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Abstract—In this paper, we study the total effective capacity
(EC) of single-cluster non-orthogonal multiple access (NOMA)
networks and demonstrate the performance gain of single-
cluster NOMA over user-paired NOMA and orthogonal multiple
access (OMA). Specifically, the exact closed-form expression
and an approximate closed-form expression at high signal-to-
noise ratios (SNRs), in terms of the total EC, are derived
for single-cluster NOMA networks. The derivations reveal that
the total EC at high SNRs only relies on the statistical delay
requirement of the strongest user and is independent of the
other users’ delay requirements. Further, we theoretically analyze
the total EC differences between single-cluster NOMA and user-
paired NOMA/OMA communications and explore the impact of
transmit SNR. Simulation results verify the accuracy of analytical
results and further reveal that the single-cluster NOMA network
achieves a greater gain in terms of the total EC, compared to
the conventional OMA, when the number of users increases.

Index Terms—Low latency, effective capacity, NOMA, OMA.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) technology can
enhance connectivity, boost spectral efficiency and realize low
transmission latency, which has been viewed as one of the
most promising techniques for the next generation of cellular
networks [1], [2]. Meanwhile, driven by the emerging verticals
in beyond 5G era requiring diversified Quality of Service
(QoS) requirements, it is of crucial importance for future
networks to provide flexible scheduling of resources to support
differentiated services such as massive connectivity and low-
latency transmissions. It is shown that NOMA can be a
potential solution [3], [4]. In this paper, we focus on the single-
class traffic in terms of delay QoS and aim to explore the
performance of NOMA in supporting delay-sensitive services.

There have been various investigations on multi-user
NOMA systems [5]–[7]. For example, the authors in [5]
analyze the outage probability and outage capacity for a
downlink NOMA network, while it only reflects the ability of
satisfying the target data rate instead of the delay requirements
of users. In [6], the joint optimization of user clustering and
power allocation is considered to maximize the sum rate of
NOMA systems. Moreover, the effect of imperfect successive
interference cancellation (SIC) in the downlink transmission of
a NOMA network supporting massive access is studied in [7],

where the transmit beams and powers are jointly optimized.
However, the above-mentioned studies on multi-user NOMA
networks do not consider the delay requirements of users.

Considering delay-sensitive applications, the author in [8]
investigates the power control problem in a downlink NOMA
network by maximizing the sum effective capacity (EC).
Similarly, in [9], the delay constraint is characterized by the
delay QoS exponent, where the power allocation problem is
studied based on the max-min EC criterion. However, [8]
and [9] focus on designing the power control policy, and the
analysis in terms of delay-constrained achievable rate is not
involved. Analytical expressions of EC for downlink NOMA
transmissions are provided in [10] and [11], and the EC for
uplink NOMA is considered in [12], but all studies consider
user-paired NOMA, where all N users are separated into N

2
clusters each with two users. To the best of our knowledge,
the performance of the EC for single-cluster NOMA, where
all users are in one cluster and share the same resource via
NOMA, has not been explored in the existing literature.

Motivated by such observations, considering users’ delay
provisioning, we focus on the EC analysis for the networks of
single-cluster NOMA, and try to provide the quantitative per-
formance comparison in terms of the total EC among single-
cluster NOMA, user-paired NOMA and orthogonal multiple
access (OMA). Specifically, we derive the exact closed-form
expression for the total EC of single-cluster NOMA and its
approximate closed-form at high signal-to-noise ratios (SNRs).
It is found for the first time that the total EC of single-cluster
NOMA at high SNRs is independent of power coefficients
and only depends on the delay requirement of the user with
the best channel quality. Accordingly, the total EC differences
between single-cluster NOMA and user-paired NOMA/OMA
are analyzed theoretically and validated via simulation results.
We find that the performance gain of single-cluster NOMA
over user-paired NOMA/OMA remains stable when the SNR
is high. Numerical results indicate that for both loose and
strict latency scenarios, single-cluster NOMA outperforms the
other two models at high SNRs, and the performance gain is
independent of the power coefficients of all users. Simulation
results further reveal that increasing the number of users can



improve the total EC of single-cluster NOMA.

II. SYSTEM MODEL

We consider the cellular downlink transmission with one
base station (BS) and N single-antenna users. Suppose that
wireless channels between the BS and users undergo block
fading, which means that the channel gain in one fading-block
is constant and independent with that in another fading-block.
Let hn represent the channel gain between the BS and the
n-th user, and assume that |h1|2 ≤ |h2|2 ≤ · · · ≤ |hN |2. The
length of each fading-block is denoted by Tf , and it is assumed
that the frame size equals to Tf . Besides, let W represent the
bandwidth. Fixed power allocation is considered, where each
user is allocated a fixed fraction of total transmit power at
the BS [5], [13]. In this paper, we focus on the single-cluster
NOMA where all N users share the same radio resource such
as time slots via NOMA. For comparison purposes, we also
introduce the user-paired NOMA and OMA in the following.

In the network of single-cluster NOMA, with successive
interference cancelation (SIC) technique, the transmission data
rate of the n-th user can be expressed as

RM
n =

 log2

(
1+ p|hn|2an

p|hn|2An+1+1

)
, n=1, 2,· · ·, N−1,

log2

(
1+p|hn|2an

)
, n=N,

(1)

where p denotes the transmit SNR, an denotes the power
coefficient of the n-th user, and An+1 =

∑N
l=n+1 al. Note

that
∑N
n=1 an = 1.

In the network of user-paired NOMA, all N users are
divided into N/2 NOMA clusters [10], and each clus-
ter occupies 2/N of orthogonal resources. Time division
multiple access (TDMA) is applied for the inter-cluster
multiple access. Thus, the transmission data rates of two
users in the k-th NOMA cluster, k = 1, 2, · · · , N/2, are

given by RP
uk

= 2
N log2

(
1 +

p|huk |
2
auk

p|huk |
2
avk+1

)
and RP

vk
=

2
N log2

(
1 + p|hvk |

2
avk

)
, respectively.

In the OMA network, time-division multiple access is con-
sidered, and each user occupies 1/N of orthogonal resources.
The transmission data rate of the n-th user in the OMA
network is expressed as RO

n = 1
N log2

(
1 + p|hn|2

)
.

III. EFFECTIVE CAPACITY ANALYSIS

In this section, we first briefly introduce the theory of
EC and analyze the total EC for single-cluster NOMA and
compare it with user-paired NOMA and OMA. Assume that
there exists a buffer (with an infinite buffer size) for the n-th
user at the BS. Then, its delay violation probability can be
estimated as

P out
delay = Pr{Dn(t) > Dn

max} ≈ Pr{Q(t) > 0}e−θnµD
n
max , (2)

where Dn(t) is the delay experienced by a packet arriving at
time t, Dn

max is the given delay bound in the unit of symbol
duration, Q(t) indicates the number of packets in the queue
at time t, Pr{Q(t) > 0} is the probability of a non-empty

buffer, and θn(θn > 0) is the n-th user’s delay QoS exponent
representing the exponential decay rate. It was proved that
the constant arrival rate has to be limited to the value of EC,
so that a target delay violation probability limit can be met.
Assume that the service process of wireless channel satisfies
Gärtner-Ellis theorem. Then, the EC for the n-th user on a
block-fading channel in the single-cluster NOMA network is
defined as

ECM
n =

ηn ln
(
E
[(

1+ p|hn|2an
p|hn|2An+1+1

)
λn
])
, n=1, 2,· · ·, N−1,

ηn ln
(
E
[(

1+p|hn|2an
)
λn
])
, n=N,

(3)
where ηn=− 1

θnTfW
, and λn = − θnTfW

ln 2 , and the expectation
E [·] is over hn. Since hn is the ordered channel gain, its
probability density function (PDF) is given by [14]

fn (gn) =
βn
p
e−

gn(N−n+1)
p

(
1− e−

gn
p

)n−1

, (4)

where gn=p|hn|2, and βn= 1
B(n,N−n+1) . Here, B(·, ·) is the

beta function. Similarly, for the user-paired NOMA network,
the ECs of users in the k-th cluster can be expressed as

ECP
uk

=ηuk ln

E
( p|huk |

2
+1

p|huk|
2
avk+1

) 2λuk
N


 , (5a)

ECP
vk

= ηvk ln

(
E

[(
p|hvk |

2
avk+1

) 2λvk
N

])
. (5b)

For the OMA network, the EC of the n-th user is given by

ECO
n =ηn ln

(
E
[(
p|hn|2+1

)λn
N

])
. (6)

A. Effective Capacity Closed-Forms for Single-Cluster NOMA

Theorem 1: The exact closed-form expression of the total

EC for single-cluster NOMA is calculated as ΦM =
N∑
n=1

ECM
n ,

where ECM
n , n = {1, 2 · · ·N}, is given in (7) on the top of

next page. For brevity, the total EC is further approximated as

Φ′M =
N−1∑
n=1

ẼCM
n +ECM

N , where ẼCM
n is given in (8). At high

SNRs, the total EC approximates to

Φ̃M =ηN ln

(
βN
p

N−1∑
i=0

(
N−1

i

)
(−1)

i

(
i+1

p

)−λN−1

Γ (λN+1)

)
.

(9)
Proof : See Appendix A.
Remark 1: The accuracy of the above exact and approximate

closed-form expressions will be validated in Section IV by
comparing with Monte Carlo results. From (9), we can find
that when the SNR is high, the approximate total EC of single-
cluster NOMA, i.e., Φ̃M, is independent of the power coeffi-
cients of all users and only relies on the delay QoS exponent
of the N -th user, i.e., the statistical delay requirement of the
user with the best channel condition. In other words, when the
transmit SNR is high, the other users’ delay requirements, i.e.
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, for n = 1, 2, · · · , N − 1,

(7a)

ECM

N = ηN ln

(
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i
U

(
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i+ 1

paN

))
. (7b)

ẼCM
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(
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(
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(
n− 1
i

)
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i
(

1
cn

+ λnan
An+1An

e
cn
AnEi

(
− cn
An

))))
, for n = 1, 2, · · · , N − 1, (8)

the n-th user (n 6= N), have no impact on the total achievable
delay-constrained rate.

B. Comparisons of the Total EC among Three Models

Define ∆1 = ΦM−ΦP to represent the total EC difference
between single-cluster NOMA and user-paired NOMA, where
ΦP is the total EC for the user-paired NOMA network derived
in [10]. Similarly, ∆2 = ΦM − ΦO denotes the total EC
difference between single-cluster NOMA and OMA networks,
where ΦO is the total EC for the OMA network [10].

Theorem 2: Aiming to analyze the total EC differences
among three system models, i.e., ∆1 and ∆2, we prove that

(a) When p→ 0, ∆1 → 0, ∆2 → 0, and

lim
p→0

∂∆1

∂p =
N∑
n=1

an
ln 2E

[
|hn|2

]
− 2

N ln 2

N/2∑
k=1

(
aukE

[
|huk |

2
]

+avkE
[
|hvk |

2
])
,

(10a)

lim
p→0

∂∆2

∂p =
N∑
n=1

E[|hn|2]
ln 2

(
an − 1

N

)
. (10b)

(b) When p→∞, ∂∆1

∂p → 0, ∂∆2

∂p → 0, and

lim
p→∞

∆1 = ηN ln
(
E
[(
|hN |2

)λN ])
−
N/2∑
k=1

ηvk ln

(
E
[(
|hvk |2

) 2λvk
N

])
,

(11a)

lim
p→∞

∆2 = ηN ln
(
E
[(
|hN |2

)λN ])
−

N∑
n=1

ηn ln

(
E
[(
|hn|2

)λn
N

])
.

(11b)

Proof : See Appendix B.
Remark 2: Theorem 2 indicates that, with the increase of

the SNR p, the total EC differences ∆1 and ∆2 both start
at the value of 0 (when p → 0), and finally remain stable
(when p → ∞). When SNR is very high, (11a) implies
that the performance gap between single-cluster NOMA and
user-paired NOMA is not affected by the power coefficients
of users. This gap only relies on the delay requirements
and user pairing setting of user-paired NOMA. Similarly, the
performance gap between single-cluster NOMA and OMA
only depends on the delay requirements of all users, which
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Fig. 1. The total EC for single-cluster NOMA vs. the SNR p.

is independent of the power coefficients of all users, as shown
in (11b).

The conclusions of Theorem 2 will be further demonstrated
numerically in the next section. In addition, for the consid-
ered power model in the simulation, it can be derived that
lim
p→0

∂∆2

∂p ≤ 0, which means that ∆2 is definitely negative

when p is sufficiently small. In other words, OMA outperforms
single-cluster NOMA at small SNRs. On the other hand, the
closed-form of lim

p→0

∂∆1

∂p is complicated, and its sign not only

depends on the power allocation model but also on the user
pairing scheme for user-paired NOMA. Also, it is worth noting
(in the next section) that the values of ∆1 and ∆2 are positive
at high SNRs for θ → 0 and θ = 3, with the consideration
of the best and the worst user pairing schemes. This means
that in this case, single-cluster NOMA outperforms user-paired
NOMA at high SNRs.

IV. SIMULATION RESULTS

In the simulations, it is assumed that there are 6 users, i.e.,
N = 6, and all users have the same delay exponents, denoted
by θ. The unordered channel gains between the BS and users
follow Rayleigh fading distribution with unit variance, which
are then sorted to satisfy |h1|2 ≤ |h2|2 ≤ · · · ≤ |hN |2. For the
single-cluster NOMA network, the power coefficient of user
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Fig. 2. The total EC difference vs. the SNR p.
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n is an = N−n+1
C [5], where C is the normalized coefficient

to guarantee
∑N
n=1 an = 1. Without loss of generality, for

the user-paired NOMA network, the power coefficients of two
users in the k-th cluster are set to aµk = 0.8 and avk = 0.2,
respectively, which follows the settings in [5], [13]. Besides,
we assume B = 100 KHz and Tf = 0.01 ms.

We first verify the accuracy of the exact closed-form ex-
pression of the total EC for single-cluster NOMA and its
approximate closed-form at high SNRs given in Theorem 1. In
Fig. 1, the curves of ΦM and Φ̃M are plotted versus the SNR
p for different θ. It can be found from Fig. 1 that the derived
exact closed-form ΦM is accurate, which matches with the
Monte Carlo curve. Furthermore, when the SNR p is high, the
approximate closed-form Φ̃M coincides with the exact values.
Besides, as shown in Fig. 1, the total EC increases with the
SNR p but decreases with the delay exponent θ.

Then, to validate Theorem 2, the total EC differences ∆1

and ∆2 are plotted against the SNR p in Fig. 2. To provide a
comprehensive comparison, we conduct exhaustive search to
find the best and the worst user pairing schemes for the user-
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Fig. 4. The total ECs with perfect and imperfect SIC vs. the number of users.

paired NOMA with the aim of maximizing the total EC. It has
been found that the pairing scheme B = {(1, 6) (2, 5) (3, 4)}
is the best choice which supports the maximum total EC, while
A = {(1, 2) (3, 4) (5, 6)} is the worst choice which achieves
the minimum total EC [10]. Therefore, ∆A

1 = ΦM − ΦAP /
∆B

1 = ΦM − ΦBP provides the largest or the smallest
performance gap between single-cluster NOMA and user-
paired NOMA. For the other pairing options, the absolute
performance differences can only be within |∆A

1 | and |∆B
1 |.

As shown in Fig. 2, all curves begin at the value of 0 and
finally remain stable at high SNRs, which confirms Theorem
2. Observing two curves of ∆B

1 , we can find that single-
cluster NOMA always achieves higher total EC than user-
paired NOMA with the user pairing setting B, under the given
simulation settings. In contrast, ∆A

1 and ∆2 first decrease
under 0 and then turn to go up with the increase of the SNR
p, which means that OMA and user-paired NOMA with the
user pairing setting A outperform single-cluster NOMA when
the SNR p is relatively small but fall behind single-cluster
NOMA when p is larger than 3dB. Besides, with the variation
of θ from 0 to 3, since the total ECs of all the three networks
become small, all the total EC differences decline.

The total EC percentage difference ∆2

ΦO
is presented versus

N and p in Fig. 3. It can be observed in Fig. 3, that ∆2

ΦO
reaches

its peak when the SNR p is about 15 dB. As shown in Fig.
3, for a given SNR, when the number of users increases, the
total EC percentage difference first goes up, and then remains
stable, which indicates that increasing the number of clustered
users can improve the total EC, but this improvement will
vanish when the number of users is large enough.

Finally, the total ECs with perfect and imperfect SIC versus
the number of users N are demonstrated in Fig. 4, where µ is
the linear coefficient of imperfect SIC and µ = 0 represents
the perfect SIC [7]. As shown in this figure, the ECs of NOMA
and OMA all grow with the increase of N , while for the same
N , the ECs of single-cluster and user-paired NOMA decline
with the increase of µ since larger µ results in more residual
interference for SIC. Moreover, regardless of µ, single-cluster



NOMA always outperforms user-paired NOMA. It is also
observed that when µ is smaller, e.g., µ = 0.01, the ECs of
single-cluster and user-paired NOMA are both larger than that
of OMA. Contrarily, when µ = 0.05, the ECs of NOMA are
less than that of OMA. This is because when performing SIC,
more residual interference significantly decreases the ECs of
NOMA, while OMA is free from the impact of imperfect SIC.

V. CONCLUSION

In this paper, we derived the closed-form expressions of
total EC for single-cluster NOMA and analyzed the total EC
differences among single-cluster NOMA, user-paired NOMA
and OMA. Simulation results verified the accuracy of derived
closed-forms and showed that single-cluster NOMA outper-
forms user-paired NOMA and OMA in terms of the total EC
when the SNR is larger than 3dB. Further, it was found that
when the number of users increases, single-cluster NOMA
achieves greater gain on the total EC, compared to OMA.
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APPENDIX A

Proof of Theorem 1: With the PDF given in (4), the EC of
the n-th user, n = 1, 2, · · · , N − 1 can be re-expressed as

ECM
n = ηn ln

(
βnA

λn
n

pAλnn+1

∫∞
0

(
1 + an/An+1

gnAn+1

)−λn
×e−

gn(N−n+1)
p

(
1− e−

gn
p

)n−1

dgn

)
.

(12)

Then, since
∣∣∣ an/An
gnAn+1+1

∣∣∣ =
∣∣∣ an/An+1

gnAn+1+an/An+1

∣∣∣ ≤ 1, the
generalized binomial theorem can be applied, which gives(

1 + an/An+1

gnAn+1

)−λn
=
(

1− an/An
gnAn+1+1

)λn
=
∞∑
j=0

(
λn
j

)(
−an/An
gnAn+1+1

)j (13)

We note that the expansion of binomial (1 + x)a is given

by (1 + x)a =
∞∑
n=0

(
a
n

)
xn, which holds for a being any real

number, i.e., a ∈ R, and |x| < 1. Here,
(
a
n

)
is the binomial

coefficient, defined as [15](
a

n

)
=


a(a− 1) . . . (a− n+ 1)

n!
if n ≥ 1,

1 if n = 0.
(14)

Then, from the binomial expansion(
1− e−

gn
p

)n−1

=

n−1∑
i=0

(
n− 1

i

)
(−1)

i
e−

ign
p , (15)

and by defining cn = N−n+1+i
p , (12) can be approximated as

ECM
n =ηn ln

(
βnA

λn
n

pAλnn+1

n−1∑
i=0

(
n−1
i

)
(−1)

i (∫∞
0
e−cngndgn

−λnanAn

∫∞
0

e−cngn

gnAn+1+1dgn

+
∫∞

0

∞∑
j=2

(
λn
j

)(
−an/An
gnAn+1+1

)j
×e−cngndgn

))
(16)

Finally, by applying (3.352.4) in [16],

∫∞
0

e−ax

(x+b)m dx=

m−1∑
i=1

(i−1)!(−a)m−i−1b−i−(−a)m−1eabEi(−ab)

(m−1)! ,

| arg b| < π,Re a > 0,

(17)

(7a) is obtained. To further truncate the infinite series in (7a),
the approximation(

1+
an/An+1

gnAn+1

)−λn
=

(
1− an/An

gnAn+1+1

)λn
≈1− λnan/An

gnAn+1+1
,

(18)
can be employed on (12), and (8) is derived by following the
above steps.

For the N -th user, its EC can be re-expressed as

ECM

N =ηN ln

(
βN
p

N−1∑
i=0

(
N−1
i

)
(−1)

i ∫∞
0

(1 + gNaN )
λN

×e−
gN (i+1)

p dgN

)
,

(19)

by replacing
(

1− e−
gN
p

)N−1

with its binomial expansion.
Then, by applying the confluent hypergeometric function,

U (a, b, c) = 1
Γ(a)

∫∞
0
e−ctta−1(1 + t)

b−a−1
dt,

for Re a,Re c > 0,
(20)

(7b) can be finally obtained.

When the SNR is high, the EC for the first N − 1 users,
i.e., n = 1, 2, · · · , N − 1, can be approximated as

ẼCM
n = lim

p→∞
ηn ln

((
1+

an
An+1

)λn)
=log2

(
1+

an
An+1

)
,

(21)
and the EC for the strongest user at high SNRs becomes

ẼCM

N = lim
p→∞

ηN ln

(
E
[(
paN |hN |2

)λN])
, (22)



which can be expressed as

ẼCM

N

(ϑ)
= lim

p→∞
ηN ln

(
βNa

λN
N

p

N−1∑
i=0

(
N−1
i

)
(−1)

i

×
∫∞

0
gλNN e−

gN (i+1)

p dgN

)
(ρ)
= lim

p→∞
log2 (aN ) + ηN ln

(
βN
p

N−1∑
i=0

(
N−1
i

)
(−1)

i

×
(
i+1
p

)−λN−1

Γ (λN + 1)

)
,

(23)

where the equality (ϑ) is derived according to the binomial
expansion (15), and (ρ) is obtained from (3.382.4) [16]∫ ∞

0

(x+ a)
b
e−cxdx = c−b−1eacΓ (b+ 1, ac) ,Re c > 0.

Thus, by inserting (21) and (23) into Φ̃M, (9) can be derived.

APPENDIX B

Proof of Theorem 2: When p=0, we have ΦM =ΦP =ΦO =
0. Hence, lim

p→0
∆1 = lim

p→0
∆2 = 0 holds. Considering lim

p→0

∂∆1

∂p

and lim
p→0

∂∆2

∂p , the first-derivative of ΦM is first given by

∂ΦM

∂p = 1
ln 2

N−1∑
n=1

E
[(

1+
p|hn|2an

p|hn|2An+1+1

)λn−1 |hn|2an
(p|hn|2An+1+1)2

]

E
[(

1+
p|hn|2an

p|hn|2An+1+1

)λn]

+ aN
ln 2

E
[
(1+p|hN |2aN)

λN−1|hN |2
]

E
[
(1+p|hN|2aN)

λN
] ,

(24)

and the first-derivatives of ΦP and ΦO are given in (42) and
(44) in [10]. Thus, by inserting p=0 into ∂∆1

∂p = ∂ΦM

∂p −
∂ΦP

∂p

and ∂∆2

∂p = ∂ΦM

∂p −
∂ΦO

∂p , (10a) and (10b) are respectively
proved.

When p→∞, lim
p→∞

∆1 can be calculated by

lim
p→∞

∆1 = lim
p→∞

(
N−1∑
n=1

ECM
n +ECM

N −
N/2∑
k=1

ECP
uk
−
N/2∑
k=1

ECP
vk

)
= lim
p→∞

(
N−1∑
n=1

log2

(
1+ an

An+1

)
+ηN ln

(
E
[(
paN |hN |2

)λN ])
− 2
N

N/2∑
k=1

log2

(
1
avk

)
−
N/2∑
k=1

ηvk ln

(
E
[(
pavk |hvk |2

) 2λvk
N

]))
,

(25)
which simplifies to (11a). Similarly, (11b) can also be vali-
dated. On the other hand, it can be obtained that

lim
p→∞

∂ΦM

∂p
= lim
p→∞

1

ln 2

(
1

p2

N−1∑
n=1

an
AnAn+1

E

[
1

|hn|2

]
+

1

p

)
=0,

(26)
and similarly, we can prove that lim

p→∞
∂ΦP

∂p = lim
p→∞

∂ΦO

∂p = 0.

Therefore, lim
p→∞

∂∆1

∂p = lim
p→∞

∂∆2

∂p = 0 is demonstrated.
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