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Abstract—Deep learning methods, especially convolutional 

neural network (CNN)-based methods, have shown promising 

performance for hyperspectral image (HSI) change detection (CD). 

It is acknowledged widely that different spectral channels and 

spatial locations in input image patches may contribute differently 

to CD. However, they are treated equally in existing CNN-based 

approaches. To increase the accuracy of HSI CD, we propose an 

end-to-end siamese CNN (SiamNet) with a spectral-spatial-wise 

attention mechanism (SSA-SiamNet). The proposed SSA-SiamNet 

method can emphasize informative channels and locations and 

suppress less informative ones to refine the spectral-spatial 

features adaptively. Moreover, in the network training phase, the 

weighted contrastive loss function is used for more reliable 

separation of changed and unchanged pixels and to accelerate the 

convergence of the network. SSA-SiamNet was validated using four 

groups of bi-temporal HSIs. The accuracy of CD using the 

SSA-SiamNet was found to be consistently greater than for ten 

benchmark methods. 

 

Index Terms—Attention mechanism, convolutional block 

attention module (CBAM), siamese network, hyperspectral images, 

change detection. 

 

I. INTRODUCTION 

Remote sensing images are a common data source for global 

monitoring of the Earth’s surface [1], [2]. Change detection (CD) 

can recognize the differences between multi-temporal remote 

sensing images and has been used widely in various applications, 

such as forestry and agricultural monitoring [3], [4], natural 

disaster assessment [5], [6] and land surface dynamic analysis [7] 

-[9]. With the successful launch of satellites, such as the NASA 

Earth Observing-1 (EO-1) and Chinese Gaofen-5, the 

availability of hyperspectral images (HSIs) at a global scale has 

increased greatly. HSIs contain rich spectral information and 

have inherent advantages over multispectral images in detecting 

land-cover changes [10]. However, the main challenges of CD 

using HSIs lie in the high dimensionality of the images, the 
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redundancy of spectral information and large computational 

cost. 

In general, conventional CD methods for HSIs can be 

categorized as algebra-based methods, transformation-based 

methods and post-classification comparison methods. The 

performance of algebra-based methods can be compromised due 

to the problem of information redundancy. Although 

transformation-based methods can deal with the high 

dimensionality, they have difficulty in selecting an appropriate 

threshold to detect land-cover changes. For post-classification 

comparison methods which compare two independent classified 

images pixel-by-pixel, the CD accuracy is affected directly by 

the propagation in classification errors of both images. 

Recently, deep learning methods have shown great potential 

performance for HSI CD, which can solve the problem of high 

dimensionality to a greater extent and exploit features that are 

more effective than hand-crafted ones. In [11], a stacked 

autoencoder (SAE) was adopted to extract features from the 

difference image of bi-temporal HSIs to detect changes, but this 

method considered only the spectral features of pixels. A deep 

belief network (DBN) consisting of a restricted Boltzmann 

machine (RBM) and support tensor machine (STM) was also 

developed to identify changes for HSIs [12]. Similar to the SAE 

method, however, the DBN failed to take into account spatial 

features. Spectral-spatial features, if properly extracted, can be 

more discriminative than spectral features for HSI processing 

tasks [13], [14], [15]. Based on this, a noise modeling-based 

unsupervised fully convolutional network (FCN) framework for 

HSI CD was developed to learn powerful spectral-spatial 

features [16]. A general end-to-end two-dimensional 

(2D)-convolutional neural network (CNN) framework 

(GETNET) using a mixed-affinity matrix that integrated a 

subpixel representation as the input was proposed to detect 

changes from bi-temporal HSIs [17]. Song et al. [18] proposed 

the recurrent three-dimensional (3D) fully convolutional 

network (Re3FCN), which merged the advantages of a 3D fully 

convolutional network (FCN) and a convolutional long 

short-term memory (ConvLSTM) to extract joint 

spectral-spatial-temporal features. Nonetheless, the above 

methods increase computational costs and fail to consider 

sufficiently the information redundancy in the spectral and 

spatial domains. 

The human vision system can selectively focus on 

conspicuous parts and ignore inconspicuous parts for an entire 

scene of interest. The attention mechanism, which is inspired by 

the human vision system, can be regarded as a tool biasing the 

allocation of available processing resources towards the most 

informative components of an input signal [19] . Moreover, the 

attention mechanism has the property of attending to important 
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components and suppressing irrelevant ones by setting the 

appropriate weights to an input signal [20]. The attention 

mechanism was applied extensively for image captioning [21], 

visual question answering [22], [23] and image classification 

[24], [25]. Recently, several attention mechanisms were 

proposed to enhance the representation ability of CNNs. 

Specifically, a residual attention network with an 

encoder-decoder type attention module that refines the feature 

maps was proposed to enhance image classification performance 

[26]. However, the generation of the 3D attention map in the 

residual attention network requires more parameters, which 

leads to increased computational cost. Hu et al. [27] proposed 

the squeeze-and-excitation module that utilized global 

average-pooled features to achieve spectral-wise attention. The 

squeeze-and-excitation module, however, only refines spectral 

features and ignores spatial attention which also has a crucial 

effect on the recognition of important spatial features in an 

image [21]. The 3D attention map with spectral and spatial 

intelligence capabilities was realized by the bottleneck attention 

module (BAM) [28]. However, the BAM needs to be placed at 

each bottleneck of the network, which makes the structure of the 

basic network more demanding. To address the above 

deficiencies, a convolutional block attention module (CBAM) 

was developed to use global average-pooled and max-pooled 

features to achieve spectral-spatial-wise attention [19]. CBAM 

showed more satisfactory performance than other attention 

modules and can be plugged into each convolutional block as a 

plug-and-play module. 

For HSIs, different spectral channels and spatial locations in 

the image patch contribute differently to the final CD predictions 

in theory. Attention mechanisms can focus on more 

discriminative channels and locations and have been adopted to 

HSI classification [29]-[31], super-resolution [32], and band 

selection tasks [33]. For CD using bi-temporal remote sensing 

images, the Pyramid feature-based attention-guided siamese 

network (PGA-SiamNet), integrating a pyramid-based CNN 

with various attention mechanisms, was developed to detect 

building changes in orthoimagery [34]. Lin et al. [35] proposed a 

faster R-CNN with a squeeze-and-excitation mechanism to 

detect ships in SAR images. For CD in bi-temporal HSIs, to the 

best of our knowledge, attention mechanisms have seldom been 

considered. 

Based on the abovementioned issues, a spectral-spatial-wise 

attention-based siamese network, abbreviated as SSA-SiamNet, 

is proposed for the HSI CD task in this paper. The main 

contributions of this paper are as follows. 

1) An end-to-end SSA-SiamNet framework is proposed to 

extract spectral-spatial-wise features, which can be trained 

from scratch. Accordingly, the learned deep features are 

suitable for the CD task and the method shows more 

competitive performance than other methods in the case of 

small training samples. 

2) As a baseline, the siamese CNN (i.e., SiamNet) with two 

weight-sharing branches extracts the feature tensors 

mapped to the same space, which makes the calculation of 

subsequent distances simpler and reduces the 

computational complexity of the model. 

3) Both the spectral-wise and spatial-wise attention modules, 

implemented by the CBAM, are embedded into the siamese 

network. The spectral-wise attention module is designed to 

reduce redundant information by emphasizing informative 

channels and suppressing less informative ones. Moreover, 

the spatial-wise attention module aims at focusing on the 

most informative locations in the adjacent pixels and 

ignoring less informative ones. 

4) To extract more robust features and reduce the impact of 

imbalanced class samples, the weighted contrastive loss 

function is used to train the network, which makes the 

learned feature vectors of the changed pixel pair far away 

from each other and the vectors of the unchanged pixel pair 

close. Furthermore, learning the properties of features 

accelerates the convergence of the network and reduces 

computing time. 

The rest of this paper is organized as follows. The details of 

the proposed SSA-SiamNet method are introduced in Section II. 

Section III evaluates the performances of SSA-SiamNet and 

shows its advantages over other CD approaches based on 

experimental results. Further issues about SSA-SiamNet and 

open questions for future research are discussed in Section IV. 

Finally, this paper is concluded in Section V. 

II. METHODS 

An overview of the proposed SSA-SiamNet method is shown 

in Fig. 1. First, the SiamNet as a baseline is applied to 

simultaneously extract spectral and spatial features from the 

input patch pair. Second, the CBAM is embedded into the 

SiamNet to obtain adaptive spectral-spatial-wise features and, 

further, refine the features. Third, the weighted contrastive loss 

function is used in model training to separate the feature tensors 

of the changed pixel pair to be distant from each other and push 

those of the unchanged pixel pair to be close, which can 

accelerate model convergence. Finally, the Euclidean distance of 

the features tensors is fed into a fully connected (FC) layer and 

the change pixels are identified. 

The four aspects in the proposed method, that is, CNN, 

SiamNet, CBAM and weighted contrastive loss function, are 

introduced in Sections II-A–II-D, respectively. 

A. CNN 

CNNs have been applied widely to a range of HSI tasks, such 

as classification, target detection and CD [36], [37]. In general, 

CNNs include convolutional layers, pooling layers and fully 

connected layers [38]. The input of a CNN is always an image 

patch. In each convolutional layer, the outputs of local filters are 

activated by a non-linear activation function, such as ReLU, 

Sigmoid, Tanh, etc.. The inputs of the FC layers are 

one-dimensional (1D) vectors. 

To make full use of the spatial context information, the 

patches in HSI were constructed by combining the center pixel 

and surrounding pixels, producing patches with size S×S×b, 

where b represents the number of spectral bands and S is the 

length and width. Bi-temporal patches with the center pixel at 

the same location are called a patch pair. 

Let { ( , ) |1 ,1 }i j i h j w    I x  be an HSI, with a size of 

h×w×b, where h and w represent the spatial dimensions. ( )i, jx
 

represents the spectral bands of the pixel at the location ( , )i j
 
in 

HSI.
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{ ( , ) | , }

2 2 2 2

S S S S
i j m i m n j n

   
        X x  

represents the patch centered at ( , )m nx . When X is operated on 

by the l-th convolutional layer and pooling layer, the output 

feature map ( )lH X  can be calculated as 

 
1( ) ( ( ( ) ))l l l lPool g   H X H X W B  (1) 

where ( )Pool  and “  ” represent the pooling operation and the 

convolution operation, respectively. 
lW  and 

lB  denote the 

filters and the biases of the l-th layer, respectively. The 

activation function is represented by ( )g . Following the 

sequence of convolution and pooling operations, ( )lH X  needs 

to be flattened to a 1D vector, and then is fed into the FC layer. 

By tying weights in convolutional layers and local 

connections, CNNs can make full use of the spatial structure of 

an image patch. The pooling operation can reduce the patch size 

and translate invariant features. Moreover, the FC network can 

classify pixels according to the extracted features. Based on 

these advantages, CNNs have been applied extensively to 

acquire spectral-spatial features for HSI classification tasks. 
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Fig. 1. Overview of the proposed SSA-SiamNet for HSI CD. 

 

B. SiamNet 

The input of the traditional CNN is the difference or 

concatenated image patch from the bi-temporal image patch pair, 

while the SiamNet extracts feature by inputting directly the 

image patch pairs. To compare patch pairs, three versions of 

CNN architectures were proposed in [39]: siamese, 

pseudo-siamese, and 2-channel. In a 2-channel network with 

only one branch, a 2-channel image combined with the input 

image pair is fed straight into the network. In the siamese and 

pseudo-siamese networks, there are two branches with the same 

architectures, and each of the two patches is input to separate 

branches. The difference between the branches of the siamese 

and pseudo-siamese networks is that the former shares the same 

weights, while the latter does not. 

All of the abovementioned three versions of the network are 

suitable for the feature extraction task in CD. In this paper, the 

SiamNet is selected as the feature extraction method for the 

following reasons: 1) The two weight-sharing branches can 

extract the feature tensors mapped to the same space, which 

facilitates the calculation of subsequent distances; 2) Due to 

weight-sharing, the number of the network parameters is 

reduced, thus, reducing the computational complexity of the 

model. 

As shown in Fig. 1, in SiamNet, each branch extracts a feature 

tensor. The Euclidean distance of the two feature tensors from 
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the two branches is fed into the FC layer to predict the CD result. 

Nonetheless, the CNN structure adopted in this paper is different 

from the conventional CNN. In the conventional CNN 

architecture, the convolutional layer is used to generate a feature 

tensor from the input image patch. The pooling layer can enlarge 

the receptive field and reduce the size of the output feature map. 

The FC layer is similar to a classifier, which can predict the class 

label according to the input features. Because our objective is to 

extract the spectral-spatial-wise features pixel-by-pixel based on 

the input patch and the suitable patch size (i.e., S×S) is small, the 

pooling layers are not adopted in the proposed architecture.  

The architecture details of the designed SiamNet model are 

shown in Table 1. As acknowledged widely, three convolutional 

layers are a suitable choice for HSI classification [37]. In this 

paper, the CD problem is considered as the binary classification 

task of identifying changed and unchanged pixels. Therefore, 

three convolutional layers with a kernel size of 3×3 are adopted 

in the designed network.  

In each convolutional layer, the number of kernels is set to N 

and ReLU is selected as the activation function. Also, batch 

normalization (BN) is adopted to avoid the phenomenon of 

gradient disappearance [40]. Moreover, L2 regularization is used 

to solve the over-fitting problem. Furthermore, the output of the 

FC layer, with two filters and a Sigmoid activation function, is a 

binary label indicating whether the pixel has changed. 

 

Table 1 The architecture details of the designed SiamNet 

Layers Type Kernel number Kernel size Padding 

CONV1 Conv2D + BN + Activation (ReLU) + L2 (0.001) N 3×3 same 

CONV2 Conv2D + BN + Activation (ReLU) + L2 (0.001) N 3×3 valid 

CONV3 Conv2D + BN + Activation (ReLU) + L2 (0.001) N 3×3 valid 

FC Fully Connected + Activation (Sigmoid) 2 - - 

 

C. CBAM 

Our goal is that the two branches of SiamNet can learn 

adaptively the refined features for the CD task by using the 

spectral-spatial-wise attention mechanism. To this end, CBAM 

containing both spectral-wise and spatial-wise attention modules 

is adopted to obtain the refined features in this paper. The 

operation of CBAM is summarized as follows: 

 
se

sa

( )

( )

  

   

F M F F

F M F F
 (2) 

where 
H W C F  is the input feature map, 1 1

se

C M  

denotes a 1D spectral attention map, sa

H W 1 M  presents a 

2D spatial attention map, and ⊗ denotes the element-wise 

multiplication. In the multiplication, spectral attention values are 

broadcast along with the spatial dimensionality, and vice versa. 

F  and F  denote the spectral-wise-refined and 

spectral-spatial-wise-refined feature tensors, respectively. The 

details of each attention module are described in the following. 

1) Spectral-wise attention module 

The spectral-wise attention module refines the weights for the 

spectral feature maps and, thus, can emphasize meaningful 

channels and suppress less useful ones. This is analogous to the 

phenomenon that the human eye can focus on “what” is crucial 

in an input image. The spectral attention map is produced by 

squeezing the spatial dimensionality of the input features. The 

average-pooling and max-pooling operations were shown to be 

effective for generating the spectral attention map [19]. In this 

paper, the two operations are employed. Specifically, the 

average-pooling and max-pooling layers generate the 

average-pooled feature descriptor se

avgF  and max-pooled feature 

descriptor se

maxF , respectively. To generate the spectral attention 

map seM , both features are fed into a shared network that 

consists of a multi-layer perceptron (MLP) with one hidden 

layer. There are C/R units in the hidden layer to reduce the 

number of parameters, where C denotes the kernel number and R 

denotes the reduction ratio. Besides, the element-wise sum of the 

output feature vectors is activated by the Sigmoid function. 

Therefore, the spectral attention map can be produced by the 

following calculation: 

 
se

se se

1 0 avg 1 0 max

( ) ( ( ( )) ( ( )))

( ( ( )) ( ( )))

MLP AvgPool MLP MaxPool



 

 

M F F F

W W F W W F
 (3) 

where   denotes the Sigmoid function and the MLP weights 
/

0

C R CW  and /

1

C C RW  are shared for inputs of both 

average-pooled and max-pooled features. 

2) Spatial-wise attention module 

Different from the spectral-wise attention module, for the 

spatial-wise attention module, two types of pooling operations 

along the spectral axis are adopted to produce two feature 

descriptors sa 1

avg

H W F  and sa 1

max

H W F . Then, the 

concatenated feature descriptor is convolved by a convolution 

layer. The output of the convolution layer is activated by the 

Sigmoid function to obtain the spatial attention map. 

Furthermore, the spatial-refined feature map highlighting the 

informative regions and suppressing the less useful ones is 

acquired by multiplying the input feature and the spatial 

attention map. In summary, the spatial attention map saM  is 

produced by: 

 sa

sa sa

avg max

( ) ( ([ ( ); ( )]))

( ([ ; ]))

N N

N N

f AvgPool MaxPool

f













M F F F

F F
 (4) 

where N Nf   represents a convolution operation with a kernel 

size of N×N. 

D. The weighted contrastive loss function 

An appropriate loss function can optimize the designed 

network in model training to extract more effective features. The 

weighted contrastive loss function is adopted to train the 

proposed network, based on the appealing property that the 

feature tensors of the unchanged pixel pairs are close to each 

other and those of changed pixel pairs are far away [41]. As 

mentioned earlier, 1X  and 2X  denote the bi-temporal patch 

pairs covering the same center pixel ( )i, jx . The output feature 

https://www.thesaurus.com/browse/crucial
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tensor of the network for the center pixel at ( , )i j  is represented 

as 1

,( ) N

i j

G X . 

The Euclidean distance map between the feature vector 

1 ,( )i jG X  and 
2 ,( )i jG X  is denoted as 

1 2 ,( )i jD X , X , which is 

calculated as follows: 

 
1 2 , 1 , 2 , 2( ) || ( ) ( ) ||i j i j i jD  X , X G X G X . (5) 

Then, the loss function is expressed as follows: 

 

1 2

1

, , , ,

1

( ) ( , ( , , ) )

       (1 ) ( ) ( )

p
k

k

p
k k k k

i j U i j i j C i j

k

Loss y

y D y D







  





W W X X

 (6) 

where y is the label for the patch pair 
1X  and 

2X , and the labels 

of the unchanged and changed pixel pairs are ( , ) 0y i j   and 

( , ) 1y i j  , respectively. 1 2( , , )ky X X
 
is the k-th labeled training 

sample pair, and p is the number of training sample pairs. 

Moreover, U  and C  are the sectional loss functions for 

unchanged and changed pixel pairs, respectively, which are 

defined as follows [42]: 

 2

, ,

1
( ) ( ( ))

2

k k

U i j i jD D  (7) 

 2

, ,

1
( ) {max(0, ( )) }

2

k k

C i j i jD q D   (8) 

where 0q   is a margin and is set to 1 [41]. It pushes the value 

of the sigmoid function of changed pixel pairs, that is, 
,( )k

i jD , 

closer to 1. 

An imbalance in the numbers of class samples is a common 

problem in the CD task. Normally, the number of unchanged 

pixel pairs is much larger than that of changed pairs. To balance 

the class losses, it is necessary to weight each class loss. 

Therefore, the weighted contrastive loss function is considered 

in the proposed method, which is characterized as [42]: 

 
1 2 , , , ,( ,( , , ) ) (1 ) ( ) ( )k k k k k

i j U i j U i j C i j Cy y D w y D w  W X X  (9) 

where Uw
 
and Cw

 
are the weights for unchanged and changed 

pixel pairs, respectively. The average frequency balancing is 

adopted in the loss function, and the weights Uw  and Cw  are 

calculated as follows: 

 
avg

U

U

f
w

f
  (10) 

 
avg

C

C

f
w

f
  (11) 

where Uf  
and Cf  

denote the frequencies of unchanged and 

changed pixel pairs, respectively. Also, avgf
 
represents the 

average class frequency. Since there are two categories of 

classes in the HSI CD task identified in this paper, that is, 

changed and unchanged, avgf
 
is simply determined as 0.5. Thus, 

when the number of changed pixel pairs is less than for 

unchanged pairs, the resulting weight Cw
 
is larger than 1, which 

can balance the contributions of the two parts in the loss 

function. 

III. EXPERIMENTS 

A. Datasets and parameter setting 

To evaluate the effectiveness of the proposed SSA-SiamNet 

method, four HSI datasets were used for test in the experiments. 

1) Datasets 

In this paper, all HSI datasets were acquired by the Hyperion 

sensor onboard the EO-1 satellite. The EO-1 Hyperion sensor 

provides HSIs with a spectral resolution of about 10 nm and 

spatial resolution of about 30 m. Moreover, it covers the 

0.4-2.5μm spectral range with 242 spectral bands. In the 

experiments, spectral bands with a low signal-to-noise ratio 

(SNR) were eliminated. 

The first dataset is designated “Farmland” [17] and the 

three-channel false-color composites (bands 33, 22 and 11 as 

RGB) of the bi-temporal images are shown in Fig. 2(a) and Fig. 

2(e). The bi-temporal images were acquired on May 3, 2006 and 

April 23, 2007, and cover farmland in Yancheng, Jiangsu 

province, China. The spatial size is 450×140 pixels and 155 

spectral bands were selected for CD after noisy band removal. 

The changes in the image are caused mainly by crop rotation. 

The second dataset, named “River” [17], covers an area in 

Jiangsu province, China. The two HSIs were acquired on May 3, 

2013 and December 31, 2013. The false-color composites 

(bands 33, 22 and 11 as RGB) of the two images are shown in 

Fig. 2(b) and Fig. 2(f). This dataset has a spatial size of 463×241 

pixels and contains 198 bands after removing noisy bands. The 

changes in the dataset are due mainly to the removal of sediment 

in the river. 

The third dataset “Santa Barbara”, covers an agricultural area 

in Santa Barbara, California, USA. The bi-temporal images are 

shown in Fig. 2(c) and Fig. 2(g) (bands 33, 22 and 11 as RGB). 

The two images were acquired in 2013 and 2014. This dataset 

has a spatial size of 984×740 pixels and contains 224 bands after 

noisy band removal. 

The fourth dataset “Bay Area”, covers an area in the San 

Francisco Bay Area, California, USA. The bi-temporal images 

were acquired in 2013 and 2015 as shown in Fig. 2(d) and Fig. 

2(h) (bands 33, 22 and 11 as RGB). The spatial extent is 

600×500 pixels and 224 bands were considered. 

Ground-reference maps for the four datasets are shown in Fig. 

4(h)-Fig. 7(h), where the white, black and gray parts represent 

changed, unchanged and unknown pixels, respectively. 

2) Data preprocessing 

For testing, all patch pairs were divided into training and 

testing sets according to a pre-defined proportion. To increase 

the learning ability, more training samples were simulated by 

flipping and rotating each training patch pair by 90°, 180°, and 

270°. 

3) Quantitative evaluation metrics 

The metrics used for quantitative assessment are the overall 

accuracy (OA), Kappa coefficient (Kappa), Precision (Pr), 

Recall (Re), and F1-score (F1), which are calculated as follows 

 
TP TN

OA
TP FP TN FN




  
 (12) 

 
2

( )( ) ( )( )

( )
C

TP FP TP FN FN TN FP TN
P

TP FP TN FN

    


  
 (13) 
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(a)                                      (b)                                                                 (c)                                                                              (d) 

    
(e)                                      (f)                                                                 (g)                                                                              (h) 

Fig. 2. The four HSI datasets used in the experiments (bands 33, 22 and 11 as RGB). (a) and (e) are Farmland images acquired on May 3, 2006 and April 23, 2007. (b) 
and (f) are River images acquried on May 3, 2013 and December 31, 2013. (c) and (g) are Santa Barbara images in 2013 and 2014. (d) and (h) are Bay Area images in 

2013 and 2015. 

 

 
1

C

C

OA P
Kappa

P





 (14) 

 
TP

Pr
TP FP




 (15) 

 
+

TP
Re

TP FN
  (16) 

 1 2
Pr Re

F
Pr Re


 


. (17) 

In Eqs. (12)-(17), there are four intermediate indices: 1) true 

positives (TP), that is, the number of correctly detected changed 

pixels; 2) true negatives (TN), which represents the number of 

correctly detected unchanged pixels; 3) false positives (FP), that 

is, the number of false-alarm pixels; and 4) false negatives (FN), 

that is, the number of missed changed pixels. 

4) Parameter setting 

The SSA-SiamNet was trained from scratch. The optimizer 

was the Root Mean Square prop (RMSprop) with 0.9  , the 

learning rate was set to 0.001 in the first 100 epochs and 0.0001 

in the second 100 epochs, and the number of total epochs was 

200. The kernel numbers for the Farmland, River, Santa Barbara, 

and Bay Area datasets were set to 24, 24, 32 and 32, respectively, 

which will be discussed in Section III-D. The batch size was set 

to 32 for the Farmland dataset and 64 for the other three datasets. 

The patch size and reduction ratio for all four datasets were 

determined as 5×5 and 8, respectively. To avoid biased 

estimation, 10 independent tests were carried out using 

Tensorflow and Keras in a single NVIDIA GTX 1080Ti GPU 

with 64G memory. 

B. Comparison with other methods 

To demonstrate the performance of the proposed 

SSA-SiamNet method, we compared it with ten benchmark 

methods, including CVA [43], SVM [44], GETNET (without 
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unmixing) [17], 2D-CNN [45], 3D-CNN [46], Diff-ResNet [47], 

Con-ResNet [47], Diff-RSSAN [48], Con-RSSAN [48], and 

SiamNet. For Diff-ResNet or Diff-RSSAN, the difference image 

of bi-temporal HSIs was classified by ResNet or RSSAN. For 

SVM, 2D-CNN, 3D-CNN, Con-ResNet and Con-RSSAN, the 

concatenate bi-temporal HSIs were used as input for CD.  

In SVM, the radial basis function (RBF) kernel was used for 

all four datasets. In the experiments, the deep learning-based 

benchmark methods developed for HSI classification with 

multiple land cover classes were employed. Since the change 

detection task is considered as binary classification in this paper, 

if the above deep learning-based classification methods are 

applied directly to detect changes, it is easy to cause the problem 

of overfitting. Therefore, a dropout layer was added between 

convolution layers for 2D-CNN and 3D-CNN and residual 

blocks for ResNet and RSSAN. The dropout parameters were set 

to 0.2 for 2D-CNN and 3D-CNN and 0.4 for Diff-ResNet, 

Con-ResNet, Diff-RSSAN and Con-RSSAN. For all deep 

learning-based benchmark methods, the L2 regularization 

coefficient, kernel numbers and batch size were set to 0.001, 32 

and 64, respectively. The loss function was binary cross-entropy 

for all deep learning-based methods except for SiamNet and 

SSA-SiamNet. 

For a fair comparison, 5% of the samples from the Farmland 

and River datasets and 1% of the samples from the 

ground-references of the Santa Barbara and Bay Area datasets 

were selected as the training sets. The details are shown in Table 

2. 
 

Table 2 The numbers of pixel pairs in training and testing sets for the four datasets 

Dataset 
Training Set Testing Set 

Unchanged Changed Total Unchanged Changed Total 

Farmland 914 2236 3150 17363 42487 59850 

River 5094 485 5579 96791 9213 106004 

Santa Barbara 804 521 1325 79614 51613 131227 

Bay Area 342 392 734 33869 38878 72747 

 

1) Quantitative comparison  

The 10-time average CD results of the methods on four 

datasets are reported in Table 3. Generally, the following 

observations can be made. First, CVA produce the smallest 

accuracy for four datasets, especially for the Santa Barbara and 

Bay Area datasets. This is because CVA are unsupervised CD 

methods that do not use any training information, which may not 

separate various changes satisfactorily, especially when their 

features are very close to those of unchanged pixels. 

Second, deep learning-based methods (i.e., GETNET, 

2D-CNN, 3D-CNN, Diff-ResNet, Con-ResNet, Diff-RSSAN, 

Con-RSSAN, SiamNet, and SSA-SiamNet) generally perform 

more satisfactorily than the SVM method in all metrics for all 

datasets except for the Farmland dataset. Compared with 

conventional machine learning-based methods, CNN-based 

methods make fuller use of spatial information through 

multi-layer convolution, which facilitates the CD task.  

Third, 3D-CNN enhances the performance of 2D-CNN for all 

datasets except for the Santa Barbara dataset, as the former 

considers additionally the convolution in the spectral dimension 

and can acquire more discriminating features. However, the 

increase in accuracy is still not obvious. More precisely, the 

increases in OAs for the Farmland, River, Santa Barbara and 

Bay Area datasets are 0.09%, 0.09%, -0.10% and 0.47%, 

respectively. Furthermore, in most cases, the results of the 

SiamNet are superior to those of 3D-CNN, and the former has 

fewer parameters and lower computational costs, which also 

shows that the SiamNet method is more advantageous in dealing 

with the CD problem. In addition, the accuracy of Con-ResNet 

(or Con-RSSAN) is greater than Diff-ResNet (or Diff-RSSAN). 

Last but not least, it is seen clearly that the most accurate 

results are produced by the proposed SSA-SiamNet method. For 

the Farmland dataset, the OA, Kappa, F1-score, Precision, and 

Recall metrics of SSA-SiamNet are 0.93%, 0.023, 1.49%, 1.75%, 

and 1.90% larger than those of SiamNet. 

 
Table 3 Accuracy of different CD methods for the four datasets (the bold value 

indicates the most accurate result in each term) 

Data 
set 

Method 

Metrics 

OA 

(%) 
Kappa 

F1 

(%) 

Pr 

(%) 

Re 

(%) 

F
ar

m
la

n
d
 

CVA 96.08 0.9063 93.42 91.01 95.97 

SVM 98.17 0.9555 96.84 97.05 96.62 

GETNET 97.96 0.9507 96.51 95.64 97.40 

2D-CNN 96.98 0.9273 94.87 93.49 96.29 

3D-CNN 97.07 0.9294 95.02 93.48 96.62 

Diff-ResNet 97.24 0.9328 95.22 95.63 94.82 

Con-ResNet 97.36 0.9361 95.47 95.14 95.80 

Diff-RSSAN 97.25 0.9328 95.21 95.98 94.46 

Con-RSSAN 97.46 0.9385 95.63 95.50 95.77 

SiamNet 96.94 0.9253 94.67 95.71 93.66 

SSA-SiamNet 97.87 0.9481 96.30 97.20 95.41 

R
iv

er
 

CVA 94.22 0.6972 72.84 61.56 89.16 

SVM 96.71 0.7693 78.68 90.17 69.79 

GETNET 97.04 0.8057 82.18 85.64 78.98 

2D-CNN 96.77 0.7677 78.46 93.39 67.65 

3D-CNN 96.86 0.8052 82.24 80.94 83.58 

Diff-ResNet 96.79 0.7762 79.34 89.85 71.03 

Con-ResNet 96.82 0.7864 80.36 86.70 74.88 

Diff-RSSAN 96.99 0.8025 81.89 85.81 78.31 

Con-RSSAN 97.04 0.7964 81.23 90.24 73.86 

SiamNet 96.93 0.7959 81.25 86.67 76.47 

SSA-SiamNet 97.18 0.8053 82.04 91.89 74.10 

S
an

ta
 B

ar
b

ar
a 

CVA 88.51 0.7574 85.07 87.02 83.21 

SVM 96.11 0.9177 94.92 97.55 92.43 

GETNET 97.63 0.9504 96.98 97.29 96.68 

2D-CNN 97.69 0.9517 97.08 96.53 97.64 

3D-CNN 97.59 0.9495 96.93 97.35 96.51 

Diff-ResNet 98.02 0.9582 97.43 99.78 95.18 

Con-ResNet 98.19 0.9619 97.67 99.01 96.36 

Diff-RSSAN 98.28 0.9640 97.81 98.44 97.18 

Con-RSSAN 98.65 0.9716 98.28 98.18 98.38 

SiamNet 98.51 0.9688 98.10 98.78 97.42 

SSA-SiamNet 98.86 0.9760 98.53 99.65 97.44 

B
ay

 A
re

a 

CVA 86.83 0.7378 86.83 93.20 81.28 

SVM 94.64 0.8926 94.93 96.11 93.77 

GETNET 95.87 0.9171 96.09 97.07 95.14 

2D-CNN 97.41 0.9479 97.59 96.94 98.26 

3D-CNN 97.88 0.9575 98.01 98.42 97.60 

Diff-ResNet 97.54 0.9507 97.71 97.51 97.90 

Con-ResNet 98.07 0.9612 98.20 97.79 98.62 

Diff-RSSAN 98.20 0.9639 98.32 98.19 98.46 

Con-RSSAN 98.36 0.9671 98.46 98.88 98.04 
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SiamNet 98.17 0.9633 98.27 99.28 97.29 

SSA-SiamNet 98.77 0.9753 98.85 99.10 98.59 

 

To further demonstrate the effectiveness of the proposed 

algorithm, the 3D receiver operating characteristic (ROC) 

curves along with their three 2D ROC curves, including (true 

positive rate (TPR), false positive rate (FPR)), (TPR, τ (i.e., 

detector threshold)), and (FPR, τ) [49], [50] for the nine deep 

learning-based methods are shown in Fig. 3. The area under the 

curve (AUC) values for the three 2D ROC curves were also 

calculated and shown in the legends in Fig. 3. The ROC curves 

were produced based on the results before binarization (i.e., the 

sigmoid operation in the final layer of the network). Overall, the 

proposed SSA-SiamNet method is more accurate than the 

benchmark methods in terms of the AUC values for all three 

types of ROC curves in most cases. This demonstrates that the 

3D ROC provides a very useful evaluation tool to evaluate the 

change detection performance. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. The 3D ROC curves of different methods for the four datasets. (a) Farmland dataset. (b) River dataset. (c) Santa Barbara dataset. (d) Bay Area dataset. 
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2) Qualitative comparison 

In addition to the quantitative comparison in Table 3 and Fig.3, 

the CD maps of the 11 methods are compared qualitatively, as 

shown in Figs. 4-7. 

Different from the other methods, the phenomenon of 

“salt-and-pepper” noise is apparent for the CVA method as it 

does not use training information in CD. Moreover, compared 

with the SVM method, the CD maps of the deep learning-based 

methods are more similar to ground-reference, which is in line 

with the quantitative results in Table 3. Furthermore, the CD 

map of the proposed SSA-SiamNet method is close to the 

ground-reference map for each dataset. 

 

      
(a)                                    (b)                                      (c)                                    (d)                                     (e)                                     (f) 

      
(g)                                    (h)                                      (i)                                    (j)                                     (k)                                     (l) 

Changed Unchanged
 

Fig. 4. CD maps of the different methods for the Farmland dataset. (a) CVA. (b) SVM. (c) GETNET. (d) 2D-CNN. (e) 3D-CNN. (f) Diff-ResNet. (g) Con-ResNet. (h) 
Diff-RSSAN. (i) Con-RSSAN. (j) SiamNet. (k) SSA-SiamNet. (l) Ground-reference map. 
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(a)                                                   (b)                                                     (c)                                                   (d) 

    
(e)                                                   (f)                                                     (g)                                                   (h) 

    
(i)                                                   (j)                                                     (k)                                                   (l) 

Changed Unchanged
 

Fig. 5. CD maps of the different methods for the River dataset. (a) CVA. (b) SVM. (c) GETNET. (d) 2D-CNN. (e) 3D-CNN. (f) Diff-ResNet. (g) Con-ResNet. (h) 
Diff-RSSAN. (i) Con-RSSAN. (j) SiamNet. (k) SSA-SiamNet. (l) Ground-reference map. 
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(a)                                                            (b)                                                              (c)                                                             (d) 

    
(e)                                                            (f)                                                              (g)                                                             (h) 

    
(i)                                                            (j)                                                              (k)                                                             (l) 

Changed Unchanged Unknown
 

Fig. 6. CD maps of the different methods for the Santa Barbara dataset. (a) CVA. (b) SVM. (c) GETNET. (d) 2D-CNN. (e) 3D-CNN. (f) Diff-ResNet. (g) Con-ResNet. 

(h) Diff-RSSAN. (i) Con-RSSAN. (j) SiamNet. (k) SSA-SiamNet. (l) Ground-reference map. 
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(a)                                                            (b)                                                              (c)                                                             (d) 

    
(e)                                                            (f)                                                               (g)                                                             (h) 

    
(i)                                                            (j)                                                               (k)                                                             (l) 

Changed Unchanged Unknown
 

Fig. 7. CD maps of the different methods for the Bay Area dataset. (a) CVA. (b) SVM. (c) GETNET. (d) 2D-CNN. (e) 3D-CNN. (f) Diff-ResNet. (g) Con-ResNet. (h) 

Diff-RSSAN. (i) Con-RSSAN. (j) SiamNet. (k) SSA-SiamNet. (l) Ground-reference map. 

 

3) Computational cost 

Table 4 lists the computational costs and parameters for the 

ten supervised methods when the proportions of training and 

testing samples were set according to Table 2. The training and 

testing time increase with the number of pixel samples in the 

datasets. In the training phase, the deep learning-based methods 

required more time than the SVM. The reason is that the sample 

input is a patch of size 5×5×b in the deep learning-based 

methods except for GETNET, while the input is a vector of size 

1×b in the SVM. The GETNET method took the longest time 

amongst all the training-based methods, due to the relatively 

large patch of size b×b×1 and large number of parameters to be 

determined. In the testing phase, the testing time of the SVM 

method for the River and Santa Barbara datasets is longer than 

for the other two datasets, as the number of test samples for these 

two datasets is relatively larger. In addition, the training and 

testing time of Con-ResNet (or Con-RSSAN) is longer than 

Diff-ResNet (or Diff-RSSAN). The reason is that the 

concatenate bi-temporal HSIs with 2b bands were used in the 

former, while the difference images with b bands were used in 

the latter. 
 

Table 4 The computational costs of different methods for the four datasets 

Dataset Method 
Training 

Time (s) 

Testing 

Time (s) 
Parameters 

Farmland 
SVM 0.8 4.32 2 

GETNET 357.29 66.03 93.42M 
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2D-CNN 163.68 8.51 73.13K 

3D-CNN 397.57 12.72 155.07K 

Diff-ResNet 198.43 7.11 48.19K 

Con-ResNet 320.37 11.26 53.15K 

Diff-RSSAN 181.28 6.54 49.25K 

Con-RSSAN 221.21 9.66 103.05K 

SiamNet 214.92 8.50 87.84K 

SSA-SiamNet 318.65 10.35 88.60K 

River 

SVM 4.42 32.55 2 

GETNET 1003.05 169.98 154.18M 

2D-CNN 297.47 99.57 91.71K 

3D-CNN 674.88 91.26 159.19K 

Diff-ResNet 484.79 14.69 49.57K 

Con-ResNet 546.79 144.79 55.91K 

Diff-RSSAN 318.86 11.54 63.65K 

Con-RSSAN 394.13 85.36 135.14K 

SiamNet 431.48 105.71 106.42K 

SSA-SiamNet 583.15 128.56 107.18K 

Santa 

Barbara 

SVM 0.74 16.96 2 

GETNET 310.1 588.96 198.27M 

2D-CNN 70.7 193.26 139.81K 

3D-CNN 111.4 190.66 277.03K 

Diff-ResNet 124.91 102.79 50.40K 

Con-ResNet 130.85 200.15 57.57K 

Diff-RSSAN 83.12 100.84 72.68K 

Con-RSSAN 91.21 197.58 156.25K 

SiamNet 87.76 193.46 166.08K 

SSA-SiamNet 126.53 202.17 167.32K 

Bay Area 

SVM 0.31 9.78 2 

GETNET 169.34 160.69 198.27M 

2D-CNN 50.49 87.10 139.81K 

3D-CNN 106.06 96.52 277.03K 

Diff-ResNet 80.29 82.37 50.40K 

Con-ResNet 84.64 88.27 57.57K 

Diff-RSSAN 51.91 81.51 72.68K 

Con-RSSAN 62.32 88.34 156.25K 

SiamNet 71.68 93.39 166.08K 

SSA-SiamNet 104.47 95.82 167.32K 

Compared with 3D-CNN, the SSA-SiamNet method 

generally required less training and testing time, because more 

parameters need to be determined in 3D-CNN, and the weighted 

contrast loss function in SSA-SiamNet can accelerate the 

network convergence. Moreover, the proposed SSA-SiamNet 

method required more training and testing time than the 

SiamNet for all datasets, as SSA-SiamNet has a more complex 

architecture (both the spectral-wise and spatial-wise attention 

modules are considered in addition to SiamNet). However, the 

proposed method produced more accurate CD results than the 

other methods. Therefore, the slight increase in training and 

testing time is generally acceptable. 

C. Model analysis 

1) Application of the attention module  

To validate the effectiveness of the attention mechanism, we 

compared the SiamNet, SiamNet only with spectral attention 

module (SE-SiamNet), SiamNet only with spatial attention 

module (SA-SiamNet), SiamNet with spatial-spectral attention 

module (SASE-SiamNet) that first considers spatial attention 

then spectral attention, and SiamNet with spectral-spatial 

attention module (i.e., the proposed SSA-SiamNet) that first 

considers spectral attention then spatial attention. The accuracy 

of the different models in terms of OA, Kappa and F1-score 

metrics is shown in Fig. 8. From Fig. 8, we can observe that both 

SE-SiamNet and SA-SiamNet are more accurate than SiamNet 

for the four datasets, which demonstrates the effectiveness of the 

attention mechanisms. This is consistent with the conclusion in 

[48]. Moreover, SA-SiamNet produces larger OA than 

SE-SiamNet. For the Farmland, River, Santa Barbara and Bay 

Area datasets, the increases in OA of SA-SiamNet over 

SE-SiamNet are 0.07%, 0.08%, 0.17% and 0.09%, respectively. 

Furthermore, the order of spectral and spatial attention can affect 

the results, and SSA-SiamNet methods can further enhance the 

CD performance compared with SASE-SiamNet. The increases 

in OA of SSA-SiamNet over SiamNet for the Farmland, River, 

Santa Barbara and Bay Area datasets are 0.93%, 0.25%, 0.35% 

and 0.60%, respectively. Most importantly, the proposed 

SSA-SiamNet achieves the most accurate result amongst the five 

versions, suggesting it is the most appropriate version in 

integrating the complementary information of the two attention 

mechanisms. 

2) Analysis of the weighted contrastive loss function 

The numbers of changed and unchanged pixel pairs of the four 

datasets are shown in Table 5, where Uf  
and Cf  

represent the 

percentage of unchanged and changed pixel pairs, respectively. 

Obviously, there is a large difference between the numbers of 

unchanged and changed samples for the Farmland and River 

datasets. To overcome the sample imbalances, the weighted 

contrastive loss function was adopted to train the network in 

SSA-SiamNet, and the unchanged weight Uw
 
and changed 

weight Cw
 
are also shown in Table 5. 

To demonstrate the validity of the weighted contrastive loss 

function, loss functions with and without weights were used to 

train the network, and the results are shown in Fig. 9. Overall, 

the performance of using the weighted contrastive loss function 

is superior to that of the unweighted function. Moreover, the 

increase in accuracy is particularly obvious for the Farmland and 

River datasets, which is consistent with the degree of sample 

imbalance in Table 5. Also, amongst the three metrics of F1, Pr, 

and Re, the increase in Re is the largest, revealing that the 

weighted contrastive loss function can help to detect the changed 

samples more accurately. 
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SiamNet SE-SiamNet SA-SiamNet SASE-SiamNet SSA-SiamNet
 

(a)                                                                                   (b)                                                                                   (c) 

Fig. 8. The accuracy of the SiamNet with different attention modules for all four datasets. (a) OA. (b) Kappa. (c) F1-Score. 
 

Table 5 The numbers of pixel pairs for the four datasets 

Dataset 
Pixel Pairs 

Uf  Cf  Uw  Cw  
Unchanged Changed Unknown Total 

Farmland 18277 44723 0 63000 29.01% 70.99% 1.7235 0.7043 

River 101885 9698 0 111583 91.31% 8.69% 0.5476 5.7529 

Santa Barbara 80418 52134 595608 728160 11.04% 7.16% 4.5290 6.9835 

Bay Area 34211 39270 226519 300000 11.40% 13.09% 4.3860 3.8197 

 
 

  
Weighted Unweighted  

(a)                                                             (b)                                                             (c)                                                             (d) 

Fig. 9. The accuracy of the loss function and weighted loss function for the four datasets. (a) Farmland dataset. (b) River dataset. (c) Santa Barbara dataset. (d) Bay 

Area dataset. 
 

3) Comparison with other attention mechanisms 

To demonstrate the advantage of CBAM, we compared it with 

some state-of-the-art attention mechanisms, including the 

squeeze-and-excitation network (SENet) [27], non-local 

network (NLNet) [51], global context network (GCNet) [52], 

position attention module (PAM) [53], channel attention module 

(CAM) [53] and dual attention network (DANet) [53]. For a fair 

comparison, the mechanisms were incorporated into the 

proposed method by replacing the CBAM part. The reduction 

ratio was set to 8 in GCNet, SENet, DANet, and PAM for all 

datasets. The kernel numbers in DANet, CAM and NLNet were 

consistent with the proposed method. The kernel size was set to 

3 in DANet and PAM for all datasets. From Fig. 10, it is seen 

DANet and CBAM have similar performances, and they are 

obviously more accurate than the other attention mechanisms. 

This is because SENet, NLNet, GCNet and CAM only consider 

spectral attention while PAM only considers spatial attention. 

However, DANet and CBAM take both into consideration. 

Moreover, CBAM tends to be more accurate than DANet. Thus, 

CBAM is considered to be the most suitable choice for the 

network structure proposed in this paper. 

 

 

Fig. 10. The accuracy (in terms of OA and F1) of different attention mechanisms.  

D. Impact of parameters 

In the proposed method, several hyperparameters, such as the 

kernel numbers of convolutional filters, batch size, patch size 

and the proportion of training samples, can affect the model 

training process and, further, the detection results. Thus, the 

influence of these hyperparameters is investigated in this section. 

When analyzing the impact of a certain parameter, other 

parameters were fixed in the experiment. 

1) Impact of kernel numbers 

The kernel numbers of convolutional filters affect the 

representation capability and computational burden of 

SSA-SiamNet. As mentioned in Table 1, each convolutional 

layer has the same kernel number. Different kernel numbers (N

 {4, 8, 16, 24, 32}) were examined in this experiment. As 

shown in Fig. 11(a) and Fig. 11(d), as the kernel numbers 

increase, the OA and F1 values first increase and then decrease 

for the Farmland and River datasets. The optimal kernel 

numbers for the Farmland, River, Santa Barbara, and Bay Area 

datasets are 24, 24, 32 and 32, respectively. 
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2) Impact of batch size 

To evaluate the effect of the batch size on the performance of 

SSA-SiamNet, a set of batch sizes {32, 64, 128, 256, 512} were 

considered. As shown in Fig. 11(b) and Fig. 11(e), as the batch 

size increases from 32 to 512, the OA and F1 values first 

increase and then decrease for all datasets except for the 

Farmland dataset, and the optimal batch size is 32 for the 

Farmland dataset and 64 for the other three datasets. 

3) Impact of patch size 

The size of the input patch reflects the amount of data used 

around the center pixel. To explore the effect of different patch 

sizes on the proposed method, we examined the set of patch sizes: 

3×3, 5×5, 7×7 and 9×9. Amongst them, when the patch size is 

3×3, the padding is set to be the same in the three convolutional 

layers. From Fig. 11(c) and Fig. 11(f), it is seen that with the 

increase in the patch size, the accuracy of CD does not change 

obviously, suggesting that the proposed method is robust to 

patch size. 

 

 
(a)                                                                                 (b)                                                                                  (c) 

 

 
(d)                                                                                 (e)                                                                                  (f) 

Fig. 11. The accuracy (in terms of OA and F1) of SSA-SiamNet with different hyperparameters for the four datasets. 

 

 

 
(a)                                                             (b)                                                              (c)                                                              (d) 

Fig. 12. The accuracy (in terms of OA) of SSA-SiamNet and SiamNet with different proporitions of training samples. (a) Farmland dataset. (b) River dataset. (c) Santa 

Barbara dataset. (d) Bay Area dataset. 

 

4) Impact of the proportion of training samples  

In this experiment, we examined the influence of the 

proportion of training samples for SiamNet and SSA-SiamNet. 

The set of proportions {0.1%, 0.5%, 1%, 5%, 10%, 15%} was 

considered.  

As shown in Fig. 12, the OA curves for all four datasets show 

obvious increasing trends when the proportion r increases from 

0.1% to 5%. However, the increases in OA are much smaller 

when the proportion further increases from 5% to 15%. Overall, 

the OA of the proposed SSA-SiamNet method is much larger 
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than for SiamNet, and the advantages are more noticeable when 

r = 5% for both the Farmland and Bay Area datasets, 

respectively, and when r = 1% and r = 0.5% for the River and 

Santa Barbara datasets, respectively.  

IV. DISCUSSION 

The advantage in terms of CD accuracy of the proposed 

SSA-SiamNet method over the benchmark methods is due 

mainly to the application of CBAM that contains the 

spectral-spatial-wise attention module. The spectral-spatial-wise 

attention mechanism can enhance informative channels and 

suppress less informative ones in the spectral domain, and 

meanwhile, emphasize informative neighborhood pixels and 

suppress uncorrelated ones in the spatial domain. Thus, the 

incorporation of CBAM into the SiamNet can refine the 

spectral-spatial features adaptively. Moreover, the proposed 

method achieves a good balance between CD accuracy and 

computational cost.  

In this paper, 2D-CNN provides a simple solution to extract 

features directly from the center pixel and surrounding pixels. It 

took less computational cost than the other deep learning-based 

methods. According to Table 3, however, the accuracy of 

2D-CNN is lower on the contrary. 3D-CNN with 3D kernels for 

the 3D convolution operation can extract spatial and spectral 

features simultaneously from HSI cubes, and achieve greater 

change detection performance than 2D-CNN. However, it 

requires the longest training and testing time in all deep 

learning-based methods. ResNet can be regarded as an extension 

of CNN with skip connections, which can promote the 

propagation of gradients and perform robustly with deep 

architecture. With respect to RSSAN, a spectral-spatial attention 

module is embedded into the residual block, which can avoid 

overfitting and accelerate the training of ResNet. Overall, the 

concatenate-based methods (i.e., Con-ResNet and Con-RSSAN) 

are more accurate than the difference-based ones (i.e., 

Diff-ResNet and Diff-RSSAN). This is probably because the 

concatenate patch contains richer spectral information. 

Compared with other CNN-based algorithms, the computational 

cost of SSA-SiamNet is reduced by using the weighted 

contrastive loss function. More specifically, the SiamNet using 

two weight-sharing branches to acquire spectral-spatial features 

reduces the computational complexity of the model 

correspondingly. Then, the weighted contrastive loss function 

can accelerate the convergence of the network. In addition, the 

SSA-SiamNet method is fairly robust to parameters such as 

batch size, patch size, etc.. This property ensures robust 

predictions under various conditions and helps to promote 

applicability in practice. 

The proposed method is also applicable to data acquired by 

other platforms. This paper demonstrated the effectiveness of 

SSA-SiamNet through experiments based on HSIs from the 

EO-1 satellite. Similarly, the method can be extended simply to 

the HSIs acquired by other satellites and even UAVs. For 

example, the Gaofen-5 satellite launched by China in 2018 

provides HSI at the global scale with a spatial resolution of 30 m 

and a spectral resolution of 5 nm for 150 visual bands and 10 nm 

for 180 short wave infrared bands (330 bands in all). It is 

believed that the SSA-SiamNet method will have great potential 

for CD based on multi-temporal Gaofen-5 HSIs. Additionally, 

the proposed algorithm is also potentially suitable for the CD 

task using other remote sensing images, such as multispectral 

images (MSI), synthetic aperture radar images (SAR), very high 

resolution (VHR) images, etc.. If the proposed model is applied 

to other data sources, the hyperparameters should be determined 

reasonably, such as the kernel number, batch size, patch size, 

and reduction ratio. For example, different from HSIs, 

multispectral images contain much fewer bands, so it is rational 

to reduce the kernel numbers and reduction ratio. For VHR 

images with much more spatial information, the patch size may 

need to be increased to fully characaterize the spatial texture. As 

the spatial resolution of remote sensing images increases, the 

central pixel is likely to be more closely related to the 

neighboring pixels. As a result, the effect of spatial attention 

could be more obvious, and the CD accuracy could be hopefully 

increased. It would be interesting in future research to 

investigate the relation between increases in CD accuracy and 

spatial resolution. On the other hand, the proposed CD method 

could also be applied to more application domains, such as 

ecological and environmental change monitoring, tracking urban 

development, natural disasters assessment, mapping coastline 

changes, forest and farmland monitoring, and so on. 

The SSA-SiamNet method was demonstrated to be 

appropriate for CD between images acquired by the same 

platform with the same spatial and spectral resolution. In reality, 

however, timely CD may be required in cases where only 

bi-temporal images from different sensors with different spatial 

and spectral resolutions are available for use. To address this 

issue, it is worthwhile to further extend current the 

SSA-SiamNet for CD between multi-resolution images. The 

reliable geometric registration between the images is an 

important premise in this case. Moreover, how to match the 

spatial and spectral resolution of both images would be a very 

interesting issue. The key would be to make full use of the 

complementary information in both images and retain as much 

spatial and spectral information as possible for more reliable 

CD. 

The continuous monitoring of land cover changes can be 

realized through analyzing time-series remote sensing images 

[54], [55], [56]. One of the main challenges in time-series 

analysis is to identify the exact breakpoints, that is, when 

changes occur along the timeline for a given location. The 

proposed method is developed for bi-temporal image CD and is 

expected to be extended to multi-temporal image CD. For 

example, the SiamNet can be extended to multiple parallel 

networks. Suppose the time-series contains five remote sensing 

images, T1, T2, T3, T4 and T5. Each image can be inputted into 

the parallel network separately, and the output is one of the four 

potential changes (i.e., change occurs between T1 and T2, T2 and 

T3, T3 and T4, or T4 and T5). In addition, to make full use of the 

information in the time-series, the CNN structure in the 

proposed method can be potentially replaced by a recurrent 

neural network (RNN), and the siamese long short-term memory 

(LSTM) RNN can be further considered [57]. All these provide 

interesting avenues for future research. 

There are also some limitations of the proposed method. First, 

SSA-SiamNet is a supervised method, and its performance may 

be limited by the lack of available ground-reference labels for 

the changed and unchanged classes. Therefore, it would be 

interesting to develop solutions to explore the automatic 
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generation of more training samples based on the available ones. 

On the other hand, the proposed method deals with binary CD 

concerned with “change or not”, rather than multiple changes 

that solve “from-to” problems. Therefore, it is a promising 

avenue to explore methods with attention mechanisms for 

multiple CD in future research. 

V. CONCLUSION 

In this paper, an end-to-end framework named SSA-SiamNet 

was proposed to detect land cover changes in bi-temporal HSIs. 

The proposed method, which integrates CBAM with SiamNet, 

extracts spectral-spatial-wise features adaptively from the input 

patch pairs. The extracted features highlight influential 

information and suppress less informative channels and pixels in 

the spectral and spatial domains, respectively. Then, the 

Euclidean distance of the learned feature tensors from the two 

weight-sharing branches are fed into the FC layer to identify 

changes. Moreover, the designed network is trained using the 

weighted contrastive loss function, which can accelerate the 

convergence of the network. Experimental results on four HSIs 

showed that the proposed method can produce more accurate 

CD results than ten state-of-the-art methods. 
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