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Abstract—Current fault diagnosis methods for rotor-bearing 

system are mostly based on analyzing the vibration signals 

collected at steady rotating speeds. In those methods, the data 

collected under one operating condition cannot be accurately used 

for diagnosis under a different condition. Moreover, in vibration 

monitoring, installing the necessary sensors will affect the 

equipment structure and hence the vibration response itself. The 

present paper proposes a new method based on two-stage 

parameter transfer and infrared thermal images for fault 

diagnosis of rotor-bearing system under variable rotating speeds. 

The method of parameter transfer enables the use of data (or 

parameters) acquired under one operating condition (called the 

source domain) to be extended for use in a different operating 

condition (called the target domain). First, scaled exponential 

linear unit (SELU) and modified stochastic gradient descent 

(MSGD) are used to construct an enhanced convolutional neural 

network (ECNN). Second, a stacked convolutional auto-encoder 

(CAE) trained based on unlabeled source-domain thermal images 

is employed to initialize a source-domain ECNN. Third, model 

parameters from the pre-trained source-domain ECNN are 

transferred to the target-domain ECNN to adapt to the 

characteristics of the target domain. The collected thermal images 

for a rotor-bearing system under variable speeds are used to test 

the transfer diagnosis performance of the proposed method. The 

experimental results demonstrate the performance improvement 

and the advantages of the proposed method.  

 
Index Terms—Rotor-bearing system, Fault diagnosis, 

Variable rotating speeds, Two-stage parameter transfer, Infrared 

thermal images. 
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I. INTRODUCTION 

otating machinery has extensive applications in modern 

manufacturing industry [1]. Rotor-bearing systems are a 

crucial component in rotating machinery. Accurate and 

automated fault diagnosis of rotor-bearing systems can improve 

the maintainability and safety of rotating machinery [2-4]. 

For decades, researchers have made valuable achievements 

in intelligent fault diagnosis using machine learning techniques 

such as shallow network models [5-7]. In the past several years, 

growing attention has been paid to the application of deep 

learning-based diagnosis techniques [8-12], which can 

eliminate the dependence on manual feature engineering, thus 

facilitating the automation of diagnosis. In addition to 

containing rich dynamic diagnostic information, vibration 

signals can be acquired by accelerometers with low hardware 

cost and good sensibility. Oh et al. [13] applied deep belief 

network (DBN) to diagnose various faults of a rotor system 

using vibration-imaging. Saufi et al. [14] constructed stacked 

auto-encoder (SAE) for the fault identification of a gearbox 

based on multi-sensor vibration signals. Wen et al. [15] 

developed a two-level hierarchical convolutional neural 

network (CNN) for rotating machinery fault classification by 

analyzing the time-frequency images converted from the 

vibration signals, whose state-of-the-art feasibility was verified 

by three cases. Although most of the existing diagnosis 

methods for rotating machinery depend on analyzing the 

vibration signals, there are two major problems. First, the 

vibration sensors need to be firmly fixed at a key location of the 

equipment, which may affect the equipment structure and 

hence the vibration response itself during operation [16, 17]. 

Second, due to the coupled vibration of multiple components 

and complicated transmission paths, the collected vibration 

signals are usually corrupted by noise disturbances [18]. 

Infrared thermal images are increasingly used as sensory data 

for condition monitoring of electromechanical equipment 

[19-21]. Unlike vibration-based monitoring, the use of infrared 

thermal images has the advantages of being contactless, 

convenient, high precision, and wide coverage [18]. It has been 

shown that the temperature characteristics are stable to the wear 

and tear, type of fault, the level of severity, and the rotating 

speeds of bearings [22]. When the rotating machinery operates 

with localized damage, it would excite the higher temperature 

generated by the friction [23]. Therefore the thermograms will 

contain different characteristics of various faults, which could 
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be used to diagnose the faults of rotor-bearings. Besides, the 

installation of the necessary equipment is simple and 

straightforward regardless of the structural complexity of the 

monitored machine [23]. For image-based fault diagnosis, 

CNN is considered the most suitable deep learning model due 

to its specific structure. Recently, some scholars have started to 

explore the application of CNN and thermal images in 

intelligent fault diagnosis of rotating machinery. In 2018, 

Janssens et al. [24] proposed a new CNN for machine health 

monitoring using thermal images. In 2019, Jia et al. [18] 

combined thermal imaging and CNN for fault identification of 

rotor-bearing systems. In 2020, Li et al. [17] employed CNN 

for fault diagnosis of rotating machinery by analyzing thermal 

images. In 2020, He et al. [25] constructed enhanced CNN after 

unsupervised initialization to classify fault types of bearing and 

shaft with small labeled thermal images. CNN-based 

approaches with thermal images have provided a new way for 

fault diagnosis of rotor-bearing systems. However, the existing 

techniques mainly consider diagnosis under a fixed rotating 

speed, i.e., the training and testing samples are from the same 

rotating speed. In practice, the rotating speed of a rotor-bearing 

system will typically vary, which will inevitably lead to 

characteristic differences, especially the statistical distributions, 

among the measured samples [26]. In other words, the 

CNN-based diagnosis model trained with the thermal images 

collected under one specific rotating speed usually cannot 

represent other working conditions.  

Parameter transfer is currently the most successful 

application of transfer learning theory [27, 28], which concerns 

transferring knowledge that is learned under one condition, for 

use in a different condition. In the present context of fault 

diagnosis of machinery, it provides the capability of initializing 

the target-domain model (which is the actual application 

domain) by using rich knowledge of model parameters gained 

from a pre-trained source-domain model [29] (which is the 

domain where the training data is collected). Thanks to the 

concept and principles of parameter transfer, a deep learning 

model trained by using source-domain samples has good 

potential to represent a target-domain, even if the data from the 

two situations have different characteristics and statistical 

distributions. Recently, parameter transfer has been applied to 

improve the generalization abilities of CNNs for fault diagnosis 

of rotating machinery. In 2018, Cao et al. [30] combined a well 

pre-trained CNN and the approach of parameter transfer for 

gearbox fault classification. In 2019, Shao et al. [29] introduced 

the approach of parameter transfer in conjunction with properly 

pre-trained CNN to machinery fault diagnosis under variable 

rotating speeds. In 2019, Zhong et al. [31] proposed a new fault 

identification method for gas turbine using parameter transfer 

and CNN. In 2020, He et al. [28] constructed ensemble transfer 

CNNs based on multi-channel signals for fault diagnosis of 

planetary gearbox. In 2020, Wen et al. [32] developed transfer 

CNN using ResNet-50 to diagnose faults of rotating machinery, 

whose accuracy and efficiency are better than the existing 

methods. Although these methods can largely overcome the 

differences in the statistical distribution between the data 

samples in the source domain and the target domain, three 

problems remain to be addressed. First, these methods still use 

vibration analysis, which has the shortcomings mentioned 

above. Second, these methods only pay attention to parameter 

transfer between the same-type models, which cannot make full 

use of the characteristics of various models. Third, even though 

these methods need only small sets of target-domain samples, 

adequate and labeled source-domain samples are still necessary 

to realize a properly trained CNN that would provide good 

performance in the target domain. On one hand, collecting large 

quantities of labeled source-domain samples will significantly 

increase the development cost. On the other hand, pre-training a 

good CNN from scratch, based on large-scale samples, is 

difficult and time-consuming since a large number of model 

parameters need to be adjusted [29]. Therefore, reducing the 

dependence on labeled source-domain samples while 

enhancing the adaptability of the deep learning model is to be 

investigated for effective fault diagnosis in rotating machinery.  

In this paper, a new method based on two-stage parameter 

transfer and thermal images is proposed for the fault diagnosis 

of rotor-bearing systems. The thermal images of a rotor-bearing 

system, collected under variable rotating speeds, are used to 

evaluate the performance of the developed method. The 

experimental result demonstrates the advantages of the 

developed two-stage parameter transfer strategy. The main 

contributions of the paper are as follows. 

1) A new framework for the fault diagnosis of a rotor-bearing 

system under variable rotating speeds is developed, in 

which the concept of two-stage parameter transfer is used 

to facilitate the use of data from a source domain to train a 

CNN for use in the target domain, and infrared thermal 

images are utilized to characterize various fault states. 

2) Scaled exponential linear unit (SELU) and modified 

stochastic gradient descent (MSGD) are used to construct 

an enhanced convolutional neural network (ECNN), which 

is shown to improve performance. 

3) A stacked CAE trained with unlabeled source-domain 

thermal images is employed to initialize the source-domain 

ECNN, reducing the dependence on labeled information. 

4) Model parameters of the pre-trained source-domain ECNN 

are further transferred to the target-domain ECNN to adapt 

to the characteristics of the target-domain thermal images. 

The organization of the rest of the paper is as follows. In 

Section II, a brief review of classical CNN is given. Section III 

gives details of the proposed method and its implementation. 

An experimental study, evaluation of the results, and discussion 

are presented in Section IV. Section V concludes this paper and 

highlights possible future work.  

II. CONCEPTS OF CLASSICAL CNN  

The most common and classical CNN model that is 

applicable in the present problem is LeNet-5, which can use 

two-dimensional (2D) grayscale images as the input data. As 

shown in Fig. 1, LeNet-5 usually comprises an input layer, 

convolutional layer 1, pooling layer 2, convolutional layer 3, 

pooling layer 4, and a fully connected layer 5.  

Input layer Convolutional 

layer 1
Pooling 

layer 2

Convolutional 

layer 3
Pooling 

layer 4

Fully connected 
layer 5

 
Fig. 1. Structure of a classical CNN (LeNet-5) for image processing. 



  

The calculation principle of convolution layer is given by, 
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With the rectified linear unit (ReLU) activation function, 
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After each convolutional layer, a max pooling layer is added 

for reducing the feature dimension, expressed as 
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in which, ( )maxpl   denotes the max pooling operation, 
,

,

k d

r sf  

is the corresponding element after max pooling, and RP is the 

pooling region with each size of NP×NP. High-level features 

can be acquired through successive convolution and pooling 

layers, which are then used as the input of a fully connected 

layer and a softmax layer, to generate the classification output. 

III. THE PROPOSED METHOD 

A. ECNN construction 

In the present paper, to enhance the capability of the classical 

CNN, the improvements in activation function and training 

algorithm are combined by constructing the ECNN. 

Exponential linear unit (ELU) can effectively overcome the 

neuron death problem of ReLU, and has reported slightly better 

performance compared with ReLU in several benchmark data 

sets. As a further improved version of ELU, scaled ELU (SELU) 

[33] can make the neural network have self-normalizing ability, 

defined as  
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where,   and   are two control coefficients of SELU. 

In the stochastic gradient descent (SGD) algorithm, the 

learning rate stays the same during the training process, which 

is inadequate to effectively adjust all the weights and biases at 

different layers. Although basic adaptive learning rate strategy 

has been proved to be feasible in many cases, it cannot 

synchronously and timely capture the change of the MSE 

function. Based on the moving average gradient and square 

gradient, Adam optimizer has the advantages of high efficiency 

and smooth gradient, which has become a priority choice of 

neural network training. However, Adam optimizer has three 

parameters that need to be specified [34]. Here, to update these 

weights and biases more easily and efficiently, a modified SGD 

(MSGD) algorithm with tracking learning rate and momentum 

is used, specifically, 
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where t is the iteration number, 
tθ  is the trained parameter set 

at the t
th

 iteration, tE , tg , 
t  are the MSE function, gradient, 

and learning rate at the t
th

 iteration, respectively,   is a 

self-adjusting coefficient that depends on the tracking factor  , 

t  is the momentum. Generally, at the beginning of training, it 

is unlikely to fall into the local optimum, so the momentum 

value does not need to be very large to reach a certain steady 

state. Later, when looking for the optimal solution, it needs to 

jump out of the local optimum, so it needs a larger momentum 

value. Following this idea and according to some published 

researches and their open codes [35], specify the initial 

momentum at the beginning (current iteration < a boundary 

iteration number) of training is suggested close to 0.5, and the 

final momentum is suggested close to 0.95. In the MSGD, the 

learning rate has a direct and synchronous relationship with the 

change of the MSE at different iterations. So far, the ECNN 

based on SELU and MSGD has been constructed. Next, the 

two-stage parameter transfer strategy will be introduced. 

B. The first transfer stage: parameter transfer from 
stacked CAE to source-domain ECNN 

The effective training of ECNN cannot avoid the use of 

large-scale labeled samples. Unsupervised initializations can 

not only help reduce the dependence on labeled samples, but 

also avoid local minima [36]. As integration of auto-encoder 

(AE) and CNN, convolutional AE (CAE) simultaneously has 

unsupervised learning ability and accommodates the 2D image 

structures [37]. In addition, the weights and the biases of CAE 

are both shared among all the feature maps, providing a strong 

foundation for parameter transfer from CAE to CNN. 

The encoder of CAE is a convolution unit consisting of a 

convolutional layer and a max pooling layer. The k
th

 feature 

map of a 2D grayscale image x  with no labeled information is, 

( )k k kg  h x W b                       (8) 

where, 
kh  is the k

th
 hidden feature map, ( )g   is nonlinear 

activation function, 
kW  is the k

th
 weight matrix with the same 

size as CNN, and 
kb  is the corresponding bias vector. Then, a 

max pooling layer should also follow the convolutional layer. 

As an inverse process, the decoder has a deconvolutional 

layer and a max unpooling layer. The deconvolutional layer is 

to recover the grayscale image from the hidden feature maps 

after max pooling, and the reconstruction can be calculated as,  
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where, K is the number of hidden feature maps, ˆ kW  is the 

transpose of 
kW , c  is the bias, and y  is the reconstruction of 

x  with the same size by adding a max unpooling layer after the 

deconvolutional layer. SGD is used to update the weights and 

biases to minimize the following function, 
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in which, S denotes the total number of 2D grayscale images 

(unlabeled), and 
( )ix  denotes the i

th
 input image. 

To further learn the high-level compressed features of the 

grayscale images, this paper constructs a stacked CAE using 

two CAEs, which is similar to the stacked SAE. Specifically, 

the stacked CAE in this paper contains two convolutional layers, 

two pooling layers, a fully connected layer, two unpooling 

layers, and two deconvolutional layers. The first CAE is trained 

to learn the first level features of the grayscale images in an 

unsupervised way. After that, the second CAE continues to 

mine the second level features based on the first level features. 

To achieve a small reconstruction error, two deconvolutional 

layers and two unpooling layers are combined to recover the 

grayscale images from the two-level features.  

Finally, the constructed stacked CAE can be used to acquire 

high-level features of the unlabeled source-domain grayscale 

images and provide good trained weights and biases to initialize 

the source-domain ECNN with the same structure, which no 

longer requires many labeled samples. The parameter transfer 

from stacked CAE to source-domain ECNN is shown in Fig. 2. 
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Fig. 2. Parameter transfer from the stacked CAE to source-domain ECNN. 

C. The second transfer stage: parameter transfer from 
source-domain ECNN to target-domain ECNN 

Fig. 3 shows the second parameter transfer process from the 

source-domain ECNN to target-domain ECNN, summarized as 

follows. (1) Build a target-domain ECNN with the same 

structure and hyperparameters as the pre-trained source-domain 

ECNN initialized by a trained stacked CAE; (2) Transfer all the 

pre-trained weights and biases to the target-domain ECNN 

from the source-domain ECNN; and (3) Fine-tune the 

target-domain ECNN with limited labeled target-domain 

grayscale images. In detail, no weights are fixed while 

fine-tuning, that is, all of the weights are first pre-trained, then 

transferred, and finally fine-tuned. 
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Fig. 3. Parameter transfer from source-domain ECNN to target-domain ECNN. 

D. Procedures of the proposed method 

The flowchart of the proposed method is shown in Fig. 4. 

The main steps are as follows. 

Step 1: Infrared thermal images of the rotor-bearing system 

under variable rotating speeds are collected and converted to 

grayscale images. Then, these grayscale images are divided 

into the source domain and the target domain, both of which 

include a small number of labeled samples. 

Step 2: SELU activation function and MSGD algorithm are 

used to construct the ECNN. 

Step 3: Some unlabeled source-domain samples are used to 

train a stacked CAE. 

Step 4: Transfer all the trained weights and biases of the 

stacked CAE to initialize the source-domain ECNN with the 

same network architecture, which is then pre-trained using a 

small number of labeled source-domain samples. 

Step 5: Transfer all the pre-trained weights and biases of the 

source-domain ECNN to initialize the target-domain ECNN 

with the same network architecture and hyperparameters. 

Step 6: Fine-tune the target-domain ECNN using a small 

number of labeled target-domain samples to further update all 

the weights and the biases. 

Step 7: Use unlabeled target-domain samples to test the 

transfer diagnosis performance of the proposed method. 

IV. CASE STUDY 

A. Introduction to the infrared thermal images 

The fault diagnosis test bench for the experimental study is 

shown in Fig. 5, including a motor, tested bearing unit, rotating 

shaft, and a transmission belt. An infrared thermal imaging 

camera (FLIR Ax5: 320*256 pixels) is used for monitoring the 

bearing and the shaft [38].  

 
Fig. 5. Fault simulation test bench of the rotor-bearing system. 
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Fig. 4. The overall system framework of the proposed method. 

TABLE II 

SOURCE-DOMAIN AND TARGET-DOMAIN DATASETS 

The grayscale 
images 

Rotating 
speeds 

Extra 
noise 

Sizes of the training samples for each health state Sizes of the testing samples for each 
health state Unlabeled samples Labeled samples 

Source domain  2000 rpm No 70 for training stacked CAE  30 for pre-training source-domain ECNN 50 for testing source-domain ECNN 

Target domain  3000 rpm Yes ------------ 5 for fine-tuning target-domain ECNN 100 for testing target-domain ECNN 



  

As listed in Table I, eight health conditions are selected for 

administering to the rotor-bearing system. The unbalanced fault 

of the rotating shaft is generated by installing three mass blocks 

on the same side of a disk. Limited by the existing experimental 

device, the infrared thermal images collected under 2000 rpm 

and 3000 rpm are treated as the source domain and the target 

domain, respectively. As the aim of this paper is to achieve fault 

transfer diagnosis with small amounts of both labeled 

source-domain samples and target-domain samples, only 30 

source-domain samples and 5 target-domain samples have 

labeled information for each condition, as shown in Table II.  
TABLE I 

DETAILS OF THE EIGHT CONDITIONS OF THE ROTOR-BEARING SYSTEM 

Health conditions of the rotor-bearing system Labels of the conditions 

Normal bearing and normal rotating shaft 1 (Condition 1) 
Outer race fault and normal rotating shaft 2 (Condition 2) 

Inner race fault and normal rotating shaft 3 (Condition 3) 

Ball fault and normal rotating shaft 4 (Condition 4) 
Normal bearing and unbalanced rotating shaft 5 (Condition 5) 

Outer race fault and unbalanced rotating shaft 6 (Condition 6) 

Inner race fault and unbalanced rotating shaft 7 (Condition 7) 
Ball fault and unbalanced rotating shaft 8 (Condition 8) 

Since the infrared thermal images are often sensitive to the 

environment, the region of interest should be firstly selected to 

increase the analysis efficiency and suppress the background 

interference. Specifically, the region of interest is manually 

determined in this study, which mainly consists of the tested 

bearing, disk, rotating shaft and housing. To further test the 

robustness of the proposed method, extra Gaussian noise with 

zero-mean and variance of 0.005 is added infrared thermal 

images in the target domain to increase the distribution 

differences with the source domain. Fig. 6 and Fig. 7 

successively show the infrared thermal images and the 

corresponding grayscale images of the four health conditions 

(Conditions 3, 4, 7, and 8) in the source domain and the target 

domain, based on the selected region of interest. 

Here, based on the image level, an evaluation index called 

structural similarity (SSIM) is used to measure the similarity of 

two images from the brightness, contrast and structure, and the 

defined formula can be found in Ref. [39]. Take the random 4 

images of source-domain Condition 3 and the random 4 images 

of target-domain Condition 3 with no noise as examples, the 16 

SSIM values are calculated in Table III. It can be seen that 

although the SSIM values between different pairs show slight 

diversities due to the random mechanism of the algorithm, most 

of them are larger than 0.58. For comparison, SSIM values 

between the random 4 images of source-domain Condition 3 

and the random 4 images of target-domain Condition 3 with 

Gaussian noise are also calculated. We can find from Table IV 

that most of the SSIM values are smaller than 0.29. Similar 

situations also appear in the other 7 conditions. Therefore, 

adding Gaussian noise can indeed increase the differences 

between the two domains. 
 

   
 

Fig. 6. Infrared thermal images of the four conditions: (a-d) Conditions 3, 4, 7, 8 

from the source domain; (e-h) Conditions 3, 4, 7, 8 from the target domain.  

   
 

Fig. 7. Grayscale images of four conditions: (a-d) Conditions 3, 4, 7, 8 from the 
source domain; (e-h) Conditions 3, 4, 7, 8 (with noise) from the target domain. 

 
TABLE III 

SSIM VALUES BETWEEN THE RANDOM 4 IMAGES OF SOURCE-DOMAIN 

CONDITION 3 AND THE RANDOM 4 IMAGES OF TARGET-DOMAIN CONDITION 3 

WITH NO EXTRA GAUSSIAN NOISE 

Random 4 images of 

source-domain Condition 
3 

Random 4 images of target-domain Condition 3 

with no extra Gaussian noise 

Image 1 Image 2 Image 3 Image 4 

Image 1 0.5906 0.5889 0.5899 0.5830 

Image 2 0.5967 0.5882 0.5895 0.5869 

Image 3 0.6015 0.5937 0.5916 0.5934 
Image 4 0.6038 0.5966 0.5915 0.5916 

 
TABLE IV 

SSIM VALUES BETWEEN THE RANDOM 4 IMAGES OF SOURCE-DOMAIN 

CONDITION 3 AND THE RANDOM 4 IMAGES OF TARGET-DOMAIN CONDITION 3 

WITH EXTRA GAUSSIAN NOISE 

Random 4 images of 
source-domain Condition 

3 

Random 4 images of target-domain Condition 3 
with extra Gaussian noise 

Image 1 Image 2 Image 3 Image 4 

Image 1 0.2884 0.2849 0.2816 0.2808 

Image 2 0.2880 0.2861 0.2815 0.2821 

Image 3 0.2859 0.2834 0.2771 0.2822 
Image 4 0.2826 0.2819 0.2763 0.2774 

 

TABLE V 

AVERAGE FAULT TRANSFER DIAGNOSIS RESULTS OF DIFFERENT METHODS 

Different diagnosis methods Numbers of labeled source-domain / 

target-domain samples 

Parameter transfer strategies Average results  

Method 1 (CAE & ECNN: SELU & MSGD, Proposed) 30 / 5 Two-stage parameter transfer 94.54% (7563/8000) 

Method 2 (CAE & CNN: SELU & SGD) 30 / 5 Two-stage parameter transfer  88.91% (7113/8000) 
Method 3 (CAE & CNN: SELU & Adam) 30 / 5 Two-stage parameter transfer  92.43% (7394/8000) 

Method 4 (CAE & CNN: ReLU & MSGD) 30 / 5 Two-stage parameter transfer  89.56% (7165/8000) 

Method 5 (ECNN: SELU & MSGD) 30 / 5 One-stage parameter transfer  74.03% (5922/8000) 

Method 6 (CNN: ReLU & MSGD) 30 / 5 One-stage parameter transfer  71.53% (5722/8000) 

Method 7 (ECNN: SELU & MSGD) 60 / 5 One-stage parameter transfer  87.72% (7018/8000) 
Method 8 (CNN: ReLU & MSGD) 60 / 5 One-stage parameter transfer  84.46% (6757/8000) 

Method 9 (ECNN: SELU & MSGD) 90 / 5 One-stage parameter transfer  92.15% (7372/8000) 

 

  

Fig. 8. Detailed fault transfer diagnosis results of different methods for the ten runs: (1)-(9) mean Method 1 to Method 9. 
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B. Superiority of the two-stage parameter transfer idea 

The performance of the two-stage parameter transfer and 

ECNN are both tested to demonstrate their superiorities. Two 

transfer strategies, two activation functions, three optimizers 

are considered for comparison. All of the methods aim to 

classify the target-domain testing samples using the diagnosis 

models pre-trained with the source-domain samples. 

Fig. 8 shows the detailed fault transfer diagnosis results of 

each method for the ten independent runs to avoid the 

contingency of the results, i.e., each method runs for ten 

repeated times using the randomly selected samples, and the 

statistical results are presented in Table V. The average transfer 

diagnosis accuracy rate of the proposed method is about 95% 

with a total correct diagnosis number of 7563, outperforming 

the comparative methods. Specifically, by comparing Methods 

1, 2, and 3, the improvements of average accuracies using 

MSGD are about 6% and 2%, respectively. The improvement 

of average accuracy based on SELU is about 5%. The average 

diagnosis results of Methods 5, 7, and 9 indicate that the 

training of the source-domain ECNN depends on the labeled 

samples using one-stage parameter transfer. It is believed that 

the transfer diagnosis accuracy can be further improved by 

adding more labeled samples, which however will increase the 

cost at the same time. The positive role of the first stage 

parameter transfer is demonstrated by comparing Methods 1 

and 5.  

For the first run, the specific fault transfer diagnosis accuracy 

of the proposed method is 94.25% (754/800). The multi-class 

confusion matrix is given in Fig. 9, and the F-scores are 

calculated and presented in Fig. 10. The vertical coordinate and 

horizontal coordinate in Fig. 9 refer to the actual and predicted 

labels, respectively. The matrix elements located on the main 

diagonal refer to the diagnostic accuracies of the corresponding 

condition, and the other elements refer to the misdiagnosis rates. 

It can be found that Conditions 1, 4, and 5 all have 100% 

accuracy. Condition 1 (normal bearing and normal shaft) is 

intuitively far away from other conditions that results in a high 

diagnosis accuracy. The misclassification happens between 

Conditions 2, 3, and among Conditions 6, 7, 8. The main reason 

is that Conditions 2 and 3 have similar characteristics of 

temperature distributions, so as for Conditions 6, 7, 8 (with 

unbalanced shaft). The factor of unbalanced shaft brings the 

group of Conditions (5, 6, 7, 8) distanced from the other 

conditions with normal shaft. Condition 5 with normal bearing 

is easier to be separated from Conditions 6, 7, and 8. 

  
 

Fig. 9. Confusion matrix of the proposed method for the first run. 
 

  

Fig. 10. F-Scores of the proposed method for the first run. 
 

After acquiring a series of infrared thermal images, their 

regions of interest need to be first decided and converted into 

grayscale images, to meet the requirement of the inputs for 

stacked CAE and ECNN. The conversion process from infrared 

thermal images with a size of 320×256 to grayscale images 

with a size of 88×88 can be implemented by successively using 

three functions in MATLAB 2016b with names of ‘rgb2gray’, 

‘imcrop’ and ‘imresize’. For each run, the architecture settings 

of the stacked CAE and ECNN are given in Table VI. The 

hyper-parameters are chosen as follows. (1) Stacked CAE: the 

learning rate = 0.1, and iteration = 100; (2) ECNN: the initial 

learning rate = 0.0008, iteration = 400, boundary iteration = 40, 

two control coefficients of SELU   = 1.05,   = 1.67, 

dropout rate = 0.4, and tracking factor   = 6.5. The model 

architectures and hyper-parameters are selected according to 

the suggested value from related papers and a grid search of the 

hyper-parameters. 

Generally, small size of training samples and large iterations 

will easily cause the overfitting problem. This paper aims to 

solve the fault transfer diagnosis problem with only a small 

amount of labeled source-domain and target-domain samples at 

the same time. Thus, several techniques are combined to avoid 

overfitting, including dropout, SELU activation function, 

MSGD algorithm, early stopping, and small initial learning rate. 

Thus, despite the maximal iteration number is set as 400, the 

training process in many experiments converged within 200 

iterations with early stop if the validation error started to 

increase. The software environment and hardware 

configuration are as follows: Windows 10 64-bit operating 

system, MATLAB 2016b, Intel(R) Core(TM) i7-8550U CPU 

@ 1.80GHz, and 16 GB RAM. During the ten independent runs, 

the average computing time of the proposed method is about 

148s, mainly consists of the training of stacked CAE and 

source-domain ECNN. The total number of unlabeled samples 

for training the stacked CAE is 70*8, and the total number of 

labeled samples for training the source-domain ECNN is 30*8. 

Each sample refers to a grayscale image with a size of 88*88 

converted from the infrared thermal image. 

TABLE VI 

MODEL ARCHITECTURES OF THE STACKED CAE AND ECNNS  

Settings of model architectures Details 

Weight matrices of stacked CAE and ECNNs (Layer 1) (5x5) x6 

Activation functions of stacked CAE and ECNNs (Layer 1) ReLU / SELU 

Max pooling of stacked CAE and ECNNs (Layer 2) (2x2) x6 
Weight matrices of stacked CAE and ECNNs (Layer 3) (5x5) x12 

Activation functions of stacked CAE and ECNNs (Layer 3) ReLU / SELU 

Max pooling of stacked CAE and ECNNs (Layer 4) (2x2) x12 
 

C. Advantage of monitoring through thermal images 

Two types of monitored signals are compared in this 

subsection, which are thermal images and vibration signals. An 

acceleration sensor is fixed near the tested bearing in the 
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support structure, and the sampling frequency is 32768 Hz. As 

before, the collected vibration data at the speeds 2000 rpm and 

3000 rpm is treated as the source domain and the target domain, 

respectively. Here, each data sample is a signal segment 

consisting of 1024 sequence points. Before feeding into the 

stacked CAE and ECNN, they are translated into 

time-frequency images. Fig. 11 and Fig. 12 show the data 

samples based on the original time-domain vibration signals 

and time-frequency images of the four conditions, respectively. 

To obtain the 2D time-frequency images, continuous wavelet 

transform is used with the complex Morlet wavelet. The 

bandwidth parameter and wavelet center frequency are both set 

as 3. Different total scales have been tried and 256 is selected as 

it produces the highest accuracy. Therefore, the frequency 

resolution is 64Hz (32768/2*256). In Fig. 12, the horizontal 

axis refers to time with the range of [0, 1024/32768]s, and the 

vertical axis refers to the frequency with the range of [0, 

32768/2] Hz. Note that, here, all of the samples from the target 

domain are not mixed with extra Gaussian noise. 

The procedures of fault transfer diagnosis using the original 

vibration signals and time-frequency images are the same as 

those used for the infrared thermal images. After utilizing 70 

labeled source-domain samples to train the stacked CAE and 5 

labeled target-domain samples to fine-tune the source-domain 

ECNN, the average diagnosis accuracies of the ten repeated 

runs for three types of inputs are shown in Fig. 13. It can be 

seen that (1) the accuracies with infrared thermal images (with 

extra noise) are always higher than those with the other two 

inputs (with no extra noise) under different numbers of labeled 

source-domain samples, which are used to pre-train the 

source-domain ECNN; (2) the average accuracies always 

increase as the number of labeled samples is increased for the 

three types of inputs. Specifically, with the proposed method, 

20 labeled samples have achieved an accuracy level of 90% and 

30 labeled samples have increased that level to 95%. 

 

    
 

    

Fig. 11. Original vibration signals of the four conditions: (a-d) Conditions 3, 4, 

7, 8 from the source domain; (e-h) Conditions 3, 4, 7, 8 from the target domain. 

 

 
 

            
 

Fig. 12. Time-frequency images of the four conditions: (a-d) Conditions 3, 4, 7, 

8 from the source domain; (e-h) Conditions 3, 4, 7, 8 from the target domain.  

  

Fig. 13. Average transfer diagnosis accuracies under three types of inputs with 

different numbers of labeled source-domain samples. 

D. Discussions on the numbers of labeled target-domain 
samples for fine-tuning 

The use of labeled target-domain samples aims at fine-tuning 

the pre-trained source-domain ECNN to adapt to the 

characteristics of the target-domain that the fault diagnosis is to 

apply.  Due to the notable difficulties in obtaining labeled target 

domain samples, the analysis of the number of labeled target 

domain samples needed has practical significance. 

As listed in Table VII, six cases with a different number of 

the labeled target-domain samples are considered for the 

proposed method, and the number of the target-domain samples 

used for testing is set at 100 for all the cases. Fig. 14 shows the 

average transfer diagnosis accuracies of the six cases. It is seen 

that the diagnosis accuracy shows a steady upward trend with 

the increase of the number of labeled target-domain samples 

used for fine-tuning. Specifically, with only 2 labeled samples, 

the diagnosis accuracy reaches 88%. The accuracy climbs to 95% 

with 5 labeled samples. Thus, with a limited number of labeled 

samples from the target domain, satisfactory transfer diagnosis 

results can be realized through the proposed method. 

TABLE VII 

SIX SITUATIONS OF THE LABELED TARGET-DOMAIN SAMPLES 

Different 

cases 

Numbers of the target-domain samples for each condition 

Labeled for fine-tuning ECNN Unlabeled for testing ECNN 

Case 1 2  100  

Case 2 3 100  

Case 3 5  100  
Case 4 6  100  

Case 5 10  100  

Case 6 15  100  
 

 

Fig. 14. Average transfer diagnosis accuracy with different numbers of labeled 

target-domain samples for fine-tuning. 

V. CONCLUSIONS 

Aiming to boost the diagnosis capability and adaptability of 

the approach for diagnosing faults in a rotor-bearing system 
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under different rotating speeds, a new technique based on 

two-stage parameter transfer and infrared thermal images was 

presented. The thermal images were collected to reflect the 

various health states of a rotor-bearing system. Thermal images 

were chosen due to the advantages of this method of sensing 

such as non-contact, convenient installation, wide coverage, 

and high precision. SELU and MSGD were used to construct an 

ECNN to improve the fault diagnosis performance. Then, a 

stacked CAE trained with unlabeled source-domain thermal 

images was used to initialize the source-domain ECNN. Finally, 

weights and biases of the pre-trained source-domain ECNN 

were transferred to the target-domain ECNN, to adapt to the 

characteristics of the target domain. 

The transfer diagnosis performance of the proposed method 

was tested using thermal images collected from a rotor-bearing 

system at different rotating speeds. The experimental results 

confirmed the advantages of the two-stage parameter transfer 

strategy and the use of thermal images, compared with other 

state-of-art methods. Nevertheless, the proposed method has 

the following drawbacks, including relatively high hardware 

cost and difficulties in detecting sudden faults, selecting 

representative interest areas, and determining suitable 

hyper-parameters. Future work will mainly consider combining 

different transfer learning strategies and fault transfer diagnosis 

using multi-sensor fusion, to further enhance the accuracy and 

the generalization ability. 
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