
Bayesian forecasting with the structural damped trend model

Abstract

In an important study, Sbrana and Silvestrini (2020) [Sbrana, Giacomo, Silvestrini, Andrea, 2020. Forecasting

with the damped trend model using the structural approach. International Journal of Production Economics,

to appear] consider the structural damped trend model which is standard in the arsenal of forecasting analysis.

The authors compare its performance to the “single source of error” model. In this paper, we consider Bayesian

analysis of the damped trend model, which is a well known benchmark in forecasting, using the structural

approach without the need to compute the Kalman filter or evaluate the likelihood function. Monte Carlo and

empirical applications show the superior performance of the structural model versus the “single source of errors”

model. Additional evidence is provided by a Bayesian optimal model pool approach.
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1 Introduction

In this paper we consider the damped trend model recently considered in an important study by Sbrana and

Silvestrini (2020). Specifically, they consider the “multiple sources of error” (MSOE) formulation (or “structural

approach”) which seems to be relatively unpopular in forecasting, probably due to the complexities of likelihood

estimation, which requires the use of Kalman filter (Harvey, 1989; West and Harrison, 2006; Durbin and Koopman,

2012).

Hyndman et al. (2008) show that the damped trend’s parameters can be estimated by maximum likelihood

using the Kalman filter. Of course, this is true for the whole class of exponential smoothing models in the “single

source of error” (SSOE) form, in which a single source of disturbances drives the whole system (Ord et al., 1997).

Gardner and McKenzie (1985) propose a modification of Holt’s linear method to dampen the trend when the

length of the forecast horizon is large. The method, called “damped trend exponential smoothing”, is useful when

the time series has a trend but one believes that its growth rate is unlikely to continue at a constant pace during the

forecast horizon. Since the pioneering work of Gardner and McKenzie (1985), the damped trend model has been

applied extensively in empirical applications owing to its good forecasting record (Gardner and McKenzie, 1988,

1989, 2011; McKenzie and Gardner, 2010). In a survey of the most popular forecasting methods in operational

research, Fildes et al. (2008) mention that the damped trend provides a “benchmark forecasting method for all

others to beat” (p. 1154). It is the consensus of the literature that the damped trend appears is an accurate

forecasting method (McKenzie and Gardner, 2010).

As Sbrana and Silvestrini (2020) write: “in a Monte Carlo experiment, we compare the out-of-sample forecasting

performance of the damped trend model in MSOE form, estimated using our new method, with that of the damped

trend model in the SSOE framework, estimated using the standard innovations approach. Simulation results show

that the forecasting performances of the two models are rather similar, even though some forecasting gains from

the MSOE over the SSOE are possible when time series are short. Furthermore, in two empirical applications using

annual data from the M3-competition dataset (Makridakis and Hibon, 2000) and quarterly credit-to-GDP data

published by the Bank for International Settlements (BIS), we provide further evidence that the damped trend

model in the MSOE form competes well with its SSOE counterpart, confirming the Monte Carlo results.”

In this paper we propose a Bayesian approach to the MSOE which relies on an efficient implementation of the

Gibbs sampler with data augmentation (Tanner and Wong, 1987; Gelfand and Smith, 1990). The Bayesian MSOE

model performs better than SMOE in a decisive way, resolving an ambiguity regarding forecasting performance

relative to SSOE in Sbran and Silverstrini (2020) who employ sampling-theory based techniques. This illustrates

the fact that it makes a substantive difference whether one uses a Bayesian or a sampling-theory approach.
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2 Model

The model is as follows:

yt = lt−1 + φbt−1 + εt, εt
iid∼ N (0, σ2

ε), t = 1, . . . , T, (1)

lt = lt−1 + φbt−1 + ηt, ηt
iid∼ N (0, σ2

η), t = 1, . . . , T, (2)

bt = φbt−1 + ξt, ξt
iid∼ N (0, σ2

ξ ), t = 1, . . . , T. (3)

In this formulation, “iid” means “independent and identically distributed, N (0, σ2) denotes the normal distri-

bution with zero mean and variance σ2,0 < φ < 1, and εt, ηt, ξt are pairwise uncorrelated. The data is y = {yt}Tt=1

where T denotes the number of observations. We assume σε > 0, and ση, σξ ≥ 0. To proceed we consider the

complete data likelihood as if we knew the latent {lt, bt}Tt=1 which is given by:

L(θ, {lt, bt}Tt=1; y) ∝

σ−n
ε σ−n

η σ−n
ξ · exp

{
− 1

2σ2
ε

∑T
t=1 (yt − lt−1 − φbt−1)

2
}

exp
{
− 1

2σ2
η

∑T
t=1 (lt − lt−1 − φbt−1)

2
}
· exp

{
− 1

2σ2
ξ

∑T
t=1 (bt − φbt−1)

2
}
,

· (4)

where θ = [φ, σε, ση, σξ]
′ is the vector of unknown parameters.

To proceed we use a benchmark prior for the coefficients given as follows:

p(θ) = p(φ)p(σε)p(ση)p(σξ), (5)

p(φ) = 1, φ ∈ (0, 1), (6)

p(σj) ∝ σ
−(N̄j+1)
j e−Q̄j/(2σ

2
j ), j ∈ {ε, η, ξ}, (7)

where N̄j , Q̄j ≥ 0 are parameters of the priors. The prior for φ is flat in (0, 1). The priors for the scale parameters

are equivalent to
Q̄j

σ2
j

∼ χ2
N̄j

, j ∈ {ε, η, ξ}, (8)

where χ2
N denotes the chi-square distribution with N degrees of freedom.

3 Bayesian analysis by MCMC

The posterior distribution is given by Bayes’ theorem:
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p(θ, {lt, bt}Tt=1|y) ∝

σ
−(T+N̄ε+1)
ε σ

−(T+N̄η+1)
η σ

−(T+N̄ξ+1)
ξ · exp

{
− 1

2σ2
ε

[
Q̄ε +

∑T
t=1 (yt − lt−1 − φbt−1)

2
]}

exp
{
− 1

2σ2
η

[
Qη +

∑T
t=1 (lt − lt−1 − φbt−1)

2
]}

· exp
{
− 1

2σ2
ξ

[
Q̄ξ +

∑T
t=1 (bt − φbt−1)

2
]}

.

· (9)

To provide access to the posterior we use Gibbs sampling with data augmentation (Tanner and Wong, 1987;

Gelfand and Smith, 1990) which means that we have to draw random numbers recursively from the following

conditional posterior distributions:

φ|σε, ση, σξ, {lt}Tt=1, {bt}Tt=1, y, (10)

σε|φ, ση, σξ, {lt}Tt=1, {bt}Tt=1, y, (11)

ση|σε, φ, σξ, {lt}Tt=1, {bt}Tt=1, y, (12)

σξ|σε, ση, φ, {lt}Tt=1, {bt}Tt=1, y, (13)

lt|φ, σε, ση, σξ, {l−t}, {bt}Tt=1, y, t = 1, . . . , T, (14)

bt|φ, σε, ση, σξ, {lt}Tt=1, {b−t}, y, t = 1, . . . , T, (15)

where {l−t} and {b−t} are, respectively, the sequences of {lt} and {bt}without the elements lt and bt.

For the scale parameters we have the following conditional posteriors:

Q̄ε+
∑T

t=1(yt−lt−1−φbt−1)
2

σ2
ε

|φ, ση, σξ, {lt}Tt=1, {bt}Tt=1, y ∼ χ2
T+N̄ε

, (16)

Q̄η+
∑T

t=1(lt−lt−1−φbt−1)
2

σ2
η

|φ, σε, σξ, {lt}Tt=1, {bt}Tt=1, y ∼ χ2
T+N̄η

, (17)

Q̄η+
∑T

t=1(lt−lt−1−φbt−1)
2

σ2
ξ

|φ, σε, ση, {lt}Tt=1, {bt}Tt=1, y ∼ χ2
T+N̄η

. (18)

This involves only drawing random numbers from chi-square distributions. Let us define b, b−1, l, l−1 that contain

current and lagged values of the sequences {lt}Tt=1 and {bt}Tt=1. It is not difficult to show that the conditional

posterior distribution of φ is:

φ|σε, ση, σξ, {lt}Tt=1, {bt}Tt=1, y ∼ N
(
φ̂, s2φ

)
, (19)
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where φ =
(

1
σ2
ε
+ 1

σ2
η
+ 1

σ2
ξ

)−1

b′−1b−1 +
(

b′−1(y−l−1)+b′−1(l−l−1)

σ2
ε

+
b′−1b

σ2
ξ

)
, and s2φ =

(
1
σ2
ε
+ 1

σ2
η
+ 1

σ2
ξ

)−1

b′−1b−1. The

conditional posterior distribution of lt is as follows.

lt|φ, σε, ση, σξ, {l−t}, {bt}Tt=1, y ∼ N
(
l̂t, s

2
l

)
, t = 1, . . . , T, (20)

where l̂t =
σ2
η(yt+1−φbt)+σ2

ε [lt−1−φ(bt+bt−1)−lt+1]

σ2
ε+2σ2

η
, s2l =

2σ2
εσ

2
η

σ2
ε+2σ2

η
, with obvious modifications for the end points. Finally,

the conditional posterior distribution of bt is the following.

bt|φ, σε, ση, σξ, {lt}Tt=1, {b−t}, y ∼ N (b̂, s2b), t = 1, . . . , T, (21)

where b̂ = φ
(

φ2

σ2
ε
+ φ2

σ2
η
+ 1+φ2

σ2
ξ

)−1 [
yt+1−lt

σ2
ε

+ lt+1−lt
σ2
η

+ bt−1+bt+1

σ2
ξ

]
, and s2b =

(
φ2

σ2
ε
+ φ2

σ2
η
+ 1+φ2

σ2
ξ

)−1

, with obvious

modifications for the end points.

To see how these expressions can be derived easily, let us focus on the terms of the posterior that involve bt.

These terms can be written as follows.
yt+1 − lt = φbt + v

(1)
b,t ,

lt+1 − lt = φbt + v
(2)
b,t ,

φbt−1 = bt + v
(3)
b,t ,

bt+1 = φbt + v
(4)
b,t

(22)

where v
(1)
b,t

iid∼ N (0, σ2
ε), v

(2)
b,t

iid∼ N (0, σ2
η), v

(3)
b,t , v

(4)
b,t

iid∼ N (0, σ2
ξ ). This is a system of four observations with one

parameter (bt) so application of generalized least squares yields the expressions in (21). Similarly, we can derive all

other conditional posterior distributions. The expressions in (16), (17), and (18) can be derived using the result

that if p(σ) ∝ σ−(N+1)e−Q/(2σ2) then Q
σ2 ∼ χ2

N . In turn, the conditional posterior distributions in (19), (20), and

(21) and normal from which random number generation is commonly available in statistical software.

4 Technical details, Monte Carlo simulation and empirical results

4.1 Technical details

To implement Gibbs sampling with data augmentation we use 150,000 iterations omitting the first 50,000 in the

burn-in phase to mitigate possible start up effects.1 Convergence is checked using the standard Geweke (1992)

diagnostics. Sbrana and Silvestrini (2020) recommend the use of the initial conditions

 l0

b0

 =

 y1

0

 although

in principle these can be treated as unknown parameters and estimated. Our benchmark prior has N̄j = 1 and
1Our implementation relies on fortran77 (gnu compiler) making extensive use of commonly available subroutines including linpack

in netlib. Computations were carried out in the High End Computing cluster (HEC) of Lancaster University. The High End Computing
(HEC) Cluster offers 8,800 cores, 40 TB of aggregate memory, 70TB of high performance filestore for general use and 4PB of medium
performance filestore for GridPP data. The cluster operating system is CentOS Linux, with job submission handled by Son of Grid
Engine (SGE).
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Qj = 10−6 (j ∈ {ε, η, ξ) which is minimally informative, if at all.

For the endpoints in (20) and (21) to draw l
(s)
1 and b

(s)
1 (where s indexes the particular MCMC draw) we use

l
(s−1)
T and b

(s−1)
T for the missing l0 and b0 while for l

(s)
T and b

(s)
T we use l

(s−1)
1 and b

(s−1)
1 for the missing lT+1 and

bT+1. This is justified by stationarity. Finally, the SSOE model can be obtained by setting ρεη = ρεξ = ρηξ=1,

where ρεη, ρεξ, ρηξ are defined below.

4.2 Monte Carlo experiment

For the Monte Carlo simulation exercise, we use the same set up as in Sbrana and Silvestrini (2020). Model (1) –

(2) is misspecified by assuming that


εt

ηt

ξt

 iid∼ N




0

0

0

 , σ2
ε


1 ρεηα ρεξβ

α2 ρηξαβ

β2


 , (23)

where the correlation coefficients ρεη, ρεξ, ρηξ ∈ (−1, 1).

The number of observations is T = 50, 100, 200 and we consider 5,000 replications or artificial data sets. For

each replication, the parameter φ is drawn from a uniform distribution in the interval (0.01, 0.99). The innovation

variance σ2
ε and parameters α and β are independently drawn from a uniform in the interval (0.01, 1). Finally, ρεη

, ρεξ and ρηξ are drawn from a uniform in the interval (–1, 1). The use of random rather than fixed parameters

allows the results of the Monte Carlo simulation experiment to be general rather than case-specific. We evaluate

the forecast performance of each model (h = 1, 2, 3, 4, 5, 6-steps ahead) and results are compared using the Mean

Absolute Scaled Error (MASE) as proposed by Hyndman and Koehler (2006). Median MASEs are reported in

Table 1 and compared with the results of Tables 1 – 3 of Sbrana and Silvestrini (2020).
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Table 1: Out of sample forecast comparisons

Forecast horizon T = 50 T = 100 T = 200

h = 1 0.702(a) 0.703(b) 0.702(c)
0.689 0.694 0.698

h = 2 0.775 0.783 0.765
0.770 0.778 0.750

h = 3 0.818 0.813 0.805
0.805 0.810 0.800

h = 4 0.836 0.828 0.827
0.827 0.820 0.814

h = 5 0.855 0.840 0.840
0.832 0.837 0.838

h = 6 0.871 0.861 0.846
0.862 0.855 0.830

Notes: (a) Taken from Table 1 of Sbrana and Silvestrini (2020). (b) Taken from Table 2 of Sbrana and Silvestrini (2020). (c) Taken from Table 3
of Sbrana and Silvestrini (2020). Reported numbers are medians of Mean Absolute Scaled Error (MASE) as proposed by Hyndman and Koehler
(2006) and Sbrana and Silvestrini (2020). The results of the Monte Carlo simulations in this paper are reported in italics.

Notably, the forecast errors are smaller than the ones using minimizing the sum of squared prediction errors in

samples as large as 200. Thus, it is essential, as it seems, to use a Bayesian approach as it takes better account of

“small samples”.

4.3 Empirical application

As in Sbrana and Silvestrini (2020) we use quarterly data of time series on total credit to the non-financial sector

relative to GDP using data published by the Bank for International Settlements. It covers almost 50 economies

with, on average, more than 45 years of data, reaching back to the 1940s and the 1950s in some cases and it is

taken from the same source as in Sbrana and Silvestrini (2020).2 several studies of past financial crises found

that the credit-to-GDP ratio is an early warning indicator of systemic banking crises (see, for instance, De Bonis

and Silvestrini, 2014). This motivates our interest in forecasting this variable. Each time series (271 in total) is

divided into a training sample and into a test sample, which corresponds to the last six observations. The predictive

performance of the models is evaluated based on h =1, 2, 3, 4, 5, 6-step ahead forecasts, using the MASE. Starting

in 2008:Q1 all time series have 45 observations. This allows us to better appreciate the influence of the sample size

on the forecasting performance of different estimation and forecasting techniques.

Our empirical results are reported in Table 2 and we compare with SSOE rather than MSOE as it behaved

better in Sbrana and Silvestrini (2020).
2https://www.bis.org/ statistics/about_credit_stats.htm
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Table 2: Out-of-sample forecast comparison of Bayesian MSOE

Annual M3 data Quarterly BIS credit data quarterly BIS credit data,
shorter sample

(2008:Q1-2019:Q1)
Mean Median Mean Median Mean Median

h = 1 1.117(a) 0.745 0.636(b) 0.499 0.667(c) 0.536
1.103 0.710 0.625 0.445 0.610 0.528

h = 2 1.468 0.991 0.781 0.653 0.814 0.688
1.320 0.977 0.693 0.610 0.792 0.665

h = 3 1.884 1.214 0.988 0.799 1.040 0.872
1.720 1.128 0.970 0.782 0.986 0.864

h = 4 2.250 1.405 1.197 0.981 1.278 1.115
2.130 1.317 1.182 0.977 1.265 1.042

h = 5 2.581 1.646 1.373 1.137 1.460 1.308
2.410 1.630 1.355 1.124 1.432 1.265

h = 6 2.873 1.878 1.528 1.294 1.612 1.421
2.773 1.853 1.510 1.286 1.602 1.389

Notes: (a) Taken from Table 4 of Sbrana and Silvestrini (2020). (b) Taken from Table 5 of Sbrana and Silvestrini (2020). (c) Taken from Table
6 of Sbrana and Silvestrini (2020). All these results are for the SSOE model. Reported numbers are medians of Mean Absolute Scaled Error
(MASE) as proposed by Hyndman and Koehler (2006) and Sbrana and Silvestrini (2020). The results of the Monte Carlo simulation in this
paper are reported in italics. For the data, see Sbrana and Silvestrini (2020).

From the evidence in Table 2 it turns out that Bayesian MASEs are smaller for the MSOE model relative to

the SSOE (and, therefore, the sampling-theory based MSOE) model.

To assess the out-of-sample behavior of the Bayesian MSOE we use predictive Bayes factors (PBF). First, we

need the predictive likelihood p(yT+h|y1:T ) where y1:T is the estimation sample, and yT+h is the observation in

period T + h where h is the forecast horizon. Suppose Λ1:T = {lt, bt}Tt=1 denotes our latent variables. In turn, we

have:

p(yT+h|y1:T ) =
∫

p(yT+h|θ,Λ1:T , y1:T )p(θ,Λ1:T |y1:T ) dθ dΛ1:T . (24)

Provided we have a set of draws
{
θ(s),Λ

(s)
1:T

}S

s=1
which converges to the distribution whose density is p(θ,Λ1:T |y1:T )

(a task carried out by MCMC), we have

p(yT+h|y1:T ) ' S−1
S∑

s=1

p(yT+h|θ(s),Λ(s)
1:T , y1:T ), (25)

where the quality of approximation depends only on S and yT+h|θ(s),Λ(s)
1:T , y1:T is available in closed form from

(1) – (3). If we have different models indexed by m ∈ M = {0, 1, . . . ,M} then we can obtain different predictive
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densities denoted pm(yT+h|y1:T ). The PBF in favor of model m and against model “0” is simply

PBFm:1 =
pm(yT+h|y1:T )
p0(yT+h|y1:T )

, m ∈ M . (26)

For our empirical application, median PBFs (across all time series in a given data set) are reported in Figure 1.

In panel (a) we report PBFs in favor of the Bayesian SSOE model and against MSOE as well as AR(1) when the

benchmark model “0” is a random walk with drift.

Figure 1: Predictive Bayes factors
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The evidence in Figure 1 shows that the against both AR(1) and SSOE are quite large, ranging from 10 to

100 in panel (a), 70 – 100 in panel (b) and nearly 45 in panel (c). This behavior is consistent across all forecast

horizons so it resolves, in a sense, the ambiguity in forecasting performance of MSOE versus SSOE which comes out

of the evidence in Sbrana and Silvestrini (2020). This ambiguity arises in a sampling-theory context when models

are estimated using minimizing the sum of squared prediction errors. The Bayesian evidence is more decisive and

shows the superior performance of MSOE in terms of out-of-sample forecasting.

4.4 Optimal model pools

Suppose yo is an out-of-sample observation. Given a set of models whose posterior predictive densities are

pm(yo|y1:T ), we consider predictive densities of the form:

∑
m∈M

wmpm(yo|y1:T );
∑

m∈M

wm = 1; wm ≥ 0 ∀m ∈ M , (27)

which are known as linear opinion pools. We consider using the log predictive score function:

T∑
t=1

log

[
M∑

m=1

wmpm(yo|y1:t)

]
, (28)
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Figure 2: Optimal model pools
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Notes: Data set I is Annual M3 data. Data set II is Quarterly BIS credit data quarterly BIS credit data, and Data set III is the shorter sample
(2008:Q1-2019:Q1). For the data, see Sbrana and Silvestrini (2020). Results are reported for all time series in a given data set.

as in Geweke and Amisano (2011 a, b). The log predictive score function is a measure of the out-of-sample prediction

record of the model.

Bernardo (1979) showed that the only proper local scoring rule takes the form of (28). Maximizing (28) subject

to (27) is quite feasible given nonlinear programming software. Therefore, the problem is:

max{wm,m∈M}
∑T

t=1 log
[∑M

m=1 wmpm(yo|y1:t)
]
,

subject to∑
m∈M wm = 1; wm ≥ 0 ∀m ∈ M .

(29)

The purpose of this optimization program is to maximize weighted log predictive scoring (or, equivalently,

maximize out-of-sample performance) subject to the usual portfolio-like constraints on the weights attached to

different models. It must be emphasized that this approach is quite general in that it allows for different, general

models not necessarily sharing the same parameters although, apparently, all models are conditioned on (that is use)

the same data.3

For each time series in a data set, we consider a random walk model with drift, an AR(1), the SSOE and the

MSOE models. We solve the problem in (29) for each different time series and we report the optimal weights in

Figure 2.

In all three data sets, from Figure 2, the weight of Bayesian MSOE model (panel (a)) is higher than 0.92 and

fairly close to unity for the majority of time series. The remaining weight is allocated to SSOE (panel (b)) with the

random walk and AR(1) models receiving a zero weight in all cases examined here (results not reported here but
3In our computations we used the fortran 77 version of library lbfgs in netlib. The problem can be converted to unconstrained

optimization by reparametrizing wm =
exp

(
−ω2

m

)
1+

∑
m′>1 exp

(
−ω2

m′
) , and the ωis are defined on the real line. Convergence is quite fast given

any initial conditions and no other local optima were found.
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available on request). The evidence from optimal weight pools shows that MSOE definitely has better predictive

better than the SSOE model in a substantive sense.

Concluding Remarks

In this paper we have considered Bayesian inference and out-of-sample forecasting using the multiple sources of

error (MSOE) damped trend model. Monte Carlo simulations and empirical evidence point to the direction that

the Bayesian MSOE model performs better than the Bayesian single source of error (SSOE) damped trend model.

Technical Appendix

A.1 Prior sensitivity analysis

We deviate from our benchmark prior by assuming that N̄j and Q̄j are drawn from a uniform distribution in the

interval (0.001, 10). We draw 10,000 values for these prior parameters and we redo posterior analysis using the

Sampling-Importance-Resampling (SIR) approach of Rubin (1987, 1988), see also Smith and Gelfand (1992). The

size of the re-sample in the SIR algorithm is set to 20% of the original MCMC sample. Differences of posterior

means and posterior standard deviations of the model (across all time series in the three data sets) are reported in

Figure A.1.

Figure A.1: Prior sensitivity analysis
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Notes: Data set I is Annual M3 data. Data set II is Quarterly BIS credit data quarterly BIS credit data, and Data set III is the shorter sample
(2008:Q1-2019:Q1). MASE is Mean Absolute Scaled Error as proposed by Hyndman and Koehler (2006) and Sbrana and Silvestrini (2020). For
the data, see Sbrana and Silvestrini (2020). Results in panels (a), (b), and (c) are across 50 randomly selected time series in a given data set.

A.2 MCMC autocorrelation

In Figure A.3 we report median autocorrelation functions across 50 (randomly selected) time series in a given data

set.
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Figure A.3: Relative Numerical Efficiency (RNE)
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Notes: Data set I is Annual M3 data. Data set II is Quarterly BIS credit data quarterly BIS credit data, and Data set III is the shorter sample
(2008:Q1-2019:Q1). MASE is Mean Absolute Scaled Error as proposed by Hyndman and Koehler (2006) and Sbrana and Silvestrini (2020). For
the data, see Sbrana and Silvestrini (2020). Results in panels (a), (b), and (c) are medians across 50 randomly selected time series in a given
data set.

Figure A.2: Autocorrelation functions
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Notes: Data set I is Annual M3 data. Data set II is Quarterly BIS credit data quarterly BIS credit data, and Data set III is the shorter sample
(2008:Q1-2019:Q1). MASE is Mean Absolute Scaled Error as proposed by Hyndman and Koehler (2006) and Sbrana and Silvestrini (2020). For
the data, see Sbrana and Silvestrini (2020). Results in panels (a), (b), and (c) are across 50 randomly selected time series in a given data set.

In Figure A.4 we report median relative numerical efficiency (RNE) indices (Geweke, 1992) for 50 (randomly

selected) time series in a given data set. If iid sampling from the posterior were possible, RNEs would be equal to

one. In MCMC we have to settle, of course, for lower values of RNEs, so that autocorrelation is not destructively

large (defined as a situation where RNEs are close to zero).
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