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Abstract—A kitchen underpinned by the Internet of Things
(IoT) requires the management of complex procedural processes.
This is due to the fact that when supporting an end-user in the
preparation of even only one dish, various devices may need
to coordinate with each other. Additionally, it is challenging—
yet desirable—to enable an end-user to program their kitchen
devices according to their preferred behaviour and to allow
them to visualise and track their cooking workflows. In this
paper, we compared two semantic representations, namely, Be-
haviour Trees and the DX-MAN model. We analysed these
representations based on their suitability for a range of end-
users (i.e., novice to experienced). The methodology required
the analysis of smart kitchen user requirements, from which we
inferred that the main architectural requirements for IoT cooking
workflows are variability and compositionality. Guided by the
user requirements, we examined various scenarios and analysed
workflow complexity and feasibility for each representation. On
the one hand, we found that execution complexity tends to
be higher on Behaviour Trees. However, due to their fallback
node, they provide more transparency on how to recover from
unprecedented circumstances. On the other hand, parameter
complexity tends to be somewhat higher for the DX-MAN model.
Nevertheless, the DX-MAN model can be favourable due to its
compositionality aspect and the ease of visualisation it can offer.

Index Terms—Internet of Things, Behavior Trees, DX-MAN
model, End-User Development

I. INTRODUCTION

Numerous IoT End-User Development paradigms and ap-
plications have emerged in recent years [1]. Most of these
applications address straightforward domestic tasks such as
switching a light on when a door opens [2]–[4]. However, they
have not addressed how to support end-users in programming
IoT cooking workflows.

We make the case that IoT cooking workflows differ from
other IoT or robotic workflows in three ways: (1) there is a
plethora of possible workflows (i.e., cooking recipes), many
of which are subject to multiple constraints such as the user’s
taste preferences, diet restrictions, time availability and mood,
available devices and ingredients; (2) many of these constraints
may be fuzzy; and (3) IoT cooking workflows are subject to
complex dependencies between heterogeneous kitchen devices
that need to work in synergy with the end-user, making it
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difficult to combine them. Based on the above, we argue in
this paper that the main architectural requirements that need
to be addressed are variability and compositionality.

Our research question is “What is the most suitable semantic
representation for handling IoT cooking workflows in the
context of end-user development?”. We examine two semantic
representations that have been proposed for representing IoT
workflows. First are Behaviour Trees (BTs) which originate
from the domain of gaming, and have made their way to
robotics and have been proposed for IoT and cooking [5].
BTs are a type of abstract state machines. They have been
successful in the gaming world since they allow for pro-
gramming NPC1 behaviours with an intuitive design that
is easy for designers to track, omitting the drawbacks of
the previously used finite-state machines (i.e., the lack of
scalability, maintainability and re-usability) [7], [8]. Second
is the DX-MAN model. DX-MAN was specifically created
to handle the behaviour of multiple and heterogeneous IoT
devices. It accomplishes that by using hierarchical composition
operators for composing two or more services into more
complex ones [9]–[11]. We acknowledge that other semantic
representations have been used for ambient intelligent envi-
ronments such as Petri Nets [12] and their derivations [13],
Business Process Model Notation (BPMN) [14], [15] or task
models [16] but we leave those as part of our future work.
Our investigation of BTs and DX-MAN is driven by the
aim to identify a machine-readable representation for end-user
programming/development (EUD)2 in the context of an IoT
kitchen. The most important human factor that we considered
as we carried out our analysis is end-user expertise. Within the
context of an IoT kitchen, this corresponds to an end-user’s
cooking skills and preferences.

We reviewed smart-cooking user requirements (identified
in previous studies) to investigate how workflows produced
by less expressive EUD frameworks (e.g., Event Condition
Action and Block-based programming languages—introduced
in the next section) can be parsed into each of the two more

1Non-Player Character, defined as any character in a game which is not
controlled by a player [6].

2We use the terms end-user programming and end-user development
interchangeably since we refer to various levels and expertise of end-users
in the development cycle [17]. For brevity, we will refer to them as EUD.



expressive and more machine-readable semantic representa-
tions, i.e., BTs and DX-MAN. We then compare them using
cognitive workflow complexity estimates. Also, we compare
visualisations of the two semantic representations.

The remainder of this paper is structured as follows: in Sec-
tion II, we analyse user requirements of (smart) kitchen end-
users. In addition, we introduce two popular EUD metaphors
and the notion of different skill levels of end-users and various
stakeholders in cooking workflow development (i.e. meta-
design). In Section III, the two semantic representations (i.e.,
BTs and DX-MAN model) are introduced. In Section IV,
we compare the semantic representations with each other,
analysing how each can be visualised and how they can
accommodate EUD metaphors. We finally evaluated them for
workflow complexity [18].

II. BACKGROUND

In this section, we present some background on end-
user requirements for smart kitchens. We also introduce the
meta-design EUD framework. Finally, we describe two EUD
metaphors and their common implementations.

A. Smart Kitchens and End-User requirements

A smart kitchen environment, in contrast with the rest of
the domotic environments, can be highly diverse. Consider
a lighting control device that determines the need for light
by checking for motion or occupancy. It works well when
user behaviour aligns well with a set of actions and triggers.
For pre-configured sets of IoT devices, this entails that the
behaviours are sufficiently similar to fit the set of triggers
appropriately. However, kitchen use is highly diverse [19].
Cooking by itself often requires complex chains of actions
(e.g., mixing at different speeds at different times, heating in
stages), making it challenging to ensure that the technology
can anticipate and meet the needs of its users.

Smart kitchens need to know the workflow that is being
executed, the entities (i.e., ingredients and devices) involved
and their states in each cooking step. Specifically, it has
been argued that when performing a cooking workflow3, users
need specialised technology to: 1) remind them of where they
were in the workflow in case they were distracted 2) weigh
ingredients accurately 3) know what ingredients they currently
have 4) locate items within their environment (especially
needed in small kitchens) 5) utilise labour-saving devices
6) access a virtual assistant that provides advice or guidance
[19], [20] From these requirements, it is apparent that kitchen
IoT devices need state tracking to “know” in every step
what ingredients have been processed, how they have been
processed and how to assist the user in performing future steps
with the available ingredients and devices.

The purposes of different devices within a smart kitchen can
be heavily intertwined. As stated by [20], users need different
kitchen devices (e.g., oven, stove, fridge and cooking hood) to
be able to cooperate with each other (e.g., start the cooking

3We refer to it as workflow since it involves a series of steps which may
or may not be dependent on each other.

hood when the stove is in use), unlike the rest of domotic
devices which are not related to cooking.

In the following section, we consider three architectural
requirements for the representation of IoT cooking workflows.

B. An abstract IoT Cooking Workflow should respect:

1) Workflow Variability: An IoT cooking workflow needs
to accommodate the availability of devices and all the possible
behaviours of its users. An IoT workflow should be able
to recover and implement an alternative workflow if certain
devices do not respond. If the user changes their mind about
the recipe at any point, innovating a new workflow should be
considered. The ability to create system variants for different
users or contexts of use is called variability [10], [21].

A framework with high variability should be capable of
accommodating online changes. Should the IoT workflow
constructor not be able to accomplish a goal (or near-to-
goal state) due to user absence, for instance, the framework
should be able to bring the workflow to a safe state avoiding
as much as possible: food expiry, food contamination or any
type of hazard. Specifically, we can expect the following user
“degrees of freedom” which can happen sequentially with each
other: • start a new recipe on its own or parallel with another
recipe being executed • cancel a recipe at any point • start
cooking without a selected recipe • add an additional step to
a current recipe or skip a step in a recipe • change the order
of the cooking recipe steps • tweak a step, deviating from the
recipe • add new constraints (e.g., number of guests, a new
device of preference). Moreover, with the inclusion of more
labour-saving devices (as per the user requirements outlined
in Section II-A), the number of combinations of possible IoT
cooking workflows is increased. Fully or partially automating
cooking steps with these devices and can easily lead to a
combinatorial explosion problem [22].

In addition, recent methods in machine learning on pro-
cedural data can aid in constructing exhaustive IoT cooking
workflows to fulfil a user’s requirements. It has been hypothe-
sised that AI technologies can teach smart environments how
to behave by setting rules automatically. In the vision paper of
[23], it was recognised that the vast amount of online resources
such as videos can be used to drive ubiquitous computing. In
fact, the study of [24] suggests harnessing videos to segment
its frames (cooking steps) and transform them into a latent
space where a Markov Decision Process algorithm is employed
to learn the sequence of cooking steps—essentially a planning
algorithm that can potentially narrate a cooking workflow.

Over time, it has become more apparent how machine
learning can aid in creating IoT cooking workflows and setting
rules for the user automatically. However, the downside is that
visualising a plethora of parsed workflows is an overwhelming
task for any end-user. By demonstrating semantic support
to encapsulate multiple computational behaviours in a single
entity, workflow variability plays an important role in taming
the combinatorial explosion of IoT cooking workflows.

2) Fuzzy Parameters: An ideal IoT workflow representation
should be able to accommodate fuzzy parameters. According



to [25], IoT for smart home environments need to be affective.
They need to act depending on contextual variables that may
not be binary. In addition, cooking is probably the most fuzzy
environment due to parameters such as taste preferences and
quantities (e.g., “a bit of salt”).

3) Compositionality: A recipe involves a series of actions.
These involve either human handling or device automation.
We denote the range of actions in an IoT cooking workflow
as nodes in a graph. Each node documents which ingredients
have been processed and what is allowed in terms of changing
or tweaking that cooking action. Consequently, several compo-
nents and parameters can become applicable, including: when
to start the action (e.g., when the previous IoT device sends
a signal, when a certain amount of time has elapsed or when
a user issues a trigger), and the potential device settings (e.g.,
temperature, time, mode). Moreover, the devices used might
include those which deviate from standard ones found in the
kitchen. Examples include: a robotic arm4, oven cameras [26],
tracking-recording cameras [27]–[29], automated ingredient
scales [27], autonomous stoves [27], [28], accelerometers and
RFID readers attached to kitchen objects [29]. The investiga-
tion of how these workflows are automatically formed pertains
to the field of automated planning [30], which is out of the
scope of this paper.

Inside each node, multiple functions can take place. Various
checks such as “Did the user already perform this action?”,
“Should it be adjusted to user preferences?”, “Does the user
want to perform this cooking step by themselves?”, “What
kind of guidance does the user prefer?”, “Is the user still in
the kitchen or are they away?”. Consequently, for each cooking
step involving a device, there are numerous checks that might
be necessary. Thus we hypothesise that a suitable IoT work-
flow representation should be capable of encapsulating each
sub-component of each device-node according to the level of
expertise of each end-user (novice to advanced).

An end-user may also desire to add new functionalities to
a cooking workflow. For instance, as mentioned in the user
requirements in Section II-A, a user may want to add a new
service to find their tools. Another example would be a user
adding a new labour-saving or precision smart device, e.g., a
smart cooking hood that switches on automatically when the
hob is used or when the user specifies so (as it might be the
case that for a short cooking duration a user prefers to not be
disturbed by the hood’s noise).

A desirable cooking workflow can accommodate any mod-
ular change in its flow without affecting other workflow parts.
The ability of a system to compose different services into more
complex ones without resulting in unexpected behaviours is
referred to as compositionality [9].

C. End-User Development for IoT

1) Meta-Design: A meta-design EUD framework refers to
the continuous development of personally meaningful socio-
technical systems with multiple stakeholders (including end-

4https://misorobotics.com/

users) who are actively engaged in the process [31]. Char-
acteristically, it could refer to designers, computer scientists,
and engineers (who are not experts in the problem domain)
and end-users who are experts in the problem domain, but
unaware of the software solutions [32]. Similarly, smart-
cooking can involve a range of multiple stakeholders and
end-users, from software engineers, device vendors, system
specialists to various types of end-users including domain
specialists (i.e., chefs) and people who are still learning how
to cook. To some extent, cooking is an art, and as such, the
users involved in it may not only replicate recipes that are
already known (i.e., read-only culture) but may also introduce
alternatives or enhancements (i.e., read-write culture) [33]
as well as customise recipes to fit daily practical personal
needs (i.e., allergies, preferences). The key element for such
an ecosystem to work is the multiple levels of end-user
programming/development. In this paper, we investigate a
three-tier EUD framework: (1) Event Condition Action or
ECA; (2) Block-Based visual programming language; and (3)
the semantic workflow representation which forms the basis of
the IoT cooking workflow; these representations are discussed
in detail in Section III.

2) EUD Models: Below we describe the most commonly
used EUD metaphors and their implementations. These are
analysed in Section IV.

a) Event Condition Action: The most widely known pro-
gramming paradigm is based on the Event Condition Action
framework [25]. One of the most popular applications which
follow this is IFTTT5 which stands for “IF This happens Then
do That”, i.e., an action is executed if a certain condition
is met. It has been used in several studies focussing on
smart homes [3], [34], [35]. Other smart home approaches
build upon enhancements to the IFTTT model [2], [36], [37].
Although the Event Condition Action paradigm is appealing
due to its simplicity, research suggests that establishing rules
from end-users can lead to errors. Specifically, new rules
can conflict with older rules leading to unpredictable and
dangerous behaviours (e.g., front door that is unexpectedly
unlocked) [38], [39]. In addition, this paradigm does not offer
more verbose editing options like the construction of loops
and more sophisticated workflows.

b) Block-Based Visual Programming Language: Visual
programming languages have the potential to enable the user
to code more complex behaviours. According to a recent
systematic review, the most used visual programming language
overall and in the context of IoT programming is block-
based programming [40]. Block-based visual programming
tools allow users to construct a program by combining together
visual blocks together like a jigsaw puzzle. These blocks
can represent code idioms such as variable setting and loops
[41], [42]. One should consider that block-based programming
languages are by no means the ultimate desiderata for end-
user development. [43] argue that in programming humanoid
robots, block-based solutions seem to work well when the

5https://ifttt.com/



possible options in a scenario are quite limited. However, this
is not true with modern humanoid robots which can flexibly
react to many possible events and perform a wide variety of
actions. We highly suspect this statement holds true in IoT
cooking workflows as well, since an overwhelming set of
parameters and tasks can be involved, as described earlier in
Section II-B1: Workflow Variability.

III. METHODOLOGY

We analyse two semantic representation models: Behaviour
Trees and the DX-MAN model. First, we introduce each of
them and how they can be adapted for IoT cooking workflows.
We then examine each in terms of: (1) how they can be
flexibly visualised by the end-user, and (2) how a program
developed by an end-user using Event Condition Action or
Block-Based Visual Programming Languages, can be parsed
into a comprehensible representation. The user requirements
we identified in the preceding section allowed us to formulate
hypothetical scenarios which then form the basis of our
comparison of these two models in Section IV.

A. Behaviour Trees

A Behaviour tree (BT) is a directed acyclic graph consisting
of different kinds of nodes. It is a tree-shaped graph, hence
the name behaviour tree. A BT consists of a set of nodes. At
execution, the top node is executed and in turn, it will try to ex-
ecute its child nodes. When executed a node will return one of
a number of status codes, namely, success, failure, and
running. While the first two are self-explanatory, running
denotes that the node, or one of its child nodes, is currently
under execution. A BT consists of different types of nodes,
i.e., leaf and internal nodes [8], [44].

a) Leaf Nodes:
• Action - An action represents a behaviour that the device

can perform. When an action is completed, the node
returns success or failure depending on whether
the execution was successful. Otherwise, the node returns
running. Actions are depicted as rectangles or rounded
rectangles.

• Condition - A condition checks the state of the environ-
ment, i.e., a proposition. It returns either of success or
failure depending on whether the proposition holds.
The evaluation of a condition is instantaneous and hence
will never return with a running status. A condition is
depicted with an oval shape.
b) Internal Nodes:

• Sequence Node - A sequence node tries to perform all
its child nodes in sequence from left to right. If one of
the child nodes fails, the sequence node will return with
a failure status. Otherwise, if every child node has
been successfully executed, it will return success. A
sequence node is depicted as a square with an arrow
inside it, i.e., .

• Fallback Node - A fallback node executes its children
nodes from left to right. If a child node returns success,
the fallback node also returns success. If a child

node fails, then the fallback node will try to execute
the child node that is next according to the left-to-right
ordering. It returns failure if and only if all its children
return failure. A fallback node is depicted as a square
containing a question mark, i.e., .

• Parallel Node - A parallel node executes all of its children
and it returns success if M children return with the
same. It returns failure if N −M +1 children return
failure, and returns running otherwise. N is the
number of children and M is a user-defined threshold. A
parallel node is depicted with two arrows, one on top of
the other, inside a square, i.e., .

• Decorator - A decorator node is a type of unary controller
that imposes some restrictions on the executions of its
single child node. For instance, one decorator may be
defined to ensure that an action is not repeated more often
than every fifth second. If the node is called sooner than
five seconds after it has last been executed, it returns
failure. Decorators are depicted as a rhombus with
descriptive text (or δ for short), i.e., .

The above is regarded as the vanilla version of BTs. In
the literature, various methods have augmented the number
of internal nodes. This was done by including, for instance,
a repeat internal node for non-deterministically selecting leaf
nodes, an always-failure node that will return success
when only a leaf node is in a running state [45], or a repeat
node (which selects leaf nodes until a number of successful
runs have been reported) and a reset node which resets a child
node up to a number of times upon failure [46]. These are out
of scope in our study.

To adapt BTs for the kitchen IoT workflow application,
we use the following straightforward architecture. Firstly, it
is expected that some tasks are static and others are dynamic
(e.g., setting the device parameters according to the ingre-
dients used). Secondly, we hypothesise that to deploy such
an application, certain aspects are common between different
devices, e.g., when to trigger a device, what to do if a cooking
step has been completed, should a step be automated or not
according to the preference of the user). These “sub-BT”
components differ per device type. For instance, a cooking
task might involve sensors (e.g., a smart scale or an inspection
camera) which can be triggered by themselves and know when
a certain cooking step has been initiated due to their sensing
capabilities. However, actuators would need to be triggered by
another entity.

Given the above, we set each device (device, sensor or
actuator) to be on standby until it is invoked by a Complex
Event Processing (CEP) unit to process a recipe or is triggered
at any point by the user. Then, various probabilities can be
assigned for the invocation of each device. These can be
assigned from a machine learning module based on the user’s
selected recipe and/or their previous preferences. In Figure 1
one can visualise a BT with a CEP with probabilities assigned
per device task.



Fig. 1: The CEP can trigger each BT according to the probabil-
ity estimated by an estimator, and waits to hear confirmation of
either success or failure. Each BT symbolises a different
cooking action involving device(s) or user guidance, and can
contain sub-BTs.

B. DX-MAN Model

DX-MAN [9]–[11] is an algebraic composition model
where services and composition operators are first-class se-
mantic entities. On the one hand, services are spaces of
workflow variants. On the other hand, composition operators
hierarchically compose two or more services into more com-
plex ones. This process is known as algebraic composition,
and it is rooted in single-sorted algebra in which mathematical
objects of one type are hierarchically composed into new
objects of the same type [22].

a) Services:
• Atomic Service - An atomic service has an invocation

connector and a non-empty finite set of primitive op-
erations (which are akin to BT actions). An invocation
connector is similar to a BT internal node and it is re-
sponsible for selecting the appropriate primitive operation
to be invoked.

• Composite Service - A composite service has a com-
position operator CC to compose services which can
be either atomic, composite or any combination thereof.
Semantically, it is equivalent to a workflow space W
which is a (potentially infinite) set of workflow variants.
These variants represent alternative control flows for
the execution of the composed services, and there are
operators for defining sequential, branchial and parallel
workflows.
b) Operators:

• Sequencer Operator - A sequencer operator SEQ uses
the Kleene star operation to allow the repetition of n ele-
ments (i.e. operations and/or other workflows), resulting
in infinite sequences. It then defines a workflow space
Wseq for a composite service. Each wi∈[1,∞] ∈ Wseq is
a sequential workflow.

• Paralleliser Operator - A paralleliser operator PAR al-
lows the execution of multiple elements in parallel. As it
supports element repetition, it defines a workflow space
Wpar for a composite service. Each wi∈[1,∞] ∈ Wpar is
a workflow executing multiple elements in parallel.

• Exclusive Selector Operator - An exclusive selector
XSEL defines a workflow space Wxsel with 2m − 1

exclusive branchial workflows for a composite service.
Each workflow wi∈[1,2m−1] ∈ W contains at least one
element out of m possibilities, and chooses a single
element to be executed.

In [11], DX-MAN was extended with the notion of feedback
control loops for composite services. Particularly, Monitoring,
Analysis, Planning, Execution and Knowledge (MAPE-K) [47]
allows the dynamic selection of workflow variants depending
on the given context. The MAPE-K would act similarly to
the hypothesised CEP of the BTs. In Figure 2 one can see
the MAPE-K components and a possible abstract IoT cooking
workflow.

Fig. 2: The MAPE-K model monitors the sensory input,
analyses then plans the abstract workflow structures, shown
below with the operators (i.e. SEQ). Next, the executor and
the effector determine the variables for each operator and can
assign probabilities to each Sequencer operator to execute,
similarly to Figure 1.

IV. EVALUATION & DISCUSSION

We evaluate Behaviour Trees and the DX-MAN model in
terms of two aspects that concern the end-user: the ability to
allow the end-user to visualise IoT cooking workflows, and the
extent to which the architecture facilitates EUD. In relation
to these two aspects, we utilised use cases driven by user
requirements (Section II-A). It is also worth noting that these
cases predominantly require the architectural requirements of
variability and compositionality. Then, to compare between
these semantic representations, we used the three measures
of workflow complexity introduced by [18]. These measures
of complexity were designed to express a quantitative per-
spective on how a human administrator (end-user) perceives
workflows. These three measures were inspired by the metrics
traditionally used to evaluate software complexity based on
control flow, data flow and space complexity [48], which are
respectively, execution complexity, parameter complexity and
memory complexity. Below we provide an overview of each
of them.



• Execution Complexity: This typically refers to the num-
ber of actions. In BTs we consider the number of leaf
nodes and in DX-MAN, the number of operations. This
metric also refers to the number of context switches.
Specifically, whenever an action is in the same configura-
tion context as any other action (noting that consecutive
actions belong to the same execution workflow), then
there is no increment of the context switch parameter.
However, if it the action is in a different context, then
the value is increased to the total number of configurable
contexts (e.g., if an action changes its behaviour or is not
executed because of a workflow element).

• Parameter Complexity: The number of parameters used.
Usually, they are expressed at the level of internal
nodes/operators.

• Memory Complexity: The number of parameters defined
by end-users but not used for immediate action. Instead,
the end-users need to remember them. The complexity
increases if more intervening parameters need to be
memorised over time and if these parameters change due
to contextual variables.

A. End User Visualisation

Visualisation is a primary concern for the end-users since
they need to observe and be aware of how their IoT cooking
workflow has changed according to various parameters. Below,
we discuss the extent to which BTs and DX-MAN support the
visualisation of architectural properties of IoT workflows.

1) Workflow Variability: A challenging aspect of IoT cook-
ing workflows is the plethora of parameters that can be applied,
which results in multiple workflow variations. In Section
II-B1, we detailed some reasons for accommodating multiple
workflows.

The DX-MAN model provides the exclusive selector mod-
ule (described in Section III-B) which can hold multiple
conditions to choose the remaining path of the workflow, in
any combination. Let us consider a simple workflow whereby
a recipe requires: using the microwave if time is limited;
otherwise, a pan; and lastly, a zenith inspection camera is used
for monitoring. The DX-MAN model uses the sequence and
the exclusive selector operator with its parameters to execute
the workflow, as shown in Figure 3a with some possible visual
notations. In BTs, the different options for parameters are
structured with condition states and further forks. For instance,
the same example is demonstrated as a BT in Figure 3b.

From the above example, one can derive the following
workflow complexities. In the DX-MAN model, there are
three operations whereas there are four leaf nodes in the
BT. Furthermore, the DX-MAN workflow has one context
switch, i.e., the workflow changes depending on the time
variable. In the BT example, there are two context switches:
the microwave action may be triggered or not depending on
the time variable, and also, the use of the pan may be triggered
or not depending on the same statement. Hence, the end-user
needs to comprehend two context switches instead of one.
Nonetheless, the BT does not carry any parameters, whereas,

(a) A DX-MAN workflow example. It uses a SEQ operator which
prioritises the left child (XSEL). After the XSEL operator, the suitable
equipment is chosen depending on the amount of time available.

(b) A BT example where the sequence node on top dictates the actions
and conditions to take place from left to right. On the left is a fallback
node which has a sequence. Underneath it is the condition, i.e., if
time is limited, then the microwave should be used. If that fails, the
fallback node comes in, i.e., the pan should be used. After that an
inspection camera is used.

Fig. 3: Possible implementation of an example workflow based
on DX-MAN (Figure 3a) and a BT (Figure 3b).

the DX-MAN model has one parameter under the XSEL (for
the time variable).

Lastly, in this example, there is no memory complexity in
either of the representations. In conclusion, we believe that
the DX-MAN model is more favourable since the parameter
complexity can be easily reduced by obscuring the parameters
that the end-user is not interested in, whereas the same cannot
be said for execution complexity. In addition, generally, the
XSEL module provides more information than a BT internal
node, since it can select different actions and orders based
on the constraints, whereas the BTs need to demonstrate
verbosely every possible path resulting in more execution
complexity.

In the literature, there have been implementations for visual-
ising multiple workflows. A popular method is the node-link
graph [49]. The AVOCADO visualisation tool [50] follows
this principle [49]. It compresses nodes from data provenance
workflows to make it easy for a user to track them (see ex-
ample in Figure 4). The user can also select which workflows
to visualise. Similarly, cooking workflows can be queried by
the end-user and visualised accordingly.

A BT implementation can also be visualised using the AV-
OCADO technique but with some challenges. The BT works
with sequential selections, every time asserting and executing
from left to right. Consider Figure 5 which depicts another
example workflow: making dough can sometimes require



Fig. 4: A workflow compressed using AVOCADO (aggrega-
tion level into layers using motif-based aggregation) [50]. The
visualisation can be implemented for the DX-MAN model,
where the S1,2 would represent an Exclusive selector operator
(XSEL) followed by Sequencers (SEQ) with some An, Bn′

operations.

whisking multiple times then adding water, and then whisking
again. With its fallback node, the BT provides an elegant way
to ensure that the dough is never too dry. Nonetheless, it will
be challenging to represent such a direction-agnostic sequence
in AVOCADO.

Fig. 5: A BT example where the sequence can go backwards.
While whisking to make the dough, in every time step it has
to hold true that the dough is not too dry; if it is then water
needs to be added before whisking again. This can lead to a
non-sequential series of actions: whisk, add water, whisk.

Meanwhile, due to its workflow direction being determinis-
tic, the DX-MAN model does not suffer from the aforemen-
tioned issue in BTs.

2) Fuzzy Logic Visualisation: As discussed in Section
II-B2, IoT cooking workflows may have variables that are
fuzzy. With its exclusive selector operator, the DX-MAN
model can support multiple actions depending on the fuzzy
constraints (as in Figure 3a, there may be multiple options
under the XSEL which pertain to the time variable). In
contrast, BTs need to model this with nested BTs (as in Figure
3b where each new option would require a combination of
fallback, sequence nodes and conditions). Thus the DX-MAN
model is more favourable in terms of execution complexity
since there can be a minimal set of exclusive selectors handling
the fuzzy variables. Nonetheless, if the application would
require multiple conditions on the exclusive selectors then it
would increase its parameter complexity.

B. End User Development

In Section II-C, we mentioned the two most popular EUD
frameworks which correspond to a slightly different level of

end-users. Firstly, we discuss the ECA framework, and the
possible use cases that it can support. These cases explore
the variability architectural requirement. Secondly, we mention
how a block-based visual programming language can be
utilised for creating IoT cooking workflows. Also, in that
framework the cases of variability and compositionality are
evident. In each scenario we compared BTs and DX-MAN.

1) Event Condition Action:
a) Adding Device Interdependencies: Let us consider

an example case whereby a user wants to start pre-heating
the oven when they have prepared their ingredients (mise en
place), a case of intertwined devices. To perform this action
with the BT architecture two possible edits need to be made.
One is to update the zenith inspection camera to detect when
the mise en place has finished and to publish a signal to the
CEP that it has finished, resulting in new leaf nodes. In the
oven trigger sub-BT, a leaf needs to be added to receive the
completion signal from the CEP. Figure 6a depicts a possible
architecture; all the other actions (e.g., heating the oven) are
omitted for simplicity. It is noticeable that adding many of
these event-condition-action rules makes it challenging to track
them in the BT architecture and requires making edits inside
each sub-BT.

Meanwhile, via an exclusive selector and a paralleliser
operator, the DX-MAN model creates the workflow shown
in Figure 6b. One might argue that it should be possible to
implement a similar structure in a BT by adding a Parallel
Node and a Sequence inside each to create a similar structure
to the DX-MAN model. This method would require that all
of the services have a flat hierarchy, which is unlikely since a
developer would most likely need to group some sub-BTs and
create dependencies. The only exception is when every time
the whole BT is created from a flat hierarchy of services, in
which case the DX-MAN model can be replicated. Neverthe-
less, the DX-MAN model will have an edge over composing
services with re-using workflows via its algebraic composition
mechanism. Specifically, the DX-MAN model benefits from
this mechanism in the sense that all of the services are flat in
the hierarchy (atomic services, i.e., services offered by each
device that can be used in combination with other devices,
as demonstrated also in this example). Then, the operators
configure the workflows dynamically and re-use some already
established ones via the MAPE-K loop. Thus, if an end-user
would use an ECA framework to create dependencies between
devices, we hypothesise that a developer/domain expert would
prefer the DX-MAN model since it would have have fewer
number actions, context switches, and hence, less execution
complexity.

b) Replacing Device: Another task that a user may be
required to perform is to add a new device to already existing
cooking workflows or assign recipe actions to a new labour-
saving device, as described in Section II-A. Let us consider
the example that a user has purchased an airfryer and wishes
to update their IoT cooking workflows to replace the oven
with their airfryer. An ECA would be required to express
this preference. This can be: if oven < functionality =



(a) Following the dynamic BT allocation architecture described in
Section III, the CEP selects which sub-BTs will be executed. Inside
each sub-BT there are new conditions that need to be assessed to
send a signal to the CEP to then trigger the right device with the BT
service.

(b) When the Zenith inspection camera’s mise en place service (left
bowls) detects that the user has assembled the ingredients, pre-heating
the oven will start. The Sequencer operator (SEQ) is used for that
implementation. In the meantime, it can aid the user by having other
services done in parallel via the Paralleliser operator (PAR) (e.g.,
weighing ingredients and mixing them).

Fig. 6: A BT IoT cooking workflow example of adding device
interdependencies (Figure 6a) and its DX-MAN equivalent
(Figure 6b).

Fig. 7: The DX-MAN’s exclusive selector is updated by the
MAPE-K loop. In this example, the airfryer is chosen over the
oven; subsequently, a workflow will be created based on the
services provided by the airfryer.

broil, heat = [200C], time = [30mins] > then airfryer <
heat = [180C], time = [15mins] > where mapping is
done internally by some function fairfryer(oven variables)
defined by a domain expert. To construct the IoT cooking
workflow following DX-MAN entails having an exclusive
selector operator which chooses the appropriate services of the
preferred device to accomplish the recipe; we refer the reader
to Figure 7. The equivalent implementation with BTs requires
adding a fallback node with a condition (i.e., to check whether
the user prefers the oven or the airfryer), similarly to Figure

3b. This process creates multiple internal nodes. Again, one
can argue that BTs can be created dynamically, but the same
argument stated above (in our discussion on Adding Device
Interdependencies) also holds true in this use case. Thus, in
the DX-MAN case the parameter complexity is somewhat
more than the BT, since the exclusive selector needs to denote
which devices will be used, whereas in the BT scenario there
can be an overwhelming amount of execution complexity due
to the introduction of multiple internal fallback nodes with
conditions.

2) Block-Based Visual Programming Language: End-users
should not be limited to only editing existing recipes but
should be able to create new recipes from the ground up
with their existing IoT devices. In this section, we anal-
yse the construction of IoT cooking workflows with Block-
Based programming languages. The transition from BTs to a
Block-Based programming language was explored previously
[51]. Below we discuss some block-based functionalities that,
through additions and modifications, may create complicated
underlying semantic model structures.

a) Multiple Conditions: Cooking can be quite versatile
as presented earlier. For instance, different preferences from
different users (e.g., a guest who prefers non-spicy options)
can result in a daunting number of conditions. This leads
to many different variations. In a Block-Based programming
language, users can select numerous conditions (and loops)
based on their preference. With its exclusive selector oper-
ator, DX-MAN minimises execution complexity but would
increase parameter complexity. However, it can omit non-
relevant parameters when presented to a user. In contrast,
due to its condition leaf nodes and more internal nodes, the
BT architecture adds more execution complexity; the same
argument from Section IV-A1 holds here. Specifically, a large
divergence in execution complexity is notable where the BT
tends to scale vertically rather than horizontally, involving
more conditions rather than actions, since the conditions can
be set as parameters in DX-MAN, making it easier to track,
subject to the visualisation medium.

b) Composing Services: The primary action in a Block-
Based language is the invocation of specific services of various
IoT devices. We referred earlier to this architectural attribute
as compositionality (Section II-B3). This principle can be ex-
panded to merge cooking workflows of different users, where
each workflow details their own preferences and requirements.
In BTs, there is no guarantee of compositionality. In fact, [52]
examined the use of the Communicating sequential processes
(CSP) language to model hierarchies and states in order
to test the compositionality of given end-user requirements
and parsing to and from BTs. In the DX-MAN model,
compositionality is built upon algebraic semantics, and the
composition operators receive multiple services as operands
to construct spaces that contain multiple tasks/workflows (see
Section III-B). In particular, the exclusive selector operator
can be customised with a set of constraints to determine how
the combination of services (DX-MAN’s operations) can be
executed.



c) Recoverability: A major hindrance to the adoption of
smart environments is the hesitancy of users to trust them [20].
A step towards earning the user’s trust is to set appropriate re-
covery options should their plan face an unexpected behaviour.
BTs have the internal fallback node which prioritises a leaf ac-
tion and, should that fail, proceeds to the next available action
(see Section III-A). This makes it easy to track the available
options if a service fails. In comparison, in the DX-MAN
model, there is no fallback node. However, one can approach
this issue by engineering the exclusive selector to prioritise a
service to execute. These conditions can be updated via the
MAPE-K loop (see Section III-B). Arguably the BTs provide
a transparent approach to all the fallback options which aids
its readability. Consequently, its execution complexity is high
since it shows all the possible fallback actions. The DX-MAN
model depends on its exclusive selector capability to make
the “right” choices. It does not offer the transparency that
BT does, hence decreasing its execution complexity. However,
its parameter complexity is higher due to the number of
conditions the exclusive selector may incorporate. In addition,
its memory complexity can be higher if the end-user defines a
set of parameters to then get updated/configured by the MAPE-
K loop in order to accommodate the current environment
(since the end-user will need to recall what parameters they
set, to be configured for a new context).

V. LIMITATIONS & FUTURE WORK

In this paper, we have described a three-tier EUD frame-
work, inspired by the meta-design framework where end-users
with different levels of expertise participate in the development
of a product—in this case, of IoT cooking workflows. A key
characteristic of the framework is enabling non-technical end-
users to create rules or workflows using the aforementioned
EUD paradigms; these can then be analysed or augmented by
the more technical kind of end-users in the form of either of
two semantic representations: BTs and the DX-MAN model.
We analysed these semantic representations using workflow
complexity estimates. A limitation of this work, however, is
the lack of analysis of the extent to which technical end-users
appreciate the visualisation of either the BT or the DX-MAN
model’s notations and structure. In our future work, we aim to
address this, as well as the question of how end-users can also
develop their own IoT cooking workflows with these models.
Moreover, the expressive power of these semantic representa-
tions will be addressed in our future work, by a possible goal-
oriented design study involving human participants and a set
of smart-kitchen devices to analyse and compare how “real”
workflows (i.e. multiple recipes, users, devices, options) can be
expressed in each. This can further expand the discussion on
the ease of analysis of multiple overlapping workflows; this
will also lead to insights on the choice of visual notations
[53] and practices to reduce complexity. Finally, we will
analyse other semantic representations, e.g., Petri Nets and
task models, which have been used for ambient intelligent
environments.

VI. CONCLUSION

The purpose of the current study is to compare two possible
IoT cooking workflow representations (i.e., BTs and the DX-
MAN model) for smart kitchen end-users. We introduced the
notion of meta-design in EUD, which refers to the environment
where there can be end-users with varying levels of domain ex-
pertise (i.e., from novices to professional chefs) and program-
ming/development skills (i.e., end-users to technology devel-
opers). We investigated how end-users can visualise workflows
and how the semantic representations can work with widely
used EUD paradigms, namely, Event Condition Action and the
Block-based programming language. To enable comparison,
we discussed workflow complexities [18] and feasibility. We
demonstrated that execution complexity tends to be higher
with BTs, whereas parameter complexity tends to be somewhat
higher in the DX-MAN model. The DX-MAN model benefits
from having an in-built algebraic composition mechanism
that can combine services from different IoT devices into
workflows which, in turn, can be hierarchically combined with
other workflows. This notion makes it straightforward for a
EUD interface to combine services. BTs, however, benefit
from its fallback node which can act as an immediate step
to recover from an unexpected scenario. Here, the DX-MAN
model would instead need to re-iterate via its MAPE-K loop
and update parameters of exclusive selectors to accomplish
this, which is more complicated parameter-wise. Lastly, the
DX-MAN model is advantageous in terms of visualisation
since its representations are more succinct (which minimise the
execution complexity). Furthermore, its workflows are always
traversed in the same direction (i.e., left to right), unlike BTs,
which can be beneficial for downstream visualisation.
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[8] M. Colledanchise and P. Ögren, “Behavior trees in robotics and ai: An
introduction,” ArXiv, vol. abs/1709.00084, 2017.

[9] D. Arellanes and K.-K. Lau, “Evaluating iot service composition mech-
anisms for the scalability of iot systems,” Future Generation Computer
Systems, vol. 108, pp. 827–848, 2020.



[10] ——, “Algebraic service composition for user-centric iot applications,”
in Internet of Things – ICIOT 2018, D. Georgakopoulos and L.-J. Zhang,
Eds. Cham: Springer International Publishing, 2018, pp. 56–69.

[11] ——, “Workflow variability for autonomic iot systems,” in 2019 IEEE
International conf. on Autonomic Computing (ICAC), 2019, pp. 24–30.

[12] Z. Xing, Z. Hong, and L. Yulong, “A petri-net based context-aware
workflow system for smart home,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops PhD Forum,
2012, pp. 2336–2342.

[13] B. D. Carolis, S. Ferilli, and D. Redavid, “Incremental learning of
daily routines as workflows in a smart home environment,” ACM Trans.
Interact. Intell. Syst., vol. 4, no. 4, Jan. 2015.

[14] R. Martinho, D. Domingos, and A. Respı́cio, “Evaluating the reliability
of ambient-assisted living business processes,” in Proc. of the 18th
International conf. on Enterprise Information Systems, ser. ICEIS 2016.
Setubal, PRT: SCITEPRESS - Science and Technology Publications,
Lda, 2016, p. 528–536.
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