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ABSTRACT 
Solving complex, open-ended problems is frequently characterised as the central 

activity of engineering. Such problem solving requires a high level of epistemic 

sophistication, however, few studies have investigated the relationship between 

epistemic cognition and engineering students’ problem solving strategies. While 

there are several models of epistemic cognition, they consistently characterise 

approaching knowledge as though there is a single, absolute correct answer as 

naïve. Higher epistemic sophistication is taken to involve more nuanced beliefs 

such as perceiving knowledge as relative, contingent, and contextual. However, 

decades of active research have failed to produce robust quantitative instruments. 

This thesis exploits a recent conceptual development which posits that selecting 

an effective epistemic approach for a specific knowledge claim is a better measure 

of sophistication.  

By focusing on observable, fine-grained actions to characterise how engineering 

students approach, justify, and evaluate contexualised scientific knowledge, this 

study eschews overarching epistemic beliefs in favour of epistemic practices to 

develop a rich portrait of engineering problem solving. The grounded theory 

analysis of the think-aloud problem solving protocols and interviews with 30 

undergraduate engineering students produced a set of eight epistemic practices, 

each of which are described at four levels of sophistication. 

While the strict separation between epistemic beliefs and actions is distinctive of 

this project, five of the epistemic practices are coherent with prior models and 

three are novel and engineering-specific: equations	as	imperfect	models	of	reality, 

precision	 and	 estimates, and answer‐checking	 strategies. Finally, this study 

proposes the diversity of students’ epistemic practices as a measure of epistemic 

sophistication, rather than effectiveness. Diversity has the dual benefits of being 

reflective of expert problem solving and attenuating the effects of students’ prior 

knowledge, disciplinary background, and the specific activity. The epistemic 

practices are presented as a coherent framework that is accessible to engineering 

teachers and facilitates application in other contexts.  
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1 Introduction 

1.1 EPISTEMIC BELIEFS AND COGNITION IN ENGINEERING 

The importance of developing students’ epistemological beliefs isn’t something 

you hear much about around engineering campuses. The central questions of 

epistemology (How do we know what we know? And why do we believe it?) sound 

too philosophical to be relevant for engineering problem solving. Yet these 

questions are absolutely asked, and answered, when engineers work to solve the 

ill-structured, open-ended problems that are characteristic of professional 

engineering practice. Indeed, the majority of the biggest problems facing humanity 

today, such as ensuring access for all people to clean water, food, and healthcare, 

and finding environmentally-sound mechanisms for transportation, 

communication and energy generation (United Nations 2016) require the direct 

and sustained application of engineering problem solving. This means that society 

in general, and not just engineering educators, are concerned by engineering 

graduates’ abilities to use appropriate disciplinary epistemic skills for creating, 

interpreting, evaluating, and justifying knowledge. 

Engineering schools have increasingly integrated more project work into their 

curricula to equip their students with skills to tackle authentic engineering 

problems. Working with teachers to design and facilitate learning experiences that 

enable students to acquire these skills is a core aspect of my role in the Teaching 

Support Centre of a Swiss engineering school. While some students thrive when 
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challenged with ill-structured and interdisciplinary problems, others find it 

difficult and question the value of such experiences. I have heard students say 

“Don’t ask for my ideas: I’m just a student. It’s your job to tell me the correct 

answer”, “But which answer is the right answer?”, and “This assignment was unfair 

– it asked us to think, not to show you what we’ve learned.” These responses reflect

the naïve epistemic conceptions of these students, and the corresponding focus on

correct answers rather than effective answer-finding processes. I was a

postgraduate student teaching assistant in chemistry when I first encountered the

concept of epistemic beliefs.

While I am still happy with my decision to major in chemistry, I now recognise that 

my choice was influenced by my epistemic beliefs at the time. Graduating from 

high school in Canada, I had received the Ethel Kidd award for having the highest 

marks in both maths and English. I liked maths better – I was confident that I was 

doing it correctly because my answers exactly matched those at the back of the 

book. When I learned about epistemic beliefs as a teaching assistant, I was trying 

to help students overcome similar naïve beliefs that were limiting their ability to 

reason with uncertainty and multiple constraints.  

Encountering the concept of epistemic beliefs in a teaching assistant development 

workshop ignited a slow burn that ultimately produced this thesis. My primary 

interest in epistemic beliefs remains quite practical: how do we prepare 

engineering students to tackle authentic, ill-structured, interdisciplinary 

problems? Identifying teaching and learning activities that effectively support 

students’ epistemic development was central to my motivation starting this 

project. However, my investigations and review of the literature led me to focus 

on developing a more effective way to characterise epistemic cognition in 

engineering. While the focus of this project is less applied than I initially intended, 

my contributions to conceptualising epistemic cognition in engineering have 

addressed some persistent obstacles to measuring epistemic sophistication. My 

approach has remained quite practical, arising both from my highly contextualised 

methodology and my desire to support the development of engineering students’ 

epistemic cognition.  

Effectively addressing the complex issues currently facing humanity requires that 
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engineering graduates have a high level of epistemic sophistication. It is, therefore, 

concerning that previous work has identified that engineering students often do 

not have this. Engineering students’ epistemic beliefs1 have been found to progress 

over the course of their studies (Culver and Hackos 1982, Marra et	al. 2000, Felder 

and Brent 2004, King and Magun-Jackson 2009). Paulsen and Wells (1998) found 

that, when controlling for other demographic factors, engineering students were 

more likely to hold unsophisticated epistemic beliefs than students from other 

fields. Pavelich and Moore (1996) and Wise et	al. (2004) report that up to three 

quarters of engineering graduates’ epistemic sophistication is insufficient to 

effectively manage contradictory knowledge claims or to see themselves 

contributing novel insight to the field. This is completely incompatible with solving 

the ill-structured problems that are central to professional engineering practice.   

While the reasons for engineering students’ low epistemic sophistication are likely 

numerous, the lack of an engineering-specific model is certainly not an asset. 

Consequently, there is a significant gap between overarching models of epistemic 

beliefs and specific knowledge practices engineering students apply during 

problem solving. This gap may also explain persistent inconsistencies and 

difficulties in measuring epistemic beliefs. This thesis provides a bridge across this 

separation, taking an epistemic cognition approach to characterise engineering 

students’ actions while solving engineering science problems. The resulting 4-

level framework of specific, contextual epistemic practices provides an accessible 

and robust model of epistemic sophistication in engineering. 

1.1.1 Why	an	Engineering‐Specific	Characteristation	of	Epistemic	Sophistication	
is	Important	

The importance of epistemic sophistication for engineers is ubiquitous in the 

literature, although it is formulated in terms of students being “more capable of 

addressing engineering problem-solving in real world contexts because of their 

ability to see problems from multiple perspectives and recognise that more than 

one right answer exists” (Wise et	 al., 2004). More prosaically, epistemic 

1 I prefer the term epistemic beliefs, rather than epistemological beliefs. This project focuses on the 
nature of knowledge and not a more philosophical reflection involving beliefs about how people 
conceive of the idea of knowledge and knowing implied by the term ‘epistemology’.  
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sophistication is present in the accreditation of engineering programs. For 

example two of the seven student outcomes required by the US-based 

Accreditation Board for Engineering and Technology explicitly state that 

graduates must be able to make informed judgements when confronted with 

complex situations, and a third outcome includes the ability to navigate potentially 

contradictory or ambiguous contexts (ABET 2021, pp. 5–6). 

Despite their importance, a lack of consensus on the definition of epistemic beliefs 

has generated a plethora of approaches and nomenclature (Hofer and Pintrich 

1997, Briell et	al. 2011, Sandoval et	al. 2016). This thesis makes use of Briell et	al.’s 

distinction between cognitive structures and cognitive processes models to 

organise prior models so that their relevant similarities and differences are clear. 

Cognitive structure models concern themselves with people’s mental states that 

hold conceptions about knowledge and knowing. Cognitive structure models of 

epistemic beliefs correspond to how beliefs are usually understood, that is as 

abstract concepts about knowledge and knowing. Models that employ a cognitive 

processes approach, such as epistemic cognition, focus on how people manipulate, 

construct, evaluate or justify particular knowledge claims in specific contexts. 

While most studies have sought to demonstrate the importance of epistemic 

beliefs for students’ learning  (Norton and Crowley 1995, Pavelich and Moore 

1996, Marshall et	al. 1999, Tsai 1999, Burnett et	al. 2003, Kember et	al. 2004, 

Stathopoulou and Vosniadou 2007, Muis and Franco 2009, Montfort et	al. 2012, 

Ding 2014, Greene et	 al. 2018, Zhu et	 al. 2019), the continuation of naïve 

conceptions in professional engineering practice is clearly problematic. For 

example, naïve epistemic beliefs in practising engineers could be expressed as an 

unexamined trust in figures of authority or by attempting to find the single true 

answer to a real world situation of applied engineering. In this context, Pavelich 

and Moore (1996) and Wise et	 al.’s (2004) findings that the majority of 

engineering graduates have insufficient epistemic sophistication to operate in the 

core contexts of professional engineering is highly worrying. This thesis’ 

contributions to an accessible, engineering-specific model of epistemic 

sophistication are therefore relevant and timely.  
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1.1.2 A	Brief	Review	of	the	Literature	on	Epistemic	Beliefs	and	Cognition	

William Perry created the first model of personal epistemology based on his 

longitudinal interview study with Harvard undergraduates (1970). His 

developmental, stage-based model described how students’ epistemological 

beliefs influence how they see the world and make decisions. This work sparked a 

half century of active research in the field, with multiple models seeking to provide 

a coherent conceptual foundation with solid empirical support.  

In addition to Perry’s perennially popular model, three particularly influential 

models were created by Patricia King and Karen Kitchener (1981, 2004), Marlene 

Schommer-Aikins (Schommer 1990, Schommer-Aikins 2004), and Barbara Hofer 

and Paul Pintrich (1997). While the general arc of epistemic development is 

consistent across the models, poor empirical support and persistent measurement 

problems (Sandoval 2005, Stathopoulou and Vosniadou 2007, Greene et	al. 2008, 

Hofer and Bendixen 2012, Rizk et	al. 2012, Greene and Yu 2014, Lindfors et	al. 

2019) have continued to motivate researchers to address potential underlying 

issues with the models. A major advance is the recognition that, at least in the 

current state of understanding, the disciplinary context in which a person 

perceives themselves and the knowledge under consideration must be considered 

(Lindfors et	al. 2019).  

While King and Kitchener’s reflective judgement model is not cited with nearly 

the frequency of Hofer or Perry (Sandoval et	 al. 2016), I find opportunity in 

its focus on epistemic cognition. While beliefs models have dominated the 

research agenda in the field, Sandoval succinctly identified the power of an 

epistemic cognition approach to advance the field, noting “One important way to 

understand the epistemic ideas that people bring to bear is to examine their 

participation in practices of knowledge evaluation and construction” (2012, p. 

350). The richness and contextualisation that an epistemic cognition approach 

to how knowledge is created, manipulated, and justified is exactly what is 

needed to overcome the confusion generated by the more common focus on 

overarching, broad epistemic beliefs. Elby and Hammer (2010), working 

predominantly on physics problem solving, propose taking a finer-

grained approach to epistemic cognition in their epistemological resources 

model.  
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The approach taken in this thesis employs an even more fine-grained 

approach to epistemic cognition that focuses on specific, contextualised actions 

that students take while solving engineering science problems. Employing 

a grounded theory approach enabled a tight connection between the empirical 

observations and the framework of epistemically-relevant problem solving 

behaviours generated.   

This thesis answers Sinatra’s (2016) call to explore the use of epistemic 

beliefs and conceptions of knowledge in settings where problem solving, decision 

making, and reasoning are occurring. Mason (2016) argues that there have 

been too few empirical investigations that capture “epistemic beliefs in action.”   

1.1.3 Study	Methodology	

This thesis employs an epistemic cognition approach to characterise 

engineering students’ problem solving. This approach does not concern itself with 

the problem solving method itself but rather with the fine-grained knowledge 

practices within students’ problem solving that are related to how 

engineering knowledge is created, evaluated, and justified. While the low 

number of study participants precludes rigorous quantitative analysis, I 

examined the rich qualitative picture of students’ problem solving to 

characterise the nature, range, and frequency of different knowledge 

practices. The analysis addresses the following research questions about 

students’ epistemic sophistication during engineering problem solving: 

RQ1: What epistemic practices do engineering students use during problem
solving?  

RQ2: Do a student’s epistemic practices cluster at a single level or span several
levels of sophistication?  

RQ3: What do the epistemic practices profiles of epistemically

sophisticated engineering students look like?  

The methodological approach of this thesis had two guiding principles. First, to 

avoid the quagmire of inferring epistemic beliefs from self-reporting surveys 

(Greene and Yu 2014) by focusing on how students manipulate and evaluate 

engineering knowledge in a fine-grained manner. Secondly, to develop 

empirically-based descriptions of engineering students’ epistemically-
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relevant problem solving. Accordingly, engineering science problem-

solving tasks were carefully constructed to stimulate students to enact  a range of 

epistemic practices. The think-aloud problem solving protocols were 

followed by semi-structured interviews and generated rich observations that were 

analysed with a grounded theory approach.  

1.1.4 Main	Findings	

The epistemically-revealing problem solving practices employed by the 

19 engineering student participants were resolved into seven types of 

epistemic practices and organised into a 4-level framework. Readers 

acquainted with epistemic beliefs models will recognise elements of several 

epistemic practices, however my engineering-specific formulations provide 

some novel facets. For example, sources of knowledge include familiar origins 

such as experts, but also mathematical derivation and physical 

experimentation. Additionally, I describe three novel engineering-specific 

epistemic practices: equations	 as	 imperfect	models	 of	 reality, precision	 and	

estimates, and answer‐checking	strategies. 

In my framework, the epistemic progression described across the four levels is not 

a developmental shift but rather an increasing range of available 

practices. Practices characterised in the first level, absolute, do not seek to justify 

or validate answers that come from sources deemed expert. Local	 coherence 

practices, the second level, apply strategies that seek logic and consistency with 

elements in the immediate vicinity. For example, that the mathematical 

operations are correct. The third level practices, coherence, also seek 

consistency at a larger scale by drawing on personal experiences and 

observations of the physical world. Practices at the most sophisticated level, 

sceptical	 reverence, recognise ambiguity and the need to make judgements. 

This final level is drawn from Julie Gainsburg’s work with professional 

engineers (2007).  

While my practical focus could be interpreted as a step away from the ideal of 

a robust, overarching theory, it provides new insight into the often identified 

but continuously discounted/neglected observations that the same student 

can express beliefs corresponding to both highly sophisticated and very 

basic epistemic approaches with little temporal separation. Elby and Hammer’s 
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under exploited epistemological resources model, where increasing 

sophistication is characterised by selecting a productive stance to 

achieve the current goal is a more coherent explanation (Elby and 

Hammer 2010, Elby et	 al. 2016). However, I propose the 

refinement that the overall diversity of the epistemic practices that 

a student employs is a better measure of their epistemic sophistication.  

The overall arc of increasing sophistication described in this thesis is 

coherent with prior models, however the rigorous focus on epistemic 

cognition and omission of any inference of overarching epistemic beliefs results 

in a framework that is rich, practical and fine-grained yet sufficiently general to be 

applied in other contexts.   

1.2 STRUCTURE OF THE THESIS 

This first chapter has presented the goals and motivations for this doctoral study 

in terms of  how epistemic cognition is relevant to the societal role of engineers. 

Chapter 2 provides more detail on the context of the study through an 

examination of the existing literature. Issues arising from the under-exploitation 

of models of epistemic cognition, the conflation of overarching epistemic 

beliefs and specific knowledge practices, and an inadequate attention to context 

are used to make the case for the epistemic practices approach developed in this 

thesis.  

Chapter 3 reports the research design and methodologies employed in both the 

qualitative and quantitative studies conducted.  

Chapter 4 reports and analyses the empirical observations from the four 

studies conducted with engineering students. This includes of a set of 

qualitative interviews conducted in 2015, two sets of qualitative interviews 

preceded by think-aloud problem solving sessions conducted in 2016 and 

2017-18 respectively and the results of the quantitative questionnaire studies 

conducted in 2015-16.   

Chapter 5 critically assesses the observations of the four studies, and situates 

them with respect to previous work in the field, particularly with reference to the 

work of King and Kitchener, Julie Gainsburg, and Elby and Hammer.  

8 
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Chapter 6 concludes the thesis by drawing together key ideas that have 

emerged across the preceding chapters. Focusing on the epistemic practices 

framework anddiversity as a measure of epistemic sophistication, this 

summary highlights the contributions to knowledge of this thesis. 
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2 Literature Review 

2.1 EPISTEMIC STRUCTURES AND EPISTEMIC PROCESSES 
Epistemic beliefs are fascinating yet elusive, as the enduring level of research 

in the field attests. While a multitude of studies have generated a wide range 

of approaches, empirically-based, testable models are rare (Muis et	 al. 2006, 

Bråten 2016, Sandoval et	 al. 2016). An additional weakness is that these 

models conceptualise epistemology as a “very abstract principle at great 

remove from practical actions”, which Perkins has identified as a key 

obstacle to theory being applied in, for example, teaching (2003, p. 
213). As my research questions have made clear, my objective is to 

contribute to a robust yet accessible model by taking a fine-grained, 

practical approach to investigating how knowledge is used and applied 

during problem solving by engineering students. As this chapter will 

illustrate, I identified a major lack of attention to the disciplinary 

epistemology in terms of the engineering-specific ways knowledge is 

generated, manipulated, and justified. While experts certainly use disciplinary 

thinking skills, Entwistle states that teachers are unlikely “to teach 

them explicitly, and may need help in identifying them for their 

students” (2018, p. 157). To use Perkin’s terms (2003), my literature review 

demonstrates the potential of my research to contribute to the field in terms of 

both explanatory theory relevant to researchers and action theory that 

provides an accessible way for  engineering teachers to develop epistemic 
sophistication in their teaching. 



Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 

11 

As I argued in the Introduction, sophisticated disciplinary epistemic skills 

enable an engineer to perform effectively in their field. While engineers 

mobilise considerable knowledge and numerous skills when they solve the ill-

structured problems they encounter as professionals, epistemic sophistication is 

a key aspect for applying their knowledge in contextually-relevant ways. This 

chapter therefore starts by identifying several core challenges for solving ill-

structured engineering problems, including using models and managing 

uncertainty. This serves to focus our attention on the knowledge skills that are 

relevant to engineering yet are absent from current models of epistemic 

sophistication in engineering.  

The second part of this chapter critically reviews the broad field of 

epistemology with a particular attention to the distinction between 

cognitive structures approaches and cognitive processes approaches (Briell et	

al. 2011). While Briell et	 al.’s approach is not widely used, it is ideal for 

illuminating how cognitive structures approaches have monopolised research 

focus yet have failed to deliver robust, empirically-supported models. 

Supported by a detailed review of the literature, I critique the focus on 

overarching epistemic beliefs and argue for a pragmatic cognitive processes 

approach based on students’ contextual, enacted knowledge practices.     

The chapter concludes by demonstrating how the research questions of this 

thesis address persistent issues and contribute to a much-needed model of 

epistemic sophistication that is contextualised in the discipline of engineering, 

coherent with empirical observations (both from the current study and the 

work of other researchers), and incorporates recent theoretical developments 

in the field. 

2.2 THINKING LIKE AN ENGINEER 

2.2.1 Problem	Solving	is	Engineering		

Problem solving is often used as a near synonym for engineering (Pawley 2009, 

Mourtos 2010, Passow and Passow 2017, Zhu et	al. 2019), an approach that is 

markedly different from most disciplines which tend to make knowledge itself and 

not the application central to their disciplinary identity (Case and Marshall 2016). 

Investigations of engineering problem solving have explored many facets from the 

types of problems encountered by professionals to problem-based learning, yet 
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few studies have focused on the specific, fine-grained strategies that students use 

during their problem solving (Litzinger et	al. 2010, p. 338).   

While the problems that students encounter during their studies tend to be well-

structured and focus on aspects of engineering science (Dym et	 al. 2005, 

Sheppard et	 al. 2008, Swenson 2020b), professional engineering work 

introduces multiple additional challenges related to functioning in complex, 

dynamic environments. The types of problems encountered by professional 

engineers are typically characterised as being ill-structured.  

The key characteristic of ill-structured problems is that they do not have an 

established method for solving them (Gainsburg 2007, Crismond and Adams 

2012), although recurrent features include: the need to define the problem (King 

and Kitchener 2004, Gainsburg 2007, Crismond and Adams 2012, Swenson 

2020b), deciding what criteria will determine acceptable answers2 (Dym 1994, 

Gainsburg 2007), and the collection of relevant information. This is done within a 

problem space where none of the data is known with complete certainty nor is 

guaranteed to be constant (King and Kitchener 2004, Swenson et	al. 2019). The 

open-ended departure point, the uncertainty of data, and the multiple correct 

answers that require the engineer to defend their final solution require advanced 

problem solving skills. 

It is therefore unsurprising that significant effort in engineering education has 

been devoted to developing students’ problem solving skills. One common result 

is that engineering curricula have sought to include more open-ended, authentic 

projects in order to address the gap between well-structured classroom problems 

and ill-structured work place problems (Jonassen 2000, Marra et	al. 2000, Wise et	

al. 2004, Jonassen et	al. 2006, Yadav et	al. 2011, Zhu 2017, Swenson et	al. 2019). 

Entwistle et	al. (2005) state that it is important to scaffold engineering students 

by decreasing their reliance on routine, algorithmic approaches to problem-

solving and to support them to adopt more conceptualised strategies towards 

their studies. For Allie et	al., this means that engineering lecturers must make their 

tacit ways of thinking and interacting in engineering more explicit for students, 

particularly the “rhetorical patterns underpinning their disciplinary knowledge 

2 Note: more than one answer.  
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bases” (2009, p. 363). These more open-ended projects have been shown, over 

time, to improve students’ skills when they have sufficient opportunities to 

practice (Martin et	al. 2005). 

“Unfortunately, relatively little research has specifically examined the strategies 

students use while solving engineering related problems” (Litzinger et	al. 2010, p. 

338) and therefore not much is known about the specific strategies and 

approaches that need this careful scaffolding3. In their think-aloud study of 

students working on solving textbook statics problems, Litzinger et	al. note with 

concern that “few of the students could reason physically” (2010, p. 337). This 

suggests that making connections between physical reality and paper-based 

exercises is an area that requires development. Litzinger et	al. also found that 

stronger students generated more problem representations (i.e. models) and used 

four times more self-explanations than did weaker problem solvers. It is 

interesting to note that the types of explanations and representations of strong 

problem solvers spanned all the categories and did not concentrate in any 

particular category.

The following sections explore the fundamental aspects of open-ended 

engineering problem solving; in order to situate the contributions of this thesis, 

careful attention is afforded to how models and equations are used, and how 

uncertainty and precision are managed.  

2.2.2 Using	Models	and	Equations	on	Paper	or	Connected	to	Physical	Reality	

Modelling is an activity that “involves indirect representation and analysis of real-

world phenomena” (Boon and Knuuttila 2009, p. 209) and it is central to the 

practice of engineering (Gainsburg 2013, Bucciarelli and Kuhn 2018, Swenson 

2020a). However modelling is a broad term encompassing a range of different 

practices: mathematical equations, free body diagrams, schematics, and scale 

models are all examples of modelling practices used in engineering. Müller says 

models can be classified either according to what kinds of object they are or 

3 There is a fascinating body of research documenting effective practices for the process of 
problem solving (ie Polya 1985, Jonassen 2010), not to be conflated with the epistemic strategies 
targeted by the current work.  
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according to what they are intended to do, although in practice the boundary is 

often messy (2009). Weisberg asserts that the common goals of these different 

practices is a desire to “assess the relationship between the model and the world” 

(2007, p. 209). However, the prevalence of computers and computational 

modelling techniques can increase the conceptual separations between the system 

being modelled, the model, and the calculated values or predicted outcomes. This 

means that engineers need to be more expert, not less, with models in order “to 

understand the implicit assumptions built into their software tools to understand 

where failure points could occur and how to interpret the results” (Swenson 

2020a, p. 5).   

Boon and Knuuttila (2009, p. 694) report that models are typically understood as 

“representations of an aspect of the world or a target system” but propose that 

models should be considered to be epistemic tools. Their approach makes explicit 

both the importance of the disciplinary context and the focus on the activity of 

modelling (rather than models as objects). Smit’s (2017, p. 56) observation that 

“modellers can turn constraints (such as simplifying assumptions) into enablers 

for problem-solving” is consistent with seeing models as epistemic tools and with 

the centrality of problem solving in engineering. Bucciarelli and Kuhn (2018, p. 

212) state that “The engineer’s ability to abstract [a model] from a concrete

situation… is key to problem solving and to managing complexity” and that it is

“one of the crucial skills conveyed as part of disciplinary training” in engineering.

The range of types of models listed above illustrates the importance of these

epistemic tools in engineering problem solving, and underlines the importance of

adequately preparing students to use models in effective ways.

Like Berland and Crucet, this project finds the use of models to be an epistemically-

revealing practice as it requires students “to attend to different features of the 

model and make context-dependent decisions about how best to use and evaluate” 

the outcome (2016, p. 11). As explored above, many different types of modelling 

are used in engineering. However, the scope of the current work considers models 

only in terms of mathematical equations4 as this is adequate to address the 

4 My use of the term model is less detailed than Michael Weisberg’s careful work that distinguishes 
between the models themselves and the equations or model descriptions used to represent the 
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research questions.  

Mathematical equations employed to make predictions and calculations in 

engineering may be the result of empirical observations or express relationships 

that were developed from theory. Either way, these equations represent the 

general, sometimes abstract or idealised, end of the continuum that engineers 

must master, with the specific physical reality under consideration at the other 

end. Blömeke et	al.’s (2008) study of teachers’ epistemological beliefs identified 

conceptions of maths knowledge ranging from a collection of rules and formulae, 

a formalist perspective focused on the exact and logical, to a process-related 

problem solving activity and finally something relevant for society and life. While 

Blömeke et	al. report these conceptions in terms of their epistemic sophistication, 

I find it useful rather to think of them along a continuum that describes the 

progression from abstract to applied. This organisation makes apparent the 

necessity that engineers attend to both extremes of this continuum when solving 

ill-structured problems. A failure to navigate between the two extremes and 

conducting problem solving as a purely mathematical, and apparently precise, 

undertaking neglects both the value of physical observations to advance problem 

solving and the implications of ambiguity and uncertainty present in application 

contexts. Swenson et	al. (2020a) identify the need to check modelling assumptions 

against the real-world application as a key aspect of competent use of models and 

simultaneously highlight that students are typically assigned only problems that 

fall within acceptable parameters for the models they should apply. Swenson et	

al.’s (2019) study with high performing engineering students found that all five 

students were able to see two different approaches from which their models could 

be evaluated: demonstrating their ability to apply principles from the course and 

providing an adequate basis for a real-world application. In addition to the overall 

evaluation, Swenson et	al. (2019) observed students checking their models by: 

having used all the course concepts learned up to that point, (same student) 

personal experience with the weather, (different students) having seen similar 

objects in the field, finding the model too simple to represent the real world, noting 

models in mathematical form.  
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that numbers seem unrealistic (too big, too small), calculations are error-free 

and/or logical, and that the solution satisfies the assignment. Swenson et	 al. 

argue that these behaviours represent the “productive beginnings of 

engineering judgement” (2019, p. 4). I will return to the benefits of drawing 

on a range of epistemic approaches later in this thesis. The following section 

addresses the importance of ambiguity and uncertainty in engineering problem 

solving. 

2.2.3 Authentic	Engineering	Problems	Involve	Uncertainty

Uncertainty is an inevitable corollary of the open-ended, ill-structured 

problems identified above as central to professional engineering practice. The 

uncertainty arises from two main aspects. First, the available data or 

information about application contexts may be imprecise, incomplete, 

ambiguous, or subject to dynamic change (Ang and De Leon 2005). 

Consequently, many problems cannot feasibly be solved without the use of 

approximations (Smit 2017, p. 55). Second, the final solution depends on 

judgements made by the engineer/s about the definition of the problem and the 

relative importance of the constraints and outcomes (National Academy of 

Engineering 2004, Ang and De Leon 2005). Managing uncertainty and 

ambiguity is one of the most cognitively challenging aspects of ill-structured 

problem solving (National Academy of Engineering 2004, Stevens et	 al. 2008, 

Atman et	al. 2010, McNeill et	al. 2016). 

“Engineering decisions are invariably made under substantial 

uncertainty” (Rockafellar and Royset 2015, p. 1), which is a key way that 

textbook and school problems are unlike professional engineering practice 

(Downey and Lucena 2003, McNeill et	 al. 2016). Textbook problems typically 

provide all the information necessary, such that all students should produce 

an identical, highly precise answer. McNeill et	 al.’s (2016) study of material 

science engineering students solving open-ended problems identified that 

dealing with uncertainty and making assumptions were among the most 

difficult aspects for students. Students are rarely required to generate 

approximate value, use estimates to advance their problem solving or to 

construct an argument to justify decisions taken to establish priorities for the 

solution. Students’ discomfort with ill-defined problems can persist even 

after they have finished the task, due to an apparent belief that they should 

obtain a single, unambiguous correct result that is at odds with the contexts they
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will encounter in their professional careers (Swenson 2020a).  

The multiple differences between the textbook problems students train on and the 

ill-structured problems encountered in professional engineering practice limit 

students’ opportunities to manage both kinds of uncertainty introduced in the first 

paragraph of this section. Thus, part of the open-ended projects that are 

increasingly common in engineering curricula is learning that uncertainty is 

inherent in engineering work. While Dringenberg and Purzer’s (2018) study of 

first year students working on ill-structured problems focused more on the 

transversal skills related to team projects, they identified the ability to accept 

ambiguity and ascribe value to multiple perspectives as essential factors for 

success. Indeed, Leifer and Steinert (2011) have identified that an ability to 

embrace ambiguity is central to innovation, which is a key goal of engineering.  

It is therefore unsurprising that the ability to function and make decisions in the 

face of uncertainty is present in the accreditation criteria for engineering 

programs (Crawley et	al. 2011, Commission des titres d’ingénieur 2020). In fact, 

the ability to function with ambiguity is referenced three times in the conceive	

design	implement	and	operate	(CDIO) syllabus: decision analysis with uncertainty 

(ref. 2.1.4), initiative and willingness to make decisions in the face of uncertainty 

(ref. 2.4.1), and making complex technical decisions with uncertain and 

incomplete information (ref. 4.7.7). It is clear that an ability to manage 

imprecision, approximations, and uncertainty are important yet under-developed 

skills for engineering students.  

2.2.4 Thinking	like	an	Engineer	is	Epistemic		

Expert engineers demonstrate more sophisticated epistemic approaches than 

novice engineers (Felder and Brent 2004), a connection that has been explored by 

numerous researchers in terms of the development of competent engineers 

(Marra et	al. 2000, Felder and Brent 2004, Marra and Palmer 2004, Wise et	al. 

2004). Each discipline has its own epistemology, its own way to create, 

communicate, and justify knowledge, which means that the problem solving 

behaviours of experts are necessarily characteristic of the discipline (Voss et	al. 

1983). Donald places a particular emphasis on the way knowledge is verified and 

evaluated in a discipline, writing that they “differ so much that they are the 
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defining characteristic of the disciplines” (2002, p. 286). 

For engineering, the centrality of problem solving makes it an ideal activity for 

observing disciplinary epistemology and how it is enacted in the various practices 

required to solve problems ranging from well-structured textbook to ill-

structured professional problems. These practices involve managing imprecision 

and uncertainty, and manipulating models and equations. These engineering-

specific aspects serve to embed the observations of this thesis in the discipline and 

are explored in parallel with general aspects of epistemic cognition identified in 

prior scholarly work and presented in the following sections.  

2.3 MODELS AND APPROACHES FOR CHARACTERISING EPISTEMIC 

BELIEFS 

My focus is on the value and relevance of epistemic sophistication for today’s 

engineering students. However discussions about epistemology (from the Greek 

study of knowledge) date back to Plato (circa 300 BCE). Then, epistemology was 

“An area of philosophy concerned with the nature and justification of human 

knowledge” (Hofer and Pintrich 1997, p. 88). The “tremendous expansion” of 

research in the field over the past 20 years (Sandoval et	al. 2016, p. 457) can be 

attributed to William Perry’s work in the 1970s, which took a more practical 

approach by seeking to understand why students responded differently to the 

intellectual and social environment of university. Proponents of “naturalised 

epistemology” (Goldman 1994) recommend using contributions from psychology 

and other sciences to move away from theorising about knowledge and knowing 

to exploring the processes people employ in making and evaluating knowledge. 

This approach has been taken up particularly in disciplinary contexts (Kelly 2016), 

including engineering. As I illustrate below, a fine-grained, cognitive processes 

approach is a promising way to address the continued lack of an engineering-

specific model of epistemic sophistication. 

Contributions from the fields of education and developmental psychology, 

learning sciences, and disciplinary education have led to a broad range of 

approaches and conceptualisations. This has predictably generated a diverse 

range of terminology including: epistemological beliefs (Schommer 1990), 

epistemic beliefs (Muis and Franco 2009), epistemological resources (Louca et	al. 
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2004), epistemic cognition (Kitchener and King 1981, Chinn et	al. 2011, Sinatra 

2016) and an associated lack of consensus on definitions (Hofer and Pintrich 1997, 

Briell et	al. 2011). Briell et	al. illustrate the “plethora of nomenclature” (2011, p. 9) 

with a table summarising 12 frequently employed terms and 26 less frequently 

employed terms5. Sandoval et	 al. (2016, p. 458) identify this confusion as an 

obstacle to both the “intellectual effort to model epistemic cognition and to 

educational efforts to develop it.”  

Briell et	al.’s review article cut through a great deal of confusion in the field by 

proposing a classification of the different models as either cognitive structures or 

cognitive processes6, depending on “whether the construct was perceived as 

something that exists abstractly or something that occurs in thinking and learning 

situations” (2011, p. 10). Figure 2.1 presents a visual representation of the 

categories and the related models. Cognitive structures focus on abstract 

conceptions such as beliefs and includes Baxter-Magolda’s work on epistemic 

assumptions and Schommer-Aikins’ on epistemic beliefs. Briell et	 al. classified 

constructs as cognitive processes if they describe how individuals use and evaluate 

knowledge (2011), encompassing Kuhn’s argumentative reasoning and King and 

Kitchener’s reflective judgment model. Briell et	 al.’s classification is 

significantly more relevant to the focus on this thesis than the 

developmental/dimensional division often used and certainly more useful to 

illustrate the contributions of this thesis. My review does not include work which 

takes a philosophical approach to personal epistemology (Greene et	al. 2008), as 

these approaches are not germane to the argument of the thesis. 

The developmental/dimensional approach to classifying models of epistemic 

beliefs has a near hegemonic dominance and is used by all of the most cited articles 

in the field (Sandoval et	al. 2016, p. 462). Developmental, or stage-based, models 

characterise increasing epistemic sophistication through a set of sequential phases 

or stages. Dimensional models posit that epistemic sophistication increases across 

5 Epistemic	cognition is listed as a frequently employed term but epistemic	practices does not figure 
on either list. 

6 And occasionally both 
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several semi-independent beliefs that may evolve at different rates. While this 

classification prevails in the literature, it focuses on a somewhat superficial aspect 

that does not elucidate the issues addressed by the current work. I will therefore 

use Briell et	al.’s classification (2011). Briell et	al.’s cognitive structures relate to a 

general understanding of the word belief, where people’s direct or indirect views 

about the nature of knowledge and knowing are used to infer their epistemic 

beliefs. These epistemic beliefs are assumed to be stable, overarching constructs 

which are restricted to the realm of the abstract, where knowledge and knowing 

are mental concepts rather than enacted, observable phenomena (Kitchener 

2011).  

Figure	2.1	Epistemic	Beliefs	Models	According to Briell et al.'s Classification  
 (2011)	

The current work focuses on the second category of Briell et	al.’s classification of 

how epistemic beliefs are conceptualised: cognitive processes focus on how 

students know and manipulate knowledge in specific contexts (2011). This 

approach is based on observable actions, from which some researchers have 

sought to infer epistemic beliefs. The relative benefits and disadvantages of these 

two conceptualisations of epistemic beliefs are explored in more detail below. The 

first two sections examine, respectively, the cognitive structures models of 

Belenky et	 al. and Schommer-Aikins. The final three subsections explore the 

cognitive processes approaches to epistemic sophistication, where the focus is on 
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the actions or behaviours of the person. This thesis uses this less 

commonly used cognitive processes approach7. While Briell et	 al. (2011) 

identify two types of cognitive processes models (represented by Perry, 

and King and Kitchener), my analysis also places Elby and Hammer, who are 

cited by Briell et	 al. but omitted from their categorisation, in this cluster. 

Epistemic cognition, a term first used by Karen Kitchener (1983) to 

describe people’s self-monitoring processes when solving ill-structured 

problems, is commonly used in a broader sense that corresponds to a cognitive 

processes approach.  

2.3.1 Nature	of	Knowledge	and	Knowing	Via	Semi‐Structured	Interviews	

This cluster of models was initiated by Belenky et	al. (1997) and is one of the 

many developmental approaches; other works in higher education that employ a 

similar approach include Brownlee (2004) and Maggioni et	al. (2006).  

The methodological approach underlying these models involves 

asking participants quite open-ended but direct questions about the nature of 

knowledge and knowing during semi-structured interviews. Interviews tend to 

be quite long (2-5 h) and range across a variety of topics including knowledge, 

truth, experts, and learning. The observations arising from the interviews have 

either been used to construct developmental models, or have been assessed 

against developmental models. Common across all the developmental models is 

the idea of a trajectory from a dualist absolutist view of knowledge provided by 

experts, to an awareness of the constructed, evolving nature of knowledge and 

the development of criteria against which to evaluate knowledge claims.  

While this approach attempts to directly access participants’ explicit beliefs, 

accounts from researchers suggest that most people are not able to articulate these 

philosophical ideas in a coherent and well-organised way (Brownlee et	 al. 2001, 

Chan and Elliott 2002). Further, this approach still requires implicit beliefs be 

inferred from participants’ comments. Finally, developmental psychology has 

moved away from stage-based models due to their inability to capture the 

7 In their review, Briell et	al. (2011) report that the majority of the studies (73%) used structure-
oriented constructs and an additional 10% combined structure and processes oriented 
constructs. Thus, only 17% used a purely processes approach, as I have.  
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“pervasive variability” in how people think and reason (Siegler 1998, p. 81). The 

cluster of models below has found novel ways to avoid this issue.  

2.3.2 Dimensional	Beliefs	Models	via	Likert‐Type	Measures		

In 1990, Marlene Schommer-Aikins offered a significant departure from the 

previous stage-based models (see also Schommer-Aikins, 2004). Merging concepts 

from Perry’s work, from Dweck and Legett on beliefs about the nature of 

intelligence (1988), and from Schoenfeld’s work on beliefs in maths (1988), her 

epistemological belief system is composed of five semi-independent dimensions. 

While the names of the dimensions have evolved over time, they are commonly 

known as simple knowledge, certain knowledge, source of knowledge, ability to 

learn, and quick learning. These last two are rejected as dimensions of 

epistemological beliefs by numerous researchers (Hofer and Pintrich 1997, 

Greene et	al. 2008, Sandoval 2009) who classify these beliefs as related to learning. 

Another novel point of Schommer-Aikins’ model is to allow for the asynchronous 

development of the different dimensions, such that epistemological beliefs are 

taken as frequency distributions. A more sophisticated learner is thus 

distinguished by the percentage of knowledge that they conceive of as static or 

tentative (Schommer et	al. 1997). 

As you would expect from a model grouped in the cognitive structures cluster, 

Schommer-Aikins’ Epistemological Questionnaire (EQ) attempts to target 

students’ beliefs quite directly. The EQ asks students to indicate their 

(dis)agreement with statements of specific epistemic beliefs, such as what is true 

today will be true tomorrow. This self-report instrument offers the possibility to 

collect data economically, compared to prior work that primarily used individual 

interviews. Schommer-Aikins’ semi-independent dimensions and use of frequency 

distribution appeared to better reflect the intricacies of human beliefs, igniting a 

full order of magnitude increase in research output in the field (Sandoval et	al.	

2016, p. 464), including the creation of numerous variant questionnaires (Kardash 

and Scholes 1996, Kardash and Wood 2000, Schraw et	al. 2002), especially for 

science-related beliefs (for an overview, see Elby et	al. 2016). 

Hofer and Pintrich’s (1997) review of epistemic beliefs digested and compared 

existing work in the field, and proposed a model of four semi-independent 
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dimensions: simple knowledge, certain knowledge, source of knowledge, and 

justification of knowledge. This model was highly influential: Sandoval et	al.’s 2016 

review (p. 464) identified it as the most cited source in the field, after Perry.  

Despite the intense research activity concentrated on dimensional models, 

establishing a questionnaire that consistently delivered coherent empirical data 

has proved elusive. Some researchers (Jehng et	al. 1993, Bendixen et	al. 1998) have 

found it difficult to replicate Schommer-Aikins’ posited 4-factor structure 

(Schommer 1993) and others have been unable to separate the allegedly semi-

independent dimensions (Hofer 2000, Qian and Alvermann 1995). Condensing 

justification into a single dimension has also proved problematic (Stathopoulou 

and Vosniadou 2007, Rizk et	al. 2011). As Hofer (2010) and Greene et	al. (2008) 

have argued, a dichotomous scale cannot capture the full range of data types and 

reasoning that people employ to assess knowledge claims, from authoritative and 

experiential accounts to the contextualised evaluation of evidence or expert 

opinion. Intensive efforts over two decades have been unable to adequately 

resolve these issues, and I count myself among the many who have 

attempted to do so.  

The persistent measurement issues prompted DeBacker et	al. (2008) to compare 

the psychometric properties of three main dimensional models: Schommer-

Aikins’ Epistemological Questionnaire (1990), Schraw et	al.’s Epistemological 

Beliefs Inventory (2002), and Wood and Kardash’s Epistemological Beliefs Survey 

(2002). They identified shortcomings in the psychometric properties of all three 

instruments. Faber et	al. (2016) employed a qualitative approach to identifying 

the source of these recurrent measurement issues by asking students, in 

addition to their Likert-scale answer, to write a short sentence explaining their 

answer. Using Yu and Strobel’s Hofer-based instrument (Yu and Strobel 2011, 

2012), Faber and colleagues found some items where students expressed 

different levels of agreement yet wrote down the same justification (i.e. for 

the item Principles in engineering cannot be argued or changed) and other 

items where students expressed the same level of agreement yet wrote down 

conflicting justifications (i.e. for the item If your personal experience conflicts with 

the ’big ideas’ in a book, the book is probably right).  
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Schommer-Aikins’ dimensional approach to characterising epistemic beliefs is, at face 

value, more reflective of the range and variation of beliefs expressed by humans. 

However, the pervasive and persistent measurement issues suggest underlying 

issues of construct validity. My own concerns prompted me to explore and ultimately 

employ a cognitive processes approach, as described in the following sections.  

2.3.3 Salient	Meaning	Making	via	Interviews

William Perry’s work (1970), which kindled the significant interest this field has 

enjoyed over the past decades, is the core of this cluster of models that include 

Marcia Baxter-Magolda’s (1992). Perry’s longitudinal study comprised of yearly 

interviews with male Harvard undergraduates asking them to explain how they 

made important decisions in their lives, or to describe their experience of 

important situations. His developmental model consists of nine epistemological 

positions describing how individuals perceive knowledge and their beliefs about 

knowing. The positions are hierarchically integrated structures describing the 

progression from a dualistic, absolute view of knowledge where a learner accepts 

a static, certain truth from the most authoritative source, through multiplicity 

where students do not seek to reconcile different opinions but rather accept that 

each person is entitled to their own view, and finally in the latter stages of the 

model, students begin to conceive of themselves as active generators of their 

own knowledge and to contextually evaluate knowledge claims. The nine 

original positions are typically condensed into four levels (Moore 1994). His 

investigation of how students reasoned in open-ended situations in their lives 

firmly places Perry’s approach in the cognitive process cluster. However, 

his inference of the students’ underlying epistemological positions is 

more closely related to epistemic beliefs than epistemic cognition. 

Baxter-Magolda’s longitudinal study with both male and female students also 

included elements about the nature of learning and the nature of instruction in her 

model, describing the expected roles of a learner and of a teacher (1992). Both 

models in this cluster involve asking students about how they think and navigate 

in the world, and infer overarching epistemic beliefs from their comments.  

Recent work by Jiabin Zhu and colleagues has sought to develop a questionnaire 
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for engineering students based on Perry’s model (Zhu 2017, Zhu et	al. 2019). The 

45 questionnaire items are formulated quite broadly, i.e. “I enjoy working with 

complex ideas in which experts have no consensus.” While the specificity for 

engineering is referenced in the title and throughout the article, none of the 

items themselves focus on engineering-specific knowledge or contexts. 

Rather the opposite in fact, as items refer to “papers”, “open-ended essay”, 

and “seminar formats”, none of which are core activities in traditional engineering 

programs. Of the 205 complete data sets collected by Zhu et	al. (2019), their 

instrument assigned 11% of participants to a single epistemological position 

(dualism, multiplicity, commitment, or relativism). As presented in Figure 

2.2, the majority of participants were assigned more than one level of 

sophistication, including 6% of participants who were identified as spanning all 

four levels. The authors explain that participants whose responses corresponded 

to more than one level “could suggest that they were going through transitional 

stages in their epistemological development” (2019, p. 5). Given that 75% of 

participants who were classified were attributed two or more levels, I 

find their explanation completely inadequate8. Moreover, the assignment of 

some participants to non-contiguous levels (i.e. dualism-commitment, dualism-

relativism-commitment, or dualism-multiplicity-commitment; numbers of 

participants in each category are not specified) undermines their explanation. 

Yet again, the “coexistence of lower and advanced levels of thinking” (2019, p. 5) is 

not taken as an important observation in itself but instead is dismissed as an 

artefact “of the complexity of students’ epistemological development” (2019, p. 

4). I will return to this recurring empirical observation in the Analysis Chapter and 

contribute a novel, coherent explanation.  

In my analysis, I make a distinction between this group of models (comprising 

Perry, Baxter-Magolda, and Zhu) and other cognitive processes models in terms of 

what is inferred from the observations. While these models employ a cognitive 

processes approach in their data collection, they then use their observations to 

infer overarching epistemic beliefs. In contrast, King and Kitchener, and Elby and 

Hammer maintain the cognitive processes approach by focusing on epistemic 

8 I am curious about why 12% of participants were not assigned to any epistemic level at all but 
this is unfortunately omitted from the article.  
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cognition rather than beliefs. Perry’s model thus falls in a Venn diagram-like area 

of high overlap, which is likely a product of being the foundational work in the area 

and also an important factor in its continued influence in the field. Given the 

importance of the cognitive processes in answering my research questions, the 

nuances and distinctions of the models in this cluster are explored in detail.  

Figure	2.2	Zhu	et	al.’s	Perry‐level	Classification	of	205	Chinese	Engineering	Students9		

2.3.4 Reflective	Judgements	and	Argumentative	Reasoning	via	Interviews	

This grouping contains Patricia King and Karen Kitchener’s reflective 

judgement model (Kitchener and King 1981, King and Kitchener 1994, 2004, 

Kitchener 2011) and Deanna Kuhn’s argumentative reasoning (1991). While the 

latter model has been used more broadly (Briell et	 al. 2011), King and 

Kitchener’s focus on epistemic cognition, rather than conceptions of 

knowledge, is more relevant for the current work. While these models employ 

qualitative methods to investigate how students went about actually reasoning, 

they lose their contextualisation by then inferring a student’s level of 

sophistication from the distribution or occurrence of certain behaviours or 

opinions. Another criticism that I have of these models is their discipline-general 

approach, which neglects the influence of the type of problem and knowledge 

practices that are representative of a particular discipline.  

9 Chart represents my analysis of data reported by Zhu et	al. (2019); values may not be exact. 
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Patricia King and Karen Kitchener began with the questions “How do people 

decide what they believe about vexing problems?” and “How do people arrive at 

their judgments about complex and controversial problems?” While their 

approach was initially from a critical thinking perspective, the nature of their 

enquiries lead them to epistemology. Their methodological approach involved 

semi-structured interviews with older adolescents and adults about how they 

reasoned through the poorly-structured problems posed to them. Specifically, 

participants needed to make judgments about competing assertions on issues 

“about which ‘reasonable people reasonably disagree’” (King and Kitchener 2004, 

p. 5). For example, the issues in the original interview included the safety of 

chemical additives in foods and the accuracy of news reporting, and posed 

questions such as “…is it the case that one opinion is right and one is wrong?” and 

“Can you ever know for sure your position on this issue is correct?” (King and 

Kitchener 1994, p. 102). Deanna Kuhn’s argumentative reasoning model (1991) 

employed a similar methodology, where older adolescents through to senior 

citizens were interviewed about their conceptions of expertise and knowledge 

after confronting ill-structured, real-life social problems such as unemployment. 

The issues covered by others employing the model range from highly controversial 

(Should drugs be legalized?; Angeli and Valanides 2005, p. 318) to non-

controversial (Do those clouds mean rain?; Mansfield and Clinchy 2002, p. 232).

The reflective judgement model is composed of seven substages organised 

into three stages: pre-reflective thinking, quasi-reflective thinking, and 

reflective thinking. The model describes a developmental progression of the 

“ways that people understand the process of knowing and the certainty of 

knowledge claims and in the corresponding ways that they justify their 

beliefs” (King 2000, p. 16). Less sophisticated judgements rely more on authority 

or direct observation. More sophisticated judgements are characterised as more 

nuanced, with a more explicit and salient “relationship between evidence and 

judgment” (King 2000, p. 19).  King et	 al. (1989) report a sequential movement 

through the substages at a rate of about one per six years, and report that 

regression in people’s reflective judgement is very rare.  

By attending to how people justify knowledge claims, rather than their beliefs 
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about the nature of knowledge, King and Kitchener are credited with creating the 

concept of epistemic cognition. While King and Kitchener used the term to 

describe the process people “invoke[s] to monitor the epistemic nature of 

problems and the truth value of alternative solutions” (1994, p. 12), it is currently 

used in a broader sense to denote a cognitive processes perspective on epistemic 

beliefs, where the focus is on the actions of the person. Studies addressing 

epistemic cognition are typically attentive to the influence of context, make fewer 

inferences, and posit fewer generalisations of their findings. For Greene et	 al. 

(2016), epistemic cognition describes how people think about knowledge, how 

knowledge can be used and how they know that they know. For Nancy Sinatra, 

epistemic cognition is cognition related to epistemic matters; that is, it is the 

dynamic process of constructing and making sense of knowledge which “invokes 

or draws upon learners’ beliefs, schemas, mental models, resources, frameworks, 

or other contents of their cognition” (2016, p. 480). She characterises epistemic 

cognition as the behavioural response to a particular situation, and states that it is 

not directly equivalent to epistemic beliefs (2016). Chinn et	 al.’s (2011) 

framework for epistemic cognition, which involves determining “epistemic aims, 

standards and ideals” takes a fine-grained, context-specific approach while 

employing a dimensional, cognitive structures approach. They argue that students’ 

epistemic aims are key for contextualising and understanding their actual 

epistemic cognition, as the aims inform how students interact with knowledge to 

either gain a deep understanding or to simply address the current problem. It has 

also been suggested that epistemic cognition may have metacognitive, in addition 

to cognitive, aspects (Hofer and Sinatra 2010, Sinatra 2016). 

In my analysis of the literature, I see that epistemic cognition, focusing on how 

people are manipulating and evaluating knowledge, rather than on overarching 

beliefs, is the approach which has the most promise to advance the field. Further, 

King and Kitchener’s methodological approach with specific tasks is an effective 

way to generate relevant activity to discuss during the interview, rather than overly 

broad or hypothetical situations. However, there are important discipline-

specific aspects regarding how to evaluate knowledge claims and convincingly 

defend decisions (Voss et	al. 1983, King 2000). Inspired and grounded by King 

and Kitchener’s work, I employ a different type of task and look for how students
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work with engineering and science knowledge in order to develop 

a better description of epistemic cognition in engineering.  

In general, studying students’ epistemic cognition involves investigating how 

people use knowledge. Appropriate methodologies for this approach include 

observation and think-aloud studies (Litzinger et	 al. 2010, Mason 2016) with 

semi-structured interviews to better understand and interpret the observations 

(Sandoval et	 al. 2016). Multiple researchers (Lising and Elby 2005, Muis and 

Gierus 2014, Sinatra et	al. 2014, Mason 2016, Sinatra 2016, Lindfors et	al. 2019) 

have called for more investigation of the contexts in which the dynamic process of 

epistemic cognition functions. Similarly, Lindfors et	al. (2017, p. 4) say that “It is 

necessary to observe how these beliefs are expressed in an individual’s 

practice” in order to acquire a deep understanding of the beliefs themselves. 

Epistemic practices is Kelly's (2016) term for epistemically-revealing behaviours 

which can be observed and captured in order to characterise how a person 

approaches, justifies, and evaluates scientific knowledge within a given context. 

This approach assumes that epistemic practices arise from the dynamic process 

of epistemic cognition and must be studied in situ as they are “situated in time, 

space, social practices, and cultural norms” (Kelly 2016, p. 397). This reflects 

the increasing importance (Sandoval et	 al. 2016) placed on using 

observations of students’ thinking and behaviour to better understand what 

constitutes epistemic sophistication. 

2.3.5 Epistemological	 Resources	 Model	 via	 Contextualised	 Observations	

Andrew Elby and David Hammer initiated a departure from both 

the developmental and dimensional models which have dominated 

studies of epistemic beliefs (Elby and Hammer 2001, 2010, Hammer and Elby 

2002, Louca et	al. 2004, Elby et	al. 2016). Their epistemological resources model 

recommends taking a fine-grained approach to how students go about thinking, 

so I have classified it as a cognitive processes approach. As noted by Briell et	al. 

“little emphasis is given to differentiating conception-oriented constructs and 

process-oriented constructs” (Briell et	al. 2011, p. 11) and consequentially the 

two are frequently conflated or combined without regard. Thus, while 

epistemological resources have been referred to as “fine-grained cognitive 

structures” (Sandoval et	al. 2016, p. 471, Lindfors et	al. 2017), this thesis argues
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that the cognitive resource model is more useful and effective as a fine-grained 

cognitive processes approach. This means that Elby and Hammer’s suggestion 

that repeated use of individual cognitive resources can lead to the development 

of stable epistemic frames, aligning with the cognitive structures models, 

this aspect of their model will not be employed in the current work which will 

focus on the processes aspect.  

Elby and Hammer identify two major shortfalls of prior models; first that they fail 

to differentiate between the correctness and productivity of different epistemic 

beliefs; and secondly, that the units of analysis used in these models are too coarse-

grained to capture essential contextual differences in how knowledge is used or 

evaluated.  

Both developmental and dimensional models imply that epistemic sophistication 

is demonstrated by enacting sophisticated epistemic beliefs, such as not taking 

scientific knowledge as absolute and static. Elby and Hammer do hold that 

knowledge is ultimately contextual and tentative, however they stress that this 

conception is not the most productive approach in every situation. They illustrate 

this concept with the example that students should be ready to simply accept the 

notion that the earth is round when it is presented to them but to take a more 

questioning approach to theories of mass extinctions (Elby and Hammer, 2001). 

Treating all scientific knowledge as tentative and evolving would not be 

productive, despite the global correctness of this approach. Several researchers 

have made the same point, noting that relying on experts for justification of a 

knowledge claim is the most appropriate approach in certain situations and not 

simply a naïve response that should be equated with low epistemic sophistication 

(Greene et	al. 2008, Chinn et	al. 2011). Elby and Hammer (2001) define a belief as 

“productive if it generates behavior, attitudes, and habits that lead to ‘progress’ as 

defined by the given person or community” (2001, p. 555). They thus insist on the 

importance of assessing the appropriateness or effectiveness of 

students’ epistemic practices in situ, to avoid the obvious nonsense that a 

tentative approach to knowledge is always more sophisticated even when 

considering well-established laws of nature. 

This leads into Elby and Hammer’s second criticism of developmental and 
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dimensional models, which is that students are expected to hold “certain blanket 

generalizations about the nature of knowledge and learning, generalizations that 

do not attend to context. Such blanket assertions, [they] argue, are neither correct 

nor productive” (2001, p. 555). For example, if a student expresses agreement with 

Yu and Strobel’s item “Principles in engineering are unchanging so that they 

cannot be argued or changed” (2011), are they thinking about the well-established 

principles of statics (the causes and effects of stationary forces acting on rigid  

objects) or the emerging principles of machine learning (using computers to run 

predictive models that learn from existing data in order to forecast future 

behaviours, outcomes, and trends)? Elby and Hammer therefore advocate for a 

fine-grained approach to probing students’ epistemic beliefs, concept by concept. 

In response to the shortcoming identified above, Elby and Hammer’s 

epistemological resource model posits that people have a set of cognitive 

resources available to them, from which they choose which resources to bring 

to bear in each specific, precise context. For Elby and Hammer, epistemic 

sophistication is adopting an appropriate approach according to the context of 

the specific knowledge claim. In this model, sophistication is not progressing 

to a higher stage but rather an improved ability to select and employ 

productive cognitive resources. While Elby and Hammer tend to formulate their 

ideas in terms of epistemic beliefs, I avoid the term beliefs in order to emphasise 

my cognitive processes approach. The cognitive resource model is a considerable 

departure from the previously discussed models where epistemic cognition is 

organised into hierarchical phases or dimensional subphases. 

The cognitive resources model offers a coherent explanation for previously 

problematic observations, made by many researchers, where participants 

expressed conflicting views or acted in highly contradictory ways. Leach et	al. 

(2000) probed such contradictions through the use of two different types of items 

on the same questionnaire: decontextualised, Likert-scale items which prompt 

rapid responses and items which are deeply contextualised in specific narrative 

descriptions (i.e. researchers examining experimental data at a superconductivity 

conference). Leach et	al. report major variations in the responses of participants 

on these two different types of items. These data are best explained by the 
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epistemological resources model which posits that the participants were 

cued in different ways by different items, rather than responding from a 

coherent, stage-based conception of knowledge. Lin and Tsai (2008) and Tsai 

(2004) report that while each participant expressed a range of views, one 

perspective tended to be dominant, although not necessarily the most 

sophisticated perspective. For me, focusing on the most frequent or most 

sophisticated beliefs collapses the rich and useful details of the cognitive 

resource model into a developmental model.  

Elby and Hammer use the concept of epistemic framing, inspired by the notion of 

framing used in anthropology and sociolinguistics (2010). A frame is 

constituted by a person’s expectations of a given situation, expectations which 

will ultimately influence what the person perceives in the situation, and what 

actions the person will deem appropriate for themselves. Hutchison and Elby 

demonstrate how students' expectations about learning activities, i.e. their 

epistemic framing, can affect their reasoning (2013). Their think-aloud 

protocol, primed by questions which frame solving physics problems as either 

a real life "sense-making" or a schoolish "answer-making" activity caused 

students to approach the problem in different ways. They propose that repeated 

activation of the fine-grained cognitive resources results in the construction 

of stable epistemic frames (Elby and Hammer, 2010). Interestingly, Elby 

and Hammer also cite two examples of an individual (one a teacher, one a 

student) suggesting switching to a different frame was better suited to making 

sense of a current problem (2010). These interactions suggest that people believe 

that it is possible to change an epistemic frame within a given context. Louca et	

al. thus argue that teachers do not need to confront students’ beliefs, but 

rather should help students to recognise productive resources which they 

already possess and to identify when it is effective to apply such resources 

(2004). Louca et	al. further propose that this process also provides a mechanism 

for the development of epistemic sophistication, the lack of which has been 

noted as a significant weakness of developmental models (Siegler 1996). This 

cognitive structures approach is an interesting contribution in terms of how 

processes and structures may be connected, and for proposing a developmental 

model. However, these ideas are beyond the scope of the observations 

undertaken in this thesis and this aspect of their work will not be further 

explored.  
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While this thesis is more interested in the more dynamic cognitive processes 

aspects, Elby and Hammer (2010) also posit three mechanisms which act 

to stabilise the epistemological resources a student will bring to bear: 

contextual, deliberate or structural. Contextual stability occurs when the 

student has repeatedly experienced particular characteristics of a learning 

environment and will thus continue to be cued to respond in the same way by 

said characteristics. Deliberate stability occurs when a student intentionally 

seeks to maintain a particular epistemic stance. For example, Elby and 

Hammer (2010) describe how an interviewee explicitly changed his approach to 

studying physics by seeking to follow the advice provided by his physics 

instructor to imagine explaining each concept to a 10 year old. Louca et	 al. 

describe how over time and through repeated activation, a particular set of 

epistemological resources will develop into a stable epistemic structure 

(2004). This type of stability sounds more like a cognitive structure than a 

cognitive process and, given the temporal dimension, is beyond the scope of the 

current work. 

The methodological implications of the cognitive resource model are that 

data must be collected at a fine-grained scale and analysed with careful attention 

to the context of the knowledge being described. If possible this is 

supported by triangulation with direct observations and other data. Louca et	

al. state that they are hesitant to infer a belief from a single observation but 

rather emphasise the need to check for stability across multiple contexts (2004). 

Further, they question the ability of studies using a single survey or interview 

to make valid inferences about students’ epistemic beliefs.  

Studies employing the cognitive resource model have primarily focused on 

students in physics (e.g. Elby and Hammer) or other science contexts (Gainsburg 

2015) with careful attention to context. These studies have provided an ideal 

situation in which to demonstrate that an unsophisticated epistemic approach will 

always be most effective (and thus appropriate) in some situations. For example, 

Lindfors et	al.’s (2017, p. 123) study of 10th grade students’ problem-solving 

processes for classical mechanics problems “revealed that different sets of 

epistemic beliefs were conducive to different aspects of students’ problem-solving 

process and outcomes”. Similarly, Gottlieb and Wineburg (2012) found that 
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historians alternated between academically and religiously based ways to 

evaluate claims and evidence, depending on the nature of the documentary 

material and even within the same text.  

Elby and Hammer’s cognitive resource model is a major departure from prior 

models of epistemic beliefs and offers a coherent explanation for apparent 

inconsistencies observed in empirical studies. They dispute three of the four 

dimensions of the highly influential yet empirically problematic model proposed 

by Hofer and Pintrich’s 1997 review article, namely certainty, source, and 

simplicity (2001). They argue that only the dimension justification would be 

constant across contexts (Elby and Hammer 2001). In contrast to Hofer, who 

advocates excluding beliefs about learning from epistemic models for “reasons of 

clarity and parsimony” (Hofer and Bendixen 2012, p. 233), Elby suggests 

refraining from deciding if beliefs about learning are an integral part of epistemic 

conceptions until there is better empirical or theoretical support for such a 

decision (Elby 2009). Hofer presages Elby and Hammer’s work both in terms of 

the specificity of context and also in part about the efficacy of adopting a particular 

epistemic approach in a particular context with her comment that “more work is 

needed to address the contextuality of beliefs and the degree to which each of us 

make epistemic judgments appropriate to context” (Hofer 2000, p. 401). Elby and 

Hammer similarly called for more investigation into which epistemic beliefs are 

productive in different situations (Elby et	al. 2016). This thesis will address this in 

part, and propose a refinement of how to measure “productive.”  

2.4 CONSIDERING DISCIPLINARY AND CULTURAL CONTEXT 
The difficulty of establishing consistent general measures of epistemic beliefs led 

to research which situated students’ beliefs in a particular domain or disciplinary 

context, frequently in the discipline of science (Schoenfeld 1983, 1988, Buerk 

1985, Donald 1986, 1990, Lampert 1990, Stodolsky et	al. 1991, Carey and Smith 

1993, Hammer 1994, Roth and Roychoudhury 1994, Tsai 1998, 1999, Marshall et	

al. 1999, Hofer 2000, 2004, Kuhn et	al. 2000, Buehl and Alexander 2001, Buehl et	

al. 2002, Conley et al. 2004, Reid et	al. 2005, Muis et al. 2006, Lin and Tsai 2008, 

2009, Liang and Tsai 2010, Greene and Yu 2014). A parallel, although less active, 

approach has been to consider how social and cultural contexts influence 
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epistemic beliefs (Bråten et	al. 2009, Sulimma 2009, Weinstock 2010, Felbrich et	

al. 2012, Zhu and Cox 2015). For example, Nisbett et	 al. cite the influence of 

analytical thinking (following Greek philosophy) in the USA versus more holistic 

thinking (following Confucian philosophy) in Asia (Nisbett et	al. 2001). 

It is therefore unfortunate that the major review articles by Hofer and Pintrich 

(1997) and Briell et	al. (2011) focused on domain-general articles, although Briell 

et	al. explain their omission of domain-specific articles was based on the sheer 

number and complexity even though they only considered domain-general 

articles. The exclusion of domain-specific models is a major limitation as the 

debate about the generality or specificity of epistemic beliefs has been largely 

decided in favour of specificity (Sandoval et	al. 2016, p. 470). Each discipline has 

its own distinct, intrinsic epistemology (Schwab 1964, 1978, Donald 1995) the 

practice of which contributes to the identification of an expert of the discipline 

(Donald 1990, Langer et	 al. 1993, Schoenfeld 2016). The importance of 

disciplinary epistemic cognition was demonstrated by Herrenkohl and Cornelius 

(2013) who showed that evidence in science and history looks different and Voss 

et	al. (1983) observed that expert chemists behaved as novices when solving ill-

structured social science problems.   

Students’ abilities to adopt and employ appropriate discipline-specific epistemic 

approaches is essential to their performance in the discipline (Goldman, 2011; 

Greene 2016). The connections between disciplinary practices and epistemic 

cognition have been explored in reviews focusing on the nature of science (Elby et	

al. 2016) and mathematics (teachers: Depaepe et	al. 2016, students: Muis 2004). 

Paulsen and Wells explain the importance of disciplinary contextualisation arises 

from the fact that “Students’ beliefs about the nature of knowledge… are related to 

the disciplinary contexts in which students select and experience their specialized 

coursework in college” (1998, p. 365). 

Considering science as a monolithic discipline is inadequate to account for 

differences in disciplinary epistemology; Tsai (2006) has shown students to hold 

different epistemic beliefs in physics and biology. Brickhouse et	al. found that how 

undergraduate students used evidence to justify knowledge claims in science 

varied depending on the scientific discipline and topic (2000). Leach et	al. (2000) 
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found inconsistencies in how undergraduate students responded to general 

statements on the nature of scientific knowledge and when solving a challenging 

physics problem. These observations have prompted some topic-focused studies 

addressing, for example, students’ epistemic beliefs about tectonic plates rather 

than the whole domain of geology (Stahl and Bromme 2007, Trautwein and Lüdtke 

2007, Bråten et	 al. 2009). I am more interested in the students’ disciplinary 

epistemic skills and practices, than in their abstract beliefs about engineering 

knowledge.  

I am particularly interested in a recent study by Julie Gainsburg investigating how 

engineering students use mathematics to solve engineering problems (2015). Her 

study employed interviews, think-aloud protocols, and classroom observations 

with ten civil engineering students. Gainsburg based her work on both a Perry-

like developmental model and Elby and Hammer’s fine-grained epistemological 

resources model, but did not attempt to distinguish between cognitive 

structures and cognitive processes. For the most sophisticated level she drew 

on the posture of sceptical reverence, which she had developed in her prior 

work on the highly sophisticated epistemic beliefs of practising engineers 

(2007). Sceptical	 reverence represents the highest level of sophistication in a 

Perry-like model, as illustrated in Figure 2.3. Her interviews sought to elicit 

students’ epistemic beliefs in specific contexts, such as in a high school maths 

class or the professional workplace, enriched with her observations of 

students solving their homework under think-aloud conditions.  

In her 2015 paper, Gainsburg presents a four-level developmental model whose 

descriptions combine both epistemic beliefs and epistemic practices. Gainsburg 

observed a close connection between the epistemic beliefs professed during the 

interviews and those enacted by students during think-aloud protocols. She 

reports students exhibiting a range of levels in different contexts, with every 

student except one exhibiting Level 3 in at least one context. Level 1 was most 

prevalent, being seen in all but two students, when doing their homework in a 

think-aloud protocol.  

Overall, Gainsburg combines developmental and fine-grained approaches to 

create a legible, general profile of epistemic beliefs in engineering. Particularly 
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valuable is her association of some specific epistemic practices, i.e. sense-making 

using concepts or maths, with specific levels of epistemic sophistication. However, 

her inclusion of both cognitive structures and cognitive processes in a mix of 

highly specific actions and quite general “views” creates a somewhat muddled 

picture.  

Figure	2.3	Gainsburg’s	 “Epistemological	Views	of	Engineering	Students”	

Level 4 – Sceptical reverence  

Assesses reasonableness of answers, computer output 

Big picture present throughout problem solving 

Recognises fallibility of models, need to understand underlying assumptions 

Recognises non-routine nature of solving problems and the need for judgement 

Level 3 – Relativism 

Seeks deep understanding even if it delays resolving the problem at hand 

Discusses with peers to learn alternative approaches 

Sense-making using real world observations 

Verify solution using own experiences (ie moment arm on a wrench) 

Level 2 – Integrating 

Use of methods other than those modeled by instructor 

Discusses with peers to refine understanding 

Will step back and look at the overall picture 

Sense-making using concepts, math (not real world observations) 

Goal for exercises is to train the mind  

Level 1 – Dualism 

Break problem to be solved into parts, ignore the big picture 

Match problems to previously seen examples 

Answer key or instructor sole means of verifying solution 

Goal for exercises is to get the right answer 

The increased recognition of the importance of context in epistemic cognition 

research “represents the field’s better understanding of the problem space and of 

the complexity of the phenomena under study” (Sandoval et	al. 2016, p. 485). The 

(2015, p.  156)  
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methodological implications for the tools, contexts, and disciplinary fluency of 

researchers is explored in more detail in the following section. 

2.5 METHODOLOGICAL IMPLICATIONS OF A COGNITIVE RESOURCE 
APPROACH 

The issues around obtaining empirical data on epistemic beliefs and cognition 

have already been introduced during the presentation of the various models 

earlier in this chapter. However, the persistent methodological issues warrant an 

explicit discussion. Neither of the two major methods, namely the Likert-type 

questionnaires used for dimensional models nor the semi-structured interviews 

for studies using developmental models (Sandoval et	al. 2016), are adequate for 

the fine-grained, epistemic process focused approach used in this thesis. This 

section illustrates how think-aloud protocols using contextualised, disciplinary 

tasks create opportunities to evoke and observe relevant epistemic practices.  

Concerns related to the psychometric properties of the widely-used dimensional 

questionnaires have been presented above. This lack of clear empirical support 

may point to conceptual issues arising from how these instruments require 

participants to articulate explicit statements of their epistemic beliefs. This 

conflicts with the widely held view that epistemic beliefs are tacit and contextual 

for many people (Sinatra and Chinn 2012, Chinn and Rinehart 2016). The main 

issue for developmental models is assigning people to a given level when the 

empirical evidence indicates that their actions and expressed views vary greatly. 

For example, Tsai and colleagues have repeatedly found participants’ expressions 

of their ideas about learning10 to span more than one category (Tsai 2004, Lin and 

Tsai 2008, Chiou et	al. 2012). Like Gainsburg (2015), they found that while each 

participant typically had one dominant category, it was not necessarily the most 

sophisticated. Zhu et	al. (2019) also observed a lack of coherency in engineering 

students' apparent level of epistemic sophistication.  

Muis et	al. (2006) have called for more studies using qualitative methods to better 

assess the domain-specificity of epistemic sophistication through greater 

10 Note: Beliefs about learning were not differentiated from epistemic beliefs.  
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attention to context. Examples of compatible methods include: semi-structured 

interviews (e.g. Gainsburg 2007, 2015), cognitive interviewing (e.g. Greene et	al. 

2010, Muis and Gierus 2014) and stimulated reflection (e.g. Ferguson et	al. 2012, 

Berland and Crucet 2016). These approaches recognise that epistemic cognition is 

typically tacit (Sinatra and Chinn 2012, Chinn and Rinehart 2016). Kelly argues 

that measurement must occur while people are enacting epistemic cognition 

(2016), a conclusion shared by several researchers who focus on disciplinary 

contexts (Sandoval 2005, Elby and Hammer 2010). 

Concurrent think-aloud protocols (Ericsson and Simon 1984) are a revealing way 

to observe epistemic cognition in action (e.g. Hofer 2004, Mason et	al. 2010, 2011, 

Ferguson et	al. 2012, Greene et	al. 2014). Some researchers have argued that the 

addition of retrospective interviews to these protocols can lead to more informed 

understanding of people’s epistemic cognition (Sandoval 2005, Chinn et	al. 2011). 

For example, Pluta et	al. (2011) assessed epistemic cognition by first asking middle 

school students to engage in scientific inquiry and then prompting them to 

reflect on their epistemic practices. Hammer and Elby have studied their 

epistemological resources model by triangulating across observational 

studies of activity and cognitive interview studies (2010). 

One methodological benefit of think-aloud protocols is that observations can be 

collected data with minimal interference with the student’s actions. The ideal 

think-aloud narration involves a minimum of explanation and interpretation on 

the part of the student and a minimum of interference on the part of the 

interviewer. However, researchers often seek to infer what people are thinking but 

not verbalising from the think-aloud data (Sandoval et	 al. 2016). Mason et	 al. 

(2011) caution that participants can only verbalise thinking processes that they 

are aware of, which highlights a major difficulty in attempting to use observations 

to infer beliefs that are generally assumed to be tacit (Sinatra and Chinn 2012, 

Chinn and Rinehart 2016). Another constraint is that the researchers must be 

fluent themselves in the epistemic practices of the discipline. 

An unfortunate limitation of many think-aloud studies is that the data is “often 

context-specific and interpreted solely within a single model of epistemic 

cognition” (Sandoval, 2005), thus limiting the scope and generalisability of the 
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results of the study. For example, Ferguson et	al. (2012) and Mason et	al. (2011) 

use a dimensional epistemic beliefs model to code the resulting transcripts, 

causing Mason et	al. to state that their “results cannot be extended beyond the 

context in which they were produced. An in-depth investigation that takes into 

account both instructional variables, such as topic and task, and learner 

characteristics, would permit issues to be generalized further” (Mason et	al. 2011, 

p. 149). If research in the field continues to be bound by the topic, task, and learner

characteristics, we are a long way from the teacher-ready model called for by

Sandoval et	al. (2016) and Bråten (2016).

2.6 PATH AND MECHANISM FOR EPISTEMIC DEVELOPMENT DURING 
ENGINEERING STUDIES 

Despite the criticism levelled against the models and methods used to characterise 

epistemic beliefs enumerated in the preceding sections, it is nevertheless useful to 

report some of the findings. One important point is that there is a broad consensus, 

regardless of the model used, that students become more sophisticated over the 

course of their studies (Culver and Hackos 1982, Baxter-Magolda 1992, Jehng et	

al. 1993, Schommer 1993, Pavelich and Moore 1996, Paulsen and Wells 1998, 

Marra et	 al. 2000, Felder and Brent 2004, Wise et	 al. 2004, King and Magun-

Jackson 2009). However, observations that engineering students (when 

controlling for other demographic factors) were more likely to hold less 

sophisticated beliefs than students in other fields is concerning (Schommer 1993, 

Paulsen and Wells 1998). In their study of engineering students, Marra and Palmer 

(2004) state that a high level of epistemic sophistication (corresponding to Perry 

level 5) is required for graduates to operate as professional engineers. It is 

therefore highly worrying that Wise et	 al. found few graduating engineering 

students in their study demonstrated a sufficiently high level of epistemic 

sophistication (2004)11. This slow development of engineering students’ epistemic 

cognition is a key motivation for starting the current work. This section examines 

the literature with respect to two questions: First, what stimulates the 

development of engineering students’ epistemic cognition? And second, what is 

11 Qualitiative study with 21 students; mean Perry level of 4. 
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the mechanism of change?  

2.6.1 Supporting	the	Development	of	Epistemic	Cognition	

Descriptions of the situations or experiences that stimulate the development of 

epistemic cognition abound in the literature. In his foundational work, Perry 

proposed that students’ epistemological beliefs change when they are confronted 

by multiple authoritative sources and must find ways to reconcile the differences 

(1970). Recommendations for how to encourage students to develop their 

epistemic cognition consistently focus on deliberately challenging less 

sophisticated views and creating opportunities for students to reflect on how they 

think about their disciplinary knowledge (Perry 1970, Culver and Hackos 1982, 

Finster 1991, Lynch et	al. 1994, Felder and Brent 2004). 

Thus, engineering programs must create learning situations that prompt students 

to interact with engineering knowledge in sophisticated ways. Yet several 

researchers have noted that experiences which directly challenge students’ less 

sophisticated epistemic beliefs occur infrequently in engineering programs (Frye 

et	al. 2012, Danielak et	al. 2014). Gainsburg notes that “undergraduate engineering 

courses may rarely confront students with the kinds of epistemic challenges which 

push liberal arts students towards relativism” (2015, p. 142). Kuhn addressed this 

theme in his description of contrasts in disciplinary epistemologies of science and 

engineering students versus the humanities (1962). He notes that a paradigm shift 

in science is complete and irreversible, such as the appearance of the germ theory 

of disease. After a period of debate and testing, the new, correct paradigm becomes 

the sole lens through which the world is observed. In contrast, when faced with a 

problem, the humanities permit a student to select a perspective or stance, for 

example feminist or deconstructivist, from which to critique and analyse the 

situation. While a particular stance may wax and wane in fashion, it does not 

become invalid or obsolete. Thus, students in the humanities work within a 

plurality of valid yet divergent perspectives, a situation incompatible with 

maintaining a dualistic view of knowledge.  

Real-world engineering experiences, such as internships, projects, and other 

opportunities to encounter ill-structured problems, have been shown to be 

important for developing more sophisticated epistemic skills (e.g. Baxter-Magolda 
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1992, Felder and Brent 2004, Marra and Palmer 2004, Gainsburg 2015). Marra et	

al. (2000) found that engineering students who participated in a first-year 

design course had significantly more sophisticated epistemic beliefs than their 

peers who had not taken the course. In follow up work, Marra and Palmer (2004) 

found that students’ ability to solve ill-structured problems was positively 

correlated with their epistemic beliefs. These findings support curricular 

reforms in engineering education to increase students’ opportunities to engage 

in experiences that better mirror the real world by incorporating complexity 

and situations beyond the assumptions of simplistic models.  

Scaffolded progress towards more sophisticated disciplinary practices appears to 

be important (Sandoval et	al. 2016). Finster (1991) recommends that students 

be encouraged to stretch to employ strategies just beyond their current 

abilities, which he calls “n+1”. It appears that students should not be challenged 

to stretch too far at once, as Lynch and Kitchener (1994, p. 149) found that 

students may not be able to engage with approaches that are more than one level 

above their current functioning.  

While there is good evidence that ill-structured problem solving can 

develop engineering students’ epistemic cognition, not enough is known about 

the fine-grained practices that constitute “a level” and therefore enable the 

application of recommendations to challenge students to employ “n+1” 

strategies. This thesis provides insight into the types of actions relevant to 

epistemic cognition in engineering and investigates how these actions manifest 

at different levels.  

2.6.2 Mechanism	of	Development	of	Epistemic	Cognition

The mechanisms for epistemic development have not been rigorously theorised 

in either the developmental or the dimensional models. Elby and Hammer 

have proposed one of the rare mechanisms for development, as part of their 

epistemological resources model, positing that students become aware of 

more sophisticated practices and thus increase their range of potential 

strategies. Gainsburg further refined their proposal by decomposing the 

transition to more sophisticated beliefs into two parts: capacity and selection 

(2015). She defines capacity as the range of epistemological resources that 

the student is aware of, and selection as the skill to identify when to 

employ a specific cognitive resource. The mechanisms of developing
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epistemic cognition are important and deserve more research attention 

than they have received. However, it will not be the focus of the current work.  

While identifying teaching strategies effective for developing 

engineering students’ epistemic cognition was the original motivation for this 

project, a lack of adequate assessment tools to measure epistemic sophistication 

made such goals unachievable. Consequently, the focus of this thesis became 

contributing to a robust model able to characterise epistemic sophistication 

in engineering. I develop this concept further in the following section.   

2.7 TOWARDS A RIGOROUS AND EXPLOITABLE MODEL OF EPISTEMIC 

COGNITION IN ENGINEERING 

The preceding sections have made a clear case for the importance of managing 

uncertainty, using models, and justifying knowledge claims as relevant for 

epistemic cognition in engineering problem solving. Equally clear is the lack of a 

model to observe and record how engineering students enact these sense-making 

and justification of knowledge behaviours in situ in their own contexts. This 

concluding section summarises my arguments and how they have informed my 

approach.  

2.7.1 The	Fine‐Grained	Cognitive	Processes	Approach	of	the	Thesis	

Informed by the literature above, this thesis will use a fine-grained approach to 

observing engineering students’ epistemic cognition. I join Sandoval et	al. in their 

assessment of Elby and Hammer’s cognitive resource model as “the theoretical 

framework best aligned with the discipline-specific, situated view” which is 

required for the current project (2016, p. 474). Given the importance of problem 

solving and the occurrence of epistemically relevant practices related to how 

engineering knowledge is manipulated and justified, this thesis will characterise 

students’ contextualised problem solving using a think-aloud protocol. This 

matches Bråten’s (2016) call for more suitable measures of epistemic 

sophistication and his recommendation to focus on the behaviours that reveal a 

person’s epistemic cognition.  

I have argued that it is this enactment of epistemic beliefs, rather than the beliefs 
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themselves, that should be the target of efforts to develop models of epistemic 

cognition. As outlined earlier in this chapter, the distinction I make between the 

fine-grained observable epistemic practices that students employ during their 

problem solving and broader epistemic beliefs has not been adequately exploited 

in prior work. Some researchers have proposed that there may be two types of 

epistemic beliefs as a way to explain observed inconsistencies in people’s 

expressed opinions and behaviours. For example, Sandoval (2005) suggested that 

students have both a formal epistemology that describes their overarching set of 

ideas about scientific knowledge and also a practical epistemology that applies to 

their own science activities. Louca et	al. use the term professed epistemology to 

identify a teacher’s “stated views about knowledge and learning” in the calm of 

clinical interviews which they say “can differ substantially from that person’s 

enacted epistemology, the views about knowledge and learning an observer would 

infer from classroom behavior” (2004, p. 59). Hogan (2000) uses distal 

epistemology and proximal epistemology to describe the sometimes contradictory 

ways that students describe and go about learning.  

Most research effort has focused on characterising epistemic beliefs at an 

overarching level. But, as illustrated by the distinctions between formal and 

applied beliefs made by Sandoval, Louca et	al., and Hogan, many researchers think 

that these overarching beliefs are not the same as the applied beliefs (Hogan 2000, 

Louca et	al. 2004, Sandoval 2005). Sinatra explicitly states (2016) that epistemic 

cognition is not directly equivalent to epistemic beliefs. Sandoval suggests that this 

separation “at least partially explains why students’ formal epistemological ideas 

seem so difficult to change through instruction” (2005, p. 636).  

From my perspective, measuring formal epistemology (the most common target 

of research in the field) has little value if these observations have little relevance 

and are not representative of how engineering students will approach their 

problem solving. Accordingly, I focus my attention on engineering students’ in situ 

practices to observe and characterise epistemic sophistication. This is coherent 

with Sandoval et	 al.’s (2016) recommendation that observing students’ 

behaviours while engaging in specific contexts can provide important insights 

about the productiveness of epistemic beliefs and what constitutes successful 
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epistemic practices. I am opposed to Briell et	al.’s position (2011) that process-

oriented constructs lack a clear articulation of what makes them epistemological. 

While I can appreciate the desire to access the underlying beliefs, I would argue 

that the thinking process itself is the most effective way to do this. By focusing on 

the detailed observation of a student’s knowledge justification and reasoning 

during problem solving, I am able to discern a richer, more accurate picture of a 

student’s epistemic approach than from decontextualised declarative statements. 

This thesis implements this approach by focusing on students’ observable actions 

rather than their declarations, direct or indirect, specific or general, of their 

epistemic beliefs. 

2.7.2 The	Engineering	Context	of	this	Thesis	

The fine-grained cognitive resource model employed in this thesis focuses on how 

engineering students reason and manipulate knowledge as they perform problem-

solving tasks. A major factor motivating my approach is that it avoids persistent 

issues with evaluating epistemic beliefs, outlined above, in favour of a more 

applied strategy that also makes the connections to engineering problem solving 

more evident. Further, my approach is consistent with Sandoval et	 al.’s 

observation that many studies are not attentive to the epistemic norms and 

practices of each discipline (2016). They propose that for the building of “theory 

bottom-up from such research, a first step could be to produce more local models 

applicable to a limited range of learners and contexts. In turn, such models might 

be combined to produce more overarching frameworks for epistemic cognition 

that are better grounded in actual knowledge construction and evaluation within 

the disciplines” (2016, p. 475).   

The approach of this thesis focuses on the observable, contextualised actions of 

engineering students during problem solving. A key aspect underpinning my focus 

is that, for example, students’ belief that engineering problems can have multiple 

potential correct answers is irrelevant compared to their propensity to enact 

sense-making and verification behaviours which are consistent with seeking 

multiple answers. I call these fine-grained behaviours epistemic practices, with the 

further precision of enacted if I observe them directly and professed if the student 

relates the behaviour. It is essential to note my tight focus on behaviours and the 



Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 

46 

exclusion of students’ pronouncements about their beliefs. This focus is highly 

coherent with Sinatra’s (2016) characterisation of epistemic cognition as the 

behavioural response to a particular situation and, very importantly, provides 

disciplinary context in which to elicit and observe epistemic cognition. Further, 

this thesis will avoid attempting to infer or generalise epistemic beliefs from the 

observed epistemic practices. While such inferences are ubiquitous in the field, I 

would argue that this is a contributing factor to the persistent issues in 

establishing a stable construct. This thesis avoids these issues and contributes to 

the development of a model that is accessible to engineering teachers by focusing 

directly on epistemic practices. 

In order to support engineering programs’ ability to prepare graduating engineers 

to competently assess knowledge claims and to problem-solve in the complex 

situations expected of them, the research questions of this thesis are coherent with 

the multiple calls for empirically-based, contextual, and testable models (Muis et	

al. 2006, Bråten 2016, Sandoval et	al. 2016). The next chapter, Research Design, 

describes the approach and methods I employed to collect and analyse the 

empirical observations of this thesis.  
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3 Research Design 

3.1 INTRODUCTION 
The particular approach to epistemic cognition in engineering taken in this thesis 

has informed the methodological decisions underpinning the work. Starting with 

the theoretical perspective, this chapter demonstrates the coherence between the 

research questions and the research design. It also acknowledges how the fine-

grained, contextualised qualitative methodology of the approaches	 to	 learning 

work contributed to the methods employed to answer my research questions. 

While qualitative methods are employed less frequently in engineering education 

(Case and Light 2011), think-aloud protocols and grounded theory analysis were 

chosen for their ability to address the research questions. The chapter also relates 

the implementation of the methods, both qualitative and quantitative, and the 

approach taken during the data analysis.  

While the dialectic relationship between the research questions and methodology 

(Case and Light 2011) means that they evolved through interaction with each 

other, for simplicity I will state the final formulation of my research questions: 

RQ1: What epistemic practices do engineering students use during problem 
solving?  

RQ2: Do a student’s epistemic practices cluster at a single level or span several 
levels of sophistication?  

RQ3: What do the epistemic practices profiles of epistemically sophisticated 
engineering students look like?  
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3.2 METHODOLOGY 

3.2.1 Research	Paradigm	

My own background and my understanding of how science and engineering 

disciplines tend to value quantitative data initially led me to impose a rather 

positivistic research approach on this project. My research training in the physical 

sciences was built on the assumption that we are able to directly observe reality 

and to identify causal relationships that can be generalised for other situations. 

However, the research questions driving this project proved to be inconsistent 

with such a positivistic ontological approach. The knowledge that this thesis seeks 

relates to how engineering students see engineering knowledge, and does not 

make claims about the authentic nature or ideal state of engineering knowledge. 

Accordingly, I adopted an interpretive ontological approach that allows for 

multiple interpretations of a phenomenon. That is, this thesis proceeds with the 

assumption that each participant’s actions during problem solving arise from their 

own subjective views of engineering knowledge. This is consistent with Bryman’s 

description of interpretivism (2016, pp. 12–13) and the importance Saunders et	

al. (2009) place on the perceptions and experiences of the research participants. 

An interpretive approach takes reality to be a multi-dimensional construct that is 

dependant both on the individual person and on their current frame of reference 

(Brundrett and Rhodes 2013). Thus, a complete description of a phenomenon 

should include the full range of perceptions existing in the study population. The 

methodological approach of this thesis was one of discovery, using an inductive 

approach that allowed findings about students’ cognitive processes “to emerge 

throughout the data collection and analysis process” (Case and Light 2011, p. 188). 

The need for “natural” settings for data collection, to respect and capture 

subjective meanings (Brundrett and Rhodes 2013), was my major motivation for 

selecting think-aloud protocols. These protocols generated the rich, dense data 

that was needed for theory generation.  

Recognising the subjective nature of the phenomena under consideration, I sought 

to be attentive to how my own ontological assumptions affected my perceptions 

and decisions throughout the research project. This study does not address the 

pedagogical implication of the phenomena described. Coming from the physical 
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sciences, I would describe the current work as ‘fundamental research’ rather than 

‘applied research’ that brings concepts and ideas into interaction with society. 

Given the massive influence of educational systems on society and the current 

context of post-truth and the mistrust of experts, developing students’ epistemic 

sophistication has only increased in importance. Despite my concern for these 

issues, the scope of this study precluded further exploration in this direction. I 

have restrained myself to the interpretivist approach, as it is both coherent and 

adequate to address my research questions. 

3.2.2 Developing	the	Research	Design	

The initial motivation for this research project was to provide university science 

and engineering teachers with a relatively easy to administer instrument which 

would allow them to get a snapshot of their students’ epistemic beliefs and 

perhaps even to measure the impact of certain interventions on these beliefs. The 

original research output was envisioned as a quantitative study that would 

produce a diagnostic questionnaire, enriched and illustrated by qualitative 

interviews. While this goal provided clear motivation for using quantitative 

methods, the methodological incoherence ultimately meant that the quantitative 

data contributed little to addressing my research questions.  

As my research questions coalesced around exploring and describing students’ 

epistemic practices, it became necessary to prioritise qualitative research methods 

(Eriksson and Kovalainen 2021). Consistent with the ontological approach 

described above, the research questions assume that different students, having 

different personal and educational experiences, will implement a different set of 

epistemic practices in their problem solving. Creating a context that stimulates 

observable enactment of these differences motivated my choice of qualitative 

research methods, which seek to describe the range of ways that students use and 

justify engineering knowledge and the factors that allow students to develop and 

implement these different epistemic practices.  

Accordingly, I employed a purposeful selection of participants to increase 

opportunities to capture the existing breadth of perspectives. The main data 

collection method was semi-structured interviews preceded by think-aloud 

problem solving tasks. The think-aloud tasks prompted students to produce 
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physical and audio artefacts of their thinking and problem solving in an 

engineering context. Reviewing the physical artefacts served as a stimulus for the 

subsequent recall portion of the interview, enabling students to describe their 

approach and strategies.  

In quantitative work, the unlikelihood of an observed event occurring due to 

random variation (rather than a correlation between variables) is commonly used 

as a measure of the validity of the work. In qualitative studies, the small samples 

typically preclude the use of statistics and different mechanisms must be used to 

assess the integrity of the findings. As is coherent with an interpretivist approach, 

these mechanisms do not rest on measures of objectiveness but rather 

“trustworthiness”. Denzin and Lincoln (1994) identify four factors related to 

establishing the trustworthiness of qualitative research findings: credibility, 

transferability, dependability, and confirmability. Credibility is an assessment of 

confidence in the truth of the findings and is strengthened by triangulation from 

multiple data sources and methods, such as interviews, observations, and 

document reviews (Bowen 2009). Transferability is an assessment of how the 

findings in the current study can be applied in other contexts and is strengthened 

by rich, contextualised descriptions of the phenomena. Dependability is an 

assessment of “the stability of the findings over time, and confirmability relates to 

the internal coherence of the data in relation to the findings, interpretations, and 

recommendations” (Bowen 2009, p. 306). While the choices made in the current 

section ultimately determine the trustworthiness of the findings, my discussion of 

the limitations of this project is reserved for the conclusion where considerations 

related to the analysis and the findings themselves can be addressed.  

As the reasoning behind my approach is described and illustrated in the Literature 

Review and Research Findings chapters, this chapter will focus on the methods 

used to collect the quantitative and qualitative observations. Section 3.3 presents 

my methodology for developing, collecting, and analysing several iterations of a 

questionnaire with a dimensional beliefs approach. My qualitative methods for 

structuring, collecting, and analysing the qualitative data from the interview and 

think-aloud sessions are presented in section 3.4. The result is a mixed-methods 

approach, although the contributions to the findings from the quantitative aspect 
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are minor, they did serve to significantly develop my thinking about epistemic 

cognition. The schedule of data collected is presented in Table 3.1. 

Table	3.1	Schedule	of	Data	Collection	

Data Date	range	 Duration	of	sessions	 Usable	data	sets	

45-60 minutes 11 Semi-structured 
interviews 
Questionnaire 
distribution N/A 338

Think-aloud protocols 
and interviews 

60-90 minutes 8 

Think-aloud protocols 
and interviews 

April – May 2015 

November 2015 
– May 2016

March – April 
2017 

October 2017 – 
December 2018 

60-80 minutes 11 

3.2.3 Methodological	 Inspiration	 from	 Approaches to Learning	 Research	

The approaches	to	learning research introduced novel methodologies for research 

into academic performance, which until the 1960s had been dominated by 

psychological tests and questionnaires (Entwistle 2018). A rigorous investigation 

of learning was generally understood to require highly controlled conditions and 

focused on how well students performed in recall or other tasks with a single 

correct answer. An important opening towards qualitative methods was 

prompted by some interview studies, including Perry’s (1970), which 

explored how students’ thinking developed during their time at university 

(Entwistle, 2018). These early investigations of approaches to learning used 

quite open interview questions to collect students’ experiences of learning (i.e. 

Ramsden 1992, Vermunt 1996). Vermunt’s interview study (1996) is 

particularly relevant to me in its categorisation of several types of cognitive 

(relating, applying, memorising, etc.) and regulative activity (testing, evaluating, 

planning, etc.). Setting aside the issue of how beliefs about learning are related 

to epistemic beliefs, Vermunt’s three mental models of learning (intake of 

knowledge, use of knowledge, construction of knowledge) have clear 

implications for how students can be expected to go about their learning tasks. 

These interview studies, however, were concerned with learning experiences on 

quite a large scale, as is evident from the one-year gap between interviews in 

Perry’s longitudinal study.  
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Marton initiated an important new methodological approach by investigating 

learning using naturalistic experiments where students engaged in activities 

similar to those in their university course (1975). For example, Marton and Säljö 

(1976) had students read a text and then questioned them about the author’s 

objective and how they had approached reading the text. In their analysis, Marton 

and Säljö looked for qualitative differences in students’ perceptions of the text. 

Similarly, Pask’s methodology involved setting tasks for students (1976, 1988), 

asking them to understand the material and then explain it to a researcher. The 

approach of these studies is a significant departure from contemporary work that 

assessed learning in terms of the word count and precision of students’ 

recollection of what they had read (Entwistle 2018). These studies demonstrated 

both the value of qualitative studies of students’ learning and modelled a rigorous 

method that sought out differences between students’ approaches.  

My methodology owes a debt to these approaches	to	learning studies for initiating 

a focus “on students themselves, as they carried out tasks similar to those they 

experienced in their everyday studying” (Entwistle 2018, p. 61). The work on 

approaches	 to	 learning provided an early example of how to investigate the 

breadth of students’ actions and interactions with knowledge. Their approach also 

modelled attention to context and used tasks similar to those that students 

perform during their studies. The importance of disciplinary ways of thinking have 

been highlighted by several authors (Ramsden 1988, Vander Stoep et	al. 1996, 

Entwistle 1997, 2018), with Entwistle noting that “Learning at university is always 

highly contextualised, dependent on… the nature of the knowledge within a 

specific discipline” (2018, p. 7). While attention to context is a central element in 

the approaches	to	learning methodology, Case and Marshall (2004) note that the 

focus on understanding and the tasks used in many studies omit the procedural or 

algorithmic skills that are important in engineering problem solving. 

In addition to the task-specific thinking and the attention to context of approaches	

to	 learning, my methodology adopted the focus on the student’s own 

interpretation of their situation (Haggis 2003) and the holistic approach that 

allows for multiple perceptions and objectives to be simultaneously present 

(Prosser and Trigwell 1999). The following sections will illustrate how I have 
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incorporated these core ideas into some more recent methods to generate data 

relevant to my research questions.  

3.2.4 Grounded	Theory	Approach	for	Data	Analysis	

The grounded theory approach seeks to generate theory “from the data at hand, 

rather than already existing theory being used in the analysis as is generally 

common in education research” (Case and Light 2011, p. 193). Grounded theory, 

which first emerged in the field of sociology in 1967, departs from traditional 

research approaches in that it does not begin with a theory or hypothesis to test. 

This methodological approach was activated during the analysis phase of my 

research, which as the name suggests, sought to remain “grounded in the words 

and actions of those individuals under study” (Goulding 2005, p. 296). In grounded 

theory, data collection is undertaken early and the formulation of hypotheses is 

typically performed retrospectively by analysing the data. While noting that the 

use of existing constructs is common in education research, Case and Light 

highlight the power of grounded theory to “challeng[e] preconceptions and 

allow[ing] for alternative conceptualizations” (2011, p. 193). Given the cacophony 

of approaches to epistemic beliefs, I chose grounded theory to ensure that my 

analysis retained a close connection to my data without undue exterior 

interference.  

Grounded theory is ideal for the current project due to its capacity to support the 

development of “a well-integrated set of concepts” (Corbin and Strauss 1990) and 

its sensitivity to the specifics of the context under study. The current study is not 

a pure application of grounded theory, which is defined as an “iterative, inductive 

and interactional process of data collection, simultaneous analysis, and emergent 

interpretation” (Goulding 2005, p. 296). The current study violates the first canon 

of grounded theory research as formulated by Corbin and Strauss (1990) in that 

the data were largely collected before any analysis occurred. However, given the 

experimental set-up of the data collection with audio recording, it was possible to 

review the audio from the think-aloud sessions and interviews retroactively in 

light of ideas arising during the analysis. A limitation of this approach was that it 

was not possible to pose additional questions to participants to pursue themes 

that arose during the analysis.  
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While the current project began with a literature review, the observations 

emerging from the analysis of the qualitative studies sent me on a significantly 

different path than I originally intended. The iterative process of the data analysis 

submerged me in the developing themes and effectively separated me from prior 

models. As I emerged with my nascent ideas, I then re-engaged with the literature 

from a completely different perspective. I would not have written the literature 

review in Chapter 2 as it is before analysing my own data.  

According to Corbin and Strauss, the aim of a grounded theory approach “is 

ultimately to build a theoretical explanation by specifying phenomena in terms of 

conditions that give rise to them, how they are expressed through 

action/interaction, the consequences that result from them, and variations of 

these qualifiers” (1990, p. 9). In this approach, it is assumed that people make 

decisions in response to their perception of the conditions presented to them 

(Corbin and Strauss 1990) and thus by observing the decisions we can reconstruct 

their underlying ideas. The specificity of conditions that give rise to certain 

phenomena is a challenge in all grounded theory work, and particularly in this 

project which is precisely interested in the specificity of these conditions with 

respect to engineering knowledge. For Corbin and Strauss (1990), catching the 

interplay between people’s responses to “changing conditions and to the 

consequences of their actions” is the responsibility of the researcher. The think-

aloud protocols described in section 3.4.2 were essential for generating relevant 

observations. Section 3.4.8 presents further detail on how grounded theory was 

implemented during the coding of the interview and think-aloud data.  

3.2.5 Procedures	for	Ethical	Conduct	of	the	Research	

Approval for this research project was granted from Lancaster University (March 

6, 2015) and EPFL (April 4, 2015); these decisions can be consulted in Appendix 

A. All students approached to complete the quantitative instruments were

provided with the information sheet (Appendix A) and their consent was taken

implicitly if they chose to complete the questionnaire. All interview and think-

aloud protocol participants were provided with the information sheet in advance

and gave written informed consent at the start of the interview (Appendix A),

including for their anonymised views to be shared in scientific publications and
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meetings. Pseudonyms, mostly chosen by the students themselves, are used 

throughout this manuscript to identify participants in a way that allows for the 

range of practices and thoughts of a student to be visible. However, I have taken 

care to avoid including information that would allow a specific student to be 

identified. 

3.3 METHODS FOR QUANTITATIVE DATA ACQUISITION 

3.3.1 Motivation	for	Quantitative	Methods	

Questionnaires, and the quantitative data that they produce, are attractive for 

multiple reasons. In addition to the coherence between quantitative data and the 

disciplinary epistemology of engineering education, the capacity of quantitative 

methods to survey the large student populations that are typically found in 

engineering is an important consideration. With adequate sample sizes, the 

observations carry statistically relevant measures that further add to their 

perceived value. In this context, this thesis set out to produce the elusive 

quantitative instrument that would make the intriguing concept of epistemic 

cognition more relevant and accessible to engineering teachers. The sections 

below outline the development of items, piloting with focus groups, and three 

administrations of the questionnaire.  

3.3.2 Questionnaire	Design	and	Development	of	Items	

The questionnaire developed in this thesis had a four-part structure, 

corresponding to the three types of questions plus demographic items. Part I 

contained items designed to investigate epistemic beliefs in engineering. Items in 

Part II addressed students’ in-class activities. Part III contained two items about 

the characteristics of a “really good professor” and a “really good student” and Part 

IV contained demographic items.  

The items in Part I were constructed to target the four core dimensions of Hofer 

and Pintrich’s (1997) dimensional model of epistemic beliefs. Due to the relative 

paucity of quantitative studies in epistemic beliefs in engineering, there were few 

items from the existing literature that I could incorporate into this study. Items 

from previous studies were used verbatim where possible or adapted as 

appropriate. In total, 23 items from Kardash and Wood (2000), Yu and Strobel 
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(2011), and Schraw et	 al. (2002) were used. Items were contextualised as “in 

engineering studies” and students were asked to respond on a five-point Likert 

scale of agreement. 

Part II contains entirely new items that drew from the 2015 interviews of in-class 

actions described by students, formulated with the phrasing and vocabulary used 

by students. Students were asked to respond on a Likert five-point frequency scale 

contextualised as “in your favourite course”. Questions were intended to focus on 

a single element, avoiding double-barrelled items such as “I am well organised and 

keep detailed notes of each class.” 

The two items in Part III, created by me, strayed into learning beliefs by asking 

students about their conceptions of excellent learners and teachers.  

The three editions of the questionnaire, as distributed, are presented in Appendix 

B. The first edition of the questionnaire is in French; I translated the items myself. 

The fidelity of the translation was tested by having a bilingual native English 

speaker who had never seen the original English items translate the French items 

back into English (Bracken and Barona 1991). When comparing the original 

English version and the back-translated version, four small changes were made 

and two more significant reformulations, in order to ensure coherence between 

the two languages.

3.3.3 Questionnaire	Layout	and	Data	Processing	

All three versions of the questionnaire administered had the same four-part 

format, with small variations in the individual items in Parts I and II. Part I 

contained 28-37 items, depending on the version, designed to investigate 

epistemic beliefs. Part II had 11-18 items addressing students’ in-class activities. 

The order of presentation of the items was distributed in order to separate similar 

items or those that appeared contradictory. A final open question allowed 

respondents to provide feedback or comments about the questionnaire. The three 

disseminated versions of the questionnaire contained 48, 46, and 46 items, 

respectively.  

The questionnaires were distributed with an accompanying participant 

information sheet. A representative example is presented in Appendix A. A student 
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filling out and returning the questionnaire was taken as consent, thereby avoiding 

the use of signed consent forms that would have identified participants and 

prevented the data from being anonymous at source. All data was collected on 

paper questionnaires, which were scanned and read into OMR optical reading 

software (version 8.4), and marked answers verified through the checking 

features available in the software by the researcher. The raw data was exported to 

a csv file and imported into SPSS (version 22, IBM). Reverse scored items were 

recoded directly in SPSS using the transform function. For the items in Parts I and 

II, responses were collected on five point Likert scales. The scale for epistemic 

beliefs was one of agreement (strongly agree, agree, neutral, disagree or strongly 

disagree) and of frequency for in-class actions (always, often, sometimes, rarely, 

never). This data was treated as interval data by attributing a numerical value to 

each response. The data from Part III was treated as ordinal and Part IV as nominal. 

3.3.4 Initial	Piloting	of	the	Questionnaire	with	Focus	Groups	

Two focus groups were conducted on the first version (2015) of the questionnaire, 

which was in French. Together, these focus groups comprised 13 students 

between first year Bachelor and final year Master from nine disciplines across the 

school. They responded to all the items on paper copies of the questionnaire, 

recorded the time elapsed, and then engaged in a group discussion of items they 

judged to be unclear. This review process resulted in five items being revised to 

ensure that the intended message was immediately clear. Further, a quantitative 

analysis of their responses resulted in nine items being removed since essentially 

all students had indicated that they agreed with the statement or would ‘always’ 

employ a particular action during their classes. The lack of discrimination of these 

items meant that they were unable to identify interesting variation in the 

population.  

3.3.5 Questionnaire	Administration	and	Respondents’	Demographic	Profile	

In total, three versions of the questionnaire were administered. Version 1 was 

administered in November 2015, predominantly to students studying in the 

library individually or in small groups. In February 2016, version 1 was 

administered to a class composed of Master students from several different study 

concentrations. In total, 157 students completed version 1 and 121 useable data 
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sets were obtained. Verbal comments from students during distribution of the first 

version, predominantly from Masters students, revealed that the French language 

was preventing some students from participating. In order to allow all Masters 

students to participate, I made subsequent iterations of the questionnaire in 

English.  

Versions 2 and 3 were administered in May 2016 exclusively in classes, through 

the generous cooperation of instructors. For these versions, 220 and 144 

completed questionnaires, respectively, were obtained and 216 and 142 useable 

data sets, respectively. The administration information is summarised in Table 3.2. 

While care was taken to ensure an overall broad distribution of respondents from 

across the five years of study, gender, and engineering discipline, there were clear 

correlations between the demographic characteristics of respondents due to the 

logistics of my administration. For instance, the first year Bachelor respondents 

for versions 2 and 3 are almost exclusively from three departments and almost all 

female respondents are from a single study concentration. This unequal 

distribution renders the data set unsuitable for most analyses involving 

correlations with demographic information.  

 

Table	3.2	Administration	of	the	Three	Versions	of	the	Questionnaire		

Version	 Date	 Useable	data	sets		 Site		 %	women	
1	 November 2015 and 

February 2016 
121 Library 31 

2	 May 2016 216 Classes 37 

3	 May 2016 142 Classes 48 

 

3.3.6 Winnowing	Items	for	Parts	I	and	II	of	Questionnaire	

For each of the three versions of the questionnaire, an initial selection of items was 

conducted by evaluating each item on three criteria. First, that each item was 

within acceptable statistical ranges for skewness, kurtosis, and standard deviation 

(Tabachnick and Fidell 2007). Next, each item was assessed for its ability to 

discriminate effectively between respondents in the sample. The key issue here 

was ensuring that the item elicited a diversity of responses, rather than virtually 
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all respondents agreeing with it. Non-discriminatory items were eliminated from 

each round of analysis, but generally reformulated for the subsequent iteration of 

the questionnaire. Finally, two-tailed inter-item Spearman correlations were 

calculated for the remaining items. This measure was chosen as appropriate for 

ordinal data with analogous properties at both ends.  

The results of this analysis are reported in Table 3.3. Overall, 22 items were 

eliminated from Part I and seven items from Part II. For each version, the Kaiser-

Meyer-Olkin’s statistic for sampling adequacy and Bartlett’s Test of Sphericity 

were calculated to ensure that the data met the basic criteria to allow for structural 

analysis with maximum likelihood estimation (MLE). This procedure is described 

in the following section.  

Table	3.3	Summary	of	Items	Eliminated	from	Parts	I	and	II		

	Criteria	not	met	
PART	I,	version	 PART	II,	version	

	1	 	2	 	3	 	1	 	2	 	3	

Skewness,	kurtosis12  0 (1) (1) (2) (2) (2) 

Discrimination	 5 4 3 1 1 1

3.3.7 Part	III	

The final two items of the questionnaire asked about characteristics of “really 

good” students and teachers, as shown in Table 3.4, with response options relating 

to different levels of epistemic sophistication. These data were treated as ordinal, 

with the least sophisticated response (i.e. providing complete information) 

representing one end of the scale and the most sophisticated (challenges students 

to explore difficult areas, and challenges students to explore open-ended 

problems) the other end.  

12 Slightly platykuric items were nevertheless kept. 
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Table	3.4	Part	III	Items:	Characteristics	of	Good	Professors	and	Students		

What	is	the	one	characteristic	that	marks	
out	a	really	good	professor?		

What	 is	 the	 one	 characteristic	 that	
marks	out	a	really	good	student?		

 Providing complete, clear information   Being attentive and taking complete 
notes  

 Showing students how to solve problems   Being able to solve all the exercises  

 Demonstrating the relevance and 
connections between different aspects of 
the material  

 Applying the concepts in novel 
contexts, such as projects  

 Challenging students to explore difficult, 
novel areas  

 Developing their own ideas  

 Challenging students to explore unclear, 
open-ended problems 

 

 

3.4 METHODS FOR QUALITATIVE DATA ACQUISTION 

3.4.1 Semi‐structured	Interviews	

The dialectic interaction and opportunity to pursue specific themes arising from 

the experiences of an individual student make semi-structured interviews an 

appropriate methodological approach for my research questions. The successful 

conduct of this type of interview requires the interviewer to rely on their own 

experience, intuition, and subject knowledge to respond dynamically to the unique 

context of each interview. In this thesis, the relevant subject area knowledge 

includes fundamental concepts from engineering science and the nature of 

engineering work.  

Semi-structured interviews typically draw their structure from an outline, 

developed by the researcher, which lists some possible questions to explore the 

relevant topics. This places semi-structured interviews between the rigidity of an 

exchange that follows a static, scripted set of questions and a completely open 

conversation. The less-structured part of a semi-structured interview arises from 

the researcher exploring emergent themes and asking clarifying questions to 

check the meaning or interpretation of the experiences described by the 

interviewee. Effective use of such clarifying questions during the interview greatly 

facilitates post	hoc analysis (Brinkmann and Kvale 2015, p. 116).  

A key advantage of an unstructured flow is that it produces more spontaneous and 
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lively answers, whereas a more structured outline facilitates later analysis 

(Brinkmann and Kvale 2015, p. 156). Additionally, the outline needs to balance 

thematic questions that explore the target areas with dynamic questions that build 

rapport and maintain a comfortable flow during the interview. It is essential to 

establish a relationship between the interviewer and interviewee that facilitates 

an open accounting of the students’ approaches to problem solving and to their 

studies, but too much intimacy can cause students to attempt to provide the 

answers they anticipate will match the researcher’s expectations (Lee 2008). The 

organisation of the room and the initial interactions should facilitate the desired 

dynamic during the interview. 

In order to generate observations germane to my research questions, the 

interviews explored specific, contextualised experiences and did not seek the 

participants’ general ideas about engineering and problem solving. Thus, 

Brinkmann and Kvale’s advice to ensure the validity of the interview data by 

asking for a free and detailed narrative of a specific and recent memory, providing 

prompts such as ‘last time you were in class’ and allowing for sufficient time for 

the interviewee to recount the details of their experiences, was determined to be 

highly relevant (2015, p. 52). In practice, this meant that either a paper copy of the 

students’ class schedule or their answers to the think-aloud tasks were used to 

anchor the interviews in a specific and authentic context.  

3.4.2 Think‐aloud	Protocols	to	Observe	Problem	Solving	in	Action	

A think-aloud protocol sets a task and requests the interviewee to narrate their 

actions and thoughts during their attempts to accomplish the task. Olson et	al. 

(2018) argue that a think-aloud protocol is the most effective way to observe 

complex thinking processes and that it is well suited to studying the different ways 

that the same task can be approached. This method is a good fit for the current 

study, but care must be taken when constructing the tasks and the instructions 

given to students to ensure coherence with the research questions.  

The think-aloud protocol was created in the 1980s in the field of cognitive 

processing in psychology (Ericsson and Simon 1998) and has since been used to 

explore thinking during a range of different tasks, including the strategies and 

approaches used by engineering students during problem solving (Christiaans and 
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Dorst 1992, Atman and Bursic 1998, Pintrich et	 al. 2000, Atman et	 al. 2005, 

Taraban et	al. 2007, Litzinger et	al. 2010). 

The accuracy of the narration with respect to the person’s thinking is a question of 

obvious importance and some divergence of opinion. A primary limitation of this 

method is that a student may not be aware of, or able to articulate, each thought 

or idea that crosses their mind. Ericsson and Simon insist that narration is an 

accurate report of the student’s thinking, as the student would be too occupied by 

advancing the task and maintaining their verbal narration to have sufficient 

capacity to intentionally adjust their cognitive processes (1984, p. 16). Jäskeläinen 

(2010), however, cautions that this high cognitive load will result in only a fraction 

of the student’s cognitive processing being narrated. This concern contradicts the 

findings of Van Someren et	al. (1994) that think-aloud narration does not affect 

students’ performance more than a typical tutorial-like setting. Similarly, Ericsson 

and Simon note, “Participants do not appear to monitor their overt verbalizations 

of thoughts, as they are observed to mostly generate incomplete sentences and 

phrases, and rarely correct their verbalizations including speech errors” (1998, p. 

181). Nevertheless, some students have recounted that their narration was unable 

to keep pace with their thoughts (Someren et	al. 1994) or that the complexity of 

their cognitive processes were too difficult to accurately verbalise (Nielsen and 

Yssing 2002). Overall, it seems that while a student may not be able to narrate 

absolutely everything passing through their mind, an audio record can be taken as 

a “thoroughly reliable” sample of their thinking (Ericsson and Simon 1998, p. 247).  

Ericsson and Simon (1998, p. 181) state that “Perhaps the single most important 

precondition for successful direct expression of thinking is that the participants 

are allowed to maintain undisrupted focus on the completion of the presented 

tasks. Hence, participants are explicitly instructed to focus on the task while 

thinking aloud and merely to verbalize their thoughts rather than describe or 

explain them to anyone else.” In the current project, my instructions were brief 

and explicit, requesting the student to narrate their thoughts and actions as they 

occurred. Care was taken to follow the advice of Baker and Cerro (2000) around 

how questions and comments are phrased to avoid cueing participants about how 

to respond. For example, avoiding phrases such as ‘Tell me what you think’ 
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because they imply that the student should form an opinion or analysis of their 

own thinking. Students may then be less likely to report thoughts that may first 

appear random (Someren et	al. 1994, p. 43). For example, a question such as "Why 

did you do X?" could lead a student into metacognitive reflection which would not 

have occurred spontaneously and could influence the student’s problem-solving 

practices. Increased interaction between researcher and student may also reveal 

more about the researcher’s goals and result in increased attempts by the student 

to meet, or avoid meeting, perceived expectations. While I was present throughout 

the think-aloud protocols in this project, I sought to minimise distractions and 

interruptions in order to reduce interference with students’ train of thought 

(Someren et	al. 1994). 

The research questions of this thesis required detailed and contextualised 

observations of students’ problem solving. Despite being constrained both by 

cognitive load limits and the self-awareness of the students (Baker and Cerro 

2000), the think-aloud protocols allowed for the observation of epistemically 

revealing practices through the verbalisation of their thought processes. This 

capacity for the think-aloud method to provide details about the range and 

prevalence of strategies employed by students was ideal. To decrease inference 

during analysis, and to enrich the observations, I conducted a stimulated recall 

interview immediately after each think-aloud protocol. The focus on descriptive, 

rather than explicative (why), accounts was maintained. The following section 

provides detail about the methods I employed.  

3.4.3 Conducting	the	Think‐aloud	Sessions		

Kuusela and Paul (2000) identified two types of think-aloud protocols: (1) 

concurrent think-aloud, where the student’s narration is collected directly during 

their problem solving, and (2) retrospective think-aloud, where the participants 

reflect a	posteriori on their problem solving. I choose to employ concurrent think-

aloud as it generally provides more information about the students’ problem 

solving approach and decision-making (Kuusela and Paul 2000). 

As recommended by Van Someren et	 al. (1994), an a	 posteriori interview was 

conducted with each student immediately after their problem solving session to 

obtain additional details and observations about their approach. This was done 
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with a stimulated recall approach (Lyle 2003), using the student’s own written 

work on each particular task as a prompt to ask how they had started, the origin 

of the equations they wrote, and how they had verified their answers. Using the 

students’ own notes meant that the stimulated recall could occur immediately 

after the think-aloud problem solving, thereby keeping the temporal separation 

brief, as per Lyle (2003) and Charter’s (2003) recommendations. Maintaining a 

temporal separation between the (uninterrupted, audio-recorded) think-aloud 

and the a	posteriori recall also served to minimise the impact of the researcher on 

students’ behaviour. A distinction between the two phases was maintained in the 

analysis, where actions performed by students during the think-aloud problem 

solving were designated as ‘enacted’ and comments recounting actions 

undertaken in other contexts as ‘professed’. This terminology is consistent with 

both Julie Gainsburg’s work (2015) and Van Someren et	 al.’s (1994) 

recommendation.  

3.4.4 Designing	Tasks	for	Think‐aloud	Problem	Solving	

Creating opportunities for students to exhibit epistemically-revealing problem 

solving practices, such as reasoning with personal experience or with formulae, 

was the key objective in designing the think-aloud tasks. These tasks were the 

central element in providing the engineering context for the data collection, an 

essential aspect for generating relevant observations. For each set of think-aloud 

sessions, a series of tasks were designed to invoke diverse problem solving 

strategies without requiring knowledge beyond a typical first year science or 

engineering programme. As noted by Baker and Cerro (2000), tasks needed to be 

difficult, complex, and sufficiently novel to require some metacognitive skill, yet 

avoid inducing excessive cognitive load (Charters 2003). Chemistry was often 

chosen as the disciplinary context due to my background; however, I informed 

students that the problems did not require particular knowledge beyond basic 

stoichiometry and that they should go about solving the tasks as they would a set 

of assigned exercises. Each task was presented in a contextualised format to 

provide opportunities for students to verify the plausibility of answers or to 

leverage real-life observations. For example, the task involving heat capacity in the 

first set of tasks involved an in	situ dental filling. How the think-aloud tasks are 
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contextualised is clearly important, as the presentation of both the tasks and the 

instructions themselves will influence students’ perceptions of how they should 

approach the activity (Laurillard 1997). Each student was offered the choice to 

participate in French or English, and were provided with the set of tasks and asked 

questions according to their choice. The analysis from the first round of think-

aloud protocols was leveraged to design the next set of tasks. The complete set of 

tasks for both the 2017 and 2018 think-aloud protocols, for which I provided one 

per page during the experimental protocol, are available in Appendix C. 

3.4.5 Experimental	Conditions	for	Interviews	and/or	Think‐aloud	Protocols	

Following Bowen’s advice (1994), I mentally divided the sessions with students 

into several phases: greeting, think-aloud set up, data collection, and wrap up. The 

greeting phase is important to set up the atmosphere for the rest of the session, 

and despite needing to reserve sufficient time for data collection, initiating a brief, 

informal conversation can allow students to adjust to the setting. Think-aloud 

sessions and/or interviews were conducted with individual students, in either a 

classroom or meeting room on campus, but not in buildings that they would often 

have cause to visit. Schoenfeld recommends conducting think-aloud protocols 

individually in order to reduce the effects of social dynamics present with groups 

of students, and to select an environment that is comfortable and associated with 

the desired type of cognition (1985). The other objective of the greeting phase is 

to tell the students a bit about the study; Bowen recommends providing general 

yet honest information. For the think-aloud sessions, I said I was interested in how 

the participants went about solving the problems and not in the answers that they 

obtained. As they started the problem solving, I would remind them again of this 

and specify that I had intentionally selected tasks that would pose some difficulty 

for them to solve.  

The think-aloud set-up consisted of a warm-up task similar to the experimental 

tasks (Bowen 1994, Someren et	al. 1994) that served to familiarise students with 

the nature of the narration expected of them. This provided an opportunity for me 

to provide feedback if a student was explaining or interpreting their thoughts as 

opposed to simply narrating them. If a student was not speaking, I reminded them 

to keep speaking as though they had removed the filter that usually 
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(appropriately) prevents us from saying everything that crosses our mind. I took 

particular care, both during the warm up and the subsequent interview, to ask 

students about what	they did and not why they did it, to avoid prompting students 

to artificially exhibit metacognitive behaviours (Bowen 1994). The warm-up task 

for each set involved a stoichiometric calculation. This simple task allowed 

students to practice the think-aloud component under a lighter cognitive load and 

also for me to offer feedback without interrupting the experimental conditions.  

In the data collection phase, students were given one task at a time and asked to 

proceed as though they were completing a set of assigned homework exercises. 

Students were instructed to go about problem solving as they usually would, but 

to shut off the filter that usually keeps us from saying everything that passes 

through our minds. That is, that they should not explain their thinking but simply 

narrate their actions and observations, starting by reading the task aloud. Having 

the tasks read aloud provided me with useful information when transcribing the 

sessions and also appeared to help students launch into narrating their actions. 

Students were left to work without interruption until they reported they had 

finished the task, or were ready to abandon the task, or 15 minutes had elapsed. 

After 15 minutes, I would ask if the student would like to continue for another few 

minutes or if they were ready to move on. The 15-minute period was judged 

sufficient time for the student to have enacted several different problem solving 

practices; finding the correct answer was not germane to the goals of this research 

project.  

Schoenfeld identified that the materials available and the intervention of the 

researcher are important variables in think-aloud protocols (1985). Reflecting 

Schoenfeld’s opinion that the materials provided to students, such as a formulae 

sheet, scrap paper, or a calculator can affect how a student proceeds, all students 

were provided with identical materials: a basic calculator, a pencil, an eraser, and 

scrap paper. Similarly, I attempted to provide an equivalent level of intervention 

with each participant. While I remained in the room during the problem solving, 

engaged in reading or editing an unrelated article, I refrained from interrupting 

except during the warm-up exercise.  

Sessions with participants were between 60 and 90 minutes long, largely 
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dependent on students’ facility and determination to persist in solving the 

exercises. The whole session was recorded, including the semi-structured 

interview and stimulated recall that followed. Students’ written work was kept 

and used to supplement the analysis where appropriate.  

3.4.6 Purposeful	Sampling	for	Rich	Observations	

To meet the goals of the rich qualitative approach employed in this project, the 

selected sample sought to explore the full range of variations in the experiences 

under study (Booth 1997). Purposive sampling was used in both the qualitative 

and quantitative studies to assemble observations that reflected the demographic 

diversity of the population, which increased the opportunity to investigate the 

widest range of student experiences. This meant attending to the demographic 

profile of respondents and then targeting classes or locations where students from 

different study programmes or years of study could be found.  

Each of the qualitative studies involved a rather small number of students, 

reflecting my goal of generating a detailed and thorough exploration of students’ 

behaviours and their descriptions of their experiences (Brinkmann 2012). 

Prioritising the depth of the observations collected, over quantitative indicators 

such as number of participants is coherent with my research questions. From the 

cohort of students responding to an online recruitment notice, in return for 15 

Swiss francs compensation, study participants were selected to achieve maximum 

variation in demographic features. The criteria considered were gender, year of 

study, and study programme. Other criteria that could influence students’ 

epistemic cognition but were not used in purposive sampling include students’ 

educational history (Swiss maturité, French baccalauréat, French école	

préparatoire…) and grade point average (as a proxy for having a study approach 

adapted to the school’s expectations).  

Recruitment of participants, for each set of think-aloud protocols, continued until 

conceptual saturation was obtained. This indicated that the diversity of students’ 

behaviours had been captured (Strauss and Corbin 1998). In practice, conceptual 

saturation was defined as the point at which further data collection and analysis 

did not yield any new observations.  
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3.4.7 Transcription	and	Coding	for	Interviews	and	Think‐aloud	Protocols		

The transcription and coding of the interviews and think-aloud protocols involved 

pragmatic choices related to the technology and more complex conceptual 

decisions to pilot an approach that was coherent with the methodology.  

Pragmatically, I selected the NVivo qualitative data analysis software for its 

multiple features for grouping and visualising themes across several data sources. 

The recordings of the interviews and think-aloud protocols were imported as 

audio files into the NVivo software. The more challenging decisions related to 

transcription and coding are discussed below. Once these laborious tasks had been 

completed, the framework feature in NVivo was used to extract the portions of the 

transcriptions that I had assigned the same code. I reviewed the extracted data in 

tabular format on A3 sheets. 

Generating the transcriptions was not a trivial process. My intention was to 

transcribe the audio files as faithfully as possible, with a minimum of 

interpretation, but this was quite difficult with the think-aloud component of the 

protocol. Van Someren et	al. address how the nature of the think-aloud narration 

makes it complex to transcribe accurately, as the utterings are frequently 

incomplete, interrupted, or muttered (1994, pp. 45–46) and Bowen warns that a 

one-hour session can take up to six hours to transcribe (1994). I transcribed the 

interviews in the same language they were conducted to reduce the numbers of 

manipulations of the students’ comments; the resulting bilingual data set may 

appear unwieldly for many people but is in fact typical in my context. This is 

illustrated by many participants switching between English and French, even for 

just a brief section, during their interviews. Non-verbal utterances, such as pauses, 

sighs, and grunts of frustration, were included as faithfully as possible in the 

transcription, as they appeared to be an integral part of many students’ problem 

solving. Recognisable pauses were recorded as an ellipse (…) as per convention 

and a prolonged silence as ‘silence’. While the distinction between a pause and a 

silence remains a matter of interpretation by the researcher, the human ear is well 

trained for detecting unusual pauses between words in a sentence (Van Someren 

et	al., 1994). These non-verbal markers are central to the literature of discourse 

and framing (Tannen 1993). The current analysis makes no claim to such analysis 
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and ultimately only the words were analysed. Van Someren et	al. (1994) underline 

that it is important not to give one’s own interpretation to a sentence through the 

addition of punctuation, and recommends omitting punctuation entirely and 

simply starting a new line for each new sentence. I did not find it feasible to follow 

this advice with the incomplete sentences generated during the think-aloud 

protocols.  

Once each transcript was completed, I annotated it with a short description of 

what each participant was “doing” at that particular point (e.g. solving task 2, 

debriefing task 3). The transcripts were reviewed in detail and annotated with 

descriptive tags designed to avoid inferring meaning. This resulted in some 

sentences being coded with multiple tags. The unit of analysis was approximately 

the sentence, although there were many incomplete sentences, particularly in the 

think-aloud protocols. Students’ responses to standard questions in the interview 

guide were identified to enable comparison in subsequent steps. This analysis did 

not ultimately prove to be useful. Instead, a grounded approach based on an initial 

open coding strategy of students’ narrated problem solving and subsequent 

interview was pursued; the conceptual approach to the coding is detailed in the 

following section.  

3.4.8 Qualitative	Data	Analysis	Approach	

My goal with the analysis was to capture the broadest range of students’ problem 

solving activities and approaches to engineering knowledge. In using grounded 

theory for the analytical approach, the first stage of the analysis was “open coding”. 

This involved identifying recurrent, salient, or puzzling incidents. I undertook the 

analysis in an iterative manner, minutely reviewing the audio files and transcripts 

and then reviewing them again as new themes arose. The incomplete format of 

many of the utterances during the think-aloud protocols meant that their meaning 

was ambiguous (Charters 2003, Olson et	al. 2018) and contributed to making the 

data difficult to score (Baker and Cerro 2000). I whole-heartedly agree with Atman 

and Bursic’s observation that the think-aloud protocols are rich but time 

consuming (1998). Brinkmann and Kvale (2015) caution that even with 

interviews, where the sentences tend to be more complete and where clarification 

questions can be asked, the researcher must make inferences about meaning. It is 
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also important to note that the aspects of the task and the situations that a student 

recounts during the interview do not necessarily represent the extent of their 

conceptions but only those evoked by the current context (Trigwell and Ashwin 

2006). The researcher’s analysis, therefore, should take care when making 

assumptions about the absence of ideas or behaviours.   

This “constant comparative method” is central to the grounded theory approach 

and accompanies each step of the analysis (Case and Light 2011, p. 193), where 

connections and overlaps should be investigated. In the next stage of analysis, 

themes were grouped together with axial coding in order to allow a more general 

picture to emerge. As the codes are nascent theory and the coding process itself 

the start of theory development, it is important to avoid trying to fit data into prior 

categories (Bowen 2009). Spiggle (1994) cautions that the connections to the 

original data should remain clear. This is a key point, as the quality of the grounded 

theory analysis is characterised by a strong internal coherence. Collecting rich data 

and detailed contextual information is also important, as these elements will 

support the transfer of the emerging theory to other situations.  

Table	3.5	Coding	structure	for	selected	practices		

Interview	response	 Open	code	 Axial	code	 Selective	code	

During tutorials, we have the solutions. Cédric Solutions 

Answer 
Checking 

To check the limits, the extreme cases in the 
equation, for example if the mass goes to zero 
or infinity. Baptiste 

Logical 

And then the units too. Here it is clear that I 
wanted Kelvin. Dimitri 

Units 

I didn't use the mass anywhere. Um. Which is 
normal because I have just been dealing with 
acceleration…. And the acceleration doesn't 
depend on mass. Bart 

Concept 

I tried to think about the last time that my 
parents changed a tyre. Carmen 

Observation 
from life 

I remember quite well the professor 
explaining it. And I just believed her... Ernest 

Book, 
teacher 

Source and 
Validity of 
Equations 

I was able to remember the formula, and then 
I checked by reviewing the units. Boris 

Units 

I'm guessing, but a big part of creating 
something like this would be working out 
which properties were important. And what 
needs to be defined, like the momentum. Bart 

Physical 
reality  

Level 1 = 
External expert 
or pure maths

Level 2 =
Conceptual

Level 3 = 
Connecting to 
physical reality
Level 1 = 
External expert 
or pure maths

Level 2 =
Conceptual

Level 3 = 
Connecting to 
physical reality
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As the conceptual categories arising from my analysis of the data coalesced, I 

reviewed the work of other researchers to identify commonalities and differences 

with my data set. The result was that the structure of the final codes was 

orthogonal to the axial codes and resulted in the generation of a tabular format 

that aligned open codes across several axial codes, rather than the branching tree-

like structure typically produced. The columns in Table 3.5 present the coding 

structure for a sample of open codes and can be used to illustrate the timeline of 

this process, as the information was generated from left to right. To reduce 

readers’ cognitive load, the tables in the Analysis chapter are structured by the 

selective codes. This analysis was conducted across both languages 

simultaneously and only the specific quotations used for illustrative purposes in 

this document were translated to English, if necessary, at the final stages. 

The decision to stop collecting and analysing data should be made when a point of 

conceptual saturation has been reached such that further observations or analysis 

do not contribute new insight (Strauss and Corbin 1998). While more data can 

increase the trustworthiness of a study, enhancing transferability by developing 

richer descriptions and confirmability by providing more points to verify the 

internal coherence, conceptual saturation indicates that the ultimate goal of 

capturing the diversity of students’ practices was achieved in the current study. In 

a rigorous grounded theory approach, it would only be at this stage that the 

emerging ideas would be assessed against existing theories, and the areas of 

agreement, dissent, and extension would be elaborated in communicating the 

results (Goulding 2005, p. 297).  

3.5 PARTICIPANTS AND EXPERIMENTAL CONDITIONS OF THE 3 
QUALITATIVE STUDIES 

3.5.1 Interviews	2015	

This set of semi-structured interviews first addressed students’ intentions and 

actions when attending their favourite class in the current term, then secondly the 

course in which they judged their actions were most different from their favourite 

class. Each student brought a physical copy of their class schedule for the current 

term, which assisted in making the discussion concrete and specific. This set of 

interviews took place in April and May 2015, and did not include any think-aloud 
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problem solving.  

3.5.2 Participants	2015	

The demographic characteristics of the eleven students who participated in this 

study are presented in Table 3.6 below, in order of advancement in their studies. 

The pseudonyms chosen by students are reported in the final column; however 

these participants are identified in subsequent chapters by the pseudonyms in the 

first column. I revised these students’ pseudonyms in order to be consistent with 

the nomenclature adopted after this set of interviews, while seeking to respect the 

linguistic origin of their original choice. An updated pseudonym beginning with an 

A indicates a first year student and a C a third year student. The Bachelors students 

were between 19 and 21 years of age, Masters students between 23 and 26 years 

old. 

Table	3.6	Student	Participants	for	Spring	2015	Interviews		

Pseudo	 Year	 Study	program	 Previous	studies	 Chosen	pseudo	

Augustin First Civil engineering France Paul 

Arthur First Micro engineering France Patrick 

Albert First Computer science Switzerland Sylvain

Bonnie Second Life sciences engineering France Marie 

Beatrice Second Computer science France Mathilde 

Csongor Third Communication systems Switzerland Arpad 

Destiny Master1 Chemical engineering Switzerland Cannelle 

Diane Master1 Materials engineering France Caroline 

Drew Master1 Life sciences engineering Other George 

Durak Master1 Technology entrepreneurship Other Ogeday 

Ellie Master2 Electrical engineering Other Ellie 

3.5.3 Interviews	with	Think‐aloud	Protocol	Spring	2017	

This second set of semi-structured interviews, held in March and April 2017, were 

the first to include think-aloud problem-solving tasks. Each session began with the 

think-aloud tasks; the physical record generated by the student during their 

problem solving then served as a concrete and contextual anchor for the interview 
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which followed immediately. The sessions lasted between 50 and 85 minutes, with 

the average being about 65 minutes. The duration was determined by the students’ 

ease in problem solving, their perseverance in continuing in the face of a difficulty, 

and to a lesser extent their answers to the interview questions.  

3.5.4 Think‐aloud	Problem	Solving	Tasks	Spring	2017	

I designed a series of four tasks to invoke problem-solving strategies without 

requiring knowledge beyond what a typical first year chemistry course would 

provide. Two tasks involved calculations (rate of reaction, heat capacity) and two 

tasks asked for predictions and justifications of observed phenomena. Each task 

was presented in a contextualised format to offer opportunities for students to 

verify the plausibility of answers or to employ real-life observations. For example, 

the task about heat capacity involved an in	situ dental filling. The session started 

with a warm-up task that involved a simple stoichiometric calculation.  

3.5.5 Participants	Spring	2017	

Eight students from a range of different study programs, presented in Table 3.7, 

were interviewed for this study. I employed purposeful sampling to increase 

diversity in year of study and study program. The Bachelors students were 

between 18 and 22 years of age, Masters students between 22 and 25 years old. 

Table	3.7	Student	Participants	for	Spring	2017	Interviews		

Pseudo	 Year	 Study	Program	 Previous	studies		

Amandine First Computer engineering France 

Anna First Electrical engineering France 

Antoine First Life Science engineering Switzerland 

Benoît Second Microengineering Switzerland 

Boris Second Mechanical engineering Switzerland 

Clément Third Microengineering Switzerland 

Damien Master1 Technology Entrepreneurship (B.Eng electrical) France 

Ernest Master2 Environmental engineering (B.Eng civil) Other 
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3.5.6 Interviews	with	Think‐aloud	Protocol	Fall	2017‐2018	

The second set of semi-structured interviews with think-aloud problem-solving 

followed the same format as the first set. I developed new tasks and a revised focus 

for the interview questions to deepen or broaden observations made during the 

first set of think-aloud protocols. The first three interviews were conducted in 

October or November 2017 and the remaining seven between November and 

December 2018. The interviews were between 59 and 80 minutes long; the 

average length was 70 minutes. 

3.5.7 Think‐aloud	Problem	Solving	Tasks	2017‐2018	

The three tasks for this set of interviews were designed to pose sufficiently 

challenging problems to require that students employ a variety of problem solving 

strategies, including making connections to their lived experiences and creating 

opportunities to use multiple strategies for checking answers. The first problem 

was a thermodynamics question involving the equation for heat capacity and the 

second a ballistics question involving the equations of movement. The intention 

for the first two problems was to prompt students to recall and use fundamental 

equations. The final problem was quite different; it simply asked, “How far can a 

car drive before wearing off a single molecular layer of rubber from its tyres?” The 

objective of presenting students with this task was to confront them with a 

problem that did not have a clear correct answer and where making progress 

would require students to make decisions, assumptions, and estimations. The 

complete set of tasks, which were provided consecutively one per page during the 

experimental protocol, is available in Appendix C.  

3.5.8 Participants	in	the	2017‐2018	Interviews	

Eleven students from a range of different study programs, presented in Table 3.8, 

were interviewed for this study. Students are identified by a pseudonym of their 

own choosing, where a name beginning with A indicates a first year student and a 

name beginning with C a third year student. Purposeful sampling was employed 

to obtain some diversity in year of study and study program. Bachelors students 

were between 20 and 21 years of age and Masters students between 22 and 24 

years. 
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Table	3.8	Student	Participants	for	2017‐2018	Interviews		

Pseudo	 Year	 Study	program	 Previous	studies	

Baptiste Ba3 Bioengineering France 

Bart Ba3 Electrical engineering France

Bernard Ba3 Math France 

Carmen Ba5 Bio engineering Swiss 

Cedric Ba5 Math Swiss 

Daniel Ma1 Mechanical engineering Other 

Delphi Ma1 Civil engineering Swiss 

Didier Ma1 Environmental engineering Swiss 

Dimitri Ma1 Communication systems Swiss 

Elise Ma3 Micro engineering France

Guillaume Ma3 Electrical engineering France 

3.6 CHAPTER THREE CONCLUSION 
This chapter has outlined the methodological approach undertaken in answering 

the research questions of this thesis. While considerable effort was expended in 

gathering, analysing, and describing the methods used for the quantitative data, 

these efforts ultimately contributed little to this project. It is the qualitative data 

from the students’ think-aloud problem solving and subsequent semi-structured 

interviews, collected through a grounded theory approach, that provide the 

observations that underpin the central contributions of this thesis.  

As the analysis presented in the following chapter will make clear, these detailed 

and contextualised observations allowed me to develop a rich characterisation of 

engineering students’ epistemically-relevant practices. The arguments against 

inferring overarching epistemic beliefs, which I made in the previous chapter, will 

also be revisited in light of the unsatisfactory structure in the epistemic beliefs 

items in the questionnaire.  
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4  Research Findings 

4.1 INTRODUCTION  
This chapter presents my empirical observations arising from the four studies that 

constitute the data collection of this thesis, listed in Table 3.1, in an integrated 

manner to coherently address my research questions. The main focus is on my first 

two research questions, about the nature and distribution of students’ epistemic 

practices. For this I take a fine-grained, cognitive processes approach (Briell et	al. 

2011) to develop a detailed profile of students’ epistemic practices during 

engineering problem solving. Answering my final research question, about how to 

characterise and model epistemic sophistication in engineering, requires 

contributions both from my observations and from prior work in the field. This 

chapter will introduce my relevant empirical data; however, I will provide a more 

complete answer to these questions in Chapter 5.  

While my cognitive processes approach rejects categorising students by their level 

of epistemic sophistication, I find that the categorisation of students’ behaviours 

or actions is a useful analytic tool. As was explored in detail in Chapter 2, there is 

broad agreement on what constitutes epistemic sophistication, despite 

measurement and terminology issues. The consensus is that the arc of increasing 

epistemic sophistication proceeds from naïve conceptions that knowledge is 

absolute and comes from experts, to more sophisticated conceptions that 

knowledge is evolving and that an individual must make context-dependant 
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judgements. 

The descriptions of naïve epistemic conceptions proposed by prior models, 

such as Perry (1970) and Hofer and Pintrich (1997), have generally been found 

to be relevant for engineering knowledge. Additionally, Julie Gainsburg has 

made important contributions to the most sophisticated end of the scale by 

describing the practices of professional engineers (2007). However, in order to 

operationalise Elby and Hammer’s epistemological resources model at their 

intended fine-grained level (Elby and Hammer 2001, 2010), it is essential to 

develop rich characterisations of discipline-specific practices. The key 

contributions of this study are about intermediate epistemic sophistication, 

representing an essential area in terms of students’ development during their 

university studies. As outlined in Chapter 2, some of the key epistemic 

practices for engineering involve navigating between representations and real-

world complexity, managing uncertainty, and justifying the problem solving 

approach taken.  

Table	4.1	Categorisation	of	Epistemic	Problem	Solving	Practices		

Level	 One Absolute	 Two			Local	coherence	 Three			Coherence	 Four			Sceptical	
Reverence	

Engineering thinking 
leads to single, exact 
correct answers. 

Engineering thinking is 
internally coherent, 
precise, and 
mathematically based. 
However, different 
approaches can give 
different good answers. 

Engineering thinking 
makes connections 
between physical 
reality and models, 
where all answers that 
meet or exceed the 
constraints are
acceptable. 

Engineering 
thinking 
involves 
judgement. 

The main approach I employed in parsing and analysing the qualitative data is 

grounded theory, which yielded 10, 11, and 14 axial codes respectively, for each of 

the three qualitative studies. The practices identified were next grouped into 

themes, for example answer-checking or models, and used to construct 

descriptions of specific practices at multiple levels of epistemic sophistication. I 

developed the levels described in Table 4.1 from my analysis of the empirical 

observations presented in this chapter, however, I present them here in advance 

Increasing epistemic sophistication 
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of the observations themselves as I have used them to structure the epistemic 

practices throughout the chapter. The four levels describe practices from a naïve, 

precise, and absolute Level 1 approach to engineering knowledge, to sophisticated, 

context-dependant Level 4 practices. In the following sections, the individual 

epistemic practices are introduced and illustrated with extracts from my 

interviews with students. The chapter concludes by summarising how the 

empirical results address my research questions, in preparation for the discussion 

of these observations in relation to prior work presented in Chapter Five.  

4.2 EPISTEMIC PRACTICES 

4.2.1 Engineering	Students’	Epistemic	Problem	Solving	Practices		

Epistemic practices are observable, epistemically revealing practices enacted 

when a student approaches, justifies, and evaluates specific, contextualised 

knowledge (Sandoval et	al. 2000). Think-aloud protocols of problem solving tasks 

provide an effective way to elicit and observe these practices in engineering 

students (Litzinger et	al. 2010).  

This section presents the epistemic practices of 30 engineering students, who 

were predominantly directly observed during think-aloud tasks. I investigated 

students’ practices under as contextualised and specific conditions as was 

experimentally possible. The observations presented here are grouped by the type 

of epistemic practice; how students work with their peers, their approach to 

correct answers, how they verify their answers, and how they use estimation and 

mathematical models. An analytical approach following a student’s path in solving 

each problem did not generate interesting observations for the tasks employed. 

Rather, a fine-grained approach where each action or sentence was coded proved 

more relevant. Some of the think-aloud tasks which produced the richest practices 

on the part of the participants required students to reconstitute or recall a formula 

from memory and involved several steps that provided opportunities for 

conceptual reasoning and real-life contextualisation.  

4.2.2 Working	with	Peers			

One of the core aspects of epistemic beliefs models is the source of knowledge. Are 
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experts the only reliable source of knowledge? Who do students think are 

competent to answer their questions and to what degree do they see themselves 

or their peers as capable of contributing to knowledge? While the experimental 

conditions of this research project did not allow for the direct observation of peer 

interactions, students’ descriptions of their behaviour in exercise sessions did 

produce instances of professed interactions with peers. 

Table	4.2	Students’	Practices	for	Working	with	Peers13	

Level	1	  Absolute	 2	  Local	coherence	 3  	Coherence	
Avoids	 soliciting	
knowledge	 from	 peers,	
direct	 questions	 to	
experts	

Discusses	 with	 peers	
to	 refine	 own	
understanding	

Discusses	with	peers	to	learn	
from	 peers’	 ideas,	 even	 if	
imperfect	

Representative	
Quotations	

I ask my questions 
directly to the TA 
who can answer 
properly.    Bonnie 

When I haven't 
understood, I will ask 
my neighbour to see if 
he has. He does the 
same. Csongor 

We started by telling [each 
other] what we already 
understood and then we 
realised maybe we didn't 
understand well enough to do 
the exercise. And so we started 
to explain to each other what 
we had understood. And then 
one person had an idea but 
when she started to test it, 
didn’t work very well. But 
another person had an idea to 
improve it, and we kept doing 
that.   Beatrice 

Adam 2 2

Augustin 1

Arthur 3

Beatrice 4

Bernard 1

Bonnie 1

Csongor 1

Destiny 2

Diane 1

Drew 1 1

Durak 1

Ellie 1

SUM 7 10 5

13 Only students who exhibited or discussed the current theme are listed in each table. Thus, the 
omission of a student from a table indicates that this theme was not observed for this student.  
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Students’ comments pertaining to their interactions with peers were identified 

during the grounded theory analysis, and then positioned in order of relative 

epistemic sophistication, as illustrated in Table 4.2. The first set of practices are 

naïve in perspective, seeking knowledge only from experts. Moving towards the 

right across the table, epistemic sophistication increases, students increasingly see 

their peers and themselves as agents of knowledge creation and justification.   

Each student’s report of working with their peers tended to be stable across the 2-

3 different courses discussed during the 2015 interviews, and only two students 

(Adam and Drew) reported practices that spanned two categories. This 

contradicts the caveat, expressed by some students, that contextual factors such 

as the ratio of teaching staff to students influenced their behaviour. By the second 

year, all students except Bonnie had come to appreciate the potential value of 

discussion with their peers. The perceived value of discussion with their peers 

does not show a clear progression in relation to year of study in the limit of the 

small sample size consisting mainly of Bachelor students. I observed this non-

trend across multiple epistemic practices. Beatrice’s sophisticated approach is 

unusual for a second year student and, in her comments, was associated with her 

experiences of collaboration with large-scale interdisciplinary group projects and 

a class where in-class group work was the central activity.   

4.2.3 Strategies	Used	by	Students	to	Assess	Their	Own	Understanding	of	Course	

Material	

How students assess their own understanding of course material is one of 

a number of epistemic practices observed in this study that relates to how 

students justify knowledge. Students were asked how they would know, at the 

conclusion of an hour of their favourite class, if they had understood the material. 

In addition to the responses summarised in  Table 4.3, two students said they 

would not have understood anything as they would have been focused on the 

mechanical aspects of note taking. The least sophisticated practice for 

checking understanding relies on the professor or outside expert, where 

students feel that they have understood if they have retained what they 

have been told. Using their ability to do the exercises assigned by the professor 

was the most frequently reported practice for checking their own understanding.
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Assessing their ability to use the material in a novel or authentic context was 

described by four students, including three Masters students and Beatrice, 

with her significant experience with large interdisciplinary projects. These 

practices were observed more directly in the think-aloud tasks in 2017 and 2018.  

Table	4.3	Students’	Practices	for	Self‐Assessment	of	Understanding	

2	  Local	coherence	  3	Coherence	
Assess	 own	
understanding	
by	ability	to…	

 

Level	  1	  Absolute	

retain information 
and to know the 
correct answer 

apply knowledge to get 
the correct answer 

apply knowledge in novel 
contexts or to explain 
reality 

Representative	
Quotations	

I have the impression 
to have been able to  
follow what 
happened. Diane 

We always think we have 
understood because 
it seems clear but it is at 
the exercises when we 
really know if we have 
understood or not. Bonnie 

Before doing the 
exercises?  Csongor 

Adam 3 

Augustin 1 

Bonnie 1 

Beatrice 2 2

Arthur 3 

Csongor 3 

Destiny 2 1

Diane 2

Drew 2 2

Durak 1 

Ellie 1 1 1

SUM 5 17 6

4.2.4 Existence	and	Number	of	Correct	Answers	

The belief in a single correct answer to any question is a core aspect of naïve 

epistemic beliefs and the awareness of the role of judgement in determining better 

I try to imagine [a] part 
of the body, see how it 
is  connected, how the  
signals are 
transported. If there is 
kind of disorder, how 
that [body] part is 
affected?   Drew
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answers is a reflection of higher epistemic sophistication. Students’ practices 

around correct answers in engineering are presented in Table 4.4. 

Table	4.4	Students’	Practices	Around	the	Existence	and	Number	of	Correct	Answers		

Level	2	Local	coherence	 Level	3	Coherence	Level	1	Absolute	

Exercises like this, school 
exercises always have one 
solution.   Boris 

For scientific problems, 
there will always be one 
single answer. But if the 
data is wrong, then the 
answer will be wrong. 
Clément 

In school, school problems 
do [have answers] because 
profs don't amuse 
themselves by giving us 
problems without 
solutions. But there are 
lots of problems that 
haven't been solved yet. 
Damien  

If we don't see the 
problem with the same 
view, there can be very big 
variations. It depends on 
the point of view of the 
engineer. [But is it possible 
that they are both good?] 
Absolutely.  Didier 

If we say, if we want to say 
that […] it isn't possible to 
remove a single molecular 
layer, that we remove a lot 
more, then we will reason 
differently. I think that as 
long as we can justify what 
we were thinking, then it 
works. Elise 

Although some
[answers] may be 
better than others, but 
I think that a lot are 
good. Overall, what 
matters is if it meets 
the constraints.
Baptiste  

I see it as threshold 
that we need to reach. 
For example, we have 
several indicators or 
ways of identifying if 
our solution is correct 
or not. And above a 
certain threshold,
several answers are 
acceptable. Guillaume 

Level	4		
Sceptical	reverence	

There isn’t necessarily	
a	 best	 answer because 
there are so many 
dimensions and 
parameters that are in 
play, where a single 
pa rameter can be 
more important than 
10 others. For 
example, cost, or 
energy consumption, 
pure performance. And 
so I see it more as a 
panel of responses to 
propose to other 
people who will then 
decide what is the most 
important.  Guillaume 

Anna 1

Antoine 1 1 

Baptiste 1 

Bart 1 2

Bernard 2 2 

Carmen 1 

Clément 1 

Damien 1 

Daniel 3

Delphi 2

Didier 1 1

Dimitri 2 

Elise 2 1

Ernest 1

Guillaume 1 1 

SUM 8 14 6 1

 *italics added  
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Clément’s dualistic comment about a single correct answer known to experts 

is very far from Guillaume’s incorporation of the contextual and subjective 

nature of problem solving in engineering resulting in good (rather than 

correct) answers. While the overall arc of students’ comments about the 

existence of correct or better answers in engineering are coherent with general 

models, the specificity of the engineering context emerges in Level 3 practices. At 

Level 3, students behave with the awareness that multiple correct answers 

exist and that the most appropriate one can be determined by external 

constraints or criteria. Guillaume’s two comments in Table 4.4 imply that he is 

aware that evaluation by external criteria is key to a final decision and that, 

while he sees the need for judgement in making this decision, he does not 

deem himself competent or authorised to exercise such judgement.  

Paper-based exercises are a common way to provide engineering students with an 

opportunity to practice and apply course material. Whenever the nature of the 

problems which students encountered as part of their studies was discussed, 

students unanimously stated that the exercises they were assigned consistently 

had a single correct answer. Boris’s comment in Table 4.4 is a typical example. 

Project-based courses, which occur more frequently in upper years, were cited 

most frequently as the occasions when students encountered tasks with more 

than one answer. Several students felt that they were not often challenged 

to critically examine their learning or presented with “real-world” problems 

during their studies. The only non-project school work that students discussed 

having “better answers” were programming tasks.  

4.2.5 Managing	Precision,	Uncertainty,	and	Estimation		

The set of practices related to Precision and estimation, see Table 4.5, describes 

a trajectory from the unsophisticated requirement for precision in all 

things to the more sophisticated use of estimates to advance problem 

solving. While these practices are often linked to models and equations, they 

are distinct in that seeking precision or employing estimates can occur 

independently. For example, one think-aloud task described projected particles 

in terms of their average size and average density, and in the ill-structured 

tyre question, some students generated values for average daily distance 

travelled without recourse to a model.
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Table	4.5	Students’	Practices	for	Managing	Precision	and	Estimation			

Level	1	Absolute	 Level	2	Local	coherence	 Level	3	Coherence	

Seeks precision as a key criterion in 
problem solving. 

Attributes little value to 
imprecise calculations. 

Employs estimates to 
advance problem solving 
when necessary. 

Actually we need the exact values of 
the parameters, like the speed, like 
the characteristics of the road, of the 
tyre, materials of the tyre. Daniel 

No, it applies in basically no 
context. Because it is not 
sufficiently complex. It can be 
used for a quick initial 
estimation, but not in industry 
or in other important areas 
like research. We cannot limit 
ourselves to such simple 
calculations. Didier 

And we will suppose that 
it is in Angstroms, if we 
suppose that rubber is a 
complex material like it 
seems, it will be at least 
10 Angstroms.  Didier 

Professed	 Enacted	 Professed	 Enacted	 Professed	 Enacted	

Baptiste 1 4 

Bart 1 1 4

Bernard 2 

Benoît 1 1 

Carmen 2 1 5 

Cédric 1 1 

Daniel  1 

Delphi 2 3 

Didier 1 1 3 

Dimitri 1 

Elise 1 1 2

Guillaume  1 

Subtotal  2 5 4 7 24 

SUM 7 4 31

Daniel’s comment in  Table 4.5 exemplifies an unsophisticated approach for the 

tyre question, when he states that it is not possible to answer without 

precise values for several parameters. Didier recognises that imprecise 

values can be useful, however, he incorrectly supposes that estimates or order 

of magnitude calculations would be not valuable, or even sufficient, in 

professional engineering practice. The unsophisticated practices articulated 

by Daniel are typically adequate for the simplified situations commonly 

proposed in paper-based exercises. The connections between these 

practices   and  seeking   single   correct  answers,   using  models  as  exact 

84 
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representations, and a failure to connect to physical reality are evident. It is 

unsurprising that some students ascribed little value to imprecise calculations, 

as they reported rarely encountering problems where such approaches 

were necessary during their studies. This illustrates the discrepancy 

between engineering studies and the on-the-ground practice of 

working engineers, who are often confronted with situations where data is not 

available or where precise data would be more expensive to collect than the 

benefit that it would provide. 

Didier ascribes more value to, and therefore makes more use of, estimates. 

Despite the lack of precision, he mobilises a wide range of knowledge to make 

plausible estimates and advance towards producing an answer with a 

plausible order of magnitude. These practices are more representative of 

professional engineering, showing a stronger connection with physical 

reality and a recognition that precision is often not essential. No instances of 

epistemic practices above Level 3 were observed.   

4.2.6 Answer‐Checking	Practices	

Answer-checking strategies are related to students’ sense-making and 

knowledge justification practices. The think-aloud tasks provided the 

opportunity to observe such practices directly; unsurprisingly, answer-checking 

practices were a major source of epistemically-relevant practices. Answer-

checking practices exhibited by students during the think-aloud problem 

solving portion of the interview are termed “enacted” practices, while those 

that students described during the interviews are termed “professed” 

following Van Someren et al.'s recommendation (1994). I associated the ten 

different answer-checking strategies I observed with the four levels of epistemic 

sophistication used to structure this chapter. The different strategies are 

presented in Table 4.6, illustrated with representative quotations. None 

refers to instances where students reported that there was no possible means to 

check their answer. Frequency data for professed answer-checking practices is 

presented in Table 4.7  and for enacted practices in Table 4.8. 

Answer-checking strategies associated with relying on experts and abstract 

mathematical approaches are categorised at Level 1. Strategies that involve 
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assessing the local coherence of the concepts are Level 2. Answer-checking 

strategies at the highest end of sophistication observed (Level 3) involve making 

connections to real world experiences, either in the participants’ personal lives or 

via scientific experiments. 

By comparing Table 4.7 and Table 4.8, we see that students were more prolific in 

their descriptions of answer-checking practices, in response to specific interview 

prompts, than in their narration of their enacted practices. I observed 131 

instances of professed answer-checking practices and 50 instances of enacted 

answer-checking practices. The frequency of enacted answer-checking strategies, 

which occurred without any prompting, is likely more representative of students’ 

actual problem-solving practice. The constraints of the session eliminated many 

professed practices from being enacted during the think-aloud (i.e. peers, 

solutions), however, all five of the professed practices available to students were 

also enacted by students during the think-aloud problem solving. Further, the 

relative frequency of the three accessible Level 2 practices are consistent across 

the professed (Table 4.7) and enacted (Table 4.8) observations, although Level 1 

practices were enacted less frequently than they were professed. This suggests 

that students are reliably able to self-report what answer-checking strategies they 

use, if not the absolute frequency. 

For professed answer-checking Level 1 strategies, relying on external experts and 

uncontextualised mathematics were most commonly cited by students (68 times). 

Level 2 practices were professed by 15 students and represent about one third of 

the instances of answer-checking observed. Level 3 practices were least frequent 

yet were still professed by 12 students. On average, students professed seven 

instances of answer-checking practices. All four students who declared that it was 

impossible to verify an answer also professed answer-checking practices during 

their interview. Notable outliers are Guillaume who did not profess any checking 

practices, Bart who mentioned eight different practices, and Baptiste and Cédric 

who each professed a total of 13 instances across several practices. While there is 

no clear correlation between epistemic sophistication and year of study, 

participants certainly exhibited very different levels of sophistication.  
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Table	4.6	Answer‐Checking	Practices	with	Representative	Quotations		

None	

Mmmm... nah, there isn’t really a way to check. Delphi 

Level	1	=	Using	an	external	expert	or	pure	maths	to	find	a	single,	precise	correct	answer.	
Solutions	 Assistants	 Reference	 Peers	 Logical	

During tutorials, we 
have the solutions. 
Or we ask a friend 
sitting beside. Or 
ask the assistants. 
Yes, we usually 
work a few 
together on the 
exercises.  Cédric 

We ask the 
friend sitting 
beside [us]. Or 
the assistant. 
Cédric  

Or maybe there was 
an example in class 
that was kind of the 
same thing…  Carmen 

I could open the 
computer and search 
for these processes, 
these systems. Daniel 

We ask the 
friend sitting 
beside [us]. Or 
the assistant. 
Cédric 

To check the 
limits, the 
extreme cases in 
the equation, for 
example if the 
mass goes to 
zero or infinity. 
Baptiste 

Level	2	=	Using	concepts,	units,	and	order	of	magnitude	 to	 test	 internal	coherence	and	 
                     degree	of	precision	
Units	 Concept	 Order	of	magnitude	

And then the units too. 
Here it is clear that I 
wanted Kelvin. Then, 
yeah, I have to look. 
Grams.  Dimitri 

 I didn't use the mass anywhere. Um. 
Which is normal because I have just been 
dealing with acceleration…. And the 
acceleration doesn't depend on mass. 
Bart 

When air condenses to a solid on the 
windshield... logically, when it freezes it 
would lose energy, right? Yeah, because it 
changes state. The vibrational state is 
lower. Anna 

To already see if the 
answer is a little coherent, 
if I have found 
nanograms, I would have 
been surprised. With 482 
grams, it is a little less 
than a kilo… Baptiste 

Level	3	=	Exploiting	physical	 reality	and	models	 to	 find	 all	 the	 solutions	 that	meet	or	
                       exceed	the	requirements.	
Experiment	 Observation	from	life	

To heat it up, to do the actual polymerisation 
procedure. Delphi 

I tried to think about the last time that my parents 
changed a tyre. Carmen 

I was thinking more like on the street, like I'm 
walking in the winter. It's the winter, therefore it is 
cold. I just don't picture myself taking energy from 
another object. It's just me losing the energy. 
Ernest 

The enacted practices were subject to more constraints than professed answer 

checking. Students used Level 2 practices most frequently to check their answers 

(37 times). Uncontextualised maths (Level 1) and real-life application (Level 3) 

were used equally often. Interestingly, while Guillaume did not profess any 

checking strategies,  he  did  enact  answer-checking  four  times  (three  different  
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Table	4.7	Frequency	and	Nature	of	Professed	Answer‐Checking	Practices14	

None	
Level	1	=	External	expert	or	pure	maths	 Level	2	=	Conceptual	

Level	 3	 =	 Connecting	 to	 physical	
                        reality	

Solutions	 Assistants	 Reference	 Peers	 Logical	 Units	 Concept	
Order of
magnitude	 Experiment	 Observation	from	life	

Amandine 1 1 2 2 

Anna 1 2

Antoine 1 1 3 1 2 1

Baptiste 1 1 2  1 2  2 4 

Bart 1 1 1 1 1 1 2 1

Benoît 2 1 1 2  2 1 1

Bernard 1 2 1 3 1 1 1 

Boris 3 1 

Carmen 1 1 1 2 3 2

Cédric 1 1 1 2 5 3 1 

Clément 1 1 1 4 1 2 

Damien 
 

1 1 1 

Daniel 1 1 1 1 

Delphi 1 1 1 2

Didier 
 

1 

Dimitri 1 1 5 1 1

Elise 3 1 2  2 1 1 

Ernest 1 1 1 2 

Guillaume 

Subtotal	 14 10 5 16  23 16  10 14 20 3

SUM			131	 4 68 40 23 

14 All students listed in the table participated in a think-aloud protocol. Values in the top 10% are highlighted. 
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Table	4.8	Frequency	and	Nature	of	Enacted	Answer‐Checking	Practices	

Level	1	=	External	expert	or	pure	maths	 Level	2	=	Conceptual	
Level	 3	 =	 Connecting	 to	 physical	
                        reality	

None	
Solutions Assistants Reference Peers    Logical Units	 Concept Order of	

magnitude	 Experiment	 Observation	from	life	

Amandine 1 1 

Anna  1 1 1 

Antoine  1 1 1 

Baptiste  1 1 1 

Bart  3 1 4 1 

Benoît  2 2 2 

Bernard 

Boris  1 1 1 

Carmen 1 

Cédric 
 

1 1 

Clément 3 1 1 

Damien 

Daniel 1 

Delphi 1 1 

Didier 2 1 1 

Dimitri 
 

1 

Elise 1 1 2 1 

Ernest 
 

Guillaume  1 1 2 

Subtotal 4 0 0 0 0 6 16 7 14 0 7 

SUM 50 6 37 7
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Level  2 strategies). Bernard, Cédric, Dimitri, and Ernest are counter 

examples, who enacted 0-1 answer-checking practices despite citing several. 

Bart is once again an outlier, this time enacting nine instances of four 

different answer-checking practices. These two opposite trends are an excellent 

illustration of the need for a fine-grained approach to epistemic cognition and 

also the massive influence of the specific, micro context of the task or knowledge. 

It is important to note that fewer students enacted Level 3 answer checking (7) 

than professed such practices (12). This is despite the intentional construction of 

the think-aloud tasks to include contextual details that would enable Level 3 

practices, such as an acceptable temperature change for an in situ dental 

polymerisation. No instances of Level 4 practices were observed. 

4.2.7 Source	and	Validity	of	Equations	

While the think-aloud tasks were intentionally constructed to not contain any 

formulae or equations, some problem statements were designed to prompt 

students to recall and use fundamental equations from Newtonian mechanics and 

thermodynamics. During the interview, probing students’ ideas about the origins 

of these equations resulted in multiple interesting observations. As illustrated 

below by the excerpt from Dimitri’s interview, it often took quite a bit of 

questioning to get students to understand what I was asking. A common response 

from students was to explain the function of the equation. This was true even when 

I was enquiring about the origin of an equation for the second time in the interview 

(i.e. with a time lapse of 2-5 minutes). For example, the dialogue with Dimitri 

quoted below occurred only four minutes after our exchanges about the origin of 

the thermodynamics equation he had employed in solving the polymerisation task. 

SI: Where does this equation come from? 

Dimitri: It is Newton, I think? Mass times acceleration gives the force. It is really the  
thing… but it wasn’t that useful in the end.  

SI: Have you seen this equation recently? 

Dimitri: I saw it in first year.  

SI: And where did it come from? 

Dimitri: This, this formula? It is the overall force, the sum of all the forces, which make…  
it is equal to the mass time the acceleration. For any… How can I say it? The more 
the object is… 

SI: How was the equation created? 

Dimitri: In this context here? 
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SI: No, you said Newton. But what is its origin? 

Dimitri: Because I know that it is a sort of physics problem, even if it is a little bit of  
chemistry. And I know, I know the equation of movement, I know it. 

SI: An equation, like the equation of movement, why does it exist? 

Dimitri: Because it is useful. It can predict the movement when we know the speed,  
the acceleration. And the point of origin. It is quite useful to predict movement.  
It is a function of time, t, of where an object will be at time t. 

SI: I see it is useful, but how does it come to exist? 

Dimitri: Again, it is history, people, humans who want to understand why. In physics it is  
more how but it is a bit of this thirst for knowledge. 

While not all instances of questioning students regarding the origin of the 

equations they used resulted in clear responses, four recurrent themes were 

identified. The first of the two Level 1 origins I identified were that the equation 

came from school, either via a book or teacher, without reference to any prior 

source. The second Level 2 practice ascribed the genesis of the equation to sages 

or experts, without reference to physical reality. At Level 2, some students used 

the units or mathematical relationships within an equation itself to explain how 

the equation came to be. At Level 3, students explained how a process of 

experimentation and observation led to the identification of relationships which 

could then be formalised by an equation. The three levels are presented in Table 

4.9 with representative quotations.  

Table 4.10 presents the frequency of the different responses regarding the source 

of equations given by students, where each origin mentioned by a student was 

coded. As is coherent with a fine-grained approach, all instances were coded 

individually. Taking the exchange with Dimitri above as an example, these were 

coded for both Sage for citing Sir Isaac Newton and Maths	derivation for citing the 

relationships described in the equation between the mass, acceleration, and the 

sum of the forces as somehow giving rise to the equation itself. Students ascribed 

a Level 1 origin most often (24 times by 14 different students) and this was the 

sole response of four students. This is the least epistemically sophisticated 

response, but it is certainly efficient. Level 2 sources of Maths or Units were cited 

11 times and Level 3 sources related to a scientific process of observation, 

hypothesising and simplification into an equation occurred 10 times from seven 

students. This last explanation makes reference both to the scientific process and 

also  to  explicit  connections  with  the  physical  world,  enabling  contextualisation 
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Table	4.9	Source	and	Validity	of	Equations	Practices	with	Representative	Quotations		

Level	1	=	Equations	come	from	external	experts.	
Level	 2	 =	 Equations	 arise	 from	 concepts	 and	
                         mathematics,	and	are	credible	when	
                          the	units	are	logical.	

Level	3	=	Equations	are	generated	by	
                   cognitive	activity	based	on	
                   controlled	observations
                   and theorising.	Book, teacher Sage Units Maths derivation 

I remember quite well the 
professor explaining it. And I 
just believed her...  it was very 
narrative like telling a story. I 
knew she was not lying, and 
you can read about it in the  
literature. I never tried to 
challenge that. Ernest 

Chemistry book. As I 
remember, the 10th grade. 
Yes. I remember because it 
was the worst year of my 
education. [You met 
equation in a chemistry book, 
but where does the equation 
come from?] From energy, I 
don't know. Somehow I 
think, some substances can 
save energy. Daniel 

 

 
 

I don't know. 
Probably a scientist 
who thought about 
it a long time ago. So 
long ago, maybe 
even a Greek. 
Clément  

Oh la la, it comes 
from Newton. [He 
was  born with 
it?] No  [laughs]. 
Frommm... from the 
laws of Newton. 
Elise 

 

From a course in 
thermo[dynamics] that I 
had last semester. I was 
able to remember the 
formula, and then I 
checked by reviewing the 
units. Boris 

Because I always know it, 
and it is logical with the 
units. We can easily figure 
it out again. Even though I 
know it by heart, we can 
figure it out quickly. 
Damien 

[I]t comes from the fact
that the distance, taking
the derivative of the
distance gives us the
speed. And taking the
derivative of the speed,
we can get the
acceleration.  Carmen

This, this formula? It is
the overall force, the sum 
of all the forces, which
make… it is equal to the 
mass times the
acceleration. For any… 
How can I say it? Dimitri 

They are Newton's laws, so F = 
ma. [Sounds like Newton came 
up with  them, but where did they 
come from?]  So, well, from lots of 
different, um. Well  he invented, 
partly invented derivatives  and 
stuff. And I think that he looked at  
lots of things, like how planets 
revolve around each other. And 
how objects move. To see what 
worked, what proportions 
happened when. And well I  guess a 
bit, I'm guessing, but a big part of 
creating something like this would be  
working out which properties 
were important. And what needs 
to be  defined, like the 
momentum. Bart 
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Table	4.10	Frequency	of	Practices	for	Source	and	Validity	of	Equations		

Different 
types of 
practices 

Book,	teacher	 Sage	

Level	2	=	They	arise	from	concepts and	
                 mathematics,	and	are	credible	 
                 when	the	units	are	logical.		

Total	

Amandine 1 1 1

Anna 1 1 1

Antoine 3 1 4 2

Baptiste 3 2 5 2

Bart 1 1 1 3 3

Benoît 2 3 5 2

Boris 3 3 1

Carmen 1 1 1

Cédric 1 1 1

Clément 3 2 5 2

Damien 2 2 1

Daniel 1 1 2 2

Delphi 1 1 2 2

Dimitri 1 1 2 1 5 4

Elise 2 1 3 2

Ernest 1 1 1

Guillaume 1 1 1 1

SUM 17 7 3 8 10 45 29

Level 1 = They come from
                   external experts.

Units
Maths 
derivation 

Level 3 = They are generated 
by cognitive activity based on 
controlled observations and 
theorising. 

24 11 7
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and answer-checking strategies. I did not observe any Level 4 practices.  

It is not my intention to imply that some students believe that knowledge simply 

is and has always been in books. Rather my analysis highlights that, in their typical 

interactions and manipulations of equations during their problem solving, 

students do not seek to make connections between an equation and the physical 

world. Further, ascribing the origin Sage implies a remoteness to knowledge 

generation, not the successful application of a reasoning and thinking process 

similar to that in which they are currently engaged. The think-aloud tasks were 

intentionally structured in order to allow students to leverage real life 

observations. The applied nature of engineering means that navigating between 

abstract equations and physical reality is an essential aspect of effective problem 

solving. Thus, the practices described in this section are among the most relevant 

for how students see engineering problem solving and the knowledge on which 

such activities are based. 

During the interviews, more than half of students (9/17) ascribed two or more 

different sources to the equations they employed during the think-aloud problem 

solving. Students who were more familiar with the task were more likely to cite 

their teacher or a book. Students who were not able to confidently extract an 

equation from memory were more likely to employ mathematical derivation or 

units to justify the formulation of the equation. These are all adequate strategies 

in that they advanced the students’ problem solving, however, the interaction 

between the practices employed by a student and their content knowledge and 

prior experiences introduces issues with using their behaviour to assess 

their epistemic sophistication. I return to these observations later, when I 

consider how to measure epistemic sophistication.   

4.2.8 Using	Models	as	Tools	and	Representations	

Equations represent models in abbreviated formats, enabling engineers to make 

predictions and calculations based on the underlying model. These succinct 

representations can allow engineers and students to perform rapid calculations 

that generate apparently precise values. However, their abbreviated format can 

obscure fundamental assumptions and limitations of the associated model. During 

the think-aloud sessions, several students produced equations that represent 
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relationships between physical phenomena. For example, most students used the 

simplified equation for heat capacity, either recalling the equation from memory 

or reconstructing it from dimensional analysis.  

Students’ views about models in science and engineering were captured in two 

ways. First, students were asked about the existence of limitations for the 

equations that they used during their problem solving. My interview questions 

intentionally did not use the term model, as the goal was to enquire into students’ 

knowledge practices involving equations as representations of reality and not to 

pose questions that sounded like they had correct answers. Secondly, spontaneous 

incidents of students making and checking assumptions during the think-aloud 

task were coded as “enacted” to distinguish them from incidents students 

recounted during their interviews (coded as “professed”). While the importance of 

checking assumptions is frequently emphasised by engineering instructors when 

presenting models and their associated equations, students rarely encounter 

situations where the assumptions fail during standard homework exercises. 

Therefore, it would have been interesting to verify that all students were able to 

identify an assumption that they should have checked during problem solving.  

As illustrated by the representative quotations and frequency data in Table 4.11, 

the role of empirical observations in model development and checking was not 

readily apparent to many students. As with most epistemic practices, students’ 

ideas were not consistent across the various equations they encountered during 

the interview and think-aloud tasks.  

Given that the equations used by the students in the think-aloud tasks are 

simplified models of reality, they result in calculated values that would not exactly 

match physically measured values. A general awareness of this was expressed by 

several students, including some examples of specific assumptions contained in 

the equation at issue. Bernard and Daniel expressed no concerns about potential 

limits of an equation and appear to make no attempt to relate the equation to a 

more complex physical reality. It is concerning that Bernard’s statement seems to 

equate higher precision (decimal places in the answer) with higher accuracy of the 

result. Conflating the precision of a calculated value with the accuracy of the result 

is an excellent illustration of why models should be taken as epistemic tools rather 
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than faithful representations of reality. The crisp simplicity of black numbers on a 

white page seems to support students’ absolutist, dualistic practices in 

engineering.   

Table	4.11	Practices	for	Models	and	Equations	

Level	1	 Level	2	 Level	3	 Level	4	

	Identifies,	 without 
explaining,	 	
discrepancies	
between models’ 
predicted values	
and	observed values

Finds	models	 valuable	
when	they	are	coherent
with	 experiment	 and
observation,	 despite
acknowledged	
limitations		

Uses computer and	
mathematical		
models		to	catch	bad	
modelling	
assumptions

 [Are there limitations 
to using equations?] I  
haven't seen any up to  
now, but maybe we  
should ask chemistry  
students. Daniel  

It is good to know a bit  
from a theoretical  
approach but it can be  
different in practice. Yes, it 
can be different in  
practice. Here, it is totally  
theoretical. We are given a  
value, but in real life it can 
be more or less true. The  
energy generated can...  
people use numbers to  
create a model of reality. It  
is just numbers, especially  
in a real case with a real 
machine. Ummm, the 
difference is ... We try to 
get it close, but when we 
say 153 it isn't exactly 153. 
There can be more digits 
afterwards, more precise. 
Bernard 

You need to do the  
experiments to prove the  
theory.  Antoine 
 
They observed things in  
nature. After they deduced 
the equations. Elise  
 
Yes, because we simplify  
to have this. Otherwise we  
would have differential  
equations everywhere.  
Cédric 
 

Which [equation] to use 
and what is valid. This is 
something to clarify in the 
material, to know the 
hypothesis underpinning 
[it]. This is maybe 
something that I try to be 
more careful about. 
Before I was just saying, it 
was always valid and just 
use it. Now I try to be 
more precise about this. 
Benoît 

Yeah, yeah, lots of 
assumptions. Well, that it 
was a big explosion. I 
mean, like, there is no 
relativity, I made the 
assumption that we are 
on Earth. Bart 

Professed Enacted  Professed Enacted Professed Enacted Professed Enacted 

Antoine 2 1 

Baptiste 1 1 

Bart 1 3 

Bernard 1 

Benoît 1 1 1 

Carmen 1 

Cédric 1 1 1 1 

Daniel 2 

Delphi 1 1 

Didier 2 

Dimitri 1 

Elise 1 

Guillaume 1 2 

Subtotal 4 0 3 1 4 8 3 0 

SUM 4 4 12 3 

Describes models as 
exact 
representations of 
the world which 
allow precise 
calculations
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4.2.9 Epistemic	Practices	When	Confronting	an	Ill‐Structured	Problem	

As many students reported having rarely been confronted by tasks without 

a single, precise correct answer, I intentionally created such an opportunity for 

the final set of interviews. This was accomplished with the think-aloud task 

“How far can a car drive before wearing off a single molecular layer of 

rubber from its tyres?” The goal of presenting students with this ill-structured 

task was to require them to make estimates and take independent decisions.  

My analysis examined both students’ ability to make progress on the task and 

their reactions to the task. It is ironic that the most basic answer, where 

students assumed that a molecular layer of rubber is worn off with each rotation 

of the tyre, leads to approximately the same answer determined by expert 

estimators Weinstein and Adam (2008). This means that calculating a 

reasonable value is not sufficient to designate a good solution. Daniel and 

Bernard made little progress (see Table 4.12), although they each listed values 

that (they thought) they would need to calculate an answer. Their approaches 

focused on calculating a precise answer, i.e. for a specific car and road 

conditions, and identified parameters that other students more effectively rolled 

into broader estimates. Others (e.g. Dimitri, Elise) produced basic answers 

that only required the calculation of the circumference of the tyre from an 

estimation of the radius of the wheel (2πr). Four students made good progress 

leveraging observations from their lives and  concepts from class to develop 

plausible answers.  

The task provoked a variety of reactions from students, as reported in Table 4.13. 

Some expressed appreciation for a task which did not feel entirely synthetic 

and “useless” (Didier and Baptiste), while others reported that the 

uncertainty made them feel uncomfortable (Delphi, Cédric, Carmen). Elise 

reported finding the question easier than the others because there was no 

precise answer and therefore no wrong answer. 

As shown in the heat map in Table 4.14, a trend is suggested when 

crossing students’ progress on the question with their reaction. Most (¾) 

students with well-developed answers expressed discomfort with the open-

endedness and uncertainty of the task. In contrast, students who thought the 
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Table	4.12	Students’	Problem	Solving	Progress	on	an	Ill‐Structured	Problem	

Progress	 Representative	examples	

None -  Students report that there may be  an error 
with the question, as it is not possible to provide 
any answer with the given information 

[Totally blank sheet]. Bernard 

[List of necessary parameters: weight of car, road condition, rubber, weather]. Daniel 

Basic	attempt - Make basic attempt to solve it but 
without making any estimations (apart from the 
radius of the tyre) or assumptions (apart from one 
layer worn off each rotation). 

D = r 
Dimitri 

r = ῀30 cm 
D = 2r = 6 m 
Elise 

d = 1.5 m 
d = 4.7 m
Guillaume

Well‐developed	 attempt - Students construct 
well-reasoned answer, making assumptions and 
estimations as part of problem solving. Use of 
contextualisation 

And my dad told me that the front tyres are used more, which is logical because they are the 
wheels that push and pull the car, and also turn. So it is logical. So I need to find out a way to 
estimate the amount of usage that the tyres get. […] So I'll draw my tyre against the road. 
Let’s say it is 20 cm across. Bart 

You have to make assumptions. So a wheel is a circle with lots of molecular layers of rubber. 
So we have an interaction between the atoms. […] What do we have as data? The diameter 
of the wheel, D. What are we going to say? 60 cm. 70 cm. About that. Then ahhm. ... Coefficient 
of friction of a tyre. What is it? 08 ... So. ... when a molecular layer is worn off the tyres. It 
actually means that the molecular layer has come off. What makes it come off? We have the 
wheel on the ground. What are the forces? We have the weight. F weight. The pulling force 
of the car. F car. The force of friction. F friction. Baptiste 



Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 

99 

Table	4.13	Students’	Reaction	to	an	Ill‐Structured	Problem			

Table	4.14	Heat	Map	Presentation	of	Students’	Problem	Solving	Progress	and	Reaction	to	an	Ill‐Structured	Problem			

Approach	 No	 apparent	 discomfort	 at	
inability	to	solve.	

Task	 is	 fun	 because	 there	 are	 few	
constraints	 and	 therefore	 little	 risk	 of	
being	wrong.	

Task	 causes	 hesitation	 or	 delay	 in	 making	
decisions.	

Quotations	 Yes, there is clearly information 
missing. We don't know how the 
wheel reacts, not precisely, with 
distance travelled. It is an 
estimation, and even then I have 
difficulty seeing at what speed a 
molecular layer will be 
consumed… You can't answer it 
at all. Well,  actually I think that 
you can't answer it. Bernard 

This one was more entertaining for me. It 
was up to us to find all the hypotheses, so we 
were freer. I think it was fun. Baptiste 

This is funny. [Silence]. And this is all we 
have.  Elise 

It threw me off a bit at first, because it isn't the 
kind we get in tutorials. Well, less often. There (in 
tutorial) is a correct answer that you get using all 
the different numbers you put in, and this one is 
really vague. And also I didn't have an exact idea 
of how big a single molecular layer is or how 
much, how much rubber is torn off when you drag 
it. So it threw me off quite a bit. Bart 

Ah, I didn’t really know. I questioned if I had to… I 
tried to think about a couple different ways to 
solve it and I realised that in every case I had to 
make assumptions. Basically there wasn’t any 
way to even start. Cédric 

No	apparent	discomfort	 Fun,	free	 Hesitation	

Impossible	 Bernard    Daniel 
Cédric 

Basic	attempt	 Didier     Dimitri    Elise    Guillaume 

Well‐developed	attempt	 Baptiste Bart    Carmen     Delphi 
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task was fun and free made little progress. It appears that a certain level of 

discomfort was incurred when students made the estimates and judgments 

required to advance in problem-solving. Students who anticipated a risk-free, 

fun experience avoided the discomfort and made poor progress.  

As was evident from students’ comments, making any progress in this task 

required the students to take decisions about the parameters and values to use. 

This task offers an interesting window on students’ epistemic practices since it 

required them to assume the position of a person competent to exercise judgment. 

Both my logical expectations and previous studies (i.e. Belenky et	al. 1997, Palmer 

and Marra 2004, Wise et	al. 2004) predicted that higher year students would be 

more able to advance on this task than lower year students. However, in the limits 

of the very small sample size, I observed no correlation with year of study. A  

potential confounding effect could arise from lower year students feeling obligated 

to invest more effort in the uncomfortable problem-solving task. In contrast, older 

students may have calibrated their cognitive investment to the small financial 

compensation and therefore were less likely to persist through the discomfort. 

4.2.10 Using	Authentic	or	Schematic	Mind’s	Eye	Images		

If drawing on lived experiences and making connections to reality are 

epistemically sophisticated practices, then students who do this should be more 

able to solve ill-structured problems. Didier’s comment below, about using a 

mental image, is an excellent example of leveraging one’s lived experience in 

problem solving and led me to investigate if students’ mind’s eye images reflected 

their use of real world experiences or personal observations in their problem 

solving: 

I put myself in the place of an astronaut to see what happens in his space ship and 
to see what  equipment is available in this type of situation. But since I really don't 
know anything about it, instead I simply put myself in the context of this room, me 
in the room. I am generating a lot of heat, so it has to be eliminated. How is this 
being eliminated in this room? And so it was more or less like  this that I thought 
of how it would be done in the space ship.15   Didier

15 The first two interviews conducted in 2017 (Didier and Daniel) used a think-aloud task involving 
heat transfer in a space station, but that was replaced by the polymerisation task in 
subsequent interviews. This latter task was found to be more effective in eliciting desired 
problem solving practices.  
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Each student in the 2017 interview series reported using a range of mind’s eye 

images across the three think-aloud problems, from static and highly schematic 

(like textbook illustrations) to increasingly authentic (steampunk-style video of a 

machine). Disappointingly there was no apparent relation between the 

authenticity of the images and their progress on the ill-structured tyre task. 

Despite the small sample, these observations suggest that realistic mind’s eye 

images are not a useful indicator of epistemically sophisticated problem solving 

practices.  

4.2.11 Section	Conclusion	

This section addressed my first research question using think-aloud problem-

solving protocols to observe and characterise students’ epistemic practices. It 

reports my identification of novel epistemic practices of engineering problem 

solving (good/better answers, answer checking, Source	and	validity	of	equations, 

and Using	 models) and characterises them at four levels of epistemic 

sophistication. Together, these practices provide a rich, contextualised description 

of epistemic practices in engineering.  

Each student’s epistemic practices ranged across different levels. This 

observation supports my argument against characterising students, rather than 

their practices, in terms of level of sophistication. A more in-depth investigation 

of the frequency and distribution of epistemic practices is undertaken in section 

4.4 to answer my second research question.  

4.3 EPISTEMIC BELIEFS 

In addition to the rich observations arising from the think-aloud problem-solving 

sessions, I also collected data with a cognitive structures or epistemic beliefs 

approach. This distinction between the highly contextualised epistemic practices 

reported in the previous section and the broader, general beliefs reported in this 

section reflects the arguments I made in Chapter 2. The observations reported in 

this section were collected by students’ Likert agreement scale responses to 

questionnaire items about their epistemic beliefs or beliefs about learning. A more 

thorough explanation of the arguments for differentiating or combining these 

beliefs is presented in Chapter 2. 
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Table	4.15	Students’	Responses	and	Correlation	with	Study	Year		

4.3.1 Epistemic	Beliefs	about	“Favourite	Classes”	

Attempts to construct a robust quantitative instrument did not meet acceptable 

parameters for factor construction, as presented in detail in Chapter 3. Students’ 

responses to some of the individual survey items are nevertheless interesting.	

Table 4.15 presents students’ responses to 19 items selected from previously 

published science or engineering focused studies of epistemic beliefs. These items 

were presented to students with the additional contextualisation of “in the context 
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of your favourite class” to induce students to situate their responses in a particular 

context likely to be coherent with their beliefs. The number of responses per item 

ranges from 151 to 283, depending on the version(s) of the questionnaire where 

the item appeared. This data provides quantitative support (N = 151 -> 283) for 

the lack of epistemic development observed in my qualitative epistemic practices 

data. 

4.3.2 Taking	Beliefs	about	Teaching	and	Learning	as	Epistemic	Beliefs	

This section investigates students’ approaches to engineering studies through the 

lens of the activities that students state are valuable to help them learn. While 

there are disparate opinions on the inclusion of beliefs about teaching and learning 

in the construct of epistemic beliefs, the responses presented here are useful to 

support my argument about the inadequacy of current cognitive structures 

approaches to epistemic sophistication.  I created two survey items addressing 

students’ beliefs about the value of ill-structured and well-structured problems of 

learning. Students’ responses to the items are reported in Table 4.1616. The 

persistence of the belief in Masters students that they “learn the most from 

exercises with a single clear answer” (N = 277) supports my qualitative data that 

students do not have effective epistemic practices to manage multiple correct 

answers. The interaction between students’ quite positive responses to “I enjoy 

the challenge of open ended problems” (N = 277) and my qualitative observations 

that discomfort (rather than enjoyment – see Table 4.13) is an excellent 

illustration of the inadequacy of a broad epistemic beliefs approach to capture how 

students actually interact with engineering knowledge. The implications for 

models of epistemic cognition, related to my final research question, will be 

developed in the following chapter.  

Students’ beliefs about teaching and learning in engineering were also addressed 

by the final section of the questionnaire. Students’ responses about the 

characteristics of really excellent professors and students are presented in Figures 

4.1 and 4.2 respectively. The response options are organised with the least 

16 For graphical simplicity, students’ responses are presented as a 3 level scale. Statistical tests 
were run with the full 5 level scale and found no correlation with year of study.  
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epistemically sophisticated response (providing complete information, being 

attentive and taking complete notes) at the bottom of the figures and the most 

sophisticated (challenges students to explore open-ended problems, developing 

their own ideas) at the top. The combined frequencies for the two most 

epistemically complex responses for a really excellent professor were <15% (48 

responses, N = 322) and were constant across year of study. While the 

epistemically unsophisticated belief that professors should provide clear and 

complete information was more common in first year students compared to other 

students, no clear trend towards a more sophisticated conception of good teachers 

with increasing year of study was observed.  

Table	4.16	Heat	Map	of	Students’	Beliefs	about	Open‐Ended	Problems by	Year	of
                     	Study17	

Students’ expectations of really excellent students were more epistemically 

sophisticated than for teachers. As shown in Figure 4.2, the decreasing frequency 

of the response in the following list: apply concepts in novel contexts, develop their 

own ideas, solve all the exercises and take complete notes.  These data also showed 

a weak correlation with year of study (p<.01, Cramer’s v = .162). The effect size of 

the correlation between students’ responses to really excellent professor and 

17 Light shading indicates values between 0.25 and 0.49 and darker shading indicates values above 
0.5.  
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really excellent student was also weak (p<.000, Cramer’s v = .202). The lack of 

correlation between sophisticated beliefs and year of study is coherent with my 

qualitative observations. However, the lack of correlations between really 

excellent teaching and learning suggests that the data is of poor quality, with too 

many factors contributing to how students responded to these low-context, 

cognitive structure items.  

Figure	4.1	What	is	the	one	characteristic	that	marks	out	a	really	excellent	professor?	

Figure	4.2	What	is	the	one	characteristic	that	marks	out	a	really	excellent	student?	

4.3.3 Section	Conclusion	

This section reported observations related to students’ overarching epistemic 

beliefs and approaches to becoming an engineer. It should be noted that students’ 

responses do not necessarily mean they view such approaches as the most 

effective for learning to be professional engineers, rather these are their 

perceptions of what is expected of engineering students and professors. It is 

important to note that this broad approach appears to have flattened many of the 

rich, salient details of epistemic practices observed in context during the think-

aloud problem solving.  
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For me, an approach centred on overarching beliefs that obscures students’ 

specific epistemic practices is not an appropriate base for a robust and meaningful 

measurement of epistemic sophistication. The implications of these findings will 

be analysed further in Chapter 5, in order to answer my final research question. 

4.4 USING EPISTEMIC PRACTICES TO EVALUATE EPISTEMIC 

SOPHISTICATION 

Effective use of sophisticated epistemic practices is clearly a sign of epistemic 

sophistication, however, using naïve practices does not necessarily correspond to 

a lack of epistemic sophistication. This section returns with a more quantitative 

approach to the observations of students’ epistemic practices to address my final 

research question about how to characterise engineering students’ epistemic 

sophistication in a cognitive	 processes	 approach.  Despite their value, rich 

contextualised descriptions typically require considerable research effort to 

collect and are difficult to transpose or compare across situations. It is one 

advantage of the micro scale of my epistemic practices that they reduce some 

issues around transfer to new situations. In this section, I introduce my argument 

that the diversity of a student’s epistemic practices is an appropriate way to 

characterise their epistemic sophistication.  

4.4.1 Assessing	the	Frequency	and	Range	of	Students’	Epistemic	Practices	

This section takes a quantitative approach to the observations reported in the 

previous sections. On average, 191 episodes from the transcript of each student 

who participated in the qualitative studies were coded (minimum 31, maximum 

313 episodes). This represents an average of 44 codes per student (minimum 25, 

maximum 54 codes per student). It is important to note that the observed 

practices are diverse in nature, ranging from students enacting memorised 

manipulations despite not being sure what the current task is asking (Level 1) to 

reporting that the solutions provided by their instructor are the only way to check 

their homework (Level 1). Further, the think-aloud tasks provided only a short 

period to observe students’ problem-solving and may have elicited some practices 

more often than others. It is thus simplistic to report which practices occurred 

most frequently, as though each practice is of equal importance, but it nevertheless 

provides a crude measure of how students approached their problem solving. 
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As shown in Figure 4.318, every student except Csongor† exhibited practices 

spanning at least two levels. The think-aloud tasks prompted students to exhibit a 

wider range of practices than the interview alone: four of the five students who 

neither enacted nor professed Level 1 practices were interview-only students. 

Ellie† was unique to exhibit practices spanning three levels despite not 

participating in think-aloud problem-solving. All students exhibited at least one 

instance of a Level 2 epistemic practice and typically several different Level 2 

practices. Delphi’s practices were heavily weighted towards Level 3 but only 

three students demonstrated Level 4 practices (Bart, Benoît, and Guillaume). While 

the small sample size and broad range of disciplinary backgrounds preclude any 

analysis by discipline, the topics of the think-aloud tasks make it relevant to note 

that no chemistry nor physics majors participated in the think-aloud 

protocols.  

Figure 4.4 reports each instance of students’ epistemic practices, giving the overall 

frequency of their practices across my session with them. An interesting 

observation facilitated by the alphabetical nomenclature of participants’ 

pseudonyms in these two figures is that there does not appear to be a correlation 

between year of study and the sophistication of their epistemic practices. While 

the small sample size sharply reduces my ability to generalise this observation, it 

is nevertheless consistent with my quantitative data.  

The increased number of practices elicited from think-aloud protocol participants 

is even more evident in Figure 4.4 than in the previous figure. Except for Carmen 

and Delphi, all students exhibited practices below their highest level more often 

than peak-level practices. Level 2 practices were used most frequently, 

although the distribution of an individual student’s practices across the levels is 

often quite homogeneous. This means that a decision to assign a student (rather 

than their practices) to a specific level of sophistication would necessitate a 

considerable amount of judgement from the researcher. Such a decision would 

require the researcher to designate some practices as more representative of 

epistemic sophistication than others, or determine what ratio of Level 1:2 

practices is necessary to classify a student as belonging to the higher level. While I 

18 Students who did not participate in a think-aloud protocol are marked with a dagger. 
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Figure	 4.3	   Range	 of	 Students’	 Epistemic	 Practices,
                     	    professed and enacted	

Figure	4.4	   Frequency	of	Students’	Epistemic	Practices,
                    	  professed and enacted	
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appreciate the value of having a measure of epistemic sophistication, collapsing 

the richness of range of observed practices into a single level increases 

the separation with students’ actual behaviours and therefore reduces 

potential opportunities for theory development and pedagogical feedback.  

The richness of the frequency data is illustrated by how the nearly identical 

profiles of Carmen and Cédric in Figure 4.3 diverge significantly in Figure 4.4. My 

observations of students’ epistemic practices occurred while they solved several 

different tasks, most of which were well-structured problems. Measuring the 

range of students’ epistemic practices, Figure 4.3, is adequate to evaluate their 

overall awareness or ability. However, the frequency data is richer, capturing each 

time an epistemic practice was used and therefore potentially multiple contexts 

when a student judged the action to be relevant. This latter measure is therefore a 

better indicator of the overall diversity of a student’s problem solving practices. I 

develop the importance of these different profiles in the following section. 

4.4.2 Diversity	of	Epistemic	Practices	as	a	Measure	of	Sophistication		

In my analysis of the think-aloud problem solving, the range and frequency of the 

epistemic practices caused me to reflect on how researchers have assessed an 

individual’s current level of epistemic sophistication. The result is my proposal to 

use the diversity of students’ epistemic practices. I present my argument 

conceptually, with the example of students’ practices around equations, in this 

section and with a more quantitative approach in the following section.  

More than half of students who participated in the think-aloud protocols (9/17) 

ascribed two or more different sources to the equations they employed when 

solving the tasks. Students who were more familiar with the task were more likely 

to cite their teacher or a book. Students who were not able to confidently extract 

an equation from memory were more likely to employ a mathematical derivation 

or units to justify the formulation of the equation. These are all appropriate or 

effective strategies in that they served to advance the student’s problem solving. 

However, a disciplinary expert would identify some practices are more 

contextually appropriate. This is problematic since each student’s approach to a 

task depends on their content knowledge and prior experiences with similar tasks 

in addition to their epistemic sophistication. Using a disciplinary expert’s practices 
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to calibrate the appropriateness of students’ practices does not, therefore, seem 

like a good approach to evaluate a student’s epistemic sophistication. It also 

exacerbates the context-specificity of each study, thereby making comparisons 

harder.  

My analysis makes use of both the fine-grained model by counting each instance 

of an epistemic practice (professed or enacted) and my four level framework to 

group practices that employ a similar epistemic perspective in order to make the 

diversity of practices more visible.  I propose that the breadth or diversity of 

students’ practices is a more accurate measure of epistemic sophistication in the 

cognitive resource model. With my proposal, a student using multiple strategies to 

triangulate to a higher level of confidence and thereby demonstrating a more 

integrated view of knowledge would be characterised as epistemically 

sophisticated irrespective of the particular strategies used.  

4.4.3 Using	an	Ill‐Structured	Problem	to	Identify	Sophisticated	Epistemic	

Practices	Profiles	

The “tyre task” is ill-structured and therefore quite different from both the other 

tasks posed during the 2017-2018 think-aloud problem solving. Typical features 

of ill-structured problems include requiring students to develop a novel (to them) 

approach and managing uncertainty. This task calls on several more epistemically 

sophisticated practices and is therefore more representative of the type of 

problem solving encountered by professional engineers. In Figures 4.5 and 4.6, the 

data is organised by students’ progress on the ill-structured problem. This allows 

us to see the epistemic practices profiles of students who found the task 

impossible, made a basic attempt, or produced a well-developed attempt. My 

analysis explored possible correlations between students’ epistemic 

sophistication, characterised by their epistemic practices, and their progress on 

this ill-structured problem.  

From Figure 4.5, it appears that students must be able to use some Level 3  

practices in order to make a reasonable start. Level 3 practices are characterised 

by making connections between calculations, theory, and real-world contexts, 

specifically experiment and observation from life. Yet using several different Level 3 

practices, or even one Level 4 practice, is not a reliable indicator of a student’s 
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ability to produce a well-developed answer. Further, the range of practice present 

in this figure does not elucidate why Elise produced only a basic attempt yet 

Carmen generated a well-developed answer. They each used five different Level 3 

practices, but Carmen used more Level 1 practices and fewer Level 2 practices.  

The frequency, or diversity, data in Figure 4.6 creates profiles that are distinct for 

the three types of answer to the ill-structured task. Here, the profiles of students 

with well-developed answers have epistemic practices distributed across at least 

3 levels and a relatively high portion of Level 3 practices. My observations of these 

11 students solving one ill-structured task provides only a limited perspective but 

are consistent with using the diversity of epistemic practices as a measure of 

epistemic sophistication.  

4.4.4 Section	Conclusion	

The epistemological resources model posits that as students become more 

epistemically sophisticated, they increase their range of epistemic practices and 

Figure 4.5   Students’ Epistemic 
                      Practices Range Profiles
                      by Progress on an Ill-
                      Structured Task 

Figure 4.6   Students’ Epistemic 
                      Practices Frequency
                      Profiles by Progress on
                      an Ill-Structured Task 
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also their ability to select an appropriate practice. However, my analysis 

raises questions about how appropriateness is determined. I found the 

approach a student takes for a specific task depends on that student’s 

prior knowledge and experiences with similar tasks. My analysis led 

me to posit that diversity, rather than appropriateness, is a 

more robust measure of epistemic sophistication in the cognitive 

resource model. By using the diversity of epistemic practices, both the 

effect of a student’s prior knowledge and the disciplinary perspective of 

the researcher are attenuated. Tracking the diversity of the strategies 

used also provides a richer description of the range of strategies that a student 

possesses. In Chapter 5, I return to these ideas to situate my proposal in terms of 

current models of epistemic cognition. 

4.5 CHAPTER FOUR CONCLUSION 
My analysis presented in this chapter provides clear evidence that a 

cognitive processes approach based on epistemic practices is a rich and 

robust way to characterise epistemic sophistication. Six sets of 

epistemically-relevant practices I identified during students’ problem solving 

answers my first research question and are summarised in Table 4.17. These 

include the characterisation of two novel engineering-specific epistemic 

practices: managing uncertainty and using models. The first row of the table 

contains a brief description of the approach of the level, and the cells below 

describe how that epistemic practice is implemented at each level of 

sophistication. Each set is comprised of four practices that fulfil a similar 

function in engineering problem solving, yet are distinct in terms of the 

sophistication of their approach. Like many previous studies, both the 

quantitative and qualitative data of this thesis fail to definitively either support 

or contradict inclusion of learning beliefs in epistemic beliefs. I will thus follow 

Elby’s suggestion to await better empirical or theoretical support to determine if 

learning beliefs should be included or excluded from models of epistemic 

practices (2009). Consequently, I omit practices for Working	 with	 peers from 

Table 4.17. 

The practices at each of the four levels share common characteristics. Level 

1 Absolute practices seek single, exact correct answers and are not concerned 

with anything beyond the core task. Level 2 Local cCherence practices rely on 

logic and mathematics. Mathematics is, obviously, central to quantitative 
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problem-solving. 

However, seeing problem-solving as exclusively mathematical is an 

unproductive belief for engineering which, in its practice, is a highly 

applied field. Level 3 Coherence practices also use logic, however, these 

practices extend to making connections between physical reality and 

models, and anticipate that multiple acceptable solutions that exceed the 

requirements can exist. Level 4 Sceptical Reverence is the most sophisticated 

level and includes practices that recognise that the complexity, ambiguity, 

and uncertainty of engineering practice requires engineers to exercise 

their own judgment based on the specific context. The tabular 

organisation allowed me to also answer my second research question 

about the distribution of practices used by students: each student uses a range 

of epistemic practices, mixing naïve Level 1 and more sophisticated practices. 

I used my empirical data to introduce my novel argument that the diversity 

of epistemic practices, rather than their effectiveness, is a more appropriate 

way to assess epistemic sophistication in the epistemological resources 

model. This is relevant to my third research question about the epistemic 

practices profiles of sophisticated students. In the preceding section, I have 

used students’ ability to generate a well-developed answer to an ill-

structured task as an indicator of engineering-specific epistemic 

sophistication. These sophisticated students responded to the set of 

think-aloud tasks, which included one ill-structured problem, by using 

practices spanning at least 2 levels and used Level 3 practices more often than 

students with basic answers. These observations are consistent, 

without providing definitive support, of using the diversity of students’ 

epistemic practices to characterise their engineering-specific 

sophistication. I return to these analyses in Chapter 5 to address the 

implications of my findings for models of epistemic cognition. 
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Table	4.17	Epistemic	Practices	for	Engineering	Problem	Solving	

Level	 One				Absolute	 Two				Local	Coherence	 Three				Coherence	

[Engineering] thinking leads to 
a single, precise correct answer. 

Engineering thinking is 
internally coherent, precise 
and mathematically sound.  
However, a well-argued 
approach can give a different 
good answer.  

Engineering thinking makes 
connections between physical 
reality and models to find all the 
solutions that meet or exceed the 
requirements. 

Four    Sceptical	Reverence	

Engineering thinking tolerates 
uncertainty and requires 
making  judgements based on 
the specific context and 
perspective.  

Source	 and	
validity	 of	
equations	

Identifies books, sages, or 
teachers as the source of 
scientific equations. Conflates 
confidence in such equations 
with trustworthiness of the 
source.  

Describes scientific equations 
as arising from concepts and 
mathematics, and that the 
equations are credible when 
their units are logical. 

Describes equations as the 
product of cognitive activity 
based on controlled 
observations and theorising. 
Judges equations that are able to 
predict experimental outcomes 
as credible.  

Manages inherent imprecision 
in both experimental and 
predicted values.  

Using	models	as	
tools 	
representations	

Describes models as exact 
representations of the world 
that allow precise calculations.  

Identifies, but cannot explain, 
discrepancies between 
model-predicted and 
observed values. 

Finds models to be valuable 
when they are coherent with 
experiment and observation, 
despite acknowledged
limitations and simplifications.  

Uses mathematical and 
computer methods to catch bad 
modelling assumptions. 

Precision	 and	
estimation	

Seeks precision as a key 
criterion in problem solving. 

Attributes little value to 
imprecise calculations. 

Employs estimates to advance 
problem solving when 
necessary. 

Leverages estimates to advance 
or verify problem solving. 

Strategies	 for	
reasoning	and	
verifying	
answers	

Uses surface cues, adherence to 
method or an expert to verify 
answers. May report that it is 
not possible to verify an answer 
without an expert. 

Employs units, order of 
magnitude, and concepts to 
verify answers.  

Makes connections to physical 
reality and personal experience 
to verify answers. 

Employs mathematics in post 
hoc, justificatory way to verify 
problem solving 

and	
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Existence	 and	
number	 of	
correct	answers		

Seeks the single correct answer 
that is known to experts or will 
be in the future. 

Accepts multiple answers as 
good, ascribing their 
existence to different 
perspectives. 

Expects multiple good answers 
to exist which each meet the 
external criteria. 

Exercises own judgement to 
determine the most 
appropriate answer for a given 
context, allowing for that new 
evidence may cause it to 
change. 

Self‐assessment	
of	
understanding		

Assesses own understanding by 
ability to retain information 
and to know the correct 
answer. 

Assesses own understanding 
by ability to apply knowledge 
to obtain the correct answer. 

Assesses own understanding by 
ability to use knowledge in novel 
contexts or to explain reality. 

Acknowledges the
consequences of alternative 
judgements and the risks of 
poor conclusions. 
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5 Discussion 

5.1 INTRODUCTION  
The main focus of this chapter is how my epistemic practices approach advances 

the conceptualisation and measurement of epistemic sophistication. Thus I first 

argue how the epistemic practices I identified (RQ1) provide a novel and highly 

pertinent approach to epistemic sophistication in engineering. This discussion 

also demonstrates the coherence of the epistemic practices at each level of my 4-

level framework and the value of considering the distribution of engineering 

students’ epistemic practices (RQ2). Secondly, I argue how adopting the epistemic 

practices approach developed in this thesis advances our ability to characterise 

and measure epistemic sophistication in engineering (RQ3). Finally, I describe 

how my approach addresses several issues that plague prior models of epistemic 

beliefs in engineering. In each of these three sections, points of consensus and 

disagreement with prior work are used to situate the contributions of the current 

work. 

5.2 EPISTEMIC PRACTICES ARE PERTINENT FOR CHARACTERISING 
EPISTEMIC SOPHISTICATION IN ENGINEERING 

5.2.1 Cognitive	Processes	Approach	to	Epistemic	Sophistication	

Prior work characterising epistemic sophistication has employed a variety of 

different models. As summarised in the Literature Review, cognitive structure 
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models focusing on beliefs are prevalent in the literature yet suffer from persistent 

weaknesses of empirical support as well as fundamental conceptual issues. My 

practical epistemic practices approach avoids many of these issues by focusing on 

the specific, contextualised behaviours that students use while solving engineering 

science problems. In my analysis I identified six sets of epistemic practices, 

including the three novel sets, summarised in Table 4.17 at the end of the 

preceding chapter. While some of these practises are similar to observations from 

prior work, they are consistently conflated with beliefs. In addition, my 

formulation attends to ways of constructing and justifying knowledge that are 

common in engineering, such as how models and equations are used. The 

following sections examine each of the three novel sets of epistemic practices 

identified in this study, then how the perennial standards of epistemic 

beliefs become more salient and concrete when formulated as engineering-

specific epistemic practices. These elements all contribute to my argument that 

cognitive processes approach is an under-exploited but highly pertinent way to 

characterise epistemic sophistication in engineering.  

5.2.2 Practices	for	Source	and	Validity	of	Equations	

The prevalence of mathematics in engineering (Kent and Noss 2000) introduces 

an interesting novel aspect to students’ practices which is not described in general 

models of epistemic beliefs. The set of epistemic practices around equations in 

Source and validity describe a trajectory from the unsophisticated direct 

acceptance of equations as absolutely true to the more sophisticated explicit 

management of the discrepancies between calculated values and physical reality. 

These practices represent a specific, action-focused formulation of Julie 

Gainsburg’s distinction between using an exclusively mathematical or logical 

approach and making connections to physical reality. Again from a beliefs’ 

perspective, Blömeke et	al.’s (2008) four part characterisation of teachers’ beliefs 

about the nature of mathematics sketch a comparable trajectory from (1) maths 

as a collection of rules and formulae to be acquired, (2) a focus on the exact and 

logical, (3) maths as a problem-solving science, and finally (4) as relevant for 

society and life.  

One limitation of the current study is that the equations used by participants 
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during their problem solving were predominantly empirically-derived, such as 

heat capacity and the equation of movement, and all tasks were well within the 

valid parameters for standard assumptions. It is therefore possible that my 

observations would not apply to how students manipulate equations and models 

in other situations.  

5.2.3 Practices	for	Models	as	Tools	and	Representations		

Models are important in engineering, and serve as tools that help “to explain, 

predict or optimise the behaviour of devices or the properties of diverse materials” 

(Boon and Knuuttila 2009, p. 687). Thus the ability to work in highly sophisticated 

ways with models is an essential skill to develop in engineering, particularly with 

the ever increasing use of computational tools (Kent and Noss 2000) and machine 

learning (Reich and Barai 1999). As argued by Boon and Knuuttila (2009), models 

can be employed as epistemic tools that provide valuable exchanges between 

abstract, general knowledge and specific physical reality. The set of epistemic 

practices in Models	as	 tools	and	 representations describes a trajectory from the 

epistemically unsophisticated practice of taking models as exact representations 

to the more sophisticated use of models, despite their acknowledged limitations, 

to advance problem solving.  

While Julie Gainsburg’s 2015 work on engineering students’ epistemic beliefs 

identified the use of mathematical models as its focus, only one practice directly 

related to the use of models is presented. The Level 4 practice Appreciates	models’	

ability	 to	 advance	 problem	 solving,	 despite	 acknowledged	 limitations	 and	

simplifications	 is actually from her 2007 work with professional engineers. The 

three less sophisticated epistemic practices related to using models identified in 

the current work provide a richness and detail for a ubiquitous element of 

engineering problem solving. 

5.2.4 Practices	for	Precision	and	Estimation	

A particularly relevant and engineering-specific set of epistemic practices focuses 

on the perceived value of precision and the use of estimates. Engineering must 

often work with incomplete or tentative data (Ang and De Leon 2005), making this 

set of practices important for engineers (e.g. Commission des titres d’ingénieur 

2020). These practices are closely linked to practices around models and 
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equations, however they are distinct in that not all instances of precise or 

imprecise values are connected to models.  

The set of practices related to Precision	and	estimation describe a trajectory from 

the unsophisticated requirement for precision in all things to the more 

sophisticated use of estimates to advance problem solving. These practices are 

fundamental to managing the uncertainty and dynamic situations of applied 

engineering, but are not present in either general models nor in Julie Gainsburg’s 

model.  

While working engineers are often confronted with situations where data is not 

available or where precise data would be highly expensive to collect, naïve 

students ascribed little value to imprecise calculations. This set of practices could 

make McNeill et	al.’s observation that students rarely encounter situations during 

their studies where a quick “back of the napkin” calculation is useful (2016) more 

visible to instructors during their course planning.   

5.2.5 Contextualising	Key	Ideas	about	Epistemic	Sophistication	in	Engineering	

In addition to the novel epistemic practices reviewed in the preceding sections, 

some epistemic practices I observed relate to aspects of knowledge manipulation 

identified in general models: Existence	and	number	of	correct	answers, and Self‐

assessment	 of	 understanding. The engineering-specific characteristics of the 

epistemic practices in these sets manifest in Level 3 coherence and Level 4 

sceptical reverence. It is interesting to consider how the inclusion of additional 

contextual information when designing problem sets and assignments can permit 

students to perform more sophisticated self-assessments. It also illustrates how 

even paper-based exercises can be used to develop advanced epistemic skills.  

From an epistemic beliefs approach, the Level 1 and 2 practices related to 

Existence	and	number	of	correct	answers are most closely related to certainty of 

knowledge, that is the ability to conceive of knowledge beyond a binary 

correct/incorrect, whereas Levels 3 and 4 are more closely associated with the 

justification of knowledge and aspects of how reliable answers are determined. 

The cross cutting of these epistemic practices across the hypothesised semi-

independent dimensions may explain the issue with co-loading observed for some 

certainty, simplicity and justification items (e.g. Qian and Alvermann 1995, Hofer 
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2000, Stathopoulou and Vosniadou 2007, Rizk et	al. 2012). 

While my think-aloud tasks, and perhaps the current abilities of my participants, 

were not conducive to observations of sceptical reverence, I drew on Gainsburg and 

King and Kitchener to formulate epistemic practices to complete the 4-level sets. 

Characterising the intermediate epistemic practices addresses gaps between the 

extremes of the naïve epistemic beliefs of general models and the high level 

practices from Gainsburg’s work (2007). It is precisely these intermediate 

practices that it is important to nurture and challenge in order to encourage 

students to interact with engineering knowledge in more sophisticated ways. 

5.3 COGNITIVE PROCESSES APPROACH TO MEASURING EPISTEMIC 

SOPHISTICATION 

5.3.1 Measuring	Epistemic	Sophistication	in	Engineering	

The weaker epistemic sophistication of engineering students compared to other 

disciplines observed by Pavelich and Moore (1996) and Wise et	 al. (2004) 

illustrate how useful it would be to have robust, scalable instruments to follow 

students’ epistemic development during their studies and beyond. Given that 

engineering programmes typically have 103-104 students, quantitative 

instruments that allow relatively economical large-scale data collection and 

analysis are highly desirable. While the continued efforts to develop such 

instruments are therefore understandable, a robust construct is an essential 

underpinning for quantitative instruments. This section briefly addresses how this 

thesis’s cognitive processes approach contributes to the development of 

methodologies to characterise epistemic sophistication in engineering.  

5.3.2 Epistemically‐stimulating	Think‐aloud	Tasks	

While think-aloud protocols have previously been used in studies of epistemic 

sophistication, there appears to be little work that uses more disciplinary tasks. 

The success of the tasks I developed for this study provide a useful model for future 

work. The tasks I developed are sufficiently difficult and novel to create 

opportunities for engineering students to employ a wide range of relevant 

epistemic practices. A key aspect that makes these tasks effective is that each one 

is presented in a contextualised format that allows for the possibility to use more 
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sophisticated practices, such as verifying the plausibility of an answer or to reason 

with physical reality. For example, the task about heat capacity in the first set of 

tasks involved an in situ dental filling. The most open-ended task, about rubber 

wear on tyres, is particularly useful to stimulate higher level epistemic practices. 

This task most resembles King and Kitchener’s ill-structured problems (2004), 

however, my task focuses on engineering science knowledge and contextualised 

problem-solving, rather than broader societal issues. 

5.3.3 Measuring	Fine‐grained	Epistemic	Sophistication	

In keeping with the fine-grained approach of Elby, Hammer and colleagues 

(Hammer and Elby 2002, Louca et	al. 2004, Elby and Hammer 2010), the current 

work charted the range and distribution of epistemic practices exhibited by each 

student rather than assigning students to stages or phases. In my observations, all 

students who used Level 4 practices also used Level 1 practices. This apparent 

“inconsistency” has been repeatedly identified in previous work (Leach et	al. 2000, 

Elby and Hammer 2001, 2010, Tsai 2004, 2008, Greene et	al. 2008, Chinn et	al. 

2011, Gottlieb and Wineburg 2012, Gainsburg 2015, Zhu and Cox 2015). My 

observation that students do not approach every task with the highest level of 

epistemic sophistication available to them is consistent with Elby and Hammer’s 

focus on effectiveness (2010). 

Reporting which practices and levels occur most frequently for each student is 

simplistic but nevertheless provides a crude measure of how students are 

interacting with the engineering science knowledge. An important caveat is that 

each instance of an epistemic practice is recorded irrespective of the practice being 

peripheral or central to students’ problem-solving. Level 2 practices occurred 

most frequently in my observations, whereas Julie Gainsburg observed Level 1 

practices most often. While Gainsburg used a different set of code descriptors to 

me, it is unlikely that my think-aloud tasks were significantly harder than the 

homework exercises in her study. For me, the fundamental difference is that her 

students could thus rely much more on routine and memory than mine. This leads 

me to conclude that there is strong agreement between the two studies. The 

difference between the most frequent level observed by Gainsburg and in the 

current project is an excellent illustration of the influence of the task and a specific 
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student’s background on the epistemic practices they mobilise.  

In both this study and Julie Gainsburg’s, very few Level 4 practices were recorded. 

One possible explanation for this is that few engineering students have reached 

this level of sophistication. This explanation is supported by Litzinger et	 al.’s 

observation that “few of the students could reason physically” and therefore did 

not make connections between physical reality and calculations or models (2010, 

p. 337).  Another explanation is simply that the tasks that students were solving 

did not require them to leverage such skills. Perhaps open-ended, interdisciplinary 

projects could provide a more likely context in which to observe students 

employing highly sophisticated practices.

The strong correlation between the level of epistemic practices professed by 

students and the practices that they were directly observed to employ suggests 

that self-report instruments could be developed. Such an instrument could enable 

non-interview, and thus more economical and scalable, data collection. This is 

an interesting methodological possibility to explore in future work.  

5.3.4 Concluding	Remarks	about	Measuring	Epistemic	Sophistication	

The focus on epistemic practices, not beliefs, employed in this thesis offers some 

interesting methodological paths for measuring engineering students’ epistemic 

sophistication. The think-aloud protocols generated rich, contextualised 

observations of epistemic practices and students’ self-reporting also appears to be 

quite accurate. However, the development of a quantitative assessment tool still 

requires a more robust theoretical underpinning and would benefit from further 

research.  

This research focused on certain aspects of engineering practice, omitting 

ethics, management, communication, and environmental science that Johnston 

et	al. (1996) report are consistently neglected in engineering education research. 

This is important as these broader skill sets, which are built on the 

underlying disciplinary technical skills, have been repeatedly identified as lacking 

in engineering graduates (Martin et	al. 2005). 
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5.4 COMPARING THE EPISTEMIC PRACTICES APPROACH TO PRIOR 
MODELS 

5.4.1 The	Cognitive	Processes	Approach	Has	Been	Underexploited	

This section highlights differences between this work and previous work on 

epistemic beliefs in engineering. It is thus central to my argument for why the 

approach employed in this thesis advances the field.  

The first major contribution is the focus on epistemic practices, that is the specific 

actions that students perform when manipulating engineering knowledge, rather 

than epistemic beliefs. In addition, this thesis has organised the epistemic 

practices into sets related to the function of the practice, i.e. answer-checking. 

These sets are composed of four related practices, an organisation that will be 

useful to instructors who seek to implement Finster (1991) and Lynch et	 al.’s 

recommendation (1994) to stimulate students’ epistemic development with 

practices just beyond their current level.  

My final contribution to models of epistemic sophistication addressed in this 

section is my observation that appropriateness or effectiveness of the knowledge 

strategies a student uses is greatly influenced by their prior knowledge related to 

the specific task. This thesis makes the novel contribution that the range or 

diversity of strategies employed by a student is a more coherent indicator of 

epistemic sophistication.  

5.4.2 Characterising	Engineering	Students’	Epistemic	Practices,	not	their	Beliefs	

Examples of how epistemic practices and epistemic beliefs are conflated abound. 

For example, Gainsburg’s 2015 study presents the following 2 codes together 

without distinction Perceives	coursework	as	authentic	career	preparation and Uses	

units	on	intermediate	values	to	…	guide	the	solving	process (2015, p. 156). The first 

code conveys a broad, overarching belief about a variety of coursework activities 

encountered during engineering studies, while the second pertains to a specific 

problem solving action undertaken in context.  

The difference between epistemic beliefs and epistemic practices informs both my 

methodology and my theory generation. I have defined epistemic practices as: 

behaviours or actions of students related to knowledge manipulation and 
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justification that convey a student’s epistemic approach to that specific bit of 

knowledge in the current context. The epistemic practices that are relevant to each 

discipline will be distinct to the discipline, arising from the practices and 

knowledge central to the discipline. This is a significant contrast to prior models 

of epistemic beliefs that seek to identify the student’s overarching or underpinning 

belief system in general or for the discipline. Rather, this pragmatic, fine-grained 

approach focuses directly on how a student interacts with knowledge.  

The behaviour-focused approach to epistemic practices taken in this thesis most 

resembles King and Kitchener’s reflective judgement model (2004). Indeed, some 

aspects of the think-aloud problem solving is reminiscent of the (less structured 

tasks) of the reflective judgement model interviews. The approach of this thesis is 

different from reflective judgement model interviews because it encompasses a 

wider range of practices, characterises the fine-grained practices rather than the 

students, and focuses on engineering-specific situations. Despite these differences, 

I found the reflective judgement model to be very useful for reviewing the 

formulations and categorisations of the epistemic practices. 

The set of epistemic practices Strategies	 for	 verifying	 answers are an excellent 

illustration of how the focus on epistemic practices avoids entanglements of prior 

epistemic beliefs models. The Level 1 and 2 practices reflect elements of certainty 

of knowledge, whereby absolute answers can be obtained from experts or from 

calculations. The epistemic practices of Levels 3 and 4 are more closely associated 

with the justification of knowledge, and aspects of answers are assessed and 

evaluated. While one might have expected that Strategies	 for	 verifying	answers	

would all be related to justification of knowledge, this is not the case when we 

examine the epistemic practices in detail. Indeed, my framework may explain 

some of the co-loading observed for items employing semi-independent 

dimensions models (e.g. Qian and Alvermann 1995, Hofer 2000, Stathopoulou and 

Vosniadou 2007, Rizk et	al. 2012).  

Models focusing on broad beliefs, while philosophically intriguing, have proved 

very difficult to support empirically (Briell et	al. 2011, Sandoval et	al. 2016). After 

my in-depth review of the literature, I have concluded that the inference of general, 

overarching beliefs from the specific actions or declarations of a student is a major 
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issue with previous models. The approach of this thesis may be too pragmatic 

for some, but my fine-grained, specific epistemic practices answer Muis et	al.’s 

(2006) call for models that are relevant and accessible to engineering teachers. 

Further, my analysis clearly demonstrates how a macro perspective obscures 

the rich, contextualised description of knowledge practices that can 

support theory generation. 

5.4.3 Structuring	the	Description	of	Engineering‐specific	Epistemic	Practices

Julie Gainsburg concludes her 2015 study by questioning whether or not it is 

possible, or relevant, to make a distinction between the intermediate levels of 

epistemic sophistication. She states that “distinguishing between Levels 2 and 3 

was the most tentative aspect of analysis” (2015, p. 160) and questions whether 

these two levels should be collapsed into a single level. I have found this distinction 

to indeed be both possible and important, particularly when seeking to 

characterise students’ development during their university studies. I named these 

levels Local Coherence and Coherence, and will use the epistemic practices 

related to the source of equations as an ideal illustration of why this is an 

important distinction. 

The Level 2 Local Coherence approach to equations attributes their derivation 

and validation purely to their internal, mathematical logic, for example, when 

the mathematical operations result in logical, internally coherent 

equations or predictions. Level 3 Coherence practices take equations as 

descriptions of actual phenomena in the physical world. The distinction between 

my Level 2 approach, which seeks only an internal conceptual and mathematical 

coherence, and Level 3, which makes explicit reference to the physical world, is 

an important one. The Level 3 practice makes connections between the 

precise, abstract paper-based representations and real world contexts and is 

essential in engineering thinking. It is however not equivalent to Gainsburg’s 

Level 4 Sceptical Reverence which involves the engineers exercising their 

own context-dependent judgement to determine which equations are most 

relevant and which should be ignored.  

The tabular organisation into sets of epistemic practices characterised at four 

levels of sophistication makes the observations of this thesis more accessible, as 

both the overall arc and the intermediate points are apparent. As outlined above, 
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I have developed clear criteria to distinguish my Level 2 Local Coherence from 

my Level 3 Coherence. Further, by grouping the epistemic practices into sets I 

have made the distinctions clearer and more salient. Since the ultimate goal of 

such a framework, for me, is an aide for engineering teachers, it is important to 

keep these two intermediate levels in order to better assess the development 

of students’ epistemic sophistication during their studies. This will also enable 

teachers to see exactly what strategies or practices to target in their assignments 

for students, in order to implement Finster (1991) and Lynch et	 al.’s 

recommendation (1994) to stimulate students’ epistemic development with 

requiring them to use practices just above their current level of sophistication. 

My epistemic practices approach, while fine-grained and practice-focused, is 

not limited to a specific discipline. This is different from previous work by 

Entwistle et	 al. (2005) on analogue circuits in electrical engineering and by 

Christian (2011) on chemistry study groups that identified different ways 

students reasoned. Both of these studies were highly contextualised in their 

specific disciplines and did not seek to contribute to a general model of epistemic 

sophistication.  

5.4.4 Diversity,	not	Correctness,	Designates	an	Epistemically	Sophisticated	

Approach	

Elby, Hammer, and colleagues’ (Hammer and Elby 2002, Louca et	 al. 2004, 

Elby and Hammer 2010) epistemological resources model is a significant 

departure from previous models. As presented in my Literature Review in 

more detail, their approach is based on fine-grained characterisation of the 

cognitive resources that people use in specific contexts and increased 

sophistication is characterised by an expanded set of resources and a growing 

ability to select a strategy effective in a given situation. Elby and Hammer, 

therefore, argue that employing an effective or appropriate practice in a 

given situation is an indication of epistemic sophistication (2010). This 

is very different from prior models that characterise increased epistemic 

sophistication as the use of increasingly sophisticated strategies, resulting 

in the implicit designation of less sophisticated approaches as less desirable or 

valuable.  

It is therefore important to examine how the hierarchical relationships implied 

by my organisation of epistemic practices into sets should be interpreted. 
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The observations of this thesis support the epistemological resources model’s 

claim that a sophisticated approach will make use of a range of epistemic 

practices depending on the specific context and therefore rejects the notion that 

more sophisticated is always better. Gainsburg has similarly offered support 

for the epistemological resources model, noting that “Veteran engineers 

capable of sceptical reverence will still engage in dualist behaviour in 

routine situations in which they are confident that formulas and prior 

examples can be followed lockstep” (p.160, 2015).  

I take issue, however, with Elby and Hammer’s postulation that practices should 

be classified as sophisticated when they are effective or appropriate in the given 

context and unsophisticated when ineffective. I think that this weakens the model, 

since adjudicating the appropriateness of an approach by comparing it to the most 

effective method is subject to many contextual constraints. The disciplinary 

background of the researcher, the task under observation, and the disciplinary 

background or prior knowledge of the participant will have a massive 

influence on how appropriate certain actions are judged to be. For example, 

students lacking disciplinary background may engage in elaborate detours during 

their problem solving. Berland and Crucet have also raised concerns about how 

effective or appropriate are defined and assessed. They propose that “A student’s 

epistemological approach could be considered more sophisticated if the student 

was aware of the epistemological choices they made. However, awareness is 

difficult to assess” (2016, p. 22). While I agree with their position that “attending 

to students’ rationales for their epistemological decisions” is an interesting 

approach, it is still subject to issues of students’ prior knowledge and the specific 

context.  

Arising from these observations, I have proposed that a more effective measure of 

epistemic sophistication in the epistemological resources model is the 

range, or diversity, of epistemic practices employed by a student. This 

refinement of Elby and Hammer’s model has implications both for theory and 

empirical methods. First, characterising the diversity of practices, rather than 

their effectiveness, is more coherent with Elby and Hammer's key premise that 

an epistemically sophisticated person has a wide set of epistemological 

resources on which to draw. It is also coherent with Litzinger et	al.’s finding 
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that stronger engineering problem solvers used both more representations of 

problems and more self-explanations, and that these were distributed across 

the different approaches available. Secondly, my proposal to assess the 

diversity of epistemic practices is a more robust measure than effectiveness. 

While a designation of appropriateness depends on the researcher's 

own background, the specific task and the background of the participant, 

diversity requires only that participants attempt suitably challenging tasks.  

The empirical observations of this thesis are not incompatible with characterising 

diversity as reflective of epistemic sophistication. The analysis presented in Figure 4.6 

illustrates an apparent association between the diversity of epistemic practices that a 

student mobilised and their ability to solve the epistemically-challenging tyre 

question. The small study size is far from adequate to provide rigorous 

support for this model. It must also be noted that, in the current data, diversity is 

only a marginally better measure than simply taking the highest level practice. My 

refinement to Hammer and Elby’s epistemological resource model increases its 

coherence with observations that increased expertise correlates with both more 

frequent and a wider range of problem-solving strategies (Randles and Overton 

2015). This increased theoretical coherence is a strong argument in favour of 

using diversity, rather than effectiveness or appropriateness, as the 

measure of epistemic sophistication in the epistemological resources model.  

5.4.5 Creating	an	Engineering‐specific	Dimensional	Questionnaire	Remains	
Elusive	

My inability to establish an adequate factor structure, despite extensive attempts, 

is coherent both with Elby and Hammer’s epistemic resources model and also with 

Faber et	al.’s (2016) mixed quantitative and qualitative observations. This first-

hand experience prompted me to deepen my review of the literature of 

quantitative measures of epistemic beliefs and strengthened my interest in 

pursuing cognitive processes approaches to epistemic sophistication.  

Previous studies (Belenky et	al. 1997, Palmer and Marra 2004, Wise et	al. 2004) 

have found that epistemic beliefs do progress with studies (rather than age). So it 

is surprising that only two items in my questionnaire, both from Hofer’s 

justification dimension (2000), showed any correlation with year of studies. Given 
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that students encounter different curricula depending on their study 

concentration, such as the number and nature of design projects, experimental 

work and work placements, clear linear trends were not expected. However, the 

lack of measurable progress was surprising to me. I will return to this point in the 

following section.  

5.4.6 Lack	of	Progress	in	Epistemic	Sophistication		

My epistemic practice data does not show senior students (i.e. Masters) to be more 

epistemically sophisticated than junior students (Bachelors). This observation is 

counter to multiple prior studies with American engineering students (Paulsen 

and Wells 1998, Marra et	al. 2000, Wise et	al. 2004). One possible explanation is 

that the apparently flat trend in epistemic sophistication in my study is that it is an 

artefact arising from the small number of participants. Another possible 

explanation is that junior students worked harder at the problem solving than 

Masters students, perhaps feeling more obligation to the researcher. This latter 

explanation is, however, undermined by the identical ratio of professed:enacted 

answer-checking practices for Bachelors students (n = 11, data in Tables 4.6 and 

4.7) and for Masters students (n = 8). Another explanation could be that Masters 

students were able to solve the tasks without evoking more sophisticated 

practices; but the explanation is undermined by the fact that Masters students 

performed (in general) poorly on the open-ended task. However, the lack of 

increasing epistemic sophistication with year of study appears to be more than an 

artefact, as it is consistent across all my observations, both qualitative and 

quantitative. Unfortunately, the single contact point with each student does not 

provide additional avenues to pursue this unexpected result. I do not have a strong 

explanation for this observation.  

5.4.7 Section	Conclusion	

Briell et	al.’s paper is an excellent review of the persistent issues in the field of 

epistemic beliefs (2011) and, for me, provides motivation for the approach 

undertaken in this thesis. First, attending to epistemic practices removes the 

potentially problematic inference to underlying beliefs and entanglements 

between the dimensions of epistemic beliefs postulated by some models. Second, 

focusing on the rich, contextualised nature of the practices themselves advances 
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the characterisation of epistemic sophistication in engineering and reflects the 

fine-grained approach of Elby and Hammer that avoids classifying people in stages 

or phases as postulated by other models. My proposed refinement to Elby and  

Hammer’s  epistemological resource model that diversity, not effectiveness, 

serve as the indicator of sophistication is both more coherent theoretically 

and supports robust measurement as it attenuates the influence of specific 

knowledge on assessing the behaviours mobilised by the student. Finally, 

both the novel and reformulated engineering-specific epistemic practices, 

organised into sets of practices, support the translation of this research into 

engineering teaching.  

5.5 CHAPTER FIVE CONCLUSION 
While a cognitive processes approach has rarely been used in prior studies (Briell 

et	al. 2011), focusing on students’ contextualised problem solving has provided 

rich insight into epistemic sophistication in engineering. It enabled me to answer 

my first research question (RQ1), identifying some practices which may be 

relevant only to engineering or science disciplines and other practices that are 

endemic to work in the field yet are enacted in particular, discipline-specific ways. 

The richness of my data underlines the need to attend to disciplinary and micro 

context highlighted by Sandoval et	al. in their call to “Imagine possibilities for 

measuring or describing epistemic cognition in the many places where it occurs” 

(2016, p. 480).  

I have proposed a four-level framework to characterise epistemic practices at 

different levels of sophistication. This structure makes the range and diversity of 

practices mobilised by all my participants clear, answering my second research 

question (RQ2).  

The epistemic practices profiles of highly sophisticated students (my final 

research question, RQ3) span at least three levels and are very similar in range to 

moderately epistemically sophisticated students. Analysing the frequency 

identified that more sophisticated students used Level 3 practices more often but 

they did not necessarily use fewer Level 2 or even Level 1 practices. 

Focusing on epistemic practices removed the need to infer underlying beliefs and  
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enabled me to maintain the richness of Elby and Hammer’s fine-grained 

approach that eschews classifying people in stages or phases. In addition 

to avoiding persistent issues with beliefs approaches, my cognitive processes 

approach also opens a robust methodological path for gathering empirical 

observations. While the think-aloud protocols are quite labour-intensive, 

they generate the contextualised observations that are the foundation of 

robust theory. My proposal to use diversity, rather than effectiveness, to 

characterise sophistication in Elby and Hammer’s epistemological resource 

model is more coherent theoretically and supports robust measurement as it 

attenuates the influence of specific knowledge on assessing the behaviour 

mobilised by the student. The resulting analysis is relevant both for the 

characterisation of epistemic sophistication in engineering and models of 

epistemic cognition in general. 

Finally, my epistemic practices approach is practical and accessible, which should 

support the translation of this research into engineering teaching. 

Cognitive structures approaches deserve to see their share of research attention 

in the field decrease, as their domination obscures alternative models that 

deserve to be explored. The next and final chapter of this thesis, Chapter 6, 

considers how these results should be used to inform future directions for 

research into epistemic practices in engineering. 



Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 

132 

6 Conclusion 

6.1 OVERVIEW OF THE FINDINGS 

The introduction to this thesis made the case for the importance of strong 

epistemic skills for engineers. Yet engineering students have been found to 

develop epistemic sophistication more slowly than other fields (Pavelich and 

Moore 1996, Wise et	 al. 2004). Taken together, this underlines the need to 

generate models and assessment instruments that are accessible to engineering 

teachers. This chapter takes a broader view of this specific research project 

and the field of epistemic cognition in order to consider these objectives. 

This final chapter takes a three-part approach to situating the contributions of this 

thesis in the field of epistemic cognition. First, how does this thesis advance our 

understanding of epistemic cognition in engineering? Secondly, what does this 

thesis contribute to measuring epistemic cognition in engineering? Finally, what 

are the implications for developing engineering students’ epistemic 

sophistication? The thesis concludes with proposals for future work, which 

includes some translational research ideas aimed at bringing these ideas and 

approaches into teaching. Returning to the teaching of engineering is a good place 

to end since these questions launched this thesis.  

6.1.1 Methodological	Approach		

While this study set out with a primarily quantitative approach, intending to adapt 
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existing questionnaires, I was profoundly dissatisfied with the robustness of 

the results. As I have detailed in the Literature Review, I think sufficient work has 

been invested in trying to create quantitative instruments for current 

models of epistemic beliefs and that epistemic cognition is a better approach. It 

appears that the gap is too large between overarching epistemic beliefs and 

individual, Likert-scored statements with little context.  These observations 

prompted me to take a more practical approach, observing students’ 

epistemically-relevant behaviours during think-aloud problem solving 

protocols. Given the persistent issues with quantitative, beliefs-focused 

instruments, it is surprising that qualitative methods have not been used more 

frequently in the area. Indeed, a grounded theory approach with rich, 

contextual observations is ideal for building theory.  

The effectiveness of my methodology is born out in the framework of seven sets 

of epistemic practices for engineering. This framework is both 

practical, characterising the epistemically-relevant behaviours that students 

use while problem solving, and also has useful explanatory power regarding 

observations of students holding inconsistent epistemic beliefs in this thesis 

and in prior work. Inconsistencies in the levels of epistemic 

sophistication are not explicitly accounted for by most models and are 

dismissed as measurement issues or noise. The practical, fine-grained 

observations supported my grounded theory analysis that identified that 

diversity itself is an indicator of sophistication. Specific points related to my 

epistemic practices framework are addressed in section 6.2, and 

considerations of how the framework contributes to measuring epistemic 

sophistication in section 6.3.  

6.2 ADVANCING OUR UNDERSTANDING OF EPISTEMIC COGNITION IN 
ENGINEERING 

6.2.1 Characterising	Epistemic	Cognition	in	Engineering	

The first major contribution of this thesis is its novel focus on epistemic practices, 

that is on the specific actions that students perform when manipulating 

engineering knowledge, rather than epistemic beliefs. The recurrent and wide 

ranging issues with prior measures of epistemic beliefs are well documented in 

earlier chapters. Arising from my analysis of the literature, I identified a failure to 

make a distinction between observable, specific epistemic practices and 
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overarching epistemic beliefs as a confounding issue for theory 

development. Making this distinction directed the methodology and theory 

generation of this thesis in important ways. I argue that we do not 

currently have adequate  understanding of the nature of the constructs of 

epistemic beliefs in engineering to work at a broad, overarching level. 

Accordingly, I use the term epistemic practices to describe the epistemically 

revealing knowledge manipulation and evaluation behaviours of engineering 

students.  

Building robust theory requires that we work with rich, contextualised 

empirical observations. This thesis proceeded in this sense, predominantly using a 

grounded theory approach to analyse students’ problem solving activities. 

From these observations, I identified seven sets of epistemic practices 

to characterise engineering students’ epistemic cognition. Of these, four sets 

are novel: Source	 and	 validity	 of	 equations, Using	 models, Working with 
Peers, and Precision	 and	 estimation. These practices are important in 

quantitative problem solving and reasoning with models, and therefore 

their identification is highly relevant to characterising epistemic cognition in 

professional engineering practice. The other three sets, Existence	 and	 number	

of	 correct	 answers, Self‐assessment	 of	 understanding, and Strategies	 for	

reasoning	and	verifying	answers, have previously been described but often with 

a mixture of beliefs and behaviours. My formulation in terms of epistemic	

practices and characterisation at each of the four levels of sophistication allows a 

rich portrait of a student’s epistemically relevant behaviours to emerge.  

Describing epistemic cognition in terms of four levels is reminiscent of many prior 

models, starting with Perry’s. In keeping with the pragmatic approach employed 

through this work, my choice of four levels sought to provide an adequate yet  

parsimonious heuristic that would be relatively accessible to engineering 
teachers. I have used King and Kitchener’s term Absolute for the least 

sophisticated level, which is composed of a series of epistemic practices that 

assumes that engineering thinking will produce a single, precise correct 

answer. I adapted Julie Gainsburg’s term Sceptical	 reverence for the most 

sophisticated level, adding an explicit reference to uncertainty for a series 

of epistemic practices that recognises that engineering thinking requires 

making judgements based on the specific context and perspective. In 

between these two extremes are the levels of Local	Coherence and Coherence; many
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of the practices at these levels appear not to have been previously described. Local	

Coherence practices are based on producing internally coherent, precise, and 

mathematically sound thinking. The shift to Coherence, which makes 

connections between physical reality and models to find all the solutions that meet 

or exceed the requirements, is an important step towards authentic engineering 

practice.  The description of these four levels faciliates the applications of 
this framework to other contexts and situations.

While the seven sets of epistemic	 practices were developed from a limited 

number of quantitative problem solving tasks, they are nevertheless quite 

general. The attention to how engineering knowledge is manipulated and 

evaluated in a fine-grained way, rather than as overarching or underpinning 

beliefs, enables these epistemic practices to describe both the overall arc and 

intermediate points along the path to a well-developed sophisticated 

engineering thinking. This set of seven practices, characterised across four 

levels of sophistication, is the second major contribution of this thesis.  

6.2.2 A	Model	to	Characterise	Epistemic	Sophistication	in	Engineering	

This thesis makes the novel argument that diversity, and not the appropriateness, 

effectiveness, or highest level strategy enacted by a student is the best 

characterisation of their epistemic sophistication. Many studies appear to evaluate 

students’ level of epistemic sophistication by the dominant or most frequently 

observed level (i.e. Baxter-Magola 1992, Belenky et	al.	1997, Perry 1970, King and 

Kitchener 2010, Zhu et	 al.	 2019). Elby and Hammer proposed an important 

advance by recognising that the effectiveness of a given approach should be 

considered, as low level epistemic practices will always be most effective in some 

situations (2001, 2010). Julie Gainsburg refined their proposal by dividing 

development into two parts: capacity and selection (2015), where capacity is the 

total range of epistemic practices they are able to employ and selection is the 

ability to effectively identify when to use specific practices. 

As I have argued earlier, selection of the most appropriate epistemological 
resource (to use Elby and Hammer’s term) is not a good indicator for epistemic 

sophistication because it is too heavily influenced by the specific task, the 

background of the researcher, and the student’s past experiences. An 

important corollary of this is that it limits our abilities to make comparisons 

across contexts, which in turn poses obstacles to translational research. In
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diversity of epistemic practices is the most relevant measure to assess 

students’ epistemic sophistication. Using diversity is coherent with Elby and 

Hammer’s observations that a less sophisticated strategy is sometimes more 

effective and also explains the observations of students exhibiting 

behaviours and beliefs scattered across multiple levels of sophistication (Zhu et	al. 

2019). Diversity also explains Chandler et	al.’s observation that “More or less 

identical claims about the supposed course of epistemic development are all 

made about research participants of wildly different ages” (2002, p. 146).  

Gainsburg’s capacity is similar to the measure of diversity that I have proposed, 

however, it omits the inherent value of using a broad range of epistemic practices. 

Further, capacity is a less effective tool for assessing epistemic sophistication 

because of notions of transfer, a key idea from learning science. In conclusion, my 

proposal of diversity as a measure of epistemic sophistication is a significant 

advancement to how we measure epistemic sophistication.  

6.3 MEASURING EPISTEMIC COGNITION IN ENGINEERING 

6.3.1 A	Practical	Approach	to	Epistemic	Cognition	via	Epistemic	Practices	

Setting aside what students believe may seem like a step backwards from the 

development of a robust model of epistemic beliefs about engineering. However, 

the focus on beliefs over several decades has not produced a fully satisfactory 

model. The findings of this thesis support my decision to focus on epistemic 

practices and illustrate the value of this approach to advance the field.  

Further, focusing directly on how engineering students manipulate and interact 

with knowledge may also make these observations more accessible and relevant 

to engineering teachers. While some people navigate comfortably in the 

intellectual space around epistemology and philosophy, many of us in science and 

engineering are more comfortable with more practical models. Thus, Table 4.17 

describes specific, concrete actions relevant to engineering problem-solving 

contexts, without allusion to an over-arching set of epistemic beliefs, and this may 

enable engineering teachers to better perceive the relevance. The 

approach with concrete, observable epistemic practices makes the 

connection between epistemic sophistication and engineering 

problem solving obvious.   

136 
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6.3.2 Think‐aloud	Problem	Solving	Tasks	to	Observe	Epistemic	Practices		

This project developed a methodology based on think-aloud problem solving tasks 

to elicit epistemically-relevant behaviours. Accordingly, the tasks I created sought 

to allow for students to reason with formulae and also personal experience 

(Appendix 3). This meant that each task was contextualised, pitched to offer a 

sufficient level of cognitive difficulty to require some concerted problem solving, 

yet did not exceed students’ cognitive load and allowed for relatively brief sessions 

with students. These tasks can be used in other studies, or the concepts used to 

design new tasks. The next section picks up some of these opportunities.  

6.4 IMPLICATIONS FOR DEVELOPING ENGINEERING STUDENTS’ 
EPISTEMIC SOPHISTICATION 

When teachers have a better understanding of the range of ways students may 

understand and experience the course material, they can design strategies to 

better accompany students in developing a more sophisticated understanding 

(Entwistle, 1997). Students’ epistemic cognition is an important filter of how they 

see, experience, and interact with their courses. Therefore the framework can be 

a tool for engineering teachers to evaluate opportunities for epistemic 

development in their courses.  

First, the six sets of epistemic practices of the framework can be used to evaluate 

course activities. For instance, a teacher could use the framework to review a 

homework assignment, asking what practices students must use to complete it. Is 

there sufficient scope or context to allow students to employ more sophisticated 

practices?  

This is important because while Bachelors students arrive in engineering 

programmes with varying levels of epistemic sophistication, what we convey to 

them about the nature of engineering through the tasks and interactions with the 

teachers is not currently stimulating students to become significantly more 

sophisticated. The learning tasks and the nature of the interactions with their 

peers and teaching staff embed the epistemic approach we emit (Feucht 2010, 

Muis et	al. 2016) and can influence students’ approaches over time (Duffy et	al. 

2016). Baxter-Magolda also cites situations where the teacher is uncertain or not 

an absolute expert as useful for epistemic development (Chapter 9, 1992). The 
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characteristics of the tasks found to support epistemic development are 

complexity, authenticity, multiple sources of information, and multiple possible 

approaches (Baviskar et	al. 2009; Gordon 2009).  

Worryingly, my participants reported that the tasks and assignments which 

constitute the bulk of their university experience do not encourage them to adopt 

more sophisticated epistemic practices. Their instructors’ demonstrations of 

problem-solving and assigned exercises appear to nearly exclusively feature 

single, precise answer tasks that preclude the need to check the assumptions of 

the models used. The ability to calculate a highly precise answer was generally 

taken as equivalent to a highly accurate answer, completely omitting any 

simplifications or approximations employed in obtaining the equation to model 

the system. Further, it seems that assigned tasks rarely provide sufficient 

contextualisation for students to leverage their lived experiences for sense-

making or answer-checking and do not require students to make estimates or 

work with a range of values.  

These observations may both help explain why engineering students develop 

more slowly in their epistemic practices, but also point to small, easy-to-

implement changes that can support students to acquire more epistemically 

sophisticated ways of interacting with engineering knowledge. Indeed, Table 4.17 

can be used as a guide to providing scaffolded opportunities for students to work 

in less constrained, more imprecise situations even on paper-based calculation 

exercises in order to prepare them to work on big, open-ended projects at 

university and in their future professional lives. For example, ensuring that tasks 

are contextualised such that students are can leverage real-world sense-making 

and multiple answer‐checking strategies.  

The deliberate challenges of naive epistemic views by the instructional strategies 

and task characteristics listed above may elicit frustration and annoyance from 

students whose perspective prevents them from appreciating the value. This 

means that these students may shy away from this discomfort, seeking out what 

appears to be absolute truth or an absolute expert. This is problematic since these 

experiences do not occur often. Several researchers have noted that experiences 

which directly challenge students’ dualistic views occur infrequently in 
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engineering programs (Cheville and Bunting 2011; Danielak et	al. 2014; Frye et	al. 

2012; Gainsburg 2015). Engineering education devotes little time to exploring 

different points of view on a given issue (Frye et	al. 2012) and Gainsburg notes 

that “Undergraduate engineering courses may rarely confront students with the 

kinds of epistemic challenges which push liberal arts students towards relativism” 

(p.142, 2015). 

This brings us to the second way to use the framework: to evaluate the 

effectiveness of teaching interventions on epistemic cognition, for example, as an 

observation guide to score students’ problem solving practices. This would 

provide researchers and teachers with a measure of students’ epistemic 

sophistication. While the considerable resources required for such a study are a 

barrier to implementation, the results would be rich and useful.  

Several researchers have written that students need to be stimulated to reach and 

apply epistemic approaches just beyond their current level of sophistication 

(Finster 1991, Lynch et	al. 1994). Lynch et	al. caution that students may not be able 

to perceive strategies significantly above their current level (1994). Thus, 

implementing instructional strategies that are effective for epistemic development 

requires knowing the current level of your students.  

King and Kitchener (2004) warn that developing epistemic sophistication is a slow 

process, even with deliberate interventions. Gainsburg further notes that 

engineering students in her study “complained that hectic academic schedules” 

prevented them from taking the time to process and make sense of new ways of 

thinking (2015, p. 163). My pragmatic, fine-grained approach focusing directly on 

how students interact with knowledge can make the relevant skills more visible to 

both teachers and students. It also matches Muis et	al.’s calls for measures that are 

“easy to understand and readily applicable to the instructional context” (2006, p. 

41). 

6.5 LIMITATIONS OF THIS STUDY 

There are two main type of limitations to consider when assessing how well this 

thesis has answered its research questions: the trustworthiness of the findings and 

their generalisability to other contexts. Credibility and dependability are two 
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major indicators of the trustworthiness of qualitative research findings (Denzin 

and Lincoln 1994). Reproducibility is a third standard measure of research quality. 

In qualitative research, this is often achieved by having several people review the 

coding. This was not done in this project. Credibility refers to the authenticity of 

the findings and is often supported by triangulating multiple data sources and 

methods (Bowen 2009). The current study predominantly used direct 

observations of students’ epistemic practices and then interviews to collect 

students’ accounts of their practices. All my data is highly coherent but this 

agreement may also arise from the similarity of the contexts where I collected the 

data. The credibility of the study could be reinforced by observations of students 

working on their course work or retrospective interviews with students about 

their homework assignments. The dependability of the findings is limited by single 

time point data collection with each student that does not provide information 

about the consistency of students’ epistemic practices across time or contexts. 

However, the internal coherence identified by my analysis of students’ epistemic 

practices across the six different think-aloud tasks support the dependability. 

The generalisability of this study is limited due to the small number of participants 

and the fact that this study was conducted on a single university campus. This 

means that I cannot claim that the epistemically-relevant problem solving 

practices described are a good description for students in different contexts or 

faced with different tasks. Rather, transferability is a more appropriate measure 

for assessing the limitations of this predominantly qualitative study.  

Transferability of the findings refers to the relevance of the findings for other 

contexts. The rich, contextualised descriptions of the six sets of epistemic practices 

is a major strength for their transferability.  

The overall framework is rich and built on many observations. However, because 

students came from several engineering programmes, it is not sufficient to see if 

the epistemic practices are adequate to describe the essential features of 

epistemically-relevant problem solving in these different disciplines. Additionally, 

while saturation was reached in each study, it is possible that inadequate sampling 

of the population resulted in a failure to capture some relevant practices.  

My main concern is that the think-aloud tasks are more engineering science than 
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engineering, and therefore may not have evoked all practices relevant for 

engineering problem solving. Further, the tasks drew only on first year knowledge 

and may not have prompted students to apply more sophisticated epistemic 

practices due to their framing or difficulty level. My decision to construct tasks that 

would not preclude the participation of students from any engineering study 

programme meant that students were not challenged with tasks from their own 

discipline that would be more likely to elicit their contextualised knowledge. This 

limitation could be addressed by conducting think-aloud protocols with more 

discipline-specific engineering tasks with third year and Masters students. Given 

the diversity of practices employed by all students, I would expect these upper 

level students to use practices from across the framework and consequently test 

the relevance and adequacy of the entire structure. Constructing tasks that appear 

tightly connected to the core disciplinary activities of students from different 

programmes (i.e. both electrical engineering and computer science, or both 

materials engineering and chemical engineering) would allow for a more robust 

testing of the relevance of the framework.  

6.6 DIRECTIONS FOR FUTURE RESEARCH 
Testing and extending the epistemic practices framework developed in this thesis 

in a broader range of contexts and with different types of tasks is the obvious next 

step. The set of six epistemically-relevant practices was developed with a narrow 

set of paper-based tasks focused on engineering science. The current study is far 

from the problem solving contexts encountered by professional engineers and 

does not fulfil Chinn et	al.’s call for research across a variety of contexts to better 

understand how epistemic cognition develops and evolves (2011). Testing and 

extending the framework could investigate: 

 Do these epistemic practices occur during a broader set of thinking and

problem solving tasks in engineering, particularly for more specialised

higher-level tasks?

 Are these epistemic practices sufficiently engineering-specific yet

appropriate across a range of engineering disciplines?

 Are there other key epistemic practices that should be added, particularly

when considering a broader set of engineering contexts?
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A second strand for future work relates to the use of the framework as a 

measurement tool. The overall framework is built on many observations, but as 

these are spread across students from first year to Masters level and several 

disciplines, it is not nearly sufficient to see potential disciplinary or developmental 

trends. Some questions for future research addressing these areas include: 

 While the diversity of epistemic practices is coherent with theory, under 

what conditions or context does it provide an effective measure of 

epistemic sophistication? 

 By focusing on students in a single programme, can the framework capture 

epistemic development across their studies? 

 Expert problem solving has been shown to be different in one’s own area of 

expertise and another discipline (Voss et	 al. 1983). Can the framework 

capture a similar pattern with epistemic cognition?  

Finally, how can this research be made relevant and useful to engineering 

teachers? Bråten (2016) adamantly stated that empirically based, testable models 

of epistemic sophistication that can guide teaching interventions are an important 

goal. This means collaborative research with teachers to address questions such 

as:  

 Is the framework accessible and relevant to engineering teachers? 

 Can it be implemented as a feedback tool for a course or programme?  

 Can the think-aloud problem solving protocols be transformed into a less 

resource intensive, yet rich and relevant, measure?  

To summarise, there are still many fascinating questions about epistemic practices 

and epistemic cognition in engineering that could be investigated. 

6.7 RELEVANCE OF EPISTEMIC PRACTICES FOR TEACHING 
ENGINEERING 

Problem solving is key to engineering. This is evident in the central place of 

projects and hands-on learning in engineering curricula. Indeed, problem solving 

is often how professional engineers describe their work. The thinking skills related 

to evaluating contradictory knowledge claims, navigating uncertainty, and 

operating with changing information are the foundation of good problem solving.  
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While epistemic cognition and epistemic sophistication sound like abstract and 

philosophical terms removed from the concerns of practicing engineers and 

engineering teachers, they are in fact at the heart of good engineering thinking, 

indeed, of good thinking in general. Information is more available than ever before 

but this has also meant that a lot of poor quality or even intentional 

misinformation is widely available. Our engineering graduates must be able to 

navigate through this vast amount of information, identifying what is more 

relevant and less relevant, what is relatively stable and what is evolving, what is 

quite reliable and what is corrupt. Coping with these multiple shades of grey 

requires a sophisticated level of epistemic cognition.  

Being able to characterise, and ultimately track the development of, the epistemic 

sophistication of engineering students would be a highly useful tool for preparing  

graduates. This thesis has brought this ideal a little closer by contributing a 

practical, robust, and specific framework to characterise epistemic sophistication 

in engineering.  
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arising from the research (e.g. unforeseen ethical issues, complaints about the conduct
of the research, adverse reactions such as extreme distress) to the Research Ethics
Officer;

- submitting details of proposed substantive amendments to the protocol to the Research
Ethics Officer for approval.

Please contact the Research Ethics Officer, Debbie Knight (ethics@lancaster.ac.uk 01542
 592605) if you have any queries or require further information.

Kind regards,

Debbie

Debbie Knight | Research Ethics Officer | Email: ethics@lancaster.ac.uk | Phone (01524) 592605 | Research
 Support Office, B58 Bowland Main,  Lancaster University, LA1 4YT
Web: Ethical Research at Lancaster: http://www.lancaster.ac.uk/depts/research/ethics.html

www.lancaster.ac.uk/50

This e-mail and any attachment is for authorised use by the intended recipient(s) only. It may contain proprietary material, confidential information
 and/or be subject to legal privilege. It should not be copied, disclosed to, retained or used by, any other party. If you are not an intended recipient
 then please promptly delete this e-mail and any attachment and all copies and inform the sender. Thank you.
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Participant Information Sheet 

Project:  Epistemological Development and Classroom Learning Strategies in 
Engineering Students (questionnaire) 

Researcher: Ms. Siara Isaac, Teaching Support Centre 
Tel: +41 21 69 35289 
BI B2 432, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015 
Email: siara.isaac@epfl.ch 

Supervisor: Professor Paul Ashwin, head of department, Educational Research 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Date:______________, 

I would like to invite you to take part in my thesis research in the Department of Educational 
Research at the University of Lancaster.  

Before you decide if you wish to take part you need to understand why the research is being 
done and what it would involve for you. Please take time to read the following information carefully. 
Please ask if there is anything that is not clear or if you would like more information. Talk to others 
about the study if you wish.  Take time to decide whether or not you wish to take part.   

This document includes: 
• Information about the purpose of the study.
• Information about what participation means and how to withdraw when and if you wish.
• Information about how this data will be secured and stored.
• How the information will be used in the thesis and for other purposes such as conference

presentations or publication.

The purpose of the study
This research is for my thesis in the Department of Educational Research at Lancaster 

University, and  may also be used for journal articles and conference presentations. My research aims 
to characterise the different objectives that EPFL students have for their time in class, and what 
strategies they employ in order to meet this objectives.  

By participating in this study, I hope you will benefit from a greater understanding of the 
learning strategies you use in-class and that it will help you ensure that they are best adapted to the 
type of learning you seek.  

What does it mean to participate in the study? 
Why have you been invited? 

Your whole class has been invited to participate in order to have broad representation from 
across the EPFL student population.  
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Do you have to take part? 
No, it is up to you to decide whether or not to take part. If you do not wish to take part, then 

please do not complete the questionnaire.    

What would taking part involve? 
If you agree to participate, you would answer the adjoining questionnaire. The questions ask 

about what you learn in your classes, and about the strategies and approaches that you use to facilitate 
your learning.  

How will your data and identity be kept private? 
‘Data’ here means your answers to the questionnaires, which will be used and stored in 

accordance with the UK Data Protection Act. The data may be kept for one year after the successful 
completion of the PhD Viva as per Lancaster University requirements, and after any personal data will 
be destroyed. The completion of this study is estimated to be by January 2019.   

Data may be used in the reporting of the research (in the thesis and then potentially in any 
papers or conference presentations).  Please note that if your data is used, it will not identify you in 
any way or means.  

Who to contact for further information or with any concerns? 
If you would like further information on this project, the programme within which the research 

is being conducted or have any concerns about the project, participation or my conduct as a researcher  
please contact: 

Professor Paul Ashwin – Head of Department 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Thank you for reading this information sheet. 

Siara ISAAC 
Teaching Support Centre, Ecole Polytechnique Fédérale de Lausanne 
+41 21 69 35289
siara.isaac@epfl.ch
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Participant Information Sheet 

Project:  Epistemological Development and Classroom Learning Strategies in 
Engineering Students (pilot interview) 

Researcher: Ms. Siara Isaac, Teaching Support Centre 
Tel: +41 21 69 35289 
BI B2 432, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015 
Email: siara.isaac@epfl.ch 

Supervisor: Professor Paul Ashwin, head of department, Educational Research 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Dear ___________________________________, Date:______________, 

I would like to invite you to take part in my thesis research in the Department of Educational 
Research at the University of Lancaster.  

Before you decide if you wish to take part you need to understand why the research is being 
done and what it would involve for you. Please take time to read the following information carefully. 
Please ask if there is anything that is not clear or if you would like more information. Talk to others 
about the study if you wish.  Take time to decide whether or not you wish to take part.  

This document includes: 
• Information about the purpose of the study (what I hope to find out).
• Information about what participation means and how to withdraw when and if you wish (what

you will be doing).
• Details of what notes, recordings and other sources of information may be used as ‘data’ in the

study - for the group and with you as an individual.
• Information about how this data will be secured and stored.
• How the information will be used in the thesis and for other purposes such as conference

presentations or publication.

The purpose of the study
This research is for my thesis in the Department of Educational Research at Lancaster 

University, and  may also be used for journal articles and conference presentations. My research aims 
to characterise the different objectives that EPFL students have for their time in class, and what 
strategies they employ in order to meet this objectives.  

By participating in this study, I hope you will benefit from a greater understanding of the 
learning strategies you use in-class and that it will help you ensure that they are best adapted to the 
type of learning you seek.  
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What does it mean to participate in the study? 
Why have you been invited? 

You responded to a notice posted on EPFL campus seeking participants for this study. 

Do you have to take part? 
No, it is up to you to decide whether to take part or not. Even if you decide to take part, you can 

withdraw, without giving a reason, up until August 20th 2018. In withdrawing, all information you 
provided will be removed from the study and destroyed. 

What would taking part involve? 
If you agree to participate, you would be interviewed (about 45 minutes) about your objectives 

for the different classes you are currently taking and what you do during class to best meet these 
objectives. All data collected will be anonymised under a pseudonym of your choosing, with only your 
section and year of study noted (i.e. SMA, Ba3). All information gathered will be encrypted and treated 
as confidential. Siara Isaac will conduct all the interviews, which will also be audio recorded to allow 
for her to review the conversation. The first interview would take place in the spring of 2015. 

How will your data and identity be kept private? 
‘Data’ here means the researcher’s notes, survey results, audio recordings and any email 

exchanges we may have had.  The data may be kept for one year after the successful completion of the 
PhD Viva as per Lancaster University requirements, and after any personal data will be destroyed. 
Audio recordings will be transferred and stored on my personal laptop and deleted from portable 
media. Identifiable data (including recordings of your voice) on my personal laptop will be encrypted. 
With devices such as portable recorders where this is not possible identifiable data will be deleted as 
quickly as possible. In the mean time I will ensure the portable device will be kept safely until the data 
is deleted.   

You can request to listen to the audio at the end of the interview and any parts you are 
unhappy with will be deleted, or disregarded from the data.  Data may be used in the reporting of the 
research (in the thesis and then potentially in any papers or conference presentations).  Please note 
that if your data is used, it will not identify you in any way or means.  

The pseudonym you chose will protect your identity in the research report and any identifying 
information about you will be removed from the report. 

You have the right to request this data is destroyed at any time during the study as well as 
having full protection via the UK Data Protection Act. The completion of this study is estimated to be 
by January 2019.   

Who to contact for further information or with any concerns? 
If you would like further information on this project, the programme within which the research 

is being conducted or have any concerns about the project, participation or my conduct as a researcher  
please contact: 

Professor Paul Ashwin – Head of Department 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Thank you for reading this information sheet. 

Siara ISAAC 
Teaching Support Centre, Ecole Polytechnique Fédérale de Lausanne 
+41 21 69 35289
siara.isaac@epfl.ch
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Participant Consent Form 

Project:  Epistemological Development and Classroom Learning Strategies in 
Engineering Students (pilot interview) 

Date:______________ Please initial box 

1. I confirm that I have read and understand the information sheet dated XXXX for the
above study. I have had the opportunity to consider the information, ask questions and
have had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw up until
August 20th, 2018, without giving any reason.

3. I understand that any information given by me may be used in future reports, articles
or presentations by the researcher.

4. I understand that my name will not appear in any reports, articles or presentations.

5. I agree to take part in the above study.

________________________ ____________________ ________________________ 

Name of Participant Date Signature 

_________________________ ____________________ ________________________ 

Researcher Date Signature 

Researcher: Ms. Siara Isaac, Teaching Support Centre 
Tel: +41 21 69 35289 
BI B2 432, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015 
Email: siara.isaac@epfl.ch 

If you would like further information on this project, the programme within which the research is being 
conducted or have any concerns about the project, participation or my conduct as a researcher  please 
contact: 

Supervisor: Professor Paul Ashwin, head of department, Educational Research 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
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Participant Information Sheet 

Project:  Epistemological Development and Classroom Learning Strategies in 
Engineering Students (interviews) 

Researcher: Ms. Siara Isaac, Teaching Support Centre 
Tel: +41 21 69 35289 
BI B2 432, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015 
Email: siara.isaac@epfl.ch 

Supervisor: Professor Paul Ashwin, head of department, Educational Research 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Dear ___________________________________, Date:______________, 

I would like to invite you to take part in my thesis research in the Department of Educational 
Research at Lancaster University. This study has been approved by the University’s Research Ethics 
Committee.  

Before you decide if you wish to take part you need to understand why the research is being 
done and what it would involve for you. Please take time to read the following information carefully. 
Please ask if there is anything that is not clear or if you would like more information. Talk to others 
about the study if you wish.  Take time to decide whether or not you wish to take part. This 
information page is yours to keep. 

This document includes: 
• Information about the purpose of the study.
• Information about what participation means and how to withdraw.
• Details of what sources of information will be used as ‘data’ in the study.
• Information about how this data will be secured and stored.
• How the information will be used in the thesis and for other purposes such as conference

presentations or publication.

The purpose of the study
This research is for my thesis in the Department of Educational Research at Lancaster 

University, and  may also be used for journal articles and conference presentations. My research aims 
to characterise the different objectives that EPFL students have for their time in class, and what 
strategies they employ in order to meet this objectives.  

By participating in this study, I hope you will benefit from a greater understanding of the 
learning strategies you use in-class and that it will help you ensure that they are best adapted to the 
type of learning you seek.  
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What does it mean to participate in the study? 
Why have you been invited? You have been invited because you indicated that you would be willing 
to be interviewed when responding to the questionnaire about in-class objectives.  

Do you have to take part? No, it is up to you to decide whether to take part or not. Even if you decide 
to take part, you can withdraw, without giving a reason, up until August 20th 2015. In withdrawing, all 
information you provided will be removed from the study and destroyed. 

What would taking part involve? If you agree to participate, you would be interviewed 3 times 
(about 45 minutes each) over the next 2 years about your objectives for the different classes you are 
currently taking and what you do during class to best meet these objectives. Siara Isaac will conduct all 
the interviews, which will also be audio recorded to allow for her to review the conversation. The first 
interview would take place in the spring-summer of 2015. 

How will my data be used? Data’ here means the researcher’s notes, survey results, audio recordings 
and any email exchanges we may have had. Data may be used in the reporting of the research (in the 
thesis and then potentially in papers or conference presentations), including direct quotes from the 
interview. Please note that if your data is used, it will not identify you in any way or means. You can 
request to listen to the audio in the 3 weeks following the interview and any parts you are unhappy 
with will be deleted, or disregarded from the data. 

How will your data and identity be kept private? 
All data collected will be anonymised under a pseudonym of your choosing, with only your 

section and year of study noted (i.e. SMA, Ba3). All information gathered will be encrypted and treated 
as confidential. ‘Per Lancaster University requirements, the data will be kept for 10 years before being 
completely destroyed. Audio recordings will be transferred and stored on my personal laptop and 
deleted from portable media. Identifiable data (including recordings of your voice) on my personal 
laptop will be encrypted. With devices such as portable recorders where this is not possible 
identifiable data will be deleted as quickly as possible. I will ensure the portable device will be kept in 
locked location until the data is deleted.   

The pseudonym you chose will help protect your identity in the research report and any 
identifying information about you will be removed from the report. 

You have the right to request this data is destroyed at any time during the study as well as 
having full protection via the UK Data Protection Act. The completion of this study is estimated to be 
by January 2019.   

Who to contact for further information or with any concerns? 
If you would like further information on this project, the programme within which the research 

is being conducted or have any concerns about the project, participation or my conduct as a researcher 
please contact: 

Professor Paul Ashwin – Head of Department 
Tel: +44 (0)1524 594443   Email: p.ashwin@lancaster.ac.uk 
Room: County South, D32, Lancaster University, Lancaster, LA1 4YD, UK. 

Thank you for reading this information sheet. 

Siara ISAAC 
Teaching Support Centre, Ecole Polytechnique Fédérale de Lausanne 
+41 21 69 35289
siara.isaac@epfl.ch
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Participant Consent Form 

Project:  Epistemological Development and Classroom Learning Strategies in 
Engineering Students (interviews) 

Date:______________ Please initial box 

1. I confirm that I have read and understand the information sheet dated XXXX for the
above study. I have had the opportunity to consider the information, ask questions and
have had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw up until
August 20th, 2018, without giving any reason.

3. I understand that any information given by me may be used in future reports, articles
or presentations by the researcher.

4. I understand that my name will not appear in any reports, articles or presentations.

5. I agree to take part in the above study.

________________________ ____________________ ________________________ 

Name of Participant Date Signature 

_________________________ ____________________ ________________________ 

Researcher Date Signature 

Researcher: Ms. Siara Isaac, Teaching Support Centre 
Tel: +41 21 69 35289 
BI B2 432, Ecole Polytechnique Fédérale de Lausanne, Switzerland CH-1015 
Email: siara.isaac@epfl.ch 

If you would like further information on this project, the programme within which the research is being 
conducted or have any concerns about the project, participation or my conduct as a researcher  please 
contact: 

Supervisor: Professor Paul Ashwin, head of department, Educational Research 
Tel: +44 (0)1524 594443 
Email: p.ashwin@lancaster.ac.uk 
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APPENDIX B 

QUESTIONNAIRES, as distributed in 2015, 2016, and 2017
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Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 



Epistémologie et activités pendant les cours novembre 2015

Cette enquête explore comment les étudiants d’EPFL abordent leurs études et leurs actions pendant les 
cours, dans le cadre du projet doctoral de Ms. Siara Isaac avec Dr. Ashwin, Lancaster University, UK. 
Pour plus d’information, veuillez consulter la page jaune ci-joint.  

Il vous prendra 8 minutes pour répondre 

UN GROS MERCI POUR VOTRE ASSISTANCE ! 

***dans le cadre de vos études 
PARTIE 1: D’accord ou pas du tout d’accord ? 
1. Je reconnais que quelque chose est vrai seulement quand je peux vérifier la preuve.         
2. Les principes en ingénierie ne peuvent pas être disputés ni modifiés.         
3. Les enseignants devraient se concentrer sur des faits plutôt que des théories.         
4. Ce qui est vrai aujourd'hui sera vrai demain.         
5. Interpréter les données est ma façon préférée de me décider.         
6. Tous les experts en ingénierie comprennent les problèmes d'ingénierie de la même façon.         
7. Il est ennuyeux d'écouter les enseignants qui donnent plusieurs approches sans indiquer 

laquelle est leur préférée.
        

8. Même les conseils d'experts devront être mis en question.         
9. Mes propres observations et expériences sont les meilleures bases pour valider les

connaissances.
        

10. La plupart des problèmes d'ingénierie n'ont qu'une seule bonne réponse.         
11. Quand j'étudie, je cherche les faits exacts.         
12. Former vos propres idées est plus important que d'apprendre ce que les manuels disent.         
13. Le vérifier auprès d'un expert est le seul moyen de valider mon raisonnement.         
14. Le savoir d'ingénierie devrait être accepté comme une vérité incontestable.         
15. Il est difficile d'apprendre à partir d'un manuel à moins que vous commenciez au début et

maîtrisez un chapitre à la fois
        

16. J'aime réfléchir à des questions sur lesquelles les experts ne peuvent pas se mettre
d'accord.

        

17. Il y a de la place pour des opinions personnelles dans la définition des concepts
fondamentaux d'ingénierie.

        

18. Il y a une méthode universelle en ingénierie.         
19. Le savoir en ingénierie est une accumulation de faits.         
20. La partie la plus importante du travail scientifique est l'originalité de la pensée.         
21. Lors de l’attribution des subventions de l'état pour la science, il faut prendre en compte les

croyances des gens.
        

22. Si vous lisez quelque chose dans un livre d'ingénierie, vous pouvez être sûr que c'est vrai.         
23. Il existe une division nette entre les disciplines scientifique, comme la biologie et la

physique.
         

24. La seule chose qui est certaine est l'incertitude.         
25. Les opinions personnelles doivent être prises en compte lors de l'interprétation des

données.
        

26. C'est la responsabilité des enseignants de s'assurer que les étudiants ont la vérité
objective.

         

27. Devenir expert en ingénierie est un processus sans fin.         
28. Les bonnes solutions dans le domaine de l'ingénierie sont plus une question d'opinion que

de faits.
         

29. Il est de mon droit d'accepter ou de rejeter les théories d'ingénierie.         
30. Pour approfondir ma compréhension de nouveaux concepts, il faut que je revisite les

concepts que j'ai déjà appris.
        

31. Une théorie en ingénierie est acceptée comme correcte si des ingénieurs experts
parviennent à un consensus.

   

175



32. Avec suffisamment de données, la bonne réponse émergera.
33. Les relations entre les concepts/lois sont aussi importantes que les concepts eux-mêmes.
34. Les connaissances d'ingénierie peuvent être construites à partir des observations d'un

étudiant.
35. L'expérience directe est la meilleure façon de savoir quelque chose.
36. Seuls les experts peuvent contribuer à la connaissance de l'ingénierie.
37. Je suis plus enclin à accepter les idées de quelqu'un avec de l'expérience directe que celles

des chercheurs.

        
        
        

*** dans le cadre du cours qui vous intéresse le plus ce semestre 
PARTIE 2: Toujours ou jamais? 
1. Je trouve qu'il est utile de faire des exercices, même si aucune solution est fournie.         
2. J'aime le défi des exercices qui ont plusieurs solutions possibles.         
3. Pendant le cours, je suis attentive/attentif à l'idée principale et ne m'inquiète pas trop pour

les détails.
        

4. Je dois faire des exercices pour tester ma compréhension d'un cours.         
5. Je peux apprendre beaucoup de mes collègues.         
6. Quand je peux décrire un concept avec mes propres mots, je sais que je l'ai compris.         
7. Etre présent en cours et identifier les idées principales est généralement suffisant.         
8. J'ai uniquement confiance aux paroles de mon enseignant.         
9. Être en mesure d'expliquer à un collègue est un bon moyen de vérifier ma compréhension.         
10. Je fais en sorte que je comprenne les étapes, la logique de la présentation, afin d'être en

mesure de le faire moi-même.
        

11. Quand je peux suivre tout le discours donné par l'enseignant, je pense que je l'ai compris.         

PARTIE 3: A quoi la priorité ?

A quoi un excellent enseignant doit-il donner la priorité ? A quoi un excellent étudiant doit-il donner la priorité ? 
  fournir des informations complètes et claires   être attentif et prendre des notes complètes 
  montrer aux étudiants comment résoudre les 

exercices 
  résolution des exercices 

  démontrer la pertinence et les connexions entre les 
différents aspects de la matière 

  application des concepts dans de nouveaux 
contextes, tels que les projets 

  stimuler les étudiants à aborder les champs 
nouveaux et difficiles. 

  développement de ses propres idées 

  stimuler les étudiants à explorer des problèmes 
complexes et sans réponses claires 

PARTIE 4: Veuillez nous donner un peu plus d’information…
1. Votre

section :
ENAC SB STI IC SV CDM Autre 

AR GC SIE CGC MA PH EL ME MT MX IN SC 
               

2. Année : B1 B2 B3 M1 M2 Autre 
      

4. Etudes avant
EPFL :

Swiss France Autre 
   

3. Age : 
 

<18 18-19 20-21 22-23 24-25 26-27 28+
       

5. Sexe : Female Male Autre 
   

PARTIE 5: Avez-vous des commentaires ou suggestions ? 

        
        
        
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Epistemology and in-class activities May 2016

This survey explores how students approach their studies and their actions during classes. It is part of 
the doctoral project of Ms. Siara Isaac, supervised by Dr. Ashwin, Lancaster University, UK.  

For more information, please consult the yellow (French) or pink (English) page. 

It takes 8 minutes to respond 

A HUGE THANK YOU YOR YOUR HELP! 

***in the context of your studies 
PART 1: agree or disagree 
1. There is space for personal opinion in how fundamental engineering concepts are defined.         
2. What is true today will be true tomorrow.          
3. There are clear boundaries between scientific disciplines, such as biology and physics.          
4. It's ok for an engineer not to know the answer if they have ideas about how to find one.          
5. Personal opinions must be taken into account when interpreting data.          
6. Principles in engineering cannot be argued or changed.          
7. First-hand experience is the best way to know something.          
8. Even advice from experts should be questioned.          
9. Engineering knowledge should be accepted as an unquestionable truth.          
10. Learning a new concept often changes how I understand what I already know.          
11. It is rare to learn something without a teacher.          
12. Correct solutions in the field of engineering are more a matter of opinion than fact.          
13. If you read something in a book for engineering, you can be sure it is true.          
14. I am more likely to accept the ideas of someone with first-hand experience than the ideas

of researchers.
         

15. Checking with an expert is the only way to validate my reasoning.          
16. New discoveries have caused major changes in our understanding of the physical world.          
17. It is the professors' responsibility to ensure students have the objective truth.          
18. I look forward to contributing to engineering knowledge myself.          
19. When awarding government funding for science, people's personal beliefs should be taken

into account.
         

20. Significant changes in fundamental engineering knowledge are still possible.          
21. Instructors should focus on facts instead of theories.          
22. I don't like to accept an expert's opinion unless I can work out the logic myself.          
23. The key to being an expert engineer is a comprehensive mental list of useful principles.          
24. I like to compare my ideas with the professor's ideas.          
25. I am more confident when I check my answer logically than when I ask a teacher.          
26. A significant part of learning engineering is building a list of important principles.          
27. The best engineers have assimilated the maximum amount of engineering knowledge.          
28. Decisions about awarding research funding should value expert interpretation over public

opinion.
         

*** in the context of your favourite course this semester 
PART 2: always or never 
1. I learn most from exercises with a single clear answer.          
2. Comparing my answers with a peer is a good check of my understanding.          
3. Being present in class and picking up the main facts is usually enough.          
4. I enjoy the challenge of open-ended problems with several possible solutions.          
5. I find it useful to do exercises even if no solution is provided.          
6. I listen for how the professor thinks, how s/he approaches the material as an expert.          
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*** in the context of your favourite course this semester 
PART 2: always or never 
7. I learn a lot from my peers.          
8. I need to do exercises in order to test my understanding of a lecture.          
9. I listen for why the professor has chosen this material and how it is relevant to my studies.          
10. Following the solution is just a faster way to learn than having to solve the exercise myself.          
11. When I can describe a concept in my own words, then I know that I have understood.          
12. I feel class is less valuable when the professor lectures the whole time.          
13. Getting the correct answer is more important than understanding each step of a solution.          
14. I check my understanding by explaining to a peer.          
15. I listen to build a picture of how the different aspects of the course relate to each other.          
16. I appreciate when the professor ask me my opinion.          
17. Memorising the exact formulation of the definition is the best way to be sure of

understanding.
         

18. My favourite classes require me to develop my own ideas.          

PART 3: 
What is the one characteristic which marks out a really 
good professor? 

What is the one characteristic which marks out a really 
good student? 

 providing complete, clear information  being attentive and taking complete notes 

 showing students how to solve problems  being able to solve all the exercises 

 demonstrating the relevance and connections 
between different aspects of the material 

 applying the concepts in novel contexts, such as 
projects 

 challenging students to explore difficult, novel areas  developing their own ideas 

 challenging students to explore unclear, open-
ended problems 

PART 4: Please tell us a little about yourself …
1. Your

section:
ENAC SB STI IC SV CDM Other UNIL 

AR GC SIE CGC MA PH EL ME MT MX IN SC géology 

                

2. Year: B1 B2 B3 M1 M2 Other 
      

4. Studies
before EPFL:

Swiss France Other 
   

3. Age: <18 18-19 20-21 22-23 24-25 26-27 28+ 
       

5. Sex: Female Male Other 
   

PART 5: Comments or suggestions ? 
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Engineering Epistemology Sept 2017 
This survey explores how EPFL students approach their studies. It is part of the doctoral project of Ms. Siara 
Isaac, supervised by Dr. Ashwin, Lancaster University, UK.  

For more information, please consult the yellow (French) or pink (English) page. 

Please answer thinking about your favourite engineering/science course this semester. 

Course name/discipline : ie. Chemical engineering design, 
hydrology… 

1. Getting the correct answer is more important than understanding each step of a solution.          
2. I listen to build a picture of how the different aspects of the course relate to each other.           
3. I appreciate when the professor ask me my opinion.           
4. Memorising the exact formulation of a definition is the best way to be sure of understanding.              
5. It's ok not to know the answer if I have ideas about how to figure one out.           
6. Principles in this area of engineering cannot be argued or changed.           
7. Even advice from experts in this field should be questioned.           
8. Engineering knowledge in this field should be accepted as an unquestionable truth.           
9. Asking my teacher is the only way to check my reasoning.           
10. I listen for how the professor thinks, how s/he approaches the material as an expert.           
11. Expertise in this field is about making well-informed decisions.           
12. Problems with several possible solutions are useful for my learning.           
13. This class encourages me to develop my ideas.           
14. I learn most from exercises with a single clear answer.           
15. I find it useful to do exercises even if no solution is provided.           
16. I don't like to accept the teacher's answer unless I can understand the logic myself.           
17. I listen for why the professor has chosen this material and how it is relevant to my studies.           
18. Following the solution is just a faster way to learn than having to solve the exercise myself.               

19. How frequently can you use each
method to check your answers in
this course/discipline?
Approximations or estimates          Reviewing the mathematical steps          
Imagining extreme or limiting cases          Asking a teacher or expert          
Thinking of a real world example or
application

         Verifying that order of magnitude 
is reasonable 

         

Using the solutions provided by the
instructor.

         Using units during a calculation to 
see if you are on the right track. 

         

Performing a physical experiment or
observation

         Asking a peer          

Reviewing the concepts or logic of the
thinking behind your answer

         Checking the units of the final 
answer. 

         

20. What is the one characteristic which marks out a really
good professor? 

21. What is the one characteristic which marks out a
really good student? 

 Providing complete, clear information.  Being attentive and taking complete notes. 
 Showing students how to solve problems.  Being able to solve all the exercises. 

 Demonstrating the relevance and connections
between different aspects of the material. 

 Applying the concepts in novel contexts, such as
projects. 

 

 

Challenging students to explore difficult, novel areas. 
Challenging students to explore problems that may 
not have a clear solution. 

 

 

Developing their own ideas. 
_____________________________ add your own option

 __________________________________ add your own option Please turn over 
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22. What is the one characteristic that marks out a really good engineer? 

 Knowing all the concepts and rules of the discipline by heart. 

 Applying the concepts to the problem at hand. 

 Deciding on the optimal solution by assigning priorities to multiple technical requirements 

 Finding a compromise between disciplinary knowledge and real world constraints. 

 Generating a novel approach or technique for the problem at hand. 

 __________________________________ add your own option

Please tell us a little about yourself …
23. Your

section:
ENAC SB STI IC SV CDM Other 

AR GC SIE CGC MA PH EL ME MT MX IN SC 
               

24. Year: B1 B2 B3 M1 M2 Other 
      

25. Age: <18 18-19 20-21 22-23 24-25 26-27 28+
       

26. Studies
before EPFL:

Swiss France Other 
   

27. Genre: Female Male Other 
   

28. Stage: If you have done a stage(s) or worked in a science or
engineering field, how long in total? 

    months 

29. Projects: 0 1-2 3-6 7-11 12+ 

     

     

How many projects >2 weeks have you 
completed during your university studies? 

How many of these required you to propose 
a novel approach or design a product? 

30. Comments or suggestions ?
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APPENDIX C 

THINK-ALOUD TASKS, 2017 and 2018
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Epistemic Practices: a framework for characterising  
engineering students’ epistemic cognition. 



Note: Exercises were provided in French or English, depending on the choice of the student. 

Warm	Up	Task	

If the reaction shown below produces B at a rate of 8·10-2 
mol/s, how long will it take to consume 10g of A?           

2𝐴      →      𝐵 

Molecular mass  
A 46.08 g/mol 
B 92.16 g/mol 

Task	1	2016	

The food preservative XO3 is synthesised by the reaction 1, presented below. The 
speed of the reaction is expressed in terms of the change in concentration of XO3. 

Reaction 1: 𝑋𝑂ସ   ൅   Y   ሱ⎯⎯⎯⎯⎯⎯ሮ   𝑋𝑂ଷ   ൅   𝑌𝑂 ∆ሾ௑ைయሿ
∆௧

ൌ 8 ௠௢௟
௅∙௦

 

A second undesirable product, Y2XO, is formed by reaction 2, shown below. The 
speed of the reaction is expressed in terms of the change in concentration of 
Y2XO. 

Reaction 2: 𝑋𝑂ଷ   ൅   2Y 
                        
ሱ⎯⎯⎯⎯⎯⎯ሮ   𝑌ଶ𝑋𝑂  ൅ ଵ

ଶ
𝑂ଶ            ∆ሾ௒మଡ଼୓ሿ

∆௧
ൌ 0.3 ௠௢௟

௅∙௦
 

In order to determine the optimal reaction condition, an 
industrial synthesis of XO3 is performed at 40 ° C with 
10 kg of XO4 and 3 kg of Y in 10 L of solvent. Calculate 
the concentration of XO3 at t = 0,5 seconds. 

Molecular mass 
XO3 80.4    g/mol 
XO4 96.2    g/mol 
Y 31.6    g/mol 
YO 47.3    g/mol 
O2 32.0    g/mol 
Y2XO 110.8    g/mol 

Task	2	2016	

a. Is humid air more or less dense than dry air ? Show your reasoning.
b. In winter, water vapour in the air condenses into the solid state (ice) on car 

windsheilds, for example. Do you anticipate that this process consumes
(endothermic) or releases (exothermic) energy? Justify your response in two 
ways. 
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Task	3	2016	

A dentist mixes 2,0 ml of 
methylmethacrylate with 
4,0 g of 
polymethylmethacrylate 
beads and induces a 
polymerisation reaction 
with UV light. What is the 
expected change in 
temperature, assuming 
complete conversion of 
the methylmethacrylate? 

𝑀𝑀𝐴  
    ௎௏     
ሱ⎯⎯⎯⎯⎯ሮ  𝑃𝑀𝑀𝐴 

methylmethacryla
te MMA 

polymethylmethacrylate 
PMMA 

Formula  CH2=C(CH3)COOC
H3 

[CH2C(CH3)(COOCH3)]n  
n = 5-6000 

Structure 

Molecular  
mass 

100.1  g/mol 510 – 550 x 103  g/mol 

Density 0.945  g/cm3 1.19 g/cm3 
Heat 
capacity  

1.911  kJ/gC 1.370  kJ/gC 

Hpolymerisation  -54.3 x 103  J/mol

Task	1	2017‐2018	

The polymerisation process for the injection 
moulding of plastic components generates 
1530 J of heat per g of PVC produced. The 
Hochelega injection moulding system 
weighs 17 kg and has a heat capacity of 2.17 
kJ/(kg·K). If the temperature must be kept 
below 45C, what is the maximum weight 
component (in g) that can be made if the 
starting temperature is 25C? 

Polyvinyl chloride  PVC 
Formula  (C2H3Cl)n 
Structure   n = 

45-
60000 

Molecular 
mass 

100 – 200 x 103  
g/mol 

Density 1.3 g/cm3 
Hpolymerisation  1530 J/g 

Task	2	2017‐2018	

A chemical explosion releases microscopic ash 
particles with an initial velocity of 17 m/s. 
What is the farthest distance this debris will 
travel from the explosion site, assuming the 
explosion occurred on a large flat surface? 

Ash particles 
Composition  CaCO3; 

MgCO3; 
K2CO3; 
SiO2 ; Al2O3 ; 
CaO ; Fe2O3 

Average size 90 m 
Average density 0.561  g/cm3 

Task	3	2017‐2018	

How far does a car travel before a one-molecule layer of rubber is worn off the 
tires? 
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