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Summary The quasi-maximum likelihood estimation is a commonly-used method
for estimating the GARCH parameters. However, such estimators are sensitive to out-
liers and their asymptotic normality is proved under the finite fourth moment as-
sumption on the underlying error distribution. In this paper, we propose a novel class
of estimators of the GARCH parameters based on ranks of the residuals, called R-
estimators, with the property that they are asymptotically normal under the existence
of a finite 2+δ moment of the errors and are highly efficient. We propose fast algorithm
for computing the R-estimators. Both real data analysis and simulations show the su-
perior performance of the proposed estimators under the heavy-tailed and asymmetric
distributions.
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1. INTRODUCTION

1.1. Robust estimation based on ranks

Consider observations {Xt; 1 ≤ t ≤ n} from a financial time series with the following
representation

Xt = σtεt,

where {εt; t ∈ Z} are unobservable i.i.d. non-degenerate error r.v.’s with mean zero and
unit variance and

σt = (ω0 +

p∑
i=1

α0iX
2
t−i +

q∑
j=1

β0jσ
2
t−j)

1/2, t ∈ Z, (1.1)

with ω0, α0i, β0j > 0, ∀ i, j. In the literature, such models are known as the GARCH (p, q)
model and we assume that {Xt; t ∈ Z} is stationary and ergodic.

Estimation of parameters based on ranks of the residuals was discussed by Koul and
Ossiander (1994) for the homoscedastic autoregressive models and Mukherjee (2007) for
the heteroscedastic models. Andrews (2012) proposed a class of R-estimators for the
GARCH model using a log-transformation of the squared observations and then mini-
mizing a rank-based residual dispersion function. However, such square-transformation,
not being one-to-one transformation, may lead to loss of information under an asymmet-
ric error distribution as demonstrated later in this paper. This motivates us to define
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R-estimators for the GARCH model that uses the data directly without requiring such
transformation.

Robust estimation of the GARCH parameters has been studied extensively in the lit-
erature although the attention has been focused exclusively on the class of M-estimators.
See, for example, Berkes and Horváth (2004), Mukherjee (2008), Francq et al. (2011),
Fan et al. (2014) and Zhu and Ling (2011) and the references in those papers. Some
simulation study by Fan et al.(2014, Section 7.2) to compare M-estimators with the R-
estimators proposed by Andrews (2012) revealed that these two classes of estimators
have almost indistinguishable asymptotic performance while the rank-based estimators
are slightly better and this provides another motivation for considering R-estimators. As
shown in the motivating example of Section 1.2 and Table 2, our proposed R-estimators
are highly efficient for symmetric error distributions while it can be more efficient than
those of Andrews (2012) when the error distribution is asymmetric.

Since the M-estimators in GARCH models are obtained by maximizing a pseudo-
likelihood of the data directly without requiring any (squared) transformation of the ob-
servations, we define R-estimators without transforming the original data. Consequently,
similar to the linear regression and autoregressive models, the asymptotic normality of
the R-estimators are derived under smoothness conditions on the error probability den-
sity function (pdf) while assumptions in Andrews (2012) are related to the pdf of the
squared and logged error which are the errors of a transformed model. However, un-
like for the R-estimators defined by Andrews (2012), the limiting covariance matrices of
our proposed class of R-estimators do not have explicit forms and consequently, we can
employ, for example, bootstrap methods to approximate their distributions.

Unlike the commonly-used quasi-maximum likelihood estimator (QMLE) which is
asymptotically normal under the finite fourth moment assumption of the error distri-
bution, the proposed class of R-estimators turn out to be asymptotically normal under
the assumption of only a finite 2 + δ-th moment for some δ > 0. The efficiency prop-
erty of the R-estimators is studied based on the simulated data from the GARCH (1, 1)
model. Analysis of real data shows that the numerical values of R-estimates can be dif-
ferent from the QMLE and the subsequent analysis of the GARCH residuals shows that
such difference may be attributed to the infinite fourth moment of the error distribution,
which leads to the failure of the QMLE.

One conspicuous issue with previous studies is related to the estimation of an identi-
fiable scale parameter that leads to often more than one stage of estimation. As pointed
out by Fan et al. (2014, Section 7.2), such estimation is important for comparing the bias
performance. Preminger and Storti (2017) also pointed out the importance of estimating
the scale parameter although such estimates may not always be needed in some applica-
tions such as estimating the ‘Value at Risk’. In Section 2.3 of this paper, we propose a
simple consistent estimate of the scale based on R-estimators and the general principle
can be applied to the M-estimation as well; see Andrews (2012, Remark 9) and Preminger
and Storti (2017, Section 3) for other estimates of the scale.

The main contributions of the paper are as follows. First, a new class of robust and ef-
ficient estimators for the GARCH model parameters is proposed. Second, the asymptotic
distributions of the proposed estimators are derived based on weak assumption on the
error moments. Third, we propose an algorithm for computing the R-estimators which
is computational friendly and easy to implement.
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1.2. A motivating example

To illustrate the advantages of our proposed R-estimator over the commonly-used QMLE
and R-estimator of Andrews (2012) (BA, henceforth), we consider below some simula-
tion results corresponding to the GARCH (1, 1) model with underlying standardized
error density being (i)the standard normal distribution and (ii) the skew normal dis-
tribution (see e.g. Azzalini and Dalla Valle (1996) for details of such distribution).
We generate R = 1000 samples of size n = 1000 with parameter values (ω, α, β)′ =
(6.50× 10−6, 0.177, 0.716)′ as in Section 3.2. Simulation results described below are sim-
ilar to various other choices of the true parameters. To make a fair comparison, for both
R-estimators we use the van der Waerden score (vdW, henceforth); our vdW score is
given in Section 2.4 while BA’s one has a different form; see Andrews (2012, Section 3).
The resulting boxplots of all estimators are displayed in Figure 1 under the skew normal
(upper panel) and standard normal (lower panel) error densities and the MSE ratios of
the QMLE over other estimators are reported.

An inspection of these plots reveals superiority of our R-estimator over the QMLE and
BA’s. Under the normal error distribution, the distribution patterns of the R-estimators
are quite similar to the QMLE around the true parameter value, and the MSE ratios of
the QMLE over the R-estimators are all close to one. However, under the skew normal
errors where asymmetry is present, our proposed R-estimator has the least dispersion and
with a gain of around 44%-92% efficiency over the QMLE, while the BA’s R-estimator
has around 12%-23% gain in efficiency over the QMLE. Therefore, although the BA’s
R-estimator achieves efficiency similar to ours under the normal distribution, it is not as
efficient as ours under an asymmetric distribution.

1.3. Outline of the paper

The rest of the paper is organized as follows. Section 2 defines a class of R-estimators of
scaler-transformed parameters based on an asymptotic linearity result of a rank-based
central sequence. A consistent estimator of the unknown scalar cϕ defined by (2.4) is
provided and the asymptotic distribution and efficiency of the R-estimator are discussed.
We describe an algorithm for computing the R-estimators. Section 3 contains empirical
and simulation results of the R-estimators. Conclusion is given in Section 4. The technique
used to establish the asymptotic distribution is included in the online Appendix A. The
Appendix contains some additional numerical results.

2. THE CLASS OF R-ESTIMATORS FOR THE GARCH MODEL

In this section, we first define a central sequence based on ranks of the residuals of
the GARCH model. We prove the asymptotic uniform linear expansion (2.7) of this

central sequence, which enables us to define one-step R-estimator θ̂nϕ in (2.9) as a root-
n consistent estimator of a scale-transformed GARCH parameter

θ0ϕ = (cϕω0, cϕα01, ..., cϕα0p, β01, ..., β0q)
′

(2.1)

with a constant cϕ > 0 satisfying (2.5). Based on θ̂nϕ and {Xt}, we are able to derive
a consistent estimator of cϕ. We discuss some computational aspects and propose a
recursive algorithm for computation in Section 2.5.

NOTATIONS: Throughout the paper, for a function g, we use ġ and g̈ to denote
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Figure 1. Boxplots of the QMLE, BA’s and our proposed R-estimators (van der Waerden)
under the skew normal (upper panel) and standard normal (lower panel) error densities.
In each panel, the MSE ratios of the QMLE with respect to other estimators are reported.
The horizontal line represents the actual parameter value.
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its first and second derivatives whenever they exist. We use c, b, c1 to denote positive
constants whose values can possibly change from line to line. Let ε be a generic random
variable (r.v.) with the same distribution as {εt} and let F and f denote the cumulative
distribution function (c.d.f.) and probability density function (p.d.f.) of ε, respectively.
Let ηt := εt/

√
cϕ and η be a generic r.v. with the same distribution as {ηt}. Let G and g

be the c.d.f. and p.d.f. of η, respectively. A sequence of stochastic processes {Yn(·)} is said
to be uP(1) (denoted by Yn = uP(1)) if for every c > 0, sup{|Yn(b)|; ||b|| ≤ c} = oP(1),
where || · || stands for the Euclidean norm.
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2.1. Rank-based central sequence

From Lemma 2.3 and Theorem 2.1 of Berkes et al. (2003), σ2
t of (1.1) has the unique

almost sure representation σ2
t = c0 +

∑∞
j=1 cjX

2
t−j , t ∈ Z, where {cj ; j ≥ 0} are defined

in (2.7)-(2.9) of Berkes et al. (2003).

Let θ0 = (ω0, α01, . . . , α0p, β01, . . . , β0q)
′ denote the true parameter belonging to a

compact subset Θ of (0,∞)1+p × (0, 1)q. A typical element in Θ is denoted by

θ = (ω, α1, . . . , αp, β1, . . . , βq)
′.

Define the variance function by

vt(θ) = c0(θ) +

∞∑
j=1

cj(θ)X2
t−j , θ ∈ Θ, t ∈ Z,

where the coefficients {cj(θ); j ≥ 0} are given in (3.1) of Berkes et al. (2003) with the
property cj(θ0) = cj , j ≥ 0, so that the variance functions satisfy vt(θ0) = σ2

t , t ∈ Z and

Xt = {vt(θ0)}1/2εt, 1 ≤ t ≤ n.

Let {v̂t(θ)} be observable approximation of {vt(θ)}, which is defined by

v̂t(θ) = c0(θ) + I(2 ≤ t)
t−1∑
j=1

cj(θ)X2
t−j , θ ∈ Θ, 1 ≤ t ≤ n.

LetH∗(x) = x{−ḟ(x)/f(x)}. From Berkes and Horvath (2004, Example 2.4) and Mukher-
jee (2008, p. 1534), the maximum likelihood estimator (MLE) is a solution of ∆n,f (θ) =
0, where

∆n,f (θ) := n−1/2
n∑
t=1

v̇t(θ)

vt(θ)

{
1−H∗

[
Xt

v
1/2
t (θ)

]}
.

However, f in H∗ is usually unknown and we therefore consider an approximation to
∆n,f (θ).

Let ϕ : (0, 1)→ R be a score function satisfying some regularity conditions which will
be discussed later. Examples of ϕ are given in Section 2.4. Let Rnt(θ) denote the rank

of Xt/v
1/2
t (θ) among {Xj/v

1/2
j (θ); 1 ≤ j ≤ n}. In linear regression models, the MLE has

the same asymptotic efficiency as an R-estimator based on the score function ϕ(u) =
−ḟ(F−1(u))/f(F−1(u)). For the estimation of the scale parameters, a correspondence to
the MLE is through the central sequence

Rn(θ) := Rn,ϕ(θ) = n−1/2
n∑
t=1

v̇t(θ)

vt(θ)

{
1− ϕ

[
Rnt(θ)

n+ 1

]
Xt

v
1/2
t (θ)

}
. (2.2)

However, since vt(θ) is unobservable, we replace it by v̂t(θ). Let R̂nt(θ) denote the rank

of Xt/v̂
1/2
t (θ) among {Xj/v̂

1/2
j (θ); 1 ≤ j ≤ n}. We define rank-based central sequence as

R̂n(θ) := R̂n,ϕ(θ) = n−1/2
n∑
t=1

˙̂vt(θ)

v̂t(θ)

{
1− ϕ

[
R̂nt(θ)

n+ 1

]
Xt

v̂
1/2
t (θ)

}
. (2.3)
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2.2. One-step R-estimators and their asymptotic distributions

To define the R-estimator in terms of the classical Le Cam’s one-step approach as in
Hallin and La Vecchia (2017) and Hallin et al. (2020), we derive the asymptotic linearity
of the rank-based central sequence under the following assumptions. Let cϕ > 0 be defined
by

√
cϕ = E [ϕ (F (εt)) εt] (2.4)

so that

E

{
ϕ [F (εt)]

εt√
cϕ

}
= 1. (2.5)

Define µ(x) :=
∫ x
−∞ sg(s)ds. Since g(x) > 0, µ(x) is strictly decreasing on (−∞, 0] with

range [µ(0), 0] and strictly increasing on [0,+∞) with range [µ(0), 0]. The functions
y → µ−1(y) on [µ(0), 0] with ranges (−∞, 0] and [0,+∞) are well-defined when the
ranges are considered separately.

The following conditions on the distribution of ηt are assumed for the proof of The-
orem A.1 in Appendix on the approximation of a scale-perturbed weighted mixed-
empirical process by its non-perturbed version.

ASSUMPTION 2.1. (i). The function x2g(x) is bounded on x ∈ R (and conse-
quently so are the functions g(x) and xg(x)); functions y → µ−1(y)g(µ−1(y)) and y →
(µ−1(y))2g(µ−1(y)) are uniformly continuous on [µ(0), 0] when the ranges are considered
separately as in the definition of µ above;(ii).

lim
δ→0

sup

{
|x|
∫ 1

0

|xg(x)− (x+ hxδ)g(x+ hxδ)|dh;x ∈ R
}

= 0;

(iii). There is a δ > 0 such that E|ηt|2+δ <∞.

We remark that Assumption (i) entails that µ(x) is uniformly Lipschitz continuous
in scale in the sense that for some constant 0 < c < ∞ and for every s ∈ R, we have
supx∈R |µ(x+ xs)− µ(x)| ≤ c|s|.

A more easily verifiable condition for Assumption (ii) can be obtained, for example,
when g admits the derivative ġ which satisfies that for some δ > 0,

sup{x2 sup |g(y) + yġ(y)|;x(1− δ) < y < x(1 + δ)} <∞.

In particular, Assumptions (i), (ii) and (iii) hold for a wide range of error distributions,
including normal, double-exponential, logistic and t-distributions with degrees of freedom
more than 2 which are considered for simulation study.

We also need the following assumptions on the parameter space and the score function
ϕ.

ASSUMPTION 2.2. Denoting by Θ0 the set of interior points of Θ, we assume that
θ0,θ0ϕ ∈ Θ0.

ASSUMPTION 2.3. The score function ϕ is non-decreasing, right-continuous with
only a finite number of points of discontinuity and is bounded on (0, 1).

We now compare our assumptions with those made by Andrews (2012), to be called
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as BA1, BA2 etc. Assumption BA1 states the stationarity and ergodicity of {Xt} similar
to what we assume but not necessarily finiteness of the variance of Xt. However, esti-
mation of the intercept parameter α00 appearing in Andrews (2012, Equation (2.2)) is
not considered there. In this paper, we estimate the intercept parameter under the finite
variance assumption of Xt as in Assumption A4 below. Higher moment assumptions were
also made in Fan et al. (2014) while estimating the equivalent scale parameter ηf .

Assumptions BA2 and BA3 are related to the uniqueness of parameters and the exis-
tence of the non-degenerate errors and observations. We assume non-degenerate models
as is common in the literature. Assumptions BA4 and BA7 are on the score functions
which are bounded, non-decreasing and left-continuous. In Assumption 2.3, we assume
that the score functions are bounded, non-decreasing and right-continuous with finite
number of discontinuity. Assumptions BA5 and BA6 are on the cdf and pdf of the log
of the squared error distribution. We have made analogous assumptions on the error
pdf itself and uniform continuity on the µ−1-transformed axis in Assumption 2.1(i) and
(ii); the later came up as a part of the technical assumptions in using some convergence
results of empirical processes to derive the asymptotic distribution of the R-estimators.
Assumptions BA8, BA9 and BA10 describe various scenarios related to some of the com-
ponent parameters equal to zero as in Francq and Zakoian (2007). In Assumption 2.2,
we assume that all parameters are positive as in Berkes and Horváth (2004), Mukherjee
(2008) and Francq et al. (2011) in relation to the M-score and this corresponds to BA8.

To state the asymptotic linearity of R̂n(θ), we introduce the following notation. Let

γ(ϕ) :=

∫ 1

0

∫ 1

0

G−1(u)G−1(v) [min{u, v} − uv] dϕ(u)dϕ(v), J(θ) := E(v̇t(θ)v̇
′

t(θ)/v2t (θ))

ρ(ϕ) :=

∫ 1

0

{G−1(u)}2g{G−1(u)}dϕ(u), σ2(ϕ) := E {ϕ [G(ηt)] ηt}2 − 1,

λ(ϕ) :=

∫ 1

0

∫ 1

0

G−1(u)I(v ≤ u)(1−G−1(v)ϕ(v))dvdϕ(u). (2.6)

Let Z be the r.v. Z :=
∫ 1

0
G−1(u)B(u)dϕ(u), where B(.) is the standard Brownian bridge.

Then Z has mean zero and variance γ(ϕ); see the proof in Lemma A.5 for details. Let
G̃n(x), x ∈ R be the empirical distribution function of {ηt} (which is unobservable),

Qn(θ) :=

∫ 1

0

n−1/2
n∑
t=1

v̇t(θ)

vt(θ)

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u),

Nn(θ) := n−1/2
n∑
t=1

v̇t(θ)

vt(θ)
{1− ηtϕ [G(ηt)]} .

The following proposition states the asymptotic uniform linearity of R̂n(θ).

PROPOSITION 2.1. Let Assumptions 2.1-2.3 hold. Then for b ∈ R1+p+q with ||b|| <
c,

R̂n(θ0ϕ + n−1/2b)− R̂n(θ0ϕ) = (1/2 + ρ(ϕ)/2)J(θ0ϕ)b+ uP(1). (2.7)

Moreover,

R̂n(θ0ϕ) = Qn(θ0ϕ) +Nn(θ0ϕ) + uP(1), (2.8)
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where Qn(θ0ϕ) converges in distribution to E(v̇1(θ0ϕ)/v1(θ0ϕ))Z with mean zero and co-
variance matrix E(v̇1(θ0ϕ)/v1(θ0ϕ))E(v̇′1(θ0ϕ)/v1(θ0ϕ))γ(ϕ) and Nn(θ0ϕ)→ N (0,J(θ0ϕ)σ2(ϕ)).

The above asymptotic linearity allows us to define a class of R-estimators through the
one-step approach. Let {Υ̂n} be a sequence of consistent estimators of Υϕ,g(θ0ϕ) :=

(1/2 + ρ(ϕ)/2)J(θ0ϕ); see Section 2.5 for a construction of Υ̂n. Let θ̄n be a root-n
consistent estimator of θ0ϕ and, for technical reasons, we assume θ̄n is asymptotically
discrete. More precisely, a sequence {θ̄n} is called discrete if there exists K ∈ N such
that independent of n ∈ N, θ̄n takes on at most K different values in

Qn := {θ ∈ R1+p+q : n−1/2 ‖θ − θ0‖ ≤ c}, c > 0 fixed;

see Kresis (1987, Section 4) for details. We remark that here asymptotically discreteness
is only of theoretical interest since in practice θ̄n always has a bounded number of digits;
see Le Cam and Yang (2000, Chapter 6) and van der Vaart (1998, Section 5.7) for more
details. Then the one-step R-estimator is defined as

θ̂nϕ := θ̄n − n−1/2
(
Υ̂n

)−1
R̂n(θ̄n). (2.9)

Note that strictly speaking, the R-estimators based on this definition are not func-
tions of the ranks of the residuals only. However, we borrow the terminology from the
regression and the homoscedastic-autoregression settings and still call them (generalized)

R-estimators. When, for example, ϕ(u) = u − 1/2, θ̂nϕ is an analogue of the Wilcoxon
type R-estimator.

The following theorem shows that the R-estimator defined in (2.3) is
√
n-consistent

estimator of θ0ϕ. The proof is given in Appendix A.

THEOREM 2.1. Let Assumptions 2.1-2.3 hold. Then, as n→∞,

√
n
(
θ̂nϕ − θ0ϕ

)
= −(1/2+ρ(ϕ)/2)−1(J(θ0ϕ))−1(Qn(θ0ϕ)+Nn(θ0ϕ))+oP(1). (2.10)

Hence as n→∞,
√
n
(
θ̂nϕ − θ0ϕ

)
is normal with mean 0 and covariance matrix

(J(θ0ϕ))−1
[4γ(ϕ) + 8λ(ϕ)] E(v̇1(θ0ϕ)/v1(θ0ϕ))E

(
v̇′1(θ0ϕ)/v1(θ0ϕ)

)
+ 4σ2(ϕ)J(θ0ϕ)

(1 + ρ(ϕ))2
(J(θ0ϕ))−1.

2.3. Estimation of cϕ

To obtain a consistent estimator of θ0, we estimate the unknown scalar cϕ under the
following mild moment assumption on Xt.

ASSUMPTION 2.4. E(X2
t ) <∞

From Bollerslev (1986, Theorem 1), a sufficient condition for the GARCH model to be
second-order stationary (hence to satisfy Assumption 2.4) is

∑p
i=1 α0i +

∑q
j=1 β0j < 1.

In this case,

E(X2
t ) =

ω0

1−
∑p
i=1 α0i −

∑q
j=1 β0j

=
cϕω0

cϕ −
∑p
i=1(cϕα0i)− cϕ

∑q
j=1 β0j

.

Using the ergodicity property, E(X2
t ) is estimated from the data by X2

n := n−1
∑n
t=1X

2
t .
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Also, cϕω0 and cϕα0i are estimated by ω̂nϕ and α̂nϕi, respectively. Solving the following
equation for c

n∑
t=1

X2
t /n =

ω̂nϕ

c−
∑p
i=1 α̂nϕi − c

∑q
j=1 β̂nj

,

we obtain an estimate of cϕ as

ĉnϕ :=

1−
q∑
j=1

β̂nj

−1(ω̂nϕ/X2
n +

p∑
i=1

α̂nϕi

)
. (2.11)

Consequently write θ̂nϕ in its component-wise form

θ̂nϕ =
(
ω̂nϕ, α̂nϕ1, ..., α̂nϕp, β̂n1, ..., β̂nq

)′

and let

θ̂n :=
(
ω̂nϕ/ĉnϕ, α̂nϕ1/ĉnϕ, ..., α̂nϕp/ĉnϕ, β̂n1, ..., β̂nq

)′

.

The following theorem states that ĉnϕ is a consistent estimator of cϕ and thus θ̂n is a root-
n consistent estimator of θ0 with asymptotically normal distribution; see Appendix A
for its proof.

THEOREM 2.2. Let Assumptions 2.1-2.4 hold. Then, as n→∞,

ĉnϕ = cϕ + oP(1)

and
√
n
(
θ̂n − θ0

)
= −(1/2 + ρ(ϕ)/2)−1(J(θ0))−1(Qn(θ0) +Nn(θ0)) + oP(1). (2.12)

Hence as n→∞,
√
n
(
θ̂n − θ0

)
is normal with mean 0 and covariance matrix

Ωϕ := (J(θ0))−1
[4γ(ϕ) + 8λ(ϕ)] E(v̇1(θ0)/v1(θ0))E

(
v̇′1(θ0)/v1(θ0)

)
+ 4σ2(ϕ)J(θ0)

(1 + ρ(ϕ))2
(J(θ0))−1.

Note that by making Assumption 2.4 and following similar approach as in the proof
of Theorem 2.2, one can also obtain consistent estimators of unknown scalars for robust
estimators in GARCH models (e.g., M-estimators of Liu and Mukherjee (2020) and R-
estimator of Andrews (2012)). For illustration, recall that the R-estimator of Andrews
(2012) is root-n consistent estimator of

(α01/ω0, ..., α0p/ω0, β01, ..., β0q)
′

where ω0 is the intercept parameter that plays the role of the unknown scalar. Denoting
the R-estimator of Andrews (2012) by

θ̂BA;n := (âBA;n1, ..., âBA;np, β̂BA;n1, ..., β̂BA;nq)
′,

a consistent estimator of ω0 can be obtained as

ω̂BA;n :=

(
1 +

p∑
i=1

âBA;niX2
n

)−11−
q∑
j=1

β̂BA;nj

X2
n.
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We remark that from Theorem 2.2, the asymptotic covariance matrix of θ̂n has a com-
plicated form. Hence we can consider, for example, bootstrap methods to approximate

the limit distribution of
√
n
(
θ̂n − θ0

)
.

2.4. Examples of the score functions

Below we cite examples of three commonly-used R-scores; for similar examples of scores
in other models, see Mukherjee (2007) and Hallin and La Vecchia (2017).

Example 1 (sign score). Let ϕ(u) = sign(u − 1/2). Then for symmetric error dis-
tribution, cϕ = (E|ε|)2, which coincides with the scale factor of the LAD estimator in
Mukherjee (2008). Therefore, the sign R-estimator is expected to be close to the LAD
estimator. This is demonstrated later in the real data analysis.

Example 2 (Wilcoxon score). Let ϕ(u) = u − 1/2 so that the range of ϕ(u) is sym-
metric.

Example 3 (van der Waerden (vdW) or normal score). One might also set ϕ(u) =
Φ−1(u), with Φ(·) denoting the c.d.f. of the standard normal distribution. Notice that
unlike the sign and Wilcoxon score, the vdW score is not bounded as u→ 0 and u→ 1. It
thus does not satisfy Assumption 2.3. However, an approximating sequence of bounded
score functions of ϕ on (0, 1) can be constructed as in Andrews (2012). For example,
letting

ϕm(u) = Φ−1(u)I(1/m ≤ u ≤ 1− 1/m) + Φ−1(1/m)I(0 < u < 1/m)

+Φ−1(1− 1/m)I(u > 1− 1/m), m > 2,

ϕm(u) satisfies Assumption 2.3 and converges pointwise to the vdW score on (0, 1). It is
demonstrated later using both real data analysis and extensive simulation that the vdW
has superior performance compared with the QMLE.

We now provide heuristics for the definition of the R-estimator in (2.2). When the
underlying error distribution is known, one can obtain efficient R-estimator by choosing
the score function as ϕ(u) = −ḟ(F−1(u))/f(F−1(u)). Since for large n, the empirical
distribution function Rnt(θ0ϕ)/(n+1) of {εj ; 1 ≤ j ≤ n} evaluated at εt is close to F (εt),
we have

ϕ

[
Rnt(θ)

n+ 1

]
Xt

v
1/2
t (θ)

≈ H∗
[

Xt

v
1/2
t (θ)

]
.

Therefore, the criteria function of the R-estimator gets close to the MLE which is efficient.
This leads to the choice of the vdW, sign and Wilcoxon under the normal, double expo-
nential (DE) and logistic distributions, respectively. This is observed later in simulation
study of the R-estimator.

2.5. Computational aspects

Here we discuss some key computational aspects and propose an algorithm to compute
θ̂nϕ and θ̂n. Codes are available from the authors’ GitHub page https://github.com/

HangLiu10/RestGARCH.
First, since cϕ depends on the unknown density f , it is difficult to have a

√
n-consistent

initial estimator θ̄n of θ0ϕ. One possible choice of the initial consistent estimator θ̄n is the
two-stage type least squares estimator as proposed by Preminger and Storti (2017). In
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practice, due to the finite sample size, the one-step procedure in (2.9) is usually iterated

a number of times, taking θ̂nϕ as the new initial estimate, until it stabilizes numerically.
This iteration process would mitigate the impact of different initial estimates; see van der
Vaart (1998, Section 5.7) and Hallin and La Vecchia (2017) for similar comments. In fact,
we observed during our extensive simulation study that irrespective of the choice of the
QMLE, LAD or θ0 as initial estimates, only few iterations result in the same estimates.

Second, to compute θ̂nϕ of (2.9), we need Υ̂n which is a consistent estimator of (1/2+
ρ(ϕ)/2)J(θ0ϕ). The matrix J(θ0ϕ) can be consistently estimated by

Ĵn(θ̄n) := n−1
n∑
t=1

{ ˙̂vt(θ̄n) ˙̂v′t(θ̄n)/v̂2t (θ̄n)}.

For estimating ρ(ϕ) which is a function of the density g, we can use the asymptotic
linearity in (2.7). Here with an arbitrarily chosen b, we can substitute θ̄n for θ0ϕ and
then solve the equation for ρ(ϕ) based on (2.7). A more delicate approach for estimating
ρ(ϕ) can be found in Cassart et al. (2010) and Hallin and La Vecchia (2017, Appendix C).
Based on our extensive simulation study and real data analysis, it appears that different
values of ρ(ϕ) would finally lead to same estimate after some iterations. Consequently,
we set ρ(ϕ) = 1 during the computation which is the value corresponding to the vdW
score under the normal distribution. In summary, we propose the following iterative
Algorithm 1 to compute θ̂nϕ, with which we can obtain ĉϕ using (2.11) and hence θ̂n.

Algorithm 1: R-estimation for GARCH models

Input: a sample {Xt; 1 ≤ t ≤ n}, orders p and q of the GARCH process, number
k of iterations in the one-step procedure.

Output: R-estimator θ̂n
Step 1. Compute a preliminary root-n consistent estimator θ̄n and set θ̂nϕ = θ̄n.
Step 2. for i← 1 to k do

θ̂nϕ ← θ̂nϕ −

[
n∑
t=1

˙̂vt(θ̂nϕ) ˙̂v
′

t(θ̂nϕ)

v̂2t (θ̃nϕ)

]−1

×

{
n∑
t=1

˙̂vt(θ̂nϕ)

v̂t(θ̃nϕ)

[
1− ϕ

(
Rnt(θ̂nϕ)

n+ 1

)
Xt

v̂
1/2
t (θ̂nϕ)

]} (2.13)

end

Step 3. Compute ĉϕ using (2.11) and then θ̂n.

3. REAL DATA ANALYSIS AND SIMULATION RESULTS

This section examines the performance of the R-estimators and compare them with the
QMLE by analyzing three financial time series and by carrying out extensive Monte
Carlo simulation.
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Table 1. The QMLE, LAD and R-estimates of the GARCH (1, 1) parameter for the
EFCX, S&P 500 and GBP/USD data.

fGarch QMLE LAD sign Wilcoxon vdW
EFCX
ω (×103) 0.19 0.63 1.22 1.23 1.22 1.24

α 0.05 0.07 0.17 0.17 0.16 0.13
β 0.92 0.84 0.66 0.65 0.67 0.69

S&P 500
ω (×105) 0.65 0.70 0.53 0.53 0.53 0.62

α 0.18 0.18 0.19 0.19 0.19 0.18
β 0.72 0.70 0.73 0.73 0.73 0.72

GBP/USD
ω (×106) 0.53 1.02 0.68 0.68 0.73 0.91

α 0.12 0.13 0.07 0.07 0.07 0.09
β 0.88 0.85 0.91 0.91 0.91 0.89

Note: The sign, Wilcoxon and vdW scores are used for the R-estimators. Estimates of ω are rescaled.

3.1. Real data analysis

In this section we fit GARCH (1, 1) model to three financial time series and compare
the proposed three R-estimators with the M-estimators QMLE and LAD discussed in
Mukherjee (2008), where the unknown scalar of the LAD can also be estimated by (2.11).

In an earlier work, Muller and Yohai (2008) fitted the the GARCH (1, 1) model to
the Electric Fuel Corporation (EFCX) time series for the period of January 2000 to
December 2001 with sample size n = 498. The parameters of the model are estimated
by M-estimators based on various score functions. It turned out that the M-estimates of
the parameter β differ widely depending on the score functions and so it is difficult to
assess which estimate should be relied on in similar situations. Here we compare various
M-estimates and R-estimates of the GARCH (1, 1) parameters for the EFCX series again
shedding light on which could be some possible reasons for the difference in estimates
and finally which estimation methods can be relied upon. We also compare M-estimates
of the GARCH (1, 1) parameters when fitted to two other dataset, namely, the S&P 500
stock index from June 2013 to May 2017 with n = 1005 and the GBP/USD exchange
rate from June 2013 to May 2017 with n = 998 to illustrate that the M- and R-estimates
do not differ widely when the underlying theoretical assumptions hold in general.

In Table 1, we report the QMLE computed using the fGarch package in R program,
the M-estimates QMLE and LAD and the R-estimates proposed in Examples 1-3 of
Section 2.4. For the EFCX data, the R-estimates for all score functions are quite close
to the LAD estimate, but they are very different than the QMLE. On the contrary, for
the S&P 500 and GBP/USD data, M- and R-estimates are close to each other.

To investigate why the QMLE is different from the other R-estimates and LAD for
the EFCX data, we check the assumption Eε4 <∞ for this data by using the QQ-plots
of the residuals (based on the vdW R-estimates) against t distributions. We consider
the vdW score only because the R-estimates based on two other score functions and the
LAD are close to the vdW estimates. For comparison, we have also provided QQ-plots for
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the S&P 500 data. The main idea behind the QQ-plots of the residuals against the t(d)
distribution is simple: Suppose ε ∼ t(d) distribution; then E|ε|ν <∞ if and only if ν < d.
Hence, residuals with heavier tail than the t(d) distribution correspond to the errors with
the infinite d-th moment while those with thinner tail than the t(d) distribution have the
finite d-th error moment.

The top-left panel of Figure 1 (see Appendix C) shows the QQ-plot of the residuals
against the t(4.01) distribution for the EFCX data. The residuals have heavier right tail
than the t(4.01) distribution which implies that the fourth moment of the error term may
not exist. On the other hand, the QQ-plot against the t(3.01) distribution reveals lighter
tail as shown at the bottom-left panel of Figure 1 and this implies that E|ε|3 <∞.

For the S&P 500 data, the QQ-plot against t(4.01) distribution at the top-right panel
of Figure 1 shows that the residuals have lighter tails than t(4.01) distribution. For the
QQ-plot against t(6.01) distribution, as shown at the bottom-right panel of Figure 1, the
residuals fit the distribution better. Therefore, we may conclude that E|ε|4 < ∞ holds
for the S&P 500 data.

3.2. Simulation study of the R-estimators

We now evaluate the performance of the R-estimators based on simulated data from
various error distributions in the GARCH (1, 1) model. Let R denote the number of

replications and θ̂nr = (ω̂r, α̂r1, ..., α̂rp, β̂r1, ..., β̂rq)
′ denote the R-estimator computed

from the r-th data, 1 ≤ r ≤ R. We throughout compare the R-estimators with the
QMLE by using the bias and MSE based on averages over 1 ≤ r ≤ R. We also compare
the relative efficiency of the R-estimators wrt the QMLE under a finite sample size, as
an estimate of the ARE, by using the formula

ÂRER/QMLE = M̂SEQMLE/M̂SER.

Simulation for the GARCH (1, 1) model. Here we run simulation with R =
500, n = 1000 and θ0 = (6.50× 10−6, 0.177, 0.716)′, where our choice of θ0 is motivated
by the estimate given by the fGarch package for the S&P 500 data in Table 1. The
estimates of the bias and MSE of the R-estimators and QMLE under various symmetric
error distributions are reported in Table 2, where the estimates of the ARE with respect
to the QMLE are shown in the parentheses. When a data is generated under the t(3) error
distribution, the fourth moment of the error is infinite and consequently the algorithm
for computing the QMLE does not converge for many replications, while Algorithm 1 for
computing the R-estimators always converges. Therefore, the bias and MSE are obtained
using the data of those replication cases when the QMLE converges.

To explain our simulation results in Table 2 corresponding to the vdW score, recall
the classical Chernoff and Savage (1958) phenomenon which appears in linear regression
models as discussed in Jurečková and Sen (1996, Section 3.4) and linear autoregres-
sive models as discussed in Mukherjee and Bai (2002). Accordingly, the ARE of the
R-estimator (based on the unbounded vdW score ϕ(u) = Φ−1(u)) with respect to the
least squares estimator is 1 at the standard normal error and more than 1 for all other
symmetric error distributions. In this paper we consider a bounded approximating score
of the vdW score in the nonlinear GARCH model where the QMLE is analogous to the
least squares estimator. Simulation results in Table 2 reflects that phenomenon closely.
In particular, the vdW achieves almost the same efficiency as the QMLE under the nor-



14 H. Liu and K. Mukherjee

mal distribution and it is more efficient under symmetric heavier-tailed distributions.
In general, the sign score is most efficient under the DE and t(3) distributions, while
the Wilcoxon score is optimal under the logistic distribution. Under the t(3) distribution
with infinite fourth moment, the R-estimators yield smaller bias and significantly smaller
MSE than the QMLE.

For a demonstration of our asymptotic result with increasing sample size, we have
reported simulation results for larger sample sizes n = 3000 and n = 5000 under t(3)
error distribution in Table C.1 of the Appendix. The QMLE failed to converge even for
large sample size as the fourth moment was not finite; for example, with n = 5000, the
QMLE did not converge for around 8% of replications. From Table C.1, when n increases,
the performance of the R-estimators becomes even better in terms of both the ARE and
MSE.

Table 2. The estimates of the bias, MSE and ARE (in parenthesis) of the R-estimators
and the QMLE for the GARCH (1, 1) model under symmetric error distributions.

Bias MSE and ARE
ω (×107) α (×103) β (×102) ω (×1012) α (×103) β (×103)

Normal
QMLE 9.72 1.68 -1.92 6.05 1.21 3.8
Sign 9.08 1.07 -1.86 6.93 (0.87) 1.36 (0.89) 4.43 (0.86)

Wilcoxon 8.99 0.87 -1.83 6.42 (0.94) 1.28 (0.94) 4.12 (0.92)
vdW 9.19 0.96 -1.87 5.89 (1.03) 1.20 (1.01) 3.77 (1.01)
DE

QMLE 9.97 3.02 -2.17 11.6 2.75 7.93
Sign 6.67 -1.76 -1.55 6.87 (1.70) 2.08 (1.33) 5.41 (1.47)

Wilcoxon 6.74 -1.72 -1.57 7.00 (1.66) 2.12 (1.30) 5.48 (1.45)
vdW 7.79 -0.76 -1.87 9.15 (1.27) 2.24 (1.23) 6.50 (1.22)

Logistic
QMLE 11.34 5.69 -1.75 8.45 1.95 5.02

Sign 9.50 3.25 -1.46 6.81 (1.24) 1.68 (1.16) 4.30 (1.17)
Wilcoxon 9.40 3.15 -1.43 6.63 (1.28) 1.65 (1.18) 4.16 (1.21)

vdW 10.05 3.80 -1.61 7.23 (1.17) 1.71 (1.14) 4.42 (1.14)
t(3)

QMLE 11.73 33.03 -5.14 42.24 81.55 39.51
Sign 0.88 -11.90 -2.04 8.20 (5.15) 3.53 (23.08) 8.86 (4.46)

Wilcoxon 1.16 -11.62 -2.15 8.55 (4.94) 3.61 (22.59) 9.33 (4.24)
vdW 3.10 -8.52 -2.91 11.99 (3.52) 4.77 (17.10) 13.26 (2.98)

Note: The sign, Wilcoxon and vdW scores are used for the R-estimators. Bias and MSE are rescaled.
The sample size is n = 1000 and number of replications is R = 500.

4. CONCLUSION

We propose a new class of R-estimators for the GARCH model and derive the asymptotic
normality of these estimators under mild moment and smoothness conditions on the error
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distribution. We exhibit the robustness and efficiency of R-estimators with respect to the
QMLE through simulation and real data analysis. To approximate the distribution of
R-estimators, we can consider, for example, a general type of weighted bootstrap for
such estimators which is computational-friendly and easy-to-implement. The theoretical
analysis such as the asymptotic validity of the weighted bootstrap is an interesting but
challenging problem that can be explored in the future. A ‘Value at Risk’ backtesting
exercise could be performed to indirectly compare the predictive performances of various
estimators under consideration.
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Chernoff, H. and I. R. Savage (1958). Asymptotic normality and efficiency of certain
nonparametric test statistics. The Annals of Mathematical Statistics 29, 972–94.

Fan, J., L. Qi and D. Xiu (2014). Quasi-maximum likelihood estimation of GARCH
models with heavy-tailed likelihoods. Journal of Business & Economic Statistics 32,
178–91.
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A. PROOFS OF PROPOSITION 2.1, THEOREM 2.1 AND 2.2

We will use the following facts from Berkes et al. (2003) for the proofs:
FACT 1. For any ν > 0,

E

{
sup

[∣∣∣∣ v̇1(θ)

v1(θ)

∣∣∣∣ν ;θ ∈ Θ0

]}
<∞. (A.1)

and

E

{
sup

[∣∣∣∣ v̈1(θ)

v1(θ)

∣∣∣∣ν ;θ ∈ Θ0

]}
<∞.

FACT 2. There exist random variables Z0, Z1 and Z2, all independent of {εt; 1 ≤ t ≤ n}
and a number 0 < ρ < 1, such that

0 < vt(θ)− v̂t(θ) ≤ ρtZ0, (A.2)

|v̇t(θ)− ˙̂vt(θ)| ≤ ρtZ1, (A.3)

|v̈t(θ)− ¨̂vt(θ)| ≤ ρtZ2.

FACT 3. Let {(At, Bt, Ct); t ≥ 0} be a sequence of identically distributed random
variables. If E log+A0 + E log+B0 + E log+ C0 <∞, then for any |r| < 1,

∞∑
t=0

(At +BtCt)r
t converges with probability 1. (A.4)

Idea of the proof of Theorem 2.1. We first derive the following Theorem A.1, Corol-
lary A.1.1 and Theorem A.2 on empirical processes where a scale-perturbed weighted
mixed-empirical process is approximated by its non-perturbed version. With θnϕ =
θ0ϕ + n−1/2b, we derive asymptotic expansion of the difference between two quanti-
ties T 1n(θnϕ) and T 2n(θnϕ) which are defined later. We then show that T 1n(θnϕ) can
be approximated by a r.v., which is asymptotic normal, plus a term linear in b. Also,
we use T 2n(θnϕ) to approximate Rn(θnϕ) and show that asymptotically their difference

is a r.v. with mean zero. Finally, we prove that the difference of Rn(θnϕ) and R̂n(θnϕ)
converges in probability to zero. Using these results, we are able to derive the asymp-
totic linearity of R̂n(θnϕ) as shown in Proposition 2.1. Finally, using the definition of
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the one-step R-estimator in (2.9), we are able to derive the asymptotic distribution of θ̂nϕ.

Theorem A.1, Corollary A.1.1 and Theorem A.2.

Let {(ηt, γnt, δnt), 1 ≤ t ≤ n} be an array of 3-tuple r.v.’s defined on a probability
space such that {ηt, 1 ≤ t ≤ n} are i.i.d. with c.d.f. G and ηt is independent of (γnt, δnt)
for each 1 ≤ t ≤ n. Let {Ant; 1 ≤ t ≤ n} be an array of increasing sub-σ-fields in both
n and t so that Ant ⊂ An(t+1), Ant ⊂ A(n+1)t, 1 ≤ t ≤ n − 1, n ≥ 2. Assume also
that (γn1, δn1) is An1 measurable, and {{(γnt, δnt); 1 ≤ t ≤ j}, η1, η2, . . . , ηj−1} are Anj
measurable, 2 ≤ j ≤ n. For x ∈ R, recall that µ(x) = E[ηI(η < x)] =

∫ x
−∞ sg(s)ds and

consider the following weighted mixed-empirical processes

Ṽn(x) := n−1/2
n∑
t=1

γntηtI(ηt < x+ xδnt), (A.5)

J̃n(x) := n−1/2
n∑
t=1

γntµ(x+ xδnt),

V ∗n (x) := n−1/2
n∑
t=1

γntηtI(ηt ≤ x), J∗n(x) := n−1/2
n∑
t=1

γntµ(x),

Ũn(x) := Ṽn(x)− J̃n(x), U∗n(x) := V ∗n (x)− J∗n(x).

Assume the following conditions on the weights {γnt} and perturbations {δnt}.
Let Cn :=

∑n
t=1 E|γnt|q for some q > 2. Let a with 0 < a < q/2 be such that

Cn/n
q/2−a = o(1). (A.6)(

n−1
n∑
t=1

γ2nt

)1/2

= γ + oP(1) for a positive r.v.γ. (A.7)

E

(
n−1

n∑
t=1

γ2nt

)q/2
= O(1). (A.8)

max
1≤t≤n

n−1/2|γnt| = oP(1). (A.9)

max
1≤t≤n

|δnt| = oP(1). (A.10)

nq/2−ε

Cn
E

[
n−1

n∑
t=1

{γ2nt|δnt|}

]q/2
= o(1). (A.11)

n−1/2
n∑
t=1

|γntδnt| = OP(1). (A.12)

The following theorem shows that uniformly over the entire real line, the perturbed
process Ũn can be approximated by U∗n.

THEOREM A.1. Under the above set-up and Assumptions (A.6)-(A.12) and Assump-
tion 2.1,

sup
x∈R
|Ũn(x)− U∗n(x)| = oP(1). (A.13)
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Proof. The proof is similar to the proof in Mukherjee (2007, Theorem 6.1). In particular,
we show point-wise convergence for each x and then invoke the monotone structure
of the mean processes to achieve the uniform convergence. For weighted empirical, the
monotonically increasing mean process is given by the distribution function. Although µ
in the present case is not a monotone function on (−∞,∞), we use its monotone property
separately on (−∞, 0] and [0,∞).

We remark that this theorem is different from Koul and Ossiander (1994, Theorem 1.1)
and Mukherjee (2007, Theorem 6.1) where weighted empirical processes were considered
for the estimation of the mean parameters. For the estimation of the scale parameters,
in this paper we consider weighted mixed-empirical process which is a weighted sum of
the mixture of error and its indicator process.

The following corollary describes a Taylor-type expansion of the weighted sum of in-
dicator functions Ṽn(x).

COROLLARY A.1.1. Under the above setup and under the Assumptions (A.6)-(A.12)
and Assumption 2.1,

sup
x∈R
|J̃n(x)− J∗n(x)− x2g(x)n−1/2

n∑
t=1

γntδnt| = oP(1). (A.14)

Hence,

sup
x∈R
|Ṽn(x)− V ∗n (x)− x2g(x)n−1/2

n∑
t=1

γntδnt| = oP(1). (A.15)

Proof. Here (A.15) follows from (A.14) and (A.13). Therefore, it remains to prove (A.14).
Notice that the LHS of (A.14) equals

sup
x∈R

∣∣∣∣∣n−1/2
n∑
t=1

γnt

[
x

∫ x+xδnt

x

sg(s)ds− x2g(x)δnt

]∣∣∣∣∣
= sup
x∈R

∣∣∣∣∣n−1/2
n∑
t=1

γntδnt

[
x

∫ 1

0

(x+ hxδnt)g(x+ hxδnt)dh− x2g(x)

]∣∣∣∣∣
=oP(1)

due to (A.12) and Assumption 2.1.

The next theorem provides an extended version of (A.13) when the weights are func-
tions on appropriately scaled parameter space. We define the following processes of two
arguments as follows.

Probabilistic framework: Let {ηt, 1 ≤ t ≤ n} be i.i.d. with the c.d.f. G, {lnt; 1 ≤
t ≤ n} be an array of measurable functions from Rm to R such that for every b ∈ Rm
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and 1 ≤ t ≤ n, (lnt(b), unt(b)) are independent of ηt. For x ∈ R and b ∈ Rm, let

Ṽ(x, b) := n−1/2
n∑
t=1

lnt(b)ηtI
(
ηt < x+ xunt(b)

)
,

J̃ (x, b) := n−1/2
n∑
t=1

lnt(b)µ
(
x+ xunt(b)

)
,

Ũ(x, b) := Ṽ(x, b)− J̃ (x, b),

V∗(x, b) := n−1/2
n∑
t=1

lnt(b)ηtI(ηt < x), J ∗(x, b) := n−1/2
n∑
t=1

lnt(b)µ(x),

U∗(x, b) := V∗(x, b)− J ∗(x, b) = n−1/2
n∑
t=1

lnt(b)
[
ηtI(ηt < x)− µ(x)

]
.

Here U∗(·, ·) is a sequence of ordinary non-perturbed weighted mixed-empirical processes
with weights {lnt(·)} and Ũ(·, ·) is a sequence of perturbed weighted mixed-empirical
processes with scale perturbations {unt(·)}. In Theorem A.2 below it is shown that Ũ
can be uniformly approximated by U∗ under the following conditions (A.16)-(A.24) for
{lnt(·)} and {unt(·)}. Note that the statements on assumptions and convergence hold
point-wise for each fixed b ∈ Rm.

There exist numbers q > 2 and a (both free from b) satisfying 0 < a < q/2 such that
with Cn(b) :=

∑n
t=1 E|lni(b)|q,

Cn(b)/nq/2−a = o(1), for each b ∈ Rm. (A.16)
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For some positive random process `(b),(
n−1

n∑
t=1

l2nt(b)

)1/2

= `(b) + oP(1), b ∈ Rm. (A.17)

E

(
n−1

n∑
t=1

l2ni(b)

)q/2
= O(1), b ∈ Rm. (A.18)

max
1≤t≤n

n−1/2|lnt(b)| = oP(1), b ∈ Rm. (A.19)

max
1≤t≤n

{|unt(b)|} = oP(1), b ∈ Rm. (A.20)

nq/2−a

Cn(b)
E

[
n−1

n∑
t=1

l2nt(b)|unt(b)|

]q/2
= o(1), b ∈ Rm. (A.21)

n−1/2
n∑
t=1

lnt(b)unt(b) = OP(1), b ∈ Rm. (A.22)

∀ b and ε > 0, ∃ δ > 0, and n1 ∈ Nwhenever ‖s‖ ≤ b, andn > n1, (A.23)

P

(
n−1/2

n∑
t=1

|lnt(s)|
{

sup
‖t−s‖<δ

|unt(t)− unt(s)|
}
≤ ε

)
> 1− ε.

∀ b and ε > 0, ∃ δ > 0, and n2 ∈ Nwhenever ‖s‖ ≤ b, andn > n2, (A.24)

P

(
sup

‖t−s‖≤δ
n−1/2

n∑
t=1

|lnt(t)− lnt(s)| ≤ ε

)
> 1− ε.

Conditions (A.16)-(A.24) are regularity conditions on the weights and perturbations of
the two-parameters empirical processes. Conditions (A.23)-(A.24) are smoothness condi-
tions on the weights and perturbations. Under stationarity and ergodicity, many of these
conditions reduce to much simpler conditions based on existence of the moments.

The following theorem generalizes (A.13) when the weights are functions of b.

THEOREM A.2. Under the above framework, suppose that conditions (A.16)-(A.24)
and Assumption 2.1 hold. Then for every 0 < b <∞,

sup
x∈R,‖b‖≤b

|Ũ(x, b)− U∗(x, b)| = oP(1). (A.25)

Proof. Clearly, under conditions (A.16)-(A.22), Theorem A.1 entails that for each fixed
b,

sup
x∈R
|Ũ(x, b)− U∗(x, b)| = oP(1).

The uniform convergence with respect to b over compact sets can be proved as in Mukher-
jee (2007, Lemma 3.2) using conditions (A.23) and (A.24).

The following facts are useful in the proofs of various results of this paper. Let m =
1 + p+ q be the total number of parameters and fix b ∈ Rm. Let θnϕ = θ0ϕ + n−1/2b,

unt(b) =
v
1/2
t (θnϕ)

v
1/2
t (θ0ϕ)

− 1, vnt(b) =
v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

− 1. (A.26)
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Then {unt(b)} satisfies (A.20) since

unt(b) =
vt(θnϕ)− vt(θ0ϕ)

v
1/2
t (θ0ϕ){v1/2t (θnϕ) + v

1/2
t (θ0ϕ)}

=
n−1/2v̇′t(θ

∗)b

v
1/2
t (θ0ϕ){v1/2t (θnϕ) + v

1/2
t (θ0ϕ)}

,

(A.27)
for some θ∗ = θ∗(n, t, b) in the neighbourhood of θ0ϕ for large n. The n−1/2-factor is
used later for deriving convergence of some sequence of random vectors. Similarly, for
some θ∗,

vnt(b) =
vt(θ0ϕ)− vt(θnϕ)

v
1/2
t (θnϕ){v1/2t (θnϕ) + v

1/2
t (θ0ϕ)}

=
−n−1/2v̇′t(θ

∗)b

v
1/2
t (θnϕ){v1/2t (θnϕ) + v

1/2
t (θ0ϕ)}

= n−1/2ξnt,

(A.28)

say. Let ant(b) = v
1/2
t (θ0ϕ)/v

1/2
t (θnϕ) = 1 + vnt(b) = 1 + n−1/2ξnt. Then

Xt

v
1/2
t (θnϕ)

= ant(b)ηt = ηt + n−1/2ηtξnt = ηt + n−1/2znt,

where

znt = ηtξnt = ηt ×
−v̇′t(θ

∗)b

v
1/2
t (θnϕ){v1/2t (θnϕ) + v

1/2
t (θ0ϕ)}

.

For δ > 0 in Assumption 2.1 and any c > 0,

P

[
n−1/2 max

1≤t≤n
|znt| > c

]
≤

n∑
t=1

P
[
n−1/2|znt| > c

]
≤ n

E
[
n−1−δ/2|ηt|2+δ|ξnt|2+δ

]
c2+δ

= o(1)

since all moments of {|ξnt|} are finite and ηt and ξnt are independent for all t. Therefore

max
1≤t≤n

∣∣∣∣∣ Xt

v
1/2
t (θnϕ)

− ηt

∣∣∣∣∣ = oP(1). (A.29)

If v̇t(θnϕ)/vt(θnϕ) appears as the coefficients, we replace it by v̇t(θ0ϕ)/vt(θ0ϕ) and the
difference is controlled as follows. Notice that all derivatives below exist with bounded
moments and so

v̇t(θnϕ)

vt(θnϕ)
− v̇t(θ0ϕ)

vt(θ0ϕ)
= n−1/2At(θ0ϕ)b+ n−1A∗tn, (A.30)

whereAt(θ0ϕ) = v̈t(θ0ϕ)/vt(θ0ϕ)−v̇t(θ0ϕ)v̇
′

t(θ0ϕ)/{vt(θ0ϕ)}2. Only the term n−1/2At(θ0ϕ)b
is of our interest since others are of higher order than n.

Take lnt(b) to be equal to the j-th coordinate (1 ≤ j ≤ m = 1 + p+ q) of

Lnt(b) =
v̇t(θnϕ)

vt(θnϕ)
× v

1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

(A.31)

and unt(b) as in (A.26). We now show that (A.17)-(A.24) hold with such choice.
For each t with 1 ≤ t ≤ n, {Lnt(b), unt(b)} are independent of ηt. Using a Taylor

expansion of lnt(b) at θ0ϕ for each 1 ≤ t ≤ n and noting the existence of all moments of
vt(θ0ϕ) and its derivatives of all higher orders, (A.17) and (A.18) hold. Existence of all
higher moments of {lnt(b), unt(b)} ensure conditions (A.19)-(A.21).

To verify (A.22), we use (A.27) and that for each t, vt(·) is a smooth function with
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derivatives of all order to conclude that

n−1/2
n∑
t=1

Lnt(b)unt(b) = E[v̇1(θ0ϕ)v̇′1(θ0ϕ)/v21(θ0ϕ)](b/2) +oP(1) = J(θ0ϕ)b/2 +oP(1).

Conditions (A.23) and (A.24) can be verified using the mean value theorem.
The following lemmas and their proofs represent the intermediate steps in the proofs

of Proposition 2.1 and Theorem 2.1.
Lemma A.3, Lemma A.4, Lemma A.5 and Lemma A.6.
Let

T n1(θnϕ) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

{
1− Xt

v
1/2
t (θnϕ)

ϕ[G(ηt)]

}
,

T n2(θnϕ) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

{
1− Xt

v
1/2
t (θnϕ)

ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]}
and note that the difference in the definitions of these two quantities lies only in the

argument of ϕ(G(.)). We show in Lemma A.3 below that
∫ 1

0
[Ṽ(u, b)− V∗(u, b)]dϕ(u) =

T n1(θnϕ)−T n2(θnϕ). Using results on empirical processes in Theorem A.2,
∫ 1

0
[Ṽ(u, b)−

V∗(u, b)]dϕ(u) is linear in b. Consequently, we obtain the following uniform approxima-
tions of T n1(θnϕ)− T n2(θnϕ) over ||b|| ≤ c where c > 0.

LEMMA A.3. Let Assumptions 2.1-2.3 hold. Then, as n→∞,

T n2(θnϕ)− T n1(θnϕ) = M(θ0ϕ)b+ uP(1), (A.32)

where M(θ0ϕ) = J(θ0ϕ)ρ(ϕ)/2.

Proof. To use Theorem A.2 in the proof, let b = n1/2(θnϕ − θ0ϕ) and x = G−1(u) for

some 0 < u < 1. For simplicity, we use the notation Ṽ(u, b) to denote Ṽ(G−1(u), b) which
is defined in the probabilistic framework above. Accordingly

Ṽ(u, b) := n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

I

[
ηt < G−1(u)

v
1/2
t (θnϕ)

v
1/2
t (θ0ϕ)

]
and

V∗(u, b) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

I
(
ηt < G−1(u)

)
.

With the choice based on (A.31) and (A.26) and using

v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

ηt =
Xt

v
1/2
t (θnϕ)

,

Ṽ(u, b) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

I

[
Xt

v
1/2
t (θnϕ)

< G−1(u)

]

= n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

I

[
G

(
Xt

v
1/2
t (θnϕ)

)
< u

]
.
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Similarly,

V∗(u, b) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

I (G(ηt) < u) .

Since ∫ 1

0

I

{
G

(
Xt

v
1/2
t (θnϕ)

)
< u

}
dϕ(u) = ϕ(1)− ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
,

we get∫ 1

0

Ṽ(u, b)dϕ(u) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

{
ϕ(1)− ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]}
and ∫ 1

0

V∗(u, b)dϕ(u) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

(
ϕ(1)− ϕ(G(ηt)

)
.

Canceling ϕ(1),
∫ 1

0
[Ṽ(u, b)− V∗(u, b)]dϕ(u) equals

n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

{
−ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
+ ϕ(G(ηt)

)}
= T n2(θnϕ)− T n1(θnϕ).

Using (A.14) and (A.27) with

J̃ (u, b) := n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

µ

[
G−1(u)

v
1/2
t (θnϕ)

v
1/2
t (θ0ϕ)

]

J ∗(u, b) := n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

µ
(
G−1(u)

)
,

we have

sup
u∈(0,1)

|J̃ (u, b)−J ∗(u, b)−[G−1(u)]2g(G−1(u))n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

unt(b)| = uP(1).

Also,

|n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

v
1/2
t (θ0ϕ)

v
1/2
t (θnϕ)

unt(b)− J(θ0ϕ)| = uP(1).

Hence,∫ 1

0

[J̃ (u, b)− J ∗(u, b)]dϕ(u) =

∫ 1

0

[G−1(u)]2g(G−1(u))dϕ(u)Jb/2 + uP(1)

= M(θ0ϕ)b+ uP(1) (A.33)

by recalling thatM(θ0ϕ) = J(θ0ϕ)ρ(ϕ)/2. Finally, (A.32) follows from Theorem A.2.

The following lemma states that the difference between T n1(θnϕ) and Nn(θ0ϕ) is
asymptotically linear in b.
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LEMMA A.4. Let Assumptions 2.1-2.3 hold. Then, as n→∞,

T n1(θnϕ)−Nn(θ0ϕ) = J(θ0ϕ)b/2 + uP(1), (A.34)

where

Nn(θ0ϕ)→ N (0,J(θ0ϕ)σ2(ϕ)), (A.35)

with σ2(ϕ) = Var{η1ϕ[G(η1)]}.

Proof. The difference between T n1(θnϕ) and Nn(θ0ϕ) lies in comparing Xt/v
1/2
t (θnϕ) =

ηt + n−1/2znt and ηt and involves smooth function of b. So the proof follows easily with
the details below. Notice that

T n1(θnϕ)−Nn(θ0ϕ) = n−1/2
n∑
t=1

[
v̇t(θnϕ)

vt(θnϕ)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
{1− ant(b)ηtϕ[G(ηt)]}

− n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
vnt(b)ηtϕ[G(ηt)] = F n1 − F n2.

Using (A.30),

F n1 = n−1
n∑
t=1

At(θ0ϕ)b {1− ant(b)ηtϕ[G(ηt)]}+ uP(1)

= n−1
n∑
t=1

At(θ0ϕ)b {1− ηtϕ[G(ηt)]} − n−1
n∑
t=1

At(θ0ϕ)bvnt(b)ηtϕ[G(ηt)] + uP(1).

Using the LLN, the first term in the above decomposition of F n1 is uP(1) since

E {At(θ0ϕ)b {1− ηtϕ[G(ηt)]}} = E[At(θ0ϕ)b] E {1− ηtϕ[G(ηt)]} = 0.

For the second term, using (A.28) we have n−1/2 factor of vnt(b) and consequently it is
uP(1).

For F n2, we approximate vnt(b) by−n−1/2v̇′t(θ0ϕ)b/{2vt(θ0ϕ)} and use E{ηtϕ[G(ηt)]} =
1 to obtain F n2 = −J(θ0ϕ)b/2 + uP(1). Hence (A.34) is proved.

Using the independence of vt and ηt for each t, Nn(θ0ϕ) is a sum of the vectors of
martingale differences and so (A.35) follows from the martingale CLT.

Now consider the rank-based counterpart of T n2(θnϕ)

Rn(θnϕ) = n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

{
1− Xt

v
1/2
t (θnϕ)

ϕ

(
Rnt(θnϕ)

n+ 1

)}
.

The following lemma provides the difference between T n2(θnϕ) and Rn(θnϕ). It shows
that the effect of replacing observations in T 2n(θnϕ) by ranks is asymptotically a r.v.
with mean zero.

LEMMA A.5. Let Assumptions 2.1-2.3 hold. Then, as n→∞,

Rn(θnϕ)− T n2(θnϕ) = Qn(θ0ϕ) + uP(1). (A.36)

Also, Qn(θ0ϕ) converges in distribution to E(v̇1(θ0ϕ)/v1(θ0ϕ))Z, where Z has mean zero
and variance γ(ϕ).
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Proof. Consider the following decomposition

Rn(θnϕ)− T n2(θnϕ)

= n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Rnt(θnϕ)

n+ 1

]}

= n−1/2
n∑
t=1

[
v̇t(θnϕ)

vt(θnϕ)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Rnt(θnϕ)

n+ 1

]}

+ n−1/2
n∑
t=1

[
v̇t(θnϕ)

vt(θnϕ)
− v̇t(θ0ϕ)

vt(θ0ϕ)

]
vnt(b)ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Rnt(θnϕ)

n+ 1

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Rnt(θnϕ)

n+ 1

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
vnt(b)ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Rnt(θnϕ)

n+ 1

]}
=Dn1 +Dn2 +Dn3 +Dn4.

Using the n−1/2-factor in (A.30) and (A.28), Dn1, Dn2 and Dn4 are uP(1). We next
prove that Dn3 = Qn(θ0ϕ) + uP(1) in detail. Recall that G̃n(x) is the empirical dis-
tribution function of {ηt}. Let Gn(x), x ∈ R be the empirical distribution function of

{Xt/v
1/2
t (θnϕ)}. Then

Dn3 = n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
Gn

(
Xt

v
1/2
t (θnϕ)

)]}

= n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
G

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ [G(ηt)]

}

− n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ

[
Gn

(
Xt

v
1/2
t (θnϕ)

)]
− ϕ

[
G̃n(ηt)

]}

+ n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

{
ϕ [G(ηt)]− ϕ

[
G̃n(ηt)

]}
=D∗n1 −D

∗
n2 +D∗n3.

Since D∗n1 is the weighted sum of the difference of a c.d.f. evaluated at two different r.v.’s
and integrated wrt ϕ, using the same technique for proving (A.33), D∗n1 = M(θ0ϕ)b +
uP(1).

Write wt = v̇t(θ0ϕ)/vt(θ0ϕ). Since D∗n2 is the weighted sum of the difference of two
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different c.d.f.’s evaluated at two different r.v.’s and integrated wrt ϕ,

D∗n2 =

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
Gn

(
Xt

v
1/2
t (θnϕ)

)
< u

]
− I

[
G̃n(ηt) < u

]
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
Xt

v
1/2
t (θnϕ)

< G−1n (u)

]
− I

[
ηt < G̃−1n (u)

]
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηtI

[
ηt < G−1n (u)

1

1 + vnt(b)

]
− I

[
ηt < G̃−1n (u)

]
dϕ(u).

Using (A.29), sup
{∣∣∣G−1n (u)− G̃−1n (u)

∣∣∣ ;u ∈ (0, 1)
}

= uP(1). Hence, by Theorem A.2,

D∗n2 =

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ

(
G̃−1n (u)

1

1 + vnt(b)

)
− µ

(
G̃−1n (u)

)]
dϕ(u) + uP(1)

=

∫ 1

0

n−1/2
n∑
t=1

wtµ̇
(
G̃−1n (u)

) −vnt(b)
1 + vnt(b)

G̃−1n (u) dϕ(u) + uP(1)

=

∫ 1

0

n−1/2
n∑
t=1

wt

(
G̃−1n (u)

)2
g
(
G̃−1n (u)

) −vnt(b)
1 + vnt(b)

dϕ(u) + uP(1)

=

∫ 1

0

n−1
n∑
t=1

v̇t(θ0ϕ)v̇′t(θ0ϕ)

2v2t (θ0ϕ)

(
G−1(u)

)2
g
(
G−1(u)

)
dϕ(u)b+ uP(1)

=M(θ0ϕ)b+ uP(1).

Finally consider D∗n3 written as

D∗n3 =

∫ 1

0

n−1/2
n∑
t=1

wtηt

{
I
[
ηt ≤ G−1(u)

]
− I

[
ηt ≤ G̃−1n (u)

]}
dϕ(u)

=

∫ 1

0

n−1/2
n∑
t=1

wtηt

{
I
[
ηt ≤ G−1(u)

]
− I

[
ηt ≤ G−1(G(G̃−1n (u)))

]}
dϕ(u)

=

∫ 1

0

[
Mn(u)−Mn(G(G̃−1n (u)))

]
dϕ(u)

+

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u),

where Mn(u) := n−1/2
∑n
t=1wt

{
ηtI
[
ηt ≤ G−1(u)

]
− µ(G−1(u))

}
. We show that∣∣∣∣∫ 1

0

[
Mn(u)−Mn(G(G̃−1n (u)))

]
dϕ(u)

∣∣∣∣ = oP(1), (A.37)

Qn(θ0ϕ) =

∫ 1

0

n−1/2
n∑
t=1

wt

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u)→ E(v̇1/v1)Z. (A.38)

For (A.37), note that {Mn(.)} converges weakly to a Brownian Bridge since for each
fixed u, Mn(u) converges to a normal distribution using the martingale CLT and it
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is tight using the bound on the moment of the difference process in Billingsley (1968,
Theorem 12.3).

Since sup{|u−G(G̃−1n (u))|;u ∈ (0, 1)} = sup{|G(x)− G̃n(x)|;x ∈ R} = oP(1), by the
Arzela-Ascoli theorem,

sup
{∣∣∣Mn(u)−Mn(G(G̃−1n (u)))

∣∣∣ ;u ∈ (0, 1)
}

= oP(1),

and consequently, (A.37) is proved. For (A.38), we use the Bahadur representation; see
Bahadur (1966) and Ghosh (1971) for details. Since ġ(x) is bounded and g is positive on
R,

n1/2
(
G−1(u))− G̃−1n (u)

)
− n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

= o(1) a.s..

Applying the mean value theorem,

n1/2
[
µ(G−1(u))− µ(G̃−1n (u))

]
− µ̇(G−1(u))n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

= o(1) a.s..

(A.39)

Using µ̇(x) = xg(x),

Qn(θ0ϕ) = n−1
n∑
t=1

wt

∫ 1

0

[
µ̇(G−1(u))n−1/2

n∑
i=1

I{ηi ≤ G−1(u)} − u
g (G−1(u))

]
dϕ(u) + oP(1)

= n−1
n∑
t=1

wt

∫ 1

0

[
G−1(u)n1/2

(
G̃n(G−1(u))− u

)]
dϕ(u) + oP(1).

Since n−1
∑n
t=1wt → E(v̇1(θ0ϕ)/v1(θ0ϕ)), and using van der Vaart (1998, Theorem 19.3),

n1/2
(
G̃n(G−1(u))− u

)
→ B(u),

we obtain (A.38) with the r.v. Z having mean zero. The variance of Z is given by

E(Z2) = E

[∫ 1

0

∫ 1

0

G−1(u)G−1(v)B(u)B(v)dϕ(u)dϕ(v)

]
=

∫ 1

0

∫ 1

0

G−1(u)G−1(v)E[B(u)B(v)]dϕ(u)dϕ(v)

=

∫ 1

0

∫ 1

0

G−1(u)G−1(v) [min{u, v} − uv] dϕ(u)dϕ(v)

= γ(ϕ).

Now recall the rank-based central sequence

R̂n(θnϕ) = n−1/2
n∑
t=1

˙̂vt(θnϕ)

v̂t(θnϕ)

{
1− Xt

v̂
1/2
t (θnϕ)

ϕ

(
R̂nt(θnϕ)

n+ 1

)}
,

which is an approximation to Rn(θnϕ). We have the following lemma dealing with the

difference between Rn(θnϕ) and R̂n(θnϕ).
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LEMMA A.6. Let Assumptions 2.1-2.3 hold. Then, as n→∞,

Rn(θnϕ)− R̂n(θnϕ) = uP(1). (A.40)

Proof. Note that Rn(θnϕ)− R̂n(θnϕ) equals

n−1/2
n∑
t=1

[
v̇t(θnϕ)

vt(θnϕ)
−

˙̂vt(θnϕ)

v̂t(θnϕ)

]
(A.41)

+ n−1/2
n∑
t=1

[
˙̂vt(θnϕ)

v̂t(θnϕ)

Xt

v̂
1/2
t (θnϕ)

− v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

]
ϕ

(
R̂nt(θnϕ)

n+ 1

)
(A.42)

− n−1/2
n∑
t=1

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

[
ϕ

(
Rnt(θnϕ)

n+ 1

)
− ϕ

(
R̂nt(θnϕ)

n+ 1

)]
. (A.43)

Due to (A.2), (A.3) and v̂t(θ) ≥ c0(θ) > 0, we have∣∣∣∣∣ ˙̂vt(θnϕ)

v̂t(θnϕ)
− v̇t(θnϕ)

vt(θnϕ)

∣∣∣∣∣ =

∣∣∣∣∣ ˙̂vt(θnϕ)− v̇t(θnϕ)

v̂t(θnϕ)
+ v̇t(θnϕ)

vt(θnϕ)− v̂t(θnϕ)

v̂t(θnϕ)vt(θnϕ)

∣∣∣∣∣
≤ |

˙̂vt(θnϕ)− v̇t(θnϕ)|
v̂t(θnϕ)

+
|vt(θnϕ)− v̂t(θnϕ)|

v̂t(θnϕ)

|v̇t(θnϕ)|
vt(θnϕ)

≤ Cρt
[
Z1 + Z0

|v̇t(θnϕ)|
vt(θnϕ)

]
. (A.44)

Hence, in view of (A.1) and (A.4), for every 0 < b <∞,

sup
||b||<b

n∑
t=1

∣∣∣∣∣ ˙̂vt(θnϕ)

v̂t(θnϕ)
− v̇t(θnϕ)

vt(θnϕ)

∣∣∣∣∣ = OP(1),

which implies that (A.41) is uP(1). Since ϕ is bounded, (A.42) is uP(1). For (A.43), since
there is a n−1/2 factor from

v̇t(θnϕ)

vt(θnϕ)

Xt

v
1/2
t (θnϕ)

− v̇t(θ0ϕ)

vt(θ0ϕ)
ηt ,

it suffices to prove that

Kn := n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θnϕ)

n+ 1

)
− ϕ

(
R̂nt(θnϕ)

n+ 1

)]
= uP(1).

Let bxc denotes the greatest integer less than or equal to x. We split the sum in Kn

into two parts: in the first part, t runs till
⌊
nk
⌋
− 1 where 0 < k < 1/2. We show that

this part is up(1) by noting that its expectation is of the form nkn−1/2 = o(1) multiplied
by expectation of v̇t(θ0ϕ)/vt(θ0ϕ)ηt and a bounded quantity because ϕ is bounded. The
number of summands in the second term is n − nk which is large but there we bound

expectation of the sum of by a quantity of the form nρbn
kc with 0 < k < 1/2 and
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0 < ρ < 1 and this is o(1). Accordingly

Kn = n−1/2
bnkc−1∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θnϕ)

n+ 1

)
− ϕ

(
R̂nt(θnϕ)

n+ 1

)]

+ n−1/2
n∑

t=bnkc

v̇t(θ0ϕ)

vt(θ0ϕ)
ηt

[
ϕ

(
Rnt(θnϕ)

n+ 1

)
− ϕ

(
R̂nt(θnϕ)

n+ 1

)]
. (A.45)

To show (A.45) is uP(1), we prove that for every 0 < b <∞,

sup
bnkc≤t≤n
||b||<b

∣∣∣∣∣ϕ
(
Rnt(θnϕ)

n+ 1

)
− ϕ

(
R̂nt(θnϕ)

n+ 1

)∣∣∣∣∣ = OP(nk−1). (A.46)

Since sequences {Rnt(θnϕ)} and {R̂nt(θnϕ)} are permutations of {1, ..., n}, with the

probability tending to one as n → ∞, both {Rnt(θnϕ)} and {R̂nt(θnϕ)} are at points
of continuity of ϕ that has a finite number of the points of discontinuity. Therefore, to
prove (A.46), it suffices to prove

sup
bnkc≤t≤n
||b||<b

∣∣∣∣∣Rnt(θnϕ)

n+ 1
− R̂nt(θnϕ)

n+ 1

∣∣∣∣∣ = OP(nk−1). (A.47)

For
⌊
nk
⌋
≤ t ≤ n, we decompose ranks as

Rnt(θnϕ)

n+ 1
− R̂nt(θnϕ)

n+ 1

=
1

n+ 1

bnkc−1∑
i=1

{
I

[
Xi

v
1/2
i (θnϕ)

<
Xt

v
1/2
t (θnϕ)

]
− I

[
Xi

v̂
1/2
i (θnϕ)

<
Xt

v̂
1/2
t (θnϕ)

]}

+
1

n+ 1

n∑
i=bnkc

{
I

[
Xi

v
1/2
i (θnϕ)

<
Xt

v
1/2
t (θnϕ)

]
− I

[
Xi

v̂
1/2
i (θnϕ)

<
Xt

v̂
1/2
t (θnϕ)

]}
,

(A.48)

where the first sum is OP(nk−1). For the second sum, writing

I

[
Xi

v̂
1/2
i (θnϕ)

<
Xt

v̂
1/2
t (θnϕ)

]
= I

[
Xi

v
1/2
i (θnϕ)

v
1/2
i (θnϕ)v̂

1/2
t (θnϕ)

v̂
1/2
i (θnϕ)v

1/2
t (θnϕ)

<
Xt

v
1/2
t (θnϕ)

]
,

the modulus of (A.48) is bounded above by

sup
x∈R
||b||<b

1

n+ 1

n∑
i=bnkc

∣∣∣∣∣I
[

Xi

v
1/2
i (θnϕ)

< x

]
− I

[
Xi

v
1/2
i (θnϕ)

v
1/2
i (θnϕ)v̂

1/2
t (θnϕ)

v̂
1/2
i (θnϕ)v

1/2
t (θnϕ)

< x

]∣∣∣∣∣ .
Using |I(A)− I(B)| ≤ I(A ∩Bc) + I(Ac ∩B), this is bounded above by

sup
x∈R
θ∈Θ

1

n+ 1

n∑
i=bnkc

I(A
i,x,θ),
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where the set A
i,x,θ is defined as

A
i,x,θ :=

{
Xi

v
1/2
i (θ)

< x,
Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

≥ x

}

∪

{
Xi

v
1/2
i (θ)

≥ x, Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

< x

}
.

Therefore, it suffices to prove that
∑n
i=bnkc I(A

i,x,θ) = oP(1) uniformly with respect to
both x and θ. We show this with sets containing Ai,x,θ.

Recall that using (A.2), v̂t(θ) ≥ c0(θ) > c for a positive constant c and so

0 < v
1/2
t (θ)− v̂1/2t (θ) ≤ ρtZ0

v
1/2
t (θ) + v̂

1/2
t (θ)

≤ ρtZ0

2c
1/2
0 (θ)

.

Now using the triangular inequality,∣∣∣∣∣v1/2i (θ)v̂
1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

− 1

∣∣∣∣∣
≤

∣∣∣∣∣∣
v̂
1/2
t (θ)

(
v
1/2
i (θ)− v̂1/2i (θ)

)
v̂
1/2
i (θ)v

1/2
t (θ)

∣∣∣∣∣∣+

∣∣∣∣∣∣
v̂
1/2
i (θ)

(
v̂
1/2
t (θ)− v1/2t (θ)

)
v̂
1/2
i (θ)v

1/2
t (θ)

∣∣∣∣∣∣ . (A.49)

Therefore (A.49) is bounded above by

ρiZ0

2c
1/2
0 (θ)

+
ρtZ0

2c
1/2
0 (θ)

.

In view of (A.49), we get∣∣∣∣∣ Xi

v
1/2
i (θ)

v
1/2
i (θ)v̂

1/2
t (θ)

v̂
1/2
i (θ)v

1/2
t (θ)

− Xi

v
1/2
i (θ)

∣∣∣∣∣ ≤ (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ ,
where Z4 = Z0/(2C

1/2).
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Therefore, A
i,x,θ is a subset of

B
i,x,θ :=

{
Xi

v
1/2
i (θ)

< x,
Xi

v
1/2
i (θ)

+ (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ ≥ x
}

∪

{
Xi

v
1/2
i (θ)

≥ x, Xi

v
1/2
i (θ)

− (ρi + ρt)Z4

∣∣∣∣∣ Xi

v
1/2
i (θ)

∣∣∣∣∣ < x

}

=

{
ηi < x

v
1/2
i (θ)

v
1/2
i (θ0ϕ)

, ηi + (ρi + ρt)Z4|ηi| ≥ x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

∪

{
ηi ≥ x

v
1/2
i (θ)

v
1/2
i (θ0ϕ)

, ηi − (ρi + ρt)Z4|ηi| < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

=

{
x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

− (ρi + ρt)Z4|ηi| ≤ ηi < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

}

∪

{
x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

≤ ηi < x
v
1/2
i (θ)

v
1/2
i (θ0ϕ)

+ (ρi + ρt)Z4|ηi|

}
.

Consider r.v.s X and L ≥ 0 with X independent of η. Then P[X < η < X + L] ≤
sup
y∈R
{g(y)}E(L) where the p.d.f. g is bounded. Consequently,

sup
x∈R
θ∈Θ

E

 n∑
i=bnkc

I(Ai,x,θ)

 ≤ sup
y∈R

g(y)

n∑
i=bnkc

E
{

(ρi + ρt)Z4|ηi|
}
.

Notice that since
⌊
nk
⌋
≤ t ≤ n,

n∑
i=bnkc

E
{
ρtZ4|ηi|

}
≤ nρbn

kcE(Z4)E|η| = o(1)

due to 0 < ρ < 1 and E|η| <∞. Hence,
∑n
i=bnkc I(A

i,x,θ) converges in mean to zero uni-

formly with respect to both x and θ, which entails
∑n
i=bnkc I(A

i,x,θ) = oP(1) uniformly.

With all the results above, we can easily prove Proposition 2.1 and the asymptotic
result for the R-estimator as follows.

Proof of Proposition 2.1.

Proof. Combining (A.34), (A.36), (A.32) and (A.40), we get

R̂n(θnϕ)−M(θ0ϕ)b−Qn(θ0ϕ)−Nn(θ0ϕ)− J(θ0ϕ)b/2 = uP(1), (A.50)

which, by letting b = 0, entails

R̂n(θ0ϕ) = Qn(θ0ϕ) +Nn(θ0ϕ) + uP(1).

Hence, (2.7) follows by recalling that M(θ0ϕ) = J(θ0ϕ)ρ(ϕ)/2.
The proof of (2.8) follows directly from (A.35) and (A.38).
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Proof of Theorem 2.1.

Proof. From the definition of θ̂nϕ in (2.9), (2.7) and (2.8) in Proposition 2.1, consistency

of Υ̂n and the asymptotic discreteness of θ̄n (which allows us to treat n1/2(θ̄
(n) − θ) as

if it were a bounded constant: see Lemma 4.4 in Kreiss (1987)), we have

n1/2(θ̂nϕ − θ0ϕ)

=n1/2
{
θ̄n − n−1/2

(
Υ̂n

)−1
R̂n(θ̄n)− θ0ϕ

}
=n1/2

{
θ̄n − n−1/2

(
Υ̂n

)−1 [
R̂n(θ0ϕ) + (1/2 + ρ(ϕ)/2)J(θ0ϕ)n1/2(θ̄n − θ0ϕ)

]
− θ0ϕ

}
+ oP(1)

=n1/2
{
θ̄n − n−1/2(1/2 + ρ(ϕ)/2)−1(J(θ0ϕ))−1R̂n(θ0ϕ)− (θ̄n − θ0ϕ)− θ0ϕ

}
+ oP(1)

=− (1/2 + ρ(ϕ)/2)−1(J(θ0ϕ))−1R̂n(θ0ϕ) + oP(1).

In view of (2.8), we have

n1/2(θ̂nϕ − θ0ϕ) = −(1/2 + ρ(ϕ)/2)−1(J(θ0ϕ))−1(Qn(θ0ϕ) +Nn(θ0ϕ)) + oP(1).

Now, it remains to obtain the asymptotic covariance matrix of
√
n
(
θ̂nϕ − θ0ϕ

)
. Recall

(A.35) and (A.38). Since the asymptotic covariance matrices of Qn(θ0ϕ) and Nn(θ0ϕ)
have been derived, it remains to obtain the covariance matrix Cov(Qn(θ0ϕ),Nn(θ0ϕ)).
Note that E[Qn(θ0ϕ)N ′n(θ0ϕ)] equals

E

{[∫ 1

0

n−1/2
n∑
t=1

v̇t(θ0ϕ)

vt(θ0ϕ)

[
µ(G−1(u))− µ(G̃−1n (u))

]
dϕ(u)

]

×

[
n−1/2

n∑
t=1

v̇′t(θ0ϕ)

vt(θ0ϕ)
[1− ηtϕ [G(ηt)]]

]}
. (A.51)

Using (A.39) and n−1
∑n
t=1 v̇t(θ0ϕ)/vt(θ0ϕ)→ E(v̇1(θ0ϕ)/v1(θ0ϕ)), as n→∞, (A.51)

has the same limit as

E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)

× lim
n→∞

E


∫ 1

0

G−1(u)

 1

n

n∑
i=1

n∑
j=1

[
I{ηi ≤ G−1(u)} − u

] v̇′j(θ0ϕ)

vj(θ0ϕ)
[1− ηjϕ [G(ηj)]]

 dϕ(u)


= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
× lim
n→∞

E

{∫ 1

0

G−1(u)

{
1

n

n∑
i=1

[
I{ηi ≤ G−1(u)} − u

] v̇′i(θ0ϕ)

vi(θ0ϕ)
[1− ηiϕ [G(ηi)]]

}
dϕ(u)

}

= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)∫ 1

0

G−1(u)E
{[
I{η1 ≤ G−1(u)} − u

]
[1− η1ϕ [G(η1)]]

}
dϕ(u)

= E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)∫ 1

0

G−1(u)E
{
I{η1 ≤ G−1(u)} [1− η1ϕ [G(η1)]]

}
dϕ(u),
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where the first equality is due to independence of ηi and ηj for i 6= j, independence of
vj and ηj , and Assumption 2.1. The second equality is due to independence of vi and ηi.
The last equality is due to Assumption 2.1.

Recall the definition of λ(ϕ) in (2.6), which can also be written as

λ(ϕ) =

∫ 1

0

G−1(u)E
{
I{η1 ≤ G−1(u)} [1− η1ϕ [G(η1)]]

}
dϕ(u).

We then have

lim
n→∞

Cov(Qn(θ0ϕ),Nn(θ0ϕ)) = E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E

(
v̇′1(θ0ϕ)

v1(θ0ϕ)

)
λ(ϕ).

Hence, by recalling (A.38) and in view of (2.10), the asymptotic covariance matrix of
√
n
(
θ̂nϕ − θ0ϕ

)
is

(J(θ0ϕ))−1
E
(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′

1(θ0ϕ)

v1(θ0ϕ)

)
Var(Z) + J(θ0ϕ)σ2(ϕ) + 2E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′

1(θ0ϕ)

v1(θ0ϕ)

)
λ(ϕ)

(1/2 + ρ(ϕ)/2)2
(J(θ0ϕ))−1

= (J(θ0ϕ))−1
[4γ(ϕ) + 8λ(ϕ)] E

(
v̇1(θ0ϕ)

v1(θ0ϕ)

)
E
(
v̇′

1(θ0ϕ)

v1(θ0ϕ)

)
+ 4σ2(ϕ)J(θ0ϕ)

(1 + ρ(ϕ))2
(J(θ0ϕ))−1.

Proof of Theorem 2.2.

Proof. From (2.11),

ĉnϕ =

1−
q∑
j=1

β̂nj

−1(ω̂nϕ/X2
n +

p∑
i=1

α̂nϕi

)
=

1−
q∑
j=1

β0j

−1(cϕω0/E(X2
t ) + cϕ

p∑
i=1

α0i

)
+oP(1).

Substituting E(X2
t ) = ω0/{1−

∑p
i=1 α0i −

∑q
j=1 β0j}, this is equal to cϕ.

To prove (2.12), we define a (1 + p+ q)× (1 + p+ q) diagonal matrix

Aϕ := diag(c−1ϕ , ..., c−1ϕ︸ ︷︷ ︸
1+p

1, ..., 1︸ ︷︷ ︸
q

).

Then we have θ0 = Aϕθ0ϕ and θn = Aϕθnϕ. Using the forms of {cj(θ); j ≥ 0} in (3.1)
of Berkes et al. (2003), we have

vt(θ0ϕ) = cϕvt(θ0) and v̇t(θ0ϕ) = cϕAϕv̇t(θ0)

which entail

J(θ0ϕ) = AϕJ(θ0)Aϕ, Qn(θ0ϕ) = AϕQn(θ0), Nn(θ0ϕ) = AϕNn(θ0).

Hence (2.12) follows from (2.10) and consistency of ĉnϕ.

B. ASYMPTOTIC RELATIVE EFFICIENCY

Note that under assumption Eε4 < ∞, the QMLE θ̂QMLE is asymptotic normal with
mean zero and covariance matrix ΩQMLE = (Eε4 − 1)(J(θ0))−1. Hence, in view of The-
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orem 2.2, the ARE of the R-estimator wrt the QMLE is

Ω−1ϕ ΩQMLE = J(θ0)

{
[4γ(ϕ) + 8λ(ϕ)] E

(
v̇1(θ0)

v1(θ0)

)
E

(
v̇′1(θ0)

v1(θ0)

)
+ 4σ2(ϕ)J(θ0)

}−1
× (1 + ρ(ϕ))2(Eε4 − 1). (B.1)

For the sign R-estimator, γ(ϕ), λ(ϕ) and ρ(ϕ) are all zeros. Hence Ω−1ϕ ΩQMLE reduces
to

(Eε4 − 1)/(4σ2(ϕ))I1+p+q,

where I1+p+q is the (1 + p + q) × (1 + p + q) identity matrix. Consequently, the ARE
of the sign R-estimator wrt the QMLE equals (Eε4 − 1)/(4σ2(ϕ)), which is 0.876 under
the normal distribution. This corresponds to the classical result of the ARE of the mean
absolute deviation wrt the mean square deviation; see, e.g., Huber and Ronchetti (2011,
Chapter 1).

For the vdW and Wilcoxon R-estimators, the AREs are more difficult to calculate since
γ(ϕ) and λ(ϕ) are non-zero. However, in the simulation study in Table 2, the estimated
AREs reveal that the vdW R-estimator, compared with the QMLE, does not lose any
efficiency which is a reflection of the well-known Chernoff-Savage phenomenon in the
literature on the R-estimation in linear models.

C. SUPPLEMENTARY RESULTS FOR NUMERICAL ANALYSIS

Table C.1. The estimates of the bias, MSE and ARE (in parenthesis) of the R-estimators
and the QMLE for the GARCH (1, 1) model under the t(3) error distribution with larger
sample sizes n = 3000, 5000.

Bias MSE and ARE
ω (×107) α (×103) β (×103) ω (×1012) α (×103) β (×103)

n = 3000
QMLE 7.17 18.24 -30.56 19.17 20.49 16.31

Sign -1.41 -9.80 -9.09 2.48 (7.74) 1.30 (15.70) 2.17 (7.50)
Wilcoxon -1.26 -9.78 -9.41 2.62 (7.33) 1.33 (15.38) 2.29 (7.12)

vdW -0.35 -8.18 -12.91 3.73 (5.15) 1.76 (11.66) 3.38 (4.82)
n = 5000

QMLE 12.97 79.27 -77.61 12.72 36.91 19.81
Sign 4.87 6.01 -32.71 0.67 (18.90) 0.40 (91.15) 1.39 (14.29)

Wilcoxon 5.33 4.91 -32.34 0.84 (15.16) 0.37 (99.04) 1.40 (14.15)
vdW 5.32 3.43 -31.32 1.81 (7.02) 0.45 (81.28) 2.12 (9.35)

Note: The sign, Wilcoxon and vdW scores are used for the R-estimators. Bias and MSE are rescaled.
Simulation results are based on R = 500 replications.
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Figure C.1. QQ-plots of the residuals against t-distributions for the EFCX (left column)
and S&P 500 data (right column).

Note: The residuals are obtained by using the vdW R-estimator.
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