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Abstract 

Soybean is the most important plant-based protein source and may be vital to sustainable agricultural 

intensification, required to support an ever-growing global population. Soybean, however, has a high 

nitrogen (N) demand which often limits yield. Biological nitrogen fixation (BNF), through symbiosis 

with rhizobia, is a natural process through which legumes can derive much of their N requirement, 

with many environmental benefits over chemical fertiliser application. Enhancement of BNF 

therefore offers an opportunity to sustainably increase yield. Nodules are root organs that form 

following legume perception of nod factors (NF) produced by compatible rhizobia species, leading to 

expression of NF response genes, including ENOD40. They are the sites of BNF, providing a highly 

controlled optimal environment for rhizobia to fix N. Primarily, work on symbiosis has focused on the 

signalling events that coordinate nodule initiation and development, with a key role of 

phytohormones tightly controlling this process. However, the effect of varying nodule morphologies 

on BNF capacity is little studied. This thesis uses two approaches, genotypic variation and 

phytohormone application, to enhance BNF and seeks to understand if differences in nodule traits 

(such as size, number or distribution) can explain differences in BNF. To better quantify nodule traits, 

a novel image analysis protocol was developed.  

To determine whether genotypic variation in nodule traits could explain differences in BNF capacity, 

six soybean genotypes with contrasting BNF capacities (based on previous literature) were studied. 

Although BNF and nodule traits varied between genotypes by up to 60%, there was no simple 

relationship between nodule formation and BNF as hypothesised. Instead, both genotype and growth 

stage interacted to affect BNF capacity, with different nodule traits influencing BNF to different 

extents across the soybean genotypes when measured at different stages. Nodule traits (nodule area 

or diameter) derived from novel image analysis techniques were better correlated with BNF than 

traditional assessment methods (nodule number or weight). 

To establish if phytohormone application could enhance BNF, three positive regulators (cytokinin, 

auxin and gibberellic acid) were applied at various concentrations via different application methods 

(seed coat, seed soak, root application and foliar spray). Of the phytohormones tested, only cytokinin 

(kinetin) gave promising results and was most effective when applied as a seed soak treatment (10-9 

mol L-1). This treatment increased total nodule area (32%), doubling BNF. Interestingly, cytokinin 

treatments led to the nodules being more tightly clustered near the root crown (81% decrease in 



x 
 

distance from root crown) suggesting that early nodule development was promoted. Indeed, 

cytokinin seed treatment increased the expression of ENOD40 by 52% after 72 hours. This suggests 

that cytokinin seed soaking primes the seeds by promoting the symbiotic pathway. 

As both genotype and cytokinin application changed nodule development and BNF in controlled 

environments, their agronomic potential was assessed in field trials in Argentina with early and 

conventional sowing dates. Low root zone temperature is a key limiting factor of nodule formation 

but is little studied despite growing interest in European grown soybean and early sowing dates 

elsewhere, where crops often experience cool growing conditions. Cytokinin treatment had limited 

positive effects on BNF but did not increase yield or total N uptake. Genotypic differences in yield 

were not explained by overall BNF across the growth period and were better associated with 

differences in soil N uptake, with 21% increase in higher yielding DM50I17. Interestingly, DM50I17 

showed increased early nodule development (18% increase in nodule number) and correspondingly 

greater (52%) early BNF which might have improved yield through greater canopy N accumulation 

(9%), available for remobilisation. These field trials indicate BNF is an important N source during cold 

conditions, maintaining N supply leading to more consistent yield. In contrast to previous literature, 

soil N uptake was more sensitive to low root zone temperature than BNF.  

Taken together, this thesis is the first detailed examination of whether nodule traits affect BNF in 

soybean. It explored the potential of genotype selection and phytohormone application to enhance 

BNF by altering the number or size of nodules. Differences in nodule morphologies, particularly 

nodules with 4 mm diameter, influence BNF with increased nodule development positively correlated 

with BNF. Cytokinin seed priming enhances root ENOD40 expression and thus nodule formation and 

BNF. However, future work should further examine the effect of cytokinin priming on the symbiotic 

pathway to fully understand the mechanism(s) behind this treatment. Equally, greater understanding 

of changes in endogenous phytohormone concentration across genotypes and following cytokinin 

treatment may explain nodule variation seen in this study. Although genotype selection and 

phytohormone treatments did not always enhance BNF sufficiently to increase soybean yield, 

cytokinin application altered important nodule traits that may provide greater N (and yield) benefits 

in specific agronomic circumstances with limited N inputs.    
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control, seed soak or foliar spray). Values are averages (n=18 for sowing date and cytokinin 

and 27 for genotype), with letters denoting significant difference at p < 0.05 as determined 
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by least significant difference (LSD) test with ANOVA, residual SE and LSD results below. 

Residual degrees of freedom are 36 ……………………….…………..………………………………….……..…..82 

Table 4.6 Biological N fixation (BNF) at R1, R3, R5 and R7. Data from three sowing dates 

(September, early November and late November 2018/19), in two genotypes (DM40R16 and 

DM50I17) with two cytokinin applications (water control, seed soak or foliar spray). Values 

are averages (n=18 plots for sowing date and cytokinin and 27 for genotype), with letters 

denoting significant difference at p < 0.05 as determined by least significant difference (LSD) 

test with ANOVA, residual SE and LSD results below. Residual degrees of freedom are 36 ..…84 

Table 4.7 Nodule number and average nodule size at three growth stages (R1, R3 and R5). 

Data from three sowing dates (September, early November and late November 2018/19), in 

two genotypes (DM40R16 and DM50I17) with cytokinin application (water control, seed soak 

or foliar spray). Values are averages (n=18 plots for sowing date and cytokinin and 27 for 

genotype), with letters denoting significant difference at p < 0.05 as determined by least 

significant difference (LSD) test with ANOVA, residual SE and LSD results below with model 

residual standard error. Residual degrees of freedom are 36 .……………………………………………..87 
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Chapter 1: General introduction 

1.1 | Context 

An ever-increasing world population with changing diets puts enormous pressure on 

agricultural systems to maintain food supply (Godfray et al., 2010). Food production must 

double by 2050 (Tilman et al., 2011), in a way that is environmentally and socially sustainable 

(von Braun, 2007), and also cope with the challenges of climate change.   

In the past, expanding agricultural land area allowed increased production, keeping up with 

increasing demand. However, this greatly diminished biodiversity and carbon storage within 

global forests (Balmford et al., 2005). Agricultural land is also shrinking due to urbanisation, 

and land degradation due to soil erosion and associated nutrient losses (Nellemann et al., 

2009). There is, therefore, a need to increase production on the current agricultural land area 

while limiting the environmental impacts, a process known as sustainable intensification 

(Royal Society of London, 2009). 

Legume crops are globally important for food, feed and fuel, grown on 12-15% of the arable 

land with a production value of over $200 billion per year (Graham & Vance, 2003; Peoples et 

al., 2009; Jensen et al., 2012). However, global cereal cropping (724 million ha in 2019) far 

surpasses legume cropping (just 197 million ha 2019) (FAOSTAT Statistical Database, 2020). 

But European legume production has increased in recent years, following common 

agricultural policy reform in 2013 (Figure 1.2). Additionally, across Africa, legumes are 

becoming more important (Foyer et al., 2019). 

1.2 | Benefits of legumes 

Legumes have a number of important roles in sustainable agriculture (Figure 1.1) (Voisin et 

al., 2013; Stagnari et al., 2017) including: improving biodiversity in production systems 

(Nemecek et al., 2008; Jensen et al., 2010; Köpke & Nemecek, 2010), providing a sustainable 

N source that limits agricultural greenhouse gas emissions (Lemke et al., 2007) and an 

important plant-based protein source for humans and livestock (Tharanathan & 

Mahadevamma, 2003).  
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Legumes can improve several aspects of soil fertility, in addition to increasing soil N (detailed 

description below), which only accounts for around 20% of benefits following legumes in a 

rotation (Hesterman et al., 1986; Fyson & Oaks, 1990; Chalk, 1998). Soil organic carbon can 

be increased through continuous cropping, replacing the fallow period with a legume crop, 

so improving biological soil quality (Wu et al., 2003; Hernanz et al., 2009). Legumes can also 

mobilise phosphorus (P) through roots secreting organic acids including citrate and malate, 

allowing access to fixed soil P such as phytate (Hocking, 2001; Shen et al., 2011).  

 

 

Figure 1.1 Benefits of legumes adapted from Preissel et al., 2015 showing multiple 

ecosystem services (brown) leading to agronomic benefits (yellow) which result in system 

benefits (green).   

Soil water retention and availability can also increase as legume crops take up less water than 

cereals during growth (Miller et al., 2003) and post-harvest crop residue aids infiltration and 

retention of precipitation between crops (Kirkegaard & Ryan, 2014; Angus et al., 2015). As 

grain legumes generally have more shallow roots than cereals, soil water content can 

accumulate at lower soil depths (below 60 cm) (Miller et al., 2003; Liu et al., 2011; Wang et 

al., 2012). 

Hydrogen gas, released as a by-product of BNF (Equation 1.1) (Hunt et al., 1988), can improve 

soil microbe community favouring the development of plant growth promoting bacteria. 
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Whether legumes are infected with rhizobia which have an active uptake hydrogenase 

enzyme (Hup) or inactive Hup determine if they emit hydrogen (Evans et al., 1987). Hydrogen 

released from nodules is rapidly oxidised by soil microbes (Dong & Layzell, 2001) and is a large 

energy input which substantially alters soil microbial activity and carbon balance (McLearn & 

Dong, 2002; Stein et al., 2005). Increased yield (48%) of barley following hydrogen emitting 

(Hup-) soybean compared to non-emitting (Hup+) or non-inoculated soybean (Dean et al., 

2006) was either due to improved soil fertility or improved root growth caused by hydrogen 

emission (Dong et al., 2003). 

Legumes can also reduce the need for crop protection chemicals. As legumes and cereals are 

susceptible to different pests and diseases, they are a good break crop in wheat-based 

rotations (Zander et al., 2016). Additionally, legumes can help control weeds by stabilising 

weed composition due to differences in growth compared to cereals, disrupting different 

weed niches (Bàrberi, 2002; Seymour et al., 2012). Legume break crop benefits increase 

cereal yield by 24% compared to those grown continuously (Kirkegaard et al., 2008). 

However, to benefit from legume crops, optimal crop management practices must be 

implemented including rates and timing of N fertiliser, soil management, weeding and 

irrigation. Low and inconsistent yield in legumes is a key reason for limited cultivation of these 

crops (Cernay et al., 2015; Reckling et al., 2016). There is therefore a need to improve legume 

yield and yield stability to increase adoption by farmers.  

Soybean 

Soybean represents 61% of global legume production (FAOSTAT Statistical Database, 2020; 

Herridge et al., 2008), as it is the best source of vegetable protein for both humans and 

livestock, with a seed made of up to 46% protein (Breene et al., 1988). Due to these benefits, 

soybean is an important food for much of the world, enhancing the agricultural economies of 

many countries (Goldsmith, 2008). Unlike most other legume crops, supply chains and 

markets for soybean are well developed (Reckling et al., 2016). Global soybean production in 

2019 was approximately 334 million metric tonnes (MMT; Figure 1.2) with over 121 million 

ha used, equating to 8.4% of all farmland (FAOSTAT Statistical Database, 2020). While cool 

growing conditions constrain European soybean production (Figure 1.2) (Zimmer et al., 2016), 

future crop improvement in soybean will have a global impact. 
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Figure 1.2 Soybean production in the top four producers (Argentina, Brazil, China and 

USA) compared to limited production in Europe (FAOSTAT Statistical Database, 2020). 

 A major problem associated with the expansion of soybean cultivation is deforestation (Costa 

et al., 2007) to increase cropping area. Also, despite its limited N fertiliser needs due to 

biological nitrogen fixation (BNF; see below), soybean production does have a significant 

carbon footprint from field operations, liming and N2O emissions from residue decomposition 

(Adom et al., 2012). Therefore, increasing soybean yield per hectare has the potential to 

reduce its negative impact on biodiversity and relative carbon emissions on a yield to carbon 

basis (Appendix 1.1 CGE carbon report).  

Benefit of soybean in cropping systems  

Soybean can benefit subsequent crops in the rotation. Cereal crops grown after soybean can 

have enhanced yield of 0.49 tonnes ha-1 (Franke et al., 2018) compared to those grown 

continuously (Crookston et al., 1991; Agyare et al., 2006; Seifert et al., 2017). Soybean-maize 

rotations have more consistent yields, that do not decline like monoculture production of 

maize (Agyare et al., 2006; Uzoh et al., 2019).  

Increasing yield depends on several factors, including more sustainable nutrient 

management. Remaining soybean residues can enhance soil N content, as soybean can fix up 
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to 450 kg N ha-1 (Peoples & Craswell, 1992; Osterholz et al., 2017), thereby reducing N 

fertiliser requirements by up to 150 kg ha-1 per year (Rembon & MacKenzie, 1997). 

Phosphorus availability is improved due to soybean root exudates (Nuruzzaman et al., 2005; 

Jemo et al., 2006; Pypers et al., 2007; Richardson et al., 2009; Franke et al., 2018). Soybean – 

maize rotations also disrupt disease cycles and prevent pest build up, so limiting biotic stress. 

Soybean is not a Striga host and root exudation of strigolactones by soybean reduces the 

prevalence of Striga, a major parasitic weed affecting maize, which can decrease yields by up 

to 80% (Kim et al., 2002; Gethi et al., 2005; Kanampiu et al., 2018). As native grasses act as 

Striga hosts, cultivating soybean is preferable to leaving fields fallow (Franke et al., 2018). 

In areas with maize or soybean in consecutive years there may be negative consequences, 

such as soil degradation and water pollution, as additional agrochemical inputs are required 

to compensate for lack of ecosystem services provided through biodiversity (Davis et al., 

2012; Sindelar et al., 2016; Hunt et al., 2017). Thus, the benefit of including soybean in 

rotation is far greater than N availability with N fertiliser input not sufficient to compensate 

and maintain yield (Karlen et al., 1994; Bowles et al., 2020). Greater accumulation of soil 

organic carbon occurs with soybean-maize systems due to greater microbial activity, 

stimulated by lower lignin content and a low C to N ratio of soybean residues (Bichel et al., 

2016). 

Soybean is therefore a valuable crop, because of both the high value grain it produces and 

multiple benefits it can have when used in crop rotations.  

1.3 | Soybean nitrogen requirements 

Lack of nitrogen commonly restricts soybean crop growth and yield more than any other 

factor, when water is available (Hirel et al., 2007). High N uptake is required to achieve high 

seed yield in all crops, but especially legumes due to their high seed protein content (Sinclair 

& de Wit, 1975; Giller & Cadisch, 1995). Soybean is particularly N demanding, more than all 

other major crops, requiring 29 mg of N per g of photosynthate whereas maize requires 11 

mg (Sinclair & de Wit, 1975). Applying N fertiliser to soybean is not common due to the 

financial cost, with up to 69% of soybean N requirements typically supplied by nitrogen fixed 

from the air via symbiosis with soil bacteria (Salvagiotti et al., 2008). Agricultural production 

systems in Argentina and Brazil show that soybean cultivation can be achieved with minimal 
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N fertiliser inputs (54 kg N ha-1 annually) by relying on BNF (216 kg N ha-1 annually) (Herridge 

et al., 2008). The optimisation and effective use of BNF in agricultural systems will surely 

enhance the agricultural sustainability of this crop.  

Soybean seed yield is determined by N uptake, from either mineral N absorption or BNF, N 

use efficiency and harvest index (Donald & Hamblin, 1976; Novoa & Loomis, 1981; Rotundo 

et al., 2014). Of these factors, N uptake and assimilation are highly correlated with, and have 

the greatest effect on, final soybean seed yield (Sinclair & Jamieson, 2006; Rotundo et al., 

2014). To produce 5,000 kg of soybean grain per hectare, approximately 390 kg N ha-1 is 

required (Santachiara et al., 2017).  

Variable N fixation rates with growth stage can restrict N supply at times with demand and 

supply of N mismatched. At early stages of legume growth there is a period of N starvation, 

usually between 15-20 days after emergence, as cotyledonary N supplies are depleted before 

N fixation begins (Hungria et al., 1991). As a result, applying ‘starter N’ (50 kg ha-1) can 

increase soybean yield by approximately 3% (Gai et al., 2017), but this may be to the 

detriment of early nodule formation, thus is not advisable in low N input systems. The N 

demands of simultaneous leaf and nodule development is thought to cause this initial N 

starvation (Atkins et al., 1989). However, the greatest N requirement of soybean is at pod 

filling, when nodule senescence limits BNF (Van De Velde et al., 2006) also leading to a 

shortage of N. Achieving optimum yields requires improving the synchronicity of N uptake at 

different growth stages.  

As little or no N fertiliser is applied to soybean, N must be supplied from native soil N and 

BNF; estimated to be worth $15 billion a year globally if required as N fertiliser (Hungria & 

Mendes, 2015). The supply of N from BNF is highly variable, providing from 0%, up to around 

70% of soybean N uptake, with 68% average (Salvagiotti et al., 2008). Currently, the yield 

improvement rate in soybean is high (Figure 1.2), with global production around double that 

of 1990 (Ainsworth et al., 2012), but this mainly relies on applying nitrogen fertilisers (Specht 

et al., 1999; Salvagiotti et al., 2008) or increased land use (Masuda & Goldsmith, 2009); and 

is still not sufficient to meet future needs (Ray et al., 2013). It is likely that future yield 

increases in soybean will result from increased BNF, perhaps through altered timing of N 

supply from N fixation.  
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1.4 | Sources of nitrogen 

Although dinitrogen gas (N2) makes up most of the earth’s atmosphere (78%), N is one of the 

most limiting nutrients for crop production. Atmospheric N2 is unavailable to plants unless 

the highly stable triple covalent bond between two N atoms can be broken, producing 

ammonia (NH3) or nitrate (NO3
- ). This can be achieved through natural BNF and industrial 

processes. 

Haber-Bosch 

The ability to industrially fix nitrogen, through the Haber-Bosch process, was one of the most 

important inventions of the twentieth century. It enabled the Green Revolution with its 

greatly increased crop yields, leading to increased global population (Smil, 1999; Peoples et 

al., 2009; Jensen et al., 2012). Nitrogen fertiliser produced in this way sustains around half 

the world population (Fryzuk, 2004; Erisman et al., 2008), overtaking BNF as the dominant N 

source in the 1950s. With an increasing population, industrially fixed N continues to be heavily 

relied upon as indicated by global N application rates increasing 10-fold from 1950 to 2008 

(Robertson & Vitousek, 2009).  

The environmental impact of such a high N application rate occurs at multiple stages, from 

the acquisition of fossil fuels needed to power the process of N fertiliser production to the 

release of N2O gas from fields after fertiliser application, a greenhouse gas with 292 times 

more potent warming effect than carbon dioxide (Crutzen et al., 2008). Currently, 1% of world 

energy is used to provide 65% of global nitrogen fixation through this industrial process 

(Smith, 2002; Conley et al., 2009). The costs associated with this huge amount of N production 

equate to 50% of agricultural fossil fuel use and 5% of global natural gas consumption (Crutzen 

et al., 2008; Canfield et al., 2010). Additionally, fossil fuel prices will likely increase, increasing 

the cost of N fertilisers and putting them out of reach of many farmers in developing regions 

and reducing profit for all.  

Additional negative impacts of N fertilisers are caused by over-use and inefficient uptake, with 

30-50% lost due to leaching, resulting in additional environmental damage including 

eutrophication of waterways (Choudhury & Khanif, 2001; Vance, 2001; Halvorson et al., 

2002). An estimated 48 Tg per year of anthropogenic N is lost from land to sea (Schlesinger, 

2009), from atmospheric nitrous oxide, ammonia volatised from fertiliser and decomposition 
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and nitrate leaching to underground water. An agricultural system so reliant on the Haber-

Bosch process cannot be considered sustainable for climate change or the nitrogen cycle, with 

the safe planetary boundaries for N already being exceeded (Rockström et al., 2009; Canfield 

et al., 2010; Charpentier & Oldroyd, 2010; Beatty & Good, 2011). Clearly, therefore, an 

alternative N source is required to satisfy future demand. Furthermore, improved technology 

to match supply with uptake is critical.  

Biological nitrogen fixation 

Biological nitrogen fixation is the natural process of turning atmospheric N2 into plant 

available NH3. The majority of BNF occurs in oceans with over 400 Tg N per annum (Codispoti, 

2007). In agriculture, there are many symbiotic systems that are beneficial, not all of them 

occurring in legumes. BNF from non-legumes, in association with free-living bacteria, provides 

23 Tg N fixation per year (Herridge et al., 2008), and can provide 75% of rice N requirements 

(Halvin et al., 2005). 

Legume crops are, however, the main source of natural agricultural N fixation, forming 

endosymbiotic relationships with soil bacteria (rhizobia) in which BNF occurs to supply N to 

the host in exchange for reduced carbon. Increased N provision from this symbiosis benefits 

the host legume as well as subsequent crops (Peoples et al., 2009), which is particularly 

important where N fertiliser application is limited (Preissel et al., 2015). However, global 

industrially derived N inputs still outweigh that from symbiosis with 121 compared to 40 Tg N 

per year, respectively (Conley et al., 2009).   

Biological nitrogen fixation is crucial for agriculture as industrial N production does not meet 

demand. The environmental damage of industrial N fixation will likely lead to increased 

reliance on legumes in future sustainable agricultural systems (Serraj et al., 1999). Nitrogen 

contribution from agricultural legumes is estimated to be between 33-46 Tg leading to N 

fertiliser reduction which equates to 277 kg ha-1 of CO2 per year (1 kg N = 3.15 kg CO2) across 

European cultivated cropland (Jensen et al., 2012). Legumes differ in their ability to fix N with 

the amount of plant N derived from nitrogen fixation (%Ndfa) ranging from an average of 40% 

in Phaseolus vulgaris (common bean) to 75% in Vicia faba (Faba bean) with soybean at 68% 

(Herridge et al., 2008). Higher rates of 69-94% Ndfa have been reported in Brazilian soybean, 

equating to 70-250 kg N ha-1 (Alves et al., 2003; Hungria et al., 2005). On average, soybean is 
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able to acquire 50-60% of its own N requirement through BNF (Salvagiotti et al., 2008). 

However, new soybean cultivars are less able to fix N than older ones as breeding and 

selection occur at sites of high N availability (van Kessel & Hartley, 2000; Nicolás et al., 2002) 

potentially making future soybean yield increases challenging without the use of N fertiliser 

input.  

Enhancing symbiosis can therefore increase crop yields by improving nutrient supply, whilst 

limiting negative environmental impacts of N fertiliser use and thus improving agricultural 

sustainability (Vance, 2001; Peoples et al., 2009; Rockström et al., 2009; Canfield et al., 2010; 

Jensen et al., 2012). 

1.5 | Nodules 

Nodules are specialised root organs that evolved around 58 million years ago in certain 

legume species to host N2 fixing rhizobia in a tightly controlled manner. In N-limiting 

conditions, a complex exchange of signals between symbionts leads to nodule formation. 

Nodulin (Nod) genes are plant genes that are specific to nodulation and nodulation (nod) 

genes are rhizobial genes used in nodule formation. During root nodule formation, two 

processes, infection and nodule organogenesis, occur simultaneously. During infection, 

rhizobia attached to the root hairs and cause them to curl. The infection thread, a tubular 

extension of the plasma membrane, transports rhizobia from the root hair tip to the root 

cortex. At the same time, cortical cells dedifferentiate and divide to form a distinct area in the 

cortex called a nodule primordia. When the infection thread enters the nodule primordia, 

rhizobia are released into membrane bound compartments, called symbiosomes (Udvardi & 

Day, 1997), and differentiate into nitrogen-fixing endosymbiotic organelles called bacteriods. 

Nodule biology is important to understand potential enhancements to BNF.  

Nodule structure 

There are two nodule types (Figure 1.3), determinate which form on soybean, common bean 

and Lotus japonicus roots and indeterminate forming on Medicago truncatula, Medicago 

sativa (alfalfa) and Pisum sativum (pea). Determinate nodule growth stops at maturity and 

BNF starts, whilst indeterminate nodules maintain a meristematic zone that allows continued 

growth alongside BNF. Determinate nodules begin with divisions in the outer and middle root 
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cortex cells and lose meristematic activity soon after initiation and instead grow through cell 

expansion leading to a globular form with a homogeneous inner core of infected cells. 

Indeterminate nodules are derived from pericycle and inner cortex cell division and maintain 

an active apical meristem leading to an elongated cylindrical morphology giving them a more 

complex structure divided into five zones (Figure 1.3). Products of BNF are also different, and 

are determined by the rhizobium species with which they are associated. Determinate 

nodules export ureides, while indeterminate nodules export amides. Nodule life cycle also 

differs between nodule types, core cells of determinate nodules develop simultaneously and 

senesce together whereas indeterminate nodules continue to grow with fixation zones 

becoming a senescence zone with time (Van De Velde et al., 2006). 

 

 

Figure 1.3 Structure of indeterminate and determinate nodules. I: meristematic region, 

II: infection zone, II-III: interzone II-III, III: nitrogen fixation zone, IV: senescent zone, V: 

saprophytic zone, S: senescent zone, NF: nitrogen fixation zone (adapted from Scholte, 

2002).  

Nitrogenase 

The enzyme that catalyses BNF is nitrogenase (equation 1.1), using 52% of nodule respiratory 

energy (Rainbird et al., 1984). Two component proteins, the iron (Fe) protein and the iron-

molybdenum cofactor (MoFe) protein, make up nitrogenase. The Fe protein is an ATP-binding 

site and MoFe the site of substrate binding and reduction. The nodulation genes fixABCX 

encode proteins required for N2 fixation (Hageman and Burris, 1978; Earl et al., 1987), and 

structural genes nifH, nifD and nifK encode an iron protein subunit, MoFe protein α-subunit 
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and β-subunit, respectively (Sundaresan & Ausubel, 1981). Nitrogenase forms two products, 

ammonia (NH3) and ammonium (NH4
+) which diffuse first out of the bacteroid then diffuse or 

are transported across the symbiosome membrane (Bisseling et al., 1979). Assimilation by the 

host then takes place in the infected cell cytosol, with the enzymes glutamine synthetase and 

glutamate synthase producing glutamine from ammonium. These are then transported to the 

shoot as either amides (asparagine and glutamine) in species with indeterminate nodules, or 

as ureide (allantoin and allantoic acid) in soybean and other species with determinate nodules 

(Karr et al., 1990; Day et al., 2001).  

Leghaemoglobin  

As BNF is an energy intensive process it requires high rates of respiration to produce sufficient 

ATP to power it, so an adequate oxygen supply is essential. However, nitrogenase is very 

oxygen sensitive, being irreversibly inhibited through conformational changes or limited by 

decreased electron transfer (Robson & Postgate, 1980). Leghaemoglobin, giving active 

nodules a pink colour, maintains high oxygen flux in micro-aerobic conditions whilst also 

protecting nitrogenase by scavenging oxygen, so maintaining low oxygen concentrations 

(Hirsch, 1992).  

1.6 | Plant regulation of BNF 

As BNF is energy demanding, the host needs to balance N demands with the C cost. The 

energetic cost of symbiosis is 16 ATPs for N2 reduction (equation 1.1) (Kahn et al., 1998).  

N2 + 8H+ + 8e- + 16ATP → 2NH3 + H2 + 16ADP + 16Pi         (1.1) 

When comparing energy costs of nitrate uptake to BNF, other factors such as nodule 

development must be considered (Valentine et al., 2010). BNF is thought to require 

significantly more energy than nitrate uptake and reduction, for soybean 8.28 mg C per mg of 

N compared to 4.99 mg C per mg of N, respectively (Finke et al., 1982). The ability of legumes 

to grow in low N environments, however, clearly justifies these costs from an evolutionary 

perspective and now makes them important in low N fertiliser cropping systems.  

Due to the cost of symbiosis, plants have a number of regulatory mechanisms to control 

nodulation. Key regulatory mechanisms are autoregulation of nodulation (AON), shoot 
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nitrogen, oxygen permeability, carbon supply and metabolism each of which are influenced 

by environmental stresses.   

Autoregulation of Nodulation 

Plants can regulate BNF by adjusting nodule number with autoregulation of nodulation (AON) 

controlling numbers (Reid et al., 2011), suppressing 90% of rhizobial infection events. This 

allows the host to balance the need for N with the energy cost of nodule establishment and 

maintenance of nodules. Both positive and negative regulators of nodulation are required for 

proper nodule formation (Ferguson et al., 2010), including hormonal control as outlined 

below. While the loss of any positive regulator usually inhibits nodulation, loss of a negative 

regulator enhances nodule numbers leading to a super-nodulation phenotype. Plants with 

non-functional AON are stunted and have low yields as excessive nodule development drains 

plant resources. Therefore, efforts to enhance BNF through nodules are unlikely to result 

simply from increased nodule number but rather in other traits such as nodule size. 

Shoot nitrogen 

Plant N status influences rates of BNF by altering nodule number and size, with maximum 

rates at times of high demand, such as pod filling (Fischinger et al., 2010) and lower rates due 

to N remobilisation (Fischinger et al., 2006). Shoot N may also regulate BNF in nodules 

directly, involving the nodule oxygen diffusion barrier, which responded to low-level 

ammonium application to soybean shoots (Neo & Layzell, 1997). Rates of BNF also vary with 

phenological stage (Cabeza et al., 2015). Certain amino acids, such as glutamate (Fischinger 

et al., 2006; Forde & Lea, 2007), glutamine (Neo & Layzell, 1997), aspartate (King & Purcell, 

2005), asparagine (Sulieman & Schulze, 2010) and ureide (Ladrera et al., 2007) also have a 

role as long distance, phloem transported, signals of shoot N status (Sulieman & Tran, 2013). 

BNF is regulated by N demand, whereby if N demand is less than N supply from fixation, then 

these N signalling molecules enter the phloem and are carried to the nodule, causing a 

reduction in BNF.   

Oxygen permeability 

Adequate oxygen supply to the nodule interior is a key factor regulating nodule activity  (Dong 

& Layzell, 2001). A high concentration of oxygen within the nodule can risk denaturing 
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nitrogenase, whilst a low concentration limits BNF, due to limited respiration and thus ATP 

production (Marchal et al., 2000). Despite being oxygen sensitive, nitrogenase activity 

increased as the root oxygen concentration was increased gradually, so indicating oxygen 

limitation in ambient conditions (Hunt et al., 1989). Oxygen concentration within a nodule is 

influenced by its morphology, as the size of intercellular spaces in the central nodule tissue 

alters internal oxygen gradients. Larger internal spaces allow greater oxygen gradients across 

nodule tissue, so limits oxygen diffusion out of the symbiosome (Bergersen, 1997; Vance et 

al., 1998). An oxygen diffusion barrier controls oxygen diffusion from the nodule cortical cells 

to the inner cells, creating sharp differences in oxygen concentration between these regions 

(Tjepkema & Yocum, 1974). The oxygen diffusion barrier responds to restricted plant growth, 

and limits BNF to an appropriate level for current N demand (Kleinert et al., 2017). 

Leghaemoglobin is required for BNF as it allows high levels of respiration whilst also buffering 

free O2 concentration, maintaining very low O2 concentrations in active nodules (Appleby, 

1984; Ott et al., 2005). 

Carbon supply and metabolism 

Biological nitrogen fixation has a high energy demand consuming much photosynthate 

(Schulze, 2004). The amount of C is species and growth stage dependent ranging from 1.4-12 

g C per g N (Schuize et al., 1999). Therefore, plants carefully regulate the need for N with 

carbohydrate reserves (Unkovich et al., 2010; Sulieman & Tran, 2013). Sucrose is the primary 

C source for nodules (Stacey, 2007), converted into malate and succinate by sucrose synthase, 

which are used as C source in bacteroids (Walsh, 1990). Nodule starch accumulation, 

indicating sufficient or excess supply (Redondo et al., 2009), is not interrupted by day-night 

cycles (Cabeza et al., 2015) showing that BNF is not synchronous with plant photosynthesis 

(Vance & Heichel, 1991; Schulze, 2004). Elevated CO2 does, however, increase BNF rates 

(Rogers et al., 2009), associated with increased nodule number and mass as well as increased 

nitrogenase activity (Lam et al., 2012). Therefore, nodule metabolism is limited by phloem 

supply to nodules and not longer-term shoot carbohydrate status. Therefore, improved 

nodule vasculature, allowing increased phloem C supply, could enhance BNF.  



14 
 

Environmental constraints to BNF 

Nitrogen fixation is very sensitive to abiotic stress. Whilst stresses like drought, salinity, acidity 

and phosphorus deficiency have all been well studied (Valentine et al., 2010), others like cold 

stress have not. Suboptimal root zone temperatures (RZT; <25°C) delay BNF onset and nodule 

initiation (Legros & Smith 1994; Mishra et al., 2009; Poustini et al., 2005; Zhang et al., 1995). 

Early stages of nodule establishment are restricted (Lindemann & Ham, 1979; Lynch & Smith, 

1993; Matthews & Hayes, 1982), especially infection and early nodule development, due to 

limited nod gene expression and NF synthesis, see below (Shiro et al., 2016; Zhang & Smith 

1994). 

1.7 | Nodule development and phytohormones 

Nodule formation first involves signalling between the host and rhizobia, followed by root 

hair curling, infection thread formation, cortical cell division and development of vasculature 

(Figure 1.4). Each stage of this process, explained below, is tightly controlled by 

phytohormones which are required for proper nodule development.  

Signalling and perception 

To initiate nodulation, both symbionts release diffusible molecules that must be mutually 

recognised to initiate further signalling (Dénarié et al., 1996). Flavonoids released by the host 

plant are recognised by compatible rhizobia, usually Bradyrhizobium japonicum for soybean 

(Oldroyd, 2013), activating rhizobial genes, including nod genes that encode Nod factors (NF) 

(Redmond et al., 1986; Caetano-Anollés & Gresshoff, 1993; Denarie & Debelle, 1996; Spaink, 

2000). The NF initiates nodule development in compatible host legumes but only in a transient 

portion of the developing root known as the ‘zone of nodulation’ (Bhuvaneswari et al., 1980; 

Calvert et al., 1984). In this region, root hairs remain sufficiently plastic to allow deformation 

and invasion by rhizobia. Even before endosymbiosis, phytohormones secreted into the 

rhizosphere can influence rhizobia (Figure 1.4A). Strigolactone has been identified in 

Medicago truncatula root exudates (Liu et al., 2011) and the biosynthesis gene (CCD8) is 

induced in root hairs, suggesting strigolactones are secreted during infection (Figure 1.4A) 

(Breakspear et al., 2014). Additionally, gibberellic acid (GA3) application to B. japonicum in 

vitro downregulates expression of nodulation genes nifA, nifH and fixA, with nitrogenase 

activity also decreased (Chen et al., 2015). Conversely, rhizobial gene expression (nif and fix 
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genes) is increased following auxin (IAA and 2,4-D) (Bianco & Defez, 2010) or jasmonate 

(jasmonic acid and methyl jasmonate) application (Rosas et al., 1998; Mabood & Smith, 2005; 

Mabood et al., 2006). This suggests that plants use phytohormones as additional signals to 

promote symbiosis. 

Nod factors released by rhizobia are recognised by two LysM domain receptor-like kinases, in 

soybean NF response 1 and 2 (GmNFR1 and NFR5) (Popp & Ott, 2011; Oldroyd, 2013; Zipfel 

& Oldroyd, 2017). NF perception by the host leads to cytokinin accumulation (Figure 1.4B) 

(Oldroyd, 2007; van Zeijl et al., 2015) and induces expression of cytokinin responsive genes 

(NIN and EFD) and cytokinin response regulators (RR4 and RR1) (Gonzalez-Rizzo et al., 2006; 

Vernié et al., 2008; Plet et al., 2011), showing the effect of cytokinin signalling at several 

stages of the symbiotic pathway. Additionally, most early transcriptional changes after NF 

application (3 hours post inoculation) are dependent on the histidine kinase cytokinin 

receptor (CRE1) (van Zeijl et al., 2015) initiating the symbiotic signalling pathway. 

 

Figure 1.4 The role of phytohormone signalling through nodule development: host 

signalling (A), Nod factor (NF) perception leading to the symbiotic signalling pathway (B), 

root hair curling and infection thread formation (C), bacterial release and cortical cell 

division (D) and nodule differentiation and maturity (E). Hormone abbreviations are as 

follows: abscisic acid – ABA, auxin – Aux, cytokinin – CK, ethylene – ET, gibberellin – GA, 

jasmonic acid – JA and strigolactones – SL.   
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Nod factor application upregulates ethylene biosynthesis genes (van Zeijl et al., 2015) and 

salicylic acid accumulates following inoculation with incompatible rhizobia (Martinez-Abarca 

et al., 1998). Abscisic acid (ABA) regulates nodule formation with the balance between ABA 

and NF determining if nodulation will occur (Ding et al., 2008). Gibberellin biosynthesis genes 

(GA20-oxidase a and GA 3-oxidase 1a) are NF dependant (Lievens et al., 2005; Hayashi et al., 

2012; Breakspear et al., 2014), with expression peaking 12 hours after inoculation before 

declining. This signalling involving a number of phytohormones is evident of the tight 

regulation involved during nodule initiation. 

Symbiotic signalling pathway 

Downstream signal transduction cascades, following NF perception, involve nuclear 

membrane potassium ion-channel proteins (Ané et al., 2004; Riely et al., 2007) and 

nucleoporins (Kanamori et al., 2006; Saito et al., 2007). These proteins cause calcium spiking, 

oscillations in cytosolic calcium, around 10 minutes post NF perception (Wais et al., 2000; 

Walker et al., 2000) through the rapid influx of calcium ions followed by membrane 

depolarisation efflux of chlorine and potassium in root hair cells (Felle et al., 1999). Calcium 

and calmodulin-dependent kinase (CCaMK) perceives calcium spiking leading to the activation 

of several transcription factors. These include nodulation signalling pathway 1 and 2 (NSP1 

and NSP2) (Kalo, 2005; Smit, 2005), Ets repressor factor (ERF) required for nodulation (ERN; 

Middleton et al., 2007) and nodule inception (NIN) (Schauser et al., 1999; Borisov et al., 2003) 

which together act to promote early nodulation (ENOD) genes in the epidermis, regulating 

bacterial infection (Figure 1.4B). Cytokinin has an important role in initiating the symbiotic 

signalling pathway, discussed in Chapter 3.  

Nodule initiation is regulated by ethylene and JA with plant responsiveness to NF reduced 

through a negative feedback loop. Upregulation of ethylene biosynthesis genes (ACC 

synthases) following NF-induced cytokinin accumulation negatively regulates further NF 

signalling and subsequent cytokinin accumulation (van Zeijl et al., 2015). GA inhibits early 

nodulation events at the epidermis, between LHK1 and NSP2 in the nodulation signalling 

pathway, with an opposite effect to cytokinin by downregulating NSP1, NSP2, NIN and 

downstream early nodulation (ENOD) genes (Maekawa et al., 2009; Fonouni-Farde et al., 

2017). 
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Ethylene and jasmonic acid act together to inhibit nodulation by suppressing and altering 

calcium spiking (Oldroyd et al., 2001; Sun et al., 2006). Ethylene (shortens spiking period) and 

JA (lengthens spiking length) have antagonistic effects (Sun et al., 2006). This cross-talk 

between hormones tunes the nodulation process by inducing early nodulin gene expression 

(EFR1, RIP1 and ENOD11) (Lorenzo et al., 2003; Sun et al., 2006). ABA application abolishes 

NF induced calcium spiking and gene expression (Ding et al., 2008). Activation of CCaMK leads 

to local cytokinin accumulation, stimulating cortical cell division of nodule primordia (Frugier 

et al., 2008). 

Root curling and infection thread formation 

Perception of NF causes swelling and growth of the root hair tip in the direction of NF, causing 

root hair curling (Figure 1.4C) (Heidstra et al., 1994; De Ruijter et al., 1998). As the root hair 

curls, 6-8 hours post inoculation, continuously dividing rhizobia are trapped (Callaham & 

Torrey, 1981; Turgeon & Bauer, 1985) and subsequently enter the root down the infection 

thread after 12 hours (Turgeon & Bauer, 1985; Gage, 2004). Root hair growth is induced by 

auxin (Pitts et al., 1998), which is known to increase cell wall extensibility allowing infection 

pocket formation and growth of infection threads (Oldroyd et al., 2001; Esseling et al., 2003). 

As cytokinins affect auxin transport (Dello Ioio et al., 2008; Plet et al., 2011; Marhavý et al., 

2014), it is likely that auxin accumulation is induced through cytokinin activity (Suzaki et al., 

2013). At the epidermis, ABA application decreased the number of bacterial colonies within 

root hair curls, and inhibited the step between root hair swelling and curling (Suzuki et al., 

2004). 

Auxin signalling is important for root hair infection, with auxin-response genes locally induced 

in infected cells (Breakspear et al., 2014). GA suppresses infection thread development in pea 

(McAdam et al., 2018) and applying the GA biosynthesis inhibitor (UniP) increased nodulation 

and infection threads (Maekawa et al., 2009). JA application suppressed nodulation in the 

har1-4 super-nodulating mutant by inhibiting root hair curling, infection thread and nodule 

primordial development (Nakagawa & Kawaguchi, 2006).  

Cortical cell division 

The infection thread elongates into the cortex cell below the infection site, which has already 

initiated cell division to form the nodule primordium (Figure 1.4D) (Calvert et al., 1984; 
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Mathews et al., 1989). Cell cycle responses occur and coincide with auxin responses and both 

strigolactone and GA biosynthesis (Breakspear et al., 2014). In determinate nodulation, 

cytokinin response genes are activated in the outer cortex cells (Lohar et al., 2004; Plet et al., 

2011; Held et al., 2014). The positive effect of cytokinin application on cell division and 

expression of early nodulation gene is well documented (Jiménez-Zurdo et al., 2000; 

Mathesius et al., 2000; Tirichine et al., 2006; Murray, 2007) and this is likely through auxin, as 

cytokinin induces auxin transport inhibitors leading to auxin accumulation which drives cell 

division. As nodules form, three auxin transporter-like proteins are upregulated in developing 

primordia showing active auxin import (de Billy et al., 2001). Ectopic overexpression of the 

microRNA160 gene in soybean, that negatively regulates auxin response factor genes, 

resulted in fewer nodules (Turner et al., 2013). In this case, nodule development and not 

initiation was inhibited, which could be because the transition from cell division and 

differentiation requires specific gradients of auxin distribution (Turner et al., 2013). 

Applying very low concentrations of ethylene (0.07 ppm) greatly reduced cortical cell 

divisions, which leads to nodule primordium formation (Lee & La Rue, 1992). ABA also has a 

role in the regulation of cortical cell division by down-regulating cytokinin levels. This was 

proved using the L. japonicus gain-of-function LHK1 cytokinin receptor mutant, usually 

forming spontaneous nodules, was suppressed by 1 µM ABA treatment (Ding et al., 2008). 

Mature nodule 

When the infection thread reaches the dividing cortex, rhizobia are released into membrane 

bound compartments (symbiosome) (Udvardi & Day, 1997) where they differentiate into 

bacteroids, the nitrogen fixing form (Figure 1.4E). Cytokinins are required in certain 

expression windows to control both nodule numbers and differentiation (Mortier et al., 

2014). The cytokinin response receptor (CRE1) controls the transition between meristematic 

and differentiation zones in mature nodules, suggesting a requirement for cytokinin at late as 

well as early stages of nodulation (Plet et al., 2011). Despite early negative regulation, GA 

appears necessary for proper nodule organogenesis, as GA deficient na pea mutants form 

limited numbers of small white nodules with reduced meristems (Ferguson et al., 2005; 

Ferguson et al., 2011). This demonstrates that nodule size and function is promoted by GA, 

as small nodules that formed on na mutants contained bacteria more like that of infection 
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threads than the large bacteriods of wild types and led to reduce BNF (McAdam et al., 2018). 

The dual role of GA can be explained spatially, whereby it limits infection thread formation in 

root hairs but promotes nodule organogenesis in the cortex (McAdam et al., 2018). 

The nodule structure is formed of central nodule and vascular tissue (Newcomb et al., 1979; 

Calvert et al., 1984; Ferguson et al, 2005). Although ABA negatively regulates nodulation in 

early stages it is elevated in developing nodules (Ferguson & Mathesius, 2014), being required 

for proper nodule meristem formation with the ABA-insensitive latd M. truncatula mutant 

having small white nodules, suggesting a positive role in later nodule development (Liang et 

al., 2007). Ethylene is also a strong negative regulator of nodulation but does not alter the 

number of mature nodules (Nukui et al., 2004). Thus, hormones act at specific stages of 

nodulation. Nodules usually remain on the root for a few weeks then senesce and are 

replaced by new ones. Nodule senescence is triggered through nitric oxide (NO) accumulation 

in the active zone of nodules (Hichri et al., 2016). 

1.8 | Summary  

Sustainable intensification is required to enable future food supply with increasing population 

and unpredictable future climate. Soybean, as a protein source for humans and livestock, is a 

globally important crop. Its nitrogen fixation capacity may help mitigate some of the 

environmental damage associated with its production. Sufficient nitrogen is crucial for 

soybean yield therefore increasing BNF is key to sustainably reaching its yield potential. 

Nodules are the site of BNF and although symbiotic rhizobia and mechanisms behind plant 

signalling events have received much attention, nodules themselves and the impact of 

changes in their morphology on BNF are not well understood. Phytohormones are involved 

in each step of nodule initiation, development and function but the ability of phytohormone 

application to enhance BNF of soybean has not been explored.  

The overall working hypothesis of this thesis is that increased nodule size or speed of 

establishment will alter BNF, and that genotype selection and phytohormone application may 

enhance BNF leading to increased yield in soybean.   

Chapter 2 aimed to: (i) assess the performance of a novel image based nodule quantification 

method, (ii) examine genotypic differences in nodule development and BNF over time and (iii) 

determine the influence of different nodule traits on BNF. It was hypothesised that genotypes 
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would show genotypic differences in BNF, as seen previously, and that this could be explained 

by nodule traits. It was also hypothesised that the novel nodule quantification method would 

better detect such genotypic differences compared to conventional methods.  

Chapter 3 aimed to: (i) determine an optimal hormone treatment that could enhance nodule 

traits, leading to increased BNF and (ii) determine the timing of treatment effects. It was 

hypothesised that the hormone treatments would enhance nodule traits and that this would, 

subsequently, increase BNF. As the hormone treatments were applied at early growth stage, 

it was hypothesised that they would alter early nodule development through a priming effect 

on the symbiotic pathway.  

Lastly, Chapter 4 aimed to assess the agronomic potential of both genotype selection and 

phytohormone application. It was hypothesised that enhanced nodule development and BNF, 

seen in controlled environments (Chapter 2 and 3), would result in increased yield. 
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Chapter 2: Genotypic variation and importance of nodule traits in 

regulating BNF  

2.1 | Introduction 

BNF depends on successful nodulation and the efficiency of rhizobia to reduce atmospheric 

N2. Nodulation is tightly regulated by the host plant, controlling the number, development 

and turnover of nodules (Ferguson et al., 2010; Sulieman & Schulze, 2010). There is a fine 

balance between plant N requirements and the C supply to nodules. Investment in and 

regulation of nodules is therefore important for N fixation, but whether the location of 

nodules, observed on legume root systems, affect fixation capacity is unclear. Soybean roots 

show a variety of nodule patterns that could comprise many small nodules or a few large 

nodules, perhaps due to variations in C allocation (Ikeda, 2003). Nodule size, spread across 

the root system (distribution) and timing may all influence the supply of N from BNF. 

Defining ‘successful’ nodulation can be complex, as nodule morphology and physiology vary 

across legumes (Walsh, 1995), and even within species due to infection from different 

rhizobia strains (Ferreira et al., 2000). Various traits are used to quantify nodulation success, 

the most common being nodule number and total nodule weight. Of these, nodule number is 

most frequently reported (Ferreira et al., 2000; Albuquerque et al., 2012; Barros et al., 2013), 

but it is often not correlated with increased BNF (de Araujo et al., 2017). Nodule counting is 

also prone to human error. Instead, other factors such as nodule size have a greater influence 

on fixation (Hungria & Bohrer, 2000; Voisin et al., 2003; Tajima et al., 2007; de Araujo et al., 

2017), although the biological reason for this is not fully understood. Total nodule weight is 

also frequently measured, but this does not reflect variation in individual nodule sizes 

comprising whole plant nodulation. Soybean appears to show preference to associate with 

certain strains, thereby increasing BNF capacity (Hungria & Bohrer, 2000) but the effect this 

has on nodule traits is also unknown. Irrespective of what causes variations in nodulation, this 

chapters seeks to better understand successful nodulation phenotypes for soybean. 

High yielding soybean is dependent on nitrogen application to reach its yield potential (Specht 

et al., 1999; Salvagiotti et al., 2008). New genotypes have reduced capacity for BNF (Hungria 

& Bohrer, 2000; van Kessel & Hartley, 2000; Nicolás et al., 2002), reflecting the recent focus 
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of breeders on above-ground traits (Hungria et al., 2006). It is likely that genotypic variation 

in BNF capacity is determined by nodule phenotypes, as these organs host the symbiosis. 

Additionally, the timing of BNF affects yield and seed protein content with BNF in vegetative 

stages improving canopy development and in late reproductive stages allowing continued N 

accumulation, so reducing reliance on vegetative N remobilisation (Fabre & Planchon, 2000). 

Legume crop improvement efforts have recognised the importance of root traits (McPhee, 

2005; Gonzalez-Rizzo et al., 2009; Schultz et al., 2010) and the efficiency of BNF (Shtark et al., 

2010) but not nodulation. Understanding how variations in nodule phenotypes affect BNF 

could both guide plant breeding efforts, and inform the timing and success of biostimulant 

treatments, together these approaches will aid crop improvement efforts.  

Nodule distribution reflects initial nodulation rate and efficacy (Bhuvaneswari et al., 1983; 

Pierce & Bauer, 1983; Crist et al., 1984; Heron & Pueppke, 1984; Malik et al., 1984) as only 

part of the root system, with newly formed root hairs, can be infected at any one time. In this 

way, it can be assumed that plants with less distributed nodules (close to the root crown) 

formed nodules sooner. It therefore follows that early nodule formation will lead to earlier 

BNF. It is unclear whether nodule distribution influences overall BNF, with conflicting results 

seen (Hardarson et al., 1989; McDermott & Graham, 1989). When nodule root position of 

soybean was manipulated by varying the inoculation technique (seed or soil), timing or depth, 

nodules that formed on lower root portions showed increased BNF compared to those at the 

crown (Hardarson et al., 1989). However, nodule occupancy with inoculant strains, compared 

to native rhizobia, led to increased BNF in upper root nodules (McDermott & Graham, 1989).  

As well as the speed of nodule initiation, timing of BNF is important for plant growth as 

asynchronous N fixation and demand may limit soybean growth (Phillips & DeJong, 1984; 

Keyser & Li, 1992). Soybean genotypes have differing abilities to fix N at early and late stages 

(Burias et al., 1990; Herridge et al., 1990; Pazdernik et al., 1996; Fabre & Planchon, 2000; 

Hamawaki & Kantartzi, 2018). Changes in nodulation across these growth stages may help to 

explain this variation. Although genotypes able to form nodules in early growth may establish 

BNF sooner, this could incur a cost with earlier nodule senescence limiting N fixation in 

reproductive stages.  

Individual nodule size appears important with greater fixation capacity in larger nodules 

shown through specific BNF, that is BNF per gram of nodule weight (Voisin et al., 2003; Tajima 
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et al., 2007). This could be due to increased import of C to nodules, due to increased nodule 

vasculature (Purcell et al., 1997; King & Purcell, 2001), as a linear relationship between C 

allocation and BNF occurs at all growth stages (Voisin et al., 2003). Photosynthate supply to 

individual nodules is determined by the rate of supply and nodule competition (Ikeda, 2003), 

such that increased nodule number will likely reduce specific BNF. However, since increased 

nodule size enhances BNF, there may be physiological changes enabling this. 

When viewed in cross-sections, larger nodules have a greater proportion of infected tissue 

than small ones, with a linear relationship between nodule diameter and rhizobia infected 

area (Tajima et al., 2007). This equates to 25% of the inner nodule tissue being infected in 2 

mm nodules, compared to 60% in 4 mm nodules (Weisz & Sinclair, 1988). Larger nodules, with 

more N fixing tissue, have a higher energy demands than small nodules, with increased sink 

capacity and thus photosynthate requirement (King & Purcell, 2001). As nitrogenase is highly 

oxygen-sensitive, oxygen permeability is tightly controlled by leghaemoglobin. Greater 

control of internal nodule oxygen may also lead to increased BNF. Larger nodules have a 

greater leghaemoglobin content and likely alter oxygen permeability due to their reduced 

surface area to volume ratio (Hunt & Layzell, 1993). The effect of nodule size on C supply and 

metabolism or O2 permeability has, however, not been studied.  

Classifying nodules into sizes makes it possible to predict their BNF capacity for different 

species, with 2-2.5 mm regarded as optimal in Arachis hypogaea (peanut) (Tajima et al., 2007) 

and 3-4 mm in common bean and soybean (Vikman & Vessey, 1993; King & Purcell, 2001). 

However, whether the frequency of these nodules alters whole root N fixation has not been 

shown. Detailed quantification of nodule distribution is possible (Remmler et al., 2014) but it 

is very time-consuming thus limiting its applications. Detailed quantification of nodule size is 

also lacking. Image-based systems have showed high accuracy when quantifying nodule 

number, especially when nodules are removed from roots (Lira & Smith, 2000), but again do 

not consider nodule size or apply this technique to better understand nodule physiology. 

Where nodules have been considered in terms of size (Vikman & Vessey, 1993; King & Purcell, 

2001; Tajima et al., 2007) this has showed differences in nodules of varying sizes but not the 

number of nodules within size classes per plant. Determining size classifications of nodules 

could therefore be beneficial, but previous methods involve manual, time consuming 

methods using size guides. In this study, a novel high throughput image analysis protocol was 
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developed to calculate semi-automated whole root nodule number, size and spread across 

the root system (distribution), allowing timing to be inferred. 

The USDA soybean germplasm is a valuable genetic resource, but its use has mainly been 

limited to plant pathology, morphology and seed composition (Posadas et al., 2014). This 

study aimed to establish if changes in nodulation could explain the variation in BNF across 

genotypes, as seen previously (Hamawaki & Kantartzi, 2018). It was hypothesised that certain 

nodule traits, such as size, may explain differences in BNF, and that there is an optimum 

nodule size for BNF. Genotypes with early nodulation are hypothesised to have greater BNF 

capacity during vegetative growth but limited fixation in reproductive stages. This chapter 

also aims to assess a newly developed image-based quantification method for its ability to 

help quantify nodule variation across genotypes; and the effect of this variability on BNF over 

time. It was hypothesised that image-based nodule quantification would be more sensitive 

and detect subtle differences in nodulation, not possible with weight based methods. 

2.2 | Method 

Developing high throughput nodule quantification 

As nodule quantification is very labour intensive, involving counting large numbers of nodules, 

a method was developed here to increase the speed and accuracy of this process. Manually 

counting of nodules can be very error prone, leading to subtle fluctuations in nodule traits, 

crucial for detecting genotypic or treatment differences, being missed. While computational 

image analysis techniques can increase the speed and accuracy of this process, first an 

accurate method for removing nodules from roots and taking images had to be developed. 

This was because in whole root scans, nodules are often obscured, making it difficult to 

accurately estimate nodule number or area. Three imaging methods were used, two involving 

taking images on a mobile phone and the last using a scanner (Epson expression 11000XL Pro 

with transparent unit). These methods were correlated with the more labour-intensive 

conventional method of manually counting nodules. Extra care was taken to ensure that 

manual nodule counts were correct and could be used to compare the accuracy of other 

methods. Plants used for this comparison were taken from an experiment screening the 

effects of auxin and kinetin application as a root drench. Details of plant material and growth 

conditions are included in the methods section of Chapter 3. Plants were harvested at the 
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flowering stage and nodules removed and then imaged in one of three ways (Figure 2.1) as 

well as being manually counted.  

 

Figure 2.1 Imaging methods used to quantify nodule number and size.  

The image processing software ImageJ (available at https://imagej.nih.gov/ij/) was used to 

analyse images taken previously (Figure 2.2). Images in JPEG format were imported and the 

scale set, via a plant label of known dimensions, as size reference in the picture (Figure 2.2A). 

Images were then converted into 8-bit format so that colour thresholds could be applied 

converting nodules and label markings to black and lighter coloured image noise to white. 

Plant label markings and additional noise, such as dust or growing substrate, were removed 

using the ‘Flood Fill Tool’ (Figure 2.2B). The ‘Analyse particles’ function can then be used to 

identify nodules with a size filter of 0.5 mm to 50 mm to remove any remaining 

contamination. Summary output gives the number of nodules, and total and average nodule 

area (mm2); the area of each nodule is also given in a separate output (Figure 2.2C). Nodule 

distribution was estimated manually through digitally measuring the distance from the root 

crown to each nodule, this was then averaged to give per plant nodule distribution. A plant 

label was used as a size reference (Figure 2.2D). 

Data was exported and further analysed to give specific nodule traits and number of 

nodules in size categories. Specific nodule traits are nodule number, weight or area divided 

by root weight per plant. To classify nodules into different sizes, the diameter was first 

estimated (assuming spherical shape) and then rounded to the nearest whole number and 

the number of each counted per plant. Nodules were categorised based on their diameter 

into size classes of 0.5 to 1.4 mm, 1.5 to 2.4 mm, 2.5 to 3.4 mm, 3.5 to 4.4 mm and 4.5 to 5.4 

mm, and referred to as 1 mm, 2 mm, 3 mm, 4 mm and 5 mm nodules, respectively.  
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Figure 2.2 Semi-automated nodule quantification method. Image scale is set using plant label as a 

size reference (A), an image threshold is then set to identify dark regions so highlighting nodules 

(B), finally particles in the image are selected using size and roundness parameters and number, 

total and average size calculated (C). Nodule distribution determined by distance of each nodule 

from the root crown (D). 
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Plant material and growing conditions 

Soybean (Glycine max L.) seeds of the genotypes (Table 2.1) Bossier, Davis, Enrei, Williams 

and 197 (provided by the USDA germplasm collection, GRIN) and the cultivar Viola (donated 

by Plant Impact) were sown in a randomised complete block design, with 10 pot replicates for 

each genotype and harvest stage. After autoclaving, fine grade vermiculite (Sinclair 

professional) was used to fill 2 litre pots. Before planting, seeds were surface sterilised with 

1% sodium hypochlorite and then repeatedly washed. Seeds were inoculated with 108 CFU 

ml-1 of B. japonicum, isolated from commercial Biagro inoculant, that was previously cultured 

on YEM agar at 29°C for over 4 days. Plant were irrigated with N-limited Hoaglands solution 

(composition in Table 2.2) every two days with additional water irrigation as required. 

Greenhouse conditions were logged continuously. Average greenhouse temperature was 

29.4oC (20-40oC) day and 21.2oC (16-32oC) night. Light was supplemented by high-pressure 

sodium lamps (600 W Greenpower, Osram, St Helens, UK) when photosynthetic photon flux 

density (PPFD) was less than 400 µmol m-2 s-1 for a 12 h photoperiod (7.00 hrs to 19.00 hrs).  

Plants were grown to yield with harvests at V2 (two trifoliate leaves), R1 (beginning bloom) 

and R6 (full seed) and maturity (Fehr & Caviness, 1977).  

Table 2.1 Genotypes used with maturity group and BNF characteristics based on 

(Hamawaki & Kantartzi, 2018).  

Genotype Maturity group 

 

BNF characteristics 

Bossier VIII Late 

Davis VI Early and Late 

Enrei IV Early 

Viola OOO - 

Williams III Early 

197 V Poor early 
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Table 2.2 Nitrogen-limited Hoagland’s solution used to irrigate plants. 

Nutrient Chemical name 

 

Chemical formula Conc. mM 

Nitrogen Calcium nitrate tetrahydrate Ca(NO3)2.4H2O 1 

Magnesium Magnesium sulphate heptahydrate MgSO4.7H2O 0.5 

Manganese Manganese sulphate pentahydrate MnSO4.5H2O 0.00157 

Boron Boric acid H3BO3 0.01132 

Copper  Copper sulphate pentahydrate CuSO4.5H2O 0.0003 

Molybdate Ammonium molybdate tetrahydrate (NH4)6Mo7O24.4H2O 0.00003 

Phosphorus Mono potassium phosphate KH2PO4 1.01 

Potassium Potassium chloride KCl 1 

Iron Ferric sodium EDTA NaFe EDTA 0.02547 

 

Plant growth measurements 

Plants were harvested when they reached V2 (approximately 20 days after sowing, DAS), R1 

(42 DAS), R6 (77-105 DAS) and maturity, shoots were removed from the roots at the 

cotyledons and leaf area was measured using a leaf area meter (Model Li-3100C Li-Cor, NE, 

USA). Shoots were then dried at 60oC for 72 hours to measure shoot dry weight.  

Root samples were frozen at -20oC until time of analysis. This was necessary as measuring 

each root system took 30 minutes with up to 70 plants harvested per stage. Roots were 

scanned (Epson expression 11000XL Pro with transparent unit), then nodules were removed 

from the roots and scanned again. Roots and nodules were then dried at 60oC for 72 hours to 

measure nodule and root dry weight. ImageJ (1.51K) (Schneider et al., 2012) was used to 

analyse root and nodule scans as described above. 

Biological nitrogen fixation 

Oven dried stem samples were first finely cut with scissors and put in 2 ml round bottom 

Eppendorf tube for grinding using a ball mill at a vibrational frequency of 30 times per second 

for 2 minutes. Ureide products from fixation (allantoin and allantoic acid), nitrates and amino 

acids (asparagine and glutamine) were determined and the ratio of each was calculated. 

Ground stem samples (0.1 g) were used to extract ureide, nitrate and amino acid in a 0.1 mol 
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L-1 phosphate buffer and ethanol heated to 80oC. After cooling, extracts were filtered and 

centrifuged at 10,000 g then stored at -20oC until analysis. Three methods, Young-Conway’s 

(Young & Conway 1942), Cataldo (Cataldo et al., 1975) and ninhydrin (Yemm & Cocking, 1955) 

were used to colorimetrically measure ureide, amino acid and nitrate N, respectively. Relative 

ureide was calculated as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑟𝑒𝑖𝑑𝑒𝑁% (𝑅𝑈) = (
4𝑈

(4𝑈+𝑁+𝐴𝐴)
) × 100  

where U, AA and N are molar concentrations of ureide, amino acids and nitrate, respectively 

(Herridge & Peoples 1990). An estimate of BNF was calculated using the coefficients from 

Herridge & People (1990) as: 

𝐵𝑁𝐹 = 1.56(𝑅𝑈 − 15.9) 

where RU is the percentage of relative ureide-N. 

Data analysis 

Two-way ANOVA was used to test for overall differences in the growth and nodulation of 

genotypes across harvest stages, with genotype and stage as main effects. Fishers least 

significant difference post hoc test was used to determine significant (p < 0.05) effects. A 

generalised linear model determined the effect of nodule traits on BNF and how each varies 

between genotypes at different stages. In addition, to explore which traits influence BNF in 

each genotype at different stages, Pearson’s correlation between each trait and BNF were 

also calculated. The statistical package RStudio (RStudio Team, 2020) was used for all these 

analyses.  

2.3 | Results  

Quantifying nodulation 

Nodule number, determined with all imaging methods, was strongly (p < 0.001) correlated 

with manual nodule counts. Scanned images (Method 3; Figure 2.1) gave the most accurate 

results (highest R squared values) so it was used in future experiments. These data give 

confidence that the imaging techniques detect all nodules and can be used in further studies 

to quantify number and size. Moreover, these imaging methods can determine individual 

nodule area and number of nodules within defined size categories.  
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Genotypic variation in nodule phenotype and BNF 

Across the three stages (V2, R1 and R6), BNF of Enrei, Viola and Williams were significantly 

(~62% more; p < 0.05, respectively) greater than that of Bossier. Nodule distribution at V2 did 

not vary across genotypes (Table 2.3). Genotypes only showed variation in total nodule area 

at R6, suggesting similar speed of nodule establishment despite differences in BNF (Figure 

2.3). Nodule number was 56% (p < 0.05) higher in Williams than in the least nodulated 

genotype, Viola. Total nodule area of Williams was more than double that of both Bossier and 

Viola (p < 0.05). Specific nodule area was highest in Davis, Enrei and Williams, around 24% 

more than Viola and 197 (p < 0.05; Table 2.3). Total nodule weight of Williams was more than 

double that of Bossier, Viola and 197 (p < 0.05; Table 2.3). Specific nodule weight did not vary 

across genotypes thus the greater nodule weight of Williams was perhaps because of its more 

vigorous root system (Table 2.8). Genotype did not affect average nodule weight (p = 0.099), 

but average nodule area of Williams was 21% and 38% greater than Bossier and 197, 

respectively (p < 0.05; Table 2.3). Williams had almost five times the number of 4 mm nodules 

Figure 2.3 Accuracy of methods used to determine nodulation as 

determined by linear regression. Points are individual plants with line 

of best fit and shaded area indicating SE.  
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than Bossier, Viola and 197 with the least (p < 0.05). High rates of BNF across all stages in 

Williams are consistent with high nodule numbers and size, and in Enrei by its specific nodule 

area. However, there are also inconsistencies such as limited nodule number, total weight or 

area of Viola despite high BNF and high specific nodule area of Davis despite low BNF. Taken 

together, the data shows that quantifying nodules across all stages is not representative and 

does not show the association between nodule traits and BNF capacity.  

Overall, BNF was the same at V2 and R6 but was reduced at R1 (Table 2.3; ~38%; p < 0.05). 

Nodule number was higher (88%) in R6 than V2 (p < 0.05) and specific nodule number 

decreased by 49% from V2 to R1 then by 59% from R1 to R6. Again, differences between 

absolute and specific measures of nodules are explained by differences in root growth (Table 

2.8). Total nodule area increased by 86% from V2 to R1 (p < 0.05) and by 30% from R1 to R6 

(p < 0.05; Table 2.3). Specific nodule area decreased by 39% from V2 to R1 then by a further 

45% from R1 to R6. Total nodule weight increased three-fold from V2 to R1 (p < 0.05) but not 

from R1 to R6, suggesting that nodules were fully developed by R1 with no further growth. 

Average nodule area increased by 27% (p < 0.05) from V2 to R1 but did not increase further 

from R1 to R6. BNF was similar at early and late stages despite increased absolute and 

decreased specific nodule number and weight, as such neither accounts for this. Equally, 

limited BNF at R1 cannot be explained through changes in nodules.  

There was often a genotype x stage interaction, perhaps explaining why differences in 

nodules just considering one of these factors does not coincide with BNF. Genotypic effects 

on BNF were stage dependent (p < 0.001) with BNF of Davis increased by 91% from V2 to R6 

while it decreased in Viola by 46% from V2 to R6 (p < 0.05; Figure 2.4A). Since genotypic 

effects on BNF are stage dependent, the speed of BNF onset also varies among genotypes 

(Figure 2.4A). Increase in total nodule area was marginally, but not significantly, more evident 

in certain genotypes, as shown by the genotype x stage interaction (p = 0.053; Figure 2.4B). 

Total nodule area in Williams and 197 increased from V2 to R6 by 4.2 and 3.7 times (p < 0.05) 

but other genotypes showed no significant changes. Again, there was a genotype x stage 

interaction (p < 0.001) with Davis, Enrei and Williams increasing the number of 4 mm nodules 

by 5.3, 3.6 and 13.1 times from V2 to R6, respectively (p < 0.05; Figure 2.4C). 

Taken together, BNF and nodule traits varied between these genotypes but growth stage 

modulated the relationship between these variables. The greatest nodule development of 
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Williams was not reflected in increased BNF; with an interaction between genotype and stage 

affecting both nodules and BNF showing that nodule traits have different influence at 

different times. This suggests that growth stage affects the relationship between these traits. 
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Table 2.3 Changes in BNF and nodule traits in six genotypes at three stages (V2, R1 and R6). Values are averages (n = 10), with letters denoting 

significant difference at p < 0.05 as determined by least significant difference (LSD) test with p-values from a two-way ANOVA below. 

Source of 

variation 

 
BNF 

(%Ndfa) 

Specific BNF 

(%Ndfa g
-1

) 

Nodule 

number 

(#) 

Specific 

nodule 

number 

(# g-1) 

Total 

nodule 

weight 

(mg) 

Specific 

nodule 

weight 

(mg g-1) 

Average 

nodule 

weight 

(mg) 

Total 

nodule 

area 

(mm2) 

Specific 

nodule 

area 

(mm2 g-1) 

Average 

area 

(mm2) 

4 mm 

nodule 

number 

(#) 

Nodule 

distribution 

(mm) 

Genotype Bossier 20.5 b 3495 42.0 ab 82.7 68.8 b 102.2 ab 1.57  188 b 341 ab 4.97 bc 2.03 b 37.4 

 
Davis 27.4 ab 655 44.4 ab 78.4 90.2 ab 106.6 ab 1.83  239 b 349 a 5.23 ab 4.53 b 29.8 

 
Enrei 36.8 a 898 43.7 ab 78.2 139.0 ab 227.5 a 5.03  231 b 375 a 5.51 ab 5.07 b 44.8 

 
Viola 34.1 a 6212 27.4 b 61.7 45.8 b 82.9 ab 2.33  134 b 271 b 5.96 ab 1.80 b 45.7 

 
Williams 36.4 a 902 61.1 a 68.2 164.5 a 118.8 ab 2.46  382 a 353a 6.32 a 8.83 a 37.3 

 
197 27.2 ab 1445 50.2 ab 77.1 69.0 b 77.8 b 1.21  205 b 276 b 3.92 c 1.83 b 53.4 

Stage V2 35.6 b 4010 a 30.9 b 120.9 a 33.4 b 123.8 1.23  125 c 482 a 4.43 b 1.14 c 41.4 

 
R1 21.5 a 356 c 45.4 ab 62.9 b 103.3 a 140.6 2.80  232 b 296 b 5.63 a 3.44 b - 

 
R6 33.9 b 2438 b 58.1 a 39.5 c 152.0 a  93.4 3.19  332 a 204 c 5.90 a 5.74 a - 

Genotype (G) <0.001 0.281 0.021 0.521 <0.001 0.036 0.099  <0.001 0.024  0.001  <0.001 0.877 

Stage (S) <0.001 <0.001 <0.001 <0.001 <0.001 0.400 0.116  <0.001 <0.001  <0.001  <0.001 - 

G x S <0.001 0.016 0.340 0.479 0.003 0.844 0.801  0.053 0.105  0.397  <0.001 - 
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Figure 2.4 BNF (A), total nodule area (B) and number of 4 mm nodules (C) in 6 genotypes 

(Bossier, Davis, Enrei, Viola, Williams and 197) at three growth stages (V2, R1, R6). Letters 

denote significant difference for each genotype as indicated by letter colour, determined 

by LSD test. Bars are means ± SE of 10 replicates. ANOVA p-values from the genotype x 

stage date interaction are reported. 

Importance of nodule traits to BNF for genotypes at different stages 

Generalised linear model analysis showed that all nodule traits were positively associated 

with BNF, except for specific nodule area (p < 0.05; Table 2.4). The effect of nodule traits on 

BNF were all genotype and stage dependent, with triple interactions between these factors 

(p < 0.001; Table 2.4). When considering nodules in different size classes, only 3 and 4 mm 

nodules positively affected BNF (p < 0.001 and 0.007, respectively; Table 2.4). This suggests 

that nodule traits affect BNF, but this depends on both genotype and stage. 
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Table 2.4 Generalised linear model results assessing the effect of nodule traits, genotype 

and stage, as well as the interactions between these main effects on BNF. 

Source of 
variation 

Nodule 
number 

Specific 
nodule 
number 

Total 
nodule 
weight 

Specific 
nodule 
weight 

Average 
nodule 
weight 

Total 
nodule 
area 

Specific 
nodule 
area 

Average 
nodule 
area 

Nodule trait 
(NT) 

0.003 <0.001 <0.001 0.046 <0.001 <0.001 0.544 <0.001 

Genotype (G) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Stage (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NT x G <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NT x S 0.043 0.001 0.554 <0.001 0.025 0.035 <0.001 0.044 

G x S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

NT x G x S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

Source of 
variation 

5 mm 
nodule 
number 

4 mm 
nodule 
number 

3 mm 
nodule 
number 

2 mm 
nodule 
number 

1 mm 
nodule 
number 

Nodule trait 
(NT) 

0.493 <0.001 0.007 0.993 0.432 

Genotype (G) <0.001 <0.001 <0.001 <0.001 <0.001 

Stage (S) 0.054 <0.001 0.003 0.113 0.896 

NT x G <0.001 <0.001 <0.001 <0.001 0.022 

NT x S <0.001 <0.001 0.346 0.906 0.009 

G x S <0.001 <0.001 <0.001 <0.001 <0.001 

NT x G x S 0.002 <0.001 <0.001 <0.001 <0.001 
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Across all genotypes, at V2, none of the nodule traits correlated with BNF. However, at R1 

and R6, total nodule area, average nodule area and the number of 4 mm nodules positively 

correlated with BNF (p < 0.05; Figure 2.5). Additionally, at R6, total nodule weight also 

positively correlated with BNF (p < 0.05; Figure 2.5). This suggests that nodule traits have a 

greater effect on BNF at reproductive than vegetative stages. Interestingly, nodule traits were 

negatively correlated with specific BNF, suggesting that increased nodule development 

decreases efficiency. 

When nodule traits for each genotype at V2 were correlated, only Bossier showed a positive 

correlation (p < 0.05) between BNF and average nodule area (Table 2.5). The number of 4 mm 

nodules was also positively correlated with BNF in Bossier (p < 0.01). This shows that early 

nodule development influences BNF more in certain genotypes, and that individual nodule 

size is most important for BNF, at least in Bossier. Additionally, in Davis at V2, the number of 

1 mm nodules was positively correlated (p < 0.01) with BNF. In contrast, in Williams at V2, 

specific nodule area was negatively correlated (p < 0.05) with BNF. Thus, increased early 

nodule development benefits Bossier and Davis whilst negatively affecting BNF in Williams.  
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Figure 2.5 Correlation between nodule dry weight (nodw), average nodule weight (ave.nodw), nodule number (nn), specific nodule number (nn.rdw), total 

nodule area (tot.area), specific nodule area (tnod.rdw), average nodule area (ave.size), number of 5 to 1 mm nodules (x5-1mm) and BNF across all stages. 

Pearson’s r values are shown with blue circle indicating a significance increase and red circles a significant decrease (p < 0.05, n = 60). Circle width shows the 

strength of correlation.  
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Table 2.5 Correlation between nodule trait and BNF at V2 in each genotype. Values are 

Pearson r values with significance indicated above (* = p < 0.05 and ** = p < 0.01; n=10). 

Genotype Nodule 
number 

Specific 
nodule 
number 

Nodule 
dry 
weight 

Specific 
nodule 
weight 

Average 
nodule 
weight 

Total 
nodule 
area 

Specific 
nodule 
area 

Average 
nodule 
area 

4mm 
nodule 
number  

1mm 
nodule 
number  

Bossier -0.39 -0.44 0.28 <0.01 0.64 0.09 -0.09 0.66* 0.84** -0.31 

Davis 0.05 -0.25 0.54 0.31 0.54 0.44 0.17 0.59  0.38 0.80** 

Enrei 0.39 0.46 0.15 0.20 -0.48 0.30 0.40 -0.32 -0.09 0.46 

Viola -0.15 -0.32 -0.05 -0.23 -0.31 -0.09 -0.29 -0.36 -0.19 -0.35 

Williams -0.47 -0.59 -0.34 -0.62  0.24 -0.47 -0.67* 0.20 0.10 -0.35 

197 -0.24 -0.29 -0.33 -0.45 0.44 -0.36 -0.48 0.20 -0.11 0.40 

 

At R1, increased nodule number and total nodule area were positively correlated with BNF in 

Enrei (p < 0.05 and p < 0.05, respectively; Table 2.6). BNF was positively correlated with a 

number of nodule traits in genotype 197, perhaps most interestingly with the number of 3 

and 4 mm nodules (Table 2.6). Again, this suggests that increases in nodule traits are of 

particular importance to only certain genotypes at this stage.  

Table 2.6 Correlation between nodule traits and BNF at R1 in each genotype. Values are 

Pearson r values with significance indicated above (* = p < 0.05, ** = p < 0.01 and *** = 

p < 0.001; n=10). 

Genotype Nodule 
number 

Specific 
nodule 
number 

Nodule 
weight 

Specific 
nodule 
weight 

Average 
nodule 
weight 

Total 
nodule 
area 

Specific 
nodule 
area 

Average 
nodule 
area 

4mm 
nodule 
number 

3mm 
nodule 
number 

1mm 
nodule 
number 

Bossier 0.44 0.19  0.46 0.33 -0.25 0.47 0.35 -0.15  0.42 0.49 0.02 

Davis -0.06 -0.21 0.09 0.17 0.46 0.02 -0.04 0.36 0.25 -0.12 0.21 

Enrei 0.71* 0.45 0.17 0.08 0.04 0.74* 0.47 -0.28 0.02 0.55 0.44 

Viola -0.02 0.18 -0.04 0.33 -0.13 0.02 0.28 0.08 0.56  -0.24 -0.21 

Williams 0.14 0.20 0.15 0.25 -0.14 0.16 0.24 -0.18 0.52 -0.20 0.50 

197 0.65* -0.37 0.81** 0.84** 0.78** 0.76* 0.36 0.66 * 0.89 
*** 

0.72* -0.49 

 

At later stages (R6), nodule number (p < 0.05) and total nodule weight ( p < 0.05), specific 

nodule weight (p < 0.01), total nodule area (p = 0.05), specific nodule area (p = 0.05) and 
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number of 3 mm nodules (p < 0.01) positively correlate with BNF in Bossier (Table 2.7). Whilst, 

in Davis, specific nodule weight, average nodule weight and area positively correlated with 

BNF (p = < 0.05, p < 0.01 and p < 0.05, respectively; Table 2.7). In Viola, only the number of 4 

mm nodule positively correlated ( p < 0.05) with BNF (Table 2.7). Interestingly, specific nodule 

weight negatively correlated (p < 0.05) with BNF in 197 at R6. Again, these data suggest that 

the relative importance of nodule traits on BNF capacity differ across genotypes.  

Table 2.7 Correlation between nodule trait and BNF at R6 in each genotype. Values are 

Pearson r values with significance indicated above (* = p < 0.05 and ** = p < 0.01; n=10). 

Genotype Nodule 
number 

Specific 
nodule 
number 

Nodule 
weight 

Specific 
nodule 
weight 

Average 
nodule 
weight 

Total 
nodule 
area 

Specific 
nodule 
area 

Average 
nodule 
area 

4mm 
nodule 
number 

3mm 
nodule 
number 

1mm 
nodule 
number 

Bossier 0.72*  0.37 0.67* 0.8** 0.12 0.68* 0.69* -0.20 0.11 0.78** 0.35 

Davis 0.38 -0.24 0.52 0.71* 0.82** 0.42 0.15 0.63* 0.47 0.41 0.13 

Enrei -0.28 -0.20 0.30 0.30 0.28 -0.14 0.01 0.28 0.09 -0.23 -0.61.  

Viola -0.28 -0.46 0.17 -0.06 0.45 0.06 -0.36 0.51 0.73*  0.08 -0.56  

Williams -0.06 -0.18 -0.28 -0.42 0.07 -0.23 -0.49 -0.09 0.10 -0.19 -0.16 

197 -0.32 -0.39 -0.39 -0.64*  -0.46 -0.35 -0.59.  -0.45 -0.47 -0.33 -0.33 

Yield and growth  

Shoot dry weight of Williams was 63% higher than Bossier and Viola (p < 0.05; Table 2.8). Root 

dry weight of Williams was 60% and 70% higher than Bossier and Viola, respectively (p < 0.05; 

Table 2.8). Total seed weight and number were again highest in Williams with 197 and Davis 

next. Average seed weight of Williams and Enrei was 59% and 78% higher than Bossier, 

respectively (p < 0.05; Table 2.8).   
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Table 2.8 Changes in plant growth at three stages (V2, R1 and R6) and yield (R8) in six 

genotypes. Values are averages (n = 10) with letters indicating significant differences at p 

< 0.05 within each source of variation determined by LSD with p-values from a two-way 

ANOVA below. 

Source of 

variation 

 
Shoot dry 

weight (g) 

Root weight 
(g) 

Seed weight 
(g) 

Seed 
number (#) 

Average 
seed weight 
(g) 

Genotype Bossier 2.34 d 0.61 c 0.822 c 5.44 c 0.140 b 
 

Davis 3.90 bc 0.82 bc 3.788 b 22.44 b 0.162 b 
 

Enrei 3.92 bc 0.73 bc 2.033 c 8.30 c 0.249 a 
 

Viola 2.61 cd 0.56 c 1.729 c 11.20 c 0.158 b 
 

Williams 6.05 a 1.47 a 8.303 a 37.44 a 0.223 a 
 

197 4.42 b 0.89 b 4.894 b 25.88 b 0.164 b 

Stage V2 0.93 c 0.28 c - - - 

 R1 3.00 b 0.74 b - - - 
 

R6 7.70 a 1.52 a - - - 

Genotype (G) <0.001 <0.001 <0.001 <0.001 <0.001 

Stage (S) <0.001 <0.001 - - - 

G x S <0.001 <0.001 - - - 

 

2.4 | Discussion  

Nodulation and BNF 

Overall, BNF was genotype-dependent with Enrei, Viola and Williams showing the greatest 

capacity. Corresponding differences in nodules in these genotypes were not consistently seen 

across all nodule traits (Table 2.3; Figure 2.4), suggesting a complex relationship between 

nodules and BNF. Specific nodule traits that account for differences in plant size (Unkovich et 

al., 2008) better allow comparisons of nodules in different genotypes, more closely 

corresponding with BNF capacity (Table 2.3). Surprisingly, specific nodule traits (nodule 

number, weight or area divided by root weight) are not often reported, perhaps due to 

difficulties in recovering and cleaning root systems accurately, with rare exceptions (Yashima 

et al., 2003), despite better representing the plants relative investment in nodules. However, 

comparisons across growth stages may be misleading as autoregulation of nodulation can 

suppress further nodule development whereas roots continue to grow.  
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BNF was not correlated with nodule number, but with nodule size, suggesting that increased 

size does improve nodule physiology in some way. This supports previous findings where 

nodule number does not correlate well with N accumulation (Neves et al., 1985; Hungria & 

Bohrer, 2000) but nodule weight does (Döbereiner, 1966; Hungria & Bohrer, 2000). However, 

the relationship is inverse, with nodule size altered by nodule number, as a finite 

photosynthate supply must be shared across all nodules. Thus, fewer nodules will have a 

greater C supply (Ikeda, 1999) allowing greater development (Mahon, 1977). Only a certain 

number of nodules can be supported, as super-nodulating mutants usually have a dwarf 

stature, again due to limitations of C supply to nodules. As seen previously (Hungria & Bohrer, 

2000; Voisin et al., 2003; Tajima et al., 2007; de Araujo et al., 2017), greater BNF capacity can 

be achieved in larger nodules (Figure 2.5), suggesting they are in some way more efficient, 

likely due to altered physiology.  

The greater C sink capacity of larger nodules may enhance photosynthate delivery (King & 

Purcell, 2001). Rhizobial symbiosis increases photosynthetic rates (28%), more than the cost 

of rhizobia, due to sink stimulation which improves photosynthetic nutrient use efficiency and 

harvest index (Kaschuk et al., 2009). Carbon is commonly not limiting to BNF (González et al., 

2015), whereas accumulation of nitrogenous products do limit further fixation in a feedback 

loop (Bacanamwo & Harper, 1997; Sulieman & Schulze, 2010). This response has primarily 

been observed in drought experiments (King & Purcell, 2005; Sulieman & Tran, 2013) 

suggesting that the same could be true for nodules with different vasculature in non-stressed 

conditions, especially at high rates of BNF. Both C import and N export depend on nodule 

vasculature. Nodules have a complicated dual vasculature surrounding the nodule core 

(Livingston et al., 2019), which may allow larger infection areas that have sufficient import 

and export to maintain fixation. The majority but not all nodules have this dual vasculature, 

so it would be interesting to test whether differences in vasculature could be explained by 

nodule size. Alternatively, nodule oxygen concentration, which is highly regulated in the 

nodule inner cortex (5-60 µmol m-3) (Millar et al., 1995) and adjustment of nodule 

permeability of the oxygen barrier by host plants may regulate BNF (Serraj et al., 1999; 

Sulieman & Tran, 2013). Differences in nodule size alter leghaemoglobin concentration (Hunt 

& Layzell, 1993) and may alter oxygen permeability. Future work should seek to understand 

how nodule traits influence nodule physiology, such as nodule oxygen concentration, carbon 
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supply or N export and the effect this has on BNF. Number of active nodules and rhizobial 

strain occupancy may also influence nodule size and subsequently BNF capacity. Nodule traits 

and BNF could be quantified in plants inoculated with either single or multi-strain inoculum 

to establish this link. 

Nodulation and BNF over time  

Different soybean genotypes vary in their ability to fix nitrogen at different stages, either early 

(around V1) (Pazdernik et al., 1996), late (R5-R6) (Fabre & Planchon, 2000) or throughout 

(Hamawaki & Kantartzi, 2018) development. In this study, BNF varied across genotypes at 

both early and late stages but nodules differed only at later stages (Figure 2.4). This suggests 

that at early stages nodules of different genotypes have varying BNF capacities.  

Only certain genotypes showed nodule development from early to late stages, with total 

nodule area increasing only in Davis, Williams and 197 from V2 to R6 (Figure 2.2), suggesting 

that nodules of the other genotypes were fully developed at V2. However, it may also reflect 

difference in plant N demand across stages. Increased nodule development did not 

necessarily lead to increased BNF. Only Davis showed increased BNF from V2 to R6, whilst the 

other genotypes did not change. Viola decreased BNF from V2 to R6 without changes in 

nodule traits. Therefore, the link between nodules and BNF in genotypes is more complex 

than a function of nodule number or size but instead is stage dependent. There is also 

evidence of varied nodule efficiency (Figure 2.4), which perhaps could be explained by 

quantifying aspects of nodule physiology or rhizobial nodule occupancy as mentioned above. 

Overall, this shows that for different genotypes “successful nodulation” can mean different 

things. 

In general, BNF starts at around V2 and peaks at R1-R4 (Thibodeau & Jaworski, 1975; Keyser 

& Li, 1992) and it generally increases through the growth period but is genotype and 

environment dependent (Herridge et al., 1990). However, plant N demand and supply from 

BNF have different patterns (Phillips & DeJong, 1984; Keyser & Li, 1992) at early stages before 

nodule establishment and in late stages when nodules begin to senesce; altering the timing 

of nodule development may improve this balance. Previous characterisation of BNF in a 

controlled environment over time showed the same trend as seen herein, with high BNF in 

vegetative and late reproductive stages but declining at flowering (R1) (Pitumpe Arachchige 
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et al., 2020). Decreased BNF at R1 may result from floral initiation, with flower formation 

reducing the carbon available to meet nodule respiratory demand.  

The speed of nodule establishment was the same in all genotypes with no differences in any 

of the nodule traits at V2. Nodule distribution also did not vary across genotypes, again 

suggesting that nodules form at the same time in all genotypes (Table 2.3). In this study, 

nodule traits were more influential at later stages in contrast to previous work where stronger 

correlations between nodule traits and BNF were seen at early vegetative stages (Voisin et 

al., 2003; Tajima et al., 2007). BNF in nodules depends on their developmental stage, 

therefore, changes in BNF must be due to subsequent development from V2 to R6 as nodule 

establishment (before V2) is consistent. Future work should determine if the speed of nodule 

initiation is indeed common to all genotypes by comparing the timing of nodulin gene 

expression. Due to the environmental sensitivity of nodule formation, this must be conducted 

in a controlled environment. Differences in endogenous hormones, such as cytokinin, through 

different stages may also explain differences in nodule development.  

Correlations between nodule traits and BNF varied across genotypes and growth stages (Table 

2.5 and 2.7). In early growth, increased nodule size correlated with increased BNF in Bossier, 

whereas in Williams, specific total nodule area and BNF were negatively correlated. 

Additionally, the number of small 1 mm nodules positively correlated with BNF in Davis at 

early growth stages. Equally, in later growth, increased nodule number and or size correlated 

with increased BNF in Bossier, Davis and Viola but negatively correlated with BNF in 197. Thus, 

increased nodule size was generally linked with increased fixation, as in other experiments 

(King & Purcell, 2001; Voisin et al., 2003; Tajima et al., 2007). This is especially noticeable at 

late reproductive stages when N demand is greatest. In this study, plants were N-limited so 

they were more reliant on N supply from BNF than that of field-grown plants, hence field trials 

that account for soil and atmospheric N should confirm these effects. Changes in BNF were 

not reflected in yield in Enrei and Viola (Table 2.8) but may affect yield quality. Again, field 

trials would be more appropriate to establish if changes in nodule traits can sufficiently 

increase BNF to increase yield.  
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Benefit and potential of novel nodule quantification 

Nodule phenotyping techniques are important as future soybean breeding must focus on BNF 

to enable sustainable N supply to allow continued yield increases. High throughput, 

aboveground methods, based on the close relationship between N supply and photosynthetic 

rate, such as leaf traits (size or greenness) have been used as indicators to phenotype nodule 

traits (Gwata et al., 2004; Vollmann et al., 2011). However, these methods could only 

distinguish between nodulated or non-nodulated genotypes; thus more detailed 

quantification is required. Nodule quantification has advanced (Lira & Smith, 2000; King & 

Purcell, 2001; Tajima et al., 2007; Remmler et al., 2014) but to date does not include measures 

of individual nodule area that make up total nodule area. In this study, average nodule area 

detected subtle differences in nodules among genotypes (Table; 2.3; Table 2.5) that were not 

discriminated by average nodule weight. This appears biologically relevant as average nodule 

area but not average nodule weight correlated with BNF (Figure 2.4). Further, only nodules of 

a particular size class, not quantified previously, correlated with BNF. This data demonstrates 

that 4 mm nodules appear optimal at later growth stages (Figure 2.4), according to genotype 

and growth stage (Table 2.5-2.6).   

2.5 | Conclusion  

Genotype and growth stage influenced the relationship between BNF and nodule traits. Not 

all nodule traits are equally important for BNF, with size more influential than nodule number 

but again this varies across stages, between genotypes and at different stages within 

genotypes. More detailed quantification of nodule phenotypes will help determine the 

success of strategies to enhance BNF through altering nodules and establish the usefulness of 

this approach. The new nodule quantification method can detect differences between 

genotypes and additional nodule traits included herein (nodule area and size classification) 

are important for N fixation. This technique can now be used to detect changes in nodule 

traits caused by hormone application in controlled environments (Chapter 3) and in the field 

(Chapter 4). 
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Chapter 3: Phytohormone treatments enhance nodulation and 

biological nitrogen fixation. 

3.1 | Introduction  

The endosymbiotic relationship between legumes and rhizobia provides a valuable source of 

N, with nodules providing a suitable environment for BNF to take place (Ferguson et al., 2010; 

Oldroyd, 2013). In exchange for N, the host plant supplies rhizobia with carbohydrates 

(photoassimilates), the cost of which means tight regulation of nodule numbers is important. 

Root perception of NF alters plant hormone synthesis, transport, accumulation and how they 

are perceived, with hormone composition in the zone of nodulation leading to nodule 

initiation and development (Mathesius, 2008; Ding & Oldroyd, 2009; Desbrosses & Stougaard, 

2011). Intracellular signalling cascades subsequently lead to the formation of nodules (see 

Chapter 1.7). Phytohormones are important regulators of nodule formation, having positive 

and negative effects depending on the stage of nodule formation, endogenous concentration 

and tissue (Ferguson & Mathesius, 2014). Ethylene, jasmonate, abscisic acid and salicylic acid 

all negatively affect nodulation (Penmetsa & Cook, 1997; Suzuki et al., 2004; Stacey et al., 

2006), whilst gibberellin, auxin and cytokinin being important positive regulators (see Chapter 

1.7).   

Enhancing the efficiency of symbiosis by manipulating phytohormone signalling may increase 

or alter nodule traits, resulting in improved BNF with potential benefits to yield or yield 

quality. After the seedling exhausts its seed N reserves, a period of N starvation may occur 15 

to 20 days post emergence before BNF begins (Hungria et al., 1991; Atkins et al., 1989; 

Abendroth et al., 2006). Thus, enhanced early nodulation and BNF may mitigate this. 

Rhizobia are able to synthesise a number of phytohormones (Boiero et al., 2007). Rhizobia 

that secrete bioactive cytokinins (Phillips & Torrey, 1972; Sturtevant & Taller, 1989), cause 

cortical cell division (Cooper & Long, 1994) and enhance the speed of initiation and nodule 

number and size (Podlešáková et al., 2013). This evidence suggests that rhizobia have 

developed the ability to use hormones to enhance nodules and therefore their own fitness. 

This likely occurs through horizontal gene transfer similar to that shown experimentally with 

the transfer of the trans-zeatin secretion gene between Rhizobium meliloti that infects alfalfa 
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(Cooper & Long, 1994). This supports the idea that applying additional phytohormones could 

promote nodule formation; but the relative benefit to the plant must also be determined. 

Gibberellin biosynthesis genes, such as SrGA20ox1 in Sesbania rostrata (Lievens et al., 2005), 

are upregulated during infection thread and nodule development in a number of species 

(Dobert et al., 1992; Kouchi et al., 2004; Hayashi et al., 2014). Similarly, gibberellin 

biosynthesis pea mutants, particularly na, have low nodule formation; but nodulation can be 

restored to that of the wild type through GA3 root application (10-6 M) (Ferguson et al., 2005). 

Further, applying gibberellin biosynthesis inhibitors (daminozide, CCC, or paclobutrazol) 

before rhizobial inoculation suppressed nodule organogenesis in S. rostrata (Lievens et al., 

2005). However, gibberellin regulation of nodulation may be complex, as over production of 

gibberellin in pea mutants (na-1) also reduces nodule development (Ferguson et al., 2005). 

Gibberellin is therefore important for proper nodule development but only within certain 

concentration windows. Previous studies have linked gibberellin to early nodulation events, 

but few have explored the effect of application to enhance nodule traits (Bishnoi & 

Krishnamoorthy, 1991).  

Auxin is an important regulator of plant development, with local accumulation leading to 

organ formation throughout the plant (Benková et al., 2003). Auxin and auxin influx 

transporter (AUX1) transcript accumulate in roots following rhizobial inoculation or NF 

application (Mathesius et al., 1998; de Billy et al., 2001; Pacios-Bras et al., 2003; Turner et al., 

2013). This accumulation allows nodule formation also in the absence of rhizobia (Hirsch et 

al., 1989; Mathesius et al., 1998; van Noorden et al., 2006). Auxin transport is therefore 

required for early nodulation. Overproduction of auxin in Sinorhizobium meliloti (expressing 

rolAp-iaaMtms2) and RD20 Rhizobium leguminosarum bv. viciae strain (expressing p-

iaaMtms2) increased nodule number, size and BNF in Medicago (M. truncatula and M. sativa) 

and Vicia hirsuta (vetch), respectively (Pii et al., 2007; Camerini et al., 2008). However, auxin 

(IAA) overproducing R. leguminosarum had no effect on nodulation of common bean (Pii et 

al., 2007) and 5-methyltryptophan resistant B. japonicum mutants, with elevated IAA, 

restricted nodule mass and nitrogen fixation in soybean (Hunter, 1987), both with 

determinate nodules. Auxin application (10-6 to 10-10 M IAA) shortly after sowing (7 and 14 

days) increased BNF by up to 76% in Vigna radiata (Mung bean) (Ali et al., 2008), suggesting 

that increased early auxin enhances nodulation leading to greater BNF capacity.  As beneficial 
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nodule responses following auxin application vary among legume species, it is important to 

establish their effect on soybean. 

Cytokinins stimulate cell proliferation and differentiation as well as other functions including 

organogenesis and delay of senescence. Increased cytokinin levels also contribute to nodule 

initiation. Nod factor application and activation of the calcium calmodulin receptor (CCaMK) 

led to cytokinin accumulation (Frugier et al., 2008; van Zeijl et al., 2015). Zeatin (10-6 M) and 

6-Benzylaminopurine (BAP; 10-4 M) application lead to the expression of early nodulin genes 

Enod2 and Enod4, respectively (Dehio & de Bruijn, 1992; Mathesius et al., 2000). Whole root 

application of low cytokinin concentrations (10-8 to 10-7M BAP) stimulated local nodule 

formation through expression of early nodulin genes of Lotus japonicus (nsp1, nsp2 and nin) 

and cortical cell division (Heckmann et al., 2011; Plet et al., 2011; Ariel et al., 2012; van Zeijl 

et al., 2015), leading to expression of early nodulin (ENOD) genes (Mathesius et al., 2000), 

indicating its mode of action in the symbiotic pathway. The addition of pTZs plasmid carrying 

a constitutive trans-zeatin secretion gene to normally non-nodulating Rhizobium meliloti also 

led to the formation of nodule like structures on alfalfa roots (Cooper and Long, 1994). Work 

with mutants showed the key role of cytokinin perception in nodulation with the gain-of-

function in two cytokinin receptor genes (snf2 and lhk1-1) giving spontaneous nodules, whilst 

loss-of-function showed very few nodules (Gonzalez-Rizzo et al., 2006; Tirichine et al., 2006; 

Murray, 2007). These studies show that cytokinin is necessary and sufficient for nodule 

formation. Applying kinetin (10-8 to 10-6 M) as a seed soak and foliar spray (at vegetative stage) 

to Cicer arietinum (chickpea) and mung bean increased nodule weight and N fixation at 

flowering and pod filling (Ali & Bano, 2008; Fatima et al., 2008), showing long lasting 

treatment effects. The effect of cytokinin application on nodule signalling, formation and BNF 

of soybean has not been shown experimentally. 

The concentration of hormone treatments is an important factor determining effectiveness. 

Applying BAP at low concentration (10-6 M) increased nodule number in pea (cv. Sparkle) 

whereas higher concentrations (2.5 x 10-5 M) were inhibitory (Lorteau et al., 2001), since 

cytokinins increased ethylene production (Fuchs & Lieberman, 1968; Vogel et al., 1998) which 

inhibits nodulation. Similarly, GA application at high concentrations (10-3 M) decrease, whilst 

lower concentration increase nodule number (10-6 to 10-9 M) (Ferguson et al., 2005; Maekawa 

et al., 2009). Thus, each hormone may act as a positive or negative regulator depending on 
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its concentration. It is therefore important to apply a range of treatment concentrations to 

quantify hormonal effects.  

The stage of the nodulation process influences the effect of hormones. Gene expression 

studies indicate that GA is a positive regulator during early infection and nodule development 

(Lievens et al., 2005; Hayashi et al., 2012) but not in mature nodules (Kouchi et al., 2004). 

Cytokinin is required for nodule initiation and important for regulating nodule number and 

differentiation but is not involved in infection thread formation (Gonzalez-Rizzo et al., 2006; 

Murray, 2007; Plet et al., 2011). Auxin does not alter nodule number but is required for nodule 

development, particularly during transition from cell division to differentiation (Turner et al., 

2013). Therefore, the timing of phytohormone application is likely to alter the effectiveness 

of the treatment but for gibberellin, auxin and cytokinin early application is likely most 

appropriate.  

This study aimed to evaluate the effects of phytohormone application on soybean nodule 

traits. A limited number of studies have shown nodule and BNF enhancements are possible 

following hormone application (Table 3.1), but the optimal hormone and concentration has 

not been established in soybean. Since phytohormones regulate nodule initiation and 

development, it is hypothesised that hormone application could enhance nodule traits, in 

particular nodule size, leading to increased BNF, as shown in Chapter 2. More detailed 

characterisation of nodule development is needed to explain any changes in BNF (Chapter 2). 

Phytohormone application at early stages of nodulation was hypothesised to promote nodule 

development, leading to increased fixation. This study comprised three objectives: i) to test 

the effectiveness of candidate hormones (GA3, IAA and kinetin) at hormone-specific 

concentrations (10-11 M to 10-7 M; Table 3.2), ii) assess different application methods (seed 

prime, foliar spray and root application) and their interactions with treatment concentration 

and iii) show the effect of hormone treatment over time, to better understand treatment 

effects on nodule signalling and development. 
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Table 3.1 Summary of hormone application studies showing effect on nodulation and 

BNF. 

Phytohormone Species Application 

method 

Concentration Effect 

 

Reference 

Cytokinin (Kinetin) Chickpea Seed soak 

and foliar 

in pot trial 

10-5 M seed and 10-6 M 

foliar 4 weeks after 

sowing 

Increased infection zone 

area, BNF and yield. 

Delayed nodule 

senescence. 

Ali & Bano, 2008 

Cytokinin (BAP) Pea  Root 

application 

0.5x10-6M to 

 2.5x10-5M 4 and 6 DAS 

Increased nodule number 

at 1x10-6M. 

Reduced nodulation at 

high concentration 

Lorteau et al., 

2001 

Cytokinin (kinetin) 

and Auxin (IAA) 

Chickpea Seed soak 

and foliar 

10-5 M seed and 10-6 M 

foliar 4 weeks after 

sowing 

Seed soaking with 

cytokinin and auxin 

increased nodule weight 

Fatima et al., 

2008 

Auxin (IAA and 4-Cl-

IAA) 

Mung 

bean 

Root 

application 

10-10, 10-8 or  

10-6M at 7 and 14 DAS 

Increased nodule weight, 

BNF and yield at 10-8M 

Ali et al., 2008 

Gibberellin (GA3) Pea Root 

application 

10-9, 10-6 or  

10-3 M 

Increased nodule number Ferguson et al., 

2005 

 

3.2 | Methods 

Plant material and growing conditions 

Soybean (Glycine max L.) seeds cv. Viola (donated by Plant Impact) were used for each 

hormone application experiment (Table 3.2) with hormone types and concentrations based 

on the literature (Table 3.1). Seeds were sown into 1 L pots in a randomised complete block 

design with 12 biological replicates (one plant per pot) per treatment (Figure 3.1A). After 

autoclaving, fine grade (1-3 mm) vermiculite (Sinclair professional, Ellesmere Port, UK) was 

used as substrate. Before sowing, seeds were surface sterilised with 1% sodium hypochlorite 

and then repeatedly washed. Seeds were inoculated with 108 cells mL-1 of B. japonicum 

USDA110 that was previously cultured on YEM agar (Somasegaran and Hoben, 1994) at 29°C 

for four or more days. Two seeds were sown per pot, later thinned to one plant per pot just 

after emergence (VE). Pots were irrigated with modified N-limited Hoagland’s nutrient 

solution that lacked NO3
-, to prevent the inhibition of nodulation. Average greenhouse 

temperature was 29.8oC day and 21.3oC night. Light was supplemented by high-pressure 
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sodium lamps (600 W Greenpower, Osram, St Helens, UK) when photosynthetic photon flux 

density (PPFD) was less than 400 µmol m-2 s-1 for a 12 h photoperiod (7.00 hrs to 19.00 hrs). 

For the gene expression experiments, Viola seeds were again used. Seeds were again surface 

sterilised, then soaked in kinetin solution (10-9 mol L-1), water (hydroprimed) or allowed to 

dry (not primed) for four hours. Sterilised large plastic growth pouches (Mega International, 

West St. Paul, MN) 35 cm long and 16 cm wide were used to grow the seedlings (Figure 3.1). 

After treatment, four seeds per pouch were planted and 30 ml autoclaved water added to the 

pouch. To germinate, pouches were wrapped in foil and kept at 28oC for 2 days. To keep roots 

dark, pouches were covered in aluminium foil and card was used for support. Pouches were put 

in growth racks at an angle to aid root contact with the pouch. Plants were grown in a Snijder 

growth cabinet set to 28°C day and 25°C night temperature with 16 h photoperiod at 80% 

humidity (Hayashi et al., 2012). The experiment was conducted in two runs, each with 4 racks 

(blocks) that contained a pouch with every treatment x harvest combination. Plants (2-4) from 

two pouches were pooled to give one biological replicate, giving 4 replicates in total across 

blocks and over the two runs.  

Inoculation occurred 2-6 days after the seedlings were transferred to the pouches and 

location of root tip marked for harvest (Figure 3.1B-G). B. japonicum, isolated from 

commercial inoculant product Biagro, was grown on YEM agar at 29°C and diluted to OD600 

= ~0.1, equivalent to 108 cells per mL. Inoculant (500 µl) was added to the portion of root 

below where the first mature root hairs were expected. Roots were inoculated at different 

times prior to harvest giving a time course with roots exposed to the inoculant for varying 

durations. Inoculation occurred at 72, 48, 24, 6 and 3 hours prior to harvest. This allowed 

plants to be harvested at the same developmental stage. To control for rhizobial 

contamination in pouches before time of inoculation and to show gene expression without 

rhizobia perception, additional uninoculated pouches were included.  
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Figure 3.1 Greenhouse pot trial to screen hormone application effects (A) and plant 

growth method using growth pouches (B-G). Pouches, separated with blue roll, were 

autoclaved then wrapped in black card and foil (B). Seeds emerged through pouch after 

2 days (C). At time of inoculation the root tip was marked on the pouch, indicating root 

section for harvest (D). Inoculation procedure with pouches of particular time pre-harvest 

taken from rack and inoculum added (E). Roots at time of harvest (F), harvest method 

(G).   
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Table 3.2 Phytohormone screening experiments with application method, experiment 

number, hormone tested, date, temperature and nodule traits measured in each. 

Application method 
Experiment 
number  

Date Average day/ 
night 
temperature (°C) 

Hormone Nodule measurements 

Seed coat 1.C.1 08/11/17 – 
04/12/17 

23.6/ 19.7 Cytokinin Nodule number and weight 

 1.C.2 05/01/18 – 
08/02/18 

22.1/ 18.5 Cytokinin 

 
1.A.1 09/08/17 – 

01/09/17 
32.7/ 24.8 Auxin 

 1.A.2 09/11/17 – 
05/12/17 

23.6/ 19.7 Auxin 

 
1.G.1 04/08/17 – 

31/08/17 
32.8/ 25.2 Gibberellin 

 1.G.2 25/01/18 – 
19/02/18 

22.8/ 18.9 Gibberellin 
 

Root application 2.C 20/02/18 –  
22/03/18 

24.1/ 18.9 Cytokinin Nodule number, weight, area, 
distribution and size 

 
2.A 02/03/18 – 

03/04/18 
24.3/ 19.0 Auxin 

 
2.G 12/06/18 – 

16/07/18 
29.2/ 21.6 Gibberellin 

Seed prime, Foliar 
and Root 
application 

3C 03/07/18 – 
10/08/18 

29.2/ 21.7 Cytokinin BNF, nodule number, weight, area, 
distribution and size 

Seed prime and 
foliar  

4C 15/03/19 – 
14/05/19 

26.3/ 19.5 Cytokinin BNF, nodule number, weight, area, 
distribution and size 

Seed prime  5C 22/03/19 – 
15/04/19 

25.5/ 19.3 Cytokinin Nodule number 

Seed prime 6C 15/08/20 – 
27/08.20 

28/ 25 Cytokinin Gene expression 

 

Effects of cytokinin, auxin and gibberellin applied as seed coat and root application  

In seed coat experiments, 75 µL of hormone treatment (Table 3.3) was added to a petri dish 

containing 25 g of seed and shaken; treatment is equivalent to commercial seed treatments 

at 3 g kg-1. For root drench experiments, 20 mL of hormone treatment was applied directly to 

the growing substrate at growth stages VC and V1. Treatment concentrations varied with the 

hormone, as guided by literature (Table 3.1), with 4 concentrations (Table 3.3) and solvent 

and water control used for each except for kinetin which is water soluble thus did not have 

an additional solvent control.   
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Table 3.3 Cytokinin (kinetin), auxin (IAA) and gibberellin (GA3) concentrations used in 

seed coat and root application experiments. 

Hormone Solvent Treatment concentrations (mol L-1) 

Kinetin 

 

- 10-7 10-8  10-9  10-10  

IAA 

 

Ethanol 10-8  10-9  10-10  10-11  

GA3 KOH 10-7  10-8  10-9  10-10  

 

Effect of hormone application method on treatment success 

As the most promising hormone treatment (Table 3.6), synthetic cytokinin kinetin (Sigma 

Aldrich) was applied via three application methods: seed priming, root (applied to substrate), 

and foliar spray. Seeds that were not primed in kinetin (root, foliar and control) were 

hydroprimed in water and plants not sprayed with kinetin (root, seed primed, and control) 

were sprayed with water (Table 3.4). For the seed priming treatment, 25 g of seed were 

submerged in 25 mL of 10-7 (high) and 10-9 mol L-1 (low) kinetin solution for 4 h. Seeds were 

air dried in the greenhouse before inoculation and sowing later that day. Foliar and root 

application took place at early growth stages, VC and V1, respectively. Foliar spray was applied 

with a handheld pump pressure sprayer and root application by pouring 20 mL of kinetin 

solution onto substrate. Again, concentrations of 10-7 (high) and 10-9 mol L-1 (low) kinetin 

solution were used for both foliar and root applications.   

Table 3.4 Timing and method of kinetin application for each application method. 

 

Treatment 

 

Pre-planting VC V1 

Kinetin seed prime 

 

Kinetin 10-7 and 10-9 mol L-1 Water Water 

Kinetin foliar 

 

Water  Kinetin 10-7 and 10-9 mol L-1 Kinetin 10-7 and 10-9 mol L-1 

Kinetin root 

 

Water Kinetin 10-7 and 10-9 mol L-1 Kinetin 10-7 and 10-9 mol L-1 

Water control Water Water  Water 
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Plant growth measurements 

At flowering stage (R1, approximately 30 DAS) plants were harvested, leaf chlorophyll (MC-

100 chlorophyll concentration meter, Apogee Instruments, USA) leaf area, shoot and root dry 

weight and nodule quantification were all determined as described in Chapter 2. BNF was also 

determined as described in Chapter 2. In gene expression experiment 6C, 1.5-2 cm root 

sections containing the zone of emerging root hairs, previously labelled at inoculation, were 

harvested. One biological replicate comprised root sections from 4-6 plants (1 pouch from 2 

blocks) pooled, wrapped in foil, snap frozen in liquid N, and stored at -80 °C.   

RNA extraction and cDNA synthesis 

Root sections (90 to 100 mg) were ground in liquid nitrogen in a pestle and mortar to give a 

fine powder and total RNA was extracted and purified using the RNeasy Plant Mini kit (Qiagen 

Ltd, UK) with optional DNase on column digestion (RNase free DNase set, Qiagen Ltd, UK) to 

eliminate DNA contamination. RNA integrity was checked using gel electrophoresis and RNA 

concentration on the SPECTROstar Nano Microplate Reader (BMG Labtech) at wavelength 

260 nm.  

Total RNA (1 µg) was then used to synthesise complementary DNA using the ProtoScript First 

strand cDNA Synthesis Kit (New England BioLabs, USA) using oligo(dT) primers in a 20 µL 

reaction. An initial incubation step at 25°C for 5 minutes followed by 1 hour at 42°C, then 

denaturation at 65°C for 20 minutes. The cDNA was diluted in a total volume of 100 µL.  

Semi-quantitative reverse transcription polymerase chain reaction  

Semi-quantitative reverse transcription PCR (RT-PCR) used actin as a control primer and 

ENOD40a was the target gene (Table 3.5) with the Taq DNA polymerase and inert red dye 

(BioMix Red reaction mix). A thermal cycler (PTC-100, MJ Research, Inc., USA) was used to 

perform reactions with 26 cycles of 1 minute at 94°C to denature primers, 1 minute at 55°C 

allowing primer to anneal to template and 30 seconds at 72°C to allow template to be copied.  
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Table 3.5 Soybean primer sequences ENOD40a target and actin control used in semi-

quantitative RT-PCR reactions. 

Gene name  Forward primer (5'→3') Reverse 

GmENOD40a TCTCTCTTGAGTGGCAGAAGCA TGGAGTCCATTGCCTTTTCG 

GmActin TCGTATGAGCAAGGAAATTGG TAGAGCCACCAATCCAGACAC 

 

Band intensity of target and control genes per sample were compared to account for potential 

differences in cDNA concentration due to pipetting error or RNA quantification inaccuracies. 

Three technical replicates were carried out per biological replicate also to reduce error.  

Differences in levels of transcripts between target and control gene were detected by running 

PCR products using agarose gel electrophoresis (Appendix 3.9) to separated RT-PCR products 

using 10 µL of product on a 1.5% agarose gel, agarose dissolved in 1 x TAE (40 mM Tris-

acetate, 1 mM EDTA, pH 8.0), containing ethidium bromide (0.1 µg mL-1) at 82 watts for 45 

minutes. MassRuler DNA ladder, with a lower band of 80 bp, was used to estimate primer 

product sizes. A UV transilluminator with digital camera (Gel Doc 2000, Bio Rad, USA) was 

used to visualise RNA and DNA samples. Loading dye (6 x; MBI fermentas, USA) was added to 

RNA samples. PCR reactions with BioMix Red did not require additional loading dye. 

Differences in band intensity were quantified using ImageJ and relative expression calculated 

by dividing ENOD40a band intensity by that of actin to give relative expression.  

Data analysis 

One-way analysis of variance (ANOVA) was run with the data from hormone application 

experiments 1-3 (Table 3.2) with hormone treatment as the main effect. A two-way ANOVA 

was conducted for experiment 4 and 5 data with the model including hormone treatment and 

growth stage as main effects. Two-way analysis of variance (ANOVA) was run for experiment 

6C, with harvest time and cytokinin treatment as the main effects. Protected Fishers least 

significant difference was calculated to detect significant (p < 0.05) effects. Models were 

validated by checking the normality of the residuals and by plotting residuals against fitted 

values. All data analysis was performed in R software (RStudio Team, 2020).  
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3.3 | Results 

Seed coat application of cytokinin, auxin and gibberellin  

Seed coat application of cytokinin, auxin or gibberellin did not significantly change any of the 

nodules or plant growth variables at any of the concentrations tested (Table 3.6; Appendix 

3.1-3.3). Seed coat application therefore did not enhance any of the nodule traits assessed or 

BNF, as seen from lack of plant growth response (leaf area and shoot biomass) in these 

experiments. 

Table 3.6 Effect of hormone seed coat application in nodule number, nodule dry weight, 

specific nodule number, average nodule and shoot dry weight, leaf area and chlorophyll 

content. Results of one-way ANOVA (p value reported) with residual SE showing variance 

of models and degrees of freedom for nodule and growth traits at R1. 

   
Nodule 

number 

Specific 

nodule 

number 

Nodule 

weight  

Specific 

nodule 

weight  

Average 

nodule 

weight  

Shoot 

weight  

Leaf 

area  

Chlorophyll 

content  

Cytokinin Treatment 0.975 0.913 0.453 0.217 0.424 0.841 0.630 0.353 
 

Residual SE 31.4 156 13.7 58.2 0.70 0.140 21.19 40.92 
 

d.F 250 250 250 250 249 251 250 245 

Auxin Treatment 0.164 0.292 0.584 0.980 0.467 0.353 0.334 0.387 
 

Residual SE 12 39.8 10.56 22.31 1.04 116.9 14.15 44.77 
 

d.f 137 137 137 137 137 137 137 137 

Gibberellin Treatment 0.996 0.825 0.262 0.218 0.671 0.548 0.489 0.837 
 

Residual SE 25.8 108.9 12.98 39.96 0.372 109.2 19.66 35.33 
 

d.f 76 36 37 36 37 120 120 119 

 

Root application of cytokinin, auxin and gibberellin 

Root application of 10-10, 10-9 and 10-7 mol L-1 cytokinin, in Experiment 2.C (Table 3.2), 

increased specific nodule number by 52%, 31% and 45%, respectively (p < 0.05; Table 3.7; 

Figure 3.2A). Total nodule area was increased by 66% and 92% (p < 0.05; Appendix 3.4) 

following kinetin application of 10-10 and 10-7 mol L-1. Number of optimal 4 mm nodules (see 

Chapter 2) also increased more than four-fold after cytokinin application of 10-7 mol L-1 (p < 

0.05; Figure 3.2B). Auxin application to roots (10-9, 10-8, 10-7 mol L-1) reduced (approximately 

70%; p < 0.05) the number of 4 mm nodules. Auxin application of 10-7 to 10-9 mol L-1 to roots 
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substantially decreased the number of 4 mm nodules (p < 0.001; Table 3.7; Appendix 3.5). 

Gibberellin did not significantly affect any nodule traits measured (Table 3.7; Appendix 3.6). 

Therefore, of the hormones tested here, nodule traits were most affected by cytokinin, with 

10-7 mol L-1 cytokinin applied to roots having the greatest effect.  

Table 3.7 Hormone root application. Results of one-way ANOVA (p value reported and 

bold where significant) with residual SE and degrees of freedom for nodule and growth 

traits at R1. 

Source of 
variation 

 
Specific 
nodule 
number 

Specific 
nodule 
weight 

Average 
nodule 
weight 

Specific 
nodule 
area  

Average 
nodule 
area  

Nodule 
distribution  

4 mm 
nodule 
number 

Cytokinin Treatment 0.005 0.118 0.223 0.065 0.552 0.209 0.040 
 

Residual SE 92.8 42.7 0.134 704.8 1.82 13.02 13.2 
 

d.f 54 52 49 42 42 15 52 

Auxin Treatment 0.161 0.453 0.793 0.201 0.835 0.543 <0.001 
 

Residual SE 130.3 80.2 0.507 56 1.45 22.68 1.42 
 

d.f 62 62 62 56 56 28 57 

Gibberellin Treatment 0.209 0.722 0.578 0.255 0.136 0.825 0.703 
 

Residual SE 56.1 0.033 0.853 105.9 0.399 21.81 1.54 
 

d.f 61 57 57 61 61 29 60 
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Figure 3.2 Specific nodule number and number of 4 mm nodules following cytokinin root 

application (teal) of 10-7 to 10-10 mol L-1 (e-7 to e-10) compared to untreated control (red). 

Letters denote significant difference as determined by LSD test. Bars are means ± SE of 12 

replicates. ANOVA p-values from treatment are reported. 

Hormone application method 

Cytokinin seed priming treatment (10-9 mol L-1) approximately doubled BNF (Table 3.8; p = 

0.05) and increased total nodule area per root weight (32%; p < 0.05; Figure 3.3) compared 

to the control. Root cytokinin application (10-7 mol L-1) also increased total nodule area (59%; 

p < 0.05; Table 3.8). Cytokinin treatments had no significant effect on total nodule weight. 

The mean distance of nodules from the root crown (mm) was roughly halved by cytokinin 

seed treatments (p < 0.05; Figure 3.3; Table 3.8), meaning nodules were less spread across 

the root system. Cytokinin treatments did not alter shoot weight (p = 0.146; Appendix 3.7), 

root weight (p = 0.129; Table 3.8) or leaf area per plant (p = 0.126; Appendix 3.7). Therefore, 

the cytokinin seed treatment (10-9 mol L-1) was the most promising treatment, able to increase 

BNF and total nodule area. 
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Figure 3.3 Nodule and root scans of plants with close to average nodule area and 

distribution for respective treatment. Size guide calculated from plant label with line 

representing 20 mm. Nodule locations indicated with arrows. 
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Table 3.8 Effect of different cytokinin application methods (foliar, root and seed) at two different concentrations (high 10-7 and low 10-9 mol L-1) 

on plant nodule phenotype and root weight. Values are averages, ±SE with letters denoting significant difference at p < 0.05 as determined by 

least significant difference (LSD) test with p-values from a one-way ANOVA below with model residual standard error and degrees of freedom 

(df). 

Treatment 
BNF  
(%Ndfa) 

Total nodule area 
(mm2) Specific nodule 

area (mm2 g-1) 

Specific 
nodule 
weight (g g-1)  

Nodule 
distribution (mm 
from crown*) 

Specific nodule 
number 
# g-1 

Average 
nodule size 

(mm
2
) 

Average 
nodule weight 
(mg) 

Root weight 
(mg) 

Control Control 17.5 b 

±3.1 

93.7 b 
±12.1 

471 b 

±61.8 

10.54 

±1.77 

84.9 a 

±7.4 

127 c 
±36.1 

4.25 

±0.40 

1.41  
±0.18 

203 

±15 

Foliar High  21.9 b 

±3.2 

121.2 ab 
±12.6 

468 b 

±68.3 

10.17 

±1.77 

65.1 ab 

±8.6 

122 c 
±39.9 

4.47 

±0.42 

1.47  
±0.20 

0.254 

±16.7 
 

Low 24.8 ab 

±3.6 

124.8 ab 
±13.6 

599 ab 

±68.3 

6.12 

±1.87 

74.5 a  
±6.6 

243 ab 

±39.9 

2.96 

±0.44 

0.87  
±0.20 

250 

±16.7 

Root High 22.3 b 

±3.6 

122.9 ab 
±14.1 

540 b 

±72.5 

8.01 

±1.98 

77.2 ab 

±6.4 

172 bc 
±42.3 

3.70 

±0.47 

0.92 

±0.21  
237 

±17.7 
 

Low 22.0 b 

±3.9 

154.1 a 
±12.6 

748 a 

±64.8 

5.71 

±1.77 

83.9 a 

±6.1 

295 a 

±37.8 

3.15 

±0.42 

0.71 

±0.19 

217 

±15.8 

Seed High 20.5 b 

±3.6 

135 a 
±14.1 

575 ab 

±72.5 

8.16 

±1.98 

34.7 c 
±7.4 

174 bc 
±42.3 

3.69 

±0.47 

1.03 

±0.21 

237 

±17.7 
 

Low 34.0 a 

±3.6 

153.3 a 
±13.3 

625 ab 

±68.3 

7.16 

±1.87 

46.7 bc 
±6.6 

189 abc 
±39.9 

3.70 

±0.44 

0.98 

±0.20 

260 

±16.7 

Treatment 
 

0.054 0.014 0.054 0.371 <0.001 0.025 0.147 0.065 0.129 

Residual SE   10.21 39.85 205 5.61 14.83 119.7 1.31 0.60 50.1 

df   53 58 57 58 24 57 58 57 57 

*digitally calculated average distance of nodule from root crow
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Cytokinin seed and foliar treatment over time 

In Experiment 4C, cytokinin seed or foliar treatments did not significantly alter any of the plant 

or nodule traits measured (Table 3.9; Appendix 3.8). Cytokinin effects did not depend on 

growth stage (V2-R6) that plants were harvested (no significant growth stage x treatment 

interactions). Equally, the cytokinin seed treatment did not increase BNF across all stages (p 

= 0.111; Table 3.9). At V4, however, the cytokinin seed treatment more than doubled BNF (p 

< 0.05; Figure 3.4).  

Table 3.9 Effect of different cytokinin application treatments (foliar 10-7 and seed 10-9 mol 

L-1) on plant nodule phenotypes from V2 to R6. Values are averages, ±SE with letters 

denoting significant difference at p < 0.05 as determined by least significant difference 

(LSD) test with results of one-way ANOVA below with model residual standard error and 

degrees of freedom (df). 

Source of 
variation 

 
BNF 
% Ndfa 

Nodule 
number (#) 

Specific 
nodule 
weight 
(mg g-1) 

Average 
nodule 
weight 
(mg) 

Specific 
nodule 
area 

(mm
2
 g

-1
) 

Average 
area 

(mm
2
) 

Nodule 
distribution 
(mm)  

Cytokinin Control 15.5 

±3.03 

134 

±6.67 

1.15 

±0.039 

9.2 

±0.603 

608 

±22.3 

4.61 

±0.171 

68.7 

±3.68 
 

Foliar 20.2 

±2.99 

130 

±6.37 

1.19 

±0.039 

10.04 

±0.603 

621 

±22.3 

4.81 

±0.171 

67.3 

±3.68 
 

Seed 24.5 

±3.11 

125 

±6.37 

1.15 

±0.040 

9.43 

±0.613 

581 

±22.3 

4.66 

±0.171 

62.5 

±3.68 

Stage V2 - 59.2 c 
±7.14 

- - 236 b 

±25 

1.06 c 
±0.191 

- 

 
V4 13.5 b 

±3.16 

132.6 b 

±7.98 

1.19 a 

±0.039 

7.19 c 
±0.647 

728 a 

±28 

4.48 b 

±0.214 

- 

 
R4 17.9 b 

±2.89 

159.8 a 

±7.14 

1.29 a 

±0.039 

11.79 a 

±0.579 

739 a 

±25 

6.51 a 

±0.191 

- 

 
R6 28.7 a 

±3.09 

167.4 a 

±7.14 

1.01 b 

±0.040 

9.69 b 

±0.590 

710 a 

±25 

6.73 a 

±0.191 

- 

Cytokinin (C) 0.111 0.708 0.700 0.551 0.520 0.644 0.467 

Stage (S) 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 - 

C x S 0.999 0.589 0.564 0.738 0.462 0.855 - 

SE 15.14 39.11 0.216 3.171 137.1 1.047 11.65 

d.f 66 102 80 74 102 102 27 
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Figure 3.4 Effect of different cytokinin application treatment (control, foliar 10-7or seed 

10-9 mol L-1) on BNF from V2 to R6. Values are averages, ±SE with letters denoting 

significant difference at p < 0.05 within stages as determined by least significant 

difference (LSD) test. ANOVA p-values from treatment, stage and their interaction are 

reported. 

 

Biological nitrogen fixation was approximately 82% higher at R6 than at V4 or R4 (p < 0.05). 

Average nodule area showed corresponding increases from V2 to R6 (p < 0.05), however 

average nodule weight peaked at R4, 63% and 22% more than V4 and R6, respectively (Table 

3.9). Thus, nodule mass and size change in different ways across growth stages, with average 

nodule size (area) corresponding to BNF. Plant growth, photosynthesis and yield were not 

altered by cytokinin application but did vary with growth stage (Appendix 3.8). Results 

highlight how different nodule traits vary over time as shown in Chapter 2. Cytokinin appears 

to increase early BNF but this is insufficient to affect plant growth or yield. 

 

 



63 
 

 

Figure 3.5 Effect of cytokinin seed priming (10-9 mol L-1) on nodule number from VE to V2. 

Values are averages, ±SE with letters denoting significant difference at p < 0.05 within 

stages as determined by least significant difference (LSD) test. ANOVA p-values from 

treatment, stage and their interaction are reported. 

 

In Experiment 5C, the cytokinin seed treatment did not increase the number of nodules at 

early (VE to V2) stages (p = 0.065; Figure 3.5). However, cytokinin seed priming, in experiment 

6C, upregulated relative gene expression of ENOD40a by 32% and 52% compared to not 

primed and hydroprimed controls 72 hours post inoculation (p < 0.05; Figure 3.5). No changes 

in Enod40a gene expression were seen compared to uninoculated control before 72 hours. 

Taken together, these experiments show that the cytokinin seed treatment tend to increase 

BNF and early nodule signalling and formation.   
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Figure 3.6 Effect of cytokinin seed priming (10-9 mol L-1) on Enod40a gene expression 

relative to actin. Values are averages of 1-3 biological replicates each with 3 technical 

replicates, letters denote significant difference at p < 0.05 within stages as determined 

by least significant difference (LSD) test. ANOVA p-values from treatment, harvest and 

their interaction are reported. 

3.4 | Discussion  

In this study, three plant hormones (kinetin, IAA and GA3) were tested as nodule and BNF 

biostimulants. Previous tests of phytohormone effects on nodules (Table 3.1) have included 

only a limited number of hormones and concentrations. Results herein comprehensively 

compared multiple hormone concentrations allowing an appropriate selection to be made for 

soybean. Cytokinin (kinetin) was the most promising hormone treatment, increasing nodule 

traits, including nodule number, specific nodule area and the number of optimal 4 mm 

nodules (see Chapter 2) (Figure 3.2) as well as BNF (Table 3.8), even though increases in 

nodule traits were not always consistently seen (Table 3.10). Thus, cytokinin application 

seems to enhance nodule development leading to increased BNF. 
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Table 3.10 Summary of hormone application effects on nodule traits and BNF. White cells 

indicate trait was not measured with different colours denoting either increase (green), 

negative (red) or no change (grey) following treatment. The shade of colour used 

indicates the strength of response. 

Application method Experiment 
number 

Hormone Nodule 

number 

Total area/ 

weight 

4 mm BNF Nodulin 

gene 

expression 

Seed coat 1.C Cytokinin 
    

 
 

1.A Auxin 
    

 
 

1.G Gibberellin 
    

 

Root application 2.C Cytokinin 
    

 
 

2.A Auxin 
    

 
 

2.G Gibberellin 
    

 

Seed prime, Foliar, Root 
application 

3C Cytokinin 
    

 

Seed prime and foliar  4C Cytokinin 
    

 

Seed prime 5C Cytokinin 
    

 

Seed prime 6C Cytokinin      

 

Although auxin has been reported to have central roles in nodule formation (Mathesius et al., 

1998; de Billy et al., 2001; Pacios-Bras et al., 2003; Turner et al., 2013), in these experiments 

exogenous hormone application did not enhance soybean nodules (Table 3.6 and 3.7; 

Appendix 3.2 and 3.5). Auxin-overproducing rhizobia stimulated nodule formation and 

development in species forming indeterminate nodules such as Medicago and vetch (Pii et 

al., 2007; Camerini et al., 2008) but not in those forming determinate nodules such as 

common bean and soybean (Hunter & Hunter, 1987; Pii et al., 2007). Results of this study 

confirm these earlier observations, with auxin root application tending to reduce total nodule 

area and number of 4 mm nodules (Appendix 3.5).  However, in other experiments exogenous 

auxin (using IAA and 4-Cl-IAA; 10-8 M) application increased nodule size and BNF of mung 

bean, which also forms determinate nodules (Ali et al., 2008), suggesting that nodule type 

does not always determine the effect of hormone treatments. Therefore, the effects of 

hormone treatments must be evaluated for each legume species. It could be that endogenous 
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auxin concentration is sufficient to not limit nodulation in soybean but this may not be the 

case in other species. 

Gibberellin is also thought to be important for nodule formation, especially at early stages 

(Dobert et al., 1992; Kouchi et al., 2004; Lievens et al., 2005; Hayashi et al., 2012). GA3 

application (10-6 M) can restore nodule formation of GA biosynthesis mutants (Ferguson et 

al., 2005), but in the present experiments additional GA had no effect on nodule formation 

for the soybean cultivar Viola (Table 3.6 and 3.7 and Appendix 3.3 and 3.6). Therefore, results 

suggest that GA operates within a certain concentration range with additional application 

having no added benefit to nodulation. Thus, it cannot be assumed that additional application 

of hormones that positively regulate nodulation will enhance nodule traits and BNF.  

Cytokinin application did, however, enhance some nodule traits, likely due to its effects on 

earlier nodule formation. Treatment effects over time indicate potential benefits at different 

plant stages. Active nodule number is a balance between formation and senescence, driven 

by the demand for N and the cost of photosynthates, thus harvesting at a single growth stage 

may not be representative of such changes in nodules over time. Cytokinin treatment may 

shift nodulation timings with potentially positive and negative consequences at different 

stages; earlier nodule establishment may result in early senescence.  Although long-term 

changes in the timing of nodules were not detected (Experiment 4C; Table 3.9), early changes 

occurred. In Experiment 4C, even though the cytokinin treatment increased N2 fixation at 

earlier stages (V4; Figure 3.4), there was no cytokinin x stage interaction, suggesting 

treatment effects on BNF were not stage-dependent (Table 3.9). 

More concentrated nodule distribution following cytokinin application (Figure 3.3 and Table 

3.8) is suggestive of earlier formation. At a certain distance up from the root tip, susceptibility 

to nodule initiation is greatest due to root hair formation (Bhuvaneswari et al., 1983; Calvert 

et al., 1984) thus less distributed nodules (closer to the root crown) resulted from earlier 

formation. Additionally, cytokinin increased nodule number in early stages (Figure 3.5). 

Following NF perception and calcium spiking, cytokinin is a second messenger (Tirichine et al., 

2006; Murray, 2007; Oldroyd, 2007; Frugier et al., 2008) that induces inner cortical-cell 

divisions (Hirsch et al., 1997; Fang & Hirsch, 1998; Mathesius et al., 2000) and development 

of infection threads (Lorteau et al., 2001). Taken together, this shows the importance of 

cytokinin signalling in early nodulation. Cytokinin application (10-8 M BAP added to agar 
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growth media) enhanced nodulation in L. japonicum with upregulated expression of early 

nodulin genes (NIN and ENOD40) (Heckmann et al., 2011).  

Results of these experiments confirm the same phenotypic response in soybean (Figure 3.5) 

and again show cytokinin application can induce NF response genes, in this study ENOD40a 

(Figure 3.6). This perhaps provides evidence that cytokinin seed soak has a priming effect on 

these genes, perhaps accounting for enhanced nodule development. Upregulation of 

ENOD40a by cytokinin occurred 72 hours post inoculation (Figure 3.6), slower than when NF 

were directly applied to S. rostrata or Trifolium repens (Dehio & de Bruijn, 1992; Mathesius 

et al., 2000). This could be due to host-rhizobia signalling events required before NF 

production by inoculants used in this study. However, ENOD40a upregulation 12 hours after 

inoculation with B. japonicum in the same pouch system has been reported (Hayashi et al., 

2012). This may be explained by differences in the speed of nodule develoment seen across 

genotypes (Chapter 2) or differences in rhizobial strain used. Further work to establish if 

different responses are seen across genotypes or in a variety of inoculants would be 

beneficial. Additionally, as cytokinin application upregulated transcription factors (nsp1, nsp2 

and nin) upstream of ENOD genes in Lotus japonicus (Heckmann et al., 2011; Plet et al., 2011; 

Ariel et al., 2012; van Zeijl et al., 2015), expression of these genes should also be determined 

in soybean to further establish the effect to cytokinin on the symbiotic pathway. 

Plant responses to various hormones depend on treatment concentration (Lorteau et al., 

2001; Ali & Bano, 2008; Piotrowska-Niczyporuk & Bajguz, 2014). Additionally, variable 

application methods, legume species and cytokinin types across the literature make 

comparisons of treatment concentrations difficult. In this study, kinetin application to 

soybean was more effective at a low (10-9 mol L-1) concentration than high (10-7 mol L-1) for 

all application methods (in Experiment 3C; Table 3.8), with no concentration x application 

method interaction. This is in contrast to earlier results (Experiment 2C) where higher 

concentrations (10-7 mol L-1) applied to roots also improved nodule traits (Figure 3.2; 

Appendix 3.4). Seed priming gave the most promising results of the application methods 

tested. Root application of 10-6 mol L-1 (BAP) increased nodule number in pea but higher 

concentrations had a negative effect due to ethylene production (Lorteau et al., 2001). 

However, kinetin seed soak of 10-5 M with chickpea improved nodule traits (Ali & Bano, 2008; 

Fatima et al., 2008). Therefore, treatment concentration should be species-specific with 
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application method of less importance. The type of cytokinin is also likely to affect plant 

responses and the concentration at which it should be applied and warrants further testing. 

For this study, kinetin was chosen based on previous promising results in legumes forming 

determinate nodules (Ali & Bano, 2008; Fatima et al., 2008).  Further investigation of 

continued or later hormone application is recommended, similar to delayed or additional 

inoculation (from one week to flowering) studies which lead to increased nodule 

development and yield (Materon, 1994; Moretti et al., 2018). 

Cytokinin application can result in non-functional spontaneous nodulation in the absence of 

rhizobia (Heckmann et al., 2011), perhaps to the detriment of plant growth. However, 

increased nodule area (Appendix 3.7) did not restrict plant growth and instead increased BNF 

(Table 3.8), suggesting that changes in nodule traits are beneficial. Nevertheless, plant growth 

did not increase, suggesting that the increase in BNF was insufficient to alter plant biomass 

but may have increased plant N content, altering C:N ratio and nitrogen use efficiency. 

Responses to cytokinin application are not seen in nitrate-sufficient growth media (Bauer et 

al., 1996), so the cytokinin treatment effects seen in these experiments could be triggered by 

the limited N availability. Testing cytokinin treatments in in the field is therefore required 

(Chapter 4).  

Results of these experiments do not fully support previous findings (Chapter 2) that increased 

nodule size enhances BNF (Voisin et al., 2003; de Araujo et al., 2017) as here the highest BNF 

corresponds with the largest total nodule area (Table 3.8). This is likely due to differences in 

the timing of nodules and BNF seen across genotypes, with cultivar Viola showing correlations 

with 4 mm nodule number only at R6 (Chapter 2). Therefore, it is recommended that the 

effects of cytokinin treatments on BNF and nodule traits are explored in a wider range of 

genotypes.   

Cytokinin application can increase transpiration, biomass accumulation, chlorophyll content 

and photosynthesis in non-legumes (Tassi et al., 2008; Cassina et al., 2011; Dobránszki & 

Mendler-Drienyovszki, 2014), suggesting that growth stimulation can occur irrespective of 

effects on BNF. In contrast, plant biomass, chlorophyll content and leaf gas exchange were 

not altered in these experiments (Appendix 3.7 and 3.8), indicating that increases in BNF are 

not likely to be due to increased N demand from larger plants or increased photosynthate 

supply due to increased photosynthesis.  
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Cytokinin interacts with many other phytohormones, including the negative nodulation 

regulator ethylene (Lorteau et al., 2001) and positive regulator, auxin (Mathesius et al., 2000). 

During nodulation, NF perception reduces the auxin to cytokinin ratio in roots (Cooper & Long, 

1994; Bauer et al., 1996; Hirsch et al., 1997) leading to increased nodule formation (Caba et 

al., 2000). Both cytokinin and auxin act together to induce nodulin gene expression (Jiménez-

Zurdo et al., 2000) with auxin accumulation dependent on cytokinin (Ng et al., 2015). 

Cytokinin treatments therefore likely work in association with auxin, but this was not 

measured in these experiments.  

3.5 | Conclusion  

Cytokinin application was the most promising hormone tested here, with other hormones 

having relatively little effect. Application method and concentration influenced treatment 

success with seed priming treatment at a concentration of 10-9 mol L-1 optimal here. Cytokinin 

treatment increased total nodule area leading to increases in BNF, supporting previous 

findings herein (Chapter 2). Promotion of early nodule signalling events also occurred 

following treatment, with ENOD40 upregulation, suggesting that cytokinin enhances nodule 

establishment. However, plant growth was not increased, so, the agronomic value of these 

increases in BNF on N accumulation and yield were evaluated in Chapter 4. 
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Chapter 4: Genotype and cytokinin effects on soybean yield and 

biological nitrogen fixation across soil temperatures. 

4.1 | Introduction 

Soybean is one of the most important vegetable protein sources globally, contributing to the 

agricultural economies of many countries (Hungria & Mendes, 2015). Soybean has the highest 

nitrogen (N) requirement of all major crops (Sinclair & De Wit, 1975) with 80 kg canopy N 

required per metric tonne of seed and yield strongly correlated to N accumulation (Salvagiotti 

et al., 2008; Rotundo et al., 2014). As a legume, soybean uses two N sources, mineral soil N 

uptake and atmospheric BNF. Soybean can derive up to 70% of its N demand from BNF 

(Salvagiotti et al., 2008; Santachiara et al., 2017) but high soil N concentrations limit BNF 

(Santachiara et al., 2019).  

Temperature also affects the contribution of the two N sources to plant N status, with BNF 

generally considered more cold sensitive than soil N uptake (Matthews & Hayes, 1982; 

Thomas & Sprent, 1984; Legros & Smith, 1994;;). In soybean, root zone temperatures (RZT) 

less than 25oC delay the onset of BNF, with nodule initiation limited at 10oC RZT and activity 

at 15oC (Legros & Smith 1994; Zhang et al., 1995; Poustini et al., 2005; Mishra et al., 2009). 

However, low soil temperatures may also limit mineral N uptake by restricting root growth 

and/or nitrate uptake as seen in controlled environments (Rufty et al., 1981; Tolley & Raper 

1985) but not in field trials. 

Despite these limitations, which may affect early growth and subsequent yields, many regions 

recommend early sowing of soybean in cold soils (Purcell et al., 2014; Di Mauro et al., 2019; 

Rattalino Edreira et al., 2020) to take advantage of early rainfall, to avoid summer drought, 

reduce disease and insect damage and to extend the growing season. Local soybean 

production has the potential to improve protein self-sufficiency (De Visser et al., 2014), even 

though many European countries have suboptimal environments for soybean (Kurasch et al., 

2017).  

BNF depends on successful nodulation and rhizobial efficiency to fix atmospheric N2 to 

ammonia. Previous work to mitigate the effects of low RZT on BNF have focused on identifying 

cold tolerant rhizobia (Zhang et al., 2002; Zimmer et al., 2016; Kühling et al., 2018; Yuan et 
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al., 2020). However, the success of rhizobial inoculants can depend on their persistence in the 

soil and competition with native rhizobia, with local strains better adapted to adverse 

conditions (Thilakarathna & Raizada, 2017). Early nodule establishment in low RZT may 

therefore improve the effectiveness of cold adapted inoculants. The photosynthetic cost of 

BNF (16 moles ATP per mole N) (Kahn et al., 1998), requires that plants balance this with their 

N requirements, but N is more limiting to growth than carbon (C) uptake under low (around 

15oC) temperatures (Thomas & Sprent, 1984; Walsh & Layzell, 1986). Thus, promoting nodule 

development in cold environments is likely to be beneficial.  

In optimal soil temperatures, certain nodule traits are associated with increased BNF. Nodule 

size positively correlates with increased N fixation (Voisin et al., 2003; Tajima et al., 2007; de 

Araujo et al., 2017) and certain nodule sizes (4 mm diameter) are considered optimal (Chapter 

2; Purcell et al., 1997; King & Purcell, 2001), with greater relative export of N products and 

import of C. Increased nodule weight following exposure to low RZT temperatures (15oC), may 

compensate for lower nodule activity (Zhang & Smith, 1994), suggesting that increased 

nodule development is beneficial for the cold tolerance of BNF. The effects of early nodule 

establishment on soybean BNF have been studied previously (Chibeba et al. 2015; Cerezini et 

al. 2016) but not in early sown soybean experiencing low RZT. 

Different soybean genotypes vary in their ability to fix N in low temperature (Lynch & Smith, 

1993; Zhang & Smith, 1994). As new soybean cultivars show reduced BNF under normal 

conditions (van Kessel & Hartley, 2000; Nicolás et al., 2002), similar effects could occur under 

cold temperatures but with greater impacts on yield as N uptake is also limited. Maintaining 

N uptake during seed filling is important for high yield (Kumudini et al., 2002; Zimmer et al., 

2016) especially in early sown soybean that experience low RZT. Although genotypes differed 

in BNF when grown in cool conditions, there was no effect on nodules (Zimmer et al., 2016) 

and nodule traits were not associated with genotypic differences in cold tolerance.  

An alternative approach to enhance nodulation and to reduce the effects of cold is to 

manipulate endogenous hormone concentrations in planta, such as cytokinins (Lorteau et al., 

2001; Ali et al., 2008; Fatima et al., 2008; Heckmann et al., 2011). Low RZT limit early 

nodulation signalling including perception of NF (see Chapter 1.6). Suboptimal RZT have been 

shown to decrease endogenous cytokinin in Solanum lycopersicum (tomato) and Cucumis 

sativus (cucumber) (Ali et al., 1996; Tachibana et al., 1997). Cytokinin application may 
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enhance nodulation by maintaining plant rhizobial communication in low RZT. Cytokinin 

induces early nodulin genes in plants (see Chapter 3) acting in a similar way to NF signalling, 

inducing cortical cell division genes (Dehio & Bruijn 1992; Bauer et al., 1996; Mathesius et al., 

2000; Heckmann et al., 2011). Therefore, early cytokinin application during nodule formation 

may compensate for delayed bacterial signalling and stimulate higher rates of nodule 

development and BNF.   

Exogenous cytokinin applications induced positive effects in a number of legumes depending 

on the application method, timing and concentration (Cho et al., 2002; Koprna et al., 2016; 

Liu et al, 2004) with high concentrations limiting nodule number (Lorteau et al., 2001; Mens 

et al. 2018). Cytokinin applications during early reproductive development (stages R1-R3) 

increased pod set (Ibrahim et al., 2007; Nonokawa et al., 2007; Yashima et al., 2005). 

Cytokinin seed priming or application to recently emerged seedlings also increased yield of 

other legumes (peanut, chickpea, Lens culinaris and pea) but effects are unknown in soybean 

(Schroeder, 1984; Naeem et al., 2004; Fatima et al., 2008; Dhruve & Vakharia 2013;;). Seed 

treatment with non-thermal plasmas increased soybean nodule nitrogenase activity, in part 

by increasing endogenous cytokinin concentrations (Pérez-Pizá et al., 2020). While cytokinin 

application can enhance BNF in chickpea (Fatima et al., 2008), no studies have considered 

cytokinin application to improve BNF of early sown soybean. 

Since nitrogen supply is the most limiting factor to soybean yield (Rotundo et al., 2014) and 

suboptimal temperature (<25oC) limits its uptake (Tolley & Raper, 1985; Rufty et al., 1981; 

Zhang et al., 1995), this study tested whether N uptake varied between different genotypes 

and with cytokinin application. A field experiment with early and conventional sowing dates 

aimed to: (i) examine low temperature responses of different commercial soybean genotypes 

and (ii) test whether cytokinin application could enhance BNF in cold temperature. Since 

nodule formation and BNF are sensitive to cold temperature, it was hypothesised that early 

sowing would limit BNF and any genotypic differences in cold tolerance will reflect differences 

in N uptake. Moreover, it was hypothesised that cytokinin treatment would enhance nodule 

traits, helping to maintain BNF during exposure to low soil temperature.  
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4.2 | Materials and methods 

Site conditions, treatments and experimental design  

Field trials were conducted to determine whether genotypes differed in, and whether 

cytokinin treatments enhanced, BNF. How genotype and cytokinin alter response to early 

sowing with low RZT under field conditions was also evaluated. Trials were sown during the 

2018/2019 and 2019/2020 growing seasons, with three sowing dates of 25th September, 8th 

November (early November) and 25th November (late November) in the first trial and two 

sowings 19th December and 3rd January in the second. The 2019/2020 trial aimed to establish 

the effect of cytokinin treatment and did not consider temperature effects. Trials were carried 

out at Campo Experimental Villarino, located in Zavalla, Santa Fe, Argentina (33o1’ S, 60o53 

W; elevation 24.6 m). Soil and air temperature and potential evapotranspiration (Hargreaves 

and Samani, 1985) varied across sowing dates but precipitation did not (Figure 4.1; Table 4.1; 

Appendix 4.1-4.2). The USDA soil series was a silty clay loam Vertic Argiudoll, Roldan series. 

Soil (0 to 20 cm depth) had 2.86% and 3.05% organic matter, 13.9 and 18.9 mg kg-1 P and 5.8 

pH in 2018/19 and 2019/20, respectively. N-NO3
-  was 12.5 mg kg-1 in September, 22.9 mg kg-

1 in early November, and 7.1 mg kg-1 in late November in the first trial and 19.4 mg kg-1 in 

December (2019). This rainfed experiment was sown in a field having a double crop of 

Triticum aestivum (wheat) and soybean during the previous seasons. 
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Cytokinin treatments (kinetin; Sigma Aldrich) consisted of either seed priming (10-9 mol L-1), 

foliar spray (10-7 mol L-1) or water control. All seeds were submerged either in water (foliar 

and control) or cytokinin solution (seed) for four hours, air dried and stored at 4oC until sowing 

the following day. Cytokinin treatment did not significantly affect emergence, measured 22 

days after sowing. Foliar cytokinin treatment was applied at VC and V1 (rate of 50 L ha-1), with 

control and seed-treated plants sprayed with water. Two commercial soybean genotypes 

were used, DM40R16 and DM50I17 (Grupo Don Mario), with maturity groups IV and V, 

respectively. For the late November sowing date (2018/2019 trial), days from emergence to 

R7 (physiological maturity) for genotypes DM50I17 and DM40R16 differed by 12 days in the 

first trial. Figure 4.1 shows the phenology of genotypes from each sowing date for 2018/2019. 

After drying, seeds were coated with inoculant and osmoprotector at recommended rates 

with RizoLiq LLI ® (Rizobacter, Argentina) and seed insecticide and fungicide, Cruiser 

Advanced® (Syngenta, Argentina) at recommended rates. A randomised complete block 

Figure 4.1 Daily air and soil (10 cm depth) temperature (black and grey line, respectively), precipitation 

(blue bars; A) and potential evapotranspiration (purple line; B). Phenological growth stages for each 

genotype (DM40R16 and DM50I17) in each sowing date, with genotype name denoting sowing date, are 

shown below. 
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design was used with genotypes and cytokinin treatments randomised within blocks, resulting 

in three plot replicates for each cytokinin/genotype combination per sowing date. Plots were 

over-seeded and hand thinned to a target plant population of 20 plants per m2. Manual 

sowing was necessary due to enlarged seed following seed priming, where seeds were evenly 

distributed into furrows approximately 3 cm deep. Each plot was 6 m long with 4 rows 0.52 

m apart (plot size was 12.5 m2), with all measurements comprising the two central rows. 

Weeds and pests were chemically controlled with commercially available products as needed.  

 

Table 4.1 Field climate data for three sowing dates in the 2018/ 2019 field trial. Values 

are averages of each month, ±SE with letters denoting significant difference at p < 0.05 

as determined by least significant difference (LSD) test with results of one-way ANOVA 

below with model residual standard error. 

Sowing  Air  

temperature  

(
o

C)  

Soil temperature     

(10 cm depth 
o

C) 

Precipitation (mm) Potential 

evapotranspiration 

(mm day
-1

) 

September  17.0 b 

±0.6 

15.0 c 

±0.4 

0.32 

±1.89 

3.93 c 

±0.177 

Early November 16.8 b 

±0.6 

17.4 b 

±0.4 

3.25 

±1.86 

5.05 b 

±0.172 

Late November 20.8 a 

±0.6 

20.4 a 

±0.4 

5.60 

±1.89 

5.41 a 

±0.181 

Sow <0.001 <0.001 0.115 0.043 

Residual SE 3.4  2.3 10.4 2.27 

 

Biomass and nitrogen concentration  

Above-ground biomass was sampled at the R1, R3, R5, and R7 phenological stages (Figure 4.1) 

(Fehr & Caviness, 1977) from a 0.5 m2 area, leaving the first and last plant of the rows to 

prevent border effects. Due to poor germination in the second trial, plants were not harvested 

at R5 to ensure sufficient area for determining yield. From each harvest, leaf area was 

measured with a leaf area meter (Model Li-3100C Li-Cor), and plants were separated into 

leaves and stems and dried at 60oC in an air forced oven. After drying, all plant parts were 

weighed to determine dry matter. Seed yield was determined at physiological maturity from 

the remainder of the plot (2.1 m2) using an experimental static harvester. After weighing, all 
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plant biomass samples were milled to 1 mm. Nitrogen concentration in leaves and stems was 

determined using Kjeldahl procedure (McKenzie & Wallace 1954). Nitrogen use efficiency was 

calculated by dividing total above ground biomass by total N uptake (Xu et al., 2012). Nitrogen 

harvest index was calculated by dividing total seed N content by total canopy N uptake at R7.  

Biological nitrogen fixation  

Ground stem samples (0.4 g) were used to extract ureide and BNF was determined using the 

same method as described in Chapter 2. The amount of N fixed biologically (kg ha-1), for each 

harvest, was calculated by multiplying relative ureide N (%) by aboveground total N (kg ha-1) 

(Herridge & Peoples, 1990). By adding the amount of biologically fixed N at each harvest date 

plus the amount accumulated between each harvest date, total N coming from BNF at 

physiological maturity (kg ha-1) was determined. The ratio between biologically fixed N (kg ha-

1) and total N uptake at maturity provided the final percentage of N derived from fixation 

(Ndfa%) for the growth period. The difference between aboveground total N (kg ha-1) and 

biologically fixed N (kg ha-1) was used to indicate soil mineral N absorption. 

Nodulation  

Nodules were quantified using the same method as described in Chapter 2. Roots were 

sampled when each plot reached at R1, R3 and R5. Three plant samples were taken and frozen 

at -20oC until analysis. Root samples were thawed and washed before nodules were detached 

and photographed on a white surface with a size reference label. ImageJ (1.51K; Schneider et 

al., 2012) was used to count and measure nodule area (mm2). Once imaged, nodules were 

dried at 60oC and weighed.  

Data analysis 

Data from the first trial was used to see the effect of genotype and cytokinin on BNF across 

soil temperatures, the ANOVA included sowing date, genotype and cytokinin treatment as 

main effects, with Protected Fisher’s least significant difference calculated for significant (p < 

0.05) effects. To determine the effect of genotype and cytokinin (main effects) on nodule 

traits, BNF and yield data were combined across both field seasons and sowing date was 

included as a random effect in a linear mixed effect model. Models were validated by checking 
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the normality of the residuals and by plotting residuals against fitted values. All data analysis 

was performed in R software (RStudio Team, 2020).  

4.3 | Results  

Cytokinin and Genotype 

Yield of DM50I17 was significantly (p < 0.001) higher than DM40R16 by 18% (Table 4.2). 

Cytokinin seed priming did not significantly alter yield, but foliar treatment reduced yield (p < 

0.05) by 10% from control (Table 4.2). Grain quality, indicated by seed N content, was not 

significantly affected by genotype or cytokinin. Specific leaf area of DM50I17 was 15% higher 

than DM40R16 (p = 0.007; Table 4.2). Taken together, genotype DM50I17 performed better 

in this environment but cytokinin treatments did not benefit plant growth or yield.  

Table 4.2 Seed yield at R8, specific leaf area at R1, grain nitrogen content, percent BNF, 

soil N uptake, N use efficiency (NUE; biomass/N uptake) and N harvest index (NHI; grain 

N/ N uptake) at R7. Yield data from five sowing dates (n= 30 for cytokinin and 45 for 

genotype), other variables from four sowing dates (n=24 for cytokinin and 36 for 

genotype), in two genotypes (DM40R16 and DM50I17) with cytokinin application (water 

control, seed soak or foliar spray). Values are averages with letters denoting significant 

difference at p < 0.05 as determined by least significant difference (LSD) test with mixed 

effect model results and degrees of freedom below.  

Source of variance  

Seed 

yield 

(kg ha
-1

) 

Grain N 

(g) 

Specific 

leaf area 

(cm
2
 g

-1
) 

BNF 

(% Ndfa) 

Soil N 

uptake 

(kg ha
-1

) 

Total 

canopy N 

(kg ha
-1

) 

NUE 

(kg kg
-1

) 

NHI 

(%) 

Genotype DM40R16 2903 b 4.13 255 b 40.5 a 170 b 292 b 29.0 b 78.0 

 
DM50I17 3420 a 4.30 292 a 33.5 b 205 a 321 a 30.2 a 79.3 

Cytokinin Control 3249 a 3.84 289 39.2 193 324 29.8 77.3 

 
Seed 3320 a 4.63 268 38.1 186 309 29.7 78.9 

 
Foliar 2916 b 4.17 264 33.7 183 288 29.3 79.8 

Genotype (G) <0.001 0.569 0.007 0.019 0.001 0.027 0.034 0.255 

Cytokinin (C) 0.023 0.111 0.239 0.278 0.730 0.090 0.683 0.177 

C x G 
 

0.851 0.557 0.407 0.202 0.017 0.155 0.549 0.851 

df  80 63 63 63 63 63 63 63 
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Overall, DM40R16 had higher BNF than DM50I17 (17%; p = 0.019) but lower soil N uptake 

(21%; p = 0.001) leading to lower total canopy N (10%; p = 0.027; Table 4.2). NUE was higher 

in DM50I17 (4%; p = 0.034) but NHI was not significantly different. Therefore, DM50I17 

accumulated more N due to soil N uptake and greater N use efficiency.  

Cytokinin treatment did not alter BNF in either genotype (Table 4.2). The effect of cytokinin 

treatment on soil N uptake was genotype-dependent (p = 0.017; Figure 4.2) with seed 

treatment reducing N uptake in DM40R16 by 23% (p < 0.05).  

 

Figure 4.2 Soil N uptake in two genotypes, DM40R16 (red) and DM50I17 (teal), following 

cytokinin application. Data are means ± SE of 12 plots across 4 sowing dates. ANOVA p-

values from the genotype x cytokinin interaction are reported. 

At R1 and R5, DM50I17 derived 52% and 11% more N from fixation than DM40R16 (p < 0.001 

and p = 0.026, respectively; Table 4.3). However, at R7, DM40R16 had higher BNF (26%; p = 

0.008; Table 4.3). Thus, genotypes showed different BNF capacities at early and late stages.  

Cytokinin foliar treatment reduced BNF by 26% (p < 0.05) across both genotypes, at R1. . At 

R5, there was a genotype x cytokinin interaction, with cytokinin seed treatment reducing BNF 

in DM40R16 but not DM50I17 (26%; p < 0.05). Thus, cytokinin treatments appear detrimental 

to BNF.  
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Table 4.3 Biological N fixation (BNF) at R1, R3, R5 and R7. Data from four sowing dates 

(September, early November and late November in 2018/19 and December 2019/20 

minus R3), in two genotypes (DM40R16 and DM50I17) with two cytokinin applications 

(water control, seed soak or foliar spray). Values are averages (n=24 for cytokinin and 36 

for genotype), with letters denoting significant difference at p < 0.05 as determined by 

least significant difference (LSD) test with ANOVA and degrees of freedom below.  

Source of variance Sowing BNF (%) 

  
R1 R3 R5 R7 

Genotype DM40R16 16.2 b 48.3 43.7 b 43.2 a 
 

DM50I17 24.6 a 50.3 48.5 a 31.9 b 

Cytokinin Control 21.7 a 47.2  46.3 40.5 
 

Seed 23.7 a 53.3  44.4 38.4 
 

Foliar 16.1 b 47.1  47.6 33.8 

Genotype (G) 
 

<0.001 0.430 0.026 0.008 

Cytokinin (C) 
 

0.006 0.058 0.488 0.405 

C x G 
 

0.239 0.900 0.011 0.200 

df  63 46 63 63 

  

Genotype DM50I17 had more nodules at R1 and R5 than DM40R16 (18% and 36%; p = 0.041 

and p = 0.002, respectively; Table 4.4). Similarly, at R5, both total nodule area and number of 

4 mm nodules were greater in DM50I17 (29% and 40%; p = 0.009 and p = 0.011, respectively). 

Cytokinin seed treatment decreased average nodule size at R1 (7%; p = 0.05; Table 4.4). 

Cytokinin treatments therefore seemed to reduce nodule traits in field trials. 
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Table 4.4 Nodule number, average nodule size, total nodule area and number of 4 mm nodules at three growth stages (R1, R3 and R5). Data 

from five sowing dates across two years, in two genotypes (DM40R16 and DM50I17) with cytokinin application (water control, seed soak or foliar 

spray). Values are averages (n= 30 for cytokinin and 45 for genotype), with letters denoting significant difference at p < 0.05 as determined by 

least significant difference (LSD) test with ANOVA results below. Residual degrees of freedom are 80. 

 

 

Source of 

variance  

Sowing 

date 

Nodule number (#) Average nodule size (mm
2
) Total nodule area (mm

2
) 4 mm nodules (#) 

  
R1 R3 R5 R1 R3 R5 R1 R3 R5 R1 R3 R5   

Genotype DM40R16 27.6 b 48.5 38.6 b 7.47 7.30 8.11 229 353 309 b 5.90 12.5 6.40 b   

 
DM50I17 32.8 a 56.4 52.5 a 6.87 6.76 9.93 235 397 399 a 5.94 14.1 8.95 a   

Cytokinin Control 31.8 59.9 43.2 7.12 ab 6.90 8.01 251 423 339 6.36 15.1 8.18   

 
Seed 29.8 48.2 48.1 6.59 b 6.87 7.84 206 332 356 5.01 11.9 7.44   

 
Foliar 29.0 49.3 45.4 7.80 a 7.31 8.20 239 369 366 6.39 13.0 7.39   

Genotype (G) 
 

0.041 0.103 0.002 0.055 0.058 0.646 0.815 0.152 0.009 0.968 0.378 0.011   

Cytokinin (C) 
 

0.639 0.094 0.649 0.008 0.367 0.752 0.390 0.057 0.798 0.570 0.336 0.767   

C x G 
 

0.252 0.983 0.860 0.479 0.845 0.833 0.632 0.810 0.895 0.236 0.474 0.519   
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Sowing date 

Sowing date did not significantly affect seed yield (p = 0.252). There was no significant 

genotype x sowing date interaction (p = 0.513), suggesting the genotypes were similarly cold 

tolerant (Figure 4.3). However, a treatment x sowing date interaction (p = 0.03) occurred, with 

cytokinin foliar treatment significantly (p < 0.05) decreasing yield only of early November 

sown crops. Thus, cytokinin treatments do not seem to benefit yield and may be detrimental 

in conventional sowing. 

Grain quality, indicated by seed N content, was not significantly affected by sowing date. 

However, cytokinin seed treatment more than doubled grain N of DM40R16 in early 

November sowing compared to control (p < 0.05). 

September sown crops had significantly (p < 0.05) lower specific leaf area, 30% and 45% less 

than the early November and late November crops, respectively (Table 4.5). Both genotypes 

significantly increased their specific leaf area from September to late November, DM40R16 

by 69% and DM50I17 by 28% (Figure 4.3), without a significant genotype x sowing date 

interaction (p = 0.128) indicating no difference in cold tolerance. 

Late November sowing accumulated more canopy N (12% and 21%) than the September and 

early November sowing (Table 4.5). However, September sown plants derived significantly 

more (p = 0.001; Table 4.5) of their N from BNF (Ndfa%) than later sown plants: 20% and 11% 

greater than in early November and late November sowing. Late November sown DM50I17 

had lower (39%) BNF than September, while this effect was not seen in DM40R16 (Figure 4.4), 

as indicated by a genotype x sowing date interaction (p < 0.001). Percent BNF was also higher 

in DM50I17 than in DM40R16 in early November sowing date (p < 0.05; Figure 4.4). Therefore, 

early sowing increases plant reliance on BNF compared to those sown at more conventional 

times, with BNF of DM50I17 (but not DM40R16) significantly affected by sowing date.  

Soil N uptake was 23% higher for the late November than the September sowing (p < 0.05; 

Table 4.5). Again, there was a genotype x sowing date interaction (p < 0.001), with increased 

soil N uptake (~32%) in the late November sowing of DM50I17 compared with other sowing 

dates of both genotypes (Figure 4.4). Therefore, soil N uptake is limited by early sowing date 

and only DM50I17 increased soil N uptake in response to later sowing. 
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Table 4.5 Seed yield at R8, specific leaf area at R1, grain nitrogen content, percent BNF, 

soil N uptake, N use efficiency (NUE; biomass/N uptake) and N harvest index (NHI; grain 

N/ N uptake) at R7. Data from three sowing dates (September, early November and late 

November), in two genotypes (DM40R16 and DM50I17) with cytokinin application (water 

control, seed soak or foliar spray). Values are averages (n=18 for sowing date and 

cytokinin and 27 for genotype)), with letters denoting significant difference at p < 0.05 as 

determined by least significant difference (LSD) test with ANOVA, residual SE and LSD 

results below. Residual degrees of freedom are 36. 

 

Source of variance  

Seed 

yield 

(kg ha
-1

) 

Grain N 

(g) 

Specific 

leaf area 

(cm
2
 g

-1
) 

BNF 

(% Ndfa) 

Soil 

uptake 

(kg ha
-1

) 

Total 

canopy N 

(kg ha
-1

) 

NUE 

(kg kg
-1

) 

NHI 

(%) 

Sowing date Sept 3922 5.18 226 b 44.6 a 191 b 348 b 31.1 a 79.6 b 

 
Early Nov 4210 4.27 294 a 35.8 c 197 b 310 b 32.3 a 86.8 a 

 
Late Nov 4254 4.70 327 a 39.5 b 235 a 397 a 24.2 b 74.1 c 

Genotype DM40R16 3895 b 4.78 264 b 40.4 195 b 337 28.1 81.3  
 

DM50I17 4362 a 4.66 301 a 39.4 219 a 366 30.3 79.0  

Cytokinin Control 4329 a 4.31 304 38.8 214 370 30.8 79.7 
 

Seed 4408 a 5.24 277 42.0 204 355 28.6 80.3 

 
Foliar 3649 b 4.61 266 39.0 199 329 28.1 80.5 

Sow (S) 0.252 0.135 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 

Genotype (G) 0.011 0.737 0.025 0.401 0.027 0.095 0.127 0.086 

Cytokinin (C) 0.002 0.114 0.154 0.102 0.216 0.141 0.266 0.979 

G x S 
 

0.513 0.636 0.128 <0.001 <0.001 0.638 0.067 0.465 

C x S 
 

0.030 0.099 0.069 <0.001 0.042 0.731 0.729 0.010 

C x G 
 

0.854 0.571 0.408 0.002 0.009 0.255 0.491 0.561 

C x G x S 
 

0.984 0.057 0.466 <0.001 0.923 0.109 0.162 0.067 

Residual SE 638.9 1.3 59.2 4.9 38.8 61.9 5.2 3.4 

LSD 5%   431.9 0.89 40.0 3.4 26.2 41.8 3.5 2.3 
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Figure 4.3 Seed yield (A) and specific leaf area at R1 (B) in two genotypes, DM40R16 (red) 

and DM50I17 (teal), across three sowing dates. Data are means ± SE of 9 plots, across 3 

cytokinin treatments, with lack of letters denoting no significant difference at p < 0.05 as 

determined by least significant difference (LSD). ANOVA p-values from the genotype x 

cytokinin interaction are reported  

 

Figure 4.4 Percent BNF (A) and soil N uptake (B) in two genotypes, DM40R16 (red) and 

DM50I17 (teal), across three sowing dates. Data are means ± SE of 9 plots, with different 

letters above bars indicating significant differences according to LSD test. ANOVA p-

values from the genotype x cytokinin interaction are reported  

The effect of sowing date on BNF changed across the growth period (Table 4.6). At early 

reproductive stages (R1 and R3), BNF was higher in late November than September (74% and 



84 
 

40%, respectively; p < 0.05) sowing. However, at R7, BNF in September was 26% greater than 

late November (p < 0.05). Thus early sowing delayed BNF but led to increased BNF at maturity. 

Table 4.6 Biological N fixation (BNF) at R1, R3, R5 and R7. Data from three sowing dates 

(September, Early November and late November 2018/19), in two genotypes (DM40R16 

and DM50I17) with two cytokinin applications (water control, seed soak or foliar spray). 

Values are averages (n=18 plots for sowing date and cytokinin and 27 for genotype), with 

letters denoting significant difference at p < 0.05 as determined by least significant 

difference (LSD) test with ANOVA, residual SE and LSD results below. Residual degrees of 

freedom are 36. 

 

Source of variance Sowing BNF (%) 

  
R1 R3 R5 R7 

Sowing date Sept 8.21 c 43.4 b 38.2 b 47.4 a 
 

Early Nov 23.8 b 31.7 c 53.9 a 36.2 b 
 

Late Nov 31.7 a 72.5 a 54.9 a 35.1 b 

Genotype DM40R16 17.3 b 48.3 48.5 40.7 
 

DM50I17 25.2 a 50.2 49.5 38.5 

Cytokinin Control 23.5 a 47.2 b 49.8 38.0 
 

Seed 24.0 a 53.3 a 47.5 41.6 
 

Foliar 16.3 b 47.1 b 49.7 39.2 

Sow (S) 
 

<0.001 <0.001 <0.001 <0.001 

Genotype (G) 
 

<0.001 0.262 0.615 0.215 

Cytokinin (C) 
 

<0.001 0.004 0.523 0.233 

G x S 
 

<0.001 0.009 0.006 <0.001 

C x S 
 

<0.001 0.072 0.185 <0.001 

C x G 
 

0.022 0.806 <0.001 0.002 

C x G x S 
 

0.034 <0.001 0.014 <0.001 

Residual SE   5.0 6.1 6.7 6.4 

LSD 5%   3.4 4.1 4.5 4.3 

 

Sowing date also significantly (p < 0.001) affected cytokinin response, with cytokinin seed 

treatment increasing BNF in September and early November sowing but not in late November 

(p < 0.05; Figure 4.5). Similarly, foliar cytokinin treatment increasing BNF in early November 
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but decreasing BNF in late November sowing (p < 0.05; Figure 4.5A). Thus the effect of 

cytokinin treatments was sowing-date dependent. 

Foliar cytokinin treatment decreased soil N uptake by 47% (p < 0.05) compared with the 

control in the early November but not in other sowing dates, resulting in a significant cytokinin 

x sowing date interaction (Figure 4.5B; p < 0.05). Thus, cytokinin treatment reduces soil N 

uptake but this is sowing date dependent. 

 

 

Figure 4.5 Effect of sowing date on the response of BNF (A) and soil N uptake (B) to 

cytokinin treatment in three sowing dates. Data are means ± SE of 6 plots, respectively. 

Different letters above bars indicate significant differences (p < 0.05) according to LSD 

test. ANOVA p-values from the cytokinin x sowing date interaction are reported. 

Nitrogen use efficiency (NUE) was higher in September and early November than late 

November (approximately 24%; p < 0.05; Table 4.5). For the September sowing date, NUE was 

25% greater in DM50I17 than DM40R16, but this effect was not significant (genotype x sowing 

date interaction p = 0.067; Figure 4.6). Nitrogen harvest index (NHI) was also higher in 

September and early November than late November (7% and 15%; p < 0.05; Table 4.5). 

Therefore, assimilation of N into canopy and grain tended to be more efficient in early sowing 

dates. 
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Figure 4.6 Nitrogen use efficiency (NUE; biomass/ N uptake) in two genotypes, DM40R16 

(red) and DM50I17 (teal), across three sowing dates. Data are means ± SE of 9 plots with 

lack of letters denoting no significant difference at p < 0.05 as determined by least 

significant difference (LSD). ANOVA p-values from the genotype x sowing date interaction 

are reported. 

At R1, the late November sowing had 63 and 46% more nodules than September and early 

November sowing, respectively (p < 0.05; Table 4.7). At R5 the opposite was evident, with 

nodule number increased in the September than late November sowing (by 38%; p < 0.05). 

Like BNF, early sowing date only affected nodules at R1 and R5 and not R3, decreasing nodule 

number at R1 but increasing it at R5. 

Average nodule size followed a similar pattern with increased (37%; p < 0.05; Table 4.7) 

nodule size at R1 in late November than September sowing. At R3 and R5, nodules were larger 

in September than late November sowing (19 and 33%, respectively; p < 0.05). Thus, early 

sowing delayed both nodule development and senescence.  

Similar trends occurred in other nodule traits (Table 4.7). At R1 and R3, the number of 4 mm 

nodules was greater in late November than September sowing, but at R5 the September 

sowing date had more than double the number of 4 mm nodules over the late November 

treatment. Equally, at R1, total nodule area in late November sowing was close to four times 

that of September while at R5 total nodule area in late November was more than 50% that 

of September. This gives further evidence that early sowing delayed nodulation.  
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Table 4.7 Nodule number and average nodule size at three growth stages (R1, R3 and R5). 

Data from three sowing dates (September, Early November and late November 2018/19), 

in two genotypes (DM40R16 and DM50I17) with cytokinin application (water control, 

seed soak or foliar spray). Values are averages (n=18 plots for sowing date and cytokinin 

and 27 for genotype), with letters denoting significant difference at p < 0.05 as 

determined by least significant difference (LSD) test with ANOVA, residual SE and LSD 

results below. Residual degrees of freedom are 36. 

Source of 

variance  

Sowing 

date 

Nodule number (#) Average nodule size (mm
2
) Total nodule area (mm

2
) 4 mm nodules (#) 

  
R1 R3 R5 R1 R3 R5 R1 R3 R5 R1 R3 R5   

Sowing date Sept 19.4 c 68.5 60.8 a 7.67 b 9.5 a 11.3 a 141 b 598 627.9 a 4.0 b 12.3 b 12.1 a   

 
Early Nov 28.2 b 60.6 40.4 b 9.53 a 8.65 ab 11.6 a 246 b 484 424 b 7.9 b 11.6 b 12.1 a   

 
Late Nov 51.9 a 61.7 37.5 b 10.47 a 7.7 b 7.54 b 544 a 461 270 c 15.8 a 33.2 a 5.5 b   

Genotype DM40R16 30.6  60.3 39.9  9.75 a 8.93 10.6 310 488 402 9.1 16.8 8.4   

 
DM50I17 35.8  66.9 52.5  8.70 b 8.32 9.74 310 541 479 9.4 21.3 11.3   

Cytokinin Control 36.3 73.9 45.9 9.03 ab 8.46 10.1 343 586 431 10.1 21.7 11   

 
Seed 31.8 59.1 47.5 8.49 b 8.39 9.8 320 500 430 7.9 17.9 9.1   

 
Foliar 31.4 57.7 45.2 10.2 a 9.02 10.6 268 457 461 9.7 17.5 9.5   

Sow (S) 
 

<0.001 0.618 0.010 <0.001 0.005 <0.001 <0.001 0.618 <0.001 <0.001 <0.001 <0.001 
  

Genotype (G) 
 

0.123 0.364 0.057 0.036 0.144 0.591 0.994 0.364 0.166 0.889 0.112 0.060   

Cytokinin (C) 
 

0.421 0.132 0.959 0.024 0.400 0.192 0.349 0.132 0.872 0.646 0.394 0.546   

G x S 
 

0.605 0.449 0.256 0.269 0.373 0.741 0.373 0.449 0.349 0.809 0.532 0.537   

C x S 
 

0.013 0.641 0.574 0.863 0.071 0.527 0.058 0.641 0.614 0.683 0.781 0.542   

C x G 
 

0.450 0.886 0.602 0.349 0.969 0.900 0.478 0.886 0.606 0.353 0.318 0.562   

C x G x S 
 

0.582 0.038 0.448 0.659 0.415 0.410 0.602 0.038 0.701 0.278 0.139 0.097   

Residual SE   12.1 26.0 23.5 1.78 1.52 2.25 157 26 202 7.58 9.98 5.33   

LSD 5%   8.2 17.6 15.9 1.20 1.02 1.52 106 17.6 136 5.13 6.74 3.60   
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4.4 | Discussion  

Effectiveness of cytokinin treatment and genotype selection 

Higher yield was achieved in DM50I17 through greater canopy N accumulation due to higher 

soil N uptake. Although overall BNF was higher in DM40R16 than DM50I17, there was 

variation in the timing of BNF between genotypes (as seen in Chapter 2). Higher BNF capacity 

at R1 and R5 was seen in DM50I17 which also had correspondingly increased nodule number 

at R1 and R5, and 4 mm nodules at R5 (Table 4.3 and 4.3). Greater BNF capacity in these early 

reproductive stages may have aided canopy N accumulation with remobilisation of N during 

seed filling sustaining N supply and thus higher yields (Table 4.2). Although nodule number 

and total nodule area were increased in DM50I17, nodules tended to be on average smaller 

than those of DM40R16 (Table 4.4). This does not support previous findings that increased 

nodule size aids BNF but does support previous findings herein (Chapter 2) whereby optimal 

nodulation varies between genotypes at different stages.  

Cytokinin treatments did not benefit crop yield, which appeared to be a consequence of 

limited N supply as canopy N tended to be limited by foliar cytokinin application (Table 4.2). 

This was perhaps because cytokinin application can limit root elongation and lateral root 

formation by increasing ethylene levels (Bertell & Eliasson 1992), thereby limiting N uptake. 

Although root growth was not measured in field trials, cytokinin application did not decrease 

root growth in pot experiments (Chapter 3) and cytokinin treatment had to be continuous to 

inhibit root growth previously (Bertell & Eliasson 1992).). Although cytokinin treatments show 

promise in enhancing BNF in a controlled environment (Chapter 3), the complexity of their 

response, seen in this study and previously (Koprna et al., 2016), makes determining their 

agronomic benefit challenging. Future trials should include a greater variety of genotypes, 

particularly of varying maturity groups (Salmeron et al., 2014), different treatment 

concentration (10-6 mol L-1) or cytokinins (6-benzylaminopurine or N6-(Δ2-isopentenyl)- 

adenine) used previously (Mens et al., 2018). Cytokinin treatment longevity will likely vary 

depending on the type of cytokinin that is applied, with aromatic cytokinins, such as 

benzyladenine, more resistance to side chain cleavage by cytokinin oxidase than others, for 

example cis or trans zeatin.   
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Genotypic responses to early planting 

Cold environments restrict plant N accumulation, with BNF thought to be more sensitive than 

soil N uptake. Although cold soil temperature (15-17.4°C; Table 4.1) limits total nitrogen 

accumulation (Table 4.5), surprisingly soil nitrogen uptake was more affected by low RZT than 

BNF, in contrast to previous findings in controlled environments (Legros & Smith 1994; 

Matthews & Hayes 1982; Thomas & Sprent 1984). In this study, BNF was 11% higher in 

September than the late November sowing, but soil N uptake was 23% lower (Table 4.5 and 

Figure 4.4). As early sowing reduces soybean root growth (Turman et al., 1995) thus limiting 

N uptake at low RZT (Alsajri et al., 2019; Ouertani et al., 2011; Rufty et al., 1981; Tolley & 

Raper 1985), this may explain why soil N uptake is more limited in the field compared to pot-

grown plants in controlled environments. Differences in soil depth exploration affects the 

amount of N available to field-grown crops (Voisin, 2003), whereas root exploration in pots is 

unlikely to be limiting. Equally, reduced crop transpiration in cold conditions will limit water 

uptake, and thus nutrient uptake. Additionally, if soil nutrient concentration is low, high 

affinity active transporters will be required to pump ions across the cell membrane. This 

energy intensive process will also be limited by low root zone temperature. In cool growing 

conditions, increased BNF may compensate for limited soil N availability thus maintaining 

yield. BNF increases with evapotranspiration (Cleveland et al., 1999), so increases in potential 

evapotranspiration across sowing dates (Figure 4.1) do not account for higher BNF from early 

planting.  Differences in the timing and severity of cold stress might also explain the disparity 

between controlled and field environments, even though to my knowledge, the effects of 

early sowing on soybean N source have not been shown previously.  

Despite different cycle lengths (Figure 4.1), early maturing DM40R16 (MG IV) was no more 

sensitive to cold than DM50I17 (MG V), both with similar yield and specific leaf area in 

response to early and conventional sowing dates (Figure 4.3). Previously, early maturing 

soybean genotypes appeared more sensitive to low temperatures, due to shorter vegetative 

growth (George et al., 1988; Heatherly, 2005; Salmeron et al., 2014) but this was not seen in 

this study. However, soil N uptake in DM50I17 was more cold-sensitive than DM40R16, 

requiring increased BNF from early sowing to maintain yield (Figure 4.4). As total canopy N at 

maturity was equal in genotypes in each sowing date, it was hypothesised that NUE could 

explain maintained yield in DM50I17. Despite a 25% increase in NUE in September sown 
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DM50I17, this effect was not significant (Figure 4.6), therefore cannot be confirmed. 

Therefore, increased BNF, enabling consistent N supply and enhanced NUE, overcame cold 

sensitivity. Maximising BNF may require decreased fertiliser N applications, as these inhibit 

nodulation (Santachiara et al., 2019), but this will depend on soil N levels at sowing as early 

canopy growth is critical for crop establishment. Available mineral N accumulates during the 

growing season as soil temperature increases, due to organic matter mineralization (Haynes 

et al.,1993).  

Early sowing delayed BNF (Table 4.6), as previously reported (Zimmer et al., 2016), but also 

prolonged BNF in late reproductive stages resulting in higher rates of fixation. Increased BNF 

enhanced nitrogen harvest index (Santachiara et al., 2018) and early soybean sowing 

increased seed quality (Rahman et al., 2005) as in this study, and marginally increased grain 

N content in early sowing dates (Table 4.5). Biologically fixed N is more rapidly assimilated 

into pods and seed, whereas N from soil is first assimilated into vegetative tissue and then 

remobilised into reproductive parts (Ohyama, 1983). High N demand during grain filling 

promotes leaf senescence due to remobilisation of N from vegetative tissue, with high 

yielding varieties maintaining N supply during seed filling (Kumudini et al., 2002). Therefore, 

early sowing increased BNF at late reproductive stages, which likely helped maintain yield 

though low RZT had limited soil N supply. 

Genotype and environment both affect nodule lifespan (Vessey, 1992), but the effect of early 

soybean sowing on nodule senescence has not been considered previously (Puppo et al., 

2004). In this study, early sowing delayed nodule senescence (Table 4.7), perhaps due to more 

favourable RZT in later growth. Limited canopy N accumulation in early growth may limit later 

pod filling as less N is available for remobilisation, leading to increased N demand in 

reproductive stages. Carbon competition between pods and nodules was previously thought 

to occur, thus reproductive N supply from BNF would limit yield. However, male-sterile 

soybean show a similar decline in BNF in later growth, suggesting limited C competition 

between pods and nodules (Imsande & Ralston 1982; Riggle et al., 1984). Therefore delayed 

nodule senescence and prolonged BNF may benefit early soybean production. 

Although nodule size has been suggested to influence BNF more than other nodule traits (de 

Araujo et al., 2017; Tajima et al., 2007; Voisin et al., 2003), in the present experiment, greater 

fixation was seen in DM50I17 with smaller nodules than DM40R16. Data herein confirm a 
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genotypic effect on the timing of BNF (Hamawaki & Kantartzi 2018) and additionally show 

that this occurs in nodules; however nodule traits and the timing of BNF were not correlated 

(Table 4.6 and 4.7). Low RZT is known to delay BNF and nodule formation (Zhang et al., 1995), 

which was confirmed in this study in both genotypes (Tables 4.5 and 4.6), and so it does not 

explain differences in N supply across sowing dates. To better understand N dynamics, 

nodules should be monitored at different stages as significant genotypic differences were 

detected only at R1 and R5 not R3 (Table 4.7). Differential N accumulation patterns seen in 

commercial genotypes (Rotundo et al., 2014), may in part be due to improved nodule traits, 

missed previously. 

Cytokinin seed priming increased BNF, although this depended on genotype (in DM40R16), 

sowing date (Figure 4.5) and stage (Table 4.6). Cytokinin treatment was more effective in early 

sowing dates, with a cytokinin x sowing date interaction (Figure 4.5A). Thus, cytokinin effects 

in enhancing BNF are more beneficial in low temperature when plants depend more on N 

supply from BNF. 

4.5 | Conclusions 

Although the controlled environment trial suggested that cytokinin treatment can enhance 

BNF and early nodule establishment (Chapter 3), the field trials did not fully support its 

agronomic benefit, as cytokinin treatment did not increase either total N uptake or yield. 

Characterisation of soybean N uptake during cold stress showed that maintenance of N supply 

is important for maintaining yield in low temperature, with soil N uptake being more sensitive 

to cold than BNF, in contrast to much of the relevant literature. This may be due to limited 

root growth in early sowing. BNF was important in maintaining N supply in early sowing, 

leading to consistent yields across sowing dates. This is of great consequence to soybean N 

management as it emphasises the importance of strategies to enhance BNF in cool 

environments. Soil N supply was more sensitive in one genotype but was able to compensate 

with increased BNF to secure its N supply across soil temperatures, thus stabilising yields. This 

indicates the importance of appropriate selection for early sowing. Early sowing can delay 

nodule formation and BNF, but this may be beneficial by prolonging BNF and improving N 

harvest index at the end of the season.  
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Chapter 5: General discussion  

5.1 |  Context 

Soybean is a globally important vegetable protein source and may prove to be a central part 

of sustainable food supply. Soybean has a high seed protein content giving it many uses but 

also a high N demand, and much of this can be provided through BNF. Early efforts to increase 

BNF did not make significant advances (Henzell, 1988; Shiferaw et al., 2004) and now the need 

to reduce reliance on N fertiliser is greater than ever. Efforts to increase BNF have focused on 

rhizobia (strain selection) but there is a need to shift attention to the host (Sinclair & Nogueira, 

2018). Enhancing fixation through optimised rhizobia often fails (Dobbelaere et al., 2001) due 

to competition from native strains (Nazir et al., 2013), with inoculant rhizobia almost 

completely disappearing from soil after the first cropping cycle (Zilli et al., 2013). Equally, as 

rhizobial genomes are highly plastic, rapid adaptation of introduced strains can occur (Ferreira 

& Hungria, 2002; Mendes et al., 2004; Loureiro et al., 2007); selection favours survival in the 

soil and entry to hosts but not fixation. In addition, where soybean has previously been grown, 

bacterial inoculation does not tend to increase nodulation or crop yield (Schulz & Thelen, 

2008; de Bruin et al., 2010; Mason et al., 2016) suggesting that subsequent infections are due 

to established native rhizobia. In Brazil and Argentina, annual inoculation of soybean 

increased yield by only 6-8%, whilst there was no change in the USA (Sinclair & Nogueira, 

2018). Thus, in this study the focus was on plant regulation of nodules. 

Nodules are the site at which BNF takes place, but the relative importance of nodule 

morphology is not fully understood. The aim of this thesis was to explore the importance of 

nodule traits for BNF and how this could be enhanced through genotype selection or hormone 

application to improve BNF and yield. As nodule initiation is delayed by cold stress, limiting 

soybean production in Europe and early sowing in South America, the mitigating effects of 

genotype selection and hormone application on delayed nodule development were also 

considered. 

Different soybean genotypes have varying BNF capacities (approximately 20-90 %Ndfa at R7) 

(Hamawaki & Kantartzi, 2018), but this has not been linked to altered nodule traits, so this 

was the aim of Chapter 2. Hormones control the nodulation process, with cytokinin, auxin 

and gibberellin considered positive promoters and their ability to alter nodule traits and BNF 
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were explored in Chapter 3. In Chapter 4, field trials showed the effect of genotype selection 

and cytokinin application on nodules, BNF and yield and the extent that these factors could 

mitigate low RZT.  

5.2 |  Genotypic nodule variation and BNF 

Different genotypes varied in their BNF (approximately 62% difference; Table 2.3) as seen 

previously (Keyser & Li, 1992; Peoples et al., 1995; Mapope & Dakora, 2016). Genotypes also 

had different BNF capacities at different stages, with some being characterised as either early 

or later fixers, also seen previously (Hamawaki & Kantartzi, 2018). Very few studies have 

characterised changes in both BNF and nodules across growth stages (Pitumpe Arachchige et 

al., 2020) and in this study nodule traits did not fully correspond with BNF. In the genotypes 

tested, nodules varied only at later stages (Figure 2.4B and C) despite variation in BNF at each 

stage. This suggests that the relationship between nodule traits and BNF varies across 

genotypes with the relative importance of nodule characteristics depending on both 

genotype and stage. Whether this reflects plant investment in nodules or difference in nodule 

efficiency across genotypes is unclear. It is often assumed that an increased investment in 

nodules will increase BNF, although super-nodulating genotypes have lower biomass and 

yield (Carroll et al., 1985; Song et al., 1995). Therefore, if increased nodule number is not 

necessarily beneficial, but genotypes vary in both nodules and BNF, it follows that certain 

nodule traits aid fixation.  

One such nodule trait is nodule size, which increases BNF (Voisin et al., 2003; Tajima et al., 

2007; de Araujo et al., 2017). Considering all genotypes in Chapter 2, total and average nodule 

area were positively correlated only at reproductive stages (Figure 2.5). Nodules of a certain 

size have also been considered optimal (Purcell et al., 1997; King & Purcell, 2001) and here 

only the number of 4 mm nodules per plant  positively correlated with BNF but again only in 

reproductive stages (Figure 2.5). Additionally, positive correlations between nodule traits and 

BNF were seen only in certain genotypes at certain stages (Table 2.5 to 2.7). Nodule traits and 

BNF have been previously correlated during late stages of growth (8-14 weeks after sowing) 

(de Araujo et al., 2017; Pitumpe Arachchige et al., 2020) but here a wider range of stages and 

genotypes have been characterised. Taken together, this showed that BNF varied 

substantially across both genotype (62%) and growth stage (38%) and that the relationship 
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between nodules and BNF varied across genotypes. However, individual nodule size was 

important and in particular the 4 mm nodules, have a greater BNF capacity.  

The way in which nodules are quantified also appears important, with specific nodule traits 

better corresponding to BNF (Table 2.3). This is perhaps unsurprising as differences in plant 

size are accounted for in these specific traits, but it is not frequently reported in the relevant 

literature. Correlations with BNF were seen only in nodule area traits and size classification, 

which are made possible through a novel imaging technique (Figure 2.1). Despite some efforts 

(Remmler et al., 2014), quantifying nodules is not standardised across research in this field. 

Data herein suggests that image analysis is more accurate, able to detect subtle changes in 

nodule traits not possible by weighing or counting.  

This study hypothesised that changes in nodule morphology would lead to increased BNF 

because of improved physiology (see Chapter 2) leading in turn to the variation in BNF seen 

in soybean genotypes. Alternatively, upregulation of BNF in nodules (Pradhan et al., 2018), 

through sensing of N, carbon supply to nodules or altered oxygen permeability (Schwember 

et al., 2019) may also explain differences in BNF capacity. Cytokinin has been linked to N 

sensing (Walch-Liu et al., 2005) so it may mediate this. BNF capacity will also be influenced by 

the genotype and by the rhizobia occupying nodules due to differences in N fixation efficiency 

across strains. Selection of rhizobia by legume hosts is not well understood and how nodule 

strain occupancy alters nodule traits has not been explored. It could be that larger nodules 

are due to occupancy with effective rhizobia or perhaps due to multi-occupancy, possibly by 

enhancing carbon sink capacity of nodules (Kaschuk et al., 2009). This would not be true for 

controlled-environment experiments but may explain variation seen in the field. Genotypic 

differences in nodulation competitiveness of B. japonicum strains depended on the region of 

adaptation of the soybean genotype (Payakapong et al., 2004), suggesting that soybean 

genotypes co-evolve with rhizobia and differences in BNF across genotype could be site 

dependent. This illustrates the importance of region-specific genotype selection and breeding 

efforts. It also highlights the benefit of strategies to enhance symbiosis with native rhizobia, 

instead of introduced inoculant strains. 
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5.3 |  Effect of phytohormone application on nodulation and BNF 

As nodule traits appear to affect BNF and phytohormones mediate nodule formation, positive 

regulators were identified (Ferguson & Mathesius, 2014) and applied using different methods 

(seed coat and soaking, foliar spray and root application) and concentrations (Chapter 3). 

Previous studies have applied various concentration of these hormones to a range of other 

legumes with various positive responses, but not to soybean (Table 3.1). Although previously 

auxin and gibberellin increased nodulation in other species (Ferguson et al., 2005; Ali et al., 

2008; Fatima et al., 2008), this was not the case in this study. Nevertheless, cytokinin 

application enhanced nodule traits and BNF (Figure 3.2; Table 3.8). 

Application method and cytokinin concentration influenced the success of treatments (see 

Chapter 3). Seed priming at 10-9 mol L-1 gave the best results, doubling BNF and increasing 

total nodule area by 32% (Table 3.8). Seed priming, inducing a physiological state with 

treatment before germination, has mainly been used to enhance germination and stress 

tolerance (Kumar et al., 2020). Cytokinin priming can improve germination and early seed 

vigour (Nikolić et al., 2006) but this was not seen in field trials, so it does not explain 

differences in BNF and nodules seen.   

Cytokinin seed priming constrained nodule distribution (Table 3.8; Figure 3.3) which may 

increase BNF as the positioning of nodules influences BNF (McDermott & Graham, 1989; 

Wolyn et al., 1989; Hardarson & Danso, 1993). Soybean inoculants are often only competitive 

at the root crown, as seed inoculant application limits rhizobial distribution (McDermott & 

Graham, 1989; McLoughlin et al., 1990). Nodules on lateral roots are occupied by native 

strains, not optimised for BNF, as they are distributed across the rhizosphere (Weaver & 

Frederick, 1974; Wadisirisuk et al., 1989). Therefore, nodules forming earlier due to cytokinin 

treatment are more likely to be occupied by optimised inoculant strains so it would be 

interesting to quantify nodule occupancy following cytokinin application in the field.  

Constrained nodule distribution following cytokinin application also led to the hypothesis that 

the treatment caused earlier nodule formation (see Chapter 3). Plants (Aeschynomene 

afraspera and indica) inoculated with cytokinin overproducing rhizobia formed nodules one 

day sooner than a mutant strain deficient in cytokinin synthesis (Podlešáková et al., 2013). 

Further testing of cytokinin seed soaking increased early (V4) BNF (Figure 3.4). To establish if 
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cytokinin did indeed promote early nodulation and to gain insight into a potential mechanism, 

gene expression over 72 hours of the NF response gene ENOD40a was determined after a 

kinetin seed soak. Cytokinin indeed led to increased relative gene expression of ENOD40a, 

suggesting a priming effect (Figure 3.6).  

Attempts to enhance soybean-rhizobia symbiosis as an alternative to hormone treatment 

have been promising. Although not agronomically practical, hydrogen sulphide can act as a 

signalling molecule, regulating many physiological processes. Soybean seedlings treated with 

hydrogen sulphide showed increased nodule number (approximately 15%) and BNF 

(approximately 25%). This response was explained through upregulation of plant nodulin 

genes, early nodulin 40 (ENOD40a), ERF required for nodulation (ERN), nodulin signalling 

pathway 2b (NSP2b), and nodulation inception genes (NIN) and bacterial nod genes (Zou et 

al., 2019). Non-thermal plasma application also increased soybean nitrogenase activity 

leading to increased root cytokinin (Pérez-Pizá et al., 2020). Perhaps the same gene signalling 

will also be induced by the cytokinin treatment used herein and explain the mechanism 

behind early nodulation.  

 

Figure 5.1 Effect of genotype selection and cytokinin application on BNF. 
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5.4 |  Agronomic potential of genotype selection and phytohormone 

application 

In Chapters 2 and 3, both genotype and cytokinin treatment altered nodules and BNF (Figure 

5.1), thus in Chapter 4 the effects of both were assessed in field trials in order to better 

understand the agronomic potential of these strategies.  

As in controlled environments, timing of BNF and nodules varied between genotypes in field 

trials (Table 4.3; Table 4.4) although the two did not correspond. Differences in the timing of 

BNF in genotypes or through cytokinin treatment may alter its effect on yield. Seed N demand 

is supplied by either N remobilisation, derived from N supplied before seed filling, or N 

accumulation during seed filling. Early BNF may give a larger N pool for remobilisation, 

important for seed N content as N accumulation during seed filling is less than N accumulation 

by seeds (Leffel et al., 1992; Vasilas et al., 1995; Egli & Bruening, 2007), with N remobilisation 

accounting for 59% of seed N. However, BNF is also an important source of N during seed 

development (Purcell et al., 2004), accounting for up to 95% of total N accumulation in low 

soil N, and 50% in fertile soil (Mastrodomenico & Purcell, 2012). Seed N accumulation can be 

double that taken from remobilisation, with most N (0.4 g N m-2 d-1) from BNF. Continued BNF 

into late reproductive stages is therefore beneficial in achieving high seed yield. Taken 

together, it suggests that genotypes appear to use different N sources for grain filling, thus 

the timing of BNF will have different effects on yield depending on this.   

Other aspects of soybean production may influence the effect of additional N from fixation. 

High phloem N concentration limits BNF (Neo & Layzell, 1997), so sufficient sequestration of 

N in the canopy is important for maintaining fixation. Ensuring high plant N demand may 

enable this, with decreased plant density leading to larger canopies which increased BNF four-

fold (de Luca et al., 2014). Therefore, increased BNF without demand will not benefit plant 

growth. 

Cold stress limits nodulation, but as nodule establishment is genotype-dependent (Chapter 2) 

and can be enhanced through cytokinin treatment (Chapter 3), the ability of each to mitigate 

this was tested in field trials (Chapter 4). Early sowing delayed the initiation of BNF and nodule 

development, but also prolonged these processes towards the end of the growing season 

(Table 4.6 and 4.7). Genotypes responded differently to early cold stress, in terms of N supply, 
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allowing DM50I17 to maintain consistent yield across all sowing dates whilst the other tended 

to be more sensitive (Figure 4.3). Surprisingly, however, low root zone temperature limited 

soil N uptake to a greater extent than BNF (Figure 4.4), perhaps by reducing root growth. This 

suggests that BNF is especially important in maintaining N supply in cold conditions. Increases 

in BNF caused by cytokinin were especially evident in early sowing dates, suggesting such 

treatment may mitigate cold stress (Figure 4.5).  

5.5 |  Directions for future study 

Further work is required to understand the mechanism behind increased BNF of certain 

nodules shown here (Chapter 2). Variation in nodule BNF capacity is likely due to changes in 

physiology, as carbon sink capacity, oxygen permeability and N export all regulate BNF, thus 

future work should establish if there is a link between nodule morphology and physiology. 

Additionally, as the rhizobial strain occupying nodules determines BNF, it would be interesting 

to see if this also corresponds to differences in nodule traits. As the speed of BNF onset varies 

across genotypes (Chapter 2 and Chapter 4) and earlier nodule formation caused by cytokinin 

appears to be due to earlier nodulin gene expression (Chapter 3), future work could 

determine if the same is true across soybean genotypes.  

As the effect of cytokinin application showed promise but was not consistently beneficial 

(Chapter 3 and Chapter 4), further investigation of cytokinin-based treatments is required. 

This may include further investigation into their timing. This study focused on the effect of 

cytokinin on early nodule development, but cytokinin application may also delay nodule 

senescence, potentially providing an important N source during seed filling. Stay-green, 

characterised by delayed chlorophyll catabolism, may also delay soybean nodule senesce by 

extending photosynthate supply. However, this would be at the expense of N-remobilisation 

during seed filling. Thus, the relative importance of these N-sources on yield should be 

established. Since the effect of nodule traits on BNF, and nodulation itself, varies across 

genotypes (Chapter 2), determining the effect of cytokinin on a wider range of genotypes is 

recommended. Additionally, this study only applied kinetin, but it may be beneficial to 

establish whether other cytokinins show beneficial responses (Mens et al., 2018). 

Cytokinin appears to upregulate early nodulation genes (Chapter 3) but the mechanism 

leading to this was not determined here, so future work should aim to better understand the 
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effect of cytokinin on this pathway. Other mechanisms, such as the interaction between 

cytokinin and other hormones, in particular ethylene and auxin, should also be determined.  

To meet food demands in 2050, crop yields must increase by around 50% on current 

agricultural land to avoid massive conversion of natural ecosystems (Cassman & Grassini, 

2020; Ray et al 2013). For soybean, yield increases will be most limited by inadequate N supply 

(Cafaro La Menza et al., 2017), that in high yielding areas currently producing 4.5 Mg ha-1 the 

50% increase to 6.8 Mg ha-1 would require 540 kg N ha-1. Soil N could provide up to 150 kg N 

ha-1 (Cafaro La Menza et al., 2019) but this leaves 400 kg N ha-1 which must come from BNF, 

something not commonly possible based on current reviews (Salvagiotti et al., 2008; Ciampitti 

& Salvagiotti, 2018). Soil N and BNF provide insufficient N for soybean especially in highly 

productive environments, with an upper limit of 5.5 Mg ha-1 in Nebraska (Cafaro La Menza et 

al., 2020), likely to continue as soybean N requirements and average yields increase (Grassini 

et al., 2015; Specht et al., 2015). Thus, BNF must be increased sustainably to supply sufficient 

N for these high yielding soybeans, helping to meet increasing food demand without further 

destruction of natural ecosystems (Cassman & Grassini, 2020).  

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

References  

Abendroth, L. J., Elmore, R. W., & Ferguson, R. B. (2006). Soybean Inoculation: Understanding the 

Soil and Plant Mechanisms Involved Historical Materials 2078. Univ. of Nebraska, Lincoln. 

http://digitalcommons.unl.edu/extensionhist/2078 (accessed 15 Sept. 2019). 

Adom, F., Maes, A., Workman, C., Clayton-Nierderman, Z., Thoma, G., & Shonnard, D. (2012). 

Regional carbon footprint analysis of dairy feeds for milk production in the USA. 

International Journal of Life Cycle Assessment, 17(5), 520–534.  

Agyare, W. A., Clottey, V. A., Mercer-Quarshie, H., & Kombiok, J. M. (2006). Maize Yield Response in 

a Long-term Rotation and Intercropping Systems in the Guinea Savannah Zone of Northern 

Ghana. Journal of Agronomy, 5(2), 232–238 

Ainsworth, E. A., Yendrek, C. R., Skoneczka, J. A., & Long, S. P. (2012). Accelerating yield potential in 

soybean: Potential targets for biotechnological improvement. Plant, Cell and Environment, 

35(1), 38–52.  

Albuquerque, H. C. De, Pegoraro, R. F., Vieira, N. M. B., Amorim, I. de J. F., & Kondo, M. K. (2012). 

Capacidade nodulatória e características agronômicas de feijoeiros comuns submetidos à 

adubação molíbdica parcelada e nitrogenada. Revista Ciência Agronômica, 43(2), 214–221.  

Ali, S., & Bano, A. (2008). Leaf and Nodule Senescence in Chickpea (Cicer Arietinum L .) and the Role 

of Plant Growth Regulators. Pakistan Journal of Botany, 40(6), 2481–2492. 

Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2008). IAA and 4‐Cl‐IAA Increases the Growth and 

Nitrogen Fixation in Mung Bean. Communications in Soil Science and Plant Analysis, 39(17–

18), 2695–2705.  

Ali, I. A., Kafkafi, U., Yamaguchi, I., Sugimoto, Y., & Inanaga, S. (1996). Effects of low root 

temperature on sap flow rate, soluble carbohydrates, nitrate contents and on cytokinin and 

gibberellin levels in root xylem exudate of sand-grown tomato. Journal of Plant Nutrition, 

19(3–4), 619–634. 

Alsajri, F. A., Singh, B., Wijewardana, C., Irby, J. T., Gao, W., & Reddy, K. R. (2019). Evaluating 

Soybean Cultivars for Low- and High-Temperature Tolerance During the Seedling Growth 

Stage. Agronomy, 9(1), 13.  

Alves, B. J. R., Boddey, R. M., & Urquiaga, S. (2003). The success of BNF in soybean in Brazil. In Plant 

and Soil, 252, 1–9.  



101 
 

Ané, J. M., Kiss, G. B., Riely, B. K., Penmetsa, R. V., Oldroyd, G. E. D., Ayax, C., Lévy, J., Debellé, F., 

Baek, J. M., Kalo, P., Rosenberg, C., Roe, B. A., Long, S. R., Dénarié, J. & Cook, D. R. (2004). 

Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes. Science, 

303(5662), 1364–1367.  

Angus, J. F., Kirkegaard, J. A., Hunt, J. R., Ryan, M. H., Ohlander, L., & Peoples, M. B. (2015). Break 

crops and rotations for wheat. Crop and Pasture Science, 66(6), 523–552.  

Appleby, C. A. (1984). Leghemoglobin and Rhizobium Respiration. Annual Review of Plant Physiology, 

35(1), 443–478.  

Ariel, F., Brault-Hernandez, M., Laffont, C., Huault, E., Brault, M., Plet, J., Moison, M., Blanchet, S., 

Ichante, J. L., Chabaud, M., Carrere, S., Crespi, M., Chan, R. L. & Frugier, F. (2012). Two Direct 

Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in Medicago truncatula. The 

Plant Cell, 24(9), 3838–3852.  

Atkins, C. A., Pate, J. S., Sanford, P. J., Dakora, F. D., & Matthews, I. (1989). Nitrogen Nutrition of 

Nodules in Relation to `N-Hunger’ in Cowpea (Vigna unguiculata L. Walp). Plant Physiology, 

90(4), 1644–1649.  

Bacanamwo, M., & Harper, J. E. (1997). The feedback mechanism of nitrate inhibition of nitrogenase 

activity in soybean may involve asparagine and/or products of its metabolism. Physiologia 

Plantarum, 100(2), 371–377.  

Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2005). Sparing land for nature: exploring the 

potential impact of changes in agricultural yield on the area needed for crop production. 

Global Change Biology, 11(10), 1594–1605.  

Bàrberi, P. (2002). Weed management in organic agriculture: Are we addressing the right issues? 

Weed Research, 42(3), 177–193.  

Barros, R. L. N., De Oliveira, L. B., De Magalhães, W. B., Médici, L. O., & Pimentel, C. (2013). Interação 

entre inoculação com rizóbio e adubação nitrogenada de plantio na produtividade do 

feijoeiro nas épocas da seca e das águas. Semina: Ciencias Agrarias, 34(4), 1443–1450.  

Bauer, P., Ratet, P., Crespi, M. D., Schultze, M., & Kondorosi, A. (1996). Nod factors and cytokinins 

induce similar cortical cell division, amyloplast deposition and MsEnod12A expression 

patterns in alfalfa roots. The Plant Journal, 10(1), 91–105.  

Beatty, P. H., & Good, A. G. (2011). Future Prospects for Cereals That Fix Nitrogen. Science, 

333(6041), 416–417.  



102 
 

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). 

Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. 

Cell, 115(5), 591–602.  

Bergersen, F. J. (1997). Regulation of nitrogen fixation in infected cells of leguminous root nodules in 

relation to O2 supply. Plant and Soil, 191(2), 189–203.  

Bertell, G., & Eliasson, L. (1992). Cytokinin effects on root growth and possible interactions with 

ethylene and indole-3-acetic acid. Physiologia Plantarum, 84(2), 255–261.  

Bhuvaneswari, T. V., Turgeon, B. G., & Bauer, W. D. (1980).  Early Events in the Infection of Soybean 

(Glycine max L. Merr) by Rhizobium japonicum. Plant Physiology, 66(6), 1027–1031.  

Bhuvaneswari, T. V, Mills, K. K., Crist, D. K., Evans, W. R., & Bauer, W. D. (1983). Effects of culture age 

on symbiotic infectivity of Rhizobium japonicum. Journal of Bacteriology, 153(1), 443–451.  

Bianco, C., & Defez, R. (2010). Auxins upregulate nif and fix genes. Plant Signaling & Behavior, 5(10), 

1290–1294.  

Bichel, A., Oelbermann, M., Voroney, P., & Echarte, L. (2016). Sequestration of native soil organic 

carbon and residue carbon in complex agroecosystems. Carbon Management, 7(5–6), 261–

270.  

Bishnoi, N. R., & Krishnamoorthy, H. N. (1991). Effect of waterlogging and gibberellic acid on growth 

and yield of chickpea (cicer arietinum L.). Indian J. Plant Physiology, 34(2), 186–191. 

Bisseling, T., Van Den Bos, R. C., Weststrate, M. W., Hakkaart, M. J. J., & Van Kammen, A. (1979). 

Development of the nitrogen-fixing and protein-synthesizing apparatus of bacteroids in pea 

root nodules. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 

562(3), 515–526.  

Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassán, F., & Luna, V. (2007). Phytohormone 

production by three strains of Bradyrhizobium japonicum and possible physiological and 

technological implications. Applied Microbiology and Biotechnology, 74(4), 874–880.  

Borisov, A. Y., Madsen, L. H., Tsyganov, V. E., Umehara, Y., Voroshilova, V. A., Batagov, A. O., Sandal, 

N., Mortensen, A., Schauser, L., Ellis, N., Tikhonovich, I. A. & Stougaard, J. (2003). The Sym35 

gene required for root nodule development in pea is an ortholog of Nin from Lotus 

japonicus. Plant Physiology, 131(3), 1009–1017.  

Bowles, T. M., Mooshammer, M., Socolar, Y., Calderón, F., Cavigelli, M. A., Culman, S. W., Deen, W., 

Drury, C. F., Garcia, A., Gaudin, A. C. M., Harkcom, W. S., Lehman, R. M., Osborne, S. L., 



103 
 

Robertson, G. F., Salerno, J., Schmer, M. R., Strock, J. & Grandy, A. S. (2020). Long-Term 

Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to 

Adverse Growing Conditions in North America. One Earth, 2(3), 284–293.  

Breakspear, A., Liu, C., Roy, S., Stacey, N., Rogers, C., Trick, M., Morieri, G., Mysore, K. S., Wen, J., 

Oldroyd, G., Downie, J. A. & Murray, J. D. (2014). The Root Hair “Infectome” of Medicago 

truncatula Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin 

Signaling in Rhizobial Infection. The Plant Cell Online, 26(12), 4680–4701.  

Breene, W. M., Lin, S., Hardman, L., & Orf, J. (1988). Protein and oil content of soybeans from 

different geographic locations. Journal of the American Oil Chemists’ Society, 65(12), 1927–

1931.  

 Burias, N., Planchon, C., & Paul, M. H. (1990). Phenotypic and genotypic distribution of nodules on 

soybean root system inoculated with Bradyrhizobium japonicum strain G49. Agronomie, 10, 

57–62. 

Caba, J. M., Centeno, M. L., Fernández, B., Gresshoff, P. M., & Ligero, F. (2000). Inoculation and 

nitrate alter phytohormone levels in soybean roots: differences between a super-nodulating 

mutant and the wild type. Planta, 211(1), 98–104.  

Cabeza, R. A., Liese, R., Fischinger, S. A., Sulieman, S., Avenhaus, U., Lingner, A., Hein, H., Koester, B., 

Baumgarten, V., Dittert, K. & Schulze, J. (2015). Long-term non-invasive and continuous 

measurements of legume nodule activity. Plant Journal, 81(4) 637-648. 

Caetano-Anollés, G., & Gresshoff, P. M. (1993). Nodule distribution on the roots of soybean and a 

super-nodulating mutant in sand-vermiculite. Plant and Soil, 148(2), 265–270.  

Cafaro La Menza, N., Monzon, J. P., Lindquist, J. L., Arkebauer, T. J., Knops, J. M. H., Unkovich, M., 

Specht, J. E. & Grassini, P. (2020). Insufficient nitrogen supply from symbiotic fixation 

reduces seasonal crop growth and nitrogen mobilization to seed in highly productive 

soybean crops. Plant Cell and Environment, 43(8), 1958–1972.  

Cafaro La Menza, N., Monzon, J. P., Specht, J. E., & Grassini, P. (2017). Is soybean yield limited by 

nitrogen supply? Field Crops Research, 213(August), 204–212.  

Cafaro La Menza, N., Monzon, J. P., Specht, J. E., Lindquist, J. L., Arkebauer, T. J., Graef, G., & 

Grassini, P. (2019). Nitrogen limitation in high-yield soybean: Seed yield, N accumulation, 

and N-use efficiency. Field Crops Research, 237(April), 74–81.  

Callaham, D. A., & Torrey, J. G. (1981).  The structural basis for infection of root hairs of Trifolium 

repens by Rhizobium . Canadian Journal of Botany, 59(9), 1647–1664.  



104 
 

Calvert, H. E., Pence, M. K., Pierce, M., Malik, N. S. A., & Bauer, W. D. (1984). Anatomical analysis of 

the development and distribution of Rhizobium infections in soybean roots. Canadian 

Journal of Botany, 62(11), 2375–2384.  

Camerini, S., Senatore, B., Lonardo, E., Imperlini, E., Bianco, C., Moschetti, G., Rotino, G. L., Campion, 

B. & Defez, R. (2008). Introduction of a novel pathway for IAA biosynthesis to rhizobia alters 

vetch root nodule development. Archives of Microbiology, 190(1), 67–77.  

Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The Evolution and Future of Earth’s Nitrogen 

Cycle. Science, 330(6001), 192–196.  

Carroll, B. J., McNeil, D. L., & Gresshoff, P. M. (1985). A Supernodulation and Nitrate-Tolerant 

Symbiotic (nts) Soybean Mutant. Plant Physiology, 78(1), 34–40.  

Cassina, L., Tassi, E., Morelli, E., Giorgetti, L., Remorini, D., Chaney, R. L., & Barbafieri, M. (2011). 

Exogenous cytokinin treatments of an NI hyper-accumulator, alyssum Murale, grown in a 

serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 

13(SUPPL.1), 90–101.  

Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. 

Nature Sustainability, 3(4), 262–268.  

Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination 

of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and 

Plant Analysis, 6(1), 71–80.  

Cerezini, P., Kuwano, B. H., dos Santos, M. B., Terassi, F., Hungria, M., & Nogueira, M. A. (2016). 

Strategies to promote early nodulation in soybean under drought. Field Crops Research, 196, 

160–167.  

Cernay, C., Ben-Ari, T., Pelzer, E., Meynard, J. M., & Makowski, D. (2015). Estimating variability in 

grain legume yields across Europe and the Americas. Scientific Reports, 5, 1–11.  

Chalk, P. M. (1998). Dynamics of biologically fixed N in legume-cereal rotations: a review. Australian 

Journal of Agricultural Research, 49(3), 303.  

Charpentier, M., & Oldroyd, G. (2010). How close are we to nitrogen-fixing cereals? Current Opinion 

in Plant Biology, 13(5), 556–564.  

Chen, W., Zheng, D., Feng, N., Liu, T., Liu, Y., Gong, S., Cui, H. & Xiang, H. (2015). The effects of 

gibberellins and mepiquat chloride on nitrogenase activity in Bradyrhizobium japonicum. 

Acta Physiologiae Plantarum, 37(1), 1723.  



105 
 

Chibeba, A., de Fátima Guimarães, M., Brito, O. R., Nogueira, M. A., Silva Araujo, R., & Hungria, M. 

(2015). Co-Inoculation of Soybean with Bradyrhizobium and Azospirillum Promotes Early 

Nodulation. American Journal of Plant Sciences, 06(10), 1641–1649. 

Cho, Y., Suh, S. K., Park, H. K., & Wood, A. (2002). Impact of 2,4-DP and BAP upon pod set and seed 

yield in soybean treated at reproductive stages. Plant Growth Regulation, 36(3), 215–221.  

Choudhury, T. M. A., & Khanif, Y. M. (2001). Evaluation of effects of nitrogen and magnesium 

fertilization on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. Journal 

of Plant Nutrition, 24(6), 855–871.  

Ciampitti, I. A., & Salvagiotti, F. (2018). New insights into soybean biological nitrogen fixation. 

Agronomy Journal, 110(4), 1185–1196.  

Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. 

S., Latty, E. F., Von Fischer, J. C., Elseroad, A. & Wasson, M. F. (1999). Global patterns of 

terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical 

Cycles, 13(2), 623–645.  

Codispoti, L. A. (2007). An oceanic fixed nitrogen sink exceeding 400 Tg N a-1 vs the concept of 

homeostasis in the fixed-nitrogen inventory. Biogeosciences, 4(2), 233–253.  

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & 

Likens, G. E. (2009). Controlling Eutrophication: Nitrogen and Phosphorus. Science, 

323(5917), 1014–1015.  

Cooper, J. B., & Long, S. R. (1994). Morphogenetic Rescue of Rhizobium meliloti Nodulation Mutants 

by trans-Zeatin Secretion. The Plant Cell Online, 6(2), 215–225.  

Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A., & Rocha, E. J. P. (2007). Climate change in 

Amazonia caused by soybean cropland expansion, as compared to caused by pastureland 

expansion. Geophysical Research Letters, 34(7), 2–5.  

Crist, D. K., Wyza, R. E., Mills, K. K., Bauer, W. D., & Evans, W. R. (1984). Preservation of Rhizobium 

viability and symbiotic infectivity by suspension in water. Applied and Environmental 

Microbiology, 47(5), 895–900.  

Crookston, R. K., Kurle, J. E., Copeland, P. J., Ford, J. H., & Lueschen, W. E. (1991). Rotational 

Cropping Sequence Affects Yield of Corn and Soybean. Agronomy Journal, 83(1), 108–113.  



106 
 

Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N2O release from agro-biofuel 

production negates global warming reduction by replacing fossil fuels. Atmospheric 

Chemistry and Physics, 8(2), 389–395.  

Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M., & Liebman, M. (2012). Increasing Cropping System 

Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE, 7(10), 1–

8.  

Day, D. A., Kaiser, B. N., Thomson, R., Udvardi, M. K., Moreau, S., & Puppo, A. (2001). Nutrient 

transport across symbiotic membranes from legume nodules. Australian Journal of Plant 

Physiology, 28(7), 667–674.  

de Araujo, A. S. F., de Almeida Lopes, A. C., Teran, J. C. B. M. y, Palkovic, A., & Gepts, P. (2017). 

Nodulation ability in different genotypes of Phaseolus lunatus by rhizobia from California 

agricultural soils. Symbiosis, 73(1), 7–14.  

de Billy, F., Grosjean, C., May, S., Bennett, M., & Cullimore, J. V. (2001). Expression Studies on AUX1 -

like Genes in Medicago truncatula Suggest That Auxin Is Required at Two Steps in Early 

Nodule Development. Molecular Plant-Microbe Interactions, 14(3), 267–277.  

de Bruin, J. L., Pedersen, P., Conley, S. P., Gaska, J. M., Naeve, S. L., Kurle, J. E., Elmore, R. W., Giesler, 

L. J. & Abendroth, L. J. (2010). Probability of yield response to inoculants in fields with a 

history of soybean. Crop Science, 50(1), 265–272.  

de Luca, M. J., Nogueira, M. A., & Hungria, M. (2014). Feasibility of lowering soybean planting 

density without compromising nitrogen fixation and yield. Agronomy Journal, 106(6), 2118–

2124.  

de Ruijter, N. C. A., Rook, M. B., Bisseling, T., & Emons, A. M. C. (1998). Lipochito-oligosaccharides re-

initiate root hair tip growth in Vicia sativa with high calcium and spectrin-like antigen at the 

tip. Plant Journal, 13(3), 341–350.  

de Visser, C. L. M., Schreuder, R., & Stoddard, F. (2014). The EU’s dependency on soya bean import 

for the animal feed industry and potential for EU produced alternatives. OCL Oilseeds and 

Fats, Crops and Lipids, 21(4), D407.  

Dean, C. A., Sun, W., Dong, Z., & Caldwell, C. D. (2006). Soybean nodule hydrogen metabolism affects 

soil hydrogen uptake and growth of rotation crops. Canadian Journal of Plant Science, 86(5), 

1355–1359.  

Dehio, C., & de Bruijn, F. (1992). The early nodulin gene SrEnod2 from Sesbania rostrata is inducible 

by cytokinin. The Plant Journal, 2(1), 117–128.  



107 
 

Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M. T., Aoyama, T., 

Costantino, P. & Sabatini, S. (2008). A genetic framework for the control of cell division and 

differentiation in the root meristem. Science, 322(5906), 1380–1384.  

Dénarié, J., Debellé, F., & Promé, J. C. (1996). Rhizobium Lipo-Chitooligosaccharide Nodulation 

Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annual Review of 

Biochemistry, 65(1), 503–535.  

Desbrosses, G. J., & Stougaard, J. (2011). Root Nodulation: A Paradigm for How Plant-Microbe 

Symbiosis Influences Host Developmental Pathways. Cell Host & Microbe, 10(4), 348–358.  

Dhruve, J. J., & Vakharia, D. N. (2013). Influence of water stress and benzyl adenine imposed at 

various growth stages on yield of groundnut. International Journal of Plant and Animal 

Sciences, 1(1), 5–10. 

Di Mauro, G., Borrás, L., Rugeroni, P., & Rotundo, J. L. (2019). Exploring soybean management 

options for environments with contrasting water availability. Journal of Agronomy and Crop 

Science, 205(3), 274–282.  

Ding, Y., Kalo, P., Yendrek, C., Sun, J., Liang, Y., Marsh, J. F., Harris, J. M. & Oldroyd, G. E. D. (2008). 

Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of 

nodulation in Medicago truncatula. The Plant Cell, 20(10), 2681–2695.  

Ding, Y., & Oldroyd, G. E. D. (2009). Positioning the nodule, the hormone dictum. Plant Signaling & 

Behavior, 4(2), 89–93.  

Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-

Gonzalez, C., Caballero-Mellado, J., Aguirre, J. F., Kapulnik, Y., Brener, S., Burdman, S., 

Kadouri, D., Sarig, S. & Okon, Y. (2001). Responses of agronomically important crops to 

inoculation with Azospirillum. Functional Plant Biology, 28(9), 871.  

Döbereiner, J. (1966). Evaluation of Nitrogen Fixation in Legumes by the Regression of Total Plant 

Nitrogen with Nodule Weight. Nature, 210, 850–852. 

Dobert, R. C., Rood, S. B., & Blevins, D. G. (1992).  Gibberellins and the Legume- Rhizobium 

Symbiosis. Plant Physiology, 98(1), 221–224.  

Dobránszki, J., & Mendler-Drienyovszki, N. (2014). Cytokinin-induced changes in the chlorophyll 

content and fluorescence of in vitro apple leaves. Journal of Plant Physiology, 171(16), 1472–

1478.  



108 
 

Donald, C. M., & Hamblin, J. (1976). The Biological Yield and Harvest Index of Cereals as Agronomic 

and Plant Breeding Criteria. Crop Science, 59(3), 361–405.  

Dong, Z., & Layzell, D. B. (2001). H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. 

Plant and Soil, 229(1), 1–12.  

Dong, Z., Wu, L., Kettlewell, B., Caldwell, C. D., & Layzell, D. B. (2003). Hydrogen fertilization of soils - 

Is this a benefit of legumes in rotation? Plant, Cell and Environment, 26(11), 1875–1879. 

Earl, C. D., Ronson, C. W., & Ausubel, F. M. (1987). Genetic and structural analysis of the Rhizobium 

meliloti fixA, fixB, fixC, and fixX genes. Journal of Bacteriology, 169(3), 1127–1136. 

Egli, D. B., & Bruening, W. P. (2007). Nitrogen accumulation and redistribution in soybean genotypes 

with variation in seed protein concentration. Plant and Soil, 301(1–2), 165–172.  

Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of 

ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639.  

Esseling, J. J., Lhuissier, F. G. P., & Emons, A. M. C. (2003). Nod factor-induced root hair curling: 

Continuous polar growth towards the point of nod factor application. Plant Physiology, 

132(4), 1982–1988.  

Evans, J., O’Connor, G. E., Turner, G. L., & Bergersen, F. J. (1987). Influence of mineral nitrogen on 

nitrogen fixation by lupin (Lupinus angustifolius) as assessed by 15N isotope dilution 

methods. Field Crops Research, 17(2), 109–120.  

Fabre, F., & Planchon, C. (2000). Nitrogen nutrition, yield and protein content in soybean. Plant 

Science, 152(1), 51–58.  

Fang, Y., & Hirsch, A. M. (1998). Studying early nodulin gene ENOD40 expression and induction by 

nodulation factor and cytokinin in transgenic alfalfa. Plant Physiology, 116(1), 53–68.  

FAOSTAT Statistical Database. (2020). Retrieved November 2, 2020, from 

http://www.fao.org/faostat/en/#data/QC 

Fatima, Z., Bano, A., & Aslam, M. (2008). Response of chickpea to plant growth regulators on 

nitrogen fixation and yield. Pakistan Journal of Botany, 40(5), 2005–2013. 

Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Special Report, 87, 1–12. 

Felle, H. H., Kondorosi, É., Kondorosi, Á., & Schultze, M. (1999). Elevation of the cytosolic free [Ca2
+] 

is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiology, 

121(1), 273–279.  



109 
 

Ferguson, B. J., Foo, E., Ross, J. J., & Reid, J. B. (2011). Relationship between gibberellin, ethylene and 

nodulation in Pisum sativum. New Phytologist, 189(3), 829–842.  

Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M. 

(2010). Molecular Analysis of Legume Nodule Development and Autoregulation. Journal of 

Integrative Plant Biology, 52(1), 61–76. 

Ferguson, B. J., & Mathesius, U. (2014). Phytohormone Regulation of Legume-Rhizobia Interactions. 

Journal of Chemical Ecology, 40(7), 770–790.  

Ferguson, B. J., Ross, J. J., & Reid, J. B. (2005). Nodulation phenotypes of gibberellin and 

brassinosteroid mutants of pea. Plant Physiology, 138(4), 2396–2405.  

Ferreira, Magda C., De S. Andrade, D., Ligia, L. M., Takemura, S. M., & Hungria, M. (2000). Tillage 

method and crop rotation effects on the population sizes and diversity of bradyrhizobia 

nodulating soybean. Soil Biology and Biochemistry, 32(5), 627–637.  

Ferreira, Magda Cristiani, & Hungria, M. (2002). Recovery of soybean inoculant strains from 

uncropped soils in Brazil. Field Crops Research, 79(2–3), 139–152.  

Finke, R. L., Harper, J. E., & Hageman, R. H. (1982).  Efficiency of Nitrogen Assimilation by N2 -Fixing 

and Nitrate-Grown Soybean Plants (Glycine max [L.] Merr.) . Plant Physiology, 70(4), 1178–

1184.  

Fischinger, S. A., Drevon, J. J., Claassen, N., & Schulze, J. (2006). Nitrogen from senescing lower 

leaves of common bean is re-translocated to nodules and might be involved in a N-feedback 

regulation of nitrogen fixation. Journal of Plant Physiology, 163(10), 987–995.  

Fischinger, S. A., Hristozkova, M., Mainassara, Z.-A., & Schulze, J. (2010). Elevated CO2 concentration 

around alfalfa nodules increases N2 fixation. Journal of Experimental Botany, 61(1), 121–130.  

Fonouni-Farde, C., Kisiala, A., Brault, M., Emery, R. J. N., Diet, A., & Frugier, F. (2017). DELLA1-

mediated gibberellin signaling regulates cytokinin-dependent symbiotic nodulation. Plant 

Physiology, 175(4), 1795–1806.  

Forde, B. G., & Lea, P. J. (2007). Glutamate in plants: Metabolism, regulation, and signalling. Journal 

of Experimental Botany, 58(9), 2339–2358.  

Foyer, C. H., Siddique, K. H. M., Tai, A. P. K., Anders, S., Fodor, N., Wong, F. L., Ludidi, N., Chapman, 

M. A., Ferguson, B. J., Considine, M. J., Zabel, F., Prasad, P. V. V., Varshney, R. K., Nguyen, H. 

T. &  Lam, H. M. (2019). Modelling predicts that soybean is poised to dominate crop 

production across Africa. Plant Cell and Environment, 42(1), 373–385.  



110 
 

Franke, A. C., van den Brand, G. J., Vanlauwe, B., & Giller, K. E. (2018). Sustainable intensification 

through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, 

Ecosystems and Environment, 261(September 2017), 172–185.  

Frugier, F., Kosuta, S., Murray, J. D., Crespi, M., & Szczyglowski, K. (2008). Cytokinin: secret agent of 

symbiosis. Trends in Plant Science, 13(3), 115–120.  

Fryzuk, M. (2004). Ammonia Transformed. Nature, 427(February), 498–499.  

Fuchs, Y., & Lieberman, M. (1968). Effects of Kinetin, IAA, and Gibberellin on Ethylene Production, 

and Their Interactions in Growth of Seedlings. Plant Physiol, 43, 2029–2036. 

Fyson, A., & Oaks, A. (1990). Growth promotion of maize by legume soils. Plant and Soil, 122(2), 

259–266.  

Gage, D. J. (2004). Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during 

Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 68(2), 

280–300.  

Gai, Z., Zhang, J., & Li, C. (2017). Effects of starter nitrogen fertilizer on soybean root activity, leaf 

photosynthesis and grain yield. PLoS ONE, 12(4), 1–15.  

George, T., Singleton, P. W., & Bohlool, B. Ben. (1988). Yield, Soil Nitrogen Uptake, and Nitrogen 

Fixation by Soybean from Four Maturity Groups Grown at Three Elevations. Agronomy 

Journal, 80(4), 563–567.  

Gethi, J. G., Smith, M. E., Mitchell, S. E., & Kresovich, S. (2005). Genetic diversity of Striga 

hermonthica and Striga asiatica populations in Kenya. Weed Research, 45(1), 64–73.  

Giller, K. E., & Cadisch, G. (1995). Future benefits from biological nitrogen fixation: An ecological 

approach to agriculture. Plant and Soil, 174(1–2), 255–277.  

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., 

Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 

Billion People. Science, 327(5967), 812–818.  

Goldsmith, P. D. (2008). Economics of Soybean Production, Marketing, and Utilization. In Soybeans: 

Chemistry, Production, Processing, and Utilization (pp. 117–150). Elsevier Inc.  

Gonzalez-Rizzo, S., Crespi, M., & Frugier, F. (2006). The Medicago truncatula CRE1 Cytokinin 

Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with 

Sinorhizobium meliloti. The Plant Cell Online, 18(10), 2680–2693.  



111 
 

Gonzalez-Rizzo, Silvina, Laporte, P., Crespi, M., & Frugier, F. (2009). Legume Root Architecture: A 

Peculiar Root System. In Root Development (Vol. 37, pp. 239–287). Oxford, UK: Wiley-

Blackwell.  

González, E. M., Larrainzar, E., Marino, D., Wienkoop, S., Gil-Quintana, E., & Arrese-Igor, C. (2015). 

Physiological responses of N2-fixing legumes to water limitation. In Legume Nitrogen Fixation 

in a Changing Environment: Achievements and Challenges (pp. 5–33). Springer International 

Publishing.  

Graham, P. H., & Vance, C. P. (2003). Legumes: Importance and Constraints to Greater Use. Plant 

Physiology, 131(3), 872–877.  

Grassini, P., Specht, J. E., Tollenaar, M., Ciampitti, I., & Cassman, K. G. (2015). High-yield maize-

soybean cropping systems in the US Corn Belt. Crop Physiology: Applications for Genetic 

Improvement and Agronomy: Second Edition, (April 2018), 17–41.  

Gwata, E. T., Wofford, D. S., Pfahler, P. L., & Boote, K. J. (2004). Genetics of Promiscuous Nodulation 

in Soybean: Nodule Dry Weight and Leaf Color Score. Journal of Heredity, 95(2), 154–157.  

Hageman, R. V., & Burris, R. H. (1978). Nitrogenase and nitrogenase reductase associate and 

dissociate with each catalytic cycle. Proceedings of the National Academy of Sciences of the 

United States of America, 75(6), 2699–2702.  

Halvin, J. L., Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (2005). Soil Fertility and Fertilizers: An 

Introduction to Nutrient Management (7th editio). Upper Saddle River, NJ: Pearson Prentice 

Hall. 

Halvorson, A. D., Follett, R. F., Bartolo, M. E., & Schweissing, F. C. (2002). Nitrogen fertilizer use 

efficiency of furrow-irrigated onion and corn. Agronomy Journal, 94(3), 442–449.  

Hamawaki, R. L., & Kantartzi, S. K. (2018). Di-nitrogen fixation at the early and late growth stages of 

soybean. Acta Scientiarum. Agronomy, 40(1), 36372.  

Hardarson, G., & Danso, S. K. A. (1993). Methods for measuring biological nitrogen fixation in grain 

legumes. Plant and Soil, 152(1), 19–23.  

Hardarson, G., Golbs, M., & Danso, S. K. A. (1989). Nitrogen fixation in soybean (Glycine max L. 

merrill) as affected by nodulation patterns. Soil Biology and Biochemistry, 21(6), 783–787.  

Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. 

Applied Engineering in Agriculture, 1(2), 96–99.  



112 
 

Hayashi, S., Gresshoff, P. M., & Ferguson, B. J. (2014). Mechanistic action of gibberellins in legume 

nodulation. Journal of Integrative Plant Biology, 56(10), 971–978.  

Hayashi, S., Reid, D. E., Lorenc, M. T., Stiller, J., Edwards, D., Gresshoff, P. M., & Ferguson, B. J. 

(2012). Transient Nod factor-dependent gene expression in the nodulation-competent zone 

of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnology Journal, 10(8), 995–1010.  

Haynes, R. J., Martin, R. J., & Goh, K. M. (1993). Nitrogen fixation, accumulation of soil nitrogen and 

nitrogen balance for some field-grown legume crops. Field Crops Research, 35(2), 85–92.  

Heatherly, L. G. (2005). Midsouthern USA Soybean Yield Affected by Maturity Group and Planting 

Date. Crop Management, 4(1), 1–8.  

Heckmann, A. B., Sandal, N., Bek, A. S., Madsen, L. H., Jurkiewicz, A., Nielsen, M. W., Tirichine, L. & 

Stougaard, J. (2011). Cytokinin Induction of Root Nodule Primordia in Lotus japonicus Is 

Regulated by a Mechanism Operating in the Root Cortex. Molecular Plant-Microbe 

Interactions, 24(11), 1385–1395.  

Heidstra, R., Geurts, R., Franssen, H., Spaink, H. P., van Kammen, A., & Bisseling, T. (1994). Root Hair 

Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa. Plant Physiology, 

105(3), 787–797. 

Held, M., Hou, H., Miri, M., Huynh, C., Ross, L., Hossain, M. S., Sato, S., Tabata, S., Perry, J., Wang, T. 

L., Szczyglowski, K. (2014). Lotus japonicus Cytokinin Receptors Work Partially Redundantly 

to Mediate Nodule Formation. The Plant Cell, 26(2), 678–694. 

Henzell, E. F. (1988). The role of biological nitrogen fixation research in solving problems in tropical 

agriculture. Plant and Soil, 108(1), 15–21.  

Hernanz, J. L., Sánchez-Girón, V., & Navarrete, L. (2009). Soil carbon sequestration and stratification 

in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. 

Agriculture, Ecosystems and Environment, 133(1–2), 114–122.  

Heron, D. S., & Pueppke, S. G. (1984). Mode of infection, modulation specificity, and indigenous 

plasmids of 11 fast-growing Rhizobium japonicum strains. Journal of Bacteriology, 160(3), 

1061–1066.  

Herridge, D. F., & Peoples, M. B. (1990). Ureide Assay for Measuring Nitrogen Fixation by Nodulated 

Soybean Calibrated by 15N Methods. Plant Physiology, 93(2), 495–503.  

Herridge, David F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen 

fixation in agricultural systems. Plant and Soil, 311(1–2), 1–18.  



113 
 

Herridge, David F, Bergersen, F. J., & Peoples, M. B. (1990). Measurement of Nitrogen Fixation by 

Soybean in the Field Using the Ureide and Natural 15N Abundance Methods. Plant 

Physiology, 93(2), 708–716.  

Hesterman, O. B., Sheaffer, C. C., Barnes, D. K., Lueschen, W. E., & Ford, J. H. (1986). Alfalfa Dry 

Matter and Nitrogen Production, and Fertilizer Nitrogen Response in Legume‐Corn 

Rotations. Agronomy Journal, 78(1), 19–23.  

Hichri, I., Meilhoc, E., Boscari, A., Bruand, C., Frendo, P., & Brouquisse, R. (2016). Nitric Oxide. Jack-

of-All-Trades of the Nitrogen-Fixing Symbiosis? Advances in Botanical Research, 

77(February), 193–218.  

Hirel, B., Le Gouis, J., Ney, B., & Gallais, A. (2007). The challenge of improving nitrogen use efficiency 

in crop plants: towards a more central role for genetic variability and quantitative genetics 

within integrated approaches. Journal of Experimental Botany, 58(9), 2369–2387.  

Hirsch, A. M. (1992). Developmental biology of legume nodulation. New Phytologist, 122(2), 211–

237.  

Hirsch, A. M., Bhuvaneswari, T. V., Torrey, J. G., & Bisseling, T. (1989). Early nodulin genes are 

induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proceedings of the 

National Academy of Sciences, 86(4), 1244–1248.  

Hirsch, A. M., Fang, Y., Asad, S., & Kapulnik, Y. (1997). The role of phytohormones in plant-microbe 

symbioses Plant Soil. Plant Ans Soil, 194, 171–184. 

Hocking, P. J. (2001). Organic acids exuded from roots in phosphorus uptake and aluminum 

tolerance of plants in acid soils. Advances in Agronomy, 74, 63–97.  

Hungria, M., Barradas, C. A. A., & Wallsgrove, R. M. (1991). Nitrogen fixation, assimilation and 

transport during the initial growth stage of Phaseolus vulgaris l. Journal of Experimental 

Botany, 42(7), 839–844.  

Hungria, M., & Bohrer, T. R. J. (2000). Variability of nodulation and dinitrogen fixation capacity 

among soybean cultivars. Biology and Fertility of Soils, 31(1), 45–52.  

Hungria, Mariangela, Franchini, J. C., Campo, R. J., & Graham, P. H. (2006). The Importance of 

Nitrogen Fixation to Soybean Cropping in South America. In D. Werner & W. E. Newton 

(Eds.), Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment (pp. 25–42). 

Werner D, Newton WE: Dordrecht: Springer. 



114 
 

Hungria, Mariangela, Franchini, J., & Soja, E. (2005). Nitrogen Fixation in Agriculture, Forestry, 

Ecology, and the Environment, (February 2016).  

Hungria, Mariangela, & Mendes, I. C. (2015). Nitrogen Fixation with Soybean: The Perfect Symbiosis? 

In Biological Nitrogen Fixation (Vol. 2–2, pp. 1009–1024). Hoboken, NJ, USA: John Wiley & 

Sons, Inc.  

Hunt, N. D., Hill, J. D., & Liebman, M. (2017). Reducing Freshwater Toxicity while Maintaining Weed 

Control, Profits, and Productivity: Effects of Increased Crop Rotation Diversity and Reduced 

Herbicide Usage. Environmental Science and Technology, 51(3), 1707–1717.  

Hunt, S., Gaito, S. T., & Layzell, D. B. (1988). Model of gas exchange and diffusion in legume nodules. 

Planta, 173(1), 128–141.  

Hunt, S., King, B. J., & Layzell, D. B. (1989). Effects of Gradual Increases in O2 Concentration on 

Nodule Activity in Soybean. Plant Physiology, 91(1), 315–321.  

Hunt, S., & Layzell, D. B. (1993). Gas exchange of legume nodules and the regulation of nitrogenase 

activity. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 483–511.  

Hunter, W. J. (1987). Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on 

soybean root nodule indole-3-acetic acid content. Applied and Environmental Microbiology, 

53(5), 1051–1055.  

Hunter, William J, & Hunter, W. J. (1987). Bradyrhizobium japonicum on Soybean Root Nodule 

Indole-3-Acetic Acid Content Influence of 5-Methyltryptophan-Resistant Bradyrhizobium 

japonicum on Soybean Root Nodule Indole-3-Acetic Acid Contentt, 53(5), 1051–1055. 

Ibrahim, M., Bekheta, M. A., El-Moursi, A., & Gaafar, N. A. (2007). Improvement of Growth and Seed 

Yield Quality of Vicia faba L. Plants as Affected by Application of Some Bioregulators. 

Australian Journal of Basic and Applied Sciences, 1(4), 657–666. 

Ikeda, J. (1999). Differences in numbers of nodules and lateral roots between soybean (Glycine max 

L. Merr.) cultivars, Kitamusume and Toyosuzu. Soil Science and Plant Nutrition, 45(3), 591–

598.  

Ikeda, J. (2003). Mathematical description for nodule size distribution, and number, weight, and 

diameter of nodules deduced from a theoretical model of photosynthate competition 

among nodules. Soil Science and Plant Nutrition, 49(6), 805–815.  

Imsande, J., & Ralston, E. J. (1982). Dinitrogen Fixation in Male-Sterile Soybeans. Plant Physiology, 

69(3), 745–746.  



115 
 

Jemo, M., Abaidoo, R. C., Nolte, C., Tchienkoua, M., Sanginga, N., & Horst, W. J. (2006). Phosphorus 

benefits from grain-legume crops to subsequent maize grown on acid soils of southern 

Cameroon. Plant and Soil, 284(1–2), 385–397.  

Jensen, Erik S., Peoples, M. B., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping systems. Field 

Crops Research, 115(3), 203–216.  

Jensen, Erik Steen, Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., J.R. Alves, 

B., & Morrison, M. J. (2012). Legumes for mitigation of climate change and the provision of 

feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, 

32(2), 329–364.  

Jiménez-Zurdo, J. I., Frugier, F., Crespi, M. D., & Kondorosi, A. (2000). Expression profiles of 22 novel 

molecular markers for organogenetic pathways acting in alfalfa nodule development. 

Molecular Plant-Microbe Interactions, 13(1), 96–106.  

Kahn, M. L., McDermott, T. R., & Udvardi, M. K. (1998). Carbon and Nitrogen Metabolism in Rhizobia. 

In The Rhizobiaceae (pp. 461–485). Dordrecht: Springer Netherlands.  

Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R. M., Hirsch, S., Jakab, J., Sims, S., Long, S. R., 

Rogers, J., Kiss, G. B., Downie, J. A. & Oldroyd, G. E. D. (2005). Nodulation signaling in 

legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 

(New York, N.Y.), 308(5729), 1786–1789.  

Kanamori, N., Madsen, L. H., Radutoiu, S., Frantescu, M., Quistgaard, E. M. H., Miwa, H., Downie, J. 

A., James, E. K., Felle, H. H., Haaning, L. L., Jensen, T. H., Sato, S., Nakamura, Y., Tabata, S., 

Sandal, N. & Stougaard, J. (2006). A nucleoporin is required for induction of Ca2+ spiking in 

legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of 

the National Academy of Sciences of the United States of America, 103(2), 359–364. 

Kanampiu, F., Makumbi, D., Mageto, E., Omanya, G., Waruingi, S., Musyoka, P., & Ransom, J. (2018). 

Assessment of management options on striga infestation and maize grain yield in Kenya. 

Weed Science, 66(4), 516–524.  

Karlen, D. L., Varvel, G. E., Bullock, D. G., & Cruse, R. M. (1994). Crop rotations for the 21st century. 

Advances in Agronomy, 53(C), 1–45.  

Karr, D. B., Suzuki, F., Waters, J. K., & Emerich, D. W. (1990). Further Evidence for the Uniformity of 

the Microsymbiont Population from Soybean Nodules. Journal of Plant Physiology, 136(6), 

659–663.  



116 
 

Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., & Giller, K. E. (2009). Are the rates of 

photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular 

mycorrhizal symbioses? Soil Biology and Biochemistry, 41(6), 1233–1244.  

Keyser, H. H., & Li, F. (1992). Potential for increasing biological nitrogen fixation in soybean. Plant 

and Soil, 141(1–2), 119–135.  

Kim, S. K., Adetimirin, V. O., Thé, C., & Dossou, R. (2002). Yield losses in maize due to Striga 

hermonthica in West and Central Africa. International Journal of Pest Management, 48(3), 

211–217.  

King, C. A., & Purcell, L. C. (2001). Soybean Nodule Size and Relationship to Nitrogen Fixation 

Response to Water Deficit. Crop Science, 41(4), 1099–1107.  

King, C. A., & Purcell, L. C. (2005). Inhibition of N2 fixation in soybean is associated with elevated 

ureides and amino acids. Plant Physiology, 137(4), 1389–1396.  

Kirkegaard, J. A., & Ryan, M. H. (2014). Magnitude and mechanisms of persistent crop sequence 

effects on wheat. Field Crops Research, 164(1), 154–165.  

Kirkegaard, J., Christen, O., Krupinsky, J., & Layzell, D. (2008). Break crop benefits in temperate 

wheat production. Field Crops Research, 107(3), 185–195.  

Kleinert, A., Le Roux, M., Kang, Y., & Valentine, A. J. (2017). Oxygen and the regulation of N2 fixation 

in legume nodules under P scarcity. In Legume Nitrogen Fixation in Soils with Low 

Phosphorus Availability: Adaptation and Regulatory Implication (pp. 97–109). Springer 

International Publishing.  

Köpke, U., & Nemecek, T. (2010). Ecological services of faba bean. Field Crops Research, 115(3), 217–

233.  

Koprna, R., De Diego, N., Dundálková, L., & Spíchal, L. (2016). Use of cytokinins as agrochemicals. 

Bioorganic & Medicinal Chemistry, 24(3), 484–492.  

Kouchi, H., Shimomura, K., Hata, S., Hirota, A., Wu, G. J., Kumagai, H., Tajima, S., Suganuma, N., 

Suzuki, A., Aoki, T., Hayashi, M., Yokoyama, T., Ohyama, T., Asamizu, E., Kuwata, C., Shibata, 

D. & Tabata, S. (2004). Large-scale analysis of gene expression profiles during early stages of 

root nodule formation in a model legume, Lotus japonicus. DNA Research, 11(4), 263–274.  

Kühling, I., Hüsing, B., Bome, N., & Trautz, D. (2018). Soybeans in high latitudes: effects of 

Bradyrhizobium inoculation in Northwest Germany and southern West Siberia. Organic 

Agriculture, 8(2), 159–171.  



117 
 

Kumar, A., Droby, S., White, J. F., Singh, V. K., Singh, S. K., Zhimo, V. Y., & Biasi, A. (2020). Endophytes 

and seed priming: agricultural applications and future prospects. Microbial Endophytes. 

January 107-124. 

Kumudini, S., Hume, D. J., & Chu, G. (2002). Genetic Improvement in Short‐Season Soybeans: II. 

Nitrogen Accumulation, Remobilization, and Partitioning. Crop Science, 42(1), 141–145.  

Kurasch, A. K., Hahn, V., Leiser, W. L., Vollmann, J., Schori, A., Bétrix, C., Mayr, B., Winkler, J., 

Mechtler, K., Aper, J., Sudaric, A., Pejic, I., Sarcevic, H., Jeanson, P., Balko, C., Signor, M., 

Miceli, F., Strijk, P., Rietman, H., Muresanu, E., Djordjevic, V., Pospišil, A., Barion, G., 

Weigold, P., Streng, S., Krön, M. & Würschum, T. (2017). Identification of mega‐

environments in Europe and effect of allelic variation at maturity E loci on adaptation of 

European soybean. Plant, Cell & Environment, 40(5), 765–778.  

Ladrera, R., Marino, D., Larrainzar, E., Gonzalez, E. M., & Arrese-Igor, C. (2007). Reduced carbon 

availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in 

the nitrogen fixation response to early drought in soybean. Plant Physiology, 145(October), 

539–546.  

Lam, S. K., Chen, D., Norton, R., Armstrong, R., & Mosier, A. R. (2012). Nitrogen dynamics in grain 

crop and legume pasture systems under elevated atmospheric carbon dioxide 

concentration: A meta-analysis. Global Change Biology, 18(9), 2853–2859.  

Lee, K. H., & La Rue, T. A. (1992). Exogenous ethylene inhibits nodulation of Pisum sativum L. cv 

sparkle. Plant Physiology, 100(4), 1759–1763.  

Leffel, R. C., Cregan, P. B., Bolgiano, A. P., & Thibeau, D. J. (1992). Nitrogen Metabolism of Normal 

and High‐Seed‐Protein Soybean. Crop Science, 32(3), 747–750.  

Legros, T., & Smith, D. L. (1994). Root zone temperature sensitivity of nitrogen fixing and nitrate-

supplied soybean (Glycine max (L.) Merr. cv maple arrow) and lupin (Lupinus albus L. cv 

ultra) plants. Environmental and Experimental Botany, 34(2), 117–127.  

Lemke, R. L., Zhong, Z., Campbell, C. A., & Zentner, R. (2007). Can pulse crops play a role in mitigating 

greenhouse gases from North American agriculture? Agronomy Journal, 99(6), 1719–1725.  

Liang, Y., Mitchell, D. M., & Harris, J. M. (2007). Abscisic acid rescues the root meristem defects of 

the Medicago truncatula latd mutant. Developmental Biology, 304(1), 297–307.  

Lievens, S., Goormachtig, S., Den Herder, J., Capoen, W., Mathis, R., Hedden, P., & Holsters, M. 

(2005). Gibberellins Are Involved in Nodulation of Sesbania rostrata. Plant Physiology, 

139(3), 1366–1379.  



118 
 

Lindemann, W. C., & Ham, G. E. (1979). Soybean Plant Growth, Nodulation, and Nitrogen Fixation as 

Affected by Root Temperature. Soil Science Society of America Journal, 43(6), 1134–1137.  

Lira, M. D. A., & Smith, D. L. (2000). Use of a standard TWAIN scanner and software for nodule 

number determination on different legume species. Soil Biology and Biochemistry, 32(10), 

1463–1467.  

Liu, F., Jensen, C., & M., A. (2004). Pod Set Related to Photosynthetic Rate and Endogenous ABA in 

Soybeans Subjected to Different Water Regimes and Exogenous ABA and BA at Early 

Reproductive Stages. Annals of Botany, 94(3), 405–411.  

Liu, W., Kohlen, W., Lillo, A., den Camp, R. O., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., 

Smaczniak, C., Kaufmann, K., Yang, W. C., Hooiveld, G. J. E. J., Charnikhova, T., Bouwmeester, 

H. J., Bisseling, T. & Geurts, R. (2011). Strigolactone biosynthesis in Medicago truncatula and 

rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell, 

23(10), 3853–3865. 

Livingston, D., Tuong, T., Nogueira, M., & Sinclair, T. (2019). Three‐dimensional reconstruction of 

soybean nodules provides an update on vascular structure. American Journal of Botany, 

106(3), 507–513.  

Lohar, D. P., Schaff, J. E., Laskey, J. G., Kieber, J. J., Bilyeu, K. D., & Bird, D. M. K. (2004). Cytokinins 

play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant 

Journal, 38(2), 203–214.  

Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 

integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15(1), 

165–178.  

Lorteau, M.-A., Ferguson, B. J., & Guinel, F. C. (2001). Effects of cytokinin on ethylene production and 

nodulation in pea (Pisum sativum) cv. Sparkle. Physiologia Plantarum, 112(3), 421–428.  

Loureiro, M. D. F., Kaschuk, G., Alberton, O., & Hungria, M. (2007). Soybean [Glycine max (L.) Merrill] 

rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation 

managements. Biology and Fertility of Soils, 43(6), 665–674.  

Lynch, D. H., & Smith, D. L. (1993). Early seedling and seasonal N2-fixing symbiotic activity of two 

soybean (Glycine max (L.) Merr.) cultivars inoculated with Bradyrhizobium strains of diverse 

origin. Plant and Soil, 157(2), 289–303.  



119 
 

Mabood, F., & Smith, D. L. (2005). Pre-incubation of Bradyrhizobium japonicum with jasmonates 

accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and 

suboptimal root zone temperatures. Physiologia Plantarum, 125(3), 311–323.  

Mabood, F., Zhou, X., Lee, K.-D., & Smith, D. L. (2006). Methyl jasmonate, alone or in combination 

with genistein, and Bradyrhizobium japonicum increases soybean (Glycine max L.) plant dry 

matter production and grain yield under short season conditions. Field Crops Research, 

95(2–3), 412–419.  

Maekawa, T., Maekawa-Yoshikawa, M., Takeda, N., Imaizumi-Anraku, H., Murooka, Y., & Hayashi, M. 

(2009). Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant 

Journal, 58(2), 183–194.  

Mahon, J. D. (1977). Root and Nodule Respiration in Relation to Acetylene Reduction in Intact 

Nodulated Peas. Plant Physiology, 60(6), 812–816.  

Malik, N. S. A., Pence, M. K., Calvert, H. E., & Bauer, W. D. (1984).  Rhizobium Infection and Nodule 

Development in Soybean Are Affected by Exposure of the Cotyledons to Light . Plant 

Physiology, 75(1), 90–94.  

Mapope, N., & Dakora, F. D. (2016). N2 fixation, carbon accumulation, and plant water relations in 

soybean (Glycine max L. Merrill) varieties sampled from farmers’ fields in South Africa, 

measured using 15N and 13C natural abundance. Agriculture, Ecosystems & Environment, 

221, 174–186.  

Marchal, K., Vanderleyden, J., & Janssens, F. A. (2000). The “oxygen paradox” of dinitrogen-fixing 

bacteria. Biology and Fertility of Soils, 30(5–6), 363–373.  

Marhavý, P., Duclercq, J., Weller, B., Feraru, E., Bielach, A., Offringa, R., Friml, J., Schwechheimer, C., 

Murphy, A. & Benková, E. (2014). Cytokinin controls polarity of PIN1-dependent Auxin 

transport during lateral root organogenesis. Current Biology, 24(9), 1031–1037.  

Martinez-Abarca, F., Herrera-Cervera, J. a, Bueno, P., Sanjuan, J., Bisseling, T., & Olivares, J. (1998). 

Involvement of salicylic acid in the establishment of the Rhizobium meliloti - Alfalfa 

symbiosis. Molecular Plant-Microbe Interactions, 11(2), 153–155.  

Mason, S., Galusha, T., & Kmail, Z. (2016). Soybean yield and nodulation response to crop history and 

inoculation. Agronomy Journal, 108(1), 309–312.  

Mastrodomenico, A. T., & Purcell, L. C. (2012). Soybean Nitrogen Fixation and Nitrogen 

Remobilization during Reproductive Development. Crop Science, 52(3), 1281–1289.  



120 
 

Masuda, T., & Goldsmith, P. D. (2009). World soybean production: Area harvested, yield, and long-

term projections. International Food and Agribusiness Management Review, 12(4), 143–162. 

Materon, L. A. (1994). Delayed inoculation and competition of Rhizobium meliloti in annual 

Medicago species. Applied Soil Ecology, 1(4), 255–260.  

Mathesius, U. (2008). Auxin: at the root of nodule development? Functional Plant Biology, 35(8), 

651. 

Mathesius, U., Charon, C., Rolfe, B. G., Kondorosi, A., & Crespi, M. (2000). Temporal and Spatial 

Order of Events During the Induction of Cortical Cell Divisions in White Clover by Rhizobium 

leguminosarum bv. trifolii Inoculation or Localized Cytokinin Addition. Molecular Plant-

Microbe Interactions, 13(6), 617–628.  

Mathesius, U., Schlaman, H. R. M., Spaink, H. P., Sautter, C., Rolfe, B. G., & Djordjevic, M. A. (1998). 

Auxin transport inhibition precedes root nodule formation in white clover roots and is 

regulated by flavonoids and derivatives of chitin oligosaccharides. Plant Journal, 14(1), 23–

34.  

Mathews, A., Carroll, B. J., & Gresshoff, P. M. (1989). Development of Bradyrhizobium infections in 

supernodulating and non-nodulating mutants of soybean (Glycine max L. Merrill). 

Protoplasma, 150(1), 40–47.  

Matthews, D. J., & Hayes, P. (1982). Effect of root zone temperature on early growth, nodulation and 

nitrogen fixation in soya beans. The Journal of Agricultural Science, 98(2), 371–376.  

McAdam, E. L., Reid, J. B., & Foo, E. (2018). Gibberellins promote nodule organogenesis but inhibit 

the infection stages of nodulation. Journal of Experimental Botany, 69(8), 2117–2130.  

McDermott, T. R., & Graham, P. H. (1989). Bradyrhizobium japonicum Inoculant Mobility, Nodule 

Occupancy, and Acetylene Reduction in the Soybean Root System. Applied and 

Environmental Microbiology, 55(10), 2493–2498.  

McKenzie, H., & Wallace, H. (1954). The Kjeldahl determination of Nitrogen: A critical study of 

digestion conditions-Temperature, Catalyst, and Oxidizing agent. Australian Journal of 

Chemistry, 7(1), 55.  

McLearn, N., & Dong, Z. (2002). Microbial nature of the hydrogen-oxidizing agent in hydrogen-

treated soil. Biology and Fertility of Soils, 35(6), 465–469.  



121 
 

McLoughlin, T. J., Hearn, S., & Alt, S. G. (1990). Competition for nodule occupancy of introduced 

Bradyrhizobium japonicum strains in a Wisconsin soil with a low indigenous bradyrhizobia 

population. Canadian Journal of Microbiology, 36(12), 839–845.  

McPhee, K. (2005). Variation for seedling root architecture in the core collection of pea germplasm. 

Crop Science, 45(5), 1758–1763.  

Mendes, I. C., Hungria, M., & Vargas, M. A. T. (2004). Establishment of Bradyrhizobium japonicum 

and B. elkanii strains in a Brazilian Cerrado oxisol. Biology and Fertility of Soils, 40(1), 28–35.  

Mens, C., Li, D., Haaima, L. E., Gresshoff, P. M., & Ferguson, B. J. (2018). Local and Systemic Effect of 

Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase (IPT) 

Biosynthesis Genes Following Rhizobia Inoculation. Frontiers in Plant Science, 9, 1150.  

Middleton, P. H., Jakab, J., Penmetsa, R. V., Starker, C. G., Doll, J., Kalo, P., Prabhu, R., Marsh, J. F., 

Mitra, R. M., Kereszt, A., Dudas, B., Vanden Bosch, K., Long, S. R., Cook, D. R., Kiss, G. B. & 

Oldroyd, G. E. D. (2007). An ERF Transcription Factor in Medicago truncatula That Is Essential 

for Nod Factor Signal Transduction. The Plant Cell Online, 19(4), 1221–1234.  

Millar, A. H., Day, D. A., & Bergersen, F. J. (1995). Microaerobic respiration and oxidative 

phosphorylation by soybean nodule mitochondria: implications for nitrogen fixation. Plant, 

Cell and Environment, 18(7), 715–726.  

Miller, P. R., Gan, Y., McConkey, B. G., & McDonald, C. L. (2003). Pulse crops for the northern Great 

Plains: I. Grain productivity and residual effects on soil water and nitrogen. Agronomy 

Journal, 95(4), 972–979.  

Mishra, P. K., Mishra, S., Selvakumar, G., Kundu, S., & Shankar Gupta, H. (2009). Enhanced soybean 

(Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum- SB1 in presence 

of Bacillus thuringiensis- KR1. Acta Agriculturae Scandinavica, Section B - Plant Soil Science, 

59(2), 189–196.  

Moretti, L. G., Lazarini, E., Bossolani, J. W., Parente, T. L., Caioni, S., Araujo, R. S., & Hungria, M. 

(2018). Can additional inoculations increase soybean nodulation and grain yield? Agronomy 

Journal, 110(2), 715–721.  

Mortier, V., Wasson, A., Jaworek, P., De Keyser, A., Decroos, M., Holsters, M., Tarkowski, P., 

Mathesius, U. & Goormachtig, S. (2014). Role of LONELY GUY genes in indeterminate 

nodulation on Medicago truncatula. New Phytologist, 202(2), 582–593.  



122 
 

Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., & Szczyglowski, K. (2007). A Cytokinin 

Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis. 

Science, 315(5808), 101–104. 

Naeem, M., Bhatti, I., Ahmad, R. H., & Ashraf, M. Y. (2004). Effect of some growth hormones (GA3, 

IAA and kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens 

culinaris medik). Pakistan Journal of Botany, 36(4), 801–809. 

Nakagawa, T., & Kawaguchi, M. (2006). Shoot-applied MeJA suppresses root nodulation in Lotus 

japonicus. Plant and Cell Physiology, 47(1), 176–180.  

Nazir, R., Semenov, A. V, Sarigul, N., & Elsas, J. D. van. (2013). Bacterial community establishment in 

native and non-native soils and the effect of fungal colonization. Microbiology Discovery, 

1(1), 8.  

Nellemann, C., MacDevette, M., Manders, T., Eickhout, B., Svihus, B., Prins, A. G., Kaltenborn, B. P. 

(2009). The Environmental Food Crisis: the environment’s role in averting future food crises. 

GRID Arendal. Retrieved from www.grida.no (accessed 20 Aug. 2019). 

Nemecek, T., von Richthofen, J. S., Dubois, G., Casta, P., Charles, R., & Pahl, H. (2008). Environmental 

impacts of introducing grain legumes into European crop rotations. European Journal of 

Agronomy, 28(3), 380–393.  

Neo, H. H., & Layzell, D. B. (1997). Phloem Glutamine and the Regulation of O2 Diffusion in Legume 

Nodules. Plant Physiology, 113(1), 259–267.  

Neves, M. C. P., Didonet, A. D., Duque, F. F., & Doöbereiner, J. (1985). Rhizobium strain effects on 

nitrogen transport and distribution in soybeans. Journal of Experimental Botany, 36(8), 

1179–1192.  

Newcomb, W., Sippell, D., & Peterson, R. L. (1979).  The early morphogenesis of Glycine max and 

Pisum sativum root nodules . Canadian Journal of Botany, 57(23), 2603–2616.  

Ng, J. L. P., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F., & Mathesiusa, U. (2015). 

Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago 

truncatula cytokinin perception mutant cre1. Plant Cell, 27(8), 2210–2226.  

Nicolás, M., Arrabal Arias, C., & Hungria, M. (2002). Genetics of nodulation and nitrogen fixation in 

Brazilian soybean cultivars. Biology and Fertility of Soils, 36(2), 109–117.  



123 
 

Nikolić, R., Mitić, N., Miletić, R., & Nešković, M. (2006). Effects of Cytokinins on In Vitro Seed 

Germination and Early Seedling Morphogenesis in Lotus corniculatus L. Journal of Plant 

Growth Regulation, 25(3), 187–194.  

Nonokawa, K., Kokubun, M., Nakajima, T., Nakamura, T., & Yoshida, R. (2007). Roles of Auxin and 

Cytokinin in Soybean Pod Setting. Plant Production Science, 10(2), 199–206.  

Novoa, R., & Loomis, R. S. (1981). Nitrogen and plant production. Plant and Soil, 58(1–3), 177–204.  

Nukui, N., Ezura, H., & Minamisawa, K. (2004). Transgenic Lotus japonicus with an ethylene receptor 

gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant 

and Cell Physiology, 45(4), 427–435.  

Nuruzzaman, M., Lambers, H., Bolland, M. D. A., & Veneklaas, E. J. (2005). Phosphorus benefits of 

different legume crops to subsequent wheat grown in different soils of Western Australia. 

Plant and Soil, 271(1–2), 175–187.  

Ohyama, T. (1983). Comparative studies on the distribution of nitrogen in soybean plants supplied 

with N2 and NO3 - at the pod filling stage. Soil Science and Plant Nutrition, 29(2), 133–145.  

Oldroyd, G. E. D. (2007). Nodules and Hormones. Science, 315(5808).  

Oldroyd, G. E. D. (2013). Speak, friend, and enter: signalling systems that promote beneficial 

symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252–263.  

Oldroyd, G. E. D., Mitra, R. M., Wais, R. J., & Long, S. R. (2001). Evidence for structurally specific 

negative feedback in the Nod factor signal transduction pathway. The Plant Journal, 28(2), 

191–199.  

Oldroyd, G. E., Engstrom, E. M., & Long, S. R. (2001). Ethylene inhibits the Nod factor signal 

transduction pathway of Medicago truncatula. The Plant Cell, 13(8), 1835–1849.  

Osterholz, W. R., Rinot, O., Liebman, M., & Castellano, M. J. (2017). Can mineralization of soil organic 

nitrogen meet maize nitrogen demand? Plant and Soil, 415(1–2), 73–84.  

Ott, T., Van Dongen, J. T., Günther, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, 

T., Geigenberger, P. & Udvardi, M. K. (2005). Symbiotic leghemoglobins are crucial for 

nitrogen fixation in legume root nodules but not for general plant growth and development. 

Current Biology, 15(6), 531–535.  

Ouertani, K., Washington, E., Lage, P., Kantartzi, S. K., Lightfoot, D. A., & Kassem, M. A. (2011). 

Comparison of Early and Conventional Soybean Production Systems for Yield and other 

Agronomic Traits. Atlas Journal of Plant Biology, 1(1), 1–5.  



124 
 

Pacios-Bras, C., Schlaman, H. R. M., Boot, K., Admiraal, P., Langerak, J. M., Stougaard, J., & Spaink, H. 

P. (2003). Auxin distribution in Lotus japonicus during root nodule development. Plant 

Molecular Biology, 52(6), 1169–1180.  

Payakapong, W., Tittabutr, P., Teaumroong, N., & Boonkerd, N. (2004). Soybean cultivars affect 

nodulation competition of Bradyrhizobium japonicum strains. World Journal of Microbiology 

and Biotechnology, 20(3), 311–315.  

Pazdernik, D. L., Graham, P. H., Vance, C. P., & Orf, J. H. (1996). Host Genetic Variation in the Early 

Nodulation and Dinitrogen Fixation of Soybean. Crop Science, 36(5), 1102.  

Penmetsa, R. V., & Cook, D. R. (1997). A legume ethylene-insensitive mutant hyperinfected by its 

rhizobial symbiont. Science, 275(5299), 527–530.  

Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. 

M., Dakora, F. D., Bhattarai, S., Maskey, S. L., Sampet, C., Rerkasem, B., Khan, D. F., 

Hauggaard-Nielsen, H. & Jensen, E. S. (2009). The contributions of nitrogen-fixing crop 

legumes to the productivity of agricultural systems. Symbiosis, 48(1–3), 1–17.  

Peoples, M. B., Ladha, J. K., & Herridge, D. F. (1995). Enhancing legume N2 fixation through plant and 

soil management. Plant and Soil, 174(1–2), 83–101.  

Peoples, Mark B., & Craswell, E. T. (1992). Biological nitrogen fixation: Investments, expectations and 

actual contributions to agriculture. Plant and Soil, 141(1–2), 13–39.  

Pérez-Pizá, M. C., Cejas, E., Zilli, C., Prevosto, L., Mancinelli, B., Santa-Cruz, D., Yannarelli, G. & 

Balestrasse, K. (2020). Enhancement of soybean nodulation by seed treatment with non–

thermal plasmas. Scientific Reports, 10(1), 4917. 

Phillips, D. A., & DeJong, T. M. (1984). Dinitrogen Fixation in Leguminous Crop Plants (pp. 119–132). 

John Wiley & Sons, Ltd.  

Phillips, D. A., & Torrey, J. G. (1972).  Studies on Cytokinin Production by Rhizobium. Plant 

Physiology, 49(1), 11–15.  

Pierce, M., & Bauer, W. D. (1983). A rapid regulatory response governing nodulation in soybean. 

Plant Physiology, 73(2), 286–290.  

Pii, Y., Crimi, M., Cremonese, G., Spena, A., & Pandolfini, T. (2007). Auxin and nitric oxide control 

indeterminate nodule formation. BMC Plant Biology, 7(1), 21.  



125 
 

Piotrowska-Niczyporuk, A., & Bajguz, A. (2014). The effect of natural and synthetic auxins on the 

growth, metabolite content and antioxidant response of green alga Chlorella vulgaris 

(Trebouxiophyceae). Plant Growth Regulation, 73(1), 57–66.  

Pitumpe Arachchige, P. S., Rosso, L. H. M., Hansel, F. D., Ramundo, B., Torres, A. R., Asebedo, R., 

Ciampitti, I. A. & Jagadish, S. V. K. (2020).  Temporal biological nitrogen fixation pattern in 

soybean inoculated with  Bradyrhizobium. Agrosystems, Geosciences & Environment, 3(1), 2–

11.  

Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., Crespi, M. & Frugier, F. (2011). 

MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate 

symbiotic nodule organogenesis in Medicago truncatula. Plant Journal, 65(4), 622–633.  

Podlešáková, K., Fardoux, J., Patrel, D., Bonaldi, K., Novák, O., Strnad, M., Giraud, E., Spíchal, L. & 

Nouwen, N. (2013). Rhizobial Synthesized Cytokinins Contribute to But Are Not Essential for 

the Symbiotic Interaction Between Photosynthetic Bradyrhizobia and Aeschynomene 

Legumes. Molecular Plant-Microbe Interactions, 26(10), 1232–1238. 

Popp, C., & Ott, T. (2011). Regulation of signal transduction and bacterial infection during root 

nodule symbiosis. Current Opinion in Plant Biology, 14(4), 458–467.  

Posadas, L. G., Eskridge, K. M., & Graef, G. L. (2014). Elite performance for grain yield from 

unadapted exotic soybean germplasm in three cycles of a recurrent selection experiment. 

Crop Science, 54(6), 2536–2546. 

Poustini, K., Mabood, F., & Smith, D. L. (2005). Low root zone temperature effects on bean 

(Phaseolus vulgaris L.) plants inoculated with Rhizobium leguminosarum bv. phaseoli pre-

incubated with methyl jasmonate and/or genistein. Acta Agriculturae Scandinavica, Section 

B - Soil & Plant Science, 55(4), 293–298.  

Pradhan, D., Sinclair, T. R., & Alijani, K. (2018). Nitrogen Fixation Establishment during Initial Growth 

of Grain Legume Species. Journal of Crop Improvement, 32(1), 50–58.  

Preissel, S., Reckling, M., Schläfke, N., & Zander, P. (2015). Magnitude and farm-economic value of 

grain legume pre-crop benefits in Europe: A review. Field Crops Research, 175, 64–79.  

Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M. M., De Felipe, M. R., Harrison, 

J., Vanacker, H. & Foyer, C. H. (2004). Legume nodule senescence: roles for redox and 

hormone signalling in the orchestration of the natural aging process. New Phytologist, 

165(3), 683–701.  



126 
 

Purcell, L. C., De Silva, M., King, C. A., & Kim, W. H. (1997). Biomass accumulation and allocation in 

soybean associated with genotypic differences in tolerance of nitrogen fixation to water 

deficits. Plant and Soil, 196(1), 101–113. 

Purcell, L. C., Salmeron, M., & Ashlock, L. (2014). Soybean Growth and Development - Chapter 2 

Arkansas Soybean Production Handbook - MP197. In Soybean Growth and Development (pp. 

2–9). 

Pypers, P., Huybrighs, M., Diels, J., Abaidoo, R., Smolders, E., & Merckx, R. (2007). Does the 

enhanced P acquisition by maize following legumes in a rotation result from improved soil P 

availability? Soil Biology and Biochemistry, 39(10), 2555–2566.  

Rahman, M. M., Hampton, J. G., & Hill, M. J. (2005). The effect of time of sowing on soybean seed 

quality. Seed Science and Technology, 33(3), 687–697.  

Rainbird, R. M., Hitz, W. D., & Hardy, R. W. F. (1984).  Experimental Determination of the Respiration 

Associated with Soybean/ Rhizobium Nitrogenase Function, Nodule Maintenance, and Total 

Nodule Nitrogen Fixation . Plant Physiology, 75(1), 49–53.  

Rattalino Edreira, J. I., Mourtzinis, S., Azzari, G., Andrade, J. F., Conley, S. P., Lobell, D., Specht, E. J. & 

Grassini, P. (2020). From sunlight to seed: Assessing limits to solar radiation capture and 

conversion in agro-ecosystems. Agricultural and Forest Meteorology, 280(October 2019), 

107775.  

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double 

Global Crop Production by 2050. PLoS ONE, 8(6).  

Reckling, M., Hecker, J. M., Bergkvist, G., Watson, C. A., Zander, P., Schläfke, N., Stoddard, F. L., Eory, 

V., Topp, C. F. E., Maire, J. & Bachinger, J. (2016). A cropping system assessment 

framework—Evaluating effects of introducing legumes into crop rotations. European Journal 

of Agronomy, 76, 186–197.  

Redmond, J. W., Batley, M., Innes, R. W., Kuempel, P. L., Djordjevic, M. A., & Rolfe, B. G. (1986). 

Flavones Induce Expression of the Nodulation Genes in Rhizobium. In Recognition in 

Microbe-Plant Symbiotic and Pathogenic Interactions (pp. 115–121). Berlin, Heidelberg: 

Springer Berlin Heidelberg.  

Redondo, F. J., De La Peña, T. C., Morcillo, C. N., Lucas, M. M., & Pueyo, J. J. (2009). Overexpression 

of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed 

senescence and starch accumulation in alfalfa root nodules. Plant Physiology, 149(2), 1166–

1178.  



127 
 

Reid, D. E., Ferguson, B. J., Hayashi, S., Lin, Y. H., & Gresshoff, P. M. (2011). Molecular mechanisms 

controlling legume autoregulation of nodulation. Annals of Botany, 108(5), 789–795.  

Rembon, F. S., & MacKenzie, A. F. (1997). Soybean nitrogen contribution to corn and residual nitrate 

under conventional tillage and no-till. Canadian Journal of Soil Science, 77(4), 543–551. 

Remmler, L., Clairmont, L., Rolland-Lagan, A. G., & Guinel, F. C. (2014). Standardized mapping of 

nodulation patterns in legume roots. New Phytologist, 202(3), 1083–1094.  

Richardson, A. E., Hocking, P. J., Simpson, R. J., & George, T. S. (2009). Plant mechanisms to optimise 

access to soil phosphorus. Crop and Pasture Science, 60(2), 124–143.  

Riely, B. K., Lougnon, G., Ané, J. M., & Cook, D. R. (2007). The symbiotic ion channel homolog DMI1 is 

localized in the nuclear membrane of Medicago truncatula roots. Plant Journal, 49(2), 208–

216.  

Riggle, B. D., Wiebold, W. J., & Kenworthy, W. J. (1984). Effect of Photosynthate Source‐Sink 

Manipulation on Dinitrogen Fixation of Male‐Fertile and Male‐Sterile Soybean Isolines 1. 

Crop Science, 24(1), 5–8.  

Robertson, G. P., & Vitousek, P. M. (2009). Nitrogen in Agriculture: Balancing the Cost of an Essential 

Resource. Annual Review of Environment and Resources, 34(1), 97–125.  

Robson, R. L., & Postgate, J. R. (1980). Oxygen and Hydrogen in Biological Nitrogen Fixation. Annual 

Review of Microbiology, 34(1), 183–207.  

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, 

M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., 

Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., 

Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. & 

Foley, J. A. (2009). A safe operating space for humanity. Nature, 461(7263), 472–475.  

Rogers, A., Ainsworth, E. A., & Leakey, A. D. B. (2009). Will elevated carbon dioxide concentration 

amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151(3), 1009–1016.  

Rosas, S., Soria, R., Correa, N., & Abdala, G. (1998). Jasmonic acid stimulates the expression of nod 

genes in Rhizobium. Plant Molecular Biology, 38(6), 1161–1168.  

Rotundo, J. L., Borrás, L., De Bruin, J., & Pedersen, P. (2014). Soybean Nitrogen Uptake and 

Utilization in Argentina and United States Cultivars. Crop Science, 54(3), 1153–1165.  

Royal Society of London. (2009). Reaping the benefits: Science and the sustainable intensification of 

global agriculture. Chemical Engineer. London. Retrieved from 



128 
 

https://royalsociety.org/~/media/royal_society_content/policy/publications/2009/4294967

719.pdf 

RStudioTeam. (2020). RStudio: Integrated Development for R. RStudio. Boston, MA: PBC. Retrieved 

from http://www.rstudio.com/ 

Rufty, T. W., Raper, C. D., & Jackson, W. A. (1981). Nitrogen assimilation, root growth and whole 

plant responses of soybean to root temperature, and to carbon dioxide and light in the aerial 

environment. New Phytologist, 88(4), 607–619.  

Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., Sato, S., Tabata, S., Imaizumi-

Anraku, H., Umehara, Y., Kouchi, H., Murooka, Y., Szczyglowski, K., Downie, J. A., Parniske, 

M., Hayashi, M. & Kawaguchi, M. (2007). Nucleoporin85 is required for calcium spiking, 

fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 19(2), 

610–624.  

Salmeron, M., Gbur, E. E., Bourland, F. M., Buehring, N. W., Earnest, L., Fritschi, F. B., Golden, B. R., 

Hathcoat, D., Lofton, J., Miller, T. D., Neely, C., Grover, S., Udeigwe, T. K., Verbree, D. A., 

Vories, E. D.,  Wiebold, W. J. & Purcell, L. C. (2014). Soybean maturity group choices for early 

and late plantings in the midsouth. Agronomy Journal, 106(5), 1893–1901.  

Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). 

Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops 

Research, 108(1), 1–13.  

Santachiara, G., Borrás, L., & Rotundo, J. L. (2017). Physiological Processes Leading to Similar Yield in 

Contrasting Soybean Maturity Groups. Agronomy Journal, 109(1), 158–167.  

Santachiara, G., Salvagiotti, F., Gerde, J. A., & Rotundo, J. L. (2018). Does biological nitrogen fixation 

modify soybean nitrogen dilution curves? Field Crops Research, 223(April), 171–178.  

Santachiara, G., Salvagiotti, F., & Rotundo, J. L. (2019). Nutritional and environmental effects on 

biological nitrogen fixation in soybean: A meta-analysis. Field Crops Research, 

240(September), 106–115.  

Schauser, L., Roussis, A., Stiller, J., & Stougaard, J. (1999). A plant regulator controlling development 

of symbiotic root nodules. Nature, 402(6758), 191–195.  

Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National 

Academy of Sciences of the United States of America, 106(1), 203–208.  



129 
 

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image 

analysis. Nature Methods, 9(7), 671–675.  

Scholte, M. (2002). T-DNA tagging in Medicago truncatula. Wageningen University. 

Schroeder, H. (1984). Effects of Applied Growth Regulators on Pod Growth and Seed Protein 

Composition in Pisum sativum L. Journal of Experimental Botany, 35(6), 813–821.  

Schuize, J., Adgo, E., & Merbach, W. (1999). Carbon Costs Associated with N2 Fixation in Vicia faba L. 

and Pisum sativum L. over a 14‐Day Period. Plant Biology, 1(6), 625–631.  

Schultz, C. J., Kochian, L. V., & Harrison, M. J. (2010). Genetic variation for root architecture, nutrient 

uptake and mycorrhizal colonisation in Medicago truncatula accessions. Plant and Soil, 

336(1), 113–128.  

Schulz, T. J., & Thelen, K. D. (2008). Soybean Seed Inoculant and Fungicidal Seed Treatment Effects 

on Soybean. Crop Science, 48(5), 1975–1983.  

Schulze, J. (2004). How are nitrogen fixation rates regulated in legumes? Journal of Plant Nutrition 

and Soil Science, 167(2), 125–137.  

Schwember, A. R., Schulze, J., del Pozo, A., & Cabeza, R. A. (2019). Regulation of Symbiotic Nitrogen 

Fixation in Legume Root Nodules. Plants, 8(9), 333.  

Seifert, C. A., Roberts, M. J., & Lobell, D. B. (2017). Continuous corn and soybean yield penalties 

across hundreds of thousands of fields. Agronomy Journal, 109(2), 541–548.  

Serraj, R., Vadez, V., Denison, R. F., & Sinclair, T. R. (1999). Involvement of Ureides in Nitrogen 

Fixation Inhibition in Soybean. Plant Physiology, 119(January), 289–296.  

Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F., & French, R. J. (2012). Break-crop 

benefits to wheat in Western Australia – insights from over three decades of research. Crop 

and Pasture Science, 63(1), 1.  

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W. & Zhang, F. (2011). Phosphorus 

dynamics: From soil to plant. Plant Physiology, 156(3), 997–1005.  

Shiferaw, B., Bantilan, M. C. S., & Serraj, R. (2004). Harnessing the potentials of BNF for poor 

farmers: Technological, policy and institutional constraints and research needs. In: (Ed.) 

Symbiotic Nitrogen Fixation: Prospects for Enhanced Application in Tropical Agriculture. 

(pp.3–27). Oxford & IBH Publishing, New Delhi. 



130 
 

Shiro, S., Kuranaga, C., Yamamoto, A., Sameshima-Saito, R., & Saeki, Y. (2016). Temperature-

Dependent Expression of NodC and Community Structure of Soybean-Nodulating 

Bradyrhizobia. Microbes and Environments, 31(1), 27–32.  

Shtark, O. Y., Borisov, A. Y., Zhukov, V. A., Provorov, N. A., & Tikhonovich, I. A. (2010). Intimate 

associations of beneficial soil microbes with host plants. In Soil Microbiology and Sustainable 

Crop Production (pp. 119–196). Springer Netherlands.  

Sinclair, T. R., & de Wit, C. T. (1975). Photosynthate and Nitrogen Requirements for Seed Production 

by Various Crops. Science, 189(4202), 565–567.  

Sinclair, T.R., & Jamieson, P. D. (2006). Grain number, wheat yield, and bottling beer: An analysis. 

Field Crops Research, 98(1), 60–67.  

Sinclair, Thomas R., & Nogueira, M. A. (2018). Selection of host-plant genotype: The next step to 

increase grain legume N2 fixation activity. Journal of Experimental Botany, 69(15), 3523–

3530.  

Sindelar, A. J., Schmer, M. R., Jin, V. L., Wienhold, B. J., & Varvel, G. E. (2016). Crop rotation affects 

corn, grain sorghum, and Soybean yields and nitrogen recovery. Agronomy Journal, 108(4), 

1592–1602.  

Smil, V. (1999). Detonator of the population explosion. Nature, 400(6743), 415.  

Smit, P. (2005). NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced 

Transcription. Science, 308(5729), 1789–1791.  

Smith, B. E. (2002). Nitrogenase Reveals Its Inner Secrets. Science, 297(5587), 1654–1655.  

Somasegaran, P., & Hoben, H. J. (1994). Handbook for Rhizobia. Handbook for Rhizobia. New York, 

NY: Springer New York.  

Song, L., Carroll, B. J., Gresshoff, P. M., & Herridge, D. F. (1995). Field assessment of supernodulating 

genotypes of soybean for yield, N2 fixation and benefit to subsequent crops. Soil Biology and 

Biochemistry, 27(4–5), 563–569.  

Spaink, H. P. (2000). Root Nodulation and Infection Factors Produced by Rhizobial Bacteria. Annual 

Review of Microbiology, 54(1), 257–288.  

Specht, J. E., Hume, D. J., & Kumudini, S. V. (1999). Soybean Yield Potential - A Genetic and 

Physiological Perspective. Crop Science, 39(6), 1560–1570.  

Specht, James E., Diers, B. W., Nelson, R. L., de Toledo, J. F. F., Torrion, J. A., & Grassini, P. (2015). 

Soybean (pp. 311–355). John Wiley & Sons, Ltd.  



131 
 

Stacey, G. (2007). The Rhizobium-Legume Nitrogen-Fixing Symbiosis. In Biology of the Nitrogen Cycle 

(pp. 147–163). Elsevier.  

Stacey, G., McAlvin, C. B., Kim, S.Y., Olivares, J., & Soto, M. J. (2006). Effects of Endogenous Salicylic 

Acid on Nodulation in the Model Legumes Lotus japonicus and Medicago truncatula. Plant 

Physiology, 141(4), 1473–1481.  

Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture 

sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1), 2.  

Stein, S., Selesi, D., Schilling, R., Pattis, I., Schmid, M., & Hartmann, A. (2005). Microbial activity and 

bacterial composition of H2-treated soils with net CO2 fixation. Soil Biology and Biochemistry, 

37(10), 1938–1945.  

Sturtevant, D. B., & Taller, B. J. (1989).  Cytokinin Production by Bradyrhizobium japonicum. Plant 

Physiology, 89(4), 1247–1252.  

Sulieman, S., & Schulze, J. (2010). The efficiency of nitrogen fixation of the model legume Medicago 

truncatula (Jemalong A17) is low compared to Medicago sativa. Journal of Plant Physiology, 

167(9), 683–692.  

Sulieman, S., & Tran, L. S. P. (2013). Asparagine: an amide of particular distinction in the regulation 

of symbiotic nitrogen fixation of legumes. Critical Reviews in Biotechnology, 33(3), 309–327.  

Sun, J., Cardoza, V., Mitchell, D. M., Bright, L., Oldroyd, G., & Harris, J. M. (2006). Crosstalk between 

jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for 

regulation of nodulation. Plant Journal, 46(6), 961–970.  

Sundaresan, V., & Ausubel, M. (1981). Nucleotide Sequence of the Gene Coding for the Nitrogenase 

Iron Protein from Klebsiella pneumoniae. The Journal of Biological Chemistry, 256(6), 2808–

2812. 

Suzaki, T., Ito, M., & Kawaguchi, M. (2013). Genetic basis of cytokinin and auxin functions during root 

nodule development. Frontiers in Plant Science, 4(March), 1–6.  

Suzuki, A., Akune, M., Kogiso, M., Imagama, Y., Osuki, K. I., Uchiumi, T., Higashi, S., Han, S. Y., 

Yoshida, S., Asami, T. & Abe, M. (2004). Control of nodule number by the phytohormone 

abscisic Acid in the roots of two leguminous species. Plant & Cell Physiology, 45(7), 914–922.  

Tachibana, S., Du, Y. C., Wang, Y. H., & Kitamura, F. (1997). Implication of Endogenous Cytokinins in 

the Growth Inhibition of Cucumber Plants by Supraoptimal Root-zone Temperature. Journal 

of the Japanese Society for Horticultural Science, 66(3–4), 549–555 



132 
 

Tajima, R., Lee, O. N., Abe, J., Lux, A., & Morita, S. (2007). Nitrogen-Fixing Activity of Root Nodules in 

Relation to Their Size in Peanut (Arachis hypogaea L.). Plant Production Science, 10(4), 423–

429.  

Tassi, E., Pouget, J., Petruzzelli, G., & Barbafieri, M. (2008). The effects of exogenous plant growth 

regulators in the phytoextraction of heavy metals. Chemosphere, 71(1), 66–73.  

Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes - A boon to human nutrition. Trends 

in Food Science and Technology, 14(12), 507–518.  

Thibodeau, P. S., & Jaworski, E. G. (1975). Patterns of nitrogen utilization in the soybean. Planta, 

127(2), 133–147.  

Thilakarathna, M. S., & Raizada, M. N. (2017). A meta-analysis of the effectiveness of diverse rhizobia 

inoculants on soybean traits under field conditions. Soil Biology and Biochemistry, 105, 177–

196.  

Thomas, R. J., & Sprent, J. I. (1984). The Effects of Temperature on Vegetative and Early 

Reproductive Growth of a Cold-Tolerant and a Cold-Sensitive Line of Phaseolus vulgaris L. 

Nodular Uricase, Allantoinase, Xylem transport of N and Assimilation in Shoot Tissues. 

Annals of Botany, 53(4), 589–597.  

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable 

intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 

20260–20264.  

Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S., Sato, S., Asamizu, E., Tabata, S. 

& Stougaard, J. (2006). A Gain-of-Function Mutation in a Cytokinin Receptor Triggers 

Spontaneous Root Nodule Organogenesis. Plant Cell Mol. Plant Microbe Interact. D. P. Lohar 

et Al. Plant J, 18(38), 2680–203.  

Tjepkema, J. D., & Yocum, C. S. (1974). Measurement of oxygen partial pressure within soybean 

nodules by oxygen microelectrodes. Planta, 119(4), 351–360.  

Tolley, L. C., & Raper, C. D. (1985). Cyclic Variations in Nitrogen Uptake Rate in Soybean Plants. Plant 

Physiology, 78(2), 320–322.  

Turgeon, B. G., & Bauer, W. D. (1985). Ultrastructure of infection-thread development during the 

infection of soybean by Rhizobium japonicum. Planta, 163(3), 328–349.  

Turman, P. C., Wiebold, W. J., Wrather, J. A., & Tracy, P. W. (1995). Cultivar and planting date effects 

on soybean root growth. Plant and Soil, 176(2), 235–241.  



133 
 

Turner, M., Nizampatnam, N. R., Baron, M., Coppin, S., Damodaran, S., Adhikari, S., Arunachalam, S. 

P. Yu, O. & Subramanian, S. (2013). Ectopic expression of miR160 results in auxin 

hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development 

in soybean. Plant Physiology, 162(4), 2042–2055.  

Udvardi, M. K., & Day, D. A. (1997). Metabolite transport across symbiotic membranes of legume 

nodules. Annual Review of Plant Biology, 48(July), 493–523.  

Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B & Chalk, P. (2008). 

Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for 

International Agricultural Research.  

Unkovich, M. J., Baldock, J., & Peoples, M. B. (2010). Prospects and problems of simple linear models 

for estimating symbiotic N2 fixation by crop and pasture legumes. Plant and Soil, 329(1), 75–

89.  

Uzoh, I. M., Igwe, C. A., Okebalama, C. B., & Babalola, O. O. (2019). Legume-maize rotation effect on 

maize productivity and soil fertility parameters under selected agronomic practices in a 

sandy loam soil. Scientific Reports, 9(1), 1–9.  

Valentine, A. J., Benedito, V. A., & Kang, Y. (2010). Legume Nitrogen Fixation and Soil Abiotic Stress: 

From Physiology to Genomics and Beyond. In Annual Plant Reviews Volume 42 (Vol. 42, pp. 

207–248). Oxford, UK: Wiley-Blackwell.  

Van De Velde, W., Guerra, J. C. P., De Keyser, A., De Rycke, R., Rombauts, S., Maunoury, N., 

Mergaert, P., Kondorosi, E., Holsters, M. & Goormachtig, S. (2006). Aging in legume 

symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology, 

141(2), 711–720.  

van Kessel, C., & Hartley, C. (2000). Agricultural management of grain legumes: Has it led to an 

increase in nitrogen fixation? Field Crops Research, 65(2–3), 165–181.  

van Noorden, G. E., Ross, J. J., Reid, J. B., Rolfe, B. G., & Mathesius, U. (2006). Defective long-distance 

auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant 

Physiology, 140(4), 1494–1506.  

van Zeijl, A., Op den Camp, R. H. M., Deinum, E. E., Charnikhova, T., Franssen, H., Op den Camp, H. J. 

M., Bouwmeester, H., Kohlen, W., Bisseling, T., & Geurts, R. (2015). Rhizobium Lipo-

chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula 

Roots. Molecular Plant, 8(8), 1213–1226.  



134 
 

Vance, C. P., & Heichel, G. H. (1991). Carbon in N2 fixation: Limitation or exquisite adaptation. Annual 

Review of Plant Physiology and Plant Molecular Biology, 42(1), 373–392.  

Vance, C. P., Miller, S. S., Driscoll, B. T., Robinson, D. L., Trepp, G., Gantt, J. S., & Samas, D. A. (1998). 

Nodule Carbon Metabolism: Organic Acids for N2 Fixation (pp. 443–448). Springer, 

Dordrecht.  

Vance, C. P. (2001). Symbiotic Nitrogen Fixation and Phosphorus Acquisition. Plant Nutrition in a 

World of Declining Renewable Resources. Plant Physiology, 127(2), 390–397.  

Vasilas, B. L., Nelson, R. L., Fuhrmann, J. J., & Evans, T. A. (1995). Relationship of Nitrogen Utilization 

Patterns with Soybean Yield and Seed‐Fill Period. Crop Science, 35(3), 809–813.  

Vernié, T., Moreau, S., De Billy, F., Plet, J., Combier, J. P., Rogers, C., Oldroyd, G., Frugier, F., Niebel, 

A. & Gamas, P. (2008). EFD is an ERF transcription factor involved in the control of nodule 

number and differentiation in Medicago truncatula. Plant Cell, 20(10), 2696–2713.  

Vessey, J. K. (1992). Cultivar differences in assimilate partitioning and capacity to maintain N2 

fixation rate in pea during pod-filling. Plant and Soil, 139(2), 185–194.  

Vikman, P., & Vessey, J. K. (1993). Ontogenetic Changes in Root Nodule Subpopulations of Common 

Bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 44(3), 579–586. 

https://doi.org/10.1093/jxb/44.3.579 

Vogel, J. P., Woeste, K. E., Theologis,  a, & Kieber, J. J. (1998). Recessive and dominant mutations in 

the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and 

ethylene overproduction, respectively. Proceedings of the National Academy of Sciences of 

the United States of America, 95(April), 4766–4771.  

Voisin, A.-S., Guéguen, J., Huyghe, C., Jeuffroy, M. H., Magrini, M. B., Meynard, J. M., Mougel, C., 

Pellerin, S. & Pelzer, E. (2013). Legumes for feed, food, biomaterials and bioenergy in 

Europe: a review. Agronomy for Sustainable Development, 34(2), 361–380.  

Voisin, A. S., Salon, C., Jeudy, C., & Ware. (2003). Root and Nodule Growth in Pisum sativum L. in 

Relation to Photosynthesis: Analysis Using 13C-labelling. Annals of Botany, 92(4), 557–563.  

Voisin, A. S., Salon, C., Jeudy, C., & Warembourg, F. R. (2003). Symbiotic N2 fixation activity in 

relation to C economy of Pisum sativum L. as a function of plant phenology. Journal of 

Experimental Botany, 54(393), 2733–2744.  



135 
 

Vollmann, J., Walter, H., Sato, T., & Schweiger, P. (2011). Digital image analysis and chlorophyll 

metering for phenotyping the effects of nodulation in soybean. Computers and Electronics in 

Agriculture, 75(1), 190–195.  

von Braun, J. (2007). The World Food Situation New Driving Forces and Required Actions. 

International Food Policy Research Institute (IFPRI). Available: 

https://www.ifpri.org/publication/world-food-situation-new-driving-forces-and-required-

actions.  (accessed 10 Oct 2020).  

Wadisirisuk, P., Danso, S. K. A., Hardarson, G., & Bowen, G. D. (1989). Influence of Bradyrhizobium 

japonicum Location and Movement on Nodulation and Nitrogen Fixation in Soybeans. 

Applied and Environmental Microbiology, 55(7), 1711–1716.  

Wais, R. J., Galera, C., Oldroyd, G., Catoira, R., Penmetsa, R. V, Cook, D., Gough, C., Denarié, J. & 

Long, S. R. (2000). Genetic analysis of calcium spiking responses in nodulation mutants of 

Medicago truncatula. Proceedings of the National Academy of Sciences of the United States 

of America, 97(24), 13407–13412.  

Walch-Liu, P., Filleur, S., Gan, Y., & Forde, B. G. (2005). Signaling mechanisms integrating root and 

shoot responses to changes in the nitrogen supply. Photosynthesis Research, 83(2), 239–250.  

Walker, S. A., Viprey, V., & Downie, J. A. (2000). Dissection of nodulation signaling using pea mutants 

defective for calcium spiking induced by Nod factors and chitin oligomers. Proceedings of the 

National Academy of Sciences of the United States of America, 97(24), 13413–13418.  

Walsh, K. B. (1990). Vascular transport and soybean nodule function. III: Implications of a continual 

phloem supply of carbon and water. Plant, Cell and Environment, 13(9), 893–901.  

Walsh, K. B. (1995). Physiology of the legume nodule and its response to stress. Soil Biology and 

Biochemistry, 27(4–5), 637–655.  

Walsh, Kerry B., & Layzell, D. B. (1986). Carbon and Nitrogen Assimilation and Partitioning in 

Soybeans Exposed to Low Root Temperatures. Plant Physiology, 80(1), 249–255.  

Wang, Y., Marschner, P., & Zhang, F. (2012). Phosphorus pools and other soil properties in the 

rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of 

wheat and legume. Plant and Soil, 354(1–2), 283–298.  

Weaver, R. W., & Frederick, L. R. (1974). Effect of Inoculum Rate on Competitive Nodulation of 

Glycine max L. Merrill. II. Field Studies. Agronomy Journal, 66(2), 233–236.  



136 
 

Weisz, P. R., & Sinclair, T. R. (1988). A rapid non-destructive assay to quantify soybean nodule gas 

permeability. Plant and Soil, 105(1), 69–78.  

Wolyn, D. J., Attewell, J., Ludden, P. W., & Bliss, F. A. (1989). Indirect measures of N2 fixation in 

common bean (Phaseolus vulgaris L.) under field conditions: The role of lateral root nodules. 

Plant and Soil, 113(2), 181–187.  

Wu, T., Schoenau, J. J., Li, F., Qian, P., Malhi, S. S., & Shi, Y. (2003). Effect of tillage and rotation on 

organic carbon forms of chernozemic soils in Saskatchewan. Journal of Plant Nutrition and 

Soil Science, 166(3), 328–335.  

Xu, G., Fan, X., & Miller, A. J. (2012). Plant Nitrogen Assimilation and Use Efficiency. Annual Review of 

Plant Biology, 63(1), 153–182.  

Yashima, H., Fujikake, H., Sato, T., Ohtake, N., Sueyoshi, K. & Ohyama, T. (2003). Systemic and local 

effects of long-term application of nitrate on nodule growth and N2 fixation in soybean 

(Glycine max [L.] Merr.). Soil Science and Plant Nutrition, 49(6), 825–834.  

Yashima, Y., Kaihatsu, A., Nakajima, T., & Kokubun, M. (2005). Effects of source/sink ratio and 

cytokinin application on pod set in soybean. Plant Production Science, 8(2), 139–144.  

Yemm, E. W., Cocking, E. C., & Ricketts, R. E. (1955). The determination of amino-acids with 

ninhydrin. The Analyst, 80(948), 209–214.  

Young, G. E., & Conway, C. F. (1942). Estimation of Allantoin. Journal of Biological Chemistry, 142, 

839–843. 

Yuan, K., Reckling, M., Ramirez, M. D. A., Djedidi, S., Fukuhara, I., Ohyama, T., Yokoyama, T., 

Bellingrath-Kimura, S. D., Halwani, M., Egamberdieva, D. & Ohkama-Ohtsu, N. (2020). 

Characterization of Rhizobia for the Improvement of Soybean Cultivation at Cold Conditions 

in Central Europe. Microbes and Environments, 35(1), 1-13.  

Zander, P., Amjath-Babu, T. S., Preissel, S., Reckling, M., Bues, A., Schläfke, N., Kuhlman, T., 

Bachinger, T., Uthes, S., Stoddard, F., Murphy-Bokern, D. & Watson, C. (2016). Grain legume 

decline and potential recovery in European agriculture: a review. Agronomy for Sustainable 

Development, 36(2), 1-20. 

Zhang, F., Lynch, D. H., & Smith, D. L. (1995). Impact of low root temperatures in soybean (Glycine 

max. (L.) Merr.) on nodulation and nitrogen fixation. Environmental and Experimental 

Botany, 35(3), 279–285.  



137 
 

Zhang, F., & Smith, D. L. (1994). Effects of low root zone temperatures on the early stages of 

symbiosis establishment between soybean [Glycine max (L.) merr.] and bradyrhizobium 

japonicum. Journal of Experimental Botany, 45(10), 1467–1473.  

Zhang, H., Charles, T. C., Driscoll, B. T., Prithiviraj, B., & Smith, D. L. (2002). Low temperature-tolerant 

Bradyrhizobium japonicum strains allowing improved soybean yield in short-season areas. 

Agronomy Journal, 94(4), 870–875.  

Zilli, J. É., Pereira, G. M. D., França Júnior, I., Silva, K. da, Hungria, M., & Rouws, J. R. C. (2013). 

Dinâmica de rizóbios em solo do cerrado de Roraima durante o período de estiagem. Acta 

Amazonica, 43(2), 153–160.  

Zimmer, S., Messmer, M., Haase, T., Piepho, H. P., Mindermann, A., Schulz, H., Habekuß, A., Ordon, 

F., Wilbois, K. F. & Heß, J. (2016). Effects of soybean variety and Bradyrhizobium strains on 

yield, protein content and biological nitrogen fixation under cool growing conditions in 

Germany. European Journal of Agronomy, 72, 38–46.  

Zipfel, C., & Oldroyd, G. E. D. (2017). Plant signalling in symbiosis and immunity. Nature, 543(7645), 

328–336.  

Zou, H., Zhang, N. N., Pan, Q., Zhang, J. H., Chen, J., & Wei, G. H. (2019). Hydrogen sulfide promotes 

nodulation and nitrogen fixation in soybean–rhizobia symbiotic system. Molecular Plant-

Microbe Interactions, 32(8), 972–985. 

 

 

 

 

 

 

 

 

 



138 
 

Appendices 

Appendix 1.1. Centre for global Eco-innovation carbon report.  

CENTRE FOR GLOBAL ECO-INNOVATION CO2e 

Calculator 

Name: Robert Kempster 

 

Project: Using phytohormone interaction to improve nitrogen fixation in legumes 

 

Industry Partner: Plant Impact 

 

Academic Supervisors: Ian Dodd and Mariana Rufino 

 

Description of project: 

This project aimed to develop a product that will lessen the environmental impact of 

agriculture by reducing reliance on industrially fixed nitrogen fertilisers by increasing 

biological nitrogen fixation (BNF). Soybean, the focus of this project, has high nitrogen (N) 

demand with N supply highly correlated with yield. Plant hormones are known to regulate 

the formation of nodules, in which BNF occurs. Signalling events leading to nodule 

establishment involving plant hormones have been studied, but not the effect of hormone 

application in enhancing BNF. As N supply is so crucial to soybean and with the 

environmental consequences of N fertilisers, BNF is key to allowing high but sustainable 

future yield.  

Summary of GHG emission reduction: 

Agricultural production produces 12,000 mega tonnes of CO2e per year accounting for 86% 

of food related anthropogenic greenhouse-gas emissions (Vermeulen, Campbell, & Ingram, 

2012). These emissions are derived from a number of sources including fertiliser and crop 

protection manufacture and application and field operations. Relative carbon emissions 

can be reduced, on a per yield basis, through increasing yield for the same inputs.  
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Baseline carbon emissions are based on results from the AHDB Carbon Footprint Decision 

Tool, using data from a questionnaire completed by a Brazilian farmer (since Brazil is a key 

target market for Plant Impact). This was combined with results of an Argentinean field trial 

which tested the effectiveness of the biostimulant product developed in this project. 

 

The potential carbon savings from a BNF biostimulant product developed in this project are 

the result of increased legume yield for the same carbon inputs, giving a relative reduction 

in carbon emissions on a per yield basis. For a Brazilian soybean farm (650 ha) case study, 

carbon savings are associated with relative carbon emissions (from fertilisers, 

agrochemicals and farm machinery) on a per yield basis. From this, the CO2e emissions of 

the Plant Impact (PI) Brazilian soybean market were calculated using data on PI’s share of 

the total yield.   

 

GHG emissions 

before support 

821,604 tCO2e per 

annum 

Current GHG 

emissions   

806,883 tCO2e per 

annum 

Total GHG 

reduction 14,721 

tCO2e per annum 

 

Percentage of 

reduction 

1.79% 

Section one – Baseline of CO2e emissions relating to original process, service or product  

Scope one – Direct emissions from company owned and controlled operations  

Scope two – Indirect emissions purchased by company 

Scope three – Other indirect emissions from the supply chain owned and/or purchased 

by suppliers and consumers 

Downstream e.g. consumers (sold products) 

 

CO2e embodied use of sold products 

 

A case study of a 650 ha farm was used to calculate the CO2e emissions per ha, from which 

to calculate the CO2e emissions of the Plant Impact (PI) Brazilian soybean market using data 

on PI’s share of the total yield.   

 

Emissions from fertiliser production 
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Although nitrogen is not applied to fields other fertilisers, superphosphate and potassium 

sulphate, are applied at a rate of 150kg/ha each. Combined, these give carbon emissions of 

20.4 kg/ha (AHDB Carbon Tool), multiplied by 650ha case study farm gives 13.26 tCO2e per 

annum. 

 

Emissions from agrochemical production 

Application of crop protection products, i.e. pesticides (6kg active ingredient per ha) 

indicated by Brazilian farm case study lead to 246 kg/ha (AHDB Carbon Tool), multiplied by 

650 ha gives 159.9 tCO2e per annum. 

 

Emissions from agricultural machinery   

Carbon emissions from field operations equate to 127.4 kg CO2e/ha of fuel use (AHDB 

Carbon Tool). This includes emissions from 1 direct drilling of fertiliser (24.9 litres/ha = 66.8 

kg CO2e/ha), 9 spray applications of agrochemicals (7.2 litres/ha = 19.3 kg CO2e/ha) and 1 

combine at harvest (15.4 litres/ha = 41.3 kg CO2e/ha) as indicated by Brazilian farm case 

study. The total of 127.4 kg CO2e/ha multiplied by 650 ha gives total farm emissions of 

82.81 tCO2e per annum. 

 

Per farm scale: 

Emissions from: Fertiliser production + Agrochemical production + Agricultural machinery 

 

13.26 + 159.9 + 82.81 = 255.97 tCO2e per annum 

 

Per yield scale: 

Per ha emissions: Total farm CO2e / number of Ha 

 

255.97 / 650 = 0.3938 tCO2e per ha per annum  

 

Per yield emissions: tCO2e per ha / yield tonnes per ha 

Yield data are from control plots in an Argentinian field trial, carried out as part of this 

project.  
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0.3938 / 4.329 = 0.09097 tCO2e per tonne yield 

 

Plant Impact have indicated that they predict a 20% market share of the Latin American 

soybean biostimulant market which accounts for 30% of farmers. 

 

Predicted yield of Plant Impact Brazilian soybean market (FOASTAT 2018 data):  

(yield tonnes per ha x harvested area ha) x Biostimulant market x Plant impact market share  

 

(4.329 x 34,771,690 = 150,526,646) x 0.3 x 0.2 = 9,031,599 tonnes total yield of predicted 

market. 

 

Total baseline emissions:  

Calculated tCO2e per tonne yield x Predicted yield of Plant Impact Brazilian soybean market 

 

0.09097 x 9,031,599 = 821,604 tCO2e per annum 

 

Biogenic emissions – Other emissions related to flora, fauna, land and water 

Total baseline emissions figure 

 

821,604 tCO2e per annum 

Section two – Reduction of CO2e emissions relating to new process, service or product 

Scope one – Direct emissions from company owned and controlled operations  

Scope two – Indirect emissions purchased by company 

Scope three – Other indirect emissions from the supply chain owned and/or purchased 

by suppliers and consumers 

Downstream e.g. consumers (sold products) 

 

CO2e embodied use of sold products 
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The product developed in this project decreases carbon emissions indirectly, as it is not 

common to apply nitrogen to Brazilian fields. Additionally, biological nitrogen fixation is 

known to be reduced by application of industrial fertiliser. Thus, the same increases in 

biological fixation from product developed here are not likely with N application. Another 

potential carbon saving is a reduction of nitrogen fertiliser applied to subsequent crops. 

However, the relative impact on subsequent crops was not tested experimentally and so 

will also not be included as saving associated with this project.  

 

Carbon savings that can be attributed to this project are based on yield increases achieved 

through application of the product in Argentinean field trials. In this trial, yield increased 

with no (or negligible 76g/ha kinetin) increase in carbon input, thus relative carbon per 

tonne of soybean grain produced can be considered to be reduced.  

 

Whereas control plots yielded 4.329 tonnes per ha, plots treated with the new product 

yielded the equivalent of 4.408 tonnes per ha.  

Thus carbon emissions from the treated plots:  

 

0.3938 tCO2e per ha/ 4.408 tonne yield per ha = 0.08934 tCO2e per tonne yield 

   

New emissions figure:  

Calculated CO2e emissions per tonne yield after treatment x Predicted yield of Plant Impact 

Brazilian soybean market:  

 

0.08934 x 9,031,599 = 806,883 tCO2e per annum 

 

Biogenic emissions – Other emissions related to flora, fauna, land and water 

 Total reduction emissions figure (savings) 

 

Carbon baseline for Plant Impact’s predicted market share based on yield of control plots 

is 821,604 tCO2e per annum.  
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New emissions figure for Plant Impact’s predicted market share based on yield of treated 

plots is 806,883 tCO2e per annum. 

 

The GHG emissions savings from this project are:  

Baseline emissions - New emissions   

 

821,604 - 806,883 = 14,721 tCO2e per annum 
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Appendix 3.1 Effect of cytokinin (kinetin) seed coat at five different concentrations (high 

10-7 to low 10-11 mol L-1) on plant nodule traits and plant growth with a water control. 

Values are averages, ±SE with results of one-way ANOVA below with model residual 

standard error and degrees of freedom (df). 

Source of 

variation 

 
Nodule 

number  

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight 

(mg) 

Specific 

nodule 

weight 

(mg) 

Average 

nodule 

weight 

(mg) 

Shoot 

weight 

(mg) 

Leaf area 

(cm2) 

Chlorophyll 

content 

(µMol m2) 

Cytokinin Control 56.7 

±4.58 

239 

±22.8 

40.1 

±2.00 

168 

±8.49 

0.911 

±0.103 

455 

±20.4 

68.8 

±3.16 

223 

±6.03 
 

10 
-11

 58.1 

±4.63 

236 

±23.0 

38.2 

±2.00 

158 

±8.49 

0.964 

±0.103 

447 

±20.4 

66.1 

±3.09 

217 

±5.97 
 

10 
-10

 53.8 

±4.58 

216 

±22.8 

38.9 

±2.00 

159 

±8.49 

0.898 

±0.103 

457 

±20.4 

66.2 

±3.09 

224 

±5.97 
 

10 
-9
 57.4 

±4.58 

254 

±22.8 

41.8 

±2.00 

174 

±8.49 

1.013 

±0.103 

475 

±20.6 

70.2 

±3.12 

235 

±6.31 
 

10 
-8
 55.2 

±4.68 

240 

±23.3 

39.1 

±2.07 

175 

±8.78 

1.00 

±0.107 

450 

±20.6 

64.8 

±3.16 

221 

±6.10 
 

10 
-7
 59.6 

±6.41 

248 

±31.9 

34.6 

±2.08 

144 

±11.89 

0.654 

±0.144 

428 

±28.5 

72.7 

±4.33 

232 

±8.35 

Treatment 0.975 0.913 0.453 0.217 0.424 0.841 0.630 0.353 

SE 31.4 156 13.7 58.2 0.7 0.140 21.19 40.92 

d.f 250 250 250 250 249 251 250 245 
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Appendix 3.2 Effect of auxin (IAA) seed coat at four different concentrations (high 10-8 to 

low 10-11 mol L-1) on plant nodule traits and plant growth with water and solvent controls. 

Values are averages, ±SE with results of one-way ANOVA below with model residual 

standard error and degrees of freedom (df). 

Source 

of 

variation 

 
Nodule 

number  

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight 

(mg) 

Specific 

nodule 

weight 

(mg) 

Average 

nodule 

weight 

(mg) 

Shoot 

weight 

(mg) 

Leaf 

area 

(cm2) 

Chlorophyll 

content 

(µMol m2) 

Auxin Control 25.7 

±2.45 

85.0 

±8.12 

26.8 

±2.16 

88.5 

±4.55 

1.16 

±0.213 

401 

±23.9 

59.7 

±2.89 

398 

±9.14 
 

Solvent 27.3 

±2.45 

99.3 

±8.12 

24.8 

±2.16 

88.9 

±4.55 

1.15 

±0.213 

399 

±23.9 

60.8 

±2.89 

420 

±9.14 
 

10 
-11

 28.2 

±2.45 

88.5 

±8.12 

28.6 

±2.16 

86.8 

±4.55 

1.15 

±0.213 

440 

±23.9 

65.0 

±2.89 

411 

±9.14 
 

10 
-10

 22.8 

±2.45 

77.2 

±8.12 

26..2 

±2.16 

85.3 

±4.55 

1.53 

±0.213 

438 

±23.9 

65.2 

±2.89 

404 

±9.14 
 

10 
-9
 22.6 

±2.50 

77.4 

±8.30 

27.8 

±2.20 

90.3 

±4.65 

1.61 

±0.217 

421 

±24.4 

60.8 

±2.95 

413 

±9.33 
 

10 
-8
 30.5 

±2.45 

95.3 

±8.12 

30.2 

±2.16 

87.1 

±4.55 

1.26 

±0.213 

464 

±23.9 

67.3 

±2.89 

423 

±9.14 

Treatment 0.164 0.292 0.584 0.98 0.467 0.353 0.334 0.387 

SE 12 39.8 10.56 22.31 1.04 116.9 14.15 44.77 

d.f 137 137 137 137 137 137 137 137 
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Appendix 3.3 Effect of gibberellic acid (GA3) seed coat at four different concentrations 

(high 10-7 to low 10-10 mol L-1) on plant nodule traits and plant growth with water and 

solvent controls. Values are averages, ±SE with results of one-way ANOVA below and 

model residual standard error and degrees of freedom (df). 

Source of 

variation 

 
Nodule 

number  

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight 

(mg) 

Specific 

nodule 

weight 

(mg) 

Average 

nodule 

weight 

(mg) 

Shoot 

weight 

(mg) 

Leaf 

area 

(cm2) 

Chlorophyll 

content 

(µMol m2) 

Gibberellic 

acid  

Control 52.6 

±5.91 

227 

±44.5 

38.6 

±3.47 

171 

±10.7 

0.889 

±0.010 

443 

±24.4 

77.0 

±4.10 

236 

±7.71 
 

Solvent 50.5 

±7.43 

251 

±44.5 

38.4 

±5.3 

175 

±16.3 

0.955 

±0.152 

419 

±24.4 

78.2 

±4.19 

228 

±7.71 
 

10 
-10

 51.1 

±8.14 

225 

±54.4 

42.6 

±6.49 

155 

±20.0 

0.764 

±0.186 

382 

±22.3 

74.5 

±4.40 

226 

±7.71 
 

10 
-9
 50.3 

±7.14 

223 

±44.5 

34.5 

±5.30 

148 

±16.3 

0.662 

±0.152 

406 

±22.8 

76.2 

±4.40 

228 

±8.10 
 

10 
-8
 50.4 

±7.14 

187 

±54.4 

25.4 

±6.49 

129 

±20.0 

0.772 

±0.186 

417 

±26.5 

71.5 

±4.29 

221 

±8.10 
 

10 
-7
 55.1 

±6.65 

274 

±38.5 

44.2 

±4.33 

186 

±14.1 

0.714 

±0.124 

429 

±23.3 

83.8 

±4.40 

229 

±7.21 

Treatment 0.996 0.825 0.262 0.218 0.671 0.548 0.489 0.837 

SE 25.8 108.9 12.98 39.96 0.372 109.2 19.66 35.33 

d.f 76 36 37 36 37 120 120 119 
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Appendix 3.4 Effect of cytokinin (kinetin) root application at four different concentrations (high 10-7 to low 10-10 mol L-1) on plant nodule 

phenotype with water control. Values are averages, ±SE with letters denoting significant difference at p < 0.05 as determined by least significant 

difference (LSD) test with results of one-way ANOVA below with model residual standard error and degrees of freedom (df). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

 
Nodule 

number 

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight  

(mg) 

Specific 

nodule 

weight 

(mg g-1) 

Average 

nodule 

weight 

(mg) 

Total 

nodule 

area 

(mm
2
)  

Specific 

nodule 

area (mm
2
 

g
-1

) 

Average 

area 

(mm
2
) 

Nodule 

distribution  

(mm) 

4 mm 

Cytokinin Control 69.1 b 

±7.41 

264 c 

±26.8 

43.9 

±3.98 

168 

±12.3 

0.525 

±0.039 

239 c 

±55.9 

883 c 

±235 

3.38 

±0.606 

63.6 

±6.51 

3.67 b 

±3.8 
 

10 
-10

 99.3 a 

±7.41 

402 a 

±26.8 

50.5 

±3.98 

206 

±12.3 

0.525 

±0.039 

397 ab 

±53.1 

1583 ab 

±223 

4.00 

±0.575 

74.7 

±6.51 

10.33 ab 

±3.8 
 

10 
-9
 77.2 b 

±7.41 

346 ab 

±26.8 

44.4 

±3.98 

200 

±12.3 

0.599 

±0.042 

273 bc 

±53.1 

1182 abc 

±223 

3.63 

±0.575 

74.2 

±6.51 

8.00 b 

±3.8 
 

10 
-8
 89.4 ab 

±7.74 

322 bc 

±28.0 

50.4 

±4.36 

181 

±13.5 

0.566 

±0.042 

258 bc 

±55.9 

997 bc 

±235 

2.98 

±0.606 

55.8 

±6.51 

4.73 b 

±3.97 
 

10 
-7
 99.8 a 

±7.41 

384 ab 

±26.8 

50.3 

±3.98 

208 

±12.9 

0.576 

±0.042 

458 a 

±55.9 

1703 a 

±235 

4.34 

±0.606 

73.8 

±6.51 

20.4 a 

±4.16 

Treatment 0.016 0.005 0.568 0.118 0.223 0.027 0.065 0.552 0.209 0.040 

SE 25.7 92.8 13.8 42.7 0.134 167.8 704.8 1.82 13.02 13.2 

d.f 54 54 53 52 49 42 42 42 15 52 
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Appendix 3.5 Effect of auxin (IAA) root application at four different concentrations (high 10-7 to low 10-10 mol L-1) on plant nodule phenotype with 

water and solvent control. Values are averages, ±SE with letters denoting significant difference at p < 0.05 as determined by least significant 

difference (LSD) test with results of one-way ANOVA below with model residual standard error and degrees of freedom (df). 

 

Source of 

variation 

 
Nodule 

number 

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight 

(mg) 

Specific 

nodule 

weight (mg 

g-1) 

Average 

nodule 

weight (mg) 

Total 

nodule 

area (mm
2
)  

Specific 

nodule 

area (mm
2
 

g
-1

) 

Average 

area (mm
2
) 

Nodule 

distribution 

(mm) 

4 mm 

Auxin Control 51.5 

±7.14 

251 

±37.6 

30.9 

±5.92 

154 

±23.1 

0.712 

±0.153 

139 

±13.6 

682 

±78.3 

2.42 

±0.47 

71.2 

±10.14 

3.6 a 

±0.450 
 

Solvent 45.2 

±7.46 

223 

±39.3 

35.5 

±6.18 

164 

±24.2 

0.898 

±0.153 

81.7 

±13.0 

437 

±74.7 

2.21 

±0.448 

62.2 

±9.26 

1.364 bc 

±0.429 
 

10 
-10

 67.1 

±7.46 

352 

±39.3 

38.0 

±6.18 

191 

±24.2 

0.651 

±0.153 

126.4 

±15.2 

700 

±87.6 

2.11 

±0.526 

50.7 

±10.14 

2.250 ab 

±0.503 
 

10 
-9
 65.7 

±7.14 

318 

±37.6 

40.3 

±5.92 

182 

±23.1 

0.730 

±0.146 

113.3 

±12.4 

542 

±71.5 

2.39 

±0.429 

49.5 

±9.26 

1.00 bc 

±0.411 
 

10 
-8
 62.5 

±7.46 

313 

±39.3 

44.2 

±6.18 

219 

±24.2 

0.846 

±0.153 

112.4 

±13.6 

559 

±78.3 

1.76 

±0.470 

59.7 

±9.26 

1.091 bc 

±0.429 
 

10 
-7
 65.3 

±7.46 

331 

±39.3 

38.5 

±6.18 

196 

±24.2 

0.636 

±0.153 

110.1 

±12.4 

569 

±74.7 

1.76 

±0.448 

49.1 

±9.26 

0.727 c 

±0.429 

Treatment 0.204 0.161 0.733 0.453 0.793 0.085 0.201 0.835 0.543 <0.001 

SE 24.7 130.3 21 80.2 0.507 43.0 56 1.45 22.68 1.42 

d.f 62 62 62 62 62 57 56 56 28 57 



149 
 

Appendix 3.6 Effect of gibberellic acid (GA3) root application at four different concentrations (high 10-7 to low 10-10 mol L-1) on plant nodule 

phenotype with water and solvent control. Values are averages, ±SE with results of one-way ANOVA below with model residual standard error 

and degrees of freedom (df). 

Source of 

variation 

 
Nodule 

number 

Specific 

nodule 

number 

(# g
-1

) 

Nodule 

weight 

(mg) 

Specific 

nodule 

weight 

(mg g-1) 

Average 

nodule 

weight 

(mg) 

Total 

nodule 

area 

(mm
2
)  

Specific 

nodule 

area 

(mm
2
 g

-1
) 

Average 

area (mm
2
) 

Nodule 

distribution 

(mm) 

4 mm 

Gibberellic acid  Control 30.5 

±4.83 

104.4 

±16.9 

37.2 

±5.28 

106 

±10.45 

1.75 

±0.270 

71.4 

±9.17 

241 

±31.9 

2.57 

±0.12 

64.1 

±8.90 

0.909 

±0.463 
 

Solvent 39.6 

±4.83 

131.7 

±17.7 

41.9 

±5.91 

124 

±11.69 

1.18 

±0.301 

81.3 

±9.62 

265 

±33.5 

2.12 

±0.126 

63.9 

±8.90 

1.00 

±0.486 
 

10 
-10

 28.3 

±4.41 

79.2 

±16.2 

43.2 

±5.04 

119 

±9.97 

1.76 

±0.257 

66.6 

±8.78 

186 

±30.6 

2.45 

±0.115 

57.3 

±8.9 

1.667 

±0.444 
 

10 
-9
 30.2 

±4.41 

91.4 

±16.2 

38.6 

±4.82 

109 

±9.54 

1.39 

±0.246 

66.9 

±8.78 

200 

±30.6 

2.26 

±0.115 

48.1 

±9.75 

1.417 

±0.444 
 

10 
-8
 24.2 

±4.83 

78.6 

±17.7 

34.1 

±5.28 

103 

±10.45 

1.52 

±0.270 

53.8 

±9.62 

172 

±33.5 

2.24 

±0.126 

59.6 

±8.90 

1.111 

±0.512 
 

10 
-7
 26.3 

±4.41 

78.6 

±17.7 

38.4 

±4.82 

110 

±9.54 

1.75 

±0.246 

58.9 

±9.62 

175 

±30.6 

2.36 

±0.115 

63.5 

±8.90 

1.750 

±0.444 

Treatment 0.300 0.209 0.855 0.722 0.578 0.410 0.255 0.136 0.825 0.703 

SE 15.3 56.1 0.017 0.033 0.853 30.42 105.9 0.399 21.81 1.54 

d.f 61 61 57 57 57 61 61 61 29 60 
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Appendix 3.7 Effect of different cytokinin application methods (foliar, root and seed) at 

two different concentrations (high 10-7 and low 10-9 mol L-1) on plant growth and 

nodulation. Values are averages, ±SE with letters denoting significant difference at p < 

0.05 as determined by least significant difference (LSD) test with results of one-way 

ANOVA below with model residual standard error and degrees of freedom (df). 

 

Treatment 
Shoot 

weight (g) 

Leaf 

chlorophyll 

(µMol m2) 

Leaf area 

(cm2) 

Nodule 

weight (mg) 

Nodule 

number 

Control Control 0.530 

±0.045 

238 ab 

±5.17 

119 

±7.92 

28.4   

±3.1 

24.6 b 

±7.2 

Foliar High  0.651 

±0.047 

244 ab 

±5.43 

141 

±8.31 

34.7  

±3.3 

33 b 

±7.6 

 
Low 0.601 

±0.050 

227 b 

±5.72 

131 

±8.75 

38.2   

±3.3 

55.8 a 

±8.0 

Root High 0.590 

±0.053 

231 ab 

±6.07 

128 

±9.29 

28.8  

±3.6 

38.1 ab 

±8.53 

 
Low 0.579 

±0.047 

244 ab 

±5.43 

129 

±8.31 

30.8   

±3.2 

59.5 a 

±7.6 

Seed High 0.638 

±0.053 

256 a 

±6.07 

138 

±9.29 

32.6  

±3.6 

41.5 ab 

±8.5 

 
Low 0.723 

±0.050 

244 ab 

±5.72 

154 

±8.75 

34.5  

±3.4 

44.4 ab 

±8.0 

Treatment 
 

0.146 0.021 0.126 0.349 0.024 

SE   0.149 17.16 26.26 10.08 23.89 

df   58 58 58 57 58 
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Appendix 3.8 Effect of different cytokinin application treatments (foliar 10-7 and seed 10-

9 mol L-1) on plant growth and yield from V2 to R6. Values are averages, ±SE with letters 

denoting significant difference at p < 0.05 as determined by least significant difference 

(LSD) test with results of one-way ANOVA below with model residual standard error and 

degrees of freedom (df). 

Source 

of 

variation 

 
Shoot 

weight 

(g) 

Root 

weight 

(g) 

Leaf 

area 

(cm2) 

Leaf 

chlorophyll 

(µMol m2) 

Photosynthesis 

(µMol m2 s-1) 

Seed 

number  

Seed 

weight 

(g) 

Cytokinin Control 5.14 

±0.148 

1.031 

±0.034 

466 

±11.8 

322 

±7.49 

18.1 

±0.941 

46.2 

±3.14 

7.26 

±0.347 
 

Foliar 4.93 

±0.148 

0.977 

±0.034 

446 

±11.8 

326 

±7.49 

18.5 

±0.941 

43.7 

±3.14 

6.66 

±0.347 
 

Seed 4.94 

±0.148 

0.993 

±0.034 

446 

±11.8 

317 

±7.59 

17.7 

±0.941 

45.4 

±3.14 

6.89 

±0.347 

Stage V2 0.529 d 

±0.171 

0.282 d 

±0.040 

114 c 

±13.6 

246 d 

±8.80 

- - - 

 
V4 1.861 c 

±0.171 

0.782 c 

±0.040 

348 b 

±13.6 

283 c 

±8.64 

19.3 a 

±0.76 

- - 

 
R4 4.994 b 

±0.171 

1.356 b 

±0.040 

655 a 

±13.6 

357 b 

±8.64 

20.7 a 

±1.02 

- - 

 
R6 12.636 

a 

±0.171 

1.582 a 

±0.040 

692 a 

±13.6 

401 a 

±8.64 

14.4 b 

±1.02 

- - 

Cytokinin (C) 0.549 0.514 0.389 0.784 0.700 0.849 0.477 

Stage (S) <0.001 <0.001 <0.001 <0.001 <0.001 - - 

C x S 0.786 0.980 0.848 0.845 0.567 - - 

SE 0.939 0.217 74.49 47.34 3.95 9.93 1.10 

d.f 108 108 108 107 48 27 27 
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Appendix 3.9 Agarose gel electrophoresis from semi-quantitative RT-PCR analysis of 

ENOD40a transcript levels in root samples of seedling grown in growth pouches after 

either kinetin or hydro-priming or non-primed (dry) control. Lower band of DNA ladder 

represents 80 bp with ENOD40a product 100 and Actin 191 bp.  
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Appendix 4.1 Field climate data for three sowing dates in the 2019/ 2020 field trial. 

Values are averages, ±SE with letters denoting significant difference at p < 0.05 as 

determined by least significant difference (LSD) test with results of one-way ANOVA 

below with model residual standard error. 

Sowing  Air  

temperature  

(
o

C)  

Soil temperature     

(10 cm depth 
o

C) 

Precipitation (mm) Potential 

evapotranspiration 

(mm day
-1

) 

Dec 23.5 

±0.76 

24.7 b 

±0.38 

2.73 

±1.98 

5.97 

±0.54 

Jan 24.0 

±0.76 

27.0 a 

±0.38 

2.92 

±1.98 

6.67 

±0.54 

ANOVA (p value) 0.607 <0.001 0.947 0.365 

Residual SE 3.05 1.53 7.93 2.16 

 

 

Appendix 4.2 Environmental data for the 2019-2020 field trial. Daily air and soil (10 cm 

depth) temperature (black and grey line, respectively), precipitation (blue bars; A) and 

potential evapotranspiration (purple line; B). 


