Nonlinear analytical study of structural laminated glass under hard body impact in the pre-crack stage

Xu-Hao Huang^a, Xing-er Wang^{b,c,d*}, Jian Yang^{b,c,e}, Zhufeng Pan^{b,c}, Feiliang Wang^{b,c}, Iftikhar

Azim^{b,c}

^a Key Laboratory of Impact and Safety Engineering, Ministry of Education, Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, PR China

^b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

° Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean and

Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

^d Department of Engineering, Lancaster University, Lancaster LA1 4YW, UK

^e School of Civil Engineering, University of Birmingham, Birmingham B15 2TT, UK

1 Abstract: Emerging glass structures, which frequently use laminated glass (LG) as load bearing 2 elements, see a significant rise in recent decade. Existing analytical solutions for LG under impact 3 present limitation when introduced into structural LG products, as structural LG having more glass plies and soft polymeric interlayers requires more accurate nonlinear analytical model. In this study, 4 5 a nonlinear analytical model was proposed for the simply supported square structural LG subjected 6 to hard body impact. The motion equations were established based on a third order shear deformation theory and von Kármán nonlinear strain-displacement relationship. Based on a two-7 step perturbation method, the solutions of the motion equations were obtained. The fourth-order 8 9 Runge-Kutta method was used to capture the impact force variation. Drop weight impact tests with 10 increasing impact velocity, were conducted to record the impact force of LG panels before breakage. 11 Eighteen LG panels with PVB or SG interlayers were tested. Through analysing the fracture 12 initiation from high speed photos as well as the impact force variation in the impact attempt causing 13 fracture, certain feature of the experimental impact force response was determined to be validated 14 with analytical prediction. The validation results show that the proposed model can well reproduce the examined feature and achieve satisfactory impact force response. Case study was then designed 15 16 to investigate the influence due to the safety windows film on reducing the pre-crack impact 17 response. The effective thickness of LG based on the equivalence of indentation was also proposed 18 for the hard body impact.

Keywords: Laminated glass; Nonlinear dynamics; Architectural glass; A two-step perturbation
 method; Hard body impact;

1 **1. Introduction**

2 Structural use of glass, in particular, those glass components acting as load bearing elements 3 commonly require greater redundancy to survive the glass fracture [1, 2]. Therefore, structural 4 laminated glass (LG) products, which comprise more than two glass plies and one polymeric 5 interlayers to achieve better post-fracture performance, have been increasingly used in glass 6 buildings [3]. The most commonly used polymeric interlayers in glass buildings are Polyvinyl 7 Butyral (PVB) [4] and ionoplast interlayers [5]. The impact resistance is one essential factor in the 8 design of glass structures, as glass materials (even thermally toughened glass) present high 9 vulnerability under impacts [6, 7]. Impacts on the structural glass commonly have two types: soft 10 body impact such as manual hit or falling [8-10], or hard body impact like axe attack or windborne 11 debris hit [11, 12]. The structural calculations or experimental study on the soft body impact on the 12 glass products have reached a high level of accuracy [13, 14], which can be found in the existing 13 design code and specifications [15]. However, the hard body impact which yield greater threat to 14 the glass products has less attention.

15 Most works of the hard body impact on the glass products are carried out by laboratory tests 16 or numerical simulation, which demands the speciality of engineers and facilities [16]. In the 17 laboratory tests, the hard body impactor might be small missiles to simulate windborne debris [17-18 19], large weight impactor with steel hemispherical head to simulate objects falling [20]. In the 19 automotive engineering, a headform impactor comprising aluminium sphere and Polyvinyl chloride 20 (PVC) skin is designed to simulate human head [21-23]. Wang et al. conducted a series of 21 experiment on testing both pre- and post-fracture behaviour of laminated glass (LG) panels using 22 ionoplast interlayer [20]. The results show the growth trend of the energy dissipation feature and the 23 transverse stiffness under impacts with increasing impact velocities. However, the laboratory tests 24 are expensive and cannot cover as many design variables as the numerical models can. Finite 25 element method (FEM) can be frequently seen in modelling the impact failure of LG products. Most 26 works using FEM focus on developing applicable failure criterion for glass materials [24] or glass-27 interlayer interface [25, 26]. Other numerical models such as combined finite-discrete element 28 method have also been used in the related topic [27]. Complex mechanical models were developed 29 and implemented into the numerical model [16] to improve the computation accuracy, however, this

also brings more difficulties for the engineers to conduct a concise simulation. To have a quick
 assessment of the impact resistance of glass products, an analytical model might be more practical
 for designers.

4 Analytical studies on the impact response of composite laminates can be frequently found. Due to low transverse shear moduli relative to the in-plane Young's moduli, transverse shear deformation 5 6 plays a much important role in the kinematics of composite laminates. Choi et al. [28] proposed a 7 modified displacement field of plate theory for carbon/epoxy laminates to consider the effect of in-8 plane pre-load. The analytical contact force history in the low-velocity impact was compared with 9 that from a pendulum impact test. The results show that as the impact energy increases, the analytical 10 result will present higher difference from the experimental result, indicating the impact velocity or 11 impact energy variation needs to be considered in analytical solution. Singh et al. [29] improved a 12 spring-mass system to represent the contact, shear, bending and membrane stiffness of composite 13 laminates. The comparison between FEM result and analytical result shows that the local indentation 14 at impact point should also be considered in a low velocity large mass impact. In Singh's model, the 15 modified contact stiffness was proposed to consider the damage caused by external impact. Wang 16 et al. [30] reviewed eighteen theoretical contact models reported in existing works. It can be found 17 that local indentation is frequently used to characterize the contact behaviour between the impact 18 body and the plate. Therefore, adopting a suitable contact model is a key step in the low-velocity 19 impact model of the laminated structures. Analytical impact model of other composites such as 20 functionally graded carbon nanotube-reinforced composite (FG-CNTRC) [31], carbon fibre 21 reinforced plastics (CFRP) [32], and laminate consisting of polymethyl methacrylate (PMMA) and 22 thermoplastic polyurethane (TPU) [33] under dynamic load can also be found. In contrast, the report 23 on the analytical solution for the LG under low-velocity hard body impact is limited so far. A recent 24 work of Yuan et al. [22] aimed to develop an analytical model for thin automotive LG subjected to 25 low velocity impact of headform impactor. The first-order shear deformation plate theory 26 incorporating the effect of bending, membrane and transverse shear was employed in this model. 27 The peak transverse displacement and contact force from analytical model were compared with that 28 from experimental test. The difference in the contact duration between analytical and testing result 29 was found to be evident, whereas the trend of transverse displacement was satisfactory. Amabili et 30 al. [34] proposed a theoretical model to study the nonlinear dynamic response of laminated glass

3

plates subjected to blast load. In this model, the geometrically nonlinear damping model [35] was
adopted to capture the variation of damping values associated with large-amplitude oscillations of
the plate. Other analytical models commonly focus on the static load [36] or blast load [37].

5

4 However, as above mentioned, the structural LG is produced via lamination with multiple glass layers, which might be up to 19 mm (e.g. fully tempered glass) for each glass layer. The first order 5 6 shear deformation theory, which is widely used in the existing analytical works, is very likely to be 7 not applicable in such product, as the multiple "stiff glass - soft polymer" interlaminar deformation 8 is complex. Due to great difference in the material characteristics between the glass layers and the 9 polymeric interlayers, the effect of shear deformation is commonly significant. Therefore, high-10 order shear deformation plate theories should be used to study the dynamic behaviour of laminated 11 glass panel. At the same time, the contact law used in the analytical model for the laminated glass 12 panel containing the soft-core layer should be modified based on the experimental results. In 13 addition, existing research shows that the increase of impact energy might generate greater deviation 14 of analytical result from realistic one, which has not been well examined. Therefore, in this paper, 15 three novelty points are primarily introduced: 1) the third order shear deformation theory is adopted 16 to consider complex interlaminar deformation, which is more appropriate for structural LG than 17 existing works; 2) the local indentation, which exhibits significant effect on the impact failure due 18 to hard body impact but has not been considered in the existing analytical efforts, is introduced in 19 the proposed model; 3) impact tests are conducted with varying its impact energy, which is then 20 used to examine the potential deviation from the experimental data in the proposed analytical model. 21 Finally, a nonlinear dynamic analytical model can be built for the structural LG under hard body 22 impact with low velocity.

23 In this work, the impact responses of LG under different impact velocities were investigated 24 theoretically and experimentally. An analytical model considering geometric nonlinearity and shear 25 deformation was presented. The motion equations of the LG and impactor were obtained by 26 combining TSDT with larger deflection theory and framework of Newton's second law of motion, 27 respectively. Furthermore, the second-order differential equation (SODE) including the perturbation 28 solution of the dynamic equation of LG and dynamic equation of impactor can be solved by a fourth 29 order Rung-Kutta method (RK4). The relationship between impact force or indentation and time 30 can be obtained. Drop weight impact tests were subsequently carried out to record the pre-crack impact force data of LG panels. Followed by a procedure of determining the validated feature of impact force response, the comparison between the analytical and experimental results was finally conducted to examine the applicability of the proposed model. Two case studies: 1) the investigation into the influence of the safety windows film on reducing the pre-crack impact response; 2) the validation of the proposed effective thickness of LG based on the indentation equivalence, were then conducted.

7

8 **2. Laboratory tests**

9 **2.1 Testing apparatus**

10 In this work, the low velocity impact on the structural LG elements is assumed to be caused by 11 large mass impactor such as furniture. A drop weight impact test method with a peak drop height of 12 6 m was adopted. A transparent guide pipe made of Polymethyl methacrylate (PMMA) was used to 13 drop the impactor (Fig. 1(a)). A testing approach characterized by a series of impact attempts with 14 gradually increasing drop heights until glass fracture was adopted. The increment of drop heights 15 was determined as 0.1 m or 0.2 m, which was adjusted according to the expected fracture state of next impact. The impact velocity was then recorded in each impact attempt. It is noting that the 16 17 repeated impact attempts cannot guarantee precisely identical impact velocity with same drop 18 heights, which is due to the friction of testing system and man-made errors. All sensors were 19 connected to data acquisition units, a sampling frequency of 100 kHz was determined during the 20 tests. Type DH5922N data acquisition unit with multiple sampling modules, which can reach a 21 highest sampling frequency of 256 kHz, was adopted.

Design of the impactor: the large mass impactor made of steel was designed to be a 13.5 kg weight with a spherical head radius of 40 mm and a cylindrical body. A ring-shaped integrated circuit piezoelectric (ICP) force sensor was installed between the head and the impactor body to measure the impact force. The force sensor, type SA-CL600, has a sensitivity of 4 pC/N with response threshold less than 0.01 N. An ICP accelerometer (type SA-PED5W) having a sensitivity of 2 $pC/(m \cdot s^{-2})$ was placed near the impactor head to measure its acceleration (**Fig. 1**(b)).

28

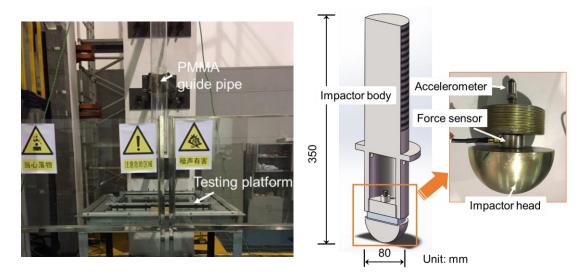
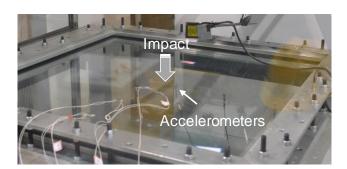
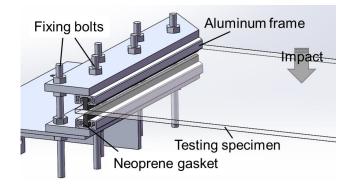



Fig. 1 Design of the testing system and impactor


- (a) Guide pipe and testing platform
- (b) Configuration and details of impactor

1

2 Design of the testing platform: the platform was designed to test specimens with a largest size 3 of 1.5 m × 1.5 m (Fig. 2 (a)). Considering that the large mass impact will cause too much bouncing 4 and movement of the specimens with simple support, a slight upper constraint was applied at the 5 specimen edge as shown in Fig. 2 (b). Although the design was originally for the clamping support, 6 the fixing bolts were adjusted to provide very limited rotational constraint at glass edge in this 7 experiment. A pair of thick neoprene gasket was used to limit the bouncing and movement of the 8 specimen. Through such design, a support condition which was highly close to the simple support 9 can be achieved. The accelerometer glued to the bottom surface of panels beneath impact has a 10 sensitivity of 2 pC/(m·s⁻²), the nominal threshold is 0.13 g with long-term stability of $\pm 1\%$. 11

(a) Testing platform and specimen

(b) Details of the support condition

Fig. 2 Testing platform and details of the support

2 2.2 Testing specimens

3 18 LG panels split into 2 groups (See Table 1) were selected for testing. Fully tempered (FT) 4 glass and two types of interlayers, PVB (Butacite[®]) and ionoplast (SentryGlas[®], SG) interlayers, 5 were utilized to make LG panels. It is noting that, in **Table 1**, because of the discreteness in glass 6 products (e.g., fracture strength of glass, adhesion level between glass and polymer) and impact 7 attempts, the number of impact attempts until fracture were not same. The soda-lime-silica glass 8 products used for the lamination followed the standard requirement of Chinese GB 15763.2 [38]. 9 The glass products had edge treatments including polishing before tempering, and its surfaces did 10 not have any treatment. The laminated glass products provided by Henan Zhongbo Glass Co., Ltd 11 followed the standard requirement of Chinese GB 15763.3 [39]. The glass lamination adopted a 12 regular roller prelamination process and autoclaving process. Before lamination, interlayers were 13 packed and transported to the manufacturer without exposure to sunlight.

The uniaxial tensile property of PVB material was tested according to GB/T 529 [40] using Instron universal testing machine. The uniaxial tensile tests were performed at ambient temperature of 20 °C with a loading strain rate of 0.2 s⁻¹. The tangent modulus at original point was found to have a mean value of 73.4 MPa, the mean secant modulus at strain of 0.1 was found to be 13 MPa. The ionoplast interlayer was tested under uniaxial tension at the identical ambient temperature and loading strain rate as well. The tangent modulus at original point was around 535 MPa.

20 Several LG panels were tested within each group. Each panel had multiple impact attempts 21 before its fracture. The specimens were sized of 1.0 m × 1.0 m. The nominal thickness of the glass 22 layer and interlayer were 8 mm and 1.52 mm (PVB) or 3.04 mm (SG), respectively. The overlap

1 length of the specimen edges from the support was 15 mm. After testing a total number of 12 PVB

2 LG panels and 6 SG LG panels, the pre-crack impact attempts successfully collected 103 groups of

3 experimental data for PVB LG and 31 groups of data for SG LG.

Table 1 Configuration of the testing specimens							
ID	Thermal	Interlayer	Thickness	Number of impact	Impact velocity		
	treatment	material	(mm)	attempts	$(m \cdot s^{-1})$		
1-01	Fully tempered	PVB	8/1.52/8	13	0.86 - 1.37		
1-02	Fully tempered	PVB	8/1.52/8	1	0.86		
1-03	Fully tempered	PVB	8/1.52/8	5	0.92 - 1.27		
1-04	Fully tempered	PVB	8/1.52/8	5	0.86 - 1.21		
1-05	Fully tempered	PVB	8/1.52/8	4	0.88 - 1.14		
1-06	Fully tempered	PVB	8/1.52/8	2	0.86 - 0.97		
1-07	Fully tempered	PVB	8/1.52/8	12	1.0 - 1.53		
1-08	Fully tempered	PVB	8/1.52/8	22	0.82 - 1.76		
1-09	Fully tempered	PVB	8/1.52/8	8	0.82 - 1.29		
1-10	Fully tempered	PVB	8/1.52/8	21	0.89 - 1.96		
1-11	Fully tempered	PVB	8/1.52/8	12	0.82 - 1.49		
1-12	Fully tempered	PVB	8/1.52/8	11	1.01 - 1.43		
			Total	103	0.82 - 1.96		
2-01	Fully tempered	SG	8/3.04/8	11	0.86 - 1.41		
2-02	Fully tempered	SG	8/3.04/8	8	0.91 - 1.27		
2-03	Fully tempered	SG	8/3.04/8	2	0.81 - 0.82		
2-04	Fully tempered	SG	8/3.04/8	2	0.84 - 0.87		
2-05	Fully tempered	SG	8/3.04/8	8	0.64 - 0.95		
2-06	Fully tempered	SG	8/3.04/8	1 (N/A)	0.64 (crack)		
			Total	31	0.64 -1.41		

Table	1	Configuration	of the	testing	specimens
Lable	T	Configuration	or the	testing	specificits

4

6 2.3 Experimental observation

7 Impact force in the pre-crack impact attempt: the recorded data of ID1-03 (FT/PVB/FT) is 8 taken as example to show the typical time history of impact force (Fig. 3) after the impactor contacts 9 the glass panel. It can be seen that there are two contacts within 8 ms. The duration of each contact 10 is around 2.29 ms and 2.83 ms, respectively. As the second contact will not be the predominant hit 11 for cracking the glass, it will not be considered in this study. In the first contact, the oscillation of 12 the force curve is caused by the dynamic coupling effect between impactor and glass panel. Such 13 coupling effect can be frequently seen in the hard body impact, which is due to the interaction 14 between the local high-frequency deformation behaviour of glass material and the impactor

1 movement. The peak impact force can commonly be found at the first or second peak.

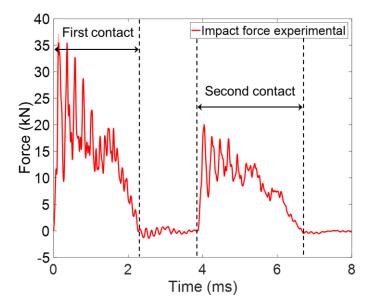
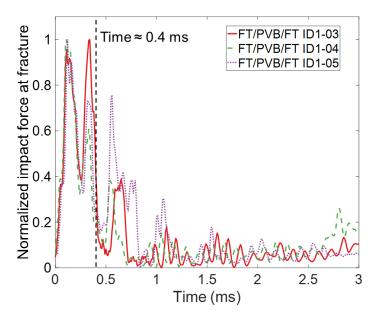



Fig. 3 Typical impact force variation in pre-crack impact attempt

2

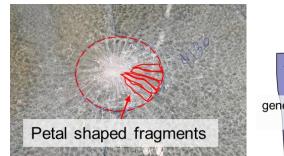
3 Differing from the previous study using soft impactor head, in which the impact force is 4 without oscillation because the interaction force between soft head and glass is not evident, great 5 difficulty rises in seeking the theoretical result of hard body impact when introducing the high-6 frequency oscillation of impact force. Thus, a rational assumption should be made to simplify the 7 analysis procedure whilst the essential factors are considered. Although the impact force at the first 8 contact has a duration of nearly 2.29 ms in Fig. 3, it presents the highest value at the first peak (or 9 second peak in several other impact attempts). It implies that the impact force or the impact energy 10 transferred into the glass panel at the earliest force peaks might dominant the fracture of glass layers. In Fig. 4, the normalized impact force curves at fracture in ID1-03, 1-04 and 1-05 are given as 11 12 example to identify the force peaks which is most likely to determine the glass fracture. It is found 13 that the impact force is more likely declining to zero at nearly 0.4 ms, which indicates the fracture 14 of glass. Such duration commonly includes two force peaks.

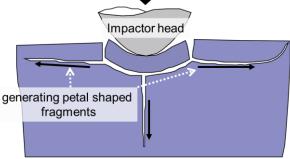
The high speed photos at the fracture initiation of ID1-04 and 1-05 are given in **Fig. 5** to better support the determination of the predominant force peaks and its duration. The fractures in ID1-04 and 1-05 both initiate at the contact side with the generation of petal shaped fragments near the impact point. After cracks propagating beyond the edge of petal shaped fragments, the FT glass fractures into small dices which are similar to that from the spontaneous breakage (**Fig. 6** (a)). The fracture initiation in the selected specimens is captured at nearly 0.32 - 0.40 ms, which is highly 1 close to the time at force drop from the impact force curves.

2 3

Fig. 4 Impact force variation in impact attempt causing crack

(a) Fracture initiation of ID1-04




(b) Fracture initiation of ID1-05

4

Fig. 5 High speed photos of ID1-04 and 1-05 at fracture initiation

5 Through analysing the fracture pattern, in particular, the petal shaped fragments as well as the 6 fracture initiation and propagation shown in the high speed photos, it can be concluded that the 7 impact failure of glass at contact side is primarily caused by the indentation of the hard impactor 8 head into the glass. As the fracture initiation at the contact side under hard body impact is due to a 9 similar failure process to that in the indentation failure of thermally tempered glass. The crack propagation at the impact point is shown in **Fig. 6** (b). A Hertzian cone crack will firstly be formed near the impactor head [41], which is followed by the lateral crack propagation to generate the petal shaped fragments. Whilst, the central crack will propagate vertically beneath the impact point. This is different from the report in the soft body impact, which finds that the fracture commonly initiates at the opposite side with a pattern of radial cracks, indicating that the failure is due to the tensile stress wave. Therefore, it is rational to introduce the indentation movement in the theoretical model of hard body impact to consider such failure mode.

(a) Fragments at outer glass layer

(b) Generating petal shaped fragments

Fig. 6 Fracture pattern from indentation dominant failure

9

8

10 **3. Nonlinear dynamic theoretical model**

In this section, a nonlinear dynamic model is presented for investigating the low velocity impact of LG panels. To simplify the model, the classical Hertz contact law (HCL) is used to characterize the impact response of such structures. It is worth noting that the initial velocity of the impactor is obtained by combining the HCL and introducing a modified coefficient through experiments.

16 **3.1 Contact model for hard body impact**

- 17 The general contact laws proposed by Meyer was used extensively to capture the indentation
- 18 of solids. The contact force F_C at different loading stages can be defined as

19 At the loading phase,

$$F_{c}(t) = K_{c} \left[\delta(t)\right]^{r}$$
⁽¹⁾

1 with r = 1.5 is suitable for contact between two isotropic structures. This is also named Hertz's 2 contact law (HCL), which can frequently found in the related works to the impact on LG [42]. 3 However, Abrate [43] found that the HCL was not available to capture the indentation of a sandwich 4 structure. It is then proposed that the index *r* can be taken as 0.8 by comparing the experimental 5 results with those obtained from Eq.(1).

6 At the unloading phase,

$$F_{C}(t) = Q_{\max} \left[\frac{\delta(t) - \delta_{0}}{\delta_{\max} - \delta_{0}} \right]^{r}$$
(2)

7 where contact stiffness K_C related to the material properties of impactor and face layer of LG 8 is expressed as

$$K_{C} = \frac{4}{3} \left(\frac{1 - \left(\mu_{steel}\right)^{2}}{E_{steel}} + \frac{\left(\mu_{glass}\right)^{2}}{E_{glass}} \right)^{-1} \sqrt{R_{i}}$$
(3)

9 in which E_{steel} , μ_{steel} , and R_i are the material and geometric properties of impactor, respectively 10 (see Sec.4). Q_{max} and δ_{max} are the maximum contact force and local indentation, respectively. The 11 irrecoverable local indentation δ_0 equals to zero when δ_{max} remains below a critical indentation 12 during loading phase. Here, E_P is the elastic modulus of top layer of LG. Considering the effect of 13 out-of-plane Poisson's ratio, Greszczuk [44] proposed a formula for E_P of composite materials with 14 transverse isotropy along the loading direction.

Based on the contact law, a simple way was obtained for studying the effect of the various parameters on the impact response of structure. The initial kinetic energy of the impactor is $T = m_i$ $V^2/2$. Shivakumar et al. [45] showed that the energy can be absorbed by the overall deformation of the plate and local indentation. Based on this assumption, the energy balance equation for the plate can be expressed as:

$$\frac{m_i V_0^2}{2} = U_{bs} + U_m + U_c \tag{4}$$

where U_{bs} is the energy associated with the bending and shear deformations and U_m is the energy associated with membrane deformation. The energy U_{bs} and U_m for plates are defined in [45, 46].

23

For the HCL, the overall deformation of plate is ignored and the local contact indentation $\delta(t)$

1 is defined as

$$\delta(t) = \overline{W}_i(t) - \overline{W}(X, Y, t)$$
⁽⁵⁾

2

in which $\overline{W}_i(t)$ and $\overline{W}(X, Y, t)$ represent the displacement of impactor and deflection of the

3

LG panels, respectively. The energy stored by indentation can be obtained as follow:

$$U_{c} = \int_{0}^{\delta_{m}} Fd\delta = \int_{0}^{\delta_{m}} K_{c}\delta^{r}d\delta = \frac{\left(F_{m}\right)^{\frac{r+1}{r}}}{\left(r+1\right)\left(K_{c}\right)^{1/r}}$$
(6)

4

Therefore, the maximum contact force
$$F_m$$
 is written as

$$F_m = k_c \left(\frac{m_i V_0^2 \left(1+r\right)}{2k_c}\right)^{\frac{r}{1+r}}$$

$$\tag{7}$$

5 In this work, Hertz's assumption of impact on a half-space was adopted. The initial velocity of 6 impactor V_0 can be given by introducing the modified coefficient α .

$$V_{0} = \left(\frac{2k_{c}\left(F_{m}/k_{c}\right)^{\frac{1+r}{r}}}{m_{i}\left(1+r\right)}\right)^{\frac{1}{2\alpha}}$$

$$(8)$$

7 V_0 varies with the maximum contact force F_m obtained by experiment and the α =14/15 (instead 8 of 1 in HCL).

9 Hence, the motion equation of impactor is given as follow:

$$m_{i} \vec{\overline{W}}(t) + F_{C}(t) = 0, \ \overline{W}(0) = 0, \\ \vec{\overline{W}}(0) = V_{0}$$

$$\tag{9}$$

10 where the $m_i = 13.5$ kg is the mass of the impactor.

11

12 **3.2 Motion equations**

13 Let us consider the LG panels consisting of two glass face sheets and a polymeric interlayer.

14 Fig. 7 defines the coordinate system used in the analysis of glass panels. The XYZ coordinate system

15 is assumed to have its origin on the middle face of the plate, so that the middle surface lies in the

- 16 XY-plane. The displacements at a point in the X, Y, and Z directions are \overline{U} , \overline{V} , and \overline{W} , respectively.
- 17 The size of the panel is taken as $a \times b$ and the total thickness is *h*.

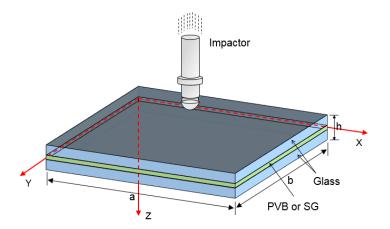


Fig. 7 Glass panels and the reference system adopted

The analysing method is based on the third order shear deformation theory [47] for the laminated plate undergoing large deflection. It should be noting that the nonlinear damping effect of PVB or SG interlayer triggered by large deflection is neglected in this model. The investigation of the effect of nonlinear damping on the large amplitude vibration of plate can be found in the recent works of Amalili [35, 48, 49]. In all the cases, a transverse low-velocity impact force Q is considered. The motion equations are given as follow:

$$\begin{bmatrix} \tilde{L}_{14}() & -\tilde{L}_{13}() & -\tilde{L}_{12}() & \tilde{L}_{11}() \\ \tilde{L}_{21}() & \tilde{L}_{23}() & \tilde{L}_{22}() & -\tilde{L}_{24}() \\ \tilde{L}_{34}() & -\tilde{L}_{33}() & \tilde{L}_{32}() & \tilde{L}_{31}() \\ \tilde{L}_{44}() & \tilde{L}_{43}() & -\tilde{L}_{42}() & \tilde{L}_{41}() \end{bmatrix} \begin{bmatrix} \bar{F} \\ \bar{\Psi}_{y} \\ \bar{\Psi}_{x} \\ \bar{W} \end{bmatrix} = \begin{bmatrix} 1 & \tilde{L}_{17}() & I_{8} \frac{\partial()}{\partial X} & I_{8} \frac{\partial()}{\partial Y} \\ 0 & 0 & 0 & 0 \\ 0 & I_{9} \frac{\partial()}{\partial X} & I_{10} & 0 \\ 0 & I_{9} \frac{\partial()}{\partial X} & I_{10} & 0 \\ 0 & I_{9} \frac{\partial()}{\partial Y} & 0 & I_{10} \end{bmatrix} \begin{bmatrix} Q \\ \ddot{W} \\ \ddot{\Psi}_{x} \\ \ddot{\Psi}_{y} \end{bmatrix} \\ + \begin{bmatrix} \tilde{L}(\bar{W}, \bar{F}) \\ -\frac{1}{2}\tilde{L}(\bar{W}, \bar{W}) \\ 0 \\ 0 \end{bmatrix}$$
(10)

8

1

where the nonlinear operator $(\tilde{L}())$ and the stress function (\bar{F}) can be expressed as follow:

$$\widetilde{L}() = \frac{\partial^2}{\partial X^2} \frac{\partial^2}{\partial Y^2} - 2 \frac{\partial^2}{\partial X \partial Y} \frac{\partial^2}{\partial X \partial Y} + \frac{\partial^2}{\partial Y^2} \frac{\partial^2}{\partial X^2}$$
(11)

$$\overline{N}_{x} = \partial^{2}\overline{F} / \partial Y^{2}, \ \overline{N}_{xy} = \partial^{2}\overline{F} / \partial X \partial Y, \ \overline{N}_{y} = \partial^{2}\overline{F} / \partial X^{2}$$
(12)

9

 $\overline{\Psi}_x$ and $\overline{\Psi}_y$ denote the rotation about the Y- and X-axis, respectively. The coefficients S_{ij} and

inertias I_i (i=8, 9, 10) are given in Appendix A. The operators $(\tilde{L}_{ij}())$ introduced in the above motion 1 2 equations are defined from [50].

In the current work, immovable in-plane boundary conditions (BCs) are considered as follows. 4 at *X*=0, *a*:

$$\overline{W} = \overline{\Psi}_{v} = \overline{M}_{x} = \overline{P}_{x} = 0 \tag{13}$$

$$\overline{U} = 0 \tag{14}$$

5

at Y=0, b:

3

$$\overline{W} = \overline{\Psi}_x = \overline{M}_y = \overline{P}_y = 0 \tag{15}$$

$$\overline{V}=0$$
 (16)

in which the quantities $(\overline{M}_x, \overline{M}_y)$ denote the flexural moments and $(\overline{P}_x, \overline{P}_y)$ represent the higher 6 7 order moments given by [47].

The immovable BCs are converted to integral form as given below: 8

$$\int_{0}^{b} \int_{0}^{a} \frac{\partial \overline{U}}{\partial X} dX dY = 0$$
⁽¹⁷⁾

$$\int_{0}^{a} \int_{0}^{b} \frac{\partial \overline{V}}{\partial Y} dY dX = 0$$
⁽¹⁸⁾

9 where,

$$\frac{\partial \overline{U}}{\partial X} = A_{11}^* \frac{\partial^2 \overline{F}}{\partial Y^2} + \left(B_{12}^* - \frac{4E_{12}^*}{3h^2} \right) \frac{\partial \overline{\Psi}_y}{\partial Y} + A_{12}^* \frac{\partial^2 \overline{F}}{\partial X^2} + \left(B_{11}^* - \frac{4E_{11}^*}{3h^2} \right) \frac{\partial \overline{\Psi}_x}{\partial X} - \frac{4}{3h^2} \left(E_{21}^* \frac{\partial^2 \overline{W}}{\partial X^2} + E_{22}^* \frac{\partial^2 \overline{W}}{\partial Y^2} \right) - \frac{1}{2} \left(\frac{\partial \overline{W}}{\partial X} \right)^2$$
(19)

10

$$\frac{\partial \overline{V}}{\partial Y} = A_{22}^* \frac{\partial^2 \overline{F}}{\partial X^2} + A_{12}^* \frac{\partial^2 \overline{F}}{\partial Y^2} + \left(B_{21}^* - \frac{4E_{21}^*}{3h^2}\right) \frac{\partial \overline{\Psi}_x}{\partial X} + \left(B_{22}^* - \frac{4E_{22}^*}{3h^2}\right) \frac{\partial \overline{\Psi}_y}{\partial Y} - \frac{4}{3h^2} \left(E_{21}^* \frac{\partial^2 \overline{W}}{\partial X^2} + E_{22}^* \frac{\partial^2 \overline{W}}{\partial Y^2}\right) - \frac{1}{2} \left(\frac{\partial \overline{W}}{\partial X}\right)^2$$

$$(20)$$

11 where the reduced stiffness $(A_{ij}^*, B_{ij}^*, D_{ij}^*, E_{ij}^*, F_{ij}^*, H_{ij}^*)$ are the functions of the geometry,

12 materials properties, and stacking sequence of the LG panels as given in Appendix A.

13 Here, a two-step perturbation approach technology [50] is used to solve the nonlinear equations. Eq. (10) can be converted to dimensionless forms by the definition of the following dimensionless 14

1 parameters as:

2

$$\begin{bmatrix} \gamma_{14}L_{14}() & -L_{13}() & -L_{12}() & L_{11}() \\ L_{21}() & \gamma_{24}L_{23}() & \gamma_{24}L_{22}() & -\gamma_{24}L_{24}() \\ \gamma_{14}L_{34}() & -L_{33}() & L_{32}() & L_{31}() \\ \gamma_{14}L_{44}() & L_{43}() & -L_{42}() & L_{41}() \end{bmatrix} \begin{bmatrix} F \\ \Psi_{y} \\ \Psi_{x} \\ W \end{bmatrix} = \begin{bmatrix} 1 & L_{17}(\ddot{W}) & \gamma_{80}\frac{\partial()}{\partial x} & \gamma_{80}\beta\frac{\partial()}{\partial y} \\ 0 & 0 & 0 & 0 \\ 0 & \gamma_{90}\frac{\partial()}{\partial x} & \gamma_{10} & 0 \\ 0 & \gamma_{90}\beta\frac{\partial()}{\partial y} & 0 & \gamma_{10} \end{bmatrix} \begin{bmatrix} \lambda_{q} \\ \ddot{W} \\ \ddot{\Psi}_{x} \\ \ddot{\Psi}_{y} \end{bmatrix} \\ + \begin{bmatrix} \gamma_{14}\beta^{2}L(W,F) \\ -\frac{1}{2}\gamma_{24}\beta^{2}L(W,W) \\ 0 \end{bmatrix}$$
(21)

3

It is convenient to introduce dimensionless parameters and nonlinear operator (L()).

$$(W, F) = \left(\frac{\overline{W}}{[D_{11}^{*} D_{22}^{*} A_{11}^{*} A_{22}^{*}]^{1/4}}, \frac{\overline{F}}{[D_{11}^{*} D_{22}^{*}]^{1/2}} \right), (x, y, \beta) = \left(\pi \frac{X}{a}, \pi \frac{Y}{b}, \frac{a}{b} \right)$$

$$(\gamma_{5}, \gamma_{14}, \gamma_{24}) = \left(-\frac{A_{12}^{*}}{A_{22}^{*}}, \sqrt{\frac{D_{22}^{*}}{D_{11}^{*}}}, \sqrt{\frac{A_{11}^{*}}{A_{22}^{*}}} \right), \gamma_{170} = -\frac{I_{1}E_{0}a^{2}}{D_{11}^{*}\pi^{2}\rho_{0}}, \gamma_{171} = \frac{4(I_{5}I_{1} - I_{4}I_{2})E_{0}}{3D_{11}^{*}h^{2}I_{1}\rho_{0}}$$

$$\left[\frac{\Psi_{x}}{M_{x}}, \frac{\Psi_{y}}{P_{x}} \right] = \frac{a}{\pi [A_{11}^{*} D_{11}^{*} A_{22}^{*} D_{22}^{*}]^{1/4}} \left[\frac{\overline{\Psi}_{x}}{aM_{x}}, \frac{\overline{\Psi}_{y}}{3h^{2}D_{11}^{*}\pi} \right], t = \frac{\pi \overline{t}}{a} \sqrt{\frac{E_{0}}{\rho_{0}}}$$

$$(\gamma_{10}, \gamma_{80}, \gamma_{90}) = (I_{10}, I_{8}, I_{9}) \frac{E_{0}}{\rho_{0} D_{11}^{*}}, (\lambda_{x}, \lambda_{y}) = \frac{h(\sigma_{x}b^{2}, \sigma_{y}a^{2})}{4\pi^{2}\sqrt{D_{11}^{*}}D_{22}^{*}},$$

$$\lambda_{q} = \frac{a^{4}Q}{D_{11}^{*}\pi^{4} [A_{11}^{*} D_{11}^{*} A_{22}^{*} D_{22}^{*}]^{1/4}}, L(\cdot) = \frac{\partial^{2}}{\partial X^{2}} \frac{\partial^{2}}{\partial Y^{2}} + \frac{\partial^{2}}{\partial Y^{2}} \frac{\partial^{2}}{\partial X^{2}} - 2 \frac{\partial^{2}}{\partial X \partial Y} \frac{\partial^{2}}{\partial X \partial Y}.$$

$$(22)$$

$$\text{ in which } E_{0} = E_{\text{glass}}, \rho_{0} = \rho_{\text{glass}}. \text{ In Eq. (21), the dimensionless linear operators } (L_{ij}(0)) \text{ are defined}$$

5

7

6 in [50].
$$\gamma_{170}$$
 and γ_{171} are used in Eq.(40.a).

Substitution of dimensionless parameters into Eqs. (13), (15) and (19)-(20) yields:

8 at *x*=0, *a*:

$$W = \Psi_{y} = M_{x} = P_{x} = 0 \tag{23}$$

$$\int_{0}^{\pi} \int_{0}^{\pi} \left[\gamma_{24}^{2} \beta^{2} \frac{\partial^{2} F}{\partial y^{2}} - \gamma_{5} \frac{\partial^{2} F}{\partial x^{2}} + \gamma_{24} \left(\gamma_{511} \frac{\partial \Psi_{x}}{\partial x} + \gamma_{223} \beta \frac{\partial \Psi_{y}}{\partial y} \right) - \gamma_{24} \left(\gamma_{244} \beta^{2} \frac{\partial^{2} W}{\partial y^{2}} + \gamma_{611} \frac{\partial^{2} W}{\partial x^{2}} \right) - \frac{1}{2} \gamma_{24} \left(\frac{\partial W}{\partial x} \right)^{2} dx dy = 0$$

$$(24)$$

1 at *y*=0, *b*:

$$W = \Psi_x = M_y = P_y = 0 \tag{25}$$

$$\int_{0}^{\pi} \int_{0}^{\pi} \left[\frac{\partial^{2} F}{\partial x^{2}} - \gamma_{5} \beta^{2} \frac{\partial^{2} F}{\partial y^{2}} + \gamma_{24} \left(\gamma_{220} \frac{\partial \Psi_{x}}{\partial x} + \gamma_{522} \beta \frac{\partial \Psi_{y}}{\partial y} \right) - \gamma_{24} \left(\gamma_{240} \frac{\partial^{2} W}{\partial x^{2}} + \gamma_{622} \beta^{2} \frac{\partial^{2} W}{\partial y^{2}} \right) - \frac{\gamma_{24} \beta^{2}}{2} \left(\frac{\partial W}{\partial y} \right)^{2} \right] dx dy = 0$$

$$(26)$$

2 with γ_{ijk} given in Shen [50].

3 **3.3 Solutions for the low velocity impact**

4 The solutions for Eq. (21) consist of an additional displacement and rotation terms as a result
5 of the impact loading. The following initial BCs are adopted in the present work:

$$W(x, y, t)|_{t=0} = \frac{\partial W(x, y, t)}{\partial t}|_{t=0} = 0,$$

$$\Psi_x(x, y, t)|_{t=0} = \frac{\partial \Psi_x(x, y, t)}{\partial t}|_{t=0} = 0,$$

$$\Psi_y(x, y, t)|_{t=0} = \frac{\partial \Psi_y(x, y, t)}{\partial t}|_{t=0} = 0.$$
(27)

6

7

8

A two-step perturbation technique is applied to determine the solution. Considering $\tau = \varepsilon t$, the solution equations can be expanded as a function with a small perturbation parameter ε^{j} (*j*=1, 2, 3, ...) which has no physical meaning.

$$W(x, y, \tau, \varepsilon) = \varepsilon w_1(x, y, \tau) + \varepsilon^2 w_2(x, y, \tau) + \varepsilon^3 w_3(x, y, \tau) + \cdots$$
$$\Psi_x(x, y, \tau, \varepsilon) = \varepsilon \psi_{x1}(x, y, \tau) + \varepsilon^2 \psi_{x2}(x, y, \tau) + \varepsilon^3 \psi_{x3}(x, y, \tau) + \cdots$$
$$\Psi_y(x, y, \tau, \varepsilon) = \varepsilon \psi_{y1}(x, y, \tau) + \varepsilon^2 \psi_{y2}(x, y, \tau) + \varepsilon^3 \psi_{y3}(x, y, \tau) + \cdots$$
$$F(x, y, \tau, \varepsilon) = f_0(x, y, \tau) + \varepsilon f_1(x, y, \tau) + \varepsilon^2 f_2(x, y, \tau) + \cdots$$

$$\lambda_q(x, y, \tau, \varepsilon) = \varepsilon \lambda_1(x, y, \tau) + \varepsilon^2 \lambda_2(x, y, \tau) + \varepsilon^3 \lambda_3(x, y, \tau) + \cdots$$

(28)

1 Following the perturbation solutions procedure, one assumes the following form of the first 2 term of $w_i(x, y, \tau)$ that satisfies the simply supported BCs:

$$w_1(x, y, \tau) = A_{11}^{(1)}(\tau) \sin mx \sin ny, \qquad (29)$$

where the terms (m, n) are used to describe the waveform. For immovable BCs, $f_0(x, y)$ =-3 $B_{00}^{(0)}y^2/2 - b_{00}^{(0)}y^2/2$. Motion equations converted into their perturbation expansions are given from the 4 5 substitution of solution equations (28) to Eq. (21). The asymptotic solutions obtained for the 6 perturbation equations with order equal to $\varepsilon = 1, 2, 3$ are given below:

$$W(x, y, t) = \varepsilon[A_{11}^{(1)}(t)\sin mx\sin ny] + \varepsilon^{3}[A_{13}^{(3)}(t)\sin mx\sin 3ny]$$

$$+A_{31}^{(3)}(t)\sin 3mx\sin ny] + O(\varepsilon^4)$$
(30)

$$\Psi_{x}(x, y, t) = \varepsilon [C_{11}^{(1)}(t) + \ddot{C}_{11}^{(3)}(t)] \cos mx \sin ny + \varepsilon^{2} C_{20}^{(2)}(t) \sin 2mx + \varepsilon^{3} [C_{13}^{(3)}(t) \cos mx \sin 3ny + C_{31}^{(3)}(t) \cos 3mx \sin ny] + O(\varepsilon^{4})$$
(31)

$$\Psi_{y}(x, y, t) = \varepsilon [D_{11}^{(1)}(t) + \ddot{D}_{11}^{(3)}(t)] \sin mx \cos ny + \varepsilon^{2} D_{02}^{(2)}(t) \sin 2ny$$

$$+\varepsilon^{3}[D_{13}^{(3)}(t)\sin mx\cos 3ny + D_{31}^{(3)}(t)\sin 3mx\cos ny] + O(\varepsilon^{4})$$
(32)

$$F(x, y, t) = -\frac{B_{00}^{(0)}y^2}{2} - \frac{b_{00}^{(0)}x^2}{2} + \varepsilon [B_{11}^{(1)}(t) + \ddot{B}_{11}^{(3)}(t)] \sin mx \sin ny + \varepsilon^2 \left(-\frac{B_{00}^{(2)}y^2}{2} - \frac{b_{00}^{(2)}x^2}{2} + B_{02}^{(2)}(t) \cos 2ny + B_{20}^{(2)}(t) \cos 2mx \right) + \varepsilon^3 [B_{13}^{(3)}(t) \sin mx \sin 3ny + B_{31}^{(3)}(t) \sin 3mx \sin ny] + O(\varepsilon^4)$$
(33)

 $\lambda_{q}(x, y, t) = \varepsilon [g_{1}A_{11}^{(1)}(t) + g_{4}\ddot{A}_{11}^{(1)}(t)]\sin mx \sin ny$

$$+(\varepsilon A_{11}^{(1)}(t))^{2} \left(g_{02} \cos 2ny + g_{20} \cos 2mx\right)$$
$$+(\varepsilon A_{11}^{(1)}(t))^{3} g_{3} \sin mx \sin ny + O(\varepsilon^{4})$$
(34)

7

It is noting that the perturbation series is a divergent series, in which the order solution is closer 8 to the real solution and needs to be determined by experimental verification or by comparing with 9 the theoretical exact solution. Zhang [51] and Shen [52] found that there were no such things as

- 1 higher order perturbation solution being more correct than lower order solution. According to 2 previous work [53-55], it is found that the 3^{rd} order asymptotic solution can be used to study large-
- 3 amplitude vibration.
- 4 In Eq.(30), $\varepsilon A_{11}^{(1)}(t)$ is considered as the second perturbation parameter which is the function 5 of the deflection, By taking $(x, y) = (\pi/2m, \pi/2n)$, $\varepsilon A_{11}^{(1)}(t)$ can be expressed as:

$$\mathcal{E}A_{11}^{(1)}(t) = W_m - \Theta_1 W_m^3 + \cdots$$
 (35)

Substituting equation (35) into equation (34) and applying Galerkin procedure, one has

$$g_{40} \frac{d^2(W_m)}{dt^2} + g_{41}(W_m) + g_{42}(W_m)^2 + g_{43}(W_m)^3 = \overline{\lambda}_q(t)$$
(36)

7 where

$$\overline{\lambda}_{q}(t) = \frac{4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \lambda_{q}(x, y, t) \sin mx \sin ny dx dy$$
(37)

8 When the λ
_q(t)=0, the Eq. (36) becomes duffing equation corresponding to the larger
9 amplitude vibration of plate. Here, we take λ
_q(t)=F_c(t) to consider low velocity impact of panel.
10 the SODEs of both the LG panel and the impactor can be rewritten as:

$$g_{40}\frac{d^{2}(\varepsilon A_{11}^{(1)})}{dt^{2}} + g_{41}(\varepsilon A_{11}^{(1)}) + g_{42}(\varepsilon A_{11}^{(1)})^{2} + g_{43}(\varepsilon A_{11}^{(1)})^{3} - g_{44}\left[W_{i}(t) - W(t)\right]^{r} = 0 \quad (38)$$

$$\frac{d^2 W_i(t)}{dt^2} = -g_{45} \left[W_i(t) - W(t) \right]^r$$
(39)

Hence, the SODEs with initial value $(W(0)=\dot{W}(0)=W_i(0)=0, \dot{W}_i(0)=v)$ can be solved by employing the RK4 numerical method that has been used to study low velocity impact behaviour of composited structures [56-58]. $g_{40}, g_{41},...$ et al. are given as follows.

$$g_{40} = -[\gamma_{170} - \gamma_{171}(m^2 + n^2\beta^2)] - g_{08}^* - \gamma_{14}\gamma_{24} \frac{g_{05}^*g_{07}}{g_{06}} + \gamma_{80} \left(\gamma_{14}\gamma_{24} \frac{m^2g_{02} + n^2\beta^2g_{01}}{g_{00}} \frac{g_{05}}{g_{06}} - \frac{m^2g_{04} + n^2\beta^2g_{03}}{g_{00}}\right),$$
(40.a)

$$g_{41} = g_{08} + g_{05}g_{07} \frac{\gamma_{14}\gamma_{24}}{g_{06}},$$
(41.b)

$$g_{42} = \frac{-2mn\beta^2 \gamma_{14} \gamma_{24}}{3\pi^2} \left(4\frac{g_{05}}{g_{06}} + \frac{\gamma_8}{\gamma_6} + \frac{\gamma_9}{\gamma_7} \right) (1 - \cos m\pi) (1 - \cos n\pi), \qquad (42.c)$$

$$g_{43} = \frac{\gamma_{14}\gamma_{24}}{16} \left(C_{33} + \frac{\left(n\beta\right)^4}{\gamma_6} + \frac{m^4}{\gamma_7} \right), C_{33} = 2\frac{m^4 + \gamma_{24}^2 n^4 \beta^4 + 2\gamma_5 m^2 n^2 \beta^2}{\gamma_{24}^2 - \gamma_5^2}$$
(43.d)

$$g_{44} = \frac{4K_c a^2 \left(A_{11}^* A_{22}^* D_{11}^* D_{22}^*\right)^{1/8}}{\pi^4 D_{11}^*} \sin \frac{m\pi}{2} \sin \frac{m\pi}{2} \sin \frac{n\pi}{2}$$
(44.e)

$$g_{45} = \frac{\rho_0 K_c a^2 \left(A_{11}^* A_{22}^* D_{11}^* D_{22}^*\right)^{1/8}}{E_0 \pi^2 m^i}$$
(45.d)

with the other symbols are given in Shen [50].

1

2

4. Validation and discussion

3

(1) PVB laminated glass panels:

4 The material properties used in the validation of pre-crack behavior in PVB LG panels are as 5 follows: elastic modulus: $E_{\text{glass}} = 70 \text{ GPa}$, $E_{\text{PVB}} = 267 \text{ MPa}$, $E_{\text{steel}} = 200 \text{ GPa}$; density: $\rho_{\text{glass}} = 2500$ 6 kg·m⁻³, $\rho_{PVB} = 1000$ kg·m⁻³, $\rho_{steel} = 7960$ kg·m⁻³; Poisson's ratio: $\mu_{glass} = 0.22$, $\mu_{PVB} = 0.45$, $\mu_{steel} = 0.25$ 7 0.3. It is worth noting that PVB material is highly sensitive to the strain rate, which will shift from 8 rubbery material to glassy elasto-plastic material with stiffness increase when strain rate increases from 10^{-2} s⁻¹ level to 10^{2} s⁻¹ level [59]. In this work, the low velocity impact is expected to generate 9 10 a strain rate level of 10² s⁻¹ in interlayer. The elastic modulus of PVB material in this section is 11 determined based on Zhang's work [60], which gives a simplified formula (see equation (41)) for 12 calculating the initial modulus of PVB under high strain rates.

$$E_{\rm ini} = 129.49 \log_{10}(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}) - 92.275 \qquad \dot{\varepsilon} > 10s^{-1}$$
(41)

where E_{ini} is the initial modulus, which is taken as the elastic modulus in this section. $\dot{\varepsilon}$ is the strain rate, $\dot{\varepsilon}_0$ is reference strain rate of 1 s⁻¹. Based on the preliminary works of numerical prediction, the strain rate might be more than 200 s⁻¹ and can reach 600 s⁻¹. The elastic modulus of PVB is then calculated based on equation (41) and its value is found to vary from 206 MPa to 267 MPa. Here, the elastic modulus E_{PVB} is taken as 267 MPa.

Considering that the recorded impact velocity of specimen ID1-10 can cover the testing velocity range in PVB LG panels, it is taken as an example to validate the experimental data with that from the proposed model. Six cases from velocity, v, of 0.89 m·s⁻¹ to 1.96 m·s⁻¹ are shown in **Fig. 8** to give a comparison between analytical result and experimental data. It is worth noting that

1 the first peak in the experimental curve (highlighted by green box in Fig. 8 (a)) is not the "first peak" 2 in Fig. 3. The highlighted peak is actually referring to the negligible peak at nearly 0.06 ms in Fig. 3 3 (see also in Fig. 4), which has a much lower value than the peak force at nearly 0.18 ms. The 4 analytical model is expected to have a satisfactory prediction for the second and third peaks of experimental results (highlighted by red box in Fig. 8 (a)). Thus, the first peak will not be discussed. 5 6 From Fig. 8 (a), it can be seen that the analytical curve grows with a highly close path to that 7 of the peak (PeakA) which initiates from 0.09 ms and reaches its highest value at 0.18 ms. The 8 analytical curve drops at nearly 0.28 ms and its decline also follows a similar path to that of PeakB. 9 The analytical peak can be found at almost the same location of the center (0.29 ms) between PeakA 10 and PeakB, where a trough of experimental data can be found. Such trough indicates that the glass 11 material beneath the impactor head experienced a short vibration period during the indentation 12 movement of impactor from 0.18 ms (PeakA) to 0.4 ms (PeakB) and hence generates a very fast 13 contact (PeakA), detachment (trough) and the next contact (PeakB). If this short vibration of local 14 glass material at contact is removed, the peak instead is very likely to be the same as that in analytical 15 result. In addition, the analytical peak force is 32.9 kN whilst that of experimental result in PeakA 16 is 32.8 kN, showing a good agreement. Thus, it can be concluded that the analytical prediction has achieved the expected result in the examined impact velocity of 0.89 m·s⁻¹. 17

18 From Fig. 8 (b) to (f), it can be observed that, with the velocity increase the declining path of 19 analytical result has a trend of being deviated from the declining path of experimental PeakB. It 20 shows that the predicted duration (see D_{ana} in Fig. 8 (f)) is less than the experimental one covered 21 by PeakA and PeakB (see D_{exp} in Fig. 8 (f)). It is then found that, with the increasing deviation and 22 underestimation on the contact duration, the difference of peak force has a rise from the case of v =0.89 m·s⁻¹ (0.1 kN) to that of v = 1.96 m·s⁻¹ (5.3 kN). Although the absolute force difference has an 23 24 increase, the relative proportion to the experimental peak force is around 6.8% in case with v = 1.9625 m·s⁻¹, which still can be accepted. As for the latter part from time = D_{exp} to that where force drops 26 to zero, the keep-in contact between glass and impactor is more likely caused by the deformation of 27 the entire laminated glass panel and the movement of impactor, whereas the maximum indentation 28 into the glass material does not have a significant increase. Thus, as the indentation and its associated 29 pre-crack behaviour (highlighted by red box in Fig. 8 (a)) are the examined feature in this work, the 30 latter part will not be included in discussion and analytical effort.

21

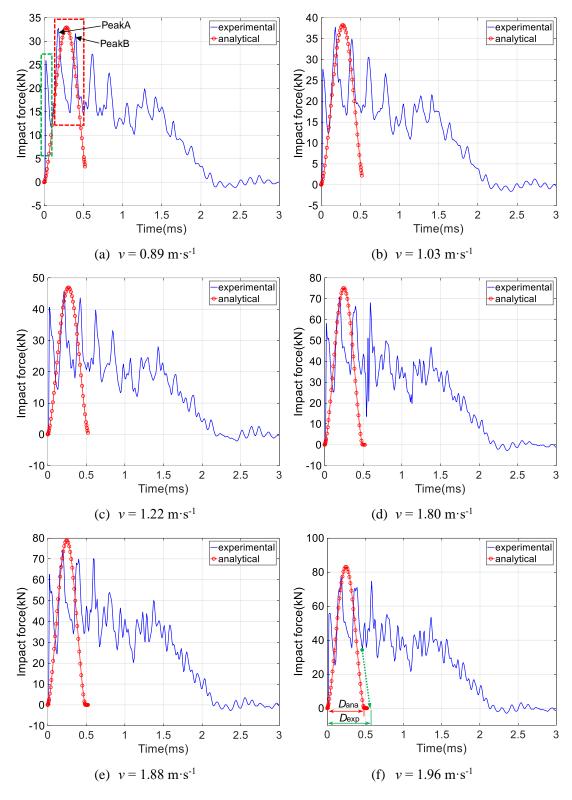
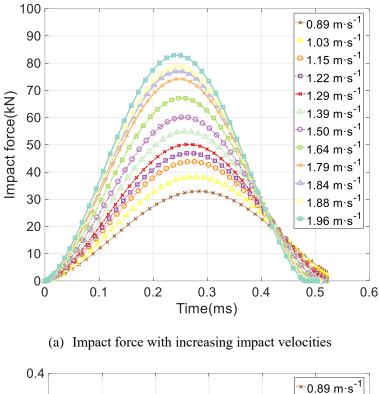
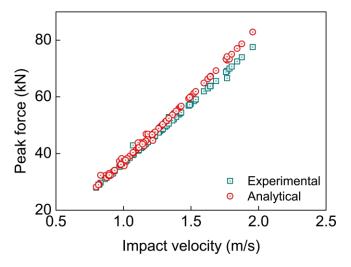



Fig. 8 Validation with the experimental data of PVB LG ID1-10


(b) Indentation with increasing impact velocities

1 Fig. 9 Impact force and indentation with increasing impact velocities in PVB LG ID1-10

The analytical impact force and indentation motion with increasing impact velocities in PVB LG ID1-10 are shown in **Fig. 9** (a, b), respectively. It can be seen that the duration of indentation is within (0.48 ms, 0.56 ms), showing a rapid hit of impactor head into glass material. The indentation increases from 0.175 mm at velocity of 0.89 m·s⁻¹ to 0.326 mm at velocity of 1.96 m·s⁻¹, where the downward velocity of LG panel approaches that of impactor head. The relative movement decreases and hence indentation does not further increase. Meanwhile, the peak impact force increases from
 32.2 kN at velocity of 0.89 m·s⁻¹ to 82.9 kN at velocity of 1.96 m·s⁻¹.

The peak impact force from experimental and analytical results of tested PVB LG specimens are collected and shown in **Fig. 10**. It is found that, the experimental and analytical peak force have great consistency at lower impact velocity. With the impact velocity increases, the greater slope of analytical result gradually leads to an overestimation of peak force when the impact velocity is greater than $1.22 \text{ m} \cdot \text{s}^{-1}$. The average difference between the experimental results and the theoretical results is 2.76% and the standard deviation is 2.67.

9

10 **Fig. 10** Collection of peak impact force from experimental and analytical results of PVB LG;

Difference =[F_c (analytical)- F_c (experimental)]/ F_c (experimental)×100%

12

13

11

(2) SG laminated glass panels:

14 The material properties of SG used in the validation of pre-crack behavior in SG LG panels are as follows: elastic modulus: $E_{SG} = 675$ MPa; density: $\rho_{SG} = 1100$ kg·m⁻³; Poisson's ratio: $\mu_{SG} = 0.45$. 15 16 Differing from PVB material, the elastic modulus of SG material is found to be relatively insensitive 17 to strain rate and presents an elastic modulus of nearly 500 MPa with strain rate lower than 100 s^{-1} 18 [59]. Considering that higher strain rate in this work will still enhance the elastic modulus of polymer, 19 a higher modulus of 675 MPa is determined for SG material based on the associated reports of SG 20 material. As the recorded impact velocity of specimen ID2-01 can cover the testing velocity range 21 in SG LG panels, it is adopted to validate the corresponding analytical results. Firstly, before

1 comparing the testing and analytical results in SG LGs, through overviewing the experimental result and giving a comparison between that from PVB LG and SG LG, for example, PVB LG in Fig. 8 2 3 (a) and SG LG in Fig. 12 (a) having similar impact velocity, it is found the impact force variation shares a close form and has similar characteristics of duration, oscillation and force peaks. It 4 5 indicates that the elastic modulus of interlayer might not have significant influence on the pre-crack 6 impact force response, as the force is mostly dependent on the elastic modulus of the contact 7 material, i.e. glass material in the pre-crack stage. A sensitivity study is also performed to examine 8 such conclusion. As shown in Fig. 11, elastic modulus ranging from 50 MPa to 1000 MPa are 9 selected for the interlayer of 1.52 mm to investigate its effect on the pre-crack impact force. The 10 impact velocity is determined to be $0.86 \text{ m} \cdot \text{s}^{-1}$. The results show that the difference in the force 11 curves with different elastic modulus of interlayer can be omitted. Therefore, in the pre-crack stage, 12 it is rational to conclude that the interlayer types do not have great influence on the pre-crack 13 behaviour, in particular, impact force.

14 However, it is also noting that in the subsequent test with impact failure which is not shown in 15 this study, the tested SG LG panels are more likely to crack at a much lower impact velocity. This 16 shows that the interlayer types can present their effect on triggering the fracture via other aspects. 17 For example, SG material has greater adhesion property with the glass material when comparing 18 with PVB material. Once the impact induced stress wave reaches the SG-glass interface, it will 19 generate higher local strain at the interface. Thus, glass panel might be easier to fracture. On the 20 other hand, in those cases with failure originating from the opposite side to the impact, the tensile 21 stress wave is the predominant factor of triggering fracture. The difference in the viscoelasticity of 22 interlayers will have various cushion effects on reducing or interrupting the stress wave propagation 23 and hence present varying impact resistance of LG.

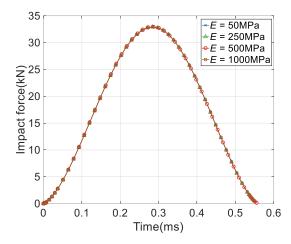
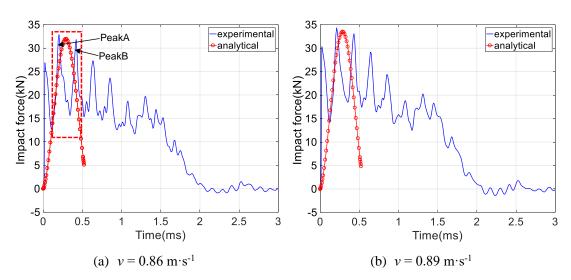
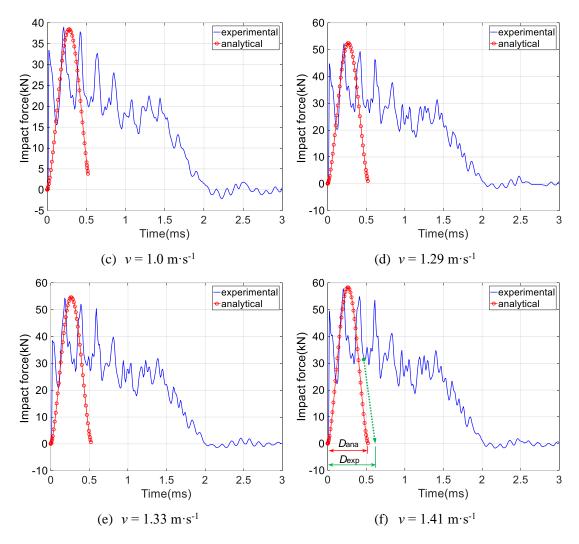
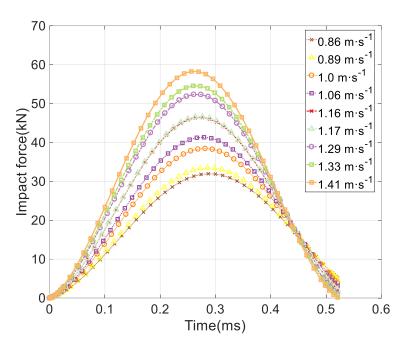



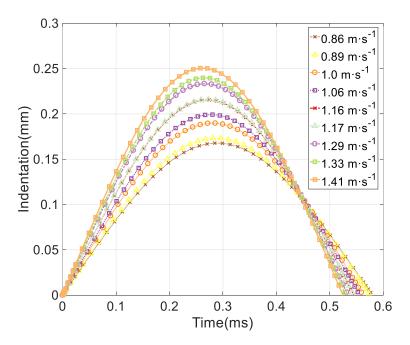
Fig. 11 Sensitivity of impact force to the elastic modulus of interlayer

Six cases from velocity of 0.86 m·s⁻¹ to 1.41 m·s⁻¹ are shown in Fig. 12 to give a comparison 2 3 between analytical result and experimental data. From Fig. 12 (a), similar to the finding in PVB LG, 4 it can also be seen that the analytical result increases with a close path to the rising stage of PeakA. 5 The analytical peak force is 32.0 kN, which is slightly less than that of experimental result in PeakA 6 (32.8 kN), showing a negligible difference. The analytical curve drops at nearly 0.29 ms and its 7 decrease also follows a similar path to the declining stage of PeakB. It indicates that the results from 8 proposed model can also map well with the testing data. From Fig. 12 (b) to (f), it shows that in 9 most cases the predicted duration (see D_{ana} in Fig. 12 (f)) is underestimated when comparing with 10 the expected experimental one (see D_{exp} in Fig. 12 (f)). As the impact velocity increases, the absolute difference of peak force firstly decreases from the case of $v = 0.89 \text{ m} \cdot \text{s}^{-1}$ (0.8 kN) to that of v = 1.2911 $m \cdot s^{-1}$ (0.12 kN) and has another rise to that of $v = 1.41 m \cdot s^{-1}$ (0.46 kN). Such difference is relatively 12 13 small and hence the analytical result can be accepted.




Fig. 12 Validation with the experimental data of SG LG ID2-01

2 As above mentioned, the sensitivity study of impact force to the elastic modulus of interlayer 3 shows that within a limited range of elastic modulus, the interlayer type will not present evident 4 effect on the response, therefore the predicted impact force and indentation of SG LG follows the 5 similar trend to that of PVB LG. Fig. 13 错误!未找到引用源。shows the analytical impact force 6 and indentation motion with increasing impact velocities in SG LG ID2-01. In Fig. 13 (b), the 7 duration of indentation is within (0.52 ms, 0.58 ms) whilst the indentation increases from 0.168 mm 8 at velocity of 0.86 m·s⁻¹ to 0.251 mm at velocity of 1.41 m·s⁻¹. Meanwhile, the peak impact force 9 increases from 32.0 kN at velocity of 0.86 m·s⁻¹ to 58.3 kN at velocity of 1.41 m·s⁻¹.


Fig. 14 gives the collection of the peak impact force from experimental and analytical results of SG LG specimens. Overall, the experimental and analytical peak force still have good consistency in the examined velocity range. The difference between the experimental and analytical peak force varies from -4.68% to 0.8%. The average difference and standard deviation are -1.96% and 1.48,
respectively. In the velocity range lower than 1.0 m·s⁻¹, the analytical prediction is slightly lower
than the testing data. Once the velocity exceeds 1.0 m·s⁻¹, the analytical result shows a trend of
being greater than the experimental one.

5

6

(a) Impact force with increasing impact velocities

(b) Indentation with increasing impact velocities

Fig. 13 Impact force and indentation with increasing impact velocities in SG LG ID2-01

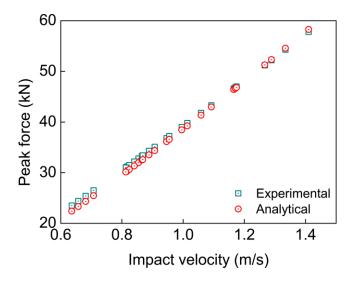
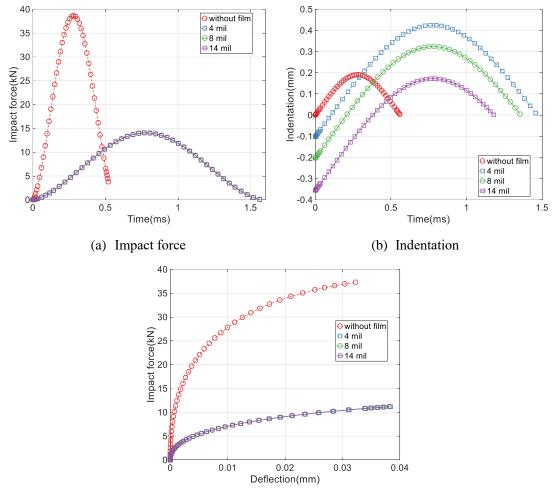


Fig. 14 Collection of peak impact force from experimental and analytical results of SG LG

2


1

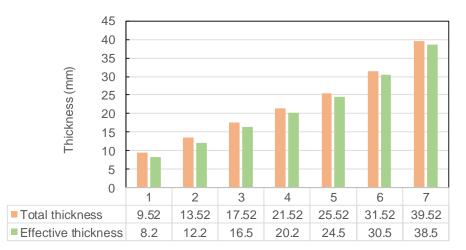
4 5. Case study

Based on the findings from above study, a case study was designed and carried out to examine the difference in the pre-crack impact response of the examined cases. A double layered LG panel with 1.52 mm SG interlayer was set as a reference panel. Two cases using 1) a reference panel laminated with extra safety window film (SWF), 2) a monolithic glass panel which can obtain identical indentation to the reference panel in the impact with same velocity, were considered.

10 (1) Case 1:

11 The thickness of SWF was set as 4 mil, 8 mil and 14 mil, respectively. The thickness of SWF 12 is commonly expressed in 'mil', 1 mil equals to 0.0254 mm. This case was designed as it was found 13 the material at the contact side of LG panel significantly affected the indentation and impact force. 14 The impact velocity was set as 1.0 m·s⁻¹. SWF was simplified into the laminated polyethylene 15 terephthalate (PET) layers. The adhesives between PET layers as well as the coating were not 16 included. Material properties of PET are as follows: elastic modulus: E_{PET} = 3.8 GPa; density: ρ_{PET} 17 = 1350 kg·m⁻³; Poisson's ratio: $\mu_{PET} = 0.38$. In this case, the reference LG panel was fitted with the 18 SWF or without film.

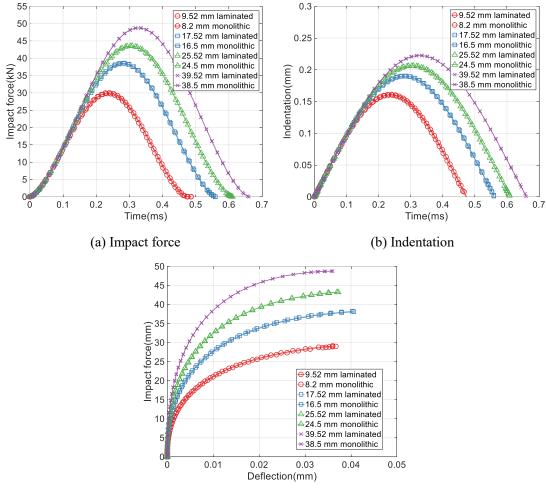
(c) Impact force - panel deflection


Fig. 15 The effect of the SWF on the pre-crack impact response of LG

2 The analytical results of the pre-crack impact response of the LG panels with or without SWF are 3 given in Fig. 15. It is seen that the SWF can significantly reduce the impact force by more than 63% 4 whereas the further increase of SWF thickness does not present significant influence on reducing 5 the impact force. The curves of impact force (Fig. 15 (a)) and force-deflection (Fig. 15 (c)) from 6 the LG panels with SWF are highly consistent. In these cases, the duration of the impact force also 7 increases to nearly 1.56 ms. In Fig. 15 (b), the obtained indentation from panels with SWF is not 8 originated from zero, this is because the thickness of SWF has been deducted. It is seen that the 9 application of a thin SWF (4 mil, 8 mil) does not generate the reduction of indentation, on the 10 contrary, the indentation increases more than 124% with a 4 mil SWF and 70% with 8 mil SWF. 11 When the thickness of SWF increases to 14 mil, the indentation decreases to around 0.172 mm, 12 which is lower than that (0.19 mm) from the panel without SWF. It can be concluded that the use of 1 SWF can significantly reduce the impact force by more than 63% with the examined impact velocity,

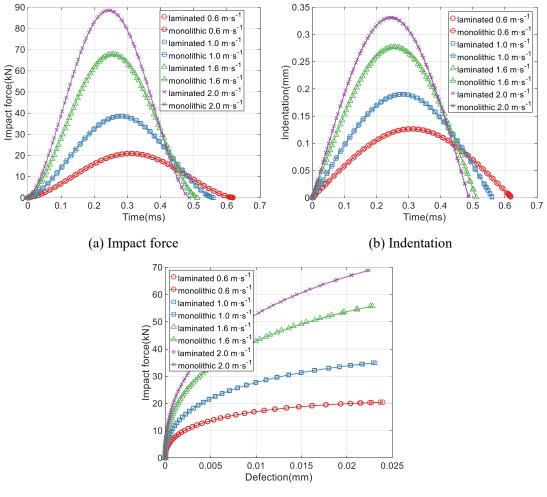
2 however the indentation can only see a decline when a 14 mil thick SWF is used.

3 (2) Case 2:


4 In this case, an effective thickness method was used to simplify the reference LG panel as a monolithic glass panel. Differing from the traditional effective thickness [61] used in the design 5 6 code of structural glass [62] which approximates the same deflection or same stress in each glass 7 layer under static load, the monolithic glass panel in this case will have same indentation under 8 impact with same velocity. The effective thickness of LG panel using 1.52 mm SG interlayer and 9 glass layers with varying thickness from 4 mm to 19 mm was calculated by the proposed analytical 10 model. The results are shown in Fig. 16. The effective thickness is found to be slightly greater than 11 the thickness of two glass layers.

12

Fig. 16 Collection and comparison of effective thickness and total thickness


Fig. 17 shows the validation of the pre-crack impact response using effective thickness (monolithic glass) and total thickness (laminated glass) under impact velocity of $1.0 \text{ m} \cdot \text{s}^{-1}$. The time history of impact force, indentation, the relationship of impact force and glass panel deflection are shown in Fig. 17 (a) to (c), respectively. It is seen that with lower glass thickness the impact response of laminated glass tends to be slightly smaller than that of monolithic glass. Overall, the pre-crack impact response using effective thickness is consistent with that using total thickness, indicating the reliable equivalence.

(c) Impact force - panel deflection

1 Fig. 17 Validation of the impact response using effective thickness and total thickness

A sensitivity study of the impact velocity on the impact response was also conducted. The impact velocity varies from $0.6 \text{ m} \cdot \text{s}^{-1}$ to $2.0 \text{ m} \cdot \text{s}^{-1}$. The time history of impact force, indentation, the relationship of impact force and glass panel deflection are shown in **Fig. 18** (a) to (c), respectively. It can be seen that the impact response of monolithic glass using effective thickness can achieve good consistency with that of laminated glass panel, showing that the effective thickness based on the equivalence of indentation is reliable in the low velocity impact.

(c) Impact force - panel deflection

1 Fig. 18 Validation of the impact response using effective thickness under various impact velocities

6. Concluding remarks

In this study, a nonlinear analytical model was developed for predicting the pre-crack impact 4 5 force response and its indentation behaviour of structural laminated glass under hard body impact 6 with low velocity. The analytical results were validated with those obtained from a series of impact 7 tests on square PVB and SG laminated glass panels. The results show that the proposed model can 8 well capture the examined feature and satisfactory impact force response, although with the velocity 9 increase the analytical model will tend to slightly overestimate the peak impact force. It is also found 10 that the pre-crack impact force response of SG laminated glass panels exhibits high consistency 11 with that using PVB interlayers, because the elastic property of the material at the contact layer, 12 glass, dominants such behaviour.

- 13
 - It was followed by two case studies which focused on the influence of the safety window film

1	on reducing impact response, and the applicability of a proposed effective thickness method of LG
2	based on the indentation equivalence. The results show that using the film can reduce more than 63%
3	of the impact force, however the variation of film thickness does not show further promotion. A 14
4	mil thick film can also reduce the impact indentation whereas less thick film might increase the
5	indentation. The validation of the proposed effective thickness method shows its reliability in the
6	application of low velocity impact.
7	
8	Data availability
9	The data that supports the findings of this study are available within the article.
10	
11	CRediT authorship contribution statement
12	Xuhao Huang: Methodology, Writing – Original Draft, Data curation. Xing-er Wang: Writing
13	- Original Draft, Investigation, Funding acquisition. Jian Yang: Writing - Review & Editing,
14	Supervision, Funding acquisition. Zhufeng Pan: Validation, Data curation. Feiliang Wang: Writing
15	– Review & Editing, Formal analysis. Iftikhar Azim: Writing – Review & Editing.
16	
17	Declaration of Competing Interest
18	The authors declare that they have no known competing financial interests or personal
19	relationships that could have appeared to influence the work reported in this paper.
20	
21	Acknowledgement
22	This study was funded by the National Natural Science Foundation of China [Grant No.
23	51908352, 52078293] and the Shanghai Science and Technology Innovation Action Plan [Grant No.
24	20dz1201301].
25	

1 Appendix A

In Eq. (10), the coefficients I_i can be calculated as:

$$(I_1, I_2, I_3, I_4, I_5, I_7) = \sum_{k=1}^{N} \int_{h_{k-1}}^{h_k} \rho_k(1, Z, Z^2, Z^3, Z^4, Z^6) dZ, \qquad (A.1)$$

3 and

2

$$\overline{I}_{2} = I_{2} - \frac{4I_{4}}{3h^{2}}, \quad \overline{I}_{3} = I_{3} - \frac{8I_{5}}{3h^{2}} + \frac{16I_{7}}{9h^{4}}, \quad \overline{I}_{5} = I_{5} - \frac{4I_{7}}{3h^{2}}$$

$$I_{8} = \frac{I_{2}\overline{I}_{2}}{I_{1}} - \frac{4\overline{I}_{5}}{3h^{2}} - \overline{I}_{3}, \quad I_{9} = \frac{4\overline{I}_{5}}{3h^{2}} - \frac{4\overline{I}_{2}I_{4}}{3h^{2}I_{1}}, \quad I_{10} = \frac{(\overline{I}_{2})^{2}}{I_{1}} - \overline{I}_{3}.$$
(A.2)

4

The matrices in the Eqs.(19)-(20) are derived in Shen [63].

$$\begin{bmatrix} A_{ij}^{*} & E_{ij}^{*} \\ B_{ij}^{*} & F_{ij}^{*} \\ D_{ij}^{*} & H_{ij}^{*} \end{bmatrix} = \begin{bmatrix} A_{ij}^{-1} & -A_{ij}^{-1}E_{ij} \\ -A_{ij}^{-1}B_{ij} & F_{ij} - E_{ij}A_{ij}^{-1}B_{ij} \\ D_{ij} - B_{ij}A_{ij}^{-1}B_{ij} & H_{ij} - E_{ij}A_{ij}^{-1}E_{ij} \end{bmatrix}, (i, j=1, 2, 6)$$
(A.3)

5

in which A_{ij} , B_{ij} , D_{ij} , etc. are the LG panels stiffnesses, which are obtained as follow

$$\begin{bmatrix} A_{ij} & B_{ij} & D_{ij} \\ E_{ij} & F_{ij} & H_{ij} \end{bmatrix} = \sum_{k=1}^{N} \int_{h_{k-1}}^{h_{k}} (\bar{Q}_{ij})_{k} \begin{bmatrix} 1 & Z & Z^{2} \\ Z^{3} & Z^{4} & Z^{6} \end{bmatrix} dZ \quad (i,j = 1,2,6)$$
(A.4)

$$\begin{bmatrix} A_{ij} \\ D_{ij} \\ F_{ij} \end{bmatrix} = \sum_{k=1}^{N} \int_{h_{k-1}}^{h_{k}} (\overline{Q}_{ij})_{k} \begin{bmatrix} 1 \\ Z^{2} \\ Z^{4} \end{bmatrix} dZ \qquad (i,j=4,5)$$
(A.5)

6

where \overline{Q}_{ij} are the component of the transformed lamina stiffness matrix. For the isotropic

7 materials, \bar{Q}_{ij} are evaluated as follows:

$$\begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{22} & \overline{Q}_{26} & \overline{Q}_{66} \\ \overline{Q}_{44} & \overline{Q}_{45} & \overline{Q}_{55} \end{bmatrix}_{k} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{22} & 0 & Q_{66} \\ Q_{44} & 0 & Q_{55} \end{bmatrix}_{k}$$
(A.6)
$$\begin{bmatrix} Q_{11} \\ Q_{22} \\ Q_{12} \end{bmatrix}_{k} = \frac{1}{1 - v_{12}v_{21}} \begin{bmatrix} E_{11} \\ E_{22} \\ v_{21}E_{11} \end{bmatrix}_{k}, \begin{bmatrix} Q_{44} \\ Q_{55} \\ Q_{66} \end{bmatrix}_{k} = \begin{bmatrix} G_{23} \\ G_{13} \\ G_{12} \end{bmatrix}_{k}.$$
(A.7)

8

9

10

1 **References**

- [1] Saputra A, Behnke R, Xing W, Song C, Schneider J, Kaliske M. Numerical representation of fracture
 patterns and post-fracture load-bearing performance of thermally prestressed glass with polymer foil.
 Engineering Structures. 2021;226:111318.
- [2] Wang X-E, Meng Y, Yang J, Huang X, Wang F, Xu H. Optimal kernel extreme learning machine
 model for predicting the fracture state and impact response of laminated glass panels. Thin-Walled
 Structures. 2021;162:107541.
- [3] Wang X-e, Yang J, Pan Z, Wang F, Meng Y, Zhu Y. Exploratory investigation into the post-fracture
 model of laminated tempered glass using combined Voronoi-FDEM approach. International Journal
 of Mechanical Sciences. 2021;190:105989.
- [4] Pelayo F, Lamela-Rey MJ, Muniz-Calvente M, López-Aenlle M, Álvarez-Vázquez A, Fernández Canteli A. Study of the time-temperature-dependent behaviour of PVB: Application to laminated
 glass elements. Thin-Walled Structures. 2017;119:324-31.
- [5] Centelles X, Pelayo F, Lamela-Rey MJ, Fernández AI, Salgado-Pizarro R, Castro JR, et al.
 Viscoelastic characterization of seven laminated glass interlayer materials from static tests.
 Construction and Building Materials. 2021;279:122503.
- [6] Mohagheghian I, Wang Y, Jiang L, Zhang X, Guo X, Yan Y, et al. Quasi-static bending and low
 velocity impact performance of monolithic and laminated glass windows employing chemically
 strengthened glass. European Journal of Mechanics A/Solids. 2017;63:165-86.
- [7] Zhang X, Liu H, Maharaj C, Zheng M, Mohagheghian I, Zhang G, et al. Impact response of laminated
 glass with varying interlayer materials. International Journal of Impact Engineering.
 2020;139:103505.
- [8] Zhang X, Hao H, Ma G. Laboratory test and numerical simulation of laminated glass window
 vulnerability to debris impact. International Journal of Impact Engineering. 2013;55(5):49-62.
- [9] Mohagheghian I, Charalambides MN, Wang Y, Jiang L, Zhang X, Yan Y, et al. Effect of the polymer
 interlayer on the high-velocity soft impact response of laminated glass plates. International Journal
 of Impact Engineering. 2018;120:150-70.
- [10] Mohagheghian I, Wang Y, Zhou J, Yu L, Guo X, Yan Y, et al. Deformation and damage mechanisms
 of laminated glass windows subjected to high velocity soft impact. International Journal of Solids
 and Structures. 2017;109:46-62.
- [11] Zhang X, Mohammed IK, Zheng M, Wu N, Mohagheghian I, Zhang G, et al. Temperature effects
 on the low velocity impact response of laminated glass with different types of interlayer materials.
 International Journal of Impact Engineering. 2019;124:9-22.
- [12] Wang X-e, Yang J, Chong WTA, Qiao P, Peng S, Huang X. Post-fracture performance of laminated
 glass panels under consecutive hard body impacts. Composite Structures. 2020;254:112777.
- [13] Chen Y, He K, Han S, Yuan Y. Experimental study on three-layer tempered glass panel on
 quadrilateral simple bearing under local uniformly distributed load. Thin-Walled Structures.
 2019;139:294-309.
- [14] Guo Z, Li Z, Chen Y. Experimental study on mechanical behavior of double-layer toughened
 sandwich glass with two-side simple support. Thin-Walled Structures. 2021;158:107154.
- [15] Schneider J, Schula S. Simulating soft body impact on glass structures. Proceedings of the Institution
 of Civil Engineers Structures and Buildings. 2016;169(6):416-31.
- 43 [16] Gao W, Liu X, Chen S, Bui TQ, Yoshimura S. A cohesive zone based DE/FE coupling approach for

- 1 interfacial debonding analysis of laminated glass. Theoretical and Applied Fracture Mechanics.
- 2 2020;108:102668.
- [17] Knight CG, Swain MV, Chaudhri MM. Impact of small steel spheres on glass surfaces. Journal of
 Materials Science. 1977;12(8):1573-86.
- [18] Saxe TJ, Behr RA, Minor JE, Kremer PA, Dharani LR. Effects of Missile Size and Glass Type on
 Impact Resistance of "Sacrificial Ply" Laminated Glass. Journal of Architectural Engineering.
 2002;8(1):24-39.
- 8 [19] Pyttel T, Liebertz H, Cai J. Failure criterion for laminated glass under impact loading and its
 9 application in finite element simulation. International Journal of Impact Engineering.
 10 2011;38(4):252-63.
- [20] Wang X-e, Yang J, Liu Q, Zhao C. Experimental investigations into SGP laminated glass under low
 velocity impact. International Journal of Impact Engineering. 2018;122:91-108.
- [21] Liu B, Xu T, Xu X, Wang Y, Sun Y, Li Y. Energy absorption mechanism of polyvinyl butyral
 laminated windshield subjected to head impact: Experiment and numerical simulations. International
 Journal of Impact Engineering. 2016;90:26-36.
- [22] Yuan Y, Xu C, Xu T, Sun Y, Liu B, Li Y. An analytical model for deformation and damage of
 rectangular laminated glass under low-velocity impact. Composite Structures. 2017;176:833-43.
- [23] Shahriari M, Saeidi Googarchin H. Prediction of vehicle impact speed based on the post-cracking
 behavior of automotive PVB laminated glass: Analytical modeling and numerical cohesive zone
 modeling. Engineering Fracture Mechanics. 2020;240:107352.
- [24] Osnes K, Hopperstad OS, Børvik T. Rate dependent fracture of monolithic and laminated glass:
 Experiments and simulations. Engineering Structures. 2020;212:110516.
- [25] Ha YD. An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture
 of laminated glass structures. Computers & Mathematics with Applications. 2020;80(5):744-61.
- [26] Chen S, Chen H, Mitsume N, Morita N, Bui TQ, Gao W, et al. A nodal-based Lagrange
 multiplier/cohesive zone approach for dynamic interfacial cracking analysis of thin-walled laminated
 composite structures. Composite Structures. 2021;256:113112.
- [27] Wang X-e, Yang J, Wang F, Liu Q-f, Xu H. Simulating the impact damage of laminated glass
 considering mixed mode delamination using FEM/DEM. Composite Structures. 2018;202:1239-52.
- [28] Choi IH, Kim IG, Ahn SM, Yeom CH. Analytical and experimental studies on the low-velocity
 impact response and damage of composite laminates under in-plane loads with structural damping
 effects. Composites Science and Technology. 2010;70(10):1513-22.
- [29] Singh H, Mahajan P. Analytical modeling of low velocity large mass impact on composite plate
 including damage evolution. Composite Structures. 2016;149:79-92.
- [30] Wang H, Yin X, Hao H, Chen W, Yu B. The correlation of theoretical contact models for normal
 elastic-plastic impacts. International Journal of Solids and Structures. 2020;182-183:15-33.
- [31] Huang X-H, Yang J, Wang X-E, Azim I. Combined analytical and numerical approach for auxetic
 FG-CNTRC plate subjected to a sudden load. Engineering with Computers. 2020.
- [32] Baba MN, Dogaru F, Guiman MV. Low Velocity Impact Response of Laminate Rectangular Plates
 Made of Carbon Fiber Reinforced Plastics. Procedia Manufacturing. 2020;46:95-102.
- [33] Rühl A, Kolling S, Schneider J. A transparent three-layered laminate composed of
 poly(methyl methacrylate) and thermoplastic polyurethane subjected to low-velocity impact.
 International Journal of Impact Engineering. 2020;136:103419.
- 44 [34] Amabili M, Balasubramanian P, Garziera R, Royer-Carfagni G. Blast loads and nonlinear vibrations

- 1 of laminated glass plates in an enhanced shear deformation theory. Composite Structures. 2 2020;252:112720. 3 [35] Amabili M. Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from 4 viscoelasticity and experimental validation. Journal of the Mechanics and Physics of Solids. 5 2018;118:275-92. 6 [36] Galuppi L, Royer-Carfagni G. Analytical approach a la Newmark for curved laminated glass. 7 Composites Part B-Engineering. 2015;76:65-78. 8 [37] Del Linz P, Liang X, Hooper PA, Wang LZ, Dear JP. An analytical solution for pre-crack behaviour 9 of laminated glass under blast loading. Composite Structures. 2016;144:156-64. 10 [38] Standardization Administration of China. GB 15763.2 Safety glazing materials in building - Part 2: 11 Tempered glass. Beijing: Standards Press of China; 2005. 12 [39] Standardization Administration of China. GB 15763.3 Safety glazing materials in building - Part 3: 13 Laminated glass. Beijing: Standards Press of China; 2009. 14 [40] Standardization Administration of China. GB/T 528 Rubber, vulcanized or thermoplastic -15 Determination of tensile stress-strain properties. Beijing: Standards Press of China; 2009. 16 [41] Chaudhri MM, Liangyi C. The orientation of the Hertzian cone crack in soda-lime glass formed by 17 oblique dynamic and quasi-static loading with a hard sphere. Journal of Materials Science. 18 1989;24(10):3441-8. 19 [42] Janda T, Schmidt J, Hála P, Konrád P, Zemanová A, Sovják R, et al. Reduced order models of elastic 20 glass plate under low velocity impact. Computers & Structures. 2021;244:106430. 21 [43] Abrate S. Localized Impact on Sandwich Structures With Laminated Facings. Applied Mechanics 22 Reviews. 1997;50(2):69-82. 23 [44] Greszczuk LB. Damage in composite materials due to low velocity impact. Impact dynamics. 24 1982:55-94. 25 [45] Shivakumar KN, Elber W, Illg W. Prediction of impact force and duration due to low-velocity impact 26 on circular composite laminates. Journal of Applied Mechanics. 1985;52(3):674-80. 27 [46] Olsson R. Closed form prediction of peak load and delamination onset under small mass impact. 28 Composite Structures. 2003;59(3):341-9. 29 [47] Reddy JN. A simple higher-order theory for laminated composite plates. Journal of Applied 30 Mechanics. 1984;51(4):745-52. 31 [48] Amabili M. Nonlinear damping in large-amplitude vibrations: modelling and experiments. 32 Nonlinear Dynamics. 2018;93(1):5-18. 33 [49] Amabili M. Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. 34 Nonlinear Dynamics. 2019;97(3):1785-97. 35 [50] Shen H-S. A two-step perturbation method in nonlinear analysis of beams, plates and shells: John 36 Wiley & Sons; 2013. 37 [51] Zhang D. High-order analytical solutions and convergence discussions of the 2-step perturbation 38 method for Euler-Bernoulli beams. Applied Mathematics and Mechanics. 2019;40:620-9. 39 [52] Shen HS, Xiang Y, Fan Y. Large amplitude vibration of doubly curved FG-GRC laminated panels 40 in thermal environments. Nanotechnology Reviews. 2019;8(1):467-83. 41 [53] She G-L, Yuan F-G, Ren Y-R, Liu H-B, Xiao W-S. Nonlinear bending and vibration analysis of 42 functionally graded porous tubes via a nonlocal strain gradient theory. Composite Structures. 43 2018;203:614-23.
- 44 [54] Yang J, Huang X-H, Shen H-S. Nonlinear vibration of temperature-dependent FG-CNTRC

- 1 laminated plates with negative Poisson's ratio. Thin-Walled Structures. 2020;148:106514.
- [55] Babaei H, Kiani Y, Eslami MR. Large amplitude free vibration analysis of shear deformable FGM
 shallow arches on nonlinear elastic foundation. Thin-Walled Structures. 2019;144:106237.
- [56] Fan Y, Wang Y. The effect of negative Poisson's ratio on the low-velocity impact response of an
 auxetic nanocomposite laminate beam. International Journal of Mechanics and Materials in Design.
 2021;17(1):153-69.

- [58] Jam JE, Kiani Y. Low velocity impact response of functionally graded carbon nanotube reinforced
 composite beams in thermal environment. Composite Structures. 2015;132:35-43.
- [59] Bennison S, Sloan J, Kistunas D, Buehler P, Amos T, Smith C. Laminated glass for blast mitigation:
 role of interlayer properties. Proceedings of glass processing days; Tampere, Finland2005.
- [60] Zhang X, Hao H, Shi Y, Cui J. The mechanical properties of Polyvinyl Butyral (PVB) at high strain
 rates. Construction and Building Materials. 2015;93:404-15.
- [61] Galuppi L, Royer-Carfagni G. Enhanced effective thickness of multi-layered laminated glass.
 Composites Part B: Engineering. 2014;64:202-13.
- [62] CNR Advisory Committee on Technical Recommendations for Construction. CNR DT 210 Guide
 for the Design, Construction and Control of Buildings with Structural Glass Elements. Roma2013.
- 20 [63] Shen H-S. Kármán-type equations for a higher-order shear deformation plate theory and its use in
- 21 the thermal postbuckling analysis. Applied Mathematics and Mechanics. 1997;18(12):1137-52.

 ^[57] Song M, Li X, Kitipornchai S, Bi Q, Yang J. Low-velocity impact response of geometrically
 nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear
 Dynamics. 2019;95(3):2333-52.