2|Φ|−(m+2)/2. (18)

Therefore, the posterior becomes:

p(β,Σ,Φ,u|y,X) ∝

|Σ|−(n+m+2)/2|Φ|−(n+m+2)/2 exp
{
− 1

2

∑n
i=1 (ψi −Xiβ + ui)

′
Σ−1 (ψi −Xiβ + ui)− 1

2

∑n
i=1 u

′
iΦ

−1ui

}
.

(19)

In this formulation, Φ is a general (positive-definite) covariance matrix which allows for the fact that violations

of different constraints may be related in an unknown way. The posterior can be analyzed easily using MCMC as

shown in part A.1 of the Technical Appendix.

3.2 Economic applications

3.2.1 Systems of equations

Many important systems of equations like the translog can be written in the form:2

yt1 = x′tβJ(1) + vt1,

yt2 = x′t0βJ(2) + vt2,

...

ytM = x′t0βJ(M) + vtM ,

(20)

where βJ(m) represents a particular selection of elements of vector β with the indices in J (m), m = 1, ...,M . We

agree that βJ(1) = β so that J (1) = {1, 2, ..., d}. Suppose, for example, that we have a translog cost function with
1For a positive definite matrix ∆ whose dimension is d×d the reference prior is: p(∆) ∝ |∆|−(d+1)/2. In our case, we have d = m+1.

2Parmeter, Sun, Henderson and Kumbhakar (2009) and Kumbhakar, Park, Simar and Tsionas (2007).
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K inputs and N outputs3:

lnC = α0 +
K∑

k=1

αk ln pk +
N∑

n=1
βn ln yn + 1

2

K∑
k=1

K∑
l=1

αkl ln pk ln pl+

1
2

N∑
n=1

N∑
s=1

βns ln yn ln ys +
K∑

k=1

N∑
n=1

γkn ln pk ln yn,

(21)

where C is cost. We assume linear homogeneity with respect to prices which can be imposed directly by dividing

C and all prices by pK . The share equations are:

Sk ≡ wke
xkit∑K

k′=1
wk′e

x
k′it

= αk +

K∑
l=1

αkl ln pl +

N∑
n=1

γkn ln yn, k = 1, . . . ,K − 1. (22)

Clearly, xt consists of the regressors in the cost function, whose dimensionality is d = 1 + K + N + K(K+1)
2 +

N(N+1)
2 +KN .

Also xt0 =


1

ln pt

ln yt

 whose dimensionality is L = K +N + 1 . Moreover βJ(m) = Amβ where Am is an L× d

selection matrix (consisting of ones and zeros), for all m = 2, . . . ,M , and A1 = I(d×d). Defining x′t0Am = x′tm for

m = 1, ...,M , we can write the full system in the form:

yt1 = x′t1β + vt1

yt2 = x′t2β + vt2
...

ytM = x′tMβ + vtM ,

(23)

where M = K + 1. The complete system is Yt = Xtβ + vt or

Y = Xβ + v, (24)

where

Y =


Y1
...

YT

, Yt =


yt1
...

ytM

, Xt =


x′t1

· · ·

x′tM

, X =


X1

· · ·

XT

.

The output cost elasticities are:

∂ lnC

∂ ln yn
= βn +

K∑
k=1

γkn ln pk +

N∑
s=1

βns ln ys = x′t0βI(n) = x′t0Dnβ, (25)

3Unfortunately, whether inputs are strongly disposable or not, cost functions simply cannot be translog functions; see, for example,
footnote 11 on p. 286 in O’Donnell (2018). Here, we use the translog simply as an approximation to the true but unknown functional
form.
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where Dn is an L× d selection matrix, and I (n) represents the proper set of indices. Therefore,we have:
∂ lnC
∂ ln yn

= z′tnβ, where z′tn = x′t0Dn, for n = 1, . . . , N .

Monotonicity with respect to prices and outputs implies the following restrictions:

x′tmβ > 0, m = 2, . . . ,K, (26)

z′tnβ > 0, n = 1, . . . , N, (27)

for all t = 1, . . . , T . In total, we have r = T (K +N − 1) monotonicity restrictions that we can represent in the

form:

0r×1 = Wβ + ξ + u, (28)

where W is r × d and W ′
t = [(x′tm,m = 2, . . . ,K) , (z′tn, n = 1, . . . , N)] is the tth row of W. We assume ξ ∼

Nr

(
0, ω2I

)
, and u ∼ N+

r

(
0, σ2

uI
)
. Further, we assume: v ∼ N (0, Σ⊗ IT ). Therefore, the complete system

along with monotonicity constraints is:

 Y

0r×1

 =

 X

W

β +

 v

ξ

+

 0MT×1

u

 . (29)

Moreover, we assume Σ = σ2I.

The conditional posterior distributions required to implement Gibbs sampling are presented in part A.2 of the

Technical Appendix.

3.2.2 Concavity

Diewert and Wales (1987) showed that concavity of the translog cost function requiring negative semidefinitiness of

∇ppC (p, y) amounts to negative semidefiniteness of Mt = A − diag (St) + StS
′
t, where St is the vector of shares,

and A is the K ×Kmatrix [αkl]. This matrix (after recalling M = K + 1) is

Mt = A−



x′t2β

x′t3β

. . .

x′tMβ


+



x′t2βx
′
t2β x′t2βx

′
t3β · · · x′t2βx

′
tMβ

x′t2βx
′
t3β x′t3βx

′
t3β · · · x′t3βx

′
tM3β

· · · · · · · · ·

x′t2βx
′
tMβ x′t3βx

′
tMβ · · · x′tMβx

′
tMβ


. (30)

Suppose the eigenvalues of Mt are λ′t (β) = [λt1 (β) , λt2 (β) , . . . , λtK (β)]. Suppose Λ (β) is the T ×K matrix whose

rows are λ′t (β), t = 1, . . . , T . The concavity restrictions can be expressed in the form:
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−Λ (β) = ζ +w, ζ ∼ NTK

(
0, Ω2I

)
, w ∼ N+

TK

(
0, σ2

wI
)
, (31)

where Ω2 and σ2
w are parameters. If we set Ω2 to a small number, the meaning of this expression is that all

eigenvalues of the Mt matrix are nonnegative. In practice, we can treat Ω as a parameter to examine systematically

the extent of violation of the constraint(s). Moreover, it is straightforward to have different Ω parameters for

different constraints or treat Ω as a general covariance matrix.

4 Endogeneity issues

In the case of the cost function where input prices and outputs are taken as predetermined or in the case of

(4) where the covariates are weakly exogenous, the Bayesian techniques we have described, can be applied easily.

However, there are many instances in which the covariates or explanatory variables are endogenously determined. An

extremely important case is when (4) represents a production function. Under the assumption of cost minimization,

inputs are decision variables (and, therefore, endogenous) while output (the left-hand-side variable) is predetermined.

Moreover, economic exogeneity and econometric exogeneity are different things. If econometric exogeneity is rejected

this does not mean that the economic assumptions are wtong. Measurement errors, for example, would be a typical

example. Lai and Kumbhakar (2019) consider the case of a Cobb-Douglas production function along with the

first-order conditions for cost minimization. To summarize the approach of Lai and Kumbhakar (2019), we have

the following Cobb-Douglas production function:

yit = β0 +

K∑
k=1

βkxkit + vit − uit, i = 1, . . . , n, t = 1, . . . , T, (32)

where yit is log output for firm i and date t, xkit is the log of kth input for firm i and date t , vit is a two-

sided error term, uit is a non-negative error component that represents technical inefficiency in production, and

βk > 0, k = 1, ...,K. Suppose also input prices are wkit. From the first-order conditions of cost minimization (where

inputs are endogenous choice variables and output is predetermined) we obtain:

∂yit/∂xkit
∂yit/∂x1it

=
wkitxkit
w1itx1it

=
βk
β1
evkit , 2 = 1, ...,K. (33)

These conditions can be expressed as follows:

x1it − xkit = ln(wkit/w1it) + (lnβ1 − lnβj) + vkit, k = 2, . . . ,K. (34)
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The constraints are only on the parameters βk (k = 1, . . . ,K) so this is not a very interesting example. However,

if we generalize (32) to the translog case, we have:

yit = β0 +

K∑
k=1

βkxkit +
1
2

K∑
k=1

K∑
k′=1

βkk′xkitxk′it + vit − uit, i = 1, . . . , n, t = 1, . . . , T. (35)

Suppose all parameters are collected into the vector β whose dimension is d = 1 +K + K(K+1)
2 , after imposing

symmetry, viz. βkk′ = βk′k, k, k
′ = 1, . . . ,K. The first-order conditions for cost minimization are as follows:

∂yit/∂xkit
∂yit/∂x1it

=
wkitxkit
w1itx1it

=
βk +

∑K
k′=1 βkk′ lnxk′,it

β1 +
∑K

k′=1 β1k′ lnxk′,it

evkit , k = 2, . . . ,K. (36)

These equations can be rewritten as follows:

xkit − x1it =

ln
(
βk +

∑K
k′=1 βkk′xk′,it

)
− ln

(
β1 +

∑K
k′=1 β1k′xk′,it

)
− ln(wkit/w1it) + vkit, k = 2, . . . ,K.

(37)

Moreover, it is convenient to rewrite (35) in the form:

yit = ψ(xit)β + vit − uit, i = 1, . . . , n, t = 1, . . . , T, (38)

where ψ(xit) = [1, x1it, . . . , xKit,
1
2x

2
1it, . . . ,

1
2x

2
Kit, x1itx2it, . . . , x(K−1)itxKit]

′ are the nonlinear terms in the

translog functional form.

From (35) and (37) we have a system of K equations in K endogenous variables.

The economic restrictions are as follows. First we have monotonicity:

βk +

K∑
k′=1

βkk′xk′,it ≥ 0, k = 1, . . . ,K. (39)

This imposes the following set of restrictions:

0 = βk +

K∑
k′=1

βkk′xk′,it + ṽk,it + ũk,it, k = 1, . . . ,K. (40)

Following Diewert and Wales (1978, p. 58), given the monotonicity restrictions, we need the matrix B =
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[βkk′ , k, k′ = 1, ...,K] to be negative semi-definite. Therefore, it is necessary and sufficient that the eigenvalues of

B, say Λ(β) = [λ1(β), . . . , λK(β)]′ are all non-positive. This imposes the following set of nonlinear restrictions:

−vecΛ(β)(TK×1) = vo(TK×1) + uo(TK×1). (41)

From (40) and (41) we have 2K additional equations so in total we have K endogenous variables but 3K

stochastic equations. From the econometric point of view, this is, clearly, a major problem, as we lack 2K endogenous

variables to complete the system in (35), (37), (40), and (41). Let us write the entire system as follows:



−yit

x2it − x1it
...

xKit − x1it

0K

0K


=



−ψ(xit)β

g2(xit;β)

...

gK(xit;β)

m(xit;β)

s(xit;β)


+



vit,1

vit,2
...

vit,K

ṽit,(K×1)

voit,(K×1)


+



uit,1

uit,2
...

uit,K

ũit,(K×1)

ǔit,(K×1)


(42)

where gk(xit;β) = ln
(
βk +

∑K
k′=1 βkk′ lnxk′,it

)
−ln

(
β1 +

∑K
k′=1 β1k′ lnxk′,it

)
−ln(wkit/w1it), k = 2, ...,K, m(xit;β) =

[m1(xit;β), ...,mK(xit;β)]
′, mk(xit;β) = βk+

∑K
k′=1 βkk′ lnxk′,it, k = 1, ...,K, s(xit;β) = [s1(xit;β), ..., sK(xit;β)]

′,

sk(xit;β) =λk(xit;β), k = 1, ...,K. Let us write the system in (42) compactly as follows:

Yit = f(xit;β) + vit + uit. (43)

Although we have 3K equations there are only K endogenous variables. To provide 2K additional equations, it

seems that the only possibility is to assume that Uit ≡ [ũ′it, ǔ
′
it]

′ are, in fact, endogenous variables. This provides,

indeed, the missing 2K additional equations. To accomplish this, we depart from the assumption that Uit is

a (vector) random variable, and, instead, we make use of the following device originally proposed by Paul and

Shankar (2018) and further developed by Tsionas and Mamatzakis (2019):

Uit =


Uit,1

...

Uit,2K

 =


− lnΦ(x′itγ1)

...

− lnΦ(x′itγK)

 ≡ h(xit; γ), (44)

where Φ(·) is any distribution function (for example, the standard normal), and γ = [γ′1, . . . , γ
′
K ]′ ∈ R2K is a vector

of parameters. The idea of Paul and Shankar (2018) is that efficiency, r = e−u is in the interval (0, 1] and, therefore,
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r can be modeled using any distribution function. In turn, we have:


−yit

∆xit

ũit

 =


−ψ(xit)β

g(xit;β)

h(xit;β, γ)

+


vit,1

ṽit

v̊it,(2K×1)

+


uit,1

ũit

0(2K×1)

 , (45)

where v̊it = [ṽ′it, v̌
′
it]

′, Vit = [vit,1, . . . , vit,K , v̊
′
it]

′, Uit = [uit,1, . . . , uit,K ]′, 4xit = [x2it − x1it, . . . , xKit − x1it]
′,

g(xit;β) = [g2(xit;β), . . . , gK(xit;β)]
′, ṽit = [vit,2, . . . , vit,K ]′, ũit = [uit,2, . . . , uit,K ]′. MCMC for this model is

detailed in the Technical Appendix (sections A.4 and A.5).

5 Empirical application

We use the same data as in Lai and Kumbhakar (2019) which have been used before by Rungsuriyawiboon and

Stefanou (2008). We have panel data on n = 82 U.S. electric power generation plants during 1986 − 1997 (T = 12).

The three inputs are labor and maintenance, fuel, and capital. We use a production frontier approach. Output is net

steam electric power generation in megawatt-hours. Input prices are available and a time trend is included in both

the production function and the predetermined variables. MCMC is implemented using 150,000 draws discarding

the first 50,000 to mitigate possible start up effects. Since we have 984 observations we impose the constraints in

(40) and (41) at randomly chosen points. The reason is that imposing the constraints in (40) and (41) at all points,

compromises the flexibility of the translog and reduces it to the Cobb-Douglas production function, which is, clearly,

very restrictive. We select the points by using the following methodology. Suppose we impose the constraints at

the means of the data and P other points (P = 1, . . . , P ) where P < nT . The points are randomly chosen and we

set P = 500 which is, roughly, half the number of available observations. P itself is randomly chosen, uniformly

distributed in
{
1, 2, ..., P

}
. We repeat the process 10,000 times and we compute the marginal likelihood of the

model. The marginal likelihood is defined as:

M(D) =

∫
p(β, γ, σu,u1;D)dβ dγ dσu du1. (46)

The integral is not available analytically but can be computed numerically using the methodology of Perrakis,

Ntzoufras and Tsionas (2015). In turn, we select the value of P as well as the particular points at which the

constraints are imposed, by maximizing the value of M(D). For each P , we average across all datasets with this

number of points, and we present the normalized log marginal likelihood in Figure A.1.

Marginal posterior densities of input elasticities are reported in Figure 1. Without imposing the theoretical

constraints, we have a number of violations in fuel and capital elasticities and even labor (where there is a distinct

mode around zero). After imposing the constraints, the marginal posteriors are much more concentrated around

their mean or median, showing that imposition of theoretical constraints improves the accuracy of statistical inference
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for these elasticities.

Marginal posterior densities of aspects of the model are reported in Figure 2. Technical efficiency is defined as

rit = e−uit where uit ≥ 0 represents technical inefficiency. Technical change (TC) is defined as the derivative of the

log production function with respect to time, viz. TCit =
∂E(yit)

∂t . Efficiency change (ECit) is ECit =
uit−ui,t−1

ui,t−1
.

Productivity growth (PGit) is PGit = TCit + ECit + SCEit , where SCEit is the scale effect (Kumbhakar et al.,

2015, equation 11.8). Under monotonicity and / or concavity, technical efficiency averages 85% and ranges from

78% to 93%. Without imposition of theoretical constraints technical efficiency is considerable lower, averaging 78%

and ranging from 74% to 84%. Therefore, imposing the constraints is quite informative for efficiency and delivers

results that are different compared to an unrestricted translog production function. Technical change averages 1%

and ranges from -3% to 5% per annum. Efficiency change is much more pronounced when monotonicity and / or

concavity restrictions are imposed. Without the restrictions, it averages 1% and ranges from -1% to 3.5%. With

the restrictions in place, it averages 3.2% and ranges from -1% to 6%. In turn, productivity growth (the sum of

technical change, efficiency change and scale effect) averages 4.2% relative to only 2% in the translog model without

the constraints.

In relation to (13), let us define Σ =

 σ11 σ′
1

σ1 Σ∗

, where σ11 is the variance of vit,1, σ1 represents the vector

of covariances between vit,1 and ṽit, and Σ∗ is the covariance matrix of ṽit. To examine whether the artificial error

terms ṽit are of quantitative importance, we can use the measure |Σ∗|/σ11. This measure provides the (generalized)

variability of ṽit in terms of the variance of vit,1, viz. the stochastic error in the production function.

Aspects of the posterior distribution of the model are reported in Figures 2 and 3.

The marginal posterior densities of measure |Σ∗|/σ11 are reported in the upper left panel of Figure 4. The

(generalized) variance of two-sided error terms in the constraints is only 3.5% relative to the variance of production

function error term, implying that the one-sided error terms account for most of the variability of the equations

corresponding to the restrictions. In the upper right panel of Figure 5, we report the marginal posterior density

of λ =
σ2
u

σ11
which represents the signal-to-noise ratio in frontier models. This ratio averages 1.3 (ranging from 0.5

to 2.7) without the constraints and 2.5 (ranging from 1.5 to 3.7) when the constraints are imposed. This suggests

that the imposition of theoretical constraints allows for more precise inferences in the stochastic frontier model. To

allow for the presence of the constraints, it is more appropriate to define the signal-to-noise ratio as λ∗ =
σ2
u

|Σ| . The

marginal posterior density of λ∗ is reported in the bottom panel of Figure 4. Evidently, the new measure is lower

compared to λ but it is still considerably larger than the ratio without imposition of the theoretical constraints.
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Figure 3: Marginal posterior densities of input elasticities
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. in relation to (35).

Figure 4: Marginal posterior densities of aspects of the model
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Notes: Technical efficiency is defined as rit = e−uit where uit ≥ 0 represents technical inefficiency. Technical change (TC) is defined as the
derivative of the log production function with respect to time. Efficiency change (EC) is EC =

uit−ui,t−1
ui,t−1

. Productivity growth (PG) is
PG = TC + EC.
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Figure 5: Marginal posterior densities of det(Σ∗)/σ11 and λ∗
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Notes: In relation to (13), let us define Σ =

[
σ11 σ′

1
σ1 Σ∗

]
, where σ11 is the variance of vit,1, σ1 represents the vector of covariances between

vit,1 and ṽit, and Σ∗ is the covariance matrix of ṽit . To examine whether the artificial error terms ṽit are of quantitative importance, we can
use the measure |Σ∗|/σ11. This measure provides the (generalized) variability of ṽit in terms of the variance of vit,1, viz. the stochastic error

in the production function. To allow for the presence of the constraints, it is more appropriate to define the signal-to-noise ratio as λ∗ =
σ2
u

|Σ| .

Posterior moments are presented in Table 1.

Another important issue is whether posterior predictive densities of efficiency estimates are more informative

relative to unconstrained estimates. From Table in O’Donnell, Shumway, and Ball (1999) who used Metropolis-

Hastings to impose the constraints, unconstrained maximum likelihood estimates and Bayes estimates that impose

concavity, sometimes yield higher efficiency estimates and sometimes they yield lower efficiency estimates. Standard

errors without concavity and standard errors with concavity are, more often than not, lower in the second case but

there are some exceptions. On the other hand, the results of O’Donnell and Coelli (2005) suggest that imposing

monotonicity and curvature yields more precise estimates (Table 3 and Figures 2–9).

In Figure 5, we present posterior predictive densities of efficiency for nine randomly selected observations.

In line with O’Donnell and Coelli (2005) or O’Donnell, Shumway, and Ball (1999) we find that, more often than

not, the posterior predictive efficiency densities are more concentrated around their modal values. The posterior

predictive efficiency densities of other farms behave in the same way, and results are available on request. A related

issue is whether imposition of monotonicity and curvature result in stochastic dominance over the model without

these restrictions. From the evidence in Figure 6, where we report normalized cumulative distribution functions

(cdf) we have stochastic dominance of the model with monotonicity and curvature only for farms 6 and 9. Therefore,

as a rule, imposition of the restrictions does not, necessarily, imply stochastic dominance mostly because the average

posterior predictive efficiency estimates change as well.
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Figure 6: Posterior predictive efficiency densities
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Table 1: Posterior moments and functions of interest
unconstrained monotonicity monotonicity & curvature

labor elasticity 0.527
(0.261)

0.712
(0.139)

0.723
(0.132)

fuel elasticity 0.120
(0.090)

0.145
(0.021)

0.146
(0.018)

capital elasticity 0.127
(0.112)

0.138
(0.018)

0.144
(0.012)

technical efficiency 0.779
(0.016)

0.849
(0.020)

0.844
(0.017)

technical change 0.012
(0.010)

0.010
(0.010)

0.009
(0.011)

efficiency change 0.09
(0.06)

0.032
(0.008)

0.030
(0.010)

scale effect 0.029
(0.006)

0.0037
(0.016)

–0.0004
(0.010)

productivity growth 0.049
(0.017)

0.046
(0.025)

0.039
(0.021)

λ 1.446
(0.326)

2.427
(0.314)

2.389
(0.258)

λ∗ 1.260
(0.199)

1.898
(0.301)

1.876
(0.292)

Notes: Reported are posterior means with posterior standard deviations in parentheses.

Concluding remarks

An issue of great practical importance is the imposition of theoretical inequality constraints on cost or production

functions. These constraints can be handled efficiently using a novel formulation that converts inequality con-

straints to equalities using surpluses which are treated in the context of stochastic frontier analysis. The idea has

been developed independently by Huang and Huang (2019). However, the authors did not deal with the case of

cost-share systems (in which more problems arise and need to be addressed) neither they allowed for correlation

between violations of monotonicity and curvature which is quite likely in practice. There are two problems that

are successfully resolved in this paper. First, the constraints are not independent as it is known, for example, that

imposing monotonicity leads to fewer violations of concavity. Second, when explanatory variables are endogenous,

special endogeneity problems arise which cannot be solved easily. In turn, proposed are special techniques to address

this issue, and they are shown to perform well in an empirical application.

TECHNICAL APPENDIX
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Figure 7: Posterior predictive cumulative distribution functions
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5.1 MCMC associated with (19)

Conditional on all other parameters the posterior density of ui is as follows:

ui|β,Σ,Φ, y,X ∼ N+
m+1 (ûi, V) , i = 1, . . . , n, (1)

where ûi = −
(
Σ−1 +Φ−1

)−1
(ψi −Xiβ) , i = 1, . . . , n, and V =

(
Σ−1 +Φ−1

)−1.

We remind that in the main part we have assumed Σ =

 σ2

ω2Im

, and Φ =

 0

φ2Im

. Here, we allow

for general covariance matrices with the following prior:

p(Σ,Φ) ∝ |Σ|−(n+m+1)/2|Φ|−(n+m+1)/2. (2)

We adopt general covariance matrices because of the following reasons. It is always possible to fix Σ in advance

in the form Σ =

 σ2

ω2Im

, where σ2 remains an unknown parameter but ω is fixed to a small value (say

0.001). In this case, the posterior conditional distribution of σ2 is:

(y + u−Xβ)′(y + u−Xβ)

σ2
|β, ω,u, y,X ∼ χ2

n. (3)

We do not recommend this practice for three reasons. First, assuming independent two-sided errors is too

restrictive as imposition of one constraint is not independent of imposing other constraints. Second, assuming

independent one-sided errors is too restrictive as well. Third, a common value of φ is too restrictive as different

constraints may require different surplus. However, with regard to the third point, it is not difficult to replace φ2Im

with an m ×m diagonal matrix whose diagonal elements are φ1, . . . , φm. Moreover, it is possible to treat φ as a

general covariance matrix (denoted Φ), as we do here.

The posterior conditional distributions are in the well-known inverted-Wishart family:

p(Σ|β,Φ,u, y,X) ∝ |Σ|−(n+m+1)/2 exp
(
− 1

2 trAΣΣ
−1
)
,

p(Φ|β,Σ,u, y,X) ∝ |Φ|−(n+m+1)/2 exp
(
− 1

2 trAΦΦ
−1
)
,

(4)

where AΣ =
∑n

i=1(ψi − Xiβ + ui)(ψi − Xiβ + ui)
′, and AΩ =

∑n
i=1 uiu

′
i. Finally, the posterior conditional

distribution of β is a multivariate normal:

β|Σ,Ω,u, y,X ∼ N
(
β̂, Vβ

)
, (5)
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where β̂ = (X̃ ′Σ−1X̃)−1X̃ ′Σ−1(y + u), Vβ = (X̃ ′Σ−1X̃)−1, and X̃ =

 X

X0

.

All conditionals are in standard forms which facilitate random number generation for implementation of MCMC.

5.2 MCMC associated with (29).

We remind that we assume Σ =

 σ2

ω2Im

, ξ ∼ N(0, ω2I), and u ∼ N+
r (0, σ2

uI). In this case, we have no

technical inefficiency (viz. ui = 0) and the scale parameter of surpluses, ũi, have the same scale parameter.

It is not difficult to show that

β|·,Y,X ∼ Nd

(
β̂, V

)
, (6)

where |·,Y,X denotes conditioning on all other parameters, latent variables, and the data, and

β̂ =
[
ω2X′ (Σ−1 ⊗ IT

)
X+ σ2W′W

]−1 [
ω2X′ (Σ−1 ⊗ IT

)
Y −W′u

]
,

V = σ2ω2
[
ω2X′ (Σ−1 ⊗ IT

)
X+ σ2W′W

]−1
.

(7)

Also:

u|·,Y,X ∼ N+
r

(
û, σ2

∗Ir
)
, (8)

where û = − σ2
u

σ2
u+ω2Wβ, and σ2

∗ =
σ2
uω

2

σ2
u+ω2 . Draws from the conditional distributions of σ2

u and ω2 (given β,u,Σ,Y,X)

can be obtained as

u′u+ S̄u

σ2
u

|·,Y,X ∼ χ2
r+r̄u ,

(Wβ + u)
′
(Wβ + u) + S̄ω

ω2
|· ∼ χ2 (r + r̄ω) , (9)

where S̄ω, S̄u, r̄ω and r̄u represent prior parameters. The priors are such that
S̄ω

ω2 ∼ χ2 (r̄ω) , and independently S̄u

σ2
u
∼ χ2 (r̄u),

S̄

σ2
∼ χ2

r̄.

The values of the hyperparameters are r̄u = r̄ω = r̄ = 1, and S̄u = S̄ω = S̄ = 10−6.

The conditional posterior distribution of σ2 is

S̄ +
T∑

t=1
(Yt −Xtβ)

′
(Yt −Xtβ)

σ2
|·,Y,X ∼ χ2

nT+r. (10)

.
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5.3 MCMC associated with (45).

We write the system in (45) as follows:

Yit = F(xit;β, γ) +Vit +

 Uit

0(2K×1)

 , (11)

We need the Jacobian of transformation from Vit to the endogenous variables [x′it, ũ
′
it]

′. The required Jacobian

is:

Jit(β) =
K∑

k=1

(
βk +

K∑
k′=1

βkk′xk′,it

)
= 1, (12)

because
∑K

k=1 βk = 1 and
∑K

k=1

∑K
k′=1 βkk′ = 0 so that cost shares sum to unity. These constraints can be easily

implemented in advance.

We are now able to make the following distributional assumptions:

Vit ∼ iid NK(0,Σ), uit,1 ∼ iid N+(0, σ
2
u), i = 1, . . . , n, t = 1, . . . , T. (13)

Under these assumptions, the likelihood function of the model is as follows:

L(β, γ,Σ,Ω;D) ∝
∫
RnT

+
|Σ|−nT/2σ

−nT/2
u · exp

(
−

∑n
i=1

∑T
t=1 u2

it,1

2σ2
u

)
·

exp
{
− 1

2 [Yit − F(xit;β, γ)]Σ
−1 [Yit − F(xit;β, γ)]

}
du1.

(14)

where D denotes the data, u1 = [uit, i = 1, . . . , n, t = 1, . . . , T ]. Our prior for the parameters is given by:

p(β, γ,Σ, σu) ∝ |Σ|−(dΣ+1)/2 · σ−1
u , (15)

where dΣ = 3K is the dimensionality of Σ.

By Bayes’ theorem, the posterior is p(β, γ,Σ, σu|D) ∝ L(β, γ,Σ, σu;D) · p(β, γ,Σ, σu). To access the posterior,

we consider the augmented (by u1) posterior which is:

p(β, γ,Σ, σu,u1;D) ∝ |Σ|−(nT+3K+1)/2σ
−(nT+1)/2
u · exp

(
−

∑n
i=1

∑T
t=1 u2

it,1

2σ2
u

)
·

exp
{
− 1

2 [Yit − F(xit;β, γ)]
′
Σ−1 [Yit − F(xit;β, γ)]

}
.

(16)

We use MCMC to obtain draws from p(β, γ,Σ, σu,u1;D). It is possible to integrate out Σ analytically from

(16) using properties of the inverted Wishart distribution (Zellner, 1971, p. 229, formula (8.24) and p. 243, formula
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(8.86)) and we obtain:

p(β, γ, σu,u1;D) ∝ σ
−(nT+1)/2
u · exp

(
−

∑n
i=1

∑T
t=1 u2

it,1

2σ2
u

)
·

|
∑n

i=1

∑T
t=1 [Yit − F(xit;β, γ)] [Yit − F(xit;β, γ)]

′ |−nT/2.

(17)

First, we draw σu from its posterior conditional:

∑n
i=1

∑T
t=1 u

2
it,1

σ2
u

|β, γ,u1,D ∼ χ2
nT . (18)

To update β and γ we use a Girolami and Calderhead (2011) algorithm which uses first- and second-order

derivative information from the log of (17).

From Figure (A.1) we see that the log marginal likelihood is largest when we use, approximately, 50 points to

impose the monotonicity and curvature restrictions.

Figure 1: Normalized log marginal likelihood
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Notes: The log marginal likelihood is normalized in the interval [0, 1]. We select the value of P as well as the particular points at which the
constraints are imposed, by maximizing the value of M(D). For each P , we average across all data sets with this number of points. The
constraints include monotonicity as well as concavity.
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5.4 Comparison with other techniques to impose the restrictions

Other techniques to impose the constraints include i) to use LS in the production function and examine points at

which the restrictions do not hold. ii) One can in turn use the accept-reject algorithm used by Terrell (1996) and

the Metropolis-Hastings (M-H) algorithm used by Griffiths et al. (2000) and O’Donnell and Coelli (2005). Terrell

(1996) used an accept-reject Gibbs sanpling algorithm to impose monotonicity and concavity constraints on the

parameters of a cost function (through parametric restrictions only). A problem is that it may be necessary to

generate an extremely large number of candidate MCMC draws before finding one that is acceptable. O’Donnell

and Coelli (2005) simulate from the constrained posterior using a random-walk Metropolis-Hastings algorithm. The

same criticism that applies to Terrell’s (1996) approach possibly holds for the O’Donnell and Coelli (2005) approach

as the acceptance rate could be too high or too low and it requires some tuning. Moreover, its performance can

potentially be rather poor due to autocorrelation in MCMC.

Here, we consider both Terrell’s (1996) and ODonnell and Coelli’s (2005) approach. First, we consider auto-

correlation functions (acf’s) for these techniques compared to ours in Figure (A2). Relative numerical efficiency

(RNE, Geweke, 1992) for the various techniques is reported in Figure (A.3). If i.i.d sampling from the posterior

were feasible, then RNE would be equal to one. As we use MCMC, we have, of course, to settle for lower values,

provided they are not small in order to be sure that we are exploring the posterior in a thorough manner.

Autocorrelation functions drop to zero more rapidly compared to Terrell (1996) and O’Donnell and Coelli (2005).

We use the same number of MCMC draws and the same length of burn-in.

In Figure (A.4) we report the density of percentage differences between Terrell (1996) and O’Donnell (2005)

for production function parameters (panel (a)), technical inefficiency (panel (b)), returns to scale (panel (c)), and

productivity growth in panel (d). The rank correlations were from 0.30 to 0.60.

These differences between our method and Terrell (1996) or O’Donnell and Coelli (2005) can be explained

by their higher acf’s which do not help convergence. As we see from Figure (A.5) Geweke’s (1992) convergence

diagnostic (GCD, (which is distributed as standard normal, asymptotically in the number of draws) fails to support

convergence for Terrell’s (1996) or O’Donnell and Coelli’s (2005) approach (as it is greater than 2 in absolute value,

more often than not). Results for technical inefficiency (panel (b)), and scale parameters (panel (c)) are similar.

Reported in panel (c) is GCD for the latent variables in our constraints. From GCD we can see that MCMC has

converged.

Compliance with Ethical Standards:
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Figure 2: Autocorrelation functions (acf)
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Notes: OC (2005) is O’Donnell and Coelli (2005). For each set of parameters (in panels (a), (c), and (d) we report the median acf across all
parameters.
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Figure 3: Relative Numerical Efficiency (RNE)
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Notes: OC (2005) is O’Donnell and Coelli (2005). For each set of parameters (in panels (a), (c), and (d) we report the median acf across all
parameters.
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Figure 4: Percentage differences
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Figure 5: Geweke’s (1992) convergence diagnostic

0.5 1 1.5 2 2.5 3

GCD

0

0.5

1

1.5

2

2.5

3

de
ns

ity

(a) production function parameters

Terrell (1996)
OC (2005)
this paper

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

GCD

0

0.5

1

1.5

2

2.5

3

de
ns

ity

(b) technical inefficiency

Terrell (1996)
OC (2005)
this paper

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

GCD

0

0.5

1

1.5

2

2.5

3

3.5

4

de
ns

ity

(c) scale parameters

Terrell (1996)
OC (2005)
this paper

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

GCD

0

0.5

1

1.5

2

2.5

3

3.5

de
ns

ity

(d) constraint latent variables

Notes: OC (2005) is O’Donnell and Coelli (2005). For each set of parameters (in panels (a), (c), and (d) we report the median acf across all
parameters.

29



No funding received.

No Conflicts of Interest are declared.

Ethical approval: This article does not contain any studies with human participants or animals

performed by any of the authors.

References

Diewert, W. E., and T. J. Wales (1987). Flexible Functional Forms and Global Curvature Conditions. Econo-

metrica 55, 43–68. Gallant, A. R. and G. H. Golub (1984). Imposing Curvature Restrictions on Flexible

Functional Forms. Journal of Econometrics, 26, 295–322. Geweke, J. (1986). Exact inference in the inequality

constrained normal linear regression model, Journal of Applied Econometrics 1 (1), 127–141. Geweke, J. (1991).

Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and

the evaluation of constraint probabilities, Computer Science and Statistics. Proceedings of the 23rd Symposium

on the Interface. Seattle Washington. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches

to calculating posterior moments. In Bayesian Statistics 4 (J. M. Bernado, J. O. Berger, A. P. Dawid and A.

F. M. Smith, eds.). Clarendon Press, Oxford, UK, 169–193. Geweke, J. (1996). Bayesian inference for linear

models subject to linear inequality constraints, Federal Reserve Bank of Minneapolis WP 552 [1995], and also

in: A. Zellner and J. S. Lee (eds), Modeling and Prediction: Honouring Seymour Geisser, Springer, New York.

Girolami, M., and B. Calderhead (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods”,

Journal of the Royal Statistical Society Series B, 73 (2), 123–214. Huang, T. H., and Z. Huang (2019). Imposing

regularity conditions to measure Banks’ productivity changes in Taiwan using a stochastic approach, unpub-

lished manuscript. Koop, G., J. Osiewalski, and M. F. J. Steel (1997). Bayesian efficiency analysis through

individual effects: Hospital cost frontiers. Journal of Econometrics 76 (1–2), 77–105. Kumbhakar, S.C., B.U.

Park, L. Simar and M. G. Tsionas (2007). Nonparametric stochastic frontiers: A local maximum likelihood

approach, Journal of Econometrics 137 (1), 1–27. Kumbhakar, S. C., H-J Wang, A. P. Horncastle (2015). A

practitioner’s guide to stochastic frontier analysis using Stata. Cambridge University Press, New York. Lai,

H.-P., and S. C. Kumbhakar, (2019). Technical and allocative efficiency in a panel stochastic production fron-

tier system model. European Journal of Operational Research, 278 (1), 255–265. Lau, L.J. (1978). Testing and

imposing monotonicity, convexity, and quasi-convexity constraints. In: Production Economics: A Dual Ap-

proach to Theory and Applications (volume 1), eds. Fuss, M., and D. McFadden, Amsterdam: North-Holland,

1978, pp. 409–453. Ivaldi, M., N. Ladoux, H. Ossard and M. Simioni (1996). Comparing Fourier and translog

specifications of multiproduct technology: Evidence from an incomplete panel of French farmers. Journal of

Applied Econometrics, 11 (6), 649–667. McCausland, W. J. (2008). On Bayesian analysis and computation for

functions with monotonicity and curvature restrictions, Journal of Econometrics 142 (1), 484–507. O’Donnell,

30



C. (2018). Productivity and efficiency analysis: An economic approach to measuring and explaining manage-

rial performance, Springer. O’Donnell, C.J., and T. Coelli (2005). A Bayesian approach to imposing curvature

on distance functions. Journal of Econometrics 126 (5), 493–523. O’Donnell, C.J., A.N. Rambaldi and H.E.

Doran (2001). Estimating economic relationships subject to firm- and time-varying equality and inequality

constraints, Journal of Applied Econometrics, 16 (6), 709–726. Parmeter, C.F., K. Sun, D. J. Henderson and

S. C. Kumbhakar (2009). Regression and inference under smoothness restrictions, no date, presentation at the

44th Annual CAE. See also paper with same title, dated October 14, 2009, working paper. Paul, S., and S.

Shankar (2018). On estimating efficiency effects in a stochastic frontier model. European Journal of Operational

Research 271 (2), 769–774. Perrakis, K., I. Ntzoufras, and M. G. Tsionas (2015). On the use of marginal pos-

teriors in marginal likelihood estimation via importance sampling. Computational Statistics & Data Analysis,

77 (C), 54–69. Rungsuriyawiboon, S., and S. Stefanou, (2008), The dynamics of efficiency and productivity in

u.s. electric utilities. Journal of Productivity Analysis, 30, 177–190. Terrell, D. (1996). Imposing monotonicity

and concavity restrictions in flexible functional forms, Journal of Applied Econometrics 11, 179–194. Tsionas,

M. G. (2000). Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models. Journal of Productivity

Analysis 13, 183–205. Tsionas, M. G. (2016). “When, Where, and How” of efficiency estimation: Improved pro-

cedures for stochastic frontier modeling. Journal of the American Statistical Association 112 (519), 948–965.

Tsionas, M. G., and E. Mamatzakis (2019). Further results on estimating inefficiency effects in stochastic

frontier models. European Journal of Operational Research, 275 (3), 1157–1164. Wolff, H., T. Heckelei, T.,

and R. C. Mittelhammer (2010). Imposing curvature and monotonicity on flexible functional forms: an effi-

cient regional approach, Computational Economics 36 (4), 309–339. Vouldis, A. T., P. G. Michaelides, and

M. G. Tsionas (2010). Estimating semi-parametric output distance functions with neural-based reduced form

equations using LIML, Economic Modelling 27 (3), 697–704. Zellner, A. (1971). An Introduction to Bayesian

Inference in Econometrics, Wiley, New York.

31


