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bSkövde Artificial Intelligence Lab, School of Informatics, University of Skövde, Sweden.

Abstract

Exponential smoothing is widely used in practice and has shown its efficacy and reliability in
many business cases. Oftentimes, the time series in business practices are limited and short. This
poses a challenge in the smoothing parameter estimation, especially under maximum likelihood
framework. The model may suffer from incorrect parameters and harm the forecasting accuracy.

Motivated by the challenges in smoothing parameter estimation, we consider the use of
shrinkage estimators for exponential smoothing. Regularisation can help with parameter estima-
tion, mitigating parameter uncertainties. Building on the regularisation literature, we explore
`1 and `2 regularisation. We also implement different loss functions to accommodate differ-
ent shrinkage rates for each smoothing parameter. A case study of A&E admission forecasting
demonstrates that regularising the smoothing parameters improve the forecast accuracy in many
cases.
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1. Introduction

Forecasting is essential to support decisions in many organisations. For example, forecasts

are shared across echelons in a supply chain to provide the information of future demand. This

information is used by the members of the supply chain to make decisions, such as inventory,

procurement, and production. The decisions require reliable information where the forecasts

are consistent enough so that the unnecessary costs due to bullwhip effects can be avoided

(Chen et al., 2000; Sadeghi, 2015). In contrast, volatile forecasts potentially lead to inducing

more costs due to re-planning, schedule instability, and low service-level (Kadipasaoglu and

Sridharan, 1995). Thus, supporting the management with reliable and consistent forecasts are

important. Consistent forecasts also mitigate potential issues due to overfitting and unstable

forecast selection (Barrow et al., 2020). We can say that the consistency in the forecasts is

important to promote and ensure reliable decisions across the organisation, or the supply chain.
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In order to achieve reliable and accurate forecasts, exponential smoothing (ETS) is widely

used in business practices. It is robust, easy to implement, and amongst top-performing mod-

els in forecasting competitions (Fildes et al., 1998; Makridakis and Hibon, 2000; Makridakis

et al., 2018). It also has been developed quite intensively (see Gardner, 2006). In ETS there

are two important groups of parameters, namely smoothing parameters and initial values. The

smoothing parameters control how new information affecting the states of the model while the

initial values act as proxies of prior information before collected observations. The conven-

tional methodology in ETS utilises the single source of error (SSOE) framework (Snyder, 1985).

Hyndman et al. (2002, 2008) automate the methodology by employing the maximum likelihood

estimation (MLE) for parameters in order to select the most appropriate model to the data.

However, in business practices time series are typically short. Consequently, the estimators are

prone to inefficiency, especially when the observations are fewer than the number of parameters.

We discuss this issue in Section 2.

We develop an estimation procedure in ETS models which produce reliable and consistent

forecasts. We regularise the smoothing parameters in ETS to control the effect of new informa-

tion on the states of the ETS model. By shrinking the smoothing parameters, we essentially

reduce the effect of new information on the states and accentuate the long memory processes.

On the other hand, a concept of regularisation is widely applied in regression, such as LASSO

and ridge regression (Tibshirani, 1996; Hoerl and Kennard, 2000). Both reduce the effect of

the explanatory variables on the target variable, depending on the penalty function. Although

we aim to achieve similar effects from shrinking the smoothing parameters, we argue that reg-

ularisation in ETS is conceptually different from the one in regression. Suppose that we shrink

the smoothing parameters to zero, regularising the smoothing parameter means that we reduce

the effect of decreasing weights on the long memory processes. This is contrary to shrinking

regression parameter estimates to zero, where the shrinkage eliminates the contribution of a

specific explanatory variable to the target variable. Special cases such as the original Theta

method can be seen as having some parameters set to zero, resulting in deterministic states

(Assimakopoulos and Nikolopoulos, 2000; Hyndman and Billah, 2003).

We aim (a) to demonstrate the implementation of regularisation in ETS, (b) to explain the

mechanics of regularisation in ETS, and (c) to explain the effect of shrinkage on the parameters

and on the predictive accuracy. Thus, we conducted an experiment with A&E admission data.

Given a pre-determined model provided by an automatic selection via information criterion,
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we find that the ETS with regularisation gains forecast accuracy improvement. Models with

weighted regularisation outperform the other models in most cases. The choice of the penalty

function does not have statistical differences in improving the forecast accuracy. We also find

that the regularisation is able to shrink the level smoothing parameter, but it does not shrink

the seasonal smoothing parameter much. We also note that the initial values do not change

much due to smoothing parameter shrinkage. Lastly, small shrinkage parameters are sufficient

to improve the forecast accuracy

In Section 2, we discuss the theory behind exponential smoothing with regularisation. Sec-

tion 3 describes the experimental settings and discusses the findings. We apply the proposed

model to the real-life time series where the data generating process is unknown in Section 4. In

Section 5, we discuss and conclude our proposed model with its findings.

2. Exponential Smoothing with Parameter Shrinkage

ETS reconstructs the time series from its unobserved components, such as its level, trend,

and seasonality. Hyndman et al. (2008) build a taxonomy for naming ETS models, such as

ETS(ANN), where ANN means an additive error (A) with no trend and seasonality (N). Multi-

plicative components are denoted as M, and Ad or Md denote additive or multiplicative damped

trend. Let yt be an observed time series, at period t, assuming that the time series is constructed

from different unobserved components (xt), such as trend and seasonality. The states here usu-

ally identify the data characteristics. We can write a general exponential smoothing model

according to Hyndman et al. (2008),

yt = w>xt−1 + εt (1)

xt = Fxt−1 + gεt, (2)

where εt is the error term which has zero mean and variance of σ2. w is the measurement

vector, F is the transition matrix, and g is the persistence vector, which includes smoothing

parameters for all states in the model. xt may contain a level (lt), a trend (bt), and a seasonality

(st). Following the states, g also contains the level (α), the trend (β), and the seasonal smoothing

parameter (γ). In a damped trend model, the dampening parameter, or φ, is added into the

transition matrix and the measurement vector. Conventionally, we call (1) and (2) as the

measurement and the transition equation, respectively. Since only a single error term affects
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both equations, we call it a single source of error state-space framework (SSOE). We refer to

Hyndman et al. (2008) for more details.

Suppose we produce one-step ahead forecast from ETS model, denoted as µt+1|t. We can

measure the one-step ahead forecast error, et+1|t = yt+1 − µt+1|t, where µt+1|t = w>xt. In

general, the parameters are unknown but we assume that w> and F are known, depending on

the structure of the model, i.e., whether there is trend or seasonality. In a dampening trend

model, φ is inserted into w> and F and we still need to estimate it. Apart from that, we need

to estimate the elements of g to determine the effect of new information on the states.

The current methodology employs MLE for θ, x0, and σ2 (Hyndman et al., 2008), where

θ = {g, φ} = {α, β, γ, φ}. Not only such parameters, but also a variance is estimated from the

MLE. This allows us producing prediction intervals. Apart from that, it also enables us to select

the best approximated model via an information criterion. According to Hyndman et al. (2008),

the likelihood function is shown as,

L∗(θ,x0|h(·),Yt) = n log

(
T∑
t=1

ê2
t+1|t

)
+ 2

T∑
t=1

log|r(xt)|,

where r(·) is a scalar function which determines whether the error is additive or multiplicative.

T is the number of observations, and x0 is the vector of the initial states. h(·) denotes a pre-

determined model structure, i.e., determined by a model selection, and Yt denotes the available

information at time t. Hyndman et al. (2008) show that the likelihood function when maximised

is reduced to the augmented sum of squared errors criterion, shown as,

S(θ,x0|h(·),Yt) =

∣∣∣∣∣
T∏
t=1

r(xt)

∣∣∣∣∣
2/n T∑

t=1

e2
t+1|t. (3)

In the case of additive errors |r(xt)| = 1, Eq 3 reduces to the sum squared of errors. Under

MLE, consistent and efficient estimators can be achieved when T −→ ∞. However, in business

practices large observations are rarely obtained due to product life cycle, product discontinuity,

or low-quality data management. This may harm the efficiency of the estimators, and eventually

worsen the predictive accuracy. Moreover, MLE assumes that the probability model is known

and correct. Since the data generating process is generally unknown it is more likely that we

suffer from model misspecification and it may harm the forecast accuracy as well.

Hyndman et al. (2008) note that we can utilise (3) because it is computationally less
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expensive than MLE and it avoids variance estimation instability, which sometimes occurs in

MLE. However, due to limited sample sizes the estimators may reach the upper bound of the

parameter spaces. This potentially results in an overfit model, where the model fits the in-

sample very well but does not behave well in the out-of-sample. Following this problem, we

modify the loss function via minimising the root mean squared one-step ahead in-sample forecast

error (RMSE) with regularisation. The conventional loss function, which is widely applied in

regression problems, is shown as,

RMSE(θ, x0|h(·),Yt) + λ∗p(θ), (4)

where λ∗ is the shrinkage parameter and λ∗ ≥ 0. It is possible that the upper bound of λ∗

is infinity. Hence, it could be difficult to find the optimal value of λ∗. We aim to modify (4)

so that the shrinkage parameter has a finite upper bound. Thus, the penalised loss function is

shown as,

(1− λ)RMSE(θ, x0|h(·),Yt) + λp(θ), (5)

where λ ∈ [0, 1], λ ∈ Λ and is the shrinkage parameter which controls the shrinkage rate of each

smoothing parameter while Λ is the parameter space of λ. p(θ) is the penalty function, which

depends on the type of penalisation. We can write the penalty function with `1 regularisation

as, p(θ) = |α|+|β|+|γ|+|1−φ| and for the `2 regularisation, p(θ) = (α)2 +(β)2 +(γ)2 +(1−φ)2.

In the case of φ, we shrink it towards 1 instead of 0 because we need to preserve the trend.

Suppose that we shrink φ to zero, then the trend vanishes. In particular, (5) demonstrates a

trade-off between model fitness and model responsiveness. When λ is close to 0, the estimator

puts more weights on the fitness. On the other hand, when λ is close to 1, the estimator puts

more weights on model responsiveness.

We can demonstrate a hypothetical effect of lowering the smoothing parameters on the

states and consequently on the forecasts. In this simple illustration, we employ ETS(ANN). For

such model, θ = {α} and xt = {`t}, and the model is shown as,

yt = lt−1 + εt, and, lt = lt−1 + αεt.

Suppose that yt has the data generating process of ETS(ANN), wih α = 0.4 and `0 = 200. It
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is a monthly time series and has 36 observations. We reserve the first 24 observations as the

in-sample and apply two ETS(ANN) models: one with α̂ = 0.35 and the other one with α̂ = 0.15

for 6 origins. So that, we produce 1-6 step ahead forecasts 6 times.

Figure 1 demonstrates the difference between two values of α. When α̂ is close to the true

α, i.e., α̂ = 0.35, the forecasts are volatile. However, when α̂ is reduced to a small size, e.g.,

0.15, the forecasts are relatively stable than the former. We can explain this phenomenon by

looking at the effect of α̂ on the new information (εt). A small size of α̂ reduces the effect of new

information on the state significantly, i.e., α̂ −→ 0, then α̂εt −→ 0. Consequently, lt ≈ l0. This

induces not only more stable forecasts but also more reliable forecasts. We expect that similar

effects happen in the forecasts due to regularising θ.
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(a) α̂ = 0.35
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(b) α̂ = 0.15

Figure 1: Examples of two forecasts for 6 origins from different sizes of α̂

2.1. Weighted Regularisation

(5) assumes that we shrink the smoothing parameters at the same rate. However, this

may not be the case. For example, we have a seasonal time series with a weak trend and we

model it using ETS with trend and seasonality, or ETS(AAA), with regularisation. As we know

that the time series is seasonal but does not have a strong trend, we would like to shrink the

trend smoothing parameter more than the seasonal one. Thus, we need to adjust (5) in order

to accommodate this. We propose to add weights for each smoothing parameter of the penalty

function. This potentially mitigates the uncertainty from the structure of the model. The loss
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function with weighted regularisation is shown as,

{θ̂, x̂0}`1 = arg min(1− λ)RMSE(θ, x0|h(·), It) + λ

k∑
j=1

ωj |θj |, (6)

{θ̂, x̂0}`2 = arg min(1− λ)RMSE(θ, x0|h(·), It) + λ

k∑
j=1

ωjθ
2
j , (7)

where ωj is a weight of each smoothing parameter, ωj ∈ [0, 1] ∈ Ω,
∑k

j=1 ωj = 1, and Ω is

the parameter space of ωj . (6) and (7) are the loss function for different penalty functions,

namely `1 and `2 regularisation, respectively. A similar penalty function is used on adaptive

regularisation (Zou, 2006), where each parameters in the penalty function may have different

shrinkage parameters whether in groups or individually.

2.2. On choosing λ

Having discussed the effect of regularised smoothing parameters on the states, we need

to find good estimates for the shrinkage parameters. Grid search is widely used for shrinkage

parameter optimisation (Hoerl and Kennard, 2000; Bergstra et al., 2012). It is a relatively

simple operation, but computationally expensive operation.

We propose to implement a derivative-free shrinkage parameter optimisation. We aim to

minimise the cross-validated root mean squared one-step ahead out-of-sample forecast error,

shown as,

{λ̂, ω̂} = arg min
λ,ω

1

K

K∑
l=1

RMSE(λ,ω, θ̂l, x̂l,0, y1:l), (8)

where K is the number of origins and y1:l is the in-sample time series starting from t = 1 to

t = l. θ̂l and x̂l,0 are the estimated parameters and initial values for origin l. Essentially, we

propose a two-step estimation. First, we estimate the smoothing parameters given the λ̂ and

ω̂. Then, we estimate λ̂ and ω̂ minimising (8). We use a derivative-free optimisation because

finding the gradient from the cross-validation is not a trivial task.

3. NHS A&E Admission Case Study

3.1. Experimental Design

In this case study, we apply our proposed model to NHS A&E admission data of a hospital

in the northeast of England. The data contains number of incidents in a day for different

classifications, such as age (under 3 years old, between 4-16 years old, between 17-74 years old,
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and more than 75 years old), sex (male, female), and type of disposal (admitted, discharged,

referred to clinics, transferred, died, referred to health care professionals, left, and others). In

total, we have 135 time series. The data itself spans from January 2009 to October 2019 and

on a monthly level. In order to see the effect of sample sizes, we employ two different samples

sizes. First, the time series is short, which has 36 months (2009-2012). For a longer sample size,

we have 108 months (2009-2018). For each sample size, we apply rolling-origin with 5 origins to

produce 1 to 12-steps ahead forecast, with the same model structure.

We aim to demonstrate the effect of regularisation by comparing a model with and without

it. Before applying regularisation, we need to determine the structure of the model. We use

an automatic selection based on the corrected Akaike Information Criteria (AICc), provided by

adam() function in smooth package Svetunkov (2021), that implements exponential smoothing.

After that, we use the model as the benchmark and then apply regularisation to it. In essence,

we assume that the structure of the model is defined correctly by AICc and we take care of

the parameter estimation issue with regularisation. Hence, the benchmark model is a model

selected from AICc without regularisation and the proposed model is the same model structure

with regularisation. In this design, we have four scenarios, which are a combination of `1, `2,

unweighted, and weighted regularisation. Table 1 summarises the notations for the scenarios.

Regularisation `1 `2

Unweighted L1:UR L2:UR

Weighted L1:WR L2:WR

Table 1: A summary of scenarios, a combination between different types of regularisation. L1 and L2 denote `1
and ell2 regularisation. UR and WR denote the unweighted and weighted regularisation.

In order to evaluate the forecasting performance of each scenario we use three measures,

namely RMSE, mean absolute error (MAE), and mean error (ME). These measures are calcu-

lated as follows,

RMSE =

√√√√1

h

h∑
i=1

(yt+i − ŷt+i|t)2,

MAE =
1

h

h∑
i=1

|yt+i − ŷt+i|t|,

ME =
1

h

h∑
i=1

(yt+i − ŷt+i|t).
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Since we are interested in forecast accuracy improvement, we take a percentage difference be-

tween the proposed model and the benchmark model. For example, in the case of RMSE,

dRMSE = 100× (RMSEa − RMSEb)

RMSEb

where RMSEa and RMSEb denote the RMSE from the proposed and the benchmark model,

respectively, and the benchmark model here is the model without regularisation. As for ME,

we take an absolute value of each ME before taking the percentage difference to eliminate the

negative sign. However, we should acknowledge that the percentage difference of absolute MEs

results in the magnitude of the bias without knowing whether it is biased negatively or positively.

3.1.1. Choosing the shrinkage parameters

In implementing our approach, we use Nelder-Mead algorithm, implemented in nloptr pack-

age in R (Johnson, 2021). For the algorithm, the maximum iteration is 1000 and the stopping

criterion is 1e-08. For the unweighted regularisation, we need to find λ only. The optimal λ

is then applied to all smoothing parameters. On the other hand, the weighted regularisation

requires four parameters to estimate, namely λ, ωα, ωβ, ωγ , ωφ, where ωα, ωβ, ωγ , ωφ are the

weight of level, trend, seasonal smoothing parameter, and dampening parameter. We aim to

initialise the optimisation with uninformative initial values. In this experiment, we use the

initialisation of 0.1 for λ. As for ω, we use an equal weights. For example, for ETS(AAN) we

need to estimate ωα and ωβ hence we only need ωα = 0.5 while ωφ = 1− ωα.

3.2. Findings

Table 2 presents the average forecast accuracy improvement due to parameter regularisa-

tion in the percentage difference of RMSEs from 135 time series. Negative numbers show the

percentage improvement from the benchmark, and vice versa. Note here that all models are

ETS(ANA) for both sample sizes, i.e., 36 months and 108 months, which are selected from AICc.

We can see that across different scenarios the proposed estimation procedure outperforms

the benchmark model by 2-3%, on average. We also observe that the weighted regularisation

outperforms the unweighted regularisation, even though the latter shows improvements in some

cases. Looking at the small sample size, the regularised models outperform the benchmark mod-

els in all cases in comparison with the benchmark. However, when we have long time series, the

models with the unweighted regularisation produce less accurate forecasts than the benchmark
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and the model with the weighted regularisation outperforms the benchmark. Nonetheless, the

model with regularisation induces biases as shown in AbsME.

Panel A: accuracy measures for 1 step ahead forecast

Accuracy Sample

L1 L2

UR WR UR WR

dRMSE
36 -0.06 -2.06 -1.97 -2.16

108 3.78 -3.07 3.97 -2.49

dMAE
36 -0.06 -2.06 -1.97 -2.16

108 3.78 -3.07 3.97 -2.49

dAbsME
36 95.31 87.66 11.27 23.81

108 30.64 22.59 22.93 27.38

Panel B: accuracy measures for 1-12 step ahead forecast

Accuracy Sample

L1 L2

UR WR UR WR

dRMSE
36 -2.19 -2.33 -2.30 -2.35

108 0.68 -1.28 0.68 -1.31

dMAE
36 -2.58 -3.06 -2.60 -2.99

108 1.16 -1.84 1.02 -1.17

dAbsME
36 6.55 -1.07 -3.16 -3.87

108 104.26 103.63 134.83 84.67

Table 2: A summary of the percentage difference for different accuracy measures, loss functions, and forecast
horizons. Negative bold numbers show the best performance, except for dAbsME where the bold number show
the least biased forecasts.

In addition to Table 2, we conducted Nemenyi-Friedman non-parametric test to see whether

some types of regularisation perform better than the others and the benchmark, statistically

(see Figure 2). We use the RMSE for all forecast horizons and time series in a hierarchy. Note

here that if the intervals in Figure 2 intersect, then there is no statistical difference. Panel 2a

present the effect of the penalty function on the accuracy improvement. We can see that there is

no significant difference between `1 and `2 regularisation and both outperform the benchmark,

for the small and the large sample size. Figure 2b present the effect and the unweighted and

the weighted regularisation. For both sample sizes, we can see that the weighted regularisation

improves the forecast accuracy significantly. The last panel depict the effect of a combination

between the type of regularisation and the penalty function. For the small sample size, L2:WR,

L1:WR, and L1:UR perform similar to each other and outperforms the benchmark, statistically.

However, when the sample size is larger, only L1:WR outperforms the others statistically. In
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the case when the unweighted regularisation performs similar to the weighted one statistically,

it is preferable to choose the unweighted one due to less expensive computation.

In−sample: 36

M
ea

n 
ra

nk
s

L1
 −

 1
.7

6

L2
 −

 1
.7

8

B
M

 −
 2

.4
6

1.
8

2.
0

2.
2

2.
4

In−sample: 108

L1
 −

 1
.9

1

L2
 −

 1
.9

7

B
M

 −
 2

.1
3

1.
90

1.
95

2.
00

2.
05

2.
10

2.
15

(a) Penalty function

In−sample: 36

M
ea

n 
ra

nk
s

W
R

 −
 1

.7
1

U
R

 −
 1

.8
2

B
M

 −
 2

.4
6

1.
8

2.
0

2.
2

2.
4

In−sample: 108

W
R

 −
 1

.6
1

B
M

 −
 2

.1
3

U
R

 −
 2

.2
6

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

(b) Type of regularisation

In−sample: 36

M
ea

n 
ra

nk
s

L2
:W

R
 −

 2
.6

6

L1
:W

R
 −

 2
.7

2

L1
:U

R
 −

 2
.7

8

L2
:U

R
 −

 2
.9

1

B
M

 −
 3

.9
3

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

In−sample: 108

L1
:W

R
 −

 2
.3

1

L2
:W

R
 −

 2
.4

7

B
M

 −
 3

.2
6

L1
:U

R
 −

 3
.4

3

L2
:U

R
 −

 3
.5

4

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

(c) Combination

Figure 2: A non-parametric Nemenyi-Friedman test of RMSE for different types of loss function. In Panel (a), we
distinguish the effect of `1 and `2 regularisation. In Panel (b) we distinguish the effect of weighted and unweighted
regularisation, for different sample sizes and forecast horizons.

Since L1:WR performs well in both sample sizes, we focus on comparing the parameters of

the benchmark and the regularised model in L1:WR. Figure 3 shows the comparisons. Panels

3a-3c are the scatterplots between the parameters of the benchmark model (x-axis) and the

proposed model (y-axis). The red diagonal lines depict the equality between both parameters.

Anything below the red line shows that the parameters are shrunk due to the regularisation,

vice versa. Panel 3d shows the boxplots of the seasonal initial values, from the benchmark and

the proposed model.

We can see from Panel 3a that the proposed estimation procedure is able to shrink the level

smoothing parameter most of the time. However, looking at Panel 3b we can see that γ̂ from

the proposed model does not shrink as it intended to. Interestingly enough, the regularisation

does not affect the estimation of the initial values. Panel 3c shows that the grey dots are mostly

aligned to the red line, which means that the level initial values are not shrunk in the response

of the level smoothing parameter shrinkage. From Panel 3d we do not see differences in the

distribution of each seasonal initial value. These show that the regularisation works as it is

intended to, especially for the level smoothing parameter, and it does not affect the estimation

of the initial values.
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Figure 3: Parameter comparisons between the regularised and the benchmark models for L1 weighted regularisa-
tion, with small sample size. Panel (d) presents the difference between the seasonal initial values of the proposed
model and the benchmark. m is the seasonal lag

Apart from the effect of shrinkage on the parameters, we are interested in the effect of

the shrinkage parameters on the accuracy improvement. Figure 4 represents the scatterplots

between the percentage difference of RMSE (dRMSE) for all forecast horizons and the shrinkage

parameters. In Panel (a) we can see that forecast accuracy improvement is concentrated when

λωα is less than 0.2. On the other hand, λωγ is concentrated between 0 and 0.1 and many of

them show the improvement of forecast accuracy. Nonetheless, with relatively small λω the

forecasts from the proposed model generally improve the forecast accuracy.
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Figure 4: Relationships between dRMSE and shrinkage parameters. Anything lower than the red line denotes
better performances than the benchmark.

4. Questions arising from the preliminary results

• Distinguishing the effect of different loss functions on the forecast accuracy. It is obvious

from the current experiment that the weighted regularisation outperforms the unweighthed

one. However, it is not obvious how the choice of the penalty norm affects the forecasting

performance. We need to find a way to distinguish the effect of scenarios on the forecast

accuracy measure.

• Discussion on the effect of α̂ with shrinkage on the other smoothing parameters. Hyndman

et al. (2008, p. 46) note that the traditional parameter space of the trend and the seasonal

smoothing parameter depends on the level smoothing parameter, i.e., 0 < α < 1, 0 < β <

α, 0 < γ < 1−α. Shrinking α will potentially shrink the parameter space of β, but might

enlarge the parameter space of γ.
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