
An Empirical Study of Inter-cluster Resource
Orchestration within Federated Cloud Clusters
Dominic Lindsay

EDS Lab
Lancaster University

Lancaster, United Kingdom
d.lindsay4@lancaster.ac.uk

Gingfung Yeung
EDS Lab

Lancaster University
Lancaster, United Kingdom
g.yeung1@lancaster.ac.uk

Yehia Elkhatib
School of Computing Science

Glasgow University
Glasgow, United Kingdom

yehia.elkhatib@glasgow.ac.uk

Peter Garraghan
EDS Lab

Lancaster University
Lancaster, United Kingdom
p.garraghan@lancaster.ac.uk

Abstract—Federated clusters are composed of multiple in-
dependent clusters of machines interconnected by a resource
management system, and possess several advantages over cen-
tralized cloud datacenter clusters including seamless provisioning
of applications across large geographic regions, greater fault tol-
erance, and increased cluster resource utilization. However, while
existing resource management systems for federated clusters
are capable of improving application intra-cluster performance,
they do not capture inter-cluster performance in their decision
making. This is important given federated clusters must execute
a wide variety of applications possessing heterogeneous system
architectures, which are a impacted by unique inter-cluster
performance conditions such as network latency and localized
cluster resource contention. In this work we present an empirical
study demonstrating how inter-cluster performance conditions
negatively impact federated cluster orchestration systems. We
conduct a series of micro-benchmarks under various cluster op-
erational scenarios showing the critical importance in capturing
inter-cluster performance for resource orchestration in federated
clusters. From this benchmark, we determine precise limitations
in existing federated orchestration, and highlight key insights to
design future orchestration systems. Findings of notable interest
entail different application types exhibiting innate performance
affinities across various federated cluster operational conditions,
and experience substantial performance degradation from even
minor increases to latency (8.7x) and resource contention (12.0x)
in comparison to centralized cluster architectures.

Index Terms—Federated cluster computing, Federated orches-
tration, Cloud federation, Resource management, Scheduling.

I. INTRODUCTION

It is now commonplace for large technology companies to
manage and operate large clusters of machines, that form the
backbone of their cloud datacenter infrastructure. To facilitate
growing user demand to provision cloud services globally, fed-
erated cluster environments have formed whereby workloads
comprising applications are encapsulated within containers
that execute across multiple clusters. These federated clusters
are increasingly prominent within industry [5], [27]–[29], and
are leveraged to provision cloud applications with higher levels
of application performance, service availability, and service
reliability for a wide plethora of application types.

Effective workload placement and execution within clusters
is made possible via orchestration. Encompassing resource
management [5], [7], [28] and application scheduling [3],
orchestration systems are responsible for abstracting and man-

aging the complexities of workload placement and execution
within clusters in a resource-efficient manner. Prominent or-
chestration systems found within cloud datacenters typically
leverage centralized architectures designed to manage clusters
connected over non-volatile, high bandwidth substrates [2].
Whilst application framework diversity has continued to in-
crease requiring low node-to-node network latency and high
bandwidth, decentralized architectures have been created that
execute diverse sets of scheduling policies [5], [29].

Federated orchestration systems – whereby individual clus-
ters jointly interact with each other, yet manage and op-
erate their own scheduler and resource pool independently
– have been identified as an effective means to facilitate
federated workloads [5], [27]. This is due to their ability
to manage autonomous clusters – typically characterized by
geographically distinct heterogeneous clusters – as a single
resource pool. This allows for rapid workload deployment
across clusters composed by tens, hundreds, or thousands
of machines via offloading placement and resource decision
making to localized cluster schedulers resulting in higher
performance from reduced head-of-line blocking, scheduling
times, and proximity to client devices [3].

Existing orchestration systems for cloud are effective at
improving intra-cluster (node-to-node) performance. How-
ever, they are not innately designed to consider inter-
cluster (cluster-to-cluster) performance when enacting work-
load placement and execution decisions. This is problematic
as clusters leveraged for cloud computing are exposed to
network volatility [3], dynamic utilization [30], and hetero-
geneous scheduling architectures [7] – all which are intrinsic
to federated cluster environments. The majority of federated
orchestration systems only consider resource demand and
reservation [5], [28], and omit characteristics at network-level
(bandwidth, latency), node-level (interference, contention) and
cluster-level (scheduler type). Orchestrators that do capture
inter-cluster performance are designed for singular application
frameworks [8] and are thus not generalizable to the wide
range of workloads found within federated cloud environ-
ments. Failure to capture and exploit inter-cluster perfor-
mance in orchestration results in poor application placement
decisions, reduced Quality of Service (QoS), and degraded
workload performance within federated cluster environments.



This work presents an empirical study demonstrating the
challenges of detrimental inter-cluster performance condi-
tions for federated cluster orchestration. We conduct a series
of micro-benchmarks of different application types (stream-
ing, machine learning, batch) within a 30-node experimental
federated cluster infrastructure under various conditions to
determine key factors impacting federated cluster workload
performance. Our experiments demonstrate that detrimental
federated cluster operational conditions can significantly de-
grade workload performance, most notably inter-cluster la-
tency (8.7x) and high resource contention (12x). Moreover,
we discover that different federated cluster applications exhibit
particular tolerances to detrimental federated cluster condi-
tions. From this, we highlight precise research directions and
changes in existing resource schedulers required to achieve
effective federated cluster orchestration.

II. BACKGROUND

A. Federated Clusters

The previous decade has seen wide spread adoption of
cloud datacenters to deliver scalable services across geo-
graphic bounds. Such systems are underpinned by networks
of clustered machines. Increasingly, the scale of such clusters
has grown to such an extent that the use of centralized control
plane and resource management for thousands of machines
to deliver cloud services globally has become increasingly
difficult to attain high quality, high throughput resource
placements, degrading application performance. Furthermore,
organizational constraints placed on scheduling policies such
as resource share allocations lead to pools of unused or un-
derutilized resources limiting cluster utilisation and hardware
specialisation.

Federated clusters are networks of decentralized au-
tonomous clusters managed by a distributed control plane.
Workloads may be executed across any node within a fed-
eration and is perceived as a unified system to an appli-
cation. Federations offer several advantages over centralized
infrastructures including, increased cluster specialization and
workload specific customization [27], localized scheduling
polices [5], improved cluster utilization, and increased ap-
plication resilience [19]. It is common for federated clusters
operated by companies such as Alibaba, Facebook, and Google
to span multiple regions such as those found in Fig. 1 in order
to provision cloud services globally.

B. Orchestration

Orchestration systems are frameworks responsible for con-
trolling cluster compute resources (CPU, disk, memory), and
job scheduling [17]. Jobs (comprising tasks encapsulated
in containers or VMs) are assigned onto cluster nodes via
the resource scheduler and resource manager which enacts
placement and resource allocation decisions for applications.
Orchestration are designed with different objectives such as
performance, fairness, and utilization.

Orchestration systems can be formed by centralized and
decentralized architectures as shown in Fig. 2. A centralized

Region B

Region A

Region C

Fig. 1: An overview of a federated cluster environment.

Manager

Scheduler

(a) Centralized

Manager

Scheduler

Manager

Scheduler

Manager

Scheduler

(b) Decentralized

Manager

Scheduler

Manager

Scheduler

CLUSTER A CLUSTER B

(c) Federated

Fig. 2: Comparison of cluster resource orchestration.

model entails the cluster resource manager tracking resource
usage, node liveness, and granting application leader resource
requests [26]. Decentralized architectures delegate resource
management in a hierarchical manner [7]. In contrast, a
federated model involves coordination between independent
clusters of resources, and allows for cloud datacenters to
jointly execute applications.

C. Federated Orchestration

Workload placement within federated clusters requires
federated orchestration systems. Such systems, including
Borg [29], Twine, [27], Federated Yarn [28] and Hydra [5], are
designed to schedule workloads across multiple clusters of ma-
chines. As shown in Fig. 2, workload placement is performed
by clusters sharing resource consumption either through a
centralized state store or gossiping protocols. Such approaches
enables federated clusters to scale to tens of thousands of
nodes and across several distinct geographic regions whilst
presenting a single resource pool to application frameworks.
Furthermore the distributed architecture of federated orches-
tration systems are highly suited resource management across
disparate clusters, enabling automated execution of application
workflows.

A common design assumption found across these federated
orchestration systems is their ability to capture and exploit
intra-cluster performance for application placement and ex-
ecution decisions. However, these systems omit inter-cluster
performance in their decision making. This is particularly
important in the context of federation given clusters will ex-
hibit heterogeneous operational conditions in terms of network
volatility [3], resource contention [30], and scheduling policies

2



Home Cluster
(Campus Network)

Client
Local cluster

(Private Cloud)

Remote Cluster
(Public Cloud)

Latency
µ=35ms, σ =5ms

Latency

µ=3ms, σ
 =2ms

Latency
µ=35ms, σ =5ms

Fig. 3: Federated cluster infrastructure used in experiments.

– conditions inherent to federated clusters (and federated cloud
in general) – and all of which are known to negatively affect
application performance. Thus omission of inter-cluster per-
formance in federated orchestration can result in sub-optimal
application placement across clusters, resulting in application
performance degradation.

III. RELATED WORK

Orchestration systems have been an active area of research
within the systems community for decades, evolving from the
first cluster computing [24], to Grid computing [9] through
to cloud computing [14], [32]. There exist several federated
orchestration systems: Borg [29] and Kubernetes Federation1

enables scheduling application workflows across multiple clus-
ters. Resource orchestration and workload placement is des-
ignated to a single master cluster, responsible for executing
a centralized scheduling policy managing resource reservation
in a distributed Paxos data store. Hydra [5] enables dynamic
composition of cluster specific policies. Rather than electing
a single master, Hydra offers a decentralized model where
worker nodes can request resources from other federated
resource manager. In this model each cluster is capable of
making local cluster decisions whilst offloading excess re-
source requests to remote clusters.

Federated orchestration systems capture aggregate resource
capacity and reservation, and apply traditional max-min
scheduling polices [11], modeling federation resources as
a flat hierarchies [5]; thus cannot distinguish inter-cluster
performance constraints. Moreover, while there exist applica-
tion schedulers for federated cluster environments which can
capture cluster latency in decision making evaluated through
experimentation [8], [13] or simulation [12]. However, these
are designed to operate for a single application framework,
and are thus not generalizable to other workload types.

1https://github.com/kubernetes-sigs/kubefed

IV. FEDERATED CLUSTER ORCHESTRATION STUDY

A. Experiment Setup

Methodology. Experiment objectives are two-fold. (1) We
empirically demonstrate the importance of capturing inter-
cluster performance characteristics within federated orchestra-
tion systems, and (2) we perform multiple micro-benchmarks
in a federated cluster environment under different operational
conditions to demonstrate the performance impact of the
following:
B Network latency: A typical cause of workload delay in

clusters [4]. Our federation was configured to reflect possi-
ble federated clusters conditions; home, local and remote
each possessing a third of our federations nodes were
configured to reflect dynamic inter-cluster conditions. We
imposed network delays and packet loss via leveraging
Linux Network Packet Scheduler interface Traffic Control.
Latency was configured between 0–50ms at increasing 10ms
intervals (0ms, 10ms...50ms) with average deviation of [2-
4]ms, reflective of modern network latency [20]. A remote
subcluster, was configured to exhibit our configured network
delays between itself and other clusters in our federation,
whilst a local subcluster featured nominal latencies of
between [1-5]ms between itself and our home cluster. Such
a configuration is representative of a federation composed
of a cluster spanning multiple regions.

B Application Type: We selected three application types
representative of workloads within federated cluster en-
vironments [23]: (1) Streaming: Spark DStream [31] us-
ing the WordCount benchmark configured with a queued
input stream, (2) Machine Learning: Linear Regression
with Stochastic Gradient Descent (SGD) using SparkPerf2

running 100 iterations; and (3) Batch: Apache Hadoop [29]
using the TBC-H benchmark. Given that Hadoop Map and
Reduce phases exhibit different execution and resource pat-
terns, where appropriate our analysis distinguishes between
Batch-Map and Batch-Reduce.

B Contention: Demonstrated to degrade centralized cluster
architecture performance during orchestration [18]. Linux
stress was configured to inject specified CPU utiliza-
tion levels. We were interested in exploring high con-
tention federated cluster scenarios (as other experiments
intrinsically execute applications within low-medium con-
tention), cluster CPU contention levels were configured at
(70%,75%,80%,85%).3

Environment. A 30-node federated cluster infrastructure was
constructed as shown in Fig. 3, with each node comprising
Intel i7-4770 Quad Core @ 3.2Ghz, 8GB RAM, 256GB
SSD, 1GBps NIC, running Ubuntu 18.04. Linux Stress4 and
TrafficControl5 were used to control CPU utilization and

2https://github.com/databricks/spark-perf/blob/master/config/config.py.
template

390% and 95% CPU contention resulted in frequent application failures
due to dropped heartbeat packets and CPU thrashing.

4https://linux.die.net/man/1/stress
5https://linux.die.net/man/8/tc

3



0

0.25

0.5

0.75

1

0 1500 3000 4500 6000 7500

C
D
F

JCT(ms)

0ms
10ms
20ms
30ms
40ms
50ms

(a) Streaming

0

0.25

0.5

0.75

1

0 200 400 600 800

C
D
F

JCT(ms)

0ms
10ms
20ms
30ms
40ms
50ms

(b) ML

0

0.25

0.5

0.75

1

9500 11000 12500 14000

JCT(ms)

0

0.25

0.5

0.75

1

200 600 1000 1400 1800

C
D
F

JCT(ms)

00.250.50.751

200600100014001800

C
D
F

JCT(ms)

0ms
10ms
20ms
30ms
40ms
50msMap

Reduce

(c) Batch

Fig. 4: Application JCT with inter-cluster latency.

network latencies. Nodes were assigned to specific clusters
within the federation, interconnected with 10Gbps intra-node
bandwidth. Each cluster (and respective nodes) deployed sep-
arate instances of Apache Yarn 3.2.1 federation [5], [28]. All
experiments contained three cluster types: Home hosts the
application master or control process, representing a datacenter
interacting with client devices. Local represents another dat-
acenter with minor network latency from Home, and Remote
representing a cloud datacenter with larger latency between
both clusters.
Metrics. 900 jobs of each application type were submitted
to the federated cluster environment under the operational
scenarios described above. The metrics collected were Job
Completion Time (JCT): end-to-end completion time of a
single job, recorded from the start of the job’s AM execution
and completion upon termination; Task Duration: execution
of a task in a job, and Makespan: end-to-end completion time
of executing all jobs. Metrics were collected via Prometheus,
parsing application logs, and querying history servers.

B. Experiment Results

Cluster Latency. Applications exhibit different JCTs patterns
within federated cluster environments as shown in Table I,
ranging between 6–569ms (ML), 702–3894ms (Streaming),
and 6190–8740ms (Batch) when clusters are exposed to 0–
50ms latency, respectively. It is observable that application
JCT increases substantially when exposed to inter-cluster

10000 20000 30000

5ms
0ms

Time (ms)
0

0.5

1

200 500 800

(a) HDFS

x0

x3

x6

x9

10ms 20ms 30ms 40ms 50ms

C
h

an
ge

 in
 J

C
T 

sl
o

w
d

o
w

n Stream

ML

Batch

(b) Application types

Fig. 5: Overview of inter-cluster latency sensitivity.

TABLE I: Application JCT statistics in federated orchestration.

Streaming ML Batch
Latency µ σ µ σ µ σ

0ms 702.0 335.0 65.1 11.8 6190.9 5782.3
10ms 1546.8 1070.1 194.0 167.9 6693.1 7496.7
20ms 2027.7 1394.3 275.5 26.4 6854.9 7542.9
30ms 2738.0 1592.2 359.7 131.2 7141.6 7634.8
40ms 3602.0 2008.4 481.9 423.7 7295.7 7382.4
50ms 3894.9 2464.1 569.1 346.3 7960.2 8740.7

latency as shown in Fig. 5b and Table III, resulting in 2.9x
(Stream) and 2.2x (ML) slowdown for 10ms latency increase,
and in the worst case 5.5x and 8.7x, representing consider-
able performance degradation of applications within federated
orchestration. In contrast, Batch appear unaffected by intra-
cluster latency, with 1.28x JCT increase in the worst case
scenario. This is because MapReduce tasks are embarrassingly
parallel and feature little task inter-dependance. Furthermore,
in Fig. 5a We show MapReduce is sensitive to cold storage
data locality, by increasing latencies between execution and
HDFS data nodes by 5ms, we observed 1.2x slowdown. Thus,
Contrasting workloads featuring higher task interdependence
and communications overheads such as those found in SGD
and Wordcount workloads, posses lower affinities to degraded
inter-cluster operational conditions and exhitbit higher levels
of JCT slowdown.

Whilst a JCT increase by several hundreds of milliseconds
may appear relatively minor, it appears to have considerable
performance impact within federated cluster environments. For
example, the overall job makespan of ML jobs increases from
26 to 73 minutes for 10ms intra-cluster latency, and to 3.3
hours for 50ms. This is particularly important with the growing
prominence of training and inference at the edge [33], where
even an additional fraction of a second could be detrimental
to sensitive ML-driven applications in security, self-driving
vehicles, and traffic management [22].
Contention. CPU cluster contention negatively affects the
majority of application types, as summarized in Table III. At
85% cluster contention, Batch and Streaming jobs suffered
6.5x and 12.0x performance slowdown when compared to low
contention scenarios (i.e. 0ms latency execution in Table I and
Fig. 4). Furthermore, as shown in Fig. 6, it is apparent that
70%-80% cluster CPU resulted in increasing left-skewness of
JCT distribution for all but one application types. In contrast,

4



0

0.5

1

0 100 200 300 400 500

0

0.5

1

0 2500 5000 7500 10000
0

0.5

1

0 22500 45000 67500 90000

JCT(ms)

0

0.5

1

0 5000 10000 15000 20000 25000

C
D
F

00.51
0 2000 4000 6000 8000 10000

70% 75% 80% 85%

Fig. 6: Application JCT with CPU cluster contention: Stream-
ing (top left), ML (top right), Batch-Map (lower left), Batch-
Reduce (lower right).

TABLE II: Application affinity in federated clusters.

Application Inter-cluster latency Contention
Streaming Moderate Moderate

ML Low High
Batch High Low (locality)

ML jobs appear barely affected at higher cluster contention
– with only 1.6x slowdown – following near identical JCT
patterns in all cluster contention scenarios. This is primarily
due to the SGD workload being more data- rather than CPU-
intensive.

Tailing behavior. Across experiments, we observed appli-
cations exhibiting differing tailing behavior. This can be
observed in Streaming jobs with high inter-cluster latency
(Fig. 4) as well as Streaming and ML jobs exposed to
high cluster contention (Fig. 6). Tailing behavior manifests
as stragglers, i.e. abnormally slow tasks [6], caused by re-
source contention, daemon processes, and head-of-line block-
ing. Stragglers manifested on average in 2.5% (ML), 5%
(Streaming), and 8% (Batch) of jobs, reinforcing similar levels
in previous studies of production cloud data centers leveraging
centralized orchestration systems [10].

Application diversity. The reason for different JCT slowdown
pattern across applications is due to their architecture model.
Streaming jobs partition streaming tasks into sets of stateless,
deterministic micro-batches executed at fixed intervals, thus
making it moderately susceptible to latency (delayed executor
rescheduling per interval) and contention (larger computation
requirements). ML jobs are data-intensive and iterative, hence
relying on low inter-process latency and memory bandwidth.
Batch jobs use a combination of parallel processing (Map)
and data consolidation (Reduce), thus both phases are sensitive
to CPU contention and dependent on data locality, and thus
dependent on network bandwidth rather than latency.

The above experiments indicate that Streaming and Batch-
Map application performance are particularly sensitive to
higher cluster CPU contention, whereas ML applications ap-
pears to be minimally affected.

TABLE III: JCT increase from cluster performance conditions.

Streaming ML Batch
Inter-cluster latency 5.5x 8.7x 1.28x
Cluster contention 12.0x 1.6x 6.5x

V. EVALUATION OF FINDINGS FROM EMPIRICAL STUDY

Our experiments discussed in §IV-B has uncovered several
insights into the behavior of applications executing within
federated cluster environments, as well as highlighted current
limitations within existing federated orchestration systems:
Minor inter-cluster latency between federated cluster ap-
plications causes severe performance degradation. A mod-
est network latency of 10ms (commonly found in close-range
WiFi environments [25]) results in a 2.2x and 2.9x application
slowdown in Streaming and ML applications. This indicates
that a large portion of existing application frameworks (e.g.
Apache Samza [34], Flume [15], Storm [16]) may inherently
be unsuitable to effectively operate in federated cluster envi-
ronments – even when using current federated orchestration
systems – without significant modification. These findings are
reinforced by studies on intra-cluster latency increases between
2-1000µ seconds latency results in considerable workload
degradation [21], which are order of magnitudes lower than
latencies found in federated cluster environments. Whilst some
application schedulers capture inter-cluster performance [3],
[18], they are restricted to a single application framework, de-
bilitating their generalizability to facilitate increased workload
diversity necessary to ensure federated cluster adoption.

Insight 1. Federated orchestration require mechanisms ca-
pable of sharing inter-cluster performance metrics allowing
for localized tracking of cluster saturation and inter-cluster
network volatility for federated scheduling policies.

Federated orchestration can be improved by using inter-
cluster performance in decision making. Whilst the fed-
erated orchestration system deployed within the federated
cluster infrastructure was able to successfully execute all
submitted jobs, our experiments have shown that such systems
are unable to effectively deal with inter-cluster performance
degradation (stemming from latency and resource contention).
As discussed in §III, this design assumption is shared across all
existing federated orchestration systems capable of supporting
generalized workload deployment and execution [5], [29], and
the few that do consider resource reservation [5], [11], [29]
and omit contention and latency in decision making causing
degraded performance from low quality placement.

Insight 2. Federated orchestration scheduling requires poli-
cies capable of profiling, modeling, and exploiting cluster
resource contention and network latency when placing appli-
cations.

Application architectures are key performance indicators
when orchestrating workloads in federated environments.
We studied three different workloads: Worcount (streaming)
TBC-H (batch) and SGD (Machine Learning) to demonstrate
how different distributed application architectures are impacted

5



by inter-cluster operational conditions. Such workload may
be leveraged to create a ‘profile’ to describe the expected
performance of an application when deployed within a fed-
erated cluster. Capturing the full diversity of such profiles for
different application types requires measuring and modelling
application performance at run-time, thus improving schedul-
ing decisions iteratively over time.

Insight 3. Federated orchestration policies should account for
applications architectures when when considering scheduling
policies which should be applied for an application.

Federated cluster applications exhibit unique performance
affinities for different operational conditions. Workload
affinity describes a workloads relative performance w.r.t op-
erational conditions (e.g. inter-cluster latencies and localised
resource contention). From analyzing application performance
profiles when exposed to cluster latency and cluster resource
contention, we found that applications using different commu-
nication models appear to exhibit different levels of sensitivity
to JCT slowdown stemming from inter-cluster performance
characteristics as summarized in Table II and Fig. 5. Streaming
has high contention sensitivity (12x) and moderate latency
sensitivity (2.2–5.5x). ML has low contention sensitivity (1.6x)
and moderate latency sensitivity (2.2–8.7x). Batch has mod-
erate cluster contention (6.5x) and latency tolerance depen-
dent on data locality. Whilst the impact of cluster resource
contention upon orchestration has been studied within the
context of centralized architectures [11], to our knowledge our
analysis is among the first works to empirically demonstrate
the severity of how both contention and inter-cluster latency
debilitates the performance of federated cluster application
execution.

Insight 4. Federated orchestration requires enhanced schedul-
ing policies that classify and exploit application work-
load resource usage, communication models, and task inter-
dependence in federated cluster environments.

Straggler manifestation is a considerable challenge in fed-
erated cluster computing. A finding that was not considered
within our original objective was the identification of straggler
phenomena in experiments, whose impact upon application
performance appears to be worsen in federated federated
cluster environments. Current approaches to address stragglers
in centralized architectures rely on launching speculative ex-
ecutors for mitigation, however such approaches still result in
47% JCT increase [1], and will be made worse considering
the context of interactive applications that require federated
cluster capability. Hence, as federated cluster scale (in terms
of nodes, clusters, tasks) increases so does the probability of
straggler manifestation. Placement of speculative containers
must consider workload classification to avoid placement into
a clusters that may perform worse than the straggler task. This
is a problem as clusters are exposed to localized and temporal
resource utilization and network conditions requiring global
monitoring of cluster constraints.

Insight 5. New straggler detection and mitigation strategies
need to be designed that capture inter-cluster performance
volatility when launching speculative tasks.

VI. CONCLUSIONS

In this paper we have conducted an empirical study of the
challenges faced by federated cluster orchestration. Through
experiments we have demonstrated how federated cluster
applications are vulnerable to detrimental inter-cluster perfor-
mance conditions resulting in 8.7x-12x slowdown that current
federated orchestrations systems are unable to overcome. Our
study has uncovered four key findings - including the sever-
ity of performance degradation from minor cluster latency,
different workload performance affinities in federated clus-
ter environments, and the problems of inter-cluster straggler
manifestation. Informed by these findings, there are several
research directions to pursue to address identified challenges.
We hope that the findings and insights provided within the
study will aid the federated cluster and cloud computing com-
munities towards development of new federated scheduling
policies capable of capturing workload sensitivity to inter-
cluster performance metrics.

ACKNOWLEDGEMENTS

This work is supported by the UK EPSRC (EP/P031617/1).
We thank Damian Borowiec for their help in reviewing this
paper.

REFERENCES

[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.
Effective straggler mitigation: Attack of the clones. In Proceedings of
the 10th Symposium on Networked Systems Design and Implementation
(NSDI), pages 185–198, 2013.

[2] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan
& Claypool, 2009.

[3] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo
Nardelli. On QoS-Aware scheduling of data stream applications over
fog computing infrastructures. In Proceedings of the IEEE Symposium
on Computers and Communications (ISCC), pages 271–276, 2016.

[4] Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. Characterizing
scheduling delay for low-latency data analytics workloads. In Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages
630–639, 2018.

[5] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni M. Fumarola, Botong Huang, Kishore Chaliparambil, Arun
Suresh, Young Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,
Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan. Hydra: A fed-
erated resource manager for data-center scale analytics. In Proceedings
of the 16th USENIX Conference on Networked Systems Design and
Implementation (NSDI), page 177–191, 2019.

[6] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56:74–80, 2013.

[7] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. Hawk: Hybrid Datacenter Scheduling. In Proceedings of
the USENIX Conference on Usenix Annual Technical Conference (ATC),
pages 499–510, 2015.

[8] Robert Evans. Apache Storm, a hands on tutorial. In Proceedings of
the International Conference on Cloud Engineering, IC2E, 2015.

[9] Ian T. Foster and Carl Kesselman. Globus: a metacomputing infras-
tructure toolkit. International Journal of High Performance Computing
Applications, 11:115 – 128, 1997.

[10] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu. Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters. IEEE Transactions on Services Computing, 12(1):91–104,
2019.

6



[11] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. Dominant Resource Fairness: Fair allocation
of multiple resource types. In Proceedings of the 8th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI), page
323–336, 2011.

[12] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource
management techniques in internet of things, edge and fog computing
environments. CoRR, abs/1606.02007, 2016.

[13] Karim Habak, Ellen W. Zegura, Mostafa Ammar, and Khaled A. Harras.
Workload management for dynamic mobile device clusters in edge
Femtoclouds. In IEEE/ACM Symposium on Edge Computing (SEC),
New York, NY, USA, 2017. Association for Computing Machinery.

[14] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A platform for fine-grained resource sharing in the data center. In
Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, page 295–308, USA, 2011.
USENIX Association.

[15] Steve Hoffman. Apache Flume: distributed log collection for Hadoop.
Packt Publishing Ltd, 2013.

[16] Muhammad Hussain Iqbal and Tariq Rahim Soomro. Big Data Analysis:
Apache Storm Perspective. International Journal of Computer Trends
and Technology, 19(1):9–14, 2015.

[17] Yuxuan Jiang, Zhe Huang, and Danny H. K. Tsang. Challenges and
solutions in fog computing orchestration. IEEE Network, 32(3):122–
129, 2018.

[18] Shweta Khare, Kaiwen Zhang, Hongyang Sun, Aniruddha Gokhale,
Julien Gascon-Samson, Yogesh Barve, Anirban Bhattacharjee, and
Xenofon Koutsoukos. Linearize, predict and place: Minimizing the
Makespan for edge-based stream processing of directed acyclic graphs.
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, SEC
2019, pages 1–14, 2019.

[19] Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth.
Decentralized Kubernetes Federation Control Plane. pages 354–359,
2020.

[20] Diana A. Popescu and Andrew W. Moore. PTPmesh: Data center net-
work latency measurements using ptp. In 25th Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 73–79, 2017.

[21] Diana Andreea Popescu and Andrew W. Moore. No Delay: Latency-
Driven, Application Performance-Aware, Cluster Scheduling. 2019.

[22] Vicent Sanz Marco, Ben Taylor, Zheng Wang, and Yehia Elkhatib. Op-
timizing deep learning inference on embedded systems through adaptive
model selection. Transactions on Embedded Computing Systems, 19(1),
February 2020.

[23] Simar Preet Singh, Anand Nayyar, Rajesh Kumar, and Anju Sharma. Fog
computing: from architecture to edge computing and big data processing.
The Journal of Supercomputing, 75(4):2070–2105, 2019.

[24] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband,
Udaya A. Ranawake, and Charles V. Packer. Beowulf: A parallel

workstation for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, pages 11–14, 1995.

[25] Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian
Zhao, Zimu Li, and Thomas Moscibroda. Characterizing and improving
WiFi latency in large-scale operational networks. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys, page 347–360. ACM, 2016.

[26] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li.
Rose: Cluster resource scheduling via speculative over-subscription. In
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 949–960, 2018.

[27] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,
Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark,
Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell, Maxim
Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas Pelkonen,
Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan, and Peter
Zhang. Twine: A unified cluster management system for shared infras-
tructure. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 787–803. USENIX Association,
November 2020.

[28] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddarth Seth, Bikas Saha, Carlo Curino, Owen OMalley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop
YARN: yet another resource negotiator. Proceedings of the 4th annual
Symposium on Cloud Computing (SOCC), pages 1–16, 2013.

[29] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at Google with Borg. Proceedings of the 10th European Conference on
Computer Systems (EuroSys), pages 1–17, 2015.

[30] Renyu Yang, Chunming Hu, Xiaoyang Sun, Peter Garraghan, Tianyu
Wo, Zhenyu Wen, Hao Peng, Jie Xu, and Chao Li. Performance-aware
Speculative Resource Oversubscription for Large-scale Clusters. IEEE
Transactions on Parallel and Distributed Systems, 31(7):1499–1517,
2020.

[31] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. SOSP 2013 - Proceedings of the 24th ACM
Symposium on Operating Systems Principles, (1):423–438, 2013.

[32] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie
Xu. Fuxi: A fault-tolerant resource management and job scheduling
system at internet scale. Proc. VLDB Endow., 7(13):1393–1404, August
2014.

[33] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[34] Zhenyun Zhuang, Tao Feng, Yi Pan, Haricharan Ramachandra, and Badri
Sridharan. Effective multi-stream joining in apache samza framework.
Proceedings - 2016 IEEE International Congress on Big Data, BigData
Congress 2016, pages 267–274, 2016.

7


