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An equality underlying Hardy’s inequality
G. J. O. Jameson

Abstract. A classical inequality of G. H. Hardy states that ‖Cx‖ ≤ 2‖x‖ for x in `2, where
C is the Cesàro (alias averaging) operator. This inequality has been strengthened to ‖(C −
I)x‖ ≤ ‖x‖. It has also been shown that ‖CTx‖ ≤ ‖Cx‖ for x in `2. We present equalities
that imply these inequalities, together with the reverse inequalities ‖(C − I)x‖ ≥ (1/

√
2)‖x‖

and ‖Cx‖ ≤
√
2‖CTx‖. We also present companion results involving the shift operator.

1. INTRODUCTION. For real sequences x = (xn), the Cesàro (or averaging) op-
erator is defined by Cx = y, where

yj =
1

j
(x1 + x2 + · · ·+ xj).

Here C is the lower-triangular matrix defined by:

cj,k =

{
1
j

for k ≤ j,
0 for k > j.

The transposed operator CT is defined by CTx = z, where zj =
∑∞

k=j
xk
k

.
Recall that `2 denotes the space of all real sequences x = (xn) such that

∑∞
n=1 x

2
n

is convergent, with norm defined by ‖x‖ = (
∑∞

n=1 x
2
n)1/2. For a matrixA, we denote

by ‖A‖ the norm of A as an operator on `2, in other words the least M such that
‖Ax‖ ≤ M‖x‖ for all x in `2. Also, the inner product

∑∞
n=1 xnyn is denoted by

〈x, y〉, so 〈x, x〉 = ‖x‖2. The nth unit vector will be denoted by en.
The English mathematician G. H. Hardy (1877–1947) established a number of sig-

nificant inequalities, each known, in its own context, simply as “Hardy’s inequality”.
One of them states, in this notation, that ‖C‖ = 2. However, a stronger statement is ac-
tually true: ‖C − I‖ = 1. This can be proved by a minor adjustment to the proof in [4,
p. 239–241]. A very neat alternative proof, given in [2] and [3], uses basic Hilbert space
theory, as follows. It is quite easy to show thatCCT is the matrix having 1/max(j, k)
in place (j, k). Hence CCT = C + CT −∆1, where ∆1 is the diagonal matrix with
entries 1

n
. Equivalently,

(C − I)(CT − I) = I −∆1. (1)

Now for any operator A on `2, we have ‖AAT‖ = ‖A‖2 = ‖AT‖2. Clearly,
‖I −∆1‖ = 1, so ‖CT − I‖ = ‖C − I‖ = 1, as stated. But we can deduce more
than this from (1). In general, 〈AATx, x〉 = 〈ATx,ATx〉 = ‖ATx‖2, so

‖(CT − I)x‖2 =
∞∑

n=1

(
1− 1

n

)
x2
n. (2)

This is an equality that implies the inequality ‖(CT − I)x‖ ≤ ‖x‖. It is of the form∑∞
n=1 z

2
n =

∑∞
n=1 δnx

2
n, where (xn) and (zn) are two sequences we wish to compare,

and δn → 1 as n → ∞. We will present a number of further equalities of this type,
including one that implies ‖(C − I)x‖ ≤ ‖x‖, and hence Hardy’s inequality. We start
with one relating ‖Cx‖ and ‖CTx‖.
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2. COMPARISON BETWEEN ‖Cx‖ AND ‖CTx‖. The reasoning in [1, p. 47],
together with ‖C − I‖ = 1, implies that ‖Cx‖ ≥ ‖CTx‖ for all x in `2. Here we
present an equality which implies this inequality, together with the reverse inequality
‖Cx‖ ≤

√
2‖CTx‖. We use another identity for CCT . It would make things easy if

we had CTC = CCT , but this is not true! However, by inserting a suitable diagonal
matrix, we arrive at a correct statement that is nearly as good.

Theorem 1. Let ∆2 be the diagonal matrix with nth component n/(n + 1). Then
CT∆2C = CCT . Hence if Cx = y and CTx = z, then

∞∑
n=1

n

n+ 1
y2n =

∞∑
n=1

z2n. (3)

Proof. The matrix ∆2C is obtained from C by multiplying row j by j/(j + 1):

(∆2C)j,k =

{
1

j+1
for k ≤ j,

0 for k > j.

Meanwhile (CT )j,k is 1/k for j ≤ k and 0 for j > k. So if k ≤ j, then element (j, k)
of CT∆2C is

∞∑
r=j

1

r(r + 1)
=

1

j
,

agreeing with CCT . Both products are symmetric, so their entries also coincide for
k ≥ j.

Now 〈CCTx, x〉 = ‖CTx‖2 =
∑∞

n=1 z
2
n, while

〈CT∆2Cx, x〉 = 〈∆2Cx,Cx〉 = 〈∆2y, y〉 =
∞∑

n=1

n

n+ 1
y2n.

Since n/(n+ 1) ≥ 1
2

for all n ≥ 1, we deduce:

Corollary 2. For all x in `2, we have ‖CTx‖ ≤ ‖Cx‖ ≤
√

2‖CTx‖.

Both constants here are optimal. For the right-hand inequality, note that if x =
(1,−1, 0, . . .), then Cx = (1, 0, 0, . . .) while CTx = (1

2
,− 1

2
, 0, . . .). For the left-

hand inequality, it is easily checked that ‖Cen‖/‖CT en‖ tends to 1 as n→∞

3. AN IDENTITY RELATING TO (C − I)x. We now present the promised
equality underlying the inequality ‖(C − I)x‖ ≤ ‖x‖.

Theorem 3. Let x ∈ `2 and (C − I)x = z. Then

∞∑
n=2

n

n− 1
z2n =

∞∑
n=1

x2
n. (4)

We will prove this by direct algebra rather than matrix identities. Some preliminary
remarks will clear the way. We writeXn =

∑n
j=1 xj and y = Cx, so that yn = Xn/n

and zn = yn − xn. Note that z1 = 0. It is essential to recognize that (4) applies strictly
to infinite sequences. In fact, if xj = 1 for 1 ≤ j ≤ n, then zj = 0 for 1 ≤ j ≤ n. Let
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us clarify what (4) actually says for x of the form (x1, x2, . . . , xn, 0, . . .). For such x,
we have zj = yj = Xn/j for j > n, hence

∞∑
j=n+1

j

j − 1
z2j = X2

n

∞∑
j=n+1

1

j(j − 1)
=
X2

n

n
,

so (4) becomes

n∑
j=2

j

j − 1
z2j +

X2
n

n
=

n∑
j=1

x2
j (5)

We will prove that (5) holds for all x in `2 (not just x with finitely many non-zero
terms). To deduce (4), we then need the following lemma.

Lemma 4. For x ∈ `2, we have X2
n/n→ 0 as n→∞.

Proof. Choose ε > 0. There exists n0 such that
∑∞

n=n0+1 x
2
n ≤ ε. For n > n0, we

haveXn = Xn0
+ Sn, where Sn =

∑n
j=n0+1 xj . By the Cauchy-Schwarz inequality,

S2
n ≤ (n− n0)

n∑
j=n0+1

x2
j < εn.

For sufficiently large n, we have X2
n0
≤ εn. By the elementary inequality (a+ b)2 ≤

2(a2 + b2), we now have

X2
n ≤ 2X2

n0
+ 2S2

n ≤ 4εn.

Proof of Theorem 3. For a given x in `2, we prove (5) by induction. For n = 2, the
left-hand side is

2z22 + 1
2
X2

2 = 1
2
(x1 − x2)

2 + 1
2
(x1 + x2)

2 = x2
1 + x2

2.

Assume now that (5) holds for n− 1, where n ≥ 3. To deduce that it holds for n, we
require

n

n− 1
z2n +

X2
n

n
−
X2

n−1

n− 1
= x2

n. (6)

Since zn = 1
n

(Xn − nxn) and Xn−1 = Xn − xn, the left-hand side of (6) equals

1

n(n− 1)
(Xn − nxn)2 +

X2
n

n
− (Xn − xn)2

n− 1
=

(
n

n− 1
− 1

n− 1

)
x2
n = x2

n

(the X2
n and Xnxn terms cancel to 0).

Since n/(n− 1) ≤ 2 for all n ≥ 2, we deduce at once:

Corollary 5. For x ∈ `2, we have ‖(C − I)x‖ ≥ (1/
√

2)‖x‖.
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Equality in Corollary 5 occurs in the case (C − I)(e1 − e2) = e2.
Can (4) be deduced from a matrix identity similar to (1)? The statement is

〈∆3z, z〉 = 〈x, x〉, where z = (C − I)x and ∆3 is the diagonal matrix with entries
(0, 2

1
, 3
2
, . . .). This would follow from the matrix identity (CT − I)∆3(C − I) = I ,

equivalently CT∆3C −∆3C − CT∆3 = I −∆3. This is indeed true, but the proof
is rather tricky and involves at least as much work as the proof we have given.

Note on the continuous case. The continuous analogue of C is the operator on
L2(0,∞) defined by (Af)(x) = 1

x

∫ x

0
f(t) dt, with dual (ATf)(x) =

∫∞
x

[f(t)/t] dt.
It is shown in [6] that (AT − I)(A − I) = I , so that A − I is actually isometric:
‖(A − I)f‖ = ‖f‖ for all f . It is a general fact that operator norms often behave
more smoothly in the continuous case than in the discrete case.

4. COMPANION IDENTITIES FOR THE SHIFT OPERATOR. The shift op-
erator S is defined by Sx = (0, x1, x2, . . .). Clearly, ‖Sx‖ = ‖x‖. Also, STx =
(x2, x3, . . .), hence STS = I . There are simple identities, exploited in [1], relating
S, C and their transposes. Our results for C − I have neat companion results with I
replaced by S or ST . The analogues of (1) and (2) are as follows.

Theorem 6. We have

(C − ST )(CT − S) = I + ∆1, (7)

hence ‖C − ST‖ = ‖CT − S‖ =
√

2 and for x ∈ `2,

‖(CT − S)x‖2 =
∞∑

n=1

n+ 1

n
x2
n. (8)

Proof. This time, instead of describing matrix products explicitly, we consider the
action on a vector. We use the notation (Cx)n for component n of Cx. First,

(CSx)n =
1

n
(x1 + x2 + · · ·+ xn−1) = (Cx)n −

xn

n
,

so CS = C −∆1, hence also STCT = CT −∆1. Recall that CCT = C + CT −
∆1. We deduce

(C − ST )(CT − S) = CCT − (C −∆1)− (CT −∆1) + I = I + ∆1.

Clearly, ‖I + ∆1‖ = 2, so the further statements follow.

Corollary 7. We have ‖x‖ ≤ ‖(CT − S)x‖ ≤
√

2‖x‖ for all x in `2.

We now prove the analogue of (4), by a suitable variation of the previous method.

Theorem 8. Let x ∈ `2 and (C − ST )x = z. Then

∞∑
n=1

n

n+ 1
z2n =

∞∑
n=1

x2
n. (9)

Proof. Note that zn = Xn/n − xn+1. Again guided by the what the statement says
for (x1, x2, . . . , xn, 0, . . .), we show by induction that

n∑
j=1

j

j + 1
z2j +

X2
n+1

n+ 1
=

n+1∑
j=1

x2
j . (10)
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Lemma 4 then gives (9). For n = 1, the left-hand side is

1
2
(x1 − x2)

2 + 1
2
(x1 + x2)

2 = x2
1 + x2

2.

Assume (10) for n− 1. To deduce it for n, we require

n

n+ 1
z2n +

X2
n+1

n+ 1
− X2

n

n
= x2

n+1.

The left-hand side is

1

n(n+ 1)
(Xn − nxn+1)

2 +
(Xn + xn+1)

2

n+ 1
− X2

n

n
,

which indeed equates to x2
n+1.

Corollary 9. We have ‖x‖ ≤ ‖(C − ST )x‖ ≤
√

2‖x‖ for all x in `2.

Remark. By (7) and (1), we also have C = (C − ST )CT . With this identity, (9)
gives an alternative proof of (3).

5. EXTENSION TO COMPLEX NUMBERS AND VECTORS. We have pre-
sented our results exclusively for real numbers xk. However, a very simple trick from
[5] extends them not only to complex numbers, but also to vectors xk.

Our results are of the folllowing form: A and B are matrices such that for all x in
`2, we have

∑∞
j=1 δjy

2
j =

∑∞
j=1 z

2
j for a certain sequence (δj), where y = Ax and

z = Bx. Now let (xk)k≥1 be a sequence of vectors (i.e. elements of `2) instead of
scalars. We now write xk(r) for term r of the sequence xk. Let yj =

∑∞
k=1 aj,kxk

and zj =
∑∞

k=1 bj,kxk. Then for each r, we have yj(r) =
∑∞

k=1 aj,kxk(r), similarly
for zj(r). Summing over r, we deduce

∞∑
j=1

δj‖yj‖2 =
∞∑
j=1

‖zj‖2.

So all the results can be extended in this way. The extension applies, in particular,
to complex numbers (with yj replaced by |yj|), since they equate to 2-dimensional
vectors.
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4. Hardy, G.H., Littlewood, J., Pólya, G. (1967). Inequalities, 2nd ed. Cambridge: Cambridge Univ. Press.
5. Jameson, G.J.O. (2019). Operator-valued extensions of matrix norm inequalities. Amer. Math. Monthly

126(9): 809–815.
6. Kaiblinger, N., Maligranda, L., Persson, L.-E. (2000). Norms in weighted L2-spaces and Hardy op-

erators. Function spaces, the fifth conference, Poznań 1998, Lecture Notes in Pure Appl. Math. (213):
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