# An equality underlying Hardy's inequality 

G. J. O. Jameson


#### Abstract

A classical inequality of G. H. Hardy states that $\|C x\| \leq 2\|x\|$ for $x$ in $\ell_{2}$, where $C$ is the Cesàro (alias averaging) operator. This inequality has been strengthened to $\|(C-$ $I) x\|\leq\| x \|$. It has also been shown that $\left\|C^{T} x\right\| \leq\|C x\|$ for $x$ in $\ell_{2}$. We present equalities that imply these inequalities, together with the reverse inequalities $\|(C-I) x\| \geq(1 / \sqrt{ } 2)\|x\|$ and $\|C x\| \leq \sqrt{ } 2\left\|C^{T} x\right\|$. We also present companion results involving the shift operator.


1. INTRODUCTION. For real sequences $x=\left(x_{n}\right)$, the Cesàro (or averaging) operator is defined by $C x=y$, where

$$
y_{j}=\frac{1}{j}\left(x_{1}+x_{2}+\cdots+x_{j}\right)
$$

Here $C$ is the lower-triangular matrix defined by:

$$
c_{j, k}= \begin{cases}\frac{1}{j} & \text { for } k \leq j \\ 0 & \text { for } k>j\end{cases}
$$

The transposed operator $C^{T}$ is defined by $C^{T} x=z$, where $z_{j}=\sum_{k=j}^{\infty} \frac{x_{k}}{k}$.
Recall that $\ell_{2}$ denotes the space of all real sequences $x=\left(x_{n}\right)$ such that $\sum_{n=1}^{\infty} x_{n}^{2}$ is convergent, with norm defined by $\|x\|=\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}$. For a matrix $A$, we denote by $\|A\|$ the norm of $A$ as an operator on $\ell_{2}$, in other words the least $M$ such that $\|A x\| \leq M\|x\|$ for all $x$ in $\ell_{2}$. Also, the inner product $\sum_{n=1}^{\infty} x_{n} y_{n}$ is denoted by $\langle x, y\rangle$, so $\langle x, x\rangle=\|x\|^{2}$. The $n$th unit vector will be denoted by $e_{n}$.

The English mathematician G. H. Hardy (1877-1947) established a number of significant inequalities, each known, in its own context, simply as "Hardy's inequality". One of them states, in this notation, that $\|C\|=2$. However, a stronger statement is actually true: $\|C-I\|=1$. This can be proved by a minor adjustment to the proof in $[\mathbf{4}$, p. 239-241]. A very neat alternative proof, given in [2] and [3], uses basic Hilbert space theory, as follows. It is quite easy to show that $C C^{T}$ is the matrix having $1 / \max (j, k)$ in place $(j, k)$. Hence $C C^{T}=C+C^{T}-\Delta_{1}$, where $\Delta_{1}$ is the diagonal matrix with entries $\frac{1}{n}$. Equivalently,

$$
\begin{equation*}
(C-I)\left(C^{T}-I\right)=I-\Delta_{1} . \tag{1}
\end{equation*}
$$

Now for any operator $A$ on $\ell_{2}$, we have $\left\|A A^{T}\right\|=\|A\|^{2}=\left\|A^{T}\right\|^{2}$. Clearly, $\left\|I-\Delta_{1}\right\|=1$, so $\left\|C^{T}-I\right\|=\|C-I\|=1$, as stated. But we can deduce more than this from (1). In general, $\left\langle A A^{T} x, x\right\rangle=\left\langle A^{T} x, A^{T} x\right\rangle=\left\|A^{T} x\right\|^{2}$, so

$$
\begin{equation*}
\left\|\left(C^{T}-I\right) x\right\|^{2}=\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right) x_{n}^{2} . \tag{2}
\end{equation*}
$$

This is an equality that implies the inequality $\left\|\left(C^{T}-I\right) x\right\| \leq\|x\|$. It is of the form $\sum_{n=1}^{\infty} z_{n}^{2}=\sum_{n=1}^{\infty} \delta_{n} x_{n}^{2}$, where $\left(x_{n}\right)$ and $\left(z_{n}\right)$ are two sequences we wish to compare, and $\delta_{n} \rightarrow 1$ as $n \rightarrow \infty$. We will present a number of further equalities of this type, including one that implies $\|(C-I) x\| \leq\|x\|$, and hence Hardy's inequality. We start with one relating $\|C x\|$ and $\left\|C^{T} x\right\|$.
2. COMPARISON BETWEEN $\|\boldsymbol{C} \boldsymbol{x}\|$ AND $\left\|\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{x}\right\|$. The reasoning in [1, p. 47], together with $\|C-I\|=1$, implies that $\|C x\| \geq\left\|C^{T} x\right\|$ for all $x$ in $\ell_{2}$. Here we present an equality which implies this inequality, together with the reverse inequality $\|C x\| \leq \sqrt{ } 2\left\|C^{T} x\right\|$. We use another identity for $C C^{T}$. It would make things easy if we had $C^{T} C=C C^{T}$, but this is not true! However, by inserting a suitable diagonal matrix, we arrive at a correct statement that is nearly as good.
Theorem 1. Let $\Delta_{2}$ be the diagonal matrix with nth component $n /(n+1)$. Then $C^{T} \Delta_{2} C=C C^{T}$. Hence if $C x=y$ and $C^{T} x=z$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{n+1} y_{n}^{2}=\sum_{n=1}^{\infty} z_{n}^{2} \tag{3}
\end{equation*}
$$

Proof. The matrix $\Delta_{2} C$ is obtained from $C$ by multiplying row $j$ by $j /(j+1)$ :

$$
\left(\Delta_{2} C\right)_{j, k}= \begin{cases}\frac{1}{j+1} & \text { for } k \leq j \\ 0 & \text { for } k>j\end{cases}
$$

Meanwhile $\left(C^{T}\right)_{j, k}$ is $1 / k$ for $j \leq k$ and 0 for $j>k$. So if $k \leq j$, then element $(j, k)$ of $C^{T} \Delta_{2} C$ is

$$
\sum_{r=j}^{\infty} \frac{1}{r(r+1)}=\frac{1}{j}
$$

agreeing with $C C^{T}$. Both products are symmetric, so their entries also coincide for $k \geq j$.

Now $\left\langle C C^{T} x, x\right\rangle=\left\|C^{T} x\right\|^{2}=\sum_{n=1}^{\infty} z_{n}^{2}$, while

$$
\left\langle C^{T} \Delta_{2} C x, x\right\rangle=\left\langle\Delta_{2} C x, C x\right\rangle=\left\langle\Delta_{2} y, y\right\rangle=\sum_{n=1}^{\infty} \frac{n}{n+1} y_{n}^{2}
$$

Since $n /(n+1) \geq \frac{1}{2}$ for all $n \geq 1$, we deduce:
Corollary 2. For all $x$ in $\ell_{2}$, we have $\left\|C^{T} x\right\| \leq\|C x\| \leq \sqrt{ } 2\left\|C^{T} x\right\|$.
Both constants here are optimal. For the right-hand inequality, note that if $x=$ $(1,-1,0, \ldots)$, then $C x=(1,0,0, \ldots)$ while $C^{T} x=\left(\frac{1}{2},-\frac{1}{2}, 0, \ldots\right)$. For the lefthand inequality, it is easily checked that $\left\|C e_{n}\right\| /\left\|C^{T} e_{n}\right\|$ tends to 1 as $n \rightarrow \infty$
3. AN IDENTITY RELATING TO $(\boldsymbol{C}-\boldsymbol{I}) \boldsymbol{x}$. We now present the promised equality underlying the inequality $\|(C-I) x\| \leq\|x\|$.

Theorem 3. Let $x \in \ell_{2}$ and $(C-I) x=z$. Then

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n}{n-1} z_{n}^{2}=\sum_{n=1}^{\infty} x_{n}^{2} \tag{4}
\end{equation*}
$$

We will prove this by direct algebra rather than matrix identities. Some preliminary remarks will clear the way. We write $X_{n}=\sum_{j=1}^{n} x_{j}$ and $y=C x$, so that $y_{n}=X_{n} / n$ and $z_{n}=y_{n}-x_{n}$. Note that $z_{1}=0$. It is essential to recognize that (4) applies strictly to infinite sequences. In fact, if $x_{j}=1$ for $1 \leq j \leq n$, then $z_{j}=0$ for $1 \leq j \leq n$. Let
us clarify what (4) actually says for $x$ of the form $\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)$. For such $x$, we have $z_{j}=y_{j}=X_{n} / j$ for $j>n$, hence

$$
\sum_{j=n+1}^{\infty} \frac{j}{j-1} z_{j}^{2}=X_{n}^{2} \sum_{j=n+1}^{\infty} \frac{1}{j(j-1)}=\frac{X_{n}^{2}}{n}
$$

so (4) becomes

$$
\begin{equation*}
\sum_{j=2}^{n} \frac{j}{j-1} z_{j}^{2}+\frac{X_{n}^{2}}{n}=\sum_{j=1}^{n} x_{j}^{2} \tag{5}
\end{equation*}
$$

We will prove that (5) holds for all $x$ in $\ell_{2}$ (not just $x$ with finitely many non-zero terms). To deduce (4), we then need the following lemma.

Lemma 4. For $x \in \ell_{2}$, we have $X_{n}^{2} / n \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Choose $\varepsilon>0$. There exists $n_{0}$ such that $\sum_{n=n_{0}+1}^{\infty} x_{n}^{2} \leq \varepsilon$. For $n>n_{0}$, we have $X_{n}=X_{n_{0}}+S_{n}$, where $S_{n}=\sum_{j=n_{0}+1}^{n} x_{j}$. By the Cauchy-Schwarz inequality,

$$
S_{n}^{2} \leq\left(n-n_{0}\right) \sum_{j=n_{0}+1}^{n} x_{j}^{2}<\varepsilon n
$$

For sufficiently large $n$, we have $X_{n_{0}}^{2} \leq \varepsilon n$. By the elementary inequality $(a+b)^{2} \leq$ $2\left(a^{2}+b^{2}\right)$, we now have

$$
X_{n}^{2} \leq 2 X_{n_{0}}^{2}+2 S_{n}^{2} \leq 4 \varepsilon n
$$

Proof of Theorem 3. For a given $x$ in $\ell_{2}$, we prove (5) by induction. For $n=2$, the left-hand side is

$$
2 z_{2}^{2}+\frac{1}{2} X_{2}^{2}=\frac{1}{2}\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}
$$

Assume now that (5) holds for $n-1$, where $n \geq 3$. To deduce that it holds for $n$, we require

$$
\begin{equation*}
\frac{n}{n-1} z_{n}^{2}+\frac{X_{n}^{2}}{n}-\frac{X_{n-1}^{2}}{n-1}=x_{n}^{2} \tag{6}
\end{equation*}
$$

Since $z_{n}=\frac{1}{n}\left(X_{n}-n x_{n}\right)$ and $X_{n-1}=X_{n}-x_{n}$, the left-hand side of (6) equals

$$
\frac{1}{n(n-1)}\left(X_{n}-n x_{n}\right)^{2}+\frac{X_{n}^{2}}{n}-\frac{\left(X_{n}-x_{n}\right)^{2}}{n-1}=\left(\frac{n}{n-1}-\frac{1}{n-1}\right) x_{n}^{2}=x_{n}^{2}
$$

(the $X_{n}^{2}$ and $X_{n} x_{n}$ terms cancel to 0 ).
Since $n /(n-1) \leq 2$ for all $n \geq 2$, we deduce at once:
Corollary 5. For $x \in \ell_{2}$, we have $\|(C-I) x\| \geq(1 / \sqrt{ } 2)\|x\|$.

Equality in Corollary 5 occurs in the case $(C-I)\left(e_{1}-e_{2}\right)=e_{2}$.
Can (4) be deduced from a matrix identity similar to (1)? The statement is $\left\langle\Delta_{3} z, z\right\rangle=\langle x, x\rangle$, where $z=(C-I) x$ and $\Delta_{3}$ is the diagonal matrix with entries $\left(0, \frac{2}{1}, \frac{3}{2}, \ldots\right)$. This would follow from the matrix identity $\left(C^{T}-I\right) \Delta_{3}(C-I)=I$, equivalently $C^{T} \Delta_{3} C-\Delta_{3} C-C^{T} \Delta_{3}=I-\Delta_{3}$. This is indeed true, but the proof is rather tricky and involves at least as much work as the proof we have given.

Note on the continuous case. The continuous analogue of $C$ is the operator on $L_{2}(0, \infty)$ defined by $(A f)(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$, with dual $\left(A^{T} f\right)(x)=\int_{x}^{\infty}[f(t) / t] d t$. It is shown in [6] that $\left(A^{T}-I\right)(A-I)=I$, so that $A-I$ is actually isometric: $\|(A-I) f\|=\|f\|$ for all $f$. It is a general fact that operator norms often behave more smoothly in the continuous case than in the discrete case.
4. COMPANION IDENTITIES FOR THE SHIFT OPERATOR. The shift operator $S$ is defined by $S x=\left(0, x_{1}, x_{2}, \ldots\right)$. Clearly, $\|S x\|=\|x\|$. Also, $S^{T} x=$ $\left(x_{2}, x_{3}, \ldots\right)$, hence $S^{T} S=I$. There are simple identities, exploited in [1], relating $S, C$ and their transposes. Our results for $C-I$ have neat companion results with $I$ replaced by $S$ or $S^{T}$. The analogues of (1) and (2) are as follows.
Theorem 6. We have

$$
\begin{equation*}
\left(C-S^{T}\right)\left(C^{T}-S\right)=I+\Delta_{1} \tag{7}
\end{equation*}
$$

hence $\left\|C-S^{T}\right\|=\left\|C^{T}-S\right\|=\sqrt{ } 2$ and for $x \in \ell_{2}$,

$$
\begin{equation*}
\left\|\left(C^{T}-S\right) x\right\|^{2}=\sum_{n=1}^{\infty} \frac{n+1}{n} x_{n}^{2} \tag{8}
\end{equation*}
$$

Proof. This time, instead of describing matrix products explicitly, we consider the action on a vector. We use the notation $(C x)_{n}$ for component $n$ of $C x$. First,

$$
(C S x)_{n}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)=(C x)_{n}-\frac{x_{n}}{n}
$$

so $C S=C-\Delta_{1}$, hence also $S^{T} C^{T}=C^{T}-\Delta_{1}$. Recall that $C C^{T}=C+C^{T}-$ $\Delta_{1}$. We deduce

$$
\left(C-S^{T}\right)\left(C^{T}-S\right)=C C^{T}-\left(C-\Delta_{1}\right)-\left(C^{T}-\Delta_{1}\right)+I=I+\Delta_{1}
$$

Clearly, $\left\|I+\Delta_{1}\right\|=2$, so the further statements follow.
Corollary 7. We have $\|x\| \leq\left\|\left(C^{T}-S\right) x\right\| \leq \sqrt{ } 2\|x\|$ for all $x$ in $\ell_{2}$.
We now prove the analogue of (4), by a suitable variation of the previous method.
Theorem 8. Let $x \in \ell_{2}$ and $\left(C-S^{T}\right) x=z$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{n+1} z_{n}^{2}=\sum_{n=1}^{\infty} x_{n}^{2} \tag{9}
\end{equation*}
$$

Proof. Note that $z_{n}=X_{n} / n-x_{n+1}$. Again guided by the what the statement says for $\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)$, we show by induction that

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{j}{j+1} z_{j}^{2}+\frac{X_{n+1}^{2}}{n+1}=\sum_{j=1}^{n+1} x_{j}^{2} \tag{10}
\end{equation*}
$$

Lemma 4 then gives (9). For $n=1$, the left-hand side is

$$
\frac{1}{2}\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}
$$

Assume (10) for $n-1$. To deduce it for $n$, we require

$$
\frac{n}{n+1} z_{n}^{2}+\frac{X_{n+1}^{2}}{n+1}-\frac{X_{n}^{2}}{n}=x_{n+1}^{2}
$$

The left-hand side is

$$
\frac{1}{n(n+1)}\left(X_{n}-n x_{n+1}\right)^{2}+\frac{\left(X_{n}+x_{n+1}\right)^{2}}{n+1}-\frac{X_{n}^{2}}{n}
$$

which indeed equates to $x_{n+1}^{2}$.
Corollary 9. We have $\|x\| \leq\left\|\left(C-S^{T}\right) x\right\| \leq \sqrt{ } 2\|x\|$ for all $x$ in $\ell_{2}$.
Remark. By (7) and (1), we also have $C=\left(C-S^{T}\right) C^{T}$. With this identity, (9) gives an alternative proof of (3).
5. EXTENSION TO COMPLEX NUMBERS AND VECTORS. We have presented our results exclusively for real numbers $x_{k}$. However, a very simple trick from [5] extends them not only to complex numbers, but also to vectors $x_{k}$.

Our results are of the folllowing form: $A$ and $B$ are matrices such that for all $x$ in $\ell_{2}$, we have $\sum_{j=1}^{\infty} \delta_{j} y_{j}^{2}=\sum_{j=1}^{\infty} z_{j}^{2}$ for a certain sequence $\left(\delta_{j}\right)$, where $y=A x$ and $z=B x$. Now let $\left(x_{k}\right)_{k \geq 1}$ be a sequence of vectors (i.e. elements of $\ell_{2}$ ) instead of scalars. We now write $x_{k}(r)$ for term $r$ of the sequence $x_{k}$. Let $y_{j}=\sum_{k=1}^{\infty} a_{j, k} x_{k}$ and $z_{j}=\sum_{k=1}^{\infty} b_{j, k} x_{k}$. Then for each $r$, we have $y_{j}(r)=\sum_{k=1}^{\infty} a_{j, k} x_{k}(r)$, similarly for $z_{j}(r)$. Summing over $r$, we deduce

$$
\sum_{j=1}^{\infty} \delta_{j}\left\|y_{j}\right\|^{2}=\sum_{j=1}^{\infty}\left\|z_{j}\right\|^{2}
$$

So all the results can be extended in this way. The extension applies, in particular, to complex numbers (with $y_{j}$ replaced by $\left|y_{j}\right|$ ), since they equate to 2-dimensional vectors.

## REFERENCES

1. Bennett, G. (1996). Factorizing the Classical Inequalities. Mem. Amer. Math. Soc. 576, Providence: American Math. Soc.
2. Brown, A., Halmos, P.R., Shields, A.L. (1965). Cesàro operators. Acta Sci. Math. 26(1-2): 125-137.
3. Choi, M.D. (1983). Tricks or treats with the Hilbert matrix. Amer. Math. Monthly 90(5): 301-312.
4. Hardy, G.H., Littlewood, J., Pólya, G. (1967). Inequalities, 2nd ed. Cambridge: Cambridge Univ. Press.
5. Jameson, G.J.O. (2019). Operator-valued extensions of matrix norm inequalities. Amer. Math. Monthly 126(9): 809-815.
6. Kaiblinger, N., Maligranda, L., Persson, L.-E. (2000). Norms in weighted $L^{2}$-spaces and Hardy operators. Function spaces, the fifth conference, Poznań 1998, Lecture Notes in Pure Appl. Math. (213): 205-216. New York: Marcel Dekker.

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom g.jameson@lancaster.ac.uk

