Infiltrating Security into Development: Exploring the World’s
Largest Software Security Study

Charles Weir

Lancaster University
England

c.weirl@lancaster.ac.uk

Mike Ware
Synopsys
USA
Michael. Ware@synopsys.com

ABSTRACT

Recent years have seen rapid increases in cybercrime. The use of
effective software security activities plays an important part in
preventing the harm involved. Objective research on industry use
of software security practices is needed to help development teams,
academic researchers, and educators to focus their activities.

Since 2008, a team of researchers, including two of the authors,
has been gathering objective data on the use of 121 software secu-
rity activities. The Building Security In Maturity Model (BSIMM)
study explores the activity use of 675,000 software developers, in
companies including some of the world’s largest and most security-
focused.

Our analysis of the study data shows little consistent growth
in security activity adoption industry-wide until 2015. Since then,
the data shows a strong increasing trend, along with the adoption
of new activities to support cloud-based deployment, an emphasis
on component security, and a reduction in security professionals’
policing role. Exploring patterns of adoption, activities related to
detecting and responding to vulnerabilities are adopted marginally
earlier than activities related to preventing vulnerabilities; and
activities related to particular job roles tend to be used together. We
also found that 12 developer security activities are adopted early,
together, and notably more often than any others.

From these results, we offer recommendations for software and
security engineers, and corresponding education and research sug-
gestions for academia. These recommendations offer a strong con-
tribution to improving security in development teams in the future.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Applied computing — Cross-organizational business processes;
Social and professional topics — Industry statistics.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3473926

Sammy Migues

Synopsys
USA
Samuel.Migues@synopsys.com

Laurie Williams

North Carolina State University
USA
lawilli3@ncsu.edu

KEYWORDS

Software engineering, Software security, Developer centered secu-
rity, Software security group, Secure software development lifecycle,
SDLC, DevSecOps

ACM Reference Format:

Charles Weir, Sammy Migues, Mike Ware, and Laurie Williams. 2021. Infil-
trating Security into Development: Exploring the World’s Largest Software
Security Study. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23-28, 2021, Athens, Greece. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3468264.3473926

1 INTRODUCTION

According to the NIST National Vulnerability Database [34], re-
ported vulnerabilities continue to rise through 2020 including a
600% rise in cybercrime in 2020 due to the covid-19 pandemic [10].
However, the growth in cybersecurity spending is expected to slow,
and corporate boards are questioning the effectiveness of cyberse-
curity activities as implemented across enterprises globally [12].
As organizations seek to address mounting cybersecurity risk as
efficiently as possible and to comply with regulations, a myriad of
activities is available for improving software security. Organiza-
tions desire guidance on which of many possible software security
activities to undertake first and how to structure adoption.

The goal of this paper is to aid software and security engi-
neers, software engineering educators, and software engineering
researchers in understanding opportunities for software security ac-
tivity improvement, education, and research through an analysis of
records of software security activity by many software development
teams over a 12-year period.

Organizations prefer to adopt new practices based upon under-
standing their use in organizations similar to their own [28]. As
a result, a good process to identify such opportunities is to base
them on the practice of leading organizations that have focused on
security, leveraging the trials and errors of teams as they ‘infiltrate’
security into their development practices. Accordingly, our first
research question is:

RQ1: What have been the patterns of adoption and usage
of software security activities by software development
teams in security-focused companies?

https://doi.org/10.1145/3468264.3473926
https://doi.org/10.1145/3468264.3473926

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Software security is a fast-moving field. Accordingly, adoption
trends over an extended period provide insight, leading to a second
research question:

RQ2: What have been the trends in adoption of developer
security activities industry-wide?

1.1 Introducing the Study

Since 2008, the Building Security In Maturity Model (BSIMM) team
has provided organizations with support in obtaining security guid-
ance through an assessment process [27]. Each BSIMM assessment
is a major undertaking involving approximately one consultant-
month of work, including over a dozen detailed interviews with
company experts and the creation of a report for the company. Each
assessment evaluates which of 121 software security ‘activities’
have been adopted by the organization. These activities range from
“Ensure host/network security basics in place” to the rarely-found
“Build/use abuse cases in QA process” !.

The model suits the needs of organizations with a focus on
software security: every participating organization must have a
Software Security Group. Named participants include Microsoft,
Qualcomm, SAP, Visa, Citigroup, and PayPal. As Section 5.1 will
discuss, at least 55 of the companies named are in the Forbes Global
2000 list of the world’s largest public companies; and the list also
includes many trailblazers in large company software security, in-
cluding 70% of the members of SAFECode, an early initiative in this
field.

Working with the companies in this list, two of the authors and
a team of assessors have built a highly sensitive dataset of 322
objective assessments of the security practices of 211 companies
throughout the world over a 12-year period, relating to the work
of some 675,000 software developers. We are aware of no similar
work of this magnitude in the field of development security. The
BSIMM team has published 11 yearly reports containing a high-
level descriptive analysis of that year’s data, all publicly available
to those willing to provide contact information; the latest is the
BSIMM11 report from 2020 [27].

To address the research questions in this paper, we studied partic-
ipants’ software security development activities. This paper, there-
fore, explores findings from the analysis of the BSIMM dataset
related only to the 43 security activities used by software devel-
opment teams: groups of software engineers, IT staff, and Quality
Assurance (QA) specialists. Effective security requires other orga-
nizational roles, of course, but their activities are out of scope for
this paper. We studied both adoption, starting new activities, and
continued usage of activities.

To explore RQ1, we started with two approaches: clustering algo-
rithms looked for activities used or adopted together; and charts and
graphs explored the most used, most adopted, and most discarded
activities.

To look for further patterns in the data, we used a segmenta-
tion based on prior work [5, 40, 49] into Prevention, Detection, and
Response activities. We used statistical hypothesis tests to explore

!Figure 6 contains a list of activities with identifier codes, and detailed descriptions
may be found in the BSIMM11 report [27].

Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

if this segmentation contributed to adoption patterns within indi-
vidual companies (RQ1) and within the industry as a whole (RQ2).
Finally, we used graphical and statistical analysis to explore indus-
try adoption further (RQ2).

1.2 Contributions

The main contributions of this paper are as follows:

(1) A longitudinal analysis of the trends in developer security ac-
tivities in industry over a period of 12 years;

(2) The identification of a small set of software security activities
that are adopted first, together, and most often by software
development teams; and

(3) The observation that software security activities used together
tend to be those supported by specific other job roles.

The rest of this paper is structured as follows. Section 2 discusses

related work; Section 3 introduces the BSIMM; Section 4 describes

our methodology; Section 5 describes the results we found; Section

6 explores these results, answers the research questions, and dis-

cusses threats to validity; and Section 7 summarizes the findings

and suggests future work.

2 RELATED WORK

Software security is a major and pressing problem with current
software systems. This section explores frameworks and related
studies into how companies and development teams are addressing
security.

2.1 Software Security Practice Frameworks

Several frameworks in addition to BSIMM provide guidance or
enumeration of software security practices. The OWASP Software
Maturity Model (SAMM or OpenSAMM) [36] is an open framework
to help organizations assess, formulate, and implement, through
a self-assessment model, a strategy for software security practice
adoption that is tailored to the specific risks facing the organization.
OpenSAMM is a prescriptive model in that it posits that an organi-
zation matures its cybersecurity efforts by progressing through the
maturity levels.

The US National Institute of Standards and Technology (NIST)
Cybersecurity Framework (CSF) [33] provides organizations with a
structure to aid in understanding and improving cybersecurity risk.
The framework is organized around five functions: identify, protect,
detect, respond, and recover. In this paper, we utilize three of the
five NIST functions in our analysis: identify, detect, and respond;
but we replace the term ‘identify’ with its goal of "prevent’ to align
with the frequently used model [5, 40] of prevent, detect, respond.

The US Department of Defense (DoD) Cybersecurity Maturity
Model Certification (CMMC) [8] framework combines cybersecu-
rity standards and best practices and maps 171 practices into five
maturity levels that range from basic cyber hygiene to advanced
optimization. For a given CMMC level, the associated practices are
designed to reduce risk against a specific set of cyber threats.

The ISO/IEC 27001 [18] and NIST SP 800-53 [32] standards pro-
vide requirements for establishing, implementing, operating, mon-
itoring, maintaining, and improving the security of a digital in-
formation management system. The ISO/IEC 27034 Application
Security standard [17] offers definitions, concepts, principles and

Infiltrating Security into Development: Exploring the World’s Largest Software Security Study

non-prescriptive guidance to help organizations integrate security
into the processes used for managing their applications. Finally,
the OWASP Application Security Verification Standard (ASVS) [37]
provides developers with a list of requirements for secure develop-
ment.

None of these frameworks have databases of company results
with which we could compare our study results.

2.2 Software Security Practice Studies

Cisco [6] surveyed 4,800 active IT, security, and privacy profes-
sionals from 25 countries about, first, their organization’s use of
25 security practices spanning governance, strategy, spending, ar-
chitecture, and operations; and, second, their program’s level of
success across 11 high-level security objectives. They found that
having a proactive, best-of-breed technology refresh strategy al-
lows an organization to keep up with business growth; and that
having a well-integrated technology stack improves recruitment
and retention of security talent. The report provides valuable indus-
try data; however, the responses were self-reported, and the result
is not longitudinal. Since the Cisco security software practices do
not map cleanly to the BSIMM practices, the two studies cannot
usefully be compared.

Such et al. [41] conducted a comprehensive review of the use
of 25 assurance techniques from the ISO/IEC 27001 standard [18]
using a large-scale stakeholder-supported study with 14 interviews
and 115 respondents to an online survey. The responses identi-
fied the most cost-effective techniques to be architectural review,
vulnerability scans, and penetration tests.

Further surveys of security activity by software developers in-
cluded Venson et al’s survey [44, 45] of 110 software professionals,
which found that security practices had been applied thoroughly in
the projects, but revealed high variability in secure software devel-
opment effort across the participants’ projects. Oyetoyan et al. [38]
surveyed security practice usage, competence, and training needs
in two organizations, finding that regardless of cost or benefit, skill
drives the kind of activities that are performed, and that secure
design may be the most important training need. And Jaatun et
al. [19] used the BSIMM structure for a survey and interview study
of software security activities used by 20 Norwegian companies,
finding that those companies excelled at compliance and policy
activities.

Other research teams studied historical data. Morrison [29] de-
fined the Security Practices Evaluation Framework (SP-EF), a mea-
surement framework for software development security activities,
and evaluated the framework on historical data and industrial/open-
source projects [30]. Kwon and Johnson [21] conducted an empirical
analysis of data from 2,386 healthcare organizations to identify how
different types of security investment affect subsequent security
failures. They distinguished proactive activities that happen before
a security incident from reactive activities that occur after an inci-
dent. Kwon and Johnson [22] also analyzed breach disclosure and
detailed data on security investments in the healthcare sector. In
both reports, they found that proactive security investments are
associated with lower security failure rates and longer intervals
before subsequent breaches than reactive investments.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Considering literature surveys, Venson et al. [46] conducted a
mapping study to classify and analyze 54 papers in the literature
related to the impact of security on software development costs.
Perform Security Review, Apply Threat Modeling, and Perform
Security Testing were the three most frequent activities related to
cost, and the Common Criteria [15] was the most applied standard.
Another systematic literature review by Wen [48] found the most
studied software security practice to be verification, which includes
design review, code review, and security testing.

Moving to the theory behind developer security, Barth et al. [2]
challenged the conventional wisdom that proactive security is supe-
rior to reactive security, using a game-theoretic model. This showed
that reactive security can be competitive with proactive security
as long as the reactive defender learns from past attacks instead of
myopically overreacting to the last attack. Maguire and Miller [23]
contended that resistance to proactively implementing application-
layer security may stem from the perceived expense and the idea
that risk is a natural part of doing business.

Our work complements these studies by providing insights based
on higher fidelity data over a longer timeframe.

3 THE BSIMM STUDY

In 2008, Gary McGraw, Sammy Migues, and Brian Chess created the
BSIMM as a descriptive model to allow external assessment of or-
ganizations’ state-of-practice in secure software development. The
BSIMM framework is built around the assessment of the activities
an organization may adopt in support of its software security initia-
tive. The number of activities evolves with each version: BSIMM11,
published in 2020, defines 121 activities. Activities are categorized
into three ‘maturity levels’; and 12 ‘practices’ grouped into 4 ‘do-
mains’ [27]. All the activities are proactive [21]; the handling of
security events and fixing of vulnerabilities are assumed to happen
and are not considered activities.

Each assessment is carried out in cooperation with the organi-
zation’s Software Security Group (SSG), whose role is to manage
an organization-wide program to instill software security activities.
For each assessment, security professionals, including two authors
of this paper, conduct approximately 20 in-person interviews. These
typically include the SSG leader and representative SSG members;
plus samples of those whose roles involve implementing security,
and of those whose roles are affected by the security processes.
The interviewers create a ‘scorecard’ report of an organization’s
software security activities, including a comparison with other sim-
ilar organizations. They also record in a database the company
demographic data and which activities were practiced.

Annual BSIMM reports provide high-level findings based upon
descriptive analysis. The latest such report is freely available to
those willing to provide contact information [25]. Each report pro-
vides detailed descriptions of the activities; a grouping of the ac-
tivities into 12 practices; adoption percentages for each activity;
observations of industry trends noted during the collection; and a
description of several different ‘adoption approaches’ for compa-
nies.

These reports contain the names of some of the companies as-
sessed, which opens the possibility of re-identification of compa-
nies even in anonymized data, so the dataset cannot be contributed

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

to the community. All the authors are subject to Non-Disclosure
Agreements to have access to the data.

4 ANALYSIS METHODOLOGY

For academic analysis, we used an anonymized version of the
BSIMM dataset in spreadsheet form. This contained three types of
data:

(1) Demographic data for each company assessed, such as the in-
dustry verticals, number of developers, size of Security Services
Group (SSG), and dates of each assessment;

(2) Descriptions of each software security activity; and

(3) For each assessment, the activities practiced by the company.

Figure 1 provides an overview of the analysis we performed on

this data. To achieve independent insights, we used only the ‘raw’

data, ignoring the constructs used in the BSIMM reports such as
the report number in which each assessment was reported, and the

activity categorizations of ‘maturity level’, ‘practice’, and ‘domain’ .

BSIMM Data Overview
description
Company data,
Assessment dates N
. . . Hypothesis
Activity descriptions Coding tests
J
Activity findings
~
Most-used Clustering
activities analysis

Figure 1: Overview of the Analysis Methodology

One difficulty we identified is that the field of software security
activities changes fast. Since the goal of our study is to aid software
engineers and academics to understand opportunities for practice
improvement, we opted to limit the analysis related to RQ1 to
the last five years to provide a timely view of current trends —
specifically, since the start of 2015.

To categorize the activities, we applied dual coding to the de-
tailed description for each. Since our research questions address
only development teams, we coded each activity as ‘carried out
by developers’ (a developer activity) or not. We then coded these
developer activities into Prevention, Detection, and Response (see
Section 2.1): Prevention activities slow the introduction of vul-
nerabilities during product design or implementation; Detection
activities discover vulnerabilities that have been injected during
design or implementation; and Response activities are used after
the discovery by attackers and/or researchers of vulnerabilities in
a deployed product.

Two authors first coded independently; then compared differ-
ences to identify discrepancies in interpretation; then re-coded
all the activities; and finally agreed on the coding for the few re-
maining differences. We used the Cohen’s Kappa calculation of
Inter-Rater Reliability [13] to quantify agreement for each of the
first two coding cycles.

Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

4.1 Hypothesis Testing Methods

To achieve methodologically defensible statistical results, we wanted
to avoid the poor research practice of ‘data dredging’—cherry-
picking interesting-looking results from many statistical tests on
the same data—since this leads to conclusions that are unlikely to
be replicable [16]. We, therefore, used two best practices: defin-
ing hypotheses only before accessing the data and correcting the
analysis for multiple uses of the same data.

In a gold standard research project [7] we would make predic-
tions, define the analysis, and write programs to do the analysis,
all before we collected the data. However, in this case the data was
already collected and available before the start of the analysis. To
compensate, we randomized the raw data (without analyzing it)
to create a dummy dataset. We then worked out the analysis ap-
proaches for the given hypotheses and implemented the approaches
in software to work on the dummy dataset. This step was sufficient
to verify that the implementation worked correctly. We then sub-
stituted the true dataset for the dummy one and recalculated the
results.

To correct the analysis for multiple uses of the same data, we
used the Bonferroni correction, which divides the threshold for
statistical significance by the number of hypotheses tested [39].

Our first hypotheses were those to answer RQ1. We hypothe-
sized that certain types of activities would tend to be adopted earlier
than others:

H1: Development teams adopt Response activities before
Detection activities.

H2: They adopt Detection activities before Prevention ac-
tivities.

H3: Development teams adopt the most-used practices ear-
lier than other practices

Our remaining hypotheses address RQ2. Software security is a
fast-moving discipline, and we hypothesized that the data would
show continuous industry progress:

H4: During the period 2008-2020, companies have increas-
ingly adopted Prevention activities

H5: During the period 2008-2020, companies have increas-
ingly adopted Detection activities

In each case, the corresponding null hypothesis would be that
there is no evidence of which kind of activity comes first. That
makes five tests on the data set, and accordingly, for the Bonferroni
correction, we used a p-value for significance of: 0.05/5 = 0.01.

In testing hypotheses H1 through H3 we found a problem: each
BSIMM assessment records only which activities are present at
the assessment time and has no record of when each activity had
been adopted. So, a single assessment provides no information
to help confirm or reject each hypothesis. We, therefore, looked
only at the 70 companies that had undergone multiple assessments:
for each pair of consecutive assessments and each type of activity
(Prevention, Detection, Response) we calculated the proportion of
the later assessment’s activities that were newly adopted in the
later assessment. A larger proportion means later adoption for that
type of assessment.

The null hypothesis for H1 thus becomes: that the distributions
of proportions (Detection, Response) are the same—i.e., the distribu-
tion of differences between the pairs of measurements is consistent

Infiltrating Security into Development: Exploring the World’s Largest Software Security Study

with a zero-based distribution. We plotted this distribution of differ-
ences and used the Shapiro-Wilk test [43] to see if it was consistent
with the Normal distribution. If so, we used a one-sided Students T-
Test to assess the hypothesis; if not, we used the Wilcoxon rank-sum
(Mann-Whitney) test [43]. We used the same approach to assess
hypothesis H2 and (after identifying the most-used activities) H3.

Moving to RQ2, hypotheses H4 and H5 were first tested using
linear regression. We used the Pearson R calculation to fit a line to
the counts of each kind of activity found on each date. To check
the preconditions for Pearson R, we plotted the data and used the
Shapiro-Wilk test to test for a Normal distribution of the residuals.
If (as we expected) the preconditions were not satisfied, we could
then use techniques such as graphical plots and rolling averages to
see what was happening in the data; and the Mann Whitney U test
to look for significant increases in the population values between
years.?

Even if a hypothesis is statistically significant, the effect might
be small. We therefore also calculated, for each accepted hypothesis,
a measurement of the effect involved.

4.2 Descriptive Analysis Methods

To explore the data further than our hypotheses could take us, we
used descriptive statistics.

First, to give context for readers, we provided a descriptive
overview of the companies assessed and the timing of assessments
based on the demographic data. We created graphical summaries
of the data most relevant to development teams: team sizes and
industry verticals, for example. We also explored the number of
assessments per year and the incidence of repeated assessments.

To start exploring RQ1, we then plotted the frequency of adoption
of each activity, arranging the activities in order of that frequency
to explore if there was any logical cut-off point to justify focusing
on a particular subset.

Next we explored how activities clustered together. We consid-
ered it likely that the patterns of activity usage and activity adoption
would differ. So, we addressed RQ1 with two further questions:

[RQ1.1: Which activities tend to be used together?]

[% RQ1.2: Which activities tend to be adopted together?]

To answer these questions, we used Hierarchical (Agglomerative)
Clustering [31]. For RQ1.1, in order to find clusters of activities that
occurred together, even if not frequently, we used the following as
the ‘distance’ measurement between two activities:

N assessments that found both activities in use

1-—

N gssessments that found either activity in use

For the clustering ‘linkage’ method we used ‘complete’, in which
the distance between two clusters is the maximum distance between
any item in one cluster and any item in the other.

For RQ1.2, we again considered companies that had undergone
multiple assessments. We clustered the activities adopted in each

ZNote that these last tests do not prove hypotheses, since the specific tests were defined
after the first data analysis

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

30%1

20%1

10%

0% -

Cloud
Energy
FinTech
Financial
Gaming
Healthcare
ISP

ISV
Insurance
Media
Retail
Security
Social
Tech
Telecom

Figure 2: Industry Sectors

repeated assessment, using the following as the distance measure-
ment:

Nrepeat assessments that adopted both activities

! Nrepeat assessments that adopted either activity
Often clustering analysis aims to partition every item into clusters;
in these analyses we wanted instead to find any activities that
clustered together. We, therefore, looked for clusters where the
distance between all the items was less than an appropriate cut-off
point, chosen by increasing the cut-off point until the new clusters
stopped showing meaningful relationships to each other.

Finally, to explore RQ2 beyond the simple trends suggested by
hypotheses H4 and H5, we used graphical and statistical analysis
to explore trends in the assessments over time. We considered that
changes in the type of companies undertaking the assessments
might be a driver of such change, so we also plotted how some key
company statistics changed over time.

For all the analyses, we used Python statistical and graphical
packages (Pandas, Statsmodels, Pyplot, Seaborn) hosted in Jupyter
Notebooks [20]. Statistical results are quoted using APA conven-
tions [1].

5 RESULTS

5.1 Participants and Assessments

The dataset describes a total of 322 assessments of 211 companies.
In addition to those named in Section 1, participating companies
included Nokia, Salesforce, Cisco, Goldman Sachs, Alibaba, and
Verizon. A full listing of the companies who did not choose to
remain anonymous can be found in the BSIMM reports (e.g. [27]).
Of a sample of 107 companies named in two of the reports, we
found 55 in the Forbes Global 2000 list of the world’s largest 2000
companies in the world [11, 26, 27]. All had active Software Security
Groups.

Figure 2 shows the 15 industry sectors represented: 44% of the
companies operated in more than one sector, so the total adds
up to more than 100%. As shown, Independent Software Vendors,
Financial, Tech, and Cloud are strongly represented. Other sectors,
such as Energy, Gaming, and Internet Service Providers have low
representation. Participants include many early adopters of security
processes, including 9 of the 16 members of SAFECode [35], a
global nonprofit organization set up in 2007 to promote scalable
and effective software security programs.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

B Earlier Assessments
407 mam Latest Assessments

30
20

10

0 OO0 O A N M < 1N W N~ 0 O O
c o 4 4 4 4 4 +4 =4 <4 <4 = N
o O O O O O O O o o o o o
N N N N N N N N N N N N N

Figure 3: Number of Assessments Carried Out Each Year

In terms of geography, 79% of the organizations are based in
America, 17% in the EU or UK, and 4% in Asia-Pacific, reflecting
that the assessors are based in the USA.

Table 1 characterizes the distributions of four relevant aspects of
the companies assessed: the number of developers, the number of
applications produced, and the size of the SSG. For each aspect, the
table shows rounded values for the lowest decile, the median, and
the highest decile. The large developer numbers emphasize that
these are mostly big and therefore high-profile companies, likely
to be targeted by attackers or damaged by adverse press coverage;
we conclude that their decisions on software security approaches
are likely to be worth emulating. The SSG numbers are relatively
small for all the companies; remember that the SSG provides the
‘evangelist’ role for software security and does not include those
operating Security Operations Centers, for example.

Table 1: Participant Attributes

Feature Low 10% Median Top 10%
Dev. team size 100 800 7500
Number of Apps 5 175 3000
SSG team size 1 6 35

Summing the number of developers involved in each organization
showed that the assessments have covered approximately 675,000
developers.

Figure 3 shows the number of assessments carried out each
year. The latest date for the dataset is April 2020, so there are
relatively few assessments for 2020. The chart indicates how many
assessments are repeated; blue bars show assessments that were
superseded later.

One third (70) of the 211 companies involved have received
more than one assessment so far, as shown in Table 2. The interval
between assessments for a company varied widely, from under a
year to ten years, with a median of 2.5 years.

Table 2: Number of Assessments per Company

Assessments: 1 2 3 4 5
Companies: 141 42 18 7 3

5.2 Coding Developer Software Security
Activities

Two authors independently coded the 121 activities, as described in

Section 4. The first round of coding by the two authors gave a Kappa

Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

Prevention

Non-Developer

Detection

Response
Figure 4: Final Coding Categories

coefficient of 0.51, a surprisingly low level of agreement. On discus-

sion, the authors discovered several reasons for the discrepancies,

and resolved them as follows:

e First, should work done by the SSG with developers be consid-
ered developer activities? With increasing DevOps and cloud
usage, developers are increasingly carrying out activities that
previously would be considered SSG-only. Although this trend
is documented in the BSIMM11 report [27], the activity descrip-
tions for some practices do not distinguish who carries each out.
We, therefore, agreed to not include these shared activities in the
set of developer activities.

o Activities detecting design problems (such as "Do design review

for high-risk apps" could be categorized either as Detection (find-

ing ‘flaws’) or Prevention (preventing the implementation of
flawed code). We chose ‘Detection’.

Activities that are a large-scale response to bugs, such as "Fix

all instances of SW bugs found in ops", could be considered Pre-

vention (stopping future defect reports) or Response (to a defect
report). We agreed ‘Response’.

The second round of independent coding led to a more acceptable

Kappa coefficient of 0.89. We resolved the remaining discrepancies

in coding by discussing each activity and coming to a consensus.

Figure 4 shows the final coding. For consistency, tables and illustra-

tions throughout this paper will use the same colors for Prevention,

Detection, and Response activities.

5.3 Descriptive Analysis

As discussed in Section 4.2, Figure 5 considers assessments since
2015. The x-axis shows the 43 developer activities sorted in order of
increasing usage; the y-axis shows the proportion of assessments
that found each activity. The figure shows a marked jump between
a large number of little-used activities and a smaller number of
much-used activities. By taking a cut-off point at 50%, as shown
by the dashed amber line, we get a set of 12 ‘most-used activities’,
which can be found listed at the top of Figure 6.

To determine the prevalence of these most-used activities, we
explored to what extent they are found together. We found that
92% of all the assessments found at least half (6) of the most-used
activities. We also explored to what extent these most-used activi-
ties dominated activity usage. We found that in most assessments
(88%), these 12 activities made up more than half the total activities
adopted.

To address RQ1.1, we then used the clustering approach as de-
scribed in Section 4.2. We found the results shown in Figure 6, which
shows all 43 developer activities. The code in parentheses after each
description is the activity identifier to enable readers to find the full

Infiltrating Security into Development: Exploring the World’s Largest Software Security Study

80% 1

60% A

40% A

20%

Proportion of Assessments

0%
[SM3.4] [SE1.2]
Figure 5: Activities in Order of Increasing Usage

description and related analysis in the BSIMM model [27], followed
by P, D or R to indicate the activity type: Prevention, Detection, or
Response. The text color further highlights this activity type. The
following percentage is the proportion of all assessments in the last
five years that found that activity.

As shown, the clustering algorithm found first a tightly-clustered
group of 12 items, with other items more distant from each other.
The items in this group are identical to the most-used practices
discussed above. Figure 6 highlights the ‘interesting’ clusters (see
Section 4.2). The cut-off point at 26% clusters 28 of the 43 activities
analyzed.

Turning to RQ1.2 and the analysis of activities adopted together,
the clustering analysis found fewer clusters, with only three clusters
closer than the same cut-off point as above (26%). Table 3 shows

the results.
Table 3: Activities Adopted Together

Use orchestration for containers/virtualized env (SE3.5 P)
Use application containers (SE2.5 P)
Do cloud host/network/etc. security basics (SE2.6 P)

Results go to defect mgmt systems (PT1.2 R)

Table 4 shows the top five activities adopted, the top five dropped,
and the proportion of activities involved in each case.

Table 4: Top Activity Changes in Repeated Assessments

Adopted activities:

31% Have ops/deployment inventory of applications (CMVMZ2.3 R)
29% ldentify open source (SR2.4 P)

23% Results go to defect mgmt systems (PT1.2 R)

21% Compliance constraints become sw req'ts (SR1.3 P)

Dropped Activities:
19% Publish installation guides for security (SE2.2 P)

16% Usesecure coding standards (SR3.3 P)

5.4 Hypothesis Tests

Recall that Section 4.1 defined five a-priori hypotheses and specified
our approach for testing them and, for accepted hypotheses, to
calculate the effects involved.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Figures 7 address H1 through H3 using Kernel Density Estima-
tion (KDE) plots of the differences between the adoption counts
for the pairs of kinds of activity. The ticks above the x-axis are
observations; the plotted shape shows the density of these observa-
tions. In all three plots, the Shapiro-Wilk test indicates non-normal
distributions, so we used the Wilcoxon signed-rank test rather than
a paired T-Test to assess the hypotheses. Using that test, we reject
H1 and accept H2 and H3.

Table 5 shows the effect sizes corresponding to H2 and H3. As
shown, a Prevention activity is 9% more likely to be adopted in a
later assessment than is a Detection one: a small effect. However,
a most-used activity (one of the Top 12) is 29% more likely to be
adopted before any of the others: a reasonably large effect.

Table 5: Distributions of Proportions of Activities Adopted
Prevention - Detection All The Rest - Most Used

Mean 9% 29%
St. Dev. 26% 33%

Moving on to hypotheses H4 and H5, Figure 8 shows a scatter
plot and attempted linear regression for trends in each type of
activity found in each assessment. The counts are represented as
percentages of the total number of developer software security
activities of each kind. The figure shows a decrease in Detection
activity use and no change in Prevention activity use. However, the
Shapiro-Wilk test on the residuals gave p < 0.001 in both cases,
indicating that the residuals fail to follow a normal distribution and
that the linear regression is meaningless.

Returning to descriptive analysis, we created two-dimensional
KDE plots of the same data, adding the one-year rolling mean of
the values. Figure 9 shows the results for Prevention and Detection
activities. The results are instructive, showing a wide range of
‘security maturity levels’ among participating companies which
varies year by year, particularly in the early years (prior to 2015).
We conclude that the data do not support hypotheses H4 and H5.

Figure 9 shows a jittery decrease in the mean activity counts
to about 2015, and then a gradual but consistent increase over
the five years starting 2015. Indeed, compared to a baseline of
2015, Prevention activities show an increase of around 100% and
Detection activities 30%. Mann Whitney U tests comparing the
counts of each type of activity in 2015 with the counts in the final
year gave p < .001 for Prevention and p = .001 for Detection
activities. These p-values suggest that the increases are unlikely to
be the results of statistical fluctuations.

Figure 10 explores whether these observations reflect a change
in the nature of organizations being assessed, showing one-year
moving averages of four key attributes: the proportion of companies
in finance (Financial or FinTech); the proportion of ISVs; the number
of developers; and the size of the SSG team.

6 DISCUSSION

6.1 Adoption and Usage by Individual
Companies

Exploring the findings related to RQ1, consider first activities used

together (RQ1.1). Figure 5 shows a clearly separated set of 12 activ-

ities, which make up the majority of activity use. Figure 6 shows
they are predominantly Detection (6) and Response (4) activities,

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

Use external pen testers (PT1.1 D): 86%
Perform security feature review (AA1.1 D): 84%

I Prevention
W Detection
I Response

Results go to defect mgmt systems (PT1.2 R): 73%
Bugs in ops fed back to dev/change behavior (CMVM1.2 R): 78%
Track bugs found in ops thru fix process (CMVM2.2 R): 73%

)

)
Ensure host/network security basics in place (SE1.2 P): 89%

)

)

I Close clusters

Can do emergency codebase response (CMVM2.1 R): 69%

Most-used activities

Use pen test tools internally (PT1.3 D): 65%
Security requirements and features drive tests (ST1.3 D): 67%
Qa does edge/boundary value condition testing (ST1.1 D): 80%

Compliance constraints become sw req'ts (SR1.3 P): 70%

Use automated tools along with manual review (CR1.4 D): 72%

Have ops/deployment inventory of applications (CMVM2.3 R): 47%

Mandatory code review for all projects (CR1.5 D): 35%

Use black-box security tools in ga process (ST2.1 D): 29%

Standardize architectural descriptions used in aa (AA2.2 P): 17%

Do design review for high-risk apps (AA1.2 D): 29%
Publish installation guides for security (SE2.2 P): 28%

)
)
)
)
)
)
)
Identify open source (SR2.4 P): 41%
)
)
)
)
)
)

Use code signing (SE2.4 P): 22%
8%

Do fuzz testing customized to app apis (ST2.6 D):
9%

Use code protection (SE3.2 P):

Use app behavior monitoring and diagnostics (SE3.3 D): 5%

Do coverage analysis of ga security testing (ST3.4 D): 1%

(
(

Use secure coding standards (SR3.3 P): 7%
(

Automate malicious code detection (CR3.4 D): 3%

Analysis results drive standard arch patterns (AA3.2 P): 1%

)

)

)

)

)

Enforce coding standards (CR3.5 P): 1%

)

)

Integrate sw-defined lifecycle governance (SM3.4 P): 1%
)

Fix all instances of sw bugs found in ops (CMVM3.1 R): 3%

Use automated tools with tailored rules (CR2.6 D): 15%

Create standards for technology stacks (SR3.4 P): 19%

Have security tests in ga automation (ST2.5 D): 10%

Enhance ssdl to prevent ops bugs recurrence (CMVM3.2 R): 7%

):
Aa risk analysis process results drive tests (ST3.3 D): 4%
Sw architects lead use of aa process (AA3.1 D): 7%

Build/use abuse cases in gqa process (ST3.5 D): 1%

Use application containers (SE2.5 P): 21%

Use orchestration for containers/virtualized env (SE3.5 P): 14%

(

(
Do cloud host/network/etc. security basics (SE2.6 P): 22%
Pen testers get all app info and use it (PT2.2 D): 21%
(

External testers do deep-dive analysis (PT3.1 D): 13%

Inventory has operations bill of materials (SE3.6 P): 8%

100%

80% 60% 40% 20% 0%
Proportion of Occurrences Found Together

Figure 6: Activities Used Together

with only 2 Prevention activities. The clustering analysis in Sec-
tion 5.3 shows that these most-used activities also tend to be used
together: 88% of assessments found at least half these activities in
simultaneous use. The acceptance of Hypothesis H2 in Section 5.4
shows that these most-used activities also tend to be adopted first,
before any others. To summarize, these 12 are adopted most often,
together, and first, as revealed by three forms of analysis.

From Figure 6, we also see that clusters of other activities tend
to be those carried out by particular roles. ‘Ops inventory of appli-
cations’ and ‘Identify open source’ are both inventory activities;
‘Standardize architectural descriptions’ and ‘Design review for high
risk apps’ are both software architect activities; ‘Installation guides
for security’ and ‘Code signing’ are both activities of a release con-
trol team. The remaining clusters are, respectively, activities for
DevOps engineering, software architects, developers tasked with
cloud implementations, and penetration testers. This observation
suggests that adoption of the less popular software security activi-
ties tends to be associated with particular job roles, independent of

work elsewhere in the organization. This data suggests, therefore,
that software security activity use tends to be driven from each
different job role, as much as centrally from an SSG team.

Considering changes in activity use (RQ1.2), the rejection of
Hypothesis H1 suggests that there is little value to distinguishing
Detection and Response activities with respect to adoption. The
acceptance of Hypothesis H2 shows that Prevention activities tend
to be adopted later, but we note also that this effect is not large.

Table 3 shows little clustering in the adoption of security activi-
ties. The first cluster reflects the novelty of cloud hosting and con-
tainerization. Neither the second nor third cluster seems explicable,
suggesting that, aside from responding to new cloud requirements,
the adoption of techniques together is relatively random.

Table 4 shows that the two most commonly-adopted activities
address the problem of insecure components: inventorying applica-
tions and identifying open source. The activities most often dropped
show evidence of a ‘shift left’, the transfer of security responsibili-
ties earlier in the development life cycle, to developers rather than

Infiltrating Security into Development: Exploring the World’s Largest Software Security Study

Shapiro-Wilk:
W(110)=.90, p<.001

Wilcoxon signed-rank:
T=983, p=.43

Density

N\

——

—100% -75% -50% -25% O

%o 25% 50% 75% 100%

e o Y

°

(a) H1: Detection Proportion minus Response Proportion

Shapiro-Wilk:
W(110)=.93, p<.001

Wilcoxon signed-rank:
T=492, p<.001

Density

—100% -75% -50% -25% 0% 25% 50% 75% 100%

(b) H2: Prevention Proportion minus Detection Proportion

Shapiro-Wilk:
W(110)=.92, p<.001

Wilcoxon signed-rank:
T=108, p<.001

Density

—100% -75% -50% -25% 0% 25% 50% 75% 100%
(c) H3: All the Rest Proportion minus Most-used Proportion
Figure 7: Differences between Proportions of Types of Activ-
ities Adopted. Positive differences represent later adoption of
the first activity type.

100%
= N . —— Detection Regression
E 80%7 . . ° —— Prevention Regression
. . ° s

S 60%; . : '.. <t ‘e ° ee 0 o s w’s

5 S0 0o s0ee 2o 5 tunet ses s te ssomse

£ 40%| Fgrielis s eyt S pdpte s i

S [T 8 0%, ce0e® 88 o988 RSwct =8 Sols

g 20% A o0 o0 0% P wmodesr BB0 VW ¢ °W° OBl 000l W
000 o 0o mo o @ “conBoghuendopinen so Ty o°°

» o o eeee o o ogpe gwe oo o,

0% N 3 o N
Q> 29 M e N

Figure 8: Simple Linear Regression on Activity Use

W

operations and security specialists: three of the five most often
dropped (SE2.2, SR3.3, and CR1.5) are activities enforced by SSG on
developers. As developers increasingly have direct responsibility
for, and expertise at, security, such activities are becoming less ap-
propriate. These observations seem to reflect industry trends (RQ2),
rather than offering an insight into how companies are likely to
adopt security activities in the future.
We conclude that the answer to RQ1 is:

% RQ1: What have been the patterns of adoption and usage
of software security activities by software development
teams in security-focused companies?

The 12 most-used activities in Figure 6 dominate activity
usage, and tend to be adopted first. Prevention activities
tend to be adopted slightly later than Detection and Re-
sponse activities, and activities related to specific job roles
tend to be used together.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

100%

—— Prevention 1Y Rolling Mean

80%

60%

40%

20%

Proportion of Total Activities
=
[e)] oo o
L 3 8
X xR X

40%

20%

0%
B S L Lt

Figure 9: Changing Prevention & Detection Activities

100% | 104

Mm Dev. size
50% Finance Propn.
WW ISV Propn. |

TN T SSGSize
0%

B I e

._.
o
N

Staff Sizes

Figure 10: Changing Company Attributes over Time
6.2 Further Industry Trends

Figure 9 shows an interesting pattern of activity adoption. Prior to
2015, the number of security activities adopted by organizations
varied widely year by year and demonstrated a general downward
trend. We suggest that this phenomenon reflects that the early set
BSIMM adopters come from a wide variety of organisations with
inconsistent security focus though all were interested enough in
security adoption to engage with the BSIMM team. Since 2015, ac-
tivity adoption demonstrates an upward trend. As Figure 10 shows,
the nature of the companies involved may have remained more
consistent. Additionally, industry has a more consistent focus on
regulation and must respond to the unceasing and increasing levels
of cyber threat.
We, therefore, answer RQ2 as follows.

% RQ2: What have been the trends in adoption of developer
security activities industry-wide?

Security activities adoption demonstrated little consistent
pattern until 2015. Since then, industry companies have
increased their use of security activities, especially Pre-
vention activities. Looking at changes within companies
in the last 5 years, we also find a focus on components,
increased cloud-related security, and a reduction of the
security professionals’ policing role.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

6.3 Implications

Based on the discussion in Section 6.1, we can reasonably deduce
that the most-used activities are likely to be the most cost-effective
and valuable for companies to adopt, and that they provide a basis
for the later adoption of more advanced activities.

Our results also showed that Prevention activities are adopted
later than Detection and Response ones. From the point of view of a
company adopting them, the commercial justification for Response
activities is clear: vulnerabilities have been detected so there is an
economic justification for stopping similar problems in the future.
Detection activities allow post-hoc justification: practitioners are
motivated to discover and mitigate vulnerabilities that have been
injected into their product. Prevention activities are the hardest to
justify commercially due to their unknown future economic impact.
It is only when a company has a number of Detection and Response
activities to provide the cost-benefit figures that practitioners can
start justifying Prevention activities. That observation may explain
why Prevention activities tend to be adopted later, even if academic
research [2, 21, 22] proves them more cost-effective.

Figure 9, however, also shows a much higher proportional in-
crease of Prevention activities since 2015 than of Detection ones.
This observation suggests that the changing industry environment
now provides a commercial justification for Prevention activities
that was absent before.

Returning to the original goal of this paper, to aid software and
security engineers, software engineering educators, and software
engineering researchers, we can make several observations from
the answers to the research questions in Sections 6.1 and 6.2:

e Focusing on the 12 most-used activities is likely to give maximum
impact for both practitioners, educators, and researchers.

e Commercial justification of activities is important. Successes in
Response and Detection activities offer a way to commercially
justify Prevention activities, though this has been gradually be-
coming less necessary since 2015.

o An effective way to encourage the adoption of more sophisticated
activities is to work with specific roles around the development
teams: inventory specialists, software architects, release control,
DevOps developers, cloud configuration specialists, and penetra-
tion testers.

o Existing programs are likely to need to change to support the use
of components, cloud-based computing, and developer-centered
security.

The corresponding challenge for software and security engi-
neers is, therefore, to find ways to commercially justify and adopt
the 12 most-used activities, and to work with the roles listed above
to adopt the more advanced activities. Options to help them include
developer workshops [47] and improving security advocacy skills
[14]; books are also available to support developers in adopting the
more advanced security activities [3, 24].

Examples of future work for software engineering researchers
include tools to support statistics gathering; studies of how particu-
lar groups relate to the development teams with respect to software
security activity adoption; and exploration of the reasons for the
synergy between the most-used activities. A good starting point
might be a literature survey on developer-centered security [42].

Charles Weir, Sammy Migues, Mike Ware & Laurie Williams

For software engineering educators, the challenge is to up-
date their training to provide a good grounding in the most-used
activities and in the measurement of security effectiveness. They
may also need to upgrade software security training to support the
use of components, cloud-based computing, and developer-centered
security. To support them, there is a good general resource in the
the Cybersecurity Body of Knowledge [4].

6.4 Threats to Validity

There are several validity threats [9] to this study. Any conclusions
must be considered with the following issues in mind:

Conclusion validity: can we trust the conclusions? While we
can be reasonably sure that the statistical findings in Section 5.4
would be likely to be replicated in any similar analysis, the sensitiv-
ity of the data means that the calculations cannot be independently
verified. In addition, the deductions from the clustering and about
the increase in activities since 2015 are indicative rather than sta-
tistically proven.

Construct validity: how valid is the theory? The care and ef-
fort expended on making the assessments make it likely that the
results recorded are reasonably accurate. However, though the cat-
egorization of activities into Prevention, Detection, and Response
is justified by literature (Section 2.1) and the double coding and
explanations in the text make it likely that the categorization is
repeatable, allocation of activities to specific categories proved to
need further clarification (Section 5.2). We conclude that the triad
may have limitations in perfectly categorizing security activities.

External validity: how far can the conclusions be extended?
Our calculations around later adoption cover only the companies
with more than one assessment which may bias the sample. Simi-
larly, all the data is from companies prepared to invest both money
and considerable effort in the assessment process. It seems likely
that the results will be typical of similar companies (medium to
large, with an SSG), but we have no justification to extend conclu-
sions to other kinds of organizations.

7 CONCLUSION AND FUTURE WORK

This paper explores the most comprehensive dataset of developer
software security activity known to us. The longitudinal study of
many large, security-focused companies identifies 12 most-used
activities; that the more sophisticated activities tend to be adopted
in cooperation with specific non-programmer roles; and a trend
towards activities to handle components, cloud-based computing
and developer-centered security.

Future work will include exploring this dataset for evidence of
trends in assurance activities not carried out by developers, and
possibly exploring new trends as later assessments are carried out

Section 6.3 offers implications for software and security engi-
neers, for software engineering educators, and for software en-
gineering researchers. Acting on these implications provides an
objectively-justified means to maximize the software security im-
pact of each of these roles, and a strong potential contribution to
improve security outcomes in the future.

Infiltrating Security into Development: Exploring the World’s Largest Software Security Study

REFERENCES

(1]

[2

[

[12]

[13

[14]

[15

[16]

[17

=
&

[19]

[20]

[21

[22]

[23]

[24]

[25]

American Psychological Association. 2019. Publication Manual of the American
Psychological Association: The Official Guide to APA Style (seventh ed ed.). https:
//apastyle.apa.org/products/publication-manual-7th-edition

Adam Barth, Benjamin I. P. Rubinstein, Mukund Sundararajan, John C. Mitchell,
Dawn Song, and Peter L. Bartlett. 2010. A Learning-Based Approach to Reactive
Security. In Financial Cryptography and Data Security, Radu Sion (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 192-206.

Laura Bell, Michael Brunton-Spall, Rich Smith, and Jim Bird. 2017. Agile Ap-
plication Security: Enabling Security in a Continuous Delivery Pipeline. O’Reilly,
Sebastopol, CA.

Bristol University. [n. d.]. The CyBOK Project. ([n. d.]). https://www.cybok.org/
CDC. September 23, 2019. Preventing, Detecting, and Responding to Epidemics:
CDC’s Achievements. (September 23, 2019). https://www.cdc.gov/globalhealth/
security/ghsareport/2018/prevent-detect-respond.html

Cisco. 2021. The 2021 Security Outcomes Study. (2021). https://www.cisco.com/
c/en/us/products/security/security-outcomes- study.html

CONSORT. 2010. Checklist of Information to Include When Reporting a Random-
ized Trial. (2010), 11-12 pages. http://www.consort-statement.org/consort-2010
[Online; accessed 2019-09-10].

DoD. 2020. Cybersecurity Maturity Model Certification (CMMC). (2020). https:
//www.acq.osd.mil/cmmc/docs/CMMC_ModelMain_V1.02_20200318.pdf
Robert Feldt and Ana Magazinius. 2010. Validity Threats in Empirical Software
Engineering Research: An Initial Survey.. In SEKE. 374-379.

Jason Firch and PurpleSec. 2021. 10 Cyber Security Trends You Can’t Ignore in
2021. (2021). https://purplesec.us/cyber-security-trends-2021/

Forbes. 2020. Global 2000 - The World’s Largest Public Companies 2020. Technical
Report. https://www.forbes.com/global2000/

Gartner. 12 February 2020. The Urgency to Treat Cybersecurity as a Business
Decision. ID G00466055 (12 February 2020).

Kilem L Gwet. 2014. Handbook of Inter-Rater Reliability: The Definitive Guide to
Measuring the Extent of Agreement Among Raters. Advanced Analytics LLC.
Julie M Haney and Wayne G Lutters. 2017. Skills and Characteristics of Successful
Cybersecurity Advocates. In Workshop on Security Information Workers - SIW.
USENIX Association.

Debra S Herrmann. 2002. Using the Common Criteria for IT security evaluation.
CRC Press.

John P A Toannidis. 2005. Why Most Published Research Findings Are False. PLOS
Medicine 2, 8 (2005), 0696-0701. https://doi.org/10.1371/journal.pmed.0020124
ISO. 2011. ISO/IEC 27034 Application Security Standard. (2011). https://www.
is027001security.com/html/27034.html

ISO/IEC. 2013. ISO/IEC 27001: Information Security Management Report. (2013).
https://www.iso.org/isoiec-27001-information-security.html

Martin Gilje Jaatun, Daniela S. Cruzes, Karin Bernsmed, Inger Anne Tondel, and
Lillian Restad. 2015. Software Security Maturity in Public Organisations. In Infor-
mation Security, Javier Lopez and Chris J. Mitchell (Eds.). Springer International
Publishing, Cham, 120-138.

Thomas Kluyver, Benjamin Ragan-kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damian Avila, Safia Abdalla, and Carol Willing. 2016.
Jupyter Notebooks: A Publishing Format for Reproducible Computational Work-
flows. In Positioning and Power in Academic Publishing: Players, Agents and
Agendas. 10S Press, 87-90. https://doi.org/10.3233/978-1-61499-649-1-87
Juhee Kwon and M. Eric Johnson. 2011. An Organizational Learning Perspective
on Proactive vs. Reactive Investment in Information Security. In Tenth Workshop
on Economics of Information Security (WEIS 2011), Fairfax, VA, USA, June 14-15,
2011. (WEIS Workshop Proceedings).

Juhee Kwon and M. Eric Johnson. 2014. Proactive Versus Reactive Security
Investments in the Healthcare Sector. MIS Quarterly 38, 2 (2014), 451-A3. https:
/[www.jstor.org/stable/26634934

John Maguire and H. Miller. 2010. Web-Application Security: From Reactive to
Proactive. IT Professional 12 (09 2010), 7 - 9. https://doi.org/10.1109/MITP.2010.
117

Gary McGraw. 2006. Software Security: Building Security In. Vol. 1. Addison-
Wesley Professional.

Gary McGraw and Brian Chess. 2009. The Building Security in Maturity Model
(BSIMM). USENIX Association, Montreal, Quebec.

[26]
[27]

[28

[29

(30]

[31

'S
22

[42

[43

[44

[45]

'S
&

[47

(48]

[49

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Gary McGraw, Brian Chess, and Sammy Miques. 2011. Building Security in
Maturity Model 5. Technical Report May. pp. 1-61 pages.

Sammy Migues, John Steven, and Mike Ware. 2020. BSIMM11 Report. Technical
Report. Synopsys. https://www.bsimm.com/download.html

Geoffrey A Moore. 2009. Crossing the Chasm: Marketing and Selling Disruptive
Products to Mainstream Customers. Harper Collins.

Patrick Morrison. 2015. A Security Practices Evaluation Framework. In Proceed-
ings of the 37th International Conference on Software Engineering - Volume 2 (ICSE

’15). IEEE Press, 935-938.
Patrick Morrison, Benjamin H. Smith, and Laurie Williams. 2017. Surveying

Security Practice Adherence in Software Development. In Proceedings of the Hot
Topics in Science of Security: Symposium and Bootcamp (HoTSoS). Association
for Computing Machinery, New York, NY, USA, 85-94. https://doi.org/10.1145/
3055305.3055312

Fionn Murtagh and Pedro Contreras. 2012. Algorithms for Hierarchical Cluster-
ing: An Overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2, 1 (2012), 86-97. https://doi.org/10.1002/widm.53

NIST. 2020. NIST Special Publication 800-53, Revision 5, Security and Privacy
Controls forInformation Systems and Organizations. (2020). https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

NIST. 2021. NIST Cybersecurity Framework. (2021). https://csrc.nist.gov/
projects/risk-management/about-rmf

NIST. 2021. Statistics Results. (2021). https://nvd.nist.gov/vuln/search/statistics
SAFECode organization. 2021. SAFECode. (2021). https://safecode.org/
OWASP. 2017. Open Software Assurance Maturity Model (Open-SAMM). Technical
Report. 1-96 pages. http://www.opensamm.org/

OWASP. 2020. OWASP Application Security Verification Standard (ASVS). (2020).
https://owasp.org/www-project-application-security- verification- standard/
Tosin Daniel Oyetoyan, Martin Jaatun, and Daniela Cruzes. 2019. Exploring
Security in Software Architecture and Design. Chapter Measuring Developers’
Software Security Skills, Usage, and Training Needs, 260-286. https://doi.org/
10.4018/978-1-5225-6313-6.ch011

Deborah Rumsey. 2009. Statistics II for Dummies. Wiley, Indianapolis.

James LaPiedra SANS Institute. 2002. The Information Security Process: Preven-
tion, Detection and Response. (2002). https://www.giac.org/paper/gsec/501/
information-security-process-prevention-detection-response/101197

Jose M. Such, Antonios Gouglidis, William Knowles, Gaurav Misra, and Awais
Rashid. 2016. Information Assurance Techniques: Perceived Cost Effectiveness.
Computers and Security 60 (2016), 117-133. https://doi.org/10.1016/j.cose.2016.
03.009

Mohammad Tahaei and Kami Vaniea. 2019. A Survey on Developer-Centred
Security. In European Workshop on User-Centered Security - EuroUSec. 14. https:
//doi.org/10.1109/EuroSPW.2019.00021

Graham Upton and Ian Cook. 2014. A Dictionary of Statistics (3rd ed.). Oxford
University Press. https://doi.org/10.1093/acref/9780199679188.001.0001

Elaine Venson. 2020. The Effects of Required Security on Software Development
Effort. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings (ICSE °20). Association for Computing Ma-
chinery, New York, NY, USA, 166-169. https://doi.org/10.1145/3377812.3381393
E. Venson, R. Alfayez, M. M. F. Gomes, R. M. C. Figueiredo, and B. Boehm.
2019. The Impact of Software Security Practices on Development Effort: An
Initial Survey. In 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1-12. https://doi.org/10.1109/ESEM.2019.
8870153

Elaine Venson, Xiaomeng Guo, Zidi Yan, and Barry Boehm. 2019. Costing Se-
cure Software Development: A Systematic Mapping Study. In Proceedings of the
14th International Conference on Availability, Reliability and Security (ARES ’19).
Association for Computing Machinery, New York, NY, USA, Article 9, 11 pages.
https://doi.org/10.1145/3339252.3339263

Charles Weir, Ingolf Becker, and Lynne Blair. 2021. A Passion for Security:
Intervening to Help Software Developers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE. https://eprints.lancs.ac.uk/id/eprint/151678/1/WeirSEIP2021Signed.pdf

S. Wen. 2017. Software Security in Open Source Development: A Systematic
Literature Review. In 2017 21st Conference of Open Innovations Association (FRUCT).
364-373. https://doi.org/10.23919/FRUCT.2017.8250205

L. Williams, G. McGraw, and S. Migues. 2018. Engineering Security Vulnerability
Prevention, Detection, and Response. IEEE Software 35, 5 (2018), 76-80. https:
//doi.org/10.1109/MS.2018.290110854

https://apastyle.apa.org/products/publication-manual-7th-edition
https://apastyle.apa.org/products/publication-manual-7th-edition
https://www.cybok.org/
https://www.cdc.gov/globalhealth/security/ghsareport/2018/prevent-detect-respond.html
https://www.cdc.gov/globalhealth/security/ghsareport/2018/prevent-detect-respond.html
https://www.cisco.com/c/en/us/products/security/security-outcomes-study.html
https://www.cisco.com/c/en/us/products/security/security-outcomes-study.html
http://www.consort-statement.org/consort-2010
https://www.acq.osd.mil/cmmc/docs/CMMC_ModelMain_V1.02_20200318.pdf
https://www.acq.osd.mil/cmmc/docs/CMMC_ModelMain_V1.02_20200318.pdf
https://purplesec.us/cyber-security-trends-2021/
https://www.forbes.com/global2000/
https://doi.org/10.1371/journal.pmed.0020124
https://www.iso27001security.com/html/27034.html
https://www.iso27001security.com/html/27034.html
https://www.iso.org/isoiec-27001-information-security.html
https://doi.org/10.3233/978-1-61499-649-1-87
https://www.jstor.org/stable/26634934
https://www.jstor.org/stable/26634934
https://doi.org/10.1109/MITP.2010.117
https://doi.org/10.1109/MITP.2010.117
https://www.bsimm.com/download.html
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1002/widm.53
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://csrc.nist.gov/projects/risk-management/about-rmf
https://csrc.nist.gov/projects/risk-management/about-rmf
https://nvd.nist.gov/vuln/search/statistics
https://safecode.org/
http://www.opensamm.org/
https://owasp.org/www-project-application-security-verification-standard/
https://doi.org/10.4018/978-1-5225-6313-6.ch011
https://doi.org/10.4018/978-1-5225-6313-6.ch011
https://www.giac.org/paper/gsec/501/information-security-process-prevention-detection-response/101197
https://www.giac.org/paper/gsec/501/information-security-process-prevention-detection-response/101197
https://doi.org/10.1016/j.cose.2016.03.009
https://doi.org/10.1016/j.cose.2016.03.009
https://doi.org/10.1109/EuroSPW.2019.00021
https://doi.org/10.1109/EuroSPW.2019.00021
https://doi.org/10.1093/acref/9780199679188.001.0001
https://doi.org/10.1145/3377812.3381393
https://doi.org/10.1109/ESEM.2019.8870153
https://doi.org/10.1109/ESEM.2019.8870153
https://doi.org/10.1145/3339252.3339263
https://eprints.lancs.ac.uk/id/eprint/151678/1/WeirSEIP2021Signed.pdf
https://doi.org/10.23919/FRUCT.2017.8250205
https://doi.org/10.1109/MS.2018.290110854
https://doi.org/10.1109/MS.2018.290110854

	Abstract
	1 Introduction
	1.1 Introducing the Study
	1.2 Contributions

	2 Related Work
	2.1 Software Security Practice Frameworks
	2.2 Software Security Practice Studies

	3 The BSIMM Study
	4 Analysis Methodology
	4.1 Hypothesis Testing Methods
	4.2 Descriptive Analysis Methods

	5 Results
	5.1 Participants and Assessments
	5.2 Coding Developer Software Security Activities
	5.3 Descriptive Analysis
	5.4 Hypothesis Tests

	6 Discussion
	6.1 Adoption and Usage by Individual Companies
	6.2 Further Industry Trends
	6.3 Implications
	6.4 Threats to Validity

	7 Conclusion and Future work
	References

