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Abstract

The blockchain technology and cryptocurrencies, its most prevalent application, continue

to gain acceptance and wide traction in research and practice within academia and the

industry because of its promise in decentralised and distributed computing. Notably, the

meteoric rise in the value and number of cryptocurrencies since the creation of Bitcoin in

2009 have ushered in newer innovations and interventions that addressed some of the

prominent issues that affect these platforms. Despite the increased privacy, security,

scalability, and energy-saving capabilities of new consensus protocols in newer systems, the

development and management of blockchains, mostly, do not reflect the decentralisation

principle despite blockchains being decentralised and distributed in their architecture. The

concept of treasury has been identified as a tool to address this problem. We explore the

idea of blockchain treasury systems within literature and practice, especially with relation

to funding and decision-making power towards blockchain development and maintenance.

Consequently, we propose a taxonomy for treasury models within cryptocurrencies.

Thereafter, we propose an efficient community-controlled and decentralised collaborative

decision-making mechanism to support the development and management of blockchains.

Our proposed system incentivises participants and is proven secure under the universally

composable (UC) framework while also addressing gaps identified from our investigation

of prior systems e.g. non-private ballots and insecure voting. Furthermore, we adapt our

system and propose a privacy-preserving general decision making system for blockchain

governance that supports privacy-centric cryptocurrencies. Besides, using a set of metrics,

we introduce a consensus analysis mechanism to enhance the utility of decision-making

of the systems by evaluating individual choices against collective (system-wide) decisions.

Finally, we provide pilot system implementations with benchmark results confirming the

efficiency and practicality of our constructions.
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Chapter 1

Introduction

1.1 Overview

Since the invention of the pioneer blockchain and cryptocurrency Bitcoin [Nak08] in 2009,

there has been a remarkable increase in the number and value of cryptocurrencies, as

well as blockchain research [Blo]. Similarly, there have been an increased acceptance,

adoption and application of blockchains and cryptocurrencies across various domains

and industries e.g. finance, insurance, healthcare, social computing, governance, research,

Internet of Things [ZS18,CXS+19,CDP19,MCLH19,WZN+19,XTH+19]. The distributed

and decentralised architecture of blockchains have enabled the construction of novel

systems that do not depend on trusted third parties across different sectors.

Cryptocurrency is the foremost application of blockchains [BMC+15, MSH+16,

NBF+16,LXS+19,Zca,DASa,VVL17]. Cryptocurrencies as decentralised ledgers, enable

payment transactions among parties, that are, perhaps, mutually distrusting, pseudony-

mous or anonymous. According to Coinmarketcap.com, a foremost cryptocurrencies

data platform, there are over 700 cryptocurrencies in existence, with a combined mar-

ket capitalisation of over \$1 trillion [Coi]. This growth have necessitated wide-ranging

improvements, regulations, legislations, user-interaction, engagement, community par-

ticipation and novel blockchain technologies that improve on early constructions such

as Bitcoin. For instance, newer protocols with strong security and privacy guaran-
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Chapter 1: Introduction Overview

tees [KKKZ19, HBHW17, GHM+17], as well as distinctive underlying cryptographic

constructions such as cryptonote [vS13] and tangle [PSF19].

Other improvements include: development of ASIC-resistant mining puzzles through

memory-bound and memory-hard puzzles, e.g. Scrypt [PJ16]; more privacy-centric

cryptocurrencies e.g. Zcash [Zca], Monero [Mon]; new variants of proof-of-work consensus

e.g. Proof-Activity [BLMR14]; and new blockchain consensus protocols, e.g. Proof-of-

stake [GHM+17], Ouroboros [KRDO17]. Other developments in blockchain research and

practice have resulted in the creation of smart contract platforms, e.g. Ethereum [Woo14]

and EOS 1, which are able to execute `legal agreements' that are implemented in computer

programs. This represents an upgrade from previous blockchain platforms that offered

mainly basic payment transactions and limited computational capabilities [AO13] such

as notary services 2.

Cryptocurrencies have evolved from first generation blockchains that mainly facilitate

payment transactions among different parties e.g. Bitcoin, Litecoin [Tak18] and support

limited computational tasks to second generation blockchains that provide self-enforcing

agreements in programmable logic (smart contracts), that digitally mimic real world

contracts e.g. Ethereum [Woo14, ASB+17, MMAM+16, KMS+16]. Meanwhile, third

generation blockchains mainly seek to address scalability, sustainability and interop-

erability among different blockchains [MBB+19, KJG+18, ZMR18, YWY+20]. Some

solutions proposed to improve scalability include the use of off-chains for separation

of standard payment transactions (parallel payment networks) from main blockchain

(core) [PD16, MMK+17, GM17, KG17]; side-chains [BCD+14, CDE+16, GKZ19]; and

sharding [KJG+18,ZMR18,MBB+19,WSNH19,YWY+20]. Solutions for inter-operability

among various blockchain technologies include [ZCC+16a,BCD+14,LXS+19,ASB+17,

Her18,MMAM+16,KZ19,GKZ19].

Key sustainability issues are environmental, ethical and governance of the operations

of blockchains [Vra17,GRTT17]. For example, Bitcoin with an estimated electricity con-

1https://eos.io/
2blocknotary.com, notarised.io, stampd.io, notary.bitcoin.com
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sumption of 68.35TWh 3 consumes more energy than some countries such as Switzerland,

Ireland, Kuwait, and Czech Republic, according to the International Energy Agency.

Consequently, alternative consensus protocols such as proof-of-stake have been proposed

and adopted by newer blockchains and cryptocurrencies 4 [GHM+17,KRDO17,KKKZ19].

Moreover, older cryptocurrencies such as Ethereum are also migrating from proof-of-work

consensus to proof-of-stake consensus protocols to address the problem of excessive energy

usage 5.

Despite improved constructions, scalability, interoperability, privacy and security

in blockchains, the operation and maintenance of these platforms do not reflect the

decentralisation ethos embodied at the protocol level (layer), i.e. development and

management operations have remained largely centralised. In other words, the governance

by infrastructure is decentralised, while development and maintenance of the infrastructure

is not decentralised. This observation is fundamental to the contributions of this thesis.

Previous research works have investigated and documented centralisation risks (of

governance structures) within blockchains [GKCC14, MC13]. For instance, by investi-

gating the decision-making process on the issue of increasing the block size, Filippi et.

al, [DFL16] explained that Bitcoin's maintenance and development depends largely on a

small core of highly skilled developers. Similarly, Azouvi et. al. [AMM18] reveal only a

handful of users account for the majority of discussions and code towards cryptocurrency

development in Bitcoin and Ethereum. Clearly, developers and/or founders hold signifi-

cant amount of power, and therefore can effectively influence decision-making processes,

which in turn, can lead to unhealthy centralisation within the system.

To mitigate centralisation risks in blockchain development and maintenance, some

cryptocurrencies such as Dash [DASa,Dasb], Zcash [Zca,Fou], and Decred [Deca,Decb]

provide periodic funding to support projects that advance their platforms or blockchain

development in general. Examples of projects include: marketing activities, research,

development of blockchain tools (e.g. wallets), etc. Typically, this funding is provided

3www.cbeci.org
4A list of proof-of-stake coins can be found at cryptoslate.com/cryptos/proof-of-stake/
5https://ethereum.org/en/eth2/
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to any stakeholder or user or group interested in carrying out projects that support the

development of the blockchain. Usually, decision-making on fund distribution to projects

is done through voting, involving only a select group of participants or centrally decided

by an appointed board or committee. Participation in the process is not incentivised

(low-turnout) and decision-making processes are not securely coupled with the blockchain

and basic voting systems for determining winning projects are supported.

The main aim of this research is to provide provably secure and practical decentralised

system that support blockchains towards sustainable development and maintenance.

Specifically, we propose a novel cryptocurrency treasury system to support decentralised

utilisation of blockchain resources, by all stakeholders, for the advancement of the

blockchain. Mainly, the treasury system covers the sourcing of funds for proposals,

proposal submission process, decision-making on how funds are utilised and the eventual

distribution of funds to successful projects. The proposed treasury system is mostly

platform agnostic and can support cryptocurrencies with payment transactions. Moreover,

we build upon our treasury system and propose a privacy-preserving general decision-

making system for cryptocurrencies with private stake information. We remark that,

a key requirement of any proposed solution is that it should not introduce additional

centralisation to the blockchain as a result of its operation.

Therefore, to achieve the research aim, we outline the following pertinent objectives.

Primarily, this research investigates different sources of funding blockchain development

by exploring funding in cryptocurrencies. The examination resulted in identification,

classification of cryptocurrency funding and their associated potential effects on decision-

making within blockchains. Consequently, solutions that ultimately limit unhealthy

influence of powerful minority within blockchains, and better aggregate the collective

input of members of the cryptocurrency ecosystem were proposed (for adoption in the

designed treasury system).

Furthermore, to mitigate centralisation tendencies and powerful minorities in the

development and maintenance of blockchains, this work explored the degree of involvement

of holders of stake in a cryptocurrency in decision-making processes for maintaining
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and advancing the cryptocurrencies. Hence, this research combined insights identified

from the exploration of cryptocurrency funding mechanisms and decision-making, and

successfully proposed practical treasury system for cryptocurrencies. The treasury

system combines novel ideas from collaborative intelligence gathering (liquid democracy),

decision-making processes, and new efficient zero-knowledge constructions. The proposed

treasury solution has been adopted by real-world cryptocurrency platforms such as

Horizon [Hor18] (formerly Zencash) and Cardano [Car18b](IOHK).

To guarantee increased (stake-)participation in the treasury and decision-making

systems, we abstracted a cryptocurrency coin into the notion of coin-ownership and

stake-ownership. Essentially, the owner of a coin is the only user that can successfully

spend a coin while a stake-owner is any user who possesses the stake/value of a coin for

the purpose of decision-making or participating in the treasury system. Therefore, the

system support permanent/offline stake delegation, and also have an additional benefit of

potentially increasing the total amount of stake (participation) in any treasury/decision-

making period. This is because coin owners do not need to be online for their stake to

be involved in the treasury decision-making process.

Our proposed treasury system mainly applies to blockchains with public-stake in-

formation. However, there is an increasing number of (recent) blockchains where stake

information is private, i.e. cryptocurrencies where the amount of stake owned by any

user/stakeholder is not publicly available on the distributed ledger. Therefore, to address

this potential limitation of the application of the treasury system, we develop a general

collaborative decision-making system for blockchains with private stake. This research

work also proposed an efficient privacy-preserving general decision-making system for

blockchains using novel multiplicative-relation zero-knowledge proofs. Particularly, the

system is compatible with cryptocurrencies with hidden/private stake information e.g.

Zencash [BCG+14,vS13,KKKZ19].

Finally, to ensure that quality decisions are reached on these systems, the research work

also investigates the utility of decisions by analysing soft-consensus among participants in

the blockchain decision-making outcomes. Evaluation of soft-consensus assesses agreement
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on conclusions reached within the blockchain and provides insights for useful discussions,

which in turn, increases community engagement, participation and acceptance of system-

wide decisions.

1.2 Problem Statement

Given the established adoption of blockchains across various industries [MA18,AVP+18,

PSSK20] and increasing ubiquity of cryptocurrencies in particular, due to their distributed

and decentralised architecture, it is pertinent to investigate the degree of decentralisation

in the maintenance and development of these platforms. Despite the decentralised

architecture, there exists known centralisation threats to blockchains [BS15,AMM18,

GBE+18,GKCC14] such as concentration of mining power in mining pools, centralised

development, maintenance and governance, etc. Consequently, there have been clear

justifications for the blockchain users/community to contribute towards developmental

decision-making to address centralisation [But,KKN+17,Decb].

Specifically, we ask the following main research question. Is it possible to design

provably secure blockchain-based self-sustenance mechanisms that will ensure long-term de-

velopment, maintenance, and sustainability of cryptocurrencies that optimises community

contribution without introducing centralisation tendencies?

Treasury systems have been proposed to address some of these centralisation ten-

dencies in blockchain development and maintenance. Blockchain treasury systems

are self-sustenance mechanisms that mainly cover fund sourcing and utilisation for

blockchain development. Dash (Dash Governance system [KNS+16]), Decred (Decred

treasury [Decb]), and Zcash (Zcash governance [Fou]) are examples of cryptocurrencies

that have introduced/adopted a system of treasury, that allows community members

contribute to cryptocurrency development, thereby mitigating centralisation in the pro-

cess of blockchain development directions. Despite this increasing adoption of treasury

systems by blockchains, it has not been rigorously studied to ensure secure design and

wide adoption and earlier proposals have mostly been ad-hoc solutions with considerable

drawbacks. We provide more details about these issues in our exploration of the earlier
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proposals in Chapter 2.

For long-term sustainability of cryptocurrencies, the following questions are critical

to ensure decentralised development.

• How is the development and maintenance of a cryptocurrency funded?

• Who decides how the funds will be used?

Therefore, we explore the various funding sources for blockchain treasury systems.

Specifically, we identify and examine the attributes of the sources of funds for supporting

cryptocurrency development, with a view to understanding how they affect the decentral-

isation and (in turn) the security of their underlying blockchains. Thereafter, we provide

a taxonomy of models of treasury system following the exploration of some real-world

examples.

Furthermore, early cryptocurrency treasury systems utilise voting systems for allowing

users jointly make decisions about developmental proposals for the blockchain. Typically,

these voting systems support basic voting schemes, voting is public, not incentivised, and

without guarantees or accompanying proofs of security. Additionally, we asked that can

we design and develop a blockchain treasury system with secure voting scheme that helps

voters make informed decisions (with minimal effort) and potentially improve on existing

solutions? Given the often complex technical nature of some of the proposals being voted

on in blockchain treasury systems.

Consequently, this thesis provides an affirmative answer to the question as demon-

strated by the presentations in Chapter 3. Specifically, we designed and developed a

secure delegable blockchain-based voting system adopted within our proposed treasury

system for blockchains. We also provide details and performance results of a full-prototype

implementation of the proposed treasury system.

Moreover, our voting scheme finds application beyond blockchain treasury systems.

Hence, we adapt it and proposed a privacy-preserving system for general decision-making

on blockchains. The details of this system is provided in Chapter 4. Given the additional

potential applications of our secure delegable voting scheme, we explore an avenue

7
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for improving the quality of decisions and acceptance of voting outcomes, by analysing

consensus through aggregated distance measurements of voters' choices and system voting

outcomes. Chapter 4 provides detailed discussions on the specific distance measures

utilised for analysing the consensus on voting outcomes and individual preferences within

the system.

In summary, the underlisted objectives are key to answering the research questions

of this thesis.

• Explore the literature and existing blockchain proposals (for identification of gaps)

• Design of a secure blockchain-based treasury system that optimises community

participation through the design of a collaborative decision-making scheme that

supports liquid democracy

• Extension of proposed scheme to support privacy-preserving blockchains

• Consensus analysis of system decisions for improved utilisation

• System prototyping and evaluation

1.3 Contributions

The work presented in this thesis explored stable development and inclusive maintenance

of blockchains (mostly cryptocurrencies). The goal of this thesis has been to construct

provably-secure community-inclusive cryptographic protocols that exploits the decen-

tralised nature of blockchains and optimises community intelligence through appropriate

decision-making systems. The major contributions from this thesis are highlighted below.

• An examination and taxonomy of blockchain (cryptocurrency) de-

velopment funding, planning, management, and disbursement mech-

anisms (otherwise known as treasury systems) for cryptocurrencies

and blockchain systems. Chapter 2 of this thesis provides an exploration of

blockchain development funding. Specifically, we identified and emphasised the role

8
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of blockchain funding in the overall management of cryptocurrencies and how it is

valuable towards long-term cryptocurrency sustainability. In addition to examining

the sustainability and highlighting potential issues with various funding sources,

we present a taxonomy of blockchain treasury systems based on funding source

and method of utilisation. Therefore, we provide a taxonomy of blockchain system

reflecting their funding and management system and elaborate on the key features,

as well as potential and real issues within each classification. Hence, the closed,

open and hybrid treasury system classification.

• A provably-secure (security) modeling for a blockchain-based treasury

voting system that supports delegative voting. In Chapter 3, for the first

time, we model the voting system in the well-known Universally Composable (UC)

framework [Can00] via an ideal functionality \scrF t,k,n,m
Vote . The functionality interacts

with a set of voters and experts as well as k voting committee members. It allows

the voters to either delegate their voting power to some experts or vote directly

on the project. If at least t out of k voting committee members are honest, the

functionality guarantees protocol termination. Even in the extreme case, when all

voting committee members are corrupted, the integrity of the voting outcomes is

ensured. However, in that case, protocol termination is not guaranteed.

• We proposed the world's first honest verifier zero-knowledge proof /

argument for unit vector encryption with logarithmic size communica-

tion. Conventionally, to show a vector of lifted ElGamal ciphertexts element-wise

encrypt a unit vector, Chaum-Pedersen proofs [CP93] are used to show each of

the ciphertexts encrypts either 0 or 1 through Sigma OR composition, and the

product of all the ciphertexts encrypts 1. However, the proof size is linear in

the length of the unit vector. Therefore, the communication overhead is quite

significant when the unit vector length becomes larger. As a result, in Chapter 3

we propose a novel special honest verifier zero-knowledge (SHVZK) proof/argument

for unit vector that allows the prover to convince the verifier that a vector of

ciphertexts (C0, . . . , Cn - 1) encrypts a unit vector e
(n)
i , i \in [0, n - 1] with O(log n)

9
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proof size. The proposed SHVZK protocol can also be Fiat-Shamir transformed to

a non-interactive zero-knowledge (NIZK) proof in the random oracle model.

• We provide prototype implementation [IOH19] of the proposed treasury

system for running and benchmarking in the real world environment. In

Chapter 3, we detail our implementation written in Scala programming language

over Scorex 2.0 framework, using TwinsCoin consensus for keeping the underlying

blockchain. Main functionality includes proposal submission, registration of voters,

experts, voting committee members and their corresponding deposit lock, ran-

domized selection of the voting committee members among voters, distributed key

generation (6-round protocol), ballots casting, joint decryption with recovery in case

of faulty committee members (4-round protocol), randomness generation for the

next treasury period (3-round protocol), reward payments, deposit paybacks, and

penalties for faulty actors. All implemented protocols are fully decentralized and

resilient up to 50\% of malicious participants. During verification, we successfully

launched a testnet comprising 12 full nodes operating tens of treasury periods with

different parameters.

• We extend the constructions of the treasury system to develop a privacy-

preserving system for general blockchain decision-making. We extend

the applicability of our initial voting protocol within treasury system to support

cryptocurrencies with private stake information. e.g. Zcash. Specifically, in

Chapter 4, we develop a novel honest verifier zero-knowledge (HVZK) proof for

the multiplicative relation between two vector ciphertexts. This proof enables us

to demonstrate that two vector ciphertexts satisfy a multiplicative relationship.

Hence, we design and implement a practical system that can be deployed for

community-inclusive collaborative general-purpose decision-making with support

for delegative voting on blockchains with private stake.

• Decision-making Consensus Evaluation. In Chapter 4, for the first time,

blockchain-based decision-making, to enhance the degree of participation and

10
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quality of decisions reached through the voting systems e.g. treasury system voting,

we provide a consensus evaluation system. The system allows individual participants

within the system to assess the degree of closeness or agreement of their choices with

general network decisions. Thus, enabling and encouraging participants' discussions

and awareness, which in turn increases participation and user satisfaction on the

outcomes of decisions reached within the system. The main measures we use for

consensus evaluation are distance measure, consensus degree, consensus measure,

and proximity measure. Distance measure is a measure of the separation between

a party's choice and the group/network decision while consensus degree is an

aggregation of the distance measure per project. Similarly, consensus measure is

an aggregation of the consensus degree using ordered weighted average (OWA).

Finally, proximity measure evaluates each party's voting preferences in relation to

the collective decision reached on the network by aggregating the distance measure

across all proposals/issues/candidates.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents related work for this thesis. It summarises pertinent issues

around blockchain funding and utilisation. Specifically, it covers blockchain funding and

alternatives in relation to sustainability and community-inclusiveness in fund utilisation.

To capture state-of-the-art, it further develops the presentations in a publication presented

at `The 18th IEEE International Conference on Data Mining (ICDM 2018) Workshop

on Blockchain and Sharing Economy Applications (BlockSEA) in Singapore (November,

2018)'.

Further, Chapter 2 presents background information on terminology, describe nota-

tions and cryptographic primitives used in subsequent chapters - Chapter 3 and Chapter 4.

Furthermore, it covers discussion on Universally composable (UC) [Can00] model of

secure computation for analysing security of cryptographic protocols. The UC-model is a

framework under the provable security paradigm in cryptography, and was adopted for

11
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proving the security of the systems developed within this thesis.

Chapter 3 presents a treasury system that addresses identified issues in the exploration

of blockchain maintenance and funding management discussed in Chapter 2. Essen-

tially, it discusses a high-level abstraction of fundamental operations and attributes

of cryptocurrencies. Additionally, it provides preliminary cryptographic concepts of

distributed key generation, and zero-knowledge protocols pertinent to the presentation of

the proposed treasury system. Furthermore, the chapter covers entities, participants and

details the operations and stages of the developed treasury system for cryptocurrencies.

The treasury system supports more robust funding sources, enables participation of stake-

holders/community members in decision-making process on fund utilisation. In order to

optimise community intelligence (`crowd wisdom'), the system supports delegation of

voting resources to experienced or more knowledgeable community members (experts)

within the voting system. That is, the voting protocol of the treasury system supports

delegative voting otherwise known as liquid democracy. The presentations in Chapter 3

is based on a publication presented at `The Network and Distributed System Security

Symposium (NDSS 2019) held at San Diego, California in February 2019'.

Chapter 4 presents a privacy-preserving general decision-making system for blockchain

management. The system can be adapted for general decision-making such as change of

blockchain rules, transaction and block sizes, etc. Overall, the system builds upon tech-

niques and concepts from the earlier mentioned treasury system in Chapter 3. Specifically,

it presents a privacy-preserving decision-making system that supports cryptocurrency

with private stake information using novel multiplicative-relation non-interactive zero-

knowledge proofs/arguments (NIZK). Furthermore, to enhance utility of decisions and

participation amongst stakeholders, we present a (soft-)consensus analysis of decisions

reached on the system using distance measures. This enables users to determine the

degree of agreement and proximity of individual choices with overall decisions reached on

the system. The work presented in this chapter is based on a research work submitted to

the IEEE Transactions on Dependable and Secure Computing journal and a report of

further analysis of the treasury system available on Cryptology ePrint Archive [ZOB18].

12



Chapter 1: Introduction Thesis Outline

In Chapter 5, we first present an analysis of the security of the proposed systems.

This presentation is done by examining how the developed systems satisfy conventional

notions of security in the electronic voting literature. Thereafter, Chapter 5 provides

information around implementation, benchmarking, testing, and evaluation of the main

algorithms, protocols and systems discussed in Chapter 3 and Chapter 4. Mainly, it

covers details about frameworks, computational resources, requirements, and libraries

used in the implementations of prototypes of the systems.

Chapter 6 concludes this thesis with a reflection on the presentations of the previous

chapters of the thesis, limitations and ethical considerations of some design decisions.

Finally, the thesis concludes with research directions for future work.

13



Chapter 2

Background and Related Work

This chapter provides information on cryptographic primitives, concepts, abstractions,

and notations used in subsequent chapters. Mainly, these are building blocks of the cryp-

tographic protocols presented in this thesis. Specifically, it covers public key encryption,

elliptic curve cryptography and definitions of security. Furthermore, it discusses ElGamal

encryption and its additive homomorphic encryption property used in the voting protocol

of the treasury system proposed in Chapter 3 and subsequently the general-decision

making system proposed in Chapter 4.

Zero-knowledge proofs, a tool used to ensure parties in a protocol execution behave

as outlined in the protocol, and critical for verifiable electronic voting is reviewed next.

Moreover, the review focuses on a Shamir-fiat transformation of sigma protocols (zero-

knowledge proofs) known as non-interactive zero knowledge proofs that are critical to

the presentations in this thesis. Thereafter, we present a brief discussion on universally

composable (UC) security [Can00], a new simulation-based paradigm of proving security

of cryptographic protocols.

The chapter also provides relevant literature review on related work - electronic voting

in Section 2.14 and blockhan voting and governance in Section 2.15 - and concludes with

a summary of the presentations covered in Chapter 2.
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2.1 Terminology and Notations

The following notations are used throughout this thesis. The security parameter is

defined as \lambda \in \BbbN . Let [a, b] denote the set \{ i \in \BbbN | a < i < b\} and [\ell ] denote the set

\{ i \in \BbbN | 1 < i < \ell \} . We denote by PPT probabilistic polynomial time Turing machines.

By a(\ell ), we denote a length-\ell vector (a1, . . . , a\ell ). We use the notation s\leftarrow S to denote

uniform random sampling of s s from a set, or distribution. When A is a randomised

process, i.e. PPT algorithm, y \leftarrow A(x) denotes running A on input x with a fresh random

coin r. When needed, we denote y := A(x; r) as running algorithm A on input x with r

as the explicit random coin.

Let poly(\cdot ) be a polynomially-bounded function and negl(\cdot ) be a negligible function.

A function is defined as negligible if for every positive polynomial p(\cdot ) and all sufficiently

large \lambda \prime s, it holds that negl(\lambda ) < 1/ poly(\lambda ). An event is said to occur with negligible

probability if the probability of the event is negl(\lambda ), and an event occurs with overwhelming

probability if its complement occurs with negligible probability, that is, 1 - negl(\lambda ).

2.2 Public Key Encryption

Formally, a public key encryption scheme consists of three algorithms defined as follows:

Definition 1. (Public Key Encryption, PKE). A public key encryption (PKE) scheme

PKE is a triple of PPT algorithms, PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt)

defined as follows:

• Key Generation Algorithm, (sk, pk)\leftarrow PKE.KeyGen(1\lambda ): on input the security

parameter \lambda and outputs a secret key sk and a public key pk.

• Encryption Algorithm, c = PKE.Encrypt(pk,m): on input public key pk and a

message m \in \scrM (message space), outputs a ciphertext c.

• Decryption Algorithm, m = PKE.Decrypt(sk, c): on input secret key sk and a

ciphertext c, outputs a message m.
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Following is a presentation of the relevant correctness and security requirements for the

cryptographic constructions in this thesis.

Definition 2. (Correctness). A PKE scheme PKE is said to be correct for all \lambda \in \BbbN ,m \in 

\scrM , (sk, pk)\leftarrow PKE.KeyGen(1\lambda ), it holds that

Pr[PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1

Definition 3. (Indistinguishable Chosen Plaintext Attack, IND-CPA Security) A pub-

lic key encryption (PKE) scheme , PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) is

said to be IND-CPA secure, if for any PPT adversary \scrA , the following experiments

IND-CPA\scrA ,\sansP \sansK \sansE ,\sansb (\lambda ) parameterised by b \in \{ 0, 1\} it holds that :

Adv(\scrA )
\mathrm{d}\mathrm{e}\mathrm{f}
= | Pr[IND-CPA\scrA ,\sansP \sansK \sansE ,\sansone (\lambda ) = 1] - Pr[IND-CPA\scrA ,\sansP \sansK \sansE ,\sanszero (\lambda ) = 1]| \leq negl(\lambda )

IND-CPA\scrA ,\sansP \sansK \sansE ,\sansb (\lambda ):

1. The challenger runs (sk, pk)\leftarrow PKE.KeyGen(1\lambda ) and provides pk to \scrA .

2. \scrA outputs a pair of messages (m\ast 
0,m

\ast 
1).

3. The challenger computes c\ast b \leftarrow PKE.Encrypt(pk,m\ast 
b) and provides c\ast b to the

adversary \scrA .

4. \scrA outputs a guess bit b\prime which is the output of the experiment returned by the

challenger.

ElGamal [Elg85] is a good example of public key encryptions scheme that is IND-

CPA secure and this thesis utilises IND-CPA security of ElGamal encryption from the

Decisional Diffie Hellman (DDH) assumption.

2.2.1 Elliptic Curve Over \BbbF p

For the purpose of improved efficiency, the implementation of cryptographic schemes

in this thesis are based on elliptic curve groups. Mainly, these are groups consisting of
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points on elliptic curves rather than groups based on modular arithmetic. Moreover, in

contrast to finite field multiplicative groups \BbbZ \ast 
p there exists no known sub-exponential

time algorithms for solving the discrete-logarithm (Dlog) problem in aptly chosen elliptic

curve groups [KL14]. Therefore, for cryptographic constructions based on the DDH or

Dlog problem such as our treasury protocol, the elliptic curve implementation is more

efficient than that based on prime-order sub-groups (DDH problem is hard and Dlog

problem are believed to be hardest). Hence, the choice of elliptic curve groups for our

implementation to achieve efficient solutions at a given level of security.

Let \sigma := (p, a, b, g, q, \zeta ) be the elliptic curve domain parameters over a finite field \BbbF p,

consisting of a prime p specifying the finite field \BbbF p, two elements a, b \in \BbbF p specifying an

elliptic curve E(\BbbF p) defined by E : y2 \equiv x3 + ax + b (mod p), a base point g = (xg, yg)

on E(\BbbF p), a prime q which is the order of g, and an integer \zeta which is the cofactor

\zeta = \#E(\BbbF p)/q. We denote by by \BbbG , the cyclic group generated by g. It is assumed that

the DDH assumption holds over \BbbG , that is for all PPT adversary \scrA :

Adv\sansD \sansD \sansH 
\BbbG (\scrA ) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Pr

\left[   x, y \leftarrow \BbbZ q; b\leftarrow \{ 0, 1\} ;h0 = gxy;

h1 \leftarrow \BbbG : \scrA (g, gx, gy, hb) = b

\right]   
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 

1

2
+ negl(\lambda ) ,

Formally,

Definition 4. (Decisional Diffie-Hellman, DDH). The DDH problem is said to be hard

over the cyclic group \BbbG generated by g if for all PPT adversary \scrA there is a negligible

function negl such that

| Pr[\scrA (\BbbG , q, g, gx, gy, gz) = 1] - Pr[\scrA (\BbbG , q, g, gx, gy, gxy) = 1]| \leq negl(\lambda ),

where uniform x, y, z \in \BbbZ q are sampled.

2.2.2 Elliptic Curve Lifted ElGamal

This section contains a brief explanation of a variant of ElGamal encryption scheme known

as lifted or exponential ElGamal. This variant of the ElGamal scheme is particularly
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useful for the cryptographic voting protocol described in Section 3.5. because of its

additive homomorphic property.

Lifted ElGamal encryption scheme is used as the additively homomorphic public

key cryptosystem in our protocol construction and consists of the following four PPT

algorithms:

• Gen(1\lambda ): on input security parameter \lambda , and output \sigma := (\BbbG , p, a, b, g, q, \zeta ).

• EC.KeyGen(\sigma ): pick sk\leftarrow \BbbZ \ast 
q and set pk := h = g\sanss \sansk , and output (pk, sk).

• EC.Enc\sansp \sansk (m; r): output c := (c1, c2) = (gr, gmhr).

• EC.Dec\sanss \sansk (c): output Dlog(c2 \cdot c - \sanss \sansk 
1 ), where Dlog(x) is the discrete logarithm of x.

(Note that Dlog(\cdot ) is not efficient, therefore, the message space \scrM should be a

small set, e.g., \{ 0, 1\} \eta for \eta \leq 30, to enable efficient exhaustive search of logg g
m.

Moreover, lookup tables are used in practice to enhance efficiency of the decryption

process).

As earlier stated, it is well established in the literature that lifted ElGamal encryption

scheme is IND-CPA secure under the DDH assumption [Gol04,KL14,DK15,Mol01,Sma03,

PP10]. Its key generation and decryption algorithm can be efficiently distributed and it

has additively homomorphic property (cf. Section 2.2.3 below).

2.2.3 Additively Homomorphic Encryption

Let Gen(1\lambda ) be the group generator algorithm that takes as input the security parameter

\lambda \in \BbbN , and outputs the group parameters param as earlier explained in Section 2.2.2,

which defines a multiplicative cyclic group \BbbG with prime order p, where | p| = \lambda . We

assume the DDH assumption holds with respect to the group generator Gen. Specifi-

cally, The additively homomorphic cryptosystem HE consists of four PPT algorithms

(KeyGen,Enc,Dec,Add, ) defined as follows:

• KeyGen(param): pick sk\leftarrow \BbbZ \ast 
q and set pk := h = gsk, and output (pk, sk).

• Enc\sansp \sansk (m; r): output c := (c1, c2) = (gr, gmhr).
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• Dec\sanss \sansk (c): output Dlog(c2 \cdot c - \sanss \sansk 
1 ), where Dlog(x) is the discrete logarithm of x.

• Add(c1, . . . , c\ell ): output c := (
\prod \ell 

i=1 ci,1,
\prod \ell 

i=1 ci,2).

Lifted ElGamal encryption is additively homomorphic, that is:

Enc\sansp \sansk (m1; r1) \cdot Enc\sansp \sansk (m2; r2) = (gr1 , gmhr1) \cdot (gr2 , gmhr2)

= (gr1+r2 , gm1+m2hr1+r2)

= Enc\sansp \sansk (m1 + m2; r1 + r2) .

We adopt the well known threshold lifted ElGamal encryption scheme as the candidate

threshold additively homomorphic public key cryptosystem for our treasury protocol.

2.2.4 Pedersen Commitment

Specifically, in the unit vector zero-knowledge proof, we use the Pedersen commitment

first introduced by Pedersen [Ped91] in 1991. The scheme has homomorphic properties

and is based on similar algebraic operations and hardness assumptions as the lifted

threshold ElGamal encryption used in our protocol. Moreover, it is perfectly hiding and

computationally binding under the discrete logarithm assumption.

The Pedersen commitment scheme consists of the following 4 PPT algorithms. Each

of these algorithms implicitly take as input the same group parameters, param\leftarrow Gen(1\lambda ).

• KeyGen\sansC (param): pick s\leftarrow \BbbZ \ast 
q and set ck := h = gs, and output ck.

• Com\sansc \sansk (m; r): output c := gmhr and d := (m, r).

• Open(c, d): output d := (m, r).

• Verify\sansc \sansk (c, d): return valid if and only if c = gmhr.

Pedersen commitment exhibits additively homomorphic property, i.e.
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Com\sansc \sansk (m1; r1) \cdot Com\sansc \sansk (m2; r2) = (gmhr1) \cdot (gmhr2)

= (gm1+m2hr1+r2)

= Com\sansc \sansk (m1 + m2; r1 + r2) .

2.3 Schwartz-Zippel lemma

Here, we briefly discuss a variation of the Schwartz-Zippel lemma [Sch80] that is used in

proving the soundness of our zero-knowledge protocols.

Lemma 1 (Schwartz-Zippel). Let f be a non-zero multivariate polynomial of degree d

over \BbbZ p, then the probability of f(x1, . . . , xn) = 0 evaluated with random x1, . . . , xn \leftarrow \BbbZ p

is at most d
p .

Therefore, given two multi-variate polynomials f1, f2, if

f1(x1, . . . , xn) - f2(x1, . . . , xn) = 0

for random x1, . . . , xn \leftarrow \BbbZ p, then we can assume that f1 = f2. This is because, if

f1 \not = f2, the probability that the above equation holds is bounded by \mathrm{m}\mathrm{a}\mathrm{x}(d1,d2)
p , which is

negligible in \lambda .

2.3.1 Zero-knowledge Proofs/Arguments

Zero-knowledge (zk) proof is a fundamental cryptographic building block and have

wide application in general multiparty computation protocols [GMW87] such as secure

verifiable voting protocols [Adi06]. Generally, cryptographic zero-knowledge proofs lets

a party (the prover) prove/convince another party (the verifier) about an assertion or

truth of a statement without revealing any extra information. Mainly, the security of

zero-knowledge proofs are characterised by three main properties, namely, zero-knowledge,

soundness, and completeness.
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Let \scrL be an NP language and \scrR \scrL be its corresponding polynomial time decidable

binary relation, i.e. \scrL := \{ x | \exists w : (x,w) \in \scrR \scrL \} . We say a statement x \in \scrL if there is a

witness w such that (x,w) \in \scrR \scrL . Thus, statement x and witness w and only x is given

to the verifier V . Let the prover P and the verifier V be two PPT interactive algorithms.

Denote \tau \leftarrow \langle P (x,w), V (x)\rangle as the public transcript produced by P and V . After the

protocol, V accepts the proof if and only if \phi (x, \tau ) = 1, where \phi is a public predicate

function.

Definition 5. We say (P, V ) is a perfectly complete proof/argument for an NP relation

\scrR \scrL if for all non-uniform PPT interactive adversaries \scrA it satisfies

• Perfect completeness:

Pr

\left[   (x,w)\leftarrow \scrA ; \tau \leftarrow \langle P (x,w), V (x)\rangle :

(x,w) \not \in \scrR \scrL \vee \phi (x, \tau ) = 1

\right]   = 1

• (Computational) soundness:

Pr

\left[   x\leftarrow \scrA ; \tau \leftarrow \langle \scrA , V (x)\rangle :

x \not \in \scrL \wedge \phi (x, \tau ) = 1

\right]   = negl(\lambda )

Let V (x; r) denote the verifier V is executed on input x with random coin r. A

proof/argument (P, V ) is called public coin if the verifier V picks his challenges randomly

and independently of the messages sent by the prover P .

Definition 6. We say a public coin proof/argument (P, V ) is a perfect special honest

verifier zero-knowledge (SHVZK) for an NP relation \scrR \scrL if there exists a PPT simulator

Sim such that

Pr

\left[         

(x,w, r)\leftarrow \scrA ;

\tau \leftarrow \langle P (x,w), V (x; r)\rangle :

(x,w) \in \scrR \scrL \wedge 

\wedge \scrA (\tau ) = 1

\right]         
\approx Pr

\left[         

(x,w, r)\leftarrow \scrA ;

\tau \leftarrow Sim(x; r) :

(x,w) \in \scrR \scrL \wedge 

\wedge \scrA (\tau ) = 1

\right]         
21



Chapter 2: Background and Related Work Schwartz-Zippel lemma

Sigma protocols (
\sum 

) are three-move proof protocols [DJN10] with a challenge-

generating verifier such as Schnorr [Sch91] and Chaum and Pedersen [CP93] used to

efficiently prove knowledge of Dlog (discrete logarithm) and exponents in a Diffie-Hellman

triple, respectively. At a high level, in the first move, the prover sends (commitment

to) a random value to the verifier, then the verifier sends a randomly generated value

to the prover. Finally, to convince the verifier, the prover sends a final value which is a

combination of the original value (in the first move), the challenge (in the second move),

and the witness to the verifier.

A public coin SHVZK proofs/arguments can be transformed to a non-interactive

one (in the random oracle model [BR93]) by using Fiat-Shamir heuristic [FS86] where

a cryptographic hash function is used to compute the challenge instead of having an

online verifier in the protocol interaction. We provide more details in Section 3.7 of the

zero-knowledge proofs used in the treasury system protocol.

2.3.2 Universal Composability

We model our proposed treasury system security under the standard Universally Com-

posable (UC) security framework [Can00] proposed by Canetti in 2000. UC provides a

framework for proving security of cryptographic protocols, and is, perhaps, the most

famous proof paradigm under simulation-based security proofs for cryptographic protocols

(alternative to game-based or property based definitions of security). A key concept of

the framework is to enable stand-alone security definitions of protocols that still holds

under concurrent general composition.

The main technique of UC is to create an ideal functionality \scrF that describes the

desired security goals of a protocol [BU13]. Following the specification of an ideal

functionality, we then develop a protocol that is as secure as the ideal functionality, in a

process known as `UC emulation'. The designed protocol is secure if it `UC-emulates' the

ideal functionality. In other words, a protocol is secure for a given task, if no adversary

attacking an execution of the protocol can gain more from the attack than attacking an

ideal process involving a trusted third party (that gets input from the parties and hands
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output back to them) running the ideal functionality for the protocol.

This approach to analysing security of protocols was first proposed in [GV87].

Essentially, the approach states that a secure protocol for a computational task should

`emulate' an ideal process for the task. In turn, an ideal process for a computational task

involves a `trusted third party' that receives input from all parties and locally executes

the tasks, computes the output and hands said output back to the parties. In the UC

framework, an environment \scrZ is responsible for generating and handling inputs to parties

and receiving outputs whilst communicating arbitrarily with the adversary.

Furthermore, the UC framework enables secure composition, i.e. given a secure proto-

col \rho with ideal functionality \scrF , protocol \rho is still a secure protocol if ideal functionality

\scrF is replaced by another protocol \pi that UC-emulates \scrF . Thus, enabling composition

of protocols. Moreover, the UC framework guarantees that a protocol proven secure in

a stand-alone model will remain secure when executed in an environment with other

concurrently run arbitrary protocols. This is otherwise known as achieving concurrent

general composition [Lin09].

Variants of UC framework include simplifed-UC (SUC) [CCL15], a simpler and

restricted framework with built-in authenticated channels, fixed parties, and less com-

plications than the generalized UC framework. Other variants are UC with joint state

(JUC) [CR03] where protocol instances have some joint state and randomness, UC

with global setup (GUC) [CDPW07] where protocols are analysed in a setting with

parties having access to trusted global information with specific properties. Others are

synchronous-UC [KMTZ13] that allows UC to support protocols achieving properties

such as input completeness, guaranteed termination, etc. through the introduction of

(ideal functionalities for) loosely synchronised clocks and bounded latency (in commu-

nication channels/networks). Synchronous-UC provided a novel formal approach for

achieving synchrony in the UC framework.

Under the framework, all entities (protocols, functionalities, environment) including

adversarial entities are represented as interactive Turing machines (ITMs), each of which

represents the program to be run by participants. Note that, we distinguish between
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ITMs (which represent static objects, or programs) and instances of ITMs (ITIs). ITIs

represent interacting processes in a running system initiated by an environment that

communicates with the adversary, hands input to and gets outputs from the protocols.

Moreover, an ITI is an ITM along with an identifier that distinguishes it from other ITIs

in the same system. The identifier consists of two parts: A session-identifier (SID) that

identifies which protocol instance the ITI belongs to, and a party identifier (PID) that

distinguishes among the parties in a protocol instance. Typically, the PID is also used

to associate ITIs with ``parties"" that represent some administrative domains or physical

computers. The pair (SID,PID) is a unique identifier of the ITI in the system. The model

of computation consists of a number of ITIs that can write on each other's tapes in ways

specified in the UC model. We assume that all ITMs are PPT.

Specifically, the security of our voting protocol is assessed in the UC framework

with static corruption in the random oracle (RO) model. The security is based on the

indistinguishability between real/hybrid world executions and ideal world executions, i.e.

for any possible PPT real/hybrid world adversary \scrA , we construct a PPT simulator \scrS 

(ideal world adversary) that can present an indistinguishable view to the environment \scrZ 

operating the protocol.

2.4 Background

Blockchain research has witnessed significant advances since the pioneer blockchain

Bitcoin was invented a decade ago. From first generation blockchains that are largely

passive distributed ledgers that facilitate token exchanges between potentially distrusting

parties [Nak08,Tak18,DD14], to second generation blockchains or programmable state

machines [Woo14] that support contracts expressed in logical computer codes, i.e. smart

contracts. Advances in blockchain research and practice have mainly focused on improved

security and privacy [DD14,Max13,KKKZ19,BCG+14,KMS+16], scalability [ASB+18,

KJG+18,ZMR18,KZ19,GKZ19,BCD+14], sustainability and interoperability [LXS+19].

Recent blockchains are rife with some or a combination of these features. They now offer

better scalability, privacy, security and support better transaction throughputs than first
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generation systems.

However, beyond these improvements, `inclusive' blockchain development and man-

agement is another main goal amongst modern cryptocurrencies [Hor18,Har16,Mer16,

But,DFL16, Th16,KNS+16]. Intuitively, this enables stakeholders of a cryptocurrency

(beyond developers, founders, investors) to have active roles in the management of de-

velopment funds for blockchain, and general decision-making that affects overall health

of these distributed platforms. The focus of this thesis aligns with the latter goal by

designing and developing provably-secure protocols that support inclusive management,

development and general-decision making in cryptocurrencies.

Real-world cryptocurrencies require continuous maintenance through developmen-

tal projects and steady funding for survival and continuous growth. Development

of early blockchains and cryptocurrencies e.g., Ethereum [Woo14], Dash [DD14], Ze-

roCash [BCG+14], were mainly funded by `founders', who are developers, investors,

researchers, etc. Consequently, cryptocurrency development and growth is largely in-

fluenced, driven and determined by founders. There abound ample evidences of failed

cryptocurrencies and disputes due to undemocratic control by `founders/owners' of these

supposed distributed platforms [DuP17,DFL16,Hac19].

However, blockchain-based treasury systems have been identified as an alternative fund-

ing and decision making mechanism for distributed ledgers [KKN+,KN+,KKN+17,ZOB18,

Th16,Hor18]. A treasury system is a self-sustenance mechanism for the advancement of

blockchain systems [KKN+17]. Generally, a blockchain treasury system covers sourcing of

funds, funding management and decision-making for fund utilisation to support cryptocur-

rency maintenance and development. Moreover, it is a decentralised, community-inclusive

collaborative decision-making system for cryptocurrencies and blockchains. Mainly, it

comprises regular (mostly decentralised) funding source, community-inclusiveness and

(incentivised) participation, collaborative, secure, periodic, and ideally an enforcement

(punishment) mechanism to ensure compliance with system-wide decisions. Section 2.5

provides a high-level description of treasury systems for cryptocurrencies.

Cryptocurrency projects such as core development, light-client support, mining
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pool software, decentralised exchanges, research etc. requires funding to execute. `He

who pays the piper dictates the tune', therefore, Section 2.6 examines funding sources

for cryptocurrency maintenance and development and their effect within treasury and

cryptocurrencies.

Treasury-like functions of key selected cryptocurrencies were further explored for

insights towards design decisions in our proposed blockchain treasury system, developed

and presented in Chapter 3. Analysis of details of operations, features, strengths and

weaknesses of these blockchain funding management systems is presented in Sections 2.8,

2.9, 2.10 and 2.11. Particularly, the analysis examines how these pioneer blockchain

platforms address pertinent problems such as community-inclusiveness, participant spread,

voting rules, privacy, security, fund sourcing, fund utilisation, etc. and their effects in

developing secure treasury systems for sustainable blockchain technologies. Moreover,

Section 2.13 discusses funding sources in relation to fund utilisation and decision-making

process, and provides a taxonomy of these (treasury-like) system functions based on

existing cryptocurrencies and beyond.

Note that due to the alluring nature of cryptocurrencies [MSA19] as a store of

value and attendant community interest, a considerable volume of work in this area

originate from non-academic, industrial [WZX+18] or grey literature such as whitepapers,

e.g., the Bitcoin whitepaper [Nak08], official websites, third-party service providers e.g.,

Coinmarketcap, official and unofficial chat forums e.g., Reddit, Medium, mailing lists,

Wiki pages, GitHub, etc. Moreover, practice is sometimes ahead of theory in blockchain

research [BMC+15,WZX+18]. Accordingly, the presentation in this chapter also draws

directly from these, largely unofficial, sources.

Subsequently, we provide a

Finally, Section 2.16 provides concluding remarks by highlighting key findings and

insights, and provides a summary of research questions that are addressed in subsequent

chapters of this thesis.
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2.5 Treasury System Overview

Generally, cryptocurrencies require skills spanning various fields such as cryptography,

economics, law, finance, software development etc. for tasks and projects such as

marketing, secure protocol design and proof, code for system core, business registration,

advertising and publicity, etc. Due to decentralisation on blockchains and absence of

trusted-third parties, ideally, extra care is required to prevent introduction of centralisation

through these `external' sources. Therefore, a treasury system seeks to address these

sources of centralisation from the operations of the cryptocurrency. For instance, by

allowing community stakeholders contribute to the system.

A treasury system is a `self-sustenance' mechanism for decentralised distributed

ledgers. Mainly, it encompasses blockchain funding, funding distribution, utilisation,

as well as decision-making, [KKN+17,KKN+,ZOB18,Car18a,Hor18,KNS+16] for the

development, maintenance, advancement and long-term sustainability of underlying

cryptocurrency. A cryptocurrency treasury system represents a decentralised means

of achieving and ensuring sustenance and improvement of its parent-system through

guaranteed regular funding for supportive developmental projects and democratised

decision-making.

Moreover, a treasury system covers how project proposal submissions are made,

community discussions, community-inclusive collaborative decision-making for reaching

decisions on proposals, and reliable robust funding for the treasury. Desirably, treasury

system parameters and features should be compatible with, and reflect considerations

for real-world scenarios in which the blockchain community and proposers are expected

to function. For example, it can mimic salary payment in the real-world by adopting

monthly cycles for all of its activities. Below, we highlight key requirements for treasury

systems [KNS+16, ZB18, Dasb] to help diminish centralisation in the operations of

cryptocurrencies.

• Treasury funding mechanism. Although blockchains can generate money for holders

through appreciation in exchange value, they cost money to develop and main-
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tain [Bit17,Bita,Bas,Ara, ICO]. Hence, a secure and reliably sustainable source of

funding is essential for a treasury system to successfully fund projects that support

cryptocurrency development. Potential funding sources include block rewards taxa-

tion [HBHW17,DD14], voluntary donations [Bit17], and minting [ZOB18] which

is particularly useful when deductions from block rewards become small. Block

rewards may reduce as a result of decrease in block rewards known as halving in

Bitcoin [NBF+16,Nak08], or as a result of money supply limit being reached and

only transaction fees making up block rewards.

• Community inclusive and stakeholder participation. Holders of stake and cryp-

tocurrency community members should be allowed and encouraged to participate

in the treasury system to ensure sufficient buy-in and minimise concentrating

blockchain operations in the hands of a minority few. Game-theoretically efficient

incentive structures can further drive increased stakeholder participation in treasury

process [KN+], and also help ensure that incentives do not lead to hyper-inflation

which can diminish cryptocurrency value.

• Collaborative decision-making mechanism e.g., a voting scheme. Treasury sys-

tems should integrate mechanisms that facilitate community-inclusive collaborative

decision-making in order to maximise the collective-intelligence of the cryptocur-

rency community in particular and larger blockchain ecosystem [KN+, ZOB19].

In addition the collective-decision making mechanisms should be flexible [Tez]

and reflect the peculiarities of the blockchain rather than general voting rules, to

enhance utility and participation in the system. For instance, a higher threshold

can be set for decisions on projects that exceeds a defined funding target, or for

proposals with high blockchain forking risks [KKN+17] rather than simple majority

voting rule for all proposals.

• Blockchain and stakeholders' security and privacy. Participation in treasury activity

should not compromise the security and privacy of participants and the cryptocur-

rency. For instance, the system should be secure against Sybil attacks [GKL15],
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rushing attacks [KMS+15], nothing-at-stake attacks [BNPW18] and stakeholders'

votes should be weighted relative to their stake in the system.

Next, we examine the main sources of development funding (treasury funding mechanism)

for cryptocurrencies in relation to risks, benefits and sustainability for treasury systems

and blockchains in general. The remaining above-listed requirements are covered in

Chapter 3, which details the proposed cryptocurrency treasury system with community-

inclusive decision-making mechanism that exploits collaborative intelligence through

delegative voting (cryptocurrency treasury system). We remark that, ideally, project

milestone compliance monitoring and/or refund mechanism in case of non-compliance

are desiderata for cryptocurrency treasury systems.

2.6 Funding Sources

Funding is essential for the development and maintenance of any real-world cryptocur-

rency. For example, human resources (salaries and compensation), computing resources

(hardware and software), marketing, legal fees, etc. are some necessary expenses accrued

in the development and maintenance process of real-world blockchain. Main sources

of development funding on blockchain systems include donations (charity), taxations,

venture capitalists (investor funding), patron organisations and more recently Initial

Coin Offerings (ICOs) [GMV20,HS18]. Today, cryptocurrencies largely rely on one or

a combination of these sources for development funding and maintenance. The next

Sections 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, present an examination of each of these funding

sources.

2.6.1 Initial Coin Offerings (ICOs)

ICO is a means of crowd-funding done by issuing some cryptocoins to investors, or-

ganisations, or individuals, in exchange for other cryptocurrencies, usually Bitcoin or

Ethereum, or a fiat currency e.g, US Dollars. In recent years, ICOs have become a

substantial means of funding cryptocurrencies and other blockchain-based startups and
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businesses [CHSW19,GMV20]. Typically, most ICOs are deployed as smart contracts

that receive funds and distribute equivalent amount of the new or underlying cryptocur-

rency to the investors at a later date [Bita]. Technologies such as the ERC-20 [VB15]

which facilitate easy development of new tokens used for ICOs have enabled increase

in the number of ICOs in the cryptocurrency community. Usually, investors buy these

tokens in expectation that their value may rise if project/company offering the ICOs

are successful in the future [GMV20,MSA19]. ICOs represent a good way to raise rea-

sonable amount of money to support cryptocurrency development within a short period

of time. For instance, projects such as Basic Attention Token [Bas] and Aragon [Ara]

were able to respectively raise 35 million USD and 25 million USD in 30 seconds and 15

minutes [Kea17,CD17, ICO].

Due to the successes recorded by early ICOs, there has been a rise in the number

of ICOs for cryptocurrencies and other blockchain-based technologies [ICO]. According

to Cointelegraph [VB15], approximately 4 billion USD (fiat currency equivalent) was

raised in 2017 alone. While ICOs are good, there are uncertainties associated with the

legality of ICOs. For example, are ICO tokens regarded as payment token, utility tokens

or financial security [HT18,OEC19]? This classification is necessary for global regulators

in relation to protection of investments in ICOs [GMV20]. Unfortunately, ICOs can also

be abused by fraudsters who abuse the minting process that creates new coins used in

the ICOs [CHSW19] and have been used in Ponzi schemes and financial scams [WA17]

because of the low entry requirements (mainly technical costs) to organise an ICO as

evidenced by the plethora of over 250, 000 ERC-20 tokens [Eth20] on the Ethereum

blockchain. ICOs are susceptible to concentration of token ownership in the hands of a

minority, speculation, and scams. Moreover, recently there have been an apparent decline

in the rate of successful ICOs, perhaps due to an increase in the number of speculative

projects issuing ICOs.

Evidently, ICOs are valuable for initial development or starting out a project. This

is attributable to the relatively high amount of funds that can be raised in a short

span of time, especially as sources of low cost finance [OEC19]. However, uncertainties
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surrounding the amount of funds that can be raised at any given time [GMV20] make

them unsuitable for solely funding of cryptocurrency treasury system. Treasury systems

require stable, reliable and largely predictable funding sources [ZOB19,KKN+17,KNS+16]

to support cryptocurrency development. ICOs are incompatible with the methodical

planning and reliable funding that is expected of decentralised cryptocurrency treasury

systems. Therefore, an obvious drawback is that ICOs are not suitable as sustainable

source of funding for long-term planning of cryptocurrency maintenance and development.

2.6.2 Donations

Donations is one of the oldest and most common means of cryptocurrency development

funding. Often developers/inventors/founders of a cryptocurrency rely on donations

from charity e.g., from the public, stakeholders, or other third parties, for cryptocurrency

development funding e.g., Bitcoin Core Sponsorship [Bit17]. These donations can be in

form of cash money (cash) or through offering of services such as software development,

or marketing skills (kind). For instance, Bitcoin through its foundation- The Bitcoin

Foundation (whose goal is to increase global acceptance of Bitcoin) - have developed via

reliance on donations and membership registration fees. For the Monero (XMR) [Mon]

cryptocurrency, developers or proposers (planning to execute cryptocurrency development

projects) willing to contribute to the growth of Monero, seek donations from other

community members by discussing details of their proposals (including the amount of

funds needed) on the `getmonero forum' [Get].

Moreover, BitcoinCore, an open source endeavour responsible for the maintenance of

the Bitcoin client [Bitb], also runs a sponsorship program through which top companies

and industry players can contribute to the development of the cryptocurrency. Although,

donations represent an alternative funding mechanism to ICOs, they are not without

their own pitfalls. There have been instances where development activities have been

threatened because of low availability of funds. For instance, in 2015, a board member

published a note on the Bitcoin Foundation forum where he stated that the Foundation

was seriously struggling with funds.
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Although, donations are useful for cryptocurrency development funding, solely, they

are not suitable for long-term methodical planning and sustainability of cryptocurrencies

due to associated fund uncertainties [KNS+16]. Meticulous planning for blockchain

development activities is impractical under the donations only model due to uncertainties

about the amount of funds that will be available at any period of time. Furthermore,

donations could introduce centralisation in the system. For instance, popular donors

(not necessarily malicious) may take advantage of the model to influence decisions in the

system to their favour. In contrast, a malicious adversary or donor may try to influence

the system in ways that are detrimental to the sustainability and growth of the system.

For instance, this may be done to cripple the system due to the adversary holding a large

stake in an altcoin or competitor cryptocurrency.

2.6.3 Taxations

Taxation is an alternative development funding source found on existing cryptocurrencies

such as Dash [DD14], ZCash [Zca], etc. By design, a fraction of block rewards, payment for

finding new block, is taken and contributed to a decentralised pool, or the cryptocurrency

company/founders, or some other bodies providing services to the cryptocurrency. For

instance, 10\% of miners' rewards on the Dash blockchain is contributed to a central pool.

Developers and other community members can request funds from this pool for proposals

that will advance the Dash blockchain. On ZCash, the `founders reward' is 10\% of the

21 million ZEC that will be mined on the network. This represents tax that will be

distributed among founders, investors, employees, and advisors for services offered to

support the blockchain.

Taxation, perhaps, is the most sustainable of all cryptocurrency development funding

sources because it is a blockchain sustenance mechanism derived from activities on the

blockchain itself. Furthermore, it lends itself to methodical planning which are required by

disintermediation protocols such as cryptocurrencies and does not have the uncertainties

associated with ICOs [GMV20]. Therefore, taxation which is obtainable from miners'

rewards and potentially transaction fees represent a good treasury fund source. However,
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additional funding schemes may be required because of decreasing miners' reward, also

known as halving in Bitcoin [NBF+16, Nak08], which is a common feature of most

cryptocurrencies. Accordingly, to supplement the shortage from diminishing miners'

reward, a hybrid treasury source, such as one that combines taxation with donations or

minting represents a more robust and sustainable source of blockchain funding.

2.6.4 Minting

Minting is defined as the process of creating new cryptoassets [CHSW19] or cryptocoins to

mainly support cryptocurrency development [ZOB19]. On the Bitcoin blockchain, coinbase

transactions [NBF+16] are used to create new Bitcoins. Basically, this is the means

by which miners that propose new blocks get rewarded. The miner proposing the new

block receives some new cryptocoins for being the first to correctly solve a computational

puzzle (proof-of-work) or for being the leader of a committee responsible for proposing

a new block [KRDO17] (proof-of-stake). That is, nodes are rewarded for providing

critical services to the network. Similarly, minting would create new coins for solely

supporting cryptocurrency development by paying or rewarding community members who

propose and carry out projects that will advance the growth of the blockchain. In other

words, newly minted coins are used solely to fund projects (that support cryptocurrency

development) by awarding the minted coins to community members with successful

proposals.

Although minting provides stable funding for cryptocurrency development, it creates

overall inflation in the value of underlying cryptocurrency [CHSW19] and susceptible

to abuse by proposers who are only interested in taking funds from the system because

of the `seemingly unlimited' availability of funds supply. Therefore, there is need for

careful adoption, implementation and thorough economic and game-theoretic analysis to

determine the optimum amount of coins that should be minted at any given time towards

funding projects in the system. This analysis is also necessary to determine the overall

inflation impact and implications for long-term growth and value of the cryptocurrency.

Hence, to protect against adverse inflation, it is required to achieve an equilibrium between
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supply and demand, and Cohney et al., rightly posits that stakeholders participation is

necessary to attain optimal minting values [CHSW19].

2.6.5 Patron Organisations

Apart from ICOs, taxations, donations, and minting, patron organisations also provide

services to support blockchain development. Patron organisations provide dedicated

support for cryptocurrency development through the provision of support services. For

instance, Bitpay contributes to Bitcoin development by funding wages of some Bitcoin

Core developers. Furthermore, industrial organisations can also contribute human

resources and services to the growth of a cryptocurrency. For instance, in addition

to providing funding to Bitcoin Core, Blockstream 1 also contribute human resources

to the Bitcoin cryptocurrency e.g. developers contributing to Bitcoin Core software.

Patron organisations tend to wield ample influence in decision-making on the development

direction for cryptocurrencies. Issues generally arise when the decisions reached do not

reflect the inputs of the broader cryptocurrency community. Usually, these decisions

tend to occur in a centralised manner, and centralised sustenance mechanisms that do

not proportionately represent the interests of all stakeholders are not appropriate for

blockchains.

In summary, it is clear that a clever combination of the above funding sources con-

sidered with the peculiarities of given cryptocurrencies would provide adequate funding

source for secure, decentralised cryptocurrency treasury for supporting system develop-

ment. Each of the above-listed blockchain development funding sources, individually does

not provide a secure, methodical and robust funding source for decentralised blockchain-

based cryptocurrencies' treasury system.

2.7 Related Work

Here, we shed more light on the operations of key real-world cryptocurrencies (Dash,

Zencash, Decred, and Zcash) in relation to fund sourcing and utilisation through com-

1https://blockstream.com/

34



Chapter 2: Background and Related Work Dash Governance System

munity participation. This exploration helps to identify gaps that are addressed in our

proposed treasury system presented in Chapter 3. Besides, e-voting, blockchain voting

and governance are topics closely related to the work presented in this thesis. Therefore,

we provide a review of these topics in Section 2.14 and Section 2.15 respectively. The

review provides a window into the state-of-the-art in literature around key topics related

to the presentations in this thesis. Specifically, we explore the literature on develop-

ments of e-voting systems and place a strong emphasis on end-to-end verifiability, before

concluding with discussions of blockchain-based voting and blockchain governance.

2.8 Dash Governance System

The Dash governance system (DGS) [Dasb] also referred to as Dash governance by

blockchain (DGBB) is a pioneering treasury implementation for cryptocurrency devel-

opment funding in any real-world cryptocurrency [KNS+16]. The DGS allows regular

users on the Dash network to participate in the development process of the Dash cryp-

tocurrency by allowing them submit project proposals that support the cryptocurrency

to the network. A subset of `special' nodes known as Masternodes then vote to decide

what proposals receive funding. Masternodes are a subset of dedicated servers with a

1000 Dash that provide special services such as instant and private pay, to the Dash

network [DASa]. Every voting cycle (approximately one month), winning proposals

are voted for and funded from the accrued resources in the blockchain treasury. 10\%

of all block rewards within each monthly voting period is contributed towards a pool

(superblock) from which proposals are then funded. Essentially, the DGS uses taxation

as the means of development funding and consists of three major stages: proposal stage,

voting stage, and payment stage.

Next, we provide descriptions of the DGS by discussing the proposal and decision-

making processes.

35



Chapter 2: Background and Related Work Dash Governance System

2.8.1 Proposal Submission and Decision-making

Projects willing to support the Dash cryptocurrency request funds from the net-

work by submitting proposals through a special transaction known as GOVER-

NANCE OBJECT PROPOSAL [KNS+16]. This transaction burns 5 Dash to prevent

Denial-of-Service attacks on the network. Proposals include name, URL to detailed

proposal, date (start and end date for funding request), payment address (if proposal is

successful after voting), and the amount of funds requested.

Proposal transactions are stored `locally' by nodes on the Dash network after verifying

their validity because proposals are not stored on the Dash blockchain. Following

submission, proposers are expected to publicise their submissions to Masternodes who

vote on proposals within the Dash Blockchain. There exists third-party tools and

websites 2 to support campaigning, tracking and voting for proposals.

For decision-making on DGS, masternodes can vote, without the need for representa-

tives or delegates in a direct democracy process [Hel06,LIJ84,Tor05,Vat00]. The voting

ballot options on proposals are `YES', `NO', or `ABSTAIN', respectively implying support

`for', `against' or `neutrality'. Voters on the DGS vote directly on proposals in the system

using the Dash wallet or other third-party tools or websites. Voting is done via a special

transaction that identifies the masternode as well as the hash of the proposal that is

being voted on.

Ballots are also stored locally by the nodes on the network [KNS+16]. Similar to the

proposal submission process, every node on the network checks to confirm the validity of

the votes before adding to their internal storage. Note that, like proposals, votes are also

not stored on the blockchain.

In the payment stage, in order to be considered for funding at the end of voting,

accrued votes for any proposal must satisfy the fuzzy threshold voting rule [KNS+16].

The rule states that the number of net positive votes for any winning proposal must be

greater than 10\% of all masternodes on the network. Specifically, for Dash governance

system, the equation below captures the requirement necessary for any proposal to be

2www.dashcentral.org, http://dashmasternode.org/masternode-tools/, https://proposal.dash.org/,
https://dashnexus.org/, https://www.dashninja.pl/governance.html
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successful:

V\sansv \sanso \sanst \sanse \sanss = (V\sansy \sanse \sanss  - V\sansn \sanso ) \geq 0.1 \ast | masternodes| 

where V\sansy \sanse \sanss is the number of yes votes, V\sansy \sanse \sanss represents the number of votes in support

(yes votes), V\sansn \sanso represents the number of votes against (no votes) and | masternodes| is

the number of masternodes on the Dash network. That is, only proposals with V\sansv \sanso \sanst \sanse \sanss are

eligible for funding.

Finally, all eligible proposals are then ranked in descending order according to the

amount of net votes received and are funded accordingly until the available budget is

exhausted. Note that, once the available monthly budget is expended, other eligible

proposals are discarded. Therefore, only top-ranked proposals that fit within the available

budget are funded in an automated process that requires synchronisation of the proposal

rankings among masternodes and communication on the network. As earlier mentioned,

the total budget for any voting period is gotten from taxation of miners' block rewards,

and is calculated as follows:

Budget = (Block reward \ast 0.1) \ast 16616 blocks

2.8.2 Discussion

For the first time in cryptocurrencies, DGS provided a mechanism for supporting cryp-

tocurrency development from itself and allowed nodes on the network participate in the

process of determining who gets funding to support the system. However, the system

can be improved by addressing some of the issues highlighted below.

The reliance on off-chain proposal and voting data (local storage) in the processes of

DGS presents a potential issue that makes the system susceptible to validation attacks,

thereby, potentially leading to forks on the blockchain. Also, participation in the DGS

voting process is not incentivised, despite resources (time and computing resources)

expended by masternodes. Hence, there is not a high turnout in masternode participation

in the DGS [KNS+16] given that only masternodes (excluding other stakeholders) can vote

in the system. For example, a successful proposal titled DASH-CORE-GROUP-LEGAL-
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EXPENSES 3 received 752 Yes, 59 No, and 15 Abstain votes, which is approximately

18\% turnout with an estimation of 4500 masternodes.

Moreover, voting on the DGS is not private, as a result, voters can be subjected to

coercion from a powerful adversary. Furthermore, given the fact that miners' reward

decreases by about 7.14\% annually on the Dash blockchain, supplementary funding

sources for the DGS is necessary. This is because reliance on taxation alone may not

be sufficient for future budgeting considering projected increase in community size and

corresponding increase in number of proposals.

Meanwhile, proxy (delegation) voting or liquid democracy has emerged as an alterna-

tive model for community-wide decision-making that can reduce participation cost and

time especially for apathetic voters. Liquid democracy is a hybrid of direct and represen-

tative democracy that allows voters to directly vote on issues or select a representative

that they delegate their voting power/right to [For02, KKH+15, CG17, ZZ17a, KR20].

Therefore, liquid democracy can enable community collective (rather than masternode

only or selective) participation in the DGS voting process. An obvious advantage is

that it enables the community to take advantage of members with expertise within a

community i.e. optimise the wisdom of the crowd. Also, it enables increased participation,

belonging and acceptance from community members because of its inclusiveness. This is

in addition to the scaling advantage it provides to the system. That is, when the system

grows and there are enormous amounts of proposals to vote for, it will be practically

impossible for all members of the community to properly scrutinise the merits of all

submitted proposals. Therefore, reliance on experts through vote delegation, can help

more community members make confident voting decisions.

2.9 ZenCash Treasury

The ZenCash treasury (now transitioned to Horizen), by design, adopts a flexible multi-

stakeholder governance model [VVL17]. The core idea is to remove centralisation

which entrusts enormous power to a minority group. Participation is voluntary and

3https://www.dashcentral.org/p/dash-core-group-legal-expenses
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decision-making power cuts across all categories of stakeholders proportional to their

resources(stake).

Initially, the ZenCash system has a Core Team (inclusive of founders of Zen) and

a Decentralised Autonomous Organization(DAO) (consisting of industry leaders) that

controls 3.5\% of block mining reward and 5\% of rewards respectively. The plan is to

evolve, develop and adopt a hybrid voting mechanism that enables all stakeholders to

influence decisions and resource allocations on the blockchain. This evolution would

result in a system of DAOs, with competing DAOs responsible for working on different

problems. Collectively, the DAOs will be responsible for activities (building, maintaining,

improving software, legal, marketing, and advertising) that will ensure the long-term

sustainability of Zen.

The staff strength of each DAO is between 3 - 5 members and could potentially be

increased to any number. Community members / stakeholders are allowed to participate

in the development of Zen via project proposals which are obviously funded by the DAOs

through the 5\% block mining reward allocation they receive. Proposals are only funded

subject to successful voting and only one DAO existed at launch.

2.9.1 Proposal Submission and Decision-making

Proposal submission is done at no cost and available to any interested party [VVL17].

There is a proposal submission deadline of two weeks before commencement of voting

and starting period of one day after voting. The proposed governance mechanism has a

bimonthly (6 times in a year) voting period. Voting is done with the use of tokens, with a

cap of 1400 tokens available at any voting period. The tokens are distributed as follows:

• 360 tokens are available for sale to stakeholders

• 240 tokens are reserved for ZenCash project developers (based on some metrics e.g.,

number of commits or pull requests, etc.)

• 60 tokens are given to cryptocurrency exchanges that support ZenCash

• Another 60 tokens are provided for mining pool owners
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• 360 tokens are for Secure Nodes

• 120 tokens are distributed equally among DAO officers and

• Similarly, the final 240 tokens are shared among members of the core team

The system proposes a majority and super-majority voting (winning) rule of votes

greater than 720 and 1080 respectively out of the available 1400 tokens/votes. However,

the core team has a veto power over all proposals with a unanimous vote by all members

of the core team.

2.9.2 Discussion

Unlike Dash, voting is open to a wider range of stakeholders (including parties that

purchase tokens) instead of only a special subset of nodes, although with the limitation of

a fixed number of tokens. Community participation is further limited because stakeholders

can only hold 25\% of all available voting tokens. In comparison, the DAOs and Core

Team also have the same amount of voting power towards the decision-making process.

Moreover, the proposal submission process is susceptible to DoS attacks because it does

not cost tokens/money to make submissions [VVL17].

The ability of veto power granted to the core team comprising only 3 individuals

can lead to an excessive concentration of power in the hands of a minority. Potentially,

this power can be abused against decisions reached by the larger voting community i.e.

`tyranny of the powerful/founders'. The utility of the system to adapt to a larger audience

and optimise community knowledge is hindered by its voting structure. That is, the

system does not support delegative voting and only few members could participate due

to the limited amount of voting tokens.

Finally, there are plans to address some of the identified issues within ZenCash [VVL17]

and evolve governance structure into a more encompassing and effective system.
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2.10 Decred Treasury

Initially, the Decred cryptocurrency [Deca] also deployed a governance system like DGS(in

the Dash network). However, unlike the DGS, an organization known as Decred Holdings

Group, LLC (DHG) is responsible for management of `treasury funds'. Specifically, this

fund is known as development subsidies and is obtained by taxation of 10\% miners'

rewards [KNS+16]. Amongst other duties, the DHG is responsible for publishing periodic

financial statements, calling for proposals, and submitting budget proposals. Within

the DHG there are various `Councils', e.g., Admission Council, Attrition Council, that

oversee appointing community members to the Decred Assembly. The Decred Assembly

is responsible for voting on proposals and decide on projects to be funded in a process

described as Proof-of-Assembly (PoA).

However, in 2018, Decred released Politeia (Pi), a platform that supports its gov-

ernance. The platform allows community members to submit, discuss, vote and track

proposals. This allows stakeholders to participate in fund utilisation decisions and let

anyone to contribute to the development of Decred. Areas of contribution include develop-

ment, marketing, research, or community. To ensure sustainable funding for community

contributions to development of Decred, Politeia also relies on contribution of 10\% of

all block rewards(subsidies) to a treasury pool(taxation). The key goal is to prevent a

powerful minority from exercising disproportionate influence in the development of the

cryptocurrency projects [Decb]. Contributions are funded as Politeia proposals after they

have been created and recognised by other Contractors (members whose work have been

funded in the past). As a Decentralised Autonomous Organisation (DAO), stakeholders

vote on budgets and policies [Deca].

2.10.1 Proposal Submission and Decision-making

Parties willing to carry out projects that request funds from the treasury submit their

proposals in a transaction that burns 0.1 Decred. Submitted proposals are checked for

validity and invalid proposals are removed by Politeia administrators. Politeia uses trans-

parent censorship to prevent malicious invalidation of proposals. However, this presents
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a potential bottle-neck in the system when the number of proposals grow exponentially.

Voting on any project is triggered by an administrator following authorization by the

proposer and spans 2016 blocks (about 1 week). For approval, at the end of voting a

proposal must get:

• 60\% `Yes' votes and

• Voter turnout of at least 20\%

Once a proposal is approved, the owner can begin execution of the projects and can

claim funds on submission of deliverables and manual verification by Decred Holdings

Group (DHG).

To participate in the voting, stakeholders must lock some Decred in return for a

voting-ticket. After obtaining tickets, it takes 256 blocks (approximately 20 hours) to

become eligible for participation in the voting process. Ticket price is set every 144

blocks (about 12 hours) to maintain a target of about 40,960 total tickets (ticket pool).

Random eligible tickets are selected to vote `Yes' or `No' for proposals. If a ticket holder

misses the voting window (e.g., due to being offline), their tickets become invalid and

their funds returned after voting ends. To avoid missing voting, individual users can

register with Voting Service Providers [Decc] who charge a fee (up to 5\%) for helping

individuals relay their voting choices to the network (through a 1-of-2 multi-signature

script). While VSPs do not have access to ticket funds, they receive voting rewards are

share to parties accordingly. Voters receive some rewards in addition to their locked

funds after voting. Voting tickets selection follows a Poisson distribution with an average

of 28 days before being selected to vote.

2.10.2 Discussion

The Decred approach to funding utilisation enables the DHG to implement useful checks

such as payment of contractors in arrears and verification of milestones of proposals

and projects. Although, data from the Politeia platform are committed to public git

repos and anchored to public the Decred blockchain using its time-stamping application,
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dcrtime, the Decred treasury system relies on trusted parties within its operations, e.g.,

proposal validity check, voting commencement, off-chain voting etc. Thus, potential

problems arising from reliance on trusted party for approval include conflict of interest,

coercion of members, risk of fund treasury fund theft and overall, introduction of a single

point of failure (to a desirably decentralised system).

Heavy reliance on human intervention at every point in the project funding process,

makes the system prone to inefficiencies and subtle attacks and abuse and complicates

the scaling process when there is a large growth in the number of community of users

participating in the process. Furthermore, it is quite difficult to adequately capture or

model the various ways in which users would interact with the system. Thus, making a

thorough security analysis of the system non-trivial.

Furthermore, the Voting Service Providers provide a form of delegated voting, however,

it is reliant on the VSPs to correctly relay user choices to the network (without guarantee

they would relay user's preferences). Within the Decred treasury, the main purpose of

delegation is to sustain user/system liveliness rather than optimisation of skills, experience

and intelligence of `expert' voters in the system. Currently, VSPs control about 37\% of

all tickets in the system (with 12.95\%, the largest held by a single VSP), thereby leading

to potential centralisation risks and overwhelming influence in voting outcomes.

The problem is further exacerbated given that voting ballots are not private, thereby,

potentially leading to voting bandwagon effect [SB96] (where users vote for projects that

are apparently winning regardless of their merit). Other attacks on the voting process

include collusion and coercion due to the open ballot system.

The irregularity of the voting windows (beginning and ending time) and voter ticket

selection/activation makes it complex for individual voters efficiently participate and

track the whole process. Hence, encouraging the participation in VSP's, which in turn

leads to further centralisation of the voting process through VSPs. Moreover, the DHG

relies on off-chain resources thereby introducing external threats to the system.
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2.11 Zcash Governance

Zcash is a privacy-centric proof of work mining-based cryptocurrency that utilises zk-

snark as its fundamental building block. Zcash was founded by the Zero Electric Coin

Company [Zca] and is the organisation responsible for developing the protocols of the

Zcash cryptocurrency. The company serves the interests of founders, investors and

developers of the Zcash coin. 20\% of all block mining rewards are paid to the company

under a scheme termed Founder's rewards.

Through the Zcash Foundation, an independent body from the Zero Electric Coin

Company, community members can propose projects to support the development of Zcash.

Particularly, the Zcash foundation through its GitHub Grant Proposal Page [Fou] requests

community members to submit proposals that fall within the foundation's defined scope,

as well as support the overall mission and vision of the foundation.

The Zcash Foundation Grant runs a quarterly funding cycle. The Zcash foundation

board oversee the process and decides the amount of funds approved towards community-

sponsored projects. During the first month, calls for proposals are released and deadlines

for initial submissions are approximately one month from the date of call for proposals.

Following this, discussions and critiquing of received submissions are then expected

to take place. Final submissions reflecting feedbacks from the discussions are then

expected to be submitted approximately twenty-one days from the initial submissions.

Thereafter, the Zcash Foundation Grant Review Committee review the proposals and

provide funding decisions (which also requires the approval of the Zcash Foundation

Board) in approximately one month.

Payment is made in a single lump sum in the ZEC equivalent of the fiat currency

requested in an approved proposal. As a means of ensuring transparency and future

evaluations, proposers of funded projects are required to provide progress reports six

months after receiving funding. In Q4-2017, only 5 members voted in the round of budget

approval that approved 300 ZEC (approximately \$80, 000) as the amount available for

community-driven projects. Nonetheless, at the board's discretion, it has power to fund

projects in excess of the approved budgeted amount.
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However, there are plans for changes to the funding process since the acceptance of

the Zcsah improvement proposal (ZIP) 1014 4 which directs the funding of Zcash protocol

development and privacy research. Specifically, a Major Grants Review Committee

(MGRC) comprising 5 members who are elected (using a Helios poll) by a `community

advisory panel' 5 assembled by the Zcash Foundation, will now be responsible for

distributing the 8\% grant constituent of the taxation from miners' reward on the Zcash

blockchain.

2.11.1 Proposal Submission and Decision-making

Community members with proposals wishing to be considered for funding need first

to submit an informal detailed description of their proposals (on GitHub). Following

this, based on comments, critiques, suggestions and feedback from other community

members, proposal owners submit a revised formal version of their initial proposals (also

on GitHub). Zcash Foundation Grant Review Committee (5 members) appointed by

Zcash foundation then considers all submitted proposals and decide on the winning

proposals (that receive funding) based on comments and the proposals (or by making

additional consultations where necessary).

Proposal submissions are expected to contain information about the following [Fou]:

Motivation and overview, technical approach, team background and qualification, plan,

security considerations, schedule, budget and justification. The details provided under

each of the listed sections are the basis upon which comments, critiques, and suggestions

are raised before a final proposal submission is made.

Final formal proposal submissions are to be made via attachments to the original

(informal) submissions on the `Zcash Foundation Grants: Call for Proposals'. In summary,

the submission process involves users submitting their proposals, and community members

providing comments, and suggestions for improvements. Proposal files are issues (on

the Zcash foundation dedicated GitHub repository) which contains details about the

proposals.

4https://zips.z.cash/zip-1014
5https://bit.ly/2HxleEN
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2.11.2 Funded Proposals

In October 2016, the first funded project was a contest (Zcash Open Source Miner

Challenge ), operated by LeastAuthority.com (a company that supports Zcash Electric

Coin Company), to support projects that would encourage wide and open source mining

of the ZEC in order to further strengthen the Zcash cryptocurrency. \$30, 000 was paid in

rewards to the top 5 winning projects selected by a panel of 3 judges.

The first set of of funding made by the Zcash Foundation (from revenues obtained

from the Founder's rewards) was the award of 33 ZEC each to three recipients under

the `Test Transaction Awards'. This was an award made to three vibrant members of

the Zcash community who have consistently developed tools and solutions that support

Zcash. Following the award, announcement about the launch of the Zcash Foundation

Grant program was made to encourage other community members to participate in the

development of the cryptocurrency whilst taking advantage of available funding.

Although, the process raised awareness about the Zcash Foundation Grant scheme,

the community was not a part of the decision making process in selecting the deserving

members. Similarly, the community also played no part in the process of selecting the

winning proposals of the Zcash Open Miner Challenge.

2.11.3 Discussion

Clearly, the Zcash approach to treasury would not scale for a cryptocurrency with a large

number of proposals to consider. When the Zcash system grows and there are hundreds

of proposal submissions, it is practically infeasible for each member of the Foundation

Grant Review Committee to scrupulously review each proposal to determine its merit

for funding approval. Moreover, relying on a select number of reviewers appointed by a

board (that grants final approval and also determines the amount of funds available for

funding proposals) is not representative of a decentralised, open and inclusive development

system for cryptocurrencies. Clearly, a better and alternative approach would be to

accommodate a larger number of community members (or possibly all willing members)

in the decision-making process.
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Having, a 5 member committee examine all proposals on a decentralised blockchain

system is clearly problematic, particularly considering that the members of the committee

can also submit proposals of their own. For example, in a funding round, one of the

members was unavoidably absent, thereby limiting the team strength to 4. Some proposals

were reviewed by only 3 reviewers due to conflict of interest by one of the review team

members who also submitted a proposal. Note that although the Zcash Calls for Proposals

states that Review committee members must exclude themselves from the discussion of

their own proposals, there are still subtle ways in which a committee member can still

influence their proposals towards getting funded. For instance, a committee member who

has submitted a proposal and has knowledge of the approved budget for proposals, can

deliberately down-vote or negatively review other projects under consideration, such that

total budget request of all approved proposals is less than the available budget. Thereby,

increasing the chances for the acceptance of the member's proposal.

Furthermore, while the feedback process of the initial submission is desirable and helps

the overall quality of proposals submitted to the system, only a limited amount of members

from the large Zcash or cryptocurrency community participate in this process. Definitely,

a system that encourages participation among all community members, such as delegative

democracy (a collaborative decision-making mechanism) represents an improvement over

the approach deployed in the Zcash Foundation Grant process. Another significant

drawback of the funding mechanism of the Zcash Foundation Grant system is the non-use

of the Zcash blockchain at any point in the decision-making process. Funding decisions

on a blockchain-based cryptocurrency should leverage the resources of the blockchain

to improve the decision-making process. For, instance, secure time-stamping of final

proposals, commitment(hashing) of proposal submissions, voting in the decision making

process, tamper-proof `locking' of voting and funding decisions, etc.

Moreover, at any point in future, it is not particularly clear how much money would

be available for funding proposals. In other words, the amount of community-driven

projects or proposals is solely dependent on the approved budget by the foundation board.

Although, the Zcash Foundation Board is empowered to make discretionary approvals
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above a budget for any particular quarter, uncertainty about available budget may inhibit

the amount of development proposals that the community can contribute to the overall

development of the cryptocurrency. Hence, an alternative solution, such as `decentralised

treasury pool' represents a better solution for the system.

In conclusion, the existing system will evolve with time and some of the issues raised

will be addressed towards achieving an improved system. For instance, the establishment

of `Working Groups' for monitoring volunteers/proposers is a proposed addition to the

system. Furthermore, information on the Zcash Foundation Grant GitHub page also

corroborates the suggestion that there are plans to evolve the system into an `open-

community review process'.

2.12 Ethereum Foundation Grants

So far, we have discussed Dash, Decred treasury and other cryptocurrency treasury

systems. Nonetheless, there are cryptocurrencies that do not adopt treasury system.

Therefore, we explore the Ethereum blockchain where much discussion and analysis

revolve around governance system rather than treasury system. Note that a governance

system is not the same as a treasury system, although, both systems support long-term

sustainability of blockchain technologies. Basically, treasury system handles and ensures

regular funding and decision-making on fund usage whereas a governance system is mainly

concerned with general blockchain and protocol rules such as soft-forks and hard-forks.

A governance system guides how and when changes are made to a blockchain's core.

Similar to the Bitcoin Foundation, the Ethereum Foundation is a not-for-profit organ-

isation that supports Ethereum through research, development and education [Woo14].

Like the Bitcoin Foundation, the Ethereum foundation also relies on donations as its

primary source of funding for Ethereum development and research. Basically, the foun-

dation uses donations to support `general' Ethereum development activities. However,

donors can specify specific projects for which their donations can be used for (provided

the foundation supports such projects).

Although, the Ethereum blockchain does not have a treasury system, it supports
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development projects through grants to support research that would improve blockchains.

For example, the programs referred to as subsidy programs were established to support

projects on sharding and layer-two protocols that would improve blockchain scalability.

Teams, researchers, developers, who do relevant work in this area can apply for support

through a process described as `flexible to accommodate various needs of different

applicants'. The Ethereum core leadership is responsible for deciding what proposals are

funded, with funding amounts of \$50, 000 up to \$1 million. Clearly, this encourages open

and community-wide participation, however, the core leadership wields much power in

the decision-making process.

Critics of decentralised governance argue that adaptation of blockchain protocols

to changes is slow on systems with decentralised governance due to the minimum

requirements for approval being high. They argue that decentralisation constitutes the

major point of arguments against existing off-chain or traditional blockchain governance

model. Critics further argue that a side-effect of decentralised on-chain governance is the

ability of a rich minority (with very substantial amount of stake) to have over-bearing

influence on decision-making via a voting process.

Other highlighted criticisms or suggested factors that hinder on-chain voting gover-

nance are low participation (or voter turnout) and unequal wealth distribution. Within

Ethereum, for instance, for Ethereum Improvement Proposal (EIP) 186 titled `Reduce

ETH issuance before proof-of-stake' 6, voting was conducted through Carbonvote 7.

With approximately 2.7 million ETH in participation, it had less than 20\% (quorum)

voter turnout 8. Proposal 17 9 with about 10\% of the quorum has the highest voter

turnout of all received proposals on the DAO given about 23, 606 unique Ethereum

addresses holding tokens (DTH - DAO Token Holders) 10 at the time of voting. However,

low-voter turn-out is not peculiar to blockchain voting. According to FairVote, established

democracies such as the United Kingdom and United States also experience low voter

6https://github.com/ethereum/EIPs/issues/186
7http://carbonvote.com/
8https://hackernoon.com/notes-on-blockchain-governance-ob65o3pod
9https://daostats.github.io/proposals.html

10http://themerkle.com/the-dao-undergoes-low-voting-turnout/
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turnout. For instance, only about 55.67\% of eligible voters participated in the 2016 US

presidential elections [KKH+17]. Similarly, the 2015 UK elections recorded about 66.6\%

voter turnout 11.

However, the problem of low voter incentive and low voter turnout can be addressed

through clever incentives engineering, by rewarding participants who take part in elections.

Furthermore, novel voting mechanisms such as liquid democracy mitigate some of the

well-known raised issues that affect traditional voting schemes. For instance, these issues

are addressed by delegative/liquid democracy where users effectively assign their voting

powers to other (better qualified) members of the voting community. Members who

receive delegation usually possess more subject-matter expertise and knowledge, and are

renowned within the ecosystem.

Having explored various fund sourcing and utilisation, i.e. treasury, on selected

cryptocurrencies, following is a presentation of a taxonomy of the different existing

systems into treasury models. Although the proposed ontology for treasury models

is motivated by current solutions found in existing cryptocurrencies, the classification

does extend to cover potential new treasury systems that could be adopted by other

cryptocurrencies.

2.13 Taxonomy of Treasury Models

A key motivation for the classification of treasury systems is to identify their properties,

common and distinguishing features, strengths and weaknesses towards facilitating further

understanding and analysis of the existing diverse groups in real-world cryptocurrencies.

Basically, it is to support the adoption of these systems based on their properties,

applicability and peculiarities of different blockchain technologies. A major overarching

attribute used in the classification of treasury systems is the source of development

funding for projects, as well as the input and contribution of community members of

the cryptocurrency ecosystem (especially, people who hold stake in the system) in the

process of fund utilisation.

11https://www.parliament.uk/about/how/elections-and-voting/general/
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Specifically, we categorise three main models of treasury systems:

• Open-System Treasury: This class consists of systems where the source of blockchain

development funding are external to the system, e.g, Donations, Patron organi-

sations, industry, founders' resources, etc. Additionally, participation in treasury

activities such as decision-making, proposal submission, proposal review, and project

execution, etc., are open to other members of the cryptocurrency, rather than the

cryptocurrency founders, developers and company only.

• Closed-System Treasury: Under this category, all fund sources are local to the

system, i.e., within/from the cryptocurrency. e.g, minting, taxation, and donations

from stakeholders of the cryptocurrency. Typically, decision-making and cryptocur-

rency development processes are organised in a centralised manner (e.g., by some

organisation) void of input from the general cryptocurrency ecosystem.

• Hybrid-System Treasury: This category of treasury systems represents a combina-

tion of the features of the closed and open-treasury systems. Here, cryptocurrency

development funding comes from sources within the cryptocurrency and from

sources external to the system.

Figure 2.1: Models of Cryptocurrency Treasury Systems.

Deriving from the above-listed treasury models, other concrete sub-classes are highlighted
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below.

• Taxation-Community-Controlled (TCC)

Taxation is the primary source of project funding on TCC treasury systems.

Primarily, funds are obtained by taxing miners' block rewards or block transaction

fees or a combination of both. The Dash governance system is a classic example of

a treasury system within the TCC sub-class because it relies on taxations of 10\% of

block rewards for funding treasury (or fund pool). Decred is another cryptocurrency

that relies on 10\% miners. reward taxation for self-funding of development projects.

Within this sub-class of treasury system, project funding decisions are reached

through the use of community-inclusive mechanisms such as voting. In other words,

funding decisions are made in a decentralised manner (which prevents excessive

centralisation of powers in the hands of a few members). A variety of voting systems

and rules can be adopted for decision-making such as liquid democracy, preferential

voting, plurality voting, approval voting, etc.

• Taxation-Organisation-Controlled (TOC)

TOC like TCC relies on taxation for development/treasury funding. However, unlike

TCC, decisions on how to use funds within the treasury are made in a centralised

manner. Typically, an organisation or group of individuals (usually company

founders or investors) are responsible for making funding decisions, with little or

no input from other members of the cryptocurrency ecosystem or cryptocurrency

stakeholders.

• Donation-Community-Controlled (DCC)

Under DCC, the major source of cryptocurrency development funding comes from

donations. This donation can be obtained from community members, patron or

charitable organisations with interest in the development of a particular blockchain.

For instance, Bitcoin Core receives donations from individuals and corporate

organisations, for carrying out activities that support the continued existence and

growth of the Bitcoin cryptocurrency.
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Similar to TCC, usage of funds within this treasury sub-class is decentralised.

Funding decisions for proposals are made through the use of community-inclusive

mechanisms, thereby supporting collaborative decision making.

• Donation-Organisation-Controlled (DOC)

Within this group of treasury system, funding available for cryptocurrency devel-

opment are sourced from donations. That is, like DCC, DOC treasury systems

are also funded from donations received from charities and corporate bodies or

community members. For example, proposers of projects that support the Mon-

ero cryptocurrency source for funding from donations made by other community

members.

Unlike DCC, DOC treasury decisions are made similarly to that of TOC, i.e.,

centralised funding decision-making.

• Hybrid-Community-Controlled (HCC)

As the name suggests, HCC relies on open and closed (hybrid) funding sources.

Therefore, HCC treasury systems are funded from a combination of sources such as

taxation, minting and donation.

Similar to other community controlled treasury systems, HCC treasury systems

use decentralised decision-making mechanisms to reach funding decisions and

community members of the cryptocurrency are major participants in the treasury

process.

• Hybrid-Organisation-Controlled (HOC)

The source of funding for this sub-class of treasury system is similar to the HCC

sub-class explained above. However, a major difference between the HCC sub-class

of treasury system and the HOC sub-class is the funding decision making process.

Within HCC treasury systems, funding decisions are made in a centralised manner.

In other words, the community members or holders of stake in the cryptocurrency

wield (little or) no power in the decision making process on how funds are used.
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Typically, an organisation responsible for the blockchain or cryptocurrency makes

all the decision regarding usage of funds within the HOC sub-class of treasury

systems.

Table 2.1: Table summarising the various treasury sub-classes based on funding and decision-
making rights.

XXXXXXXXXXXCategory
Feature Funding Decision-making Power

Open Closed Community Organisation

Taxation-Community-Controlled (TCC) \checkmark \checkmark 
Taxation-Organisation-Controlled (TOC) \checkmark \checkmark 
Donation-Community-Controlled (DCC) \checkmark \checkmark 
Donation-Organisation-Controlled (DOC) \checkmark \checkmark 

Hybrid-Community-Controlled (HCC) \checkmark \checkmark \checkmark 
Hybrid-Organisation-Controlled (HOC) \checkmark \checkmark \checkmark 

2.14 Electronic voting systems

Election systems can be deployed wherever there is a need to vote e.g., student union elec-

tion, general board meetings, parliamentary elections, etc. and the security, auditability,

and verifiability requirements largely depend on the system uses-case. Conceivably, the

requirements for a national election are more stringent than the election of executives of

a local student organisation at a university. The introduction of punched-card ballots in

the 1960\prime s and direct-recording electronic voting machines in the 1970\prime s [Jon03] signalled

the revolution towards the use of technology in elections and eventually Internet voting

(e-voting) as we know it today.

Chaum in [Cha82] mentioned how his techniques for anonymous communication can

be adapted for private e-voting systems. Chaum's solution for pseudonymous sending

and receipt of massages enabled the cryptographic design of voting schemes. In addition

to Chaum in [Cha82,Cha88], Yao in [Yao82], Benaloh in [Ben87] pioneered the earliest

cryptographic voting schemes. Burmester and Magkos in [BM03] provided a classification

of e-voting systems in the literature into four main models while Damgard et. al [DGS03]

provided a classification with three main models by combining the techniques of two
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models (mix-nets and blind signatures) into one. Following is a brief description of the

models.

1) The mix-net model : Voting schemes under this model use several connected

servers called mixes [Cha81, SK95, OA00] to provide unlinkable permuted encrypted

ballots as outputs, from encrypted input ballots. Essentially, mix servers produce

ciphertexts from input ciphertexts in a random manner with knowledge of the permutation

(needed to match input ciphertexts to output ciphertexts) [JCJ05] known to the servers

only [BG02]. Multiple rounds of shuffling and decryption by independent mixers is

critical to ensure unlinkability between inputs and outputs of the mix-nets and therefore

require vast amounts of computation [Fur04]. Examples of e-voting systems under this

model are [PIK93,SK95,HS00,JJR02,Nef01,BG02,FMS10]. Despite their well-established

universal verifiability property, mix-nets rely on trusted servers and mixing operations

can become prohibitively time consuming [SP06].

2) The blind signatures model : Voting schemes under this model use blind signatures,

first proposed by Chaum in [Cha82] for secure untraceable payments (and anonymous

communication), to provide unlinkability between voters and ballots through a validator

that blindly signs encrypted ballots. Subsequently, voters unblind the signatures and

send encrypted ballots and the `new' signatures to a voting authority, who in turn posts

same to a bulletin board. Anonymous channels e.g. mix-nets, are used to transmit

unblinded ballots to the tallying authority to protect voter privacy. Ensuring that

the authority learns nothing about the ballot [DGS03]. A bulletin board is basically

a public broadcast channel with memory [CGS97, SP06] for communication among

voters and voting authorities. This model heavily relies on a honest validator (although

can be distributed using threshold cryptography), and substantial multiple rounds of

communication between voters, voting authority and the bulletin board. Additionally,

ballots are decrypted by the voting authority and tally is posted to the bulletin board.

Malicious validators can compromise the security and correctness of voting results by

impersonating valid absentee voters [CC97]. Examples of e-voting schemes other this

model include [FOO92,OMA+99,GPZ17,Oka97,PHM95].
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3) The Benaloh's model : Unlike the blind signature model, voting schemes under

the Benaloh model utilise n > 1 voting authorities. Under this model voters share their

ballots (votes) among n authorities using a homomorphic secret sharing scheme [Cha04],

and post encryption of the shares under the public key of the recipient voting authority

to a bulletin board. Essentially, ballots are `verifiably secret shared' among the authority

servers responsible for tally computation. A t-out-n homomorphic secret sharing is used

to achieve robustness such that any number of authorities less than t have no information

about a user's ballot. At the end of voting, the set of voting authorities can jointly

compute the tally without leaking any additional information. However, there is high

communication overhead under for voting schemes under this model. This is as a result

of each voter sharing/casting their votes across n multiple channels for the n voting

authorities [BM03]. Consequently, this introduces significant practical limitations due

to its complexity and high communication overhead because it requires every voter to

communicate with every authority in an election. Examples of schemes under this model

include [Ben87,CF85,Sch99].

4) The homomorphic encryption model : Under this model, additive homomorphic

encryption algorithms such as lifted ElGamal [Elg85] or Paillier [Pai99] are used to achieve

universal verifiability and individual ballot privacy. Voting schemes under this model focus

on hiding the ballot content (through encryption) rather than voter identity or anonymous

voting channels, thereby enabling easy verifiability [LGT+03]. Further details on lifted

ElGamal encryption is provided in Subsection 2.2.2. Typically, users encrypt their ballots

(choice) with the public key of a voting authority (or authorities - where threshold

cryptography [Des94] is used), and post the ciphertexts to a bulletin board. A user's

choice is represented by a number [CGS97,DGS03], usually, a 1 signifying a yes/support or

0 or  - 1 signifying a no/against vote. In addition to the encrypted ballots, users also post a

proof of validity of the corresponding content (plaintext) from which the encrypted ballot

was produced. In other words, voters must prove (in zero-knowledge) that the ciphertexts

contain valid ballots (a 0, 1 or  - 1), in addition to proving their eligibility to vote. The

election authorities obtain the tally by combining (multiplying) individual ciphertexts
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(encrypted ballots) without needing to decrypt individual encrypted ballots. Examples

of schemes under this model include [BT94, CGS97, BFP+01, DJ01, Adi08, KMNV16].

Particularly, this thesis is related to the homomorphic encryption model which is discussed

in more details in the rest of this section.

Damgard et al. [DGS03] summarise informal security properties of e-voting systems.

Namely, privacy requires that only final results are released or leaked; robustness ensures

that all valid ballots are considered in tally computation; universal verifiability enables

anyone to verify correctness of results; receipt freeness prevents voters from proving how

they voted and address vote buying; coercion prevents an adversary from forcing voters

to vote a in a certain way. Mitrou et al. in [MGKQ03,MGK02] identified that secrecy

is a requirement for voter freedom and expression. Secrecy, essentially the inability to

link a ballot to a voter, is a distinctive tenet and requirement of a free political decision-

making system and modern democracy. Lambrinoudakis et al. in [LGT+03] provided

a list of requirements for voting systems: accuracy, democracy (eligibility), privacy,

robustness, verifiability, uncoercibility, fairness, and verifiable participation (in some

scenarios). Elections are critical to democratic systems because they allow the general

public express their views [KAK18]. Therefore, the process should be transparent and

voters and auditors alike should be convinced of the outcomes. Hence, the requirement

for end-to-end verifiability (E2E-V).

Verifiability covers mechanisms for auditing an election to ensure that it was correctly

conducted [LGT+03]. It can be provided in two different forms: a) Universal or public

verifiability first introduced by Sako and Kilian in [SK95] through the assumption of

physically untappable communication channels between mixing centers and voters, for

extending the mix-net based construction of Park et al. [PIK93] (which only provides

individual verifiability. Universal verifiability covers the requirement that anyone can

verify the correctness of the outcome of an election. b) Individual verifiability covers the

requirement that every voter can verify their ballot has been correctly accounted for in

the election outcome.

In the literature, only few cryptographic e-voting protocols are provably secure [BM03].
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Multiple research [KSRW04, FHF07, WWH+10, SFD+14] reveal security vulnerabili-

ties that compromise integrity of some early e-voting systems. Burmester [BM03]

highlights the need for secure and efficient cryptographic techniques for e-voting pro-

tocols. Consequently, newer voting schemes with E2E-V property have been devel-

oped [Cha04, Nef04, AM16]. However, there are no UC-secure decentralised decision-

making system.

Given the identified vulnerabilities from analysis of earlier e-voting systems [KSRW04,

FHF07], E2E-V e-voting schemes such as [Cha04,Adi08,Ben06] were proposed to address

the concerns. A comprehensive review of end-to-end-verifiable voting protocols is provided

in [AM16]. The work in [JMP13] provides a high-level survey of verifiability and privacy

in e-voting systems. Sampigethaya et al. in [SP06] proposed a framework and a set

of metrics for comparing properties of e-voting systems. Cortier et al. in [CGK+16]

provides a survey of several notions of verifiability in the literature.

2.14.1 End-to-end Verifiability

The importance of end-to-end verifiability (E2E-V) in electronic voting has been widely

established in electronic voting literature. Primarily, voters in any election deserve to be

convinced of the correctness of the outcome. Notably, election schemes with E2E-V allow

individual voters or interested parties (universal) check crucial parts of election tally

without the requirement of trusting any entity in the system [BRR+15]. That is, E2E-V

election systems provide mechanisms for voters and external auditors to verify election

outcomes and that all valid votes were counted even if devices/servers/election authorities

are malicious [CGK+16]. Benaloh et al. [BRR+15] suggests E2E-V technologies as

pre-requisites to mitigate inherent risks associated with e-voting systems and a strong

security requirement for adoption of e-voting systems [PKRV10,KZZ15b]. The two main

techniques/checks for E2E-V are votes are cast as intended and votes are tallied as cast.

Recorded as cast is an additional technique that is also found in literature [KZZ15b].

Together, these techniques ensure voters can get evidence that their encrypted ballots

reflect their choices by checking for their ballots on a `public bulletin board' [BRR+15],
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and verifying that the election tally includes all valid ballots on the public list. Moreover,

`homomorphic encryption' for tallying without first decrypting individual ballots, and

`verifiable mixing' for permuting and unlinking ballots with voters' identity before ballot

decryption, are the two approaches for achieving the tallied as recorded requirement.

To achieve E2E-V some voting schemes allow users to generate multiple ballots and

submit only one for the tally process. The remainder of the ballots are used as challenge

ballots (Benaloh challenge) to verify that the ballots encryptions match the voter's

intention. The Helios [Adi08] voting system uses the Benaloh challenge or `audit or

cast' procedure [KZZ15a] to achieve verifiability, while Wombat voting system [BFL+12]

and StarVote [BBE+13] combines the approach with paper trail audit mechanism for

verification. The scheme in [BPW12] is a Helios variant in the single-pass voting model

of [BCP+16] that provides formal guarantees of ballot privacy.

[PKRV10] proposed the first formal performance requirements-based definition for

E2E-V elections instead of design requirements-based definition. The requirements are

largely similar to those previously explained in [BRR+15]. Popoveniuc et al. identified

the following six checks as conditions any E2E-V election must satisfy. 1) Presented

ballots are well-formed 2) Cast ballots are well-formed 3) Ballots are recorded as cast 4)

Ballots are tallied as recorded 5) Consistency in ballots recorded and ballots tallied and

6) Every ballot is subjected to Check 3.

Pr\^et \`a Voter [CRS05] uses a paper-based system to achieve E2E-V with two-part

ballot and permuted order of candidates (that differs from one ballot to another), and uses

a mix-net for the tally process involving the permutation seeds. Xia et al. in [XSHT08]

analysed a Pallier encryption variant of [CRS05] and demonstrate that voter's choices

can be leaked in certain scenarios. PunchScan [PH10] is also an E2E-V e-voting scheme

that also combines a paper-based (two-stacked sheet of papers) mechanism.

Furthermore, Scratch\&Vote [AR06] is also a paper-based scheme and uses a ballot

style similar to [CRS05] but adds 2D bar code representing encryption of all possible

user voter's choice. It uses a homomorphic scheme for tallying of encrypted ballots.

Scantegrity II [CCC+08] extends Scantegrity [CEC+08] originally introduced by
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Chaum et al. which requires physically locating ballots for dispute resolution. It uses an

optical scan ballot with symbols in invisible ink. The ballots reveal a code (receipt which

is then publicly published) when marked that users can look up to verify the inclusion of

their ballot. Tally is produced using a two-mix scheme similar to PunchScan [PKRV10].

For its security, Scantegrity II requires trusted computing platform for election officials

and secure chain-of-custody for paper ballots prior to voting. Helios is a general Benaloh-

challenege based E2E-V scheme that uses homomorphic tallying of encrypted ballots.

The E2E-V schemes of Remotegrity/Scantegrity [ZCC+13] rely on randomness beacon

to verify correctness of result. Therefore, a biased beacon can compromise the integrity

of the system [KZZ15b]. Cortier et al. in [CS11] successfully compromised ballot privacy

in Helios using ballot replay attacks, and also proposed a countermeasure for the attack.

Gardner et al. in [GGR09] explored coercion in end-to-end voting protocols and

proposed a provably coercion-resistant scheme which extends Benaloh's scheme [Ben06]

by asking voters an additional question. However, the proposed scheme relies on a private

channel, and that for every election, at least one of the candidates is honest.

Neff [Nef04] introduced a coercion-resistant universally verifiable voting protocol that

utilises a receipt to enable any voter verify that their ballots are cast and recorded as

intended in the election tally. Chaum [Cha04] introduced a voter-verifiable e-voting

scheme (even in the presence of compromised election computers/records) that also

utilises physical receipts. Both schemes rely on the temporal availability or destruction of

some information. Karlof et al. [KSW05] identified possible methods to leak vote privacy

in the schemes of [Nef04, Cha04] which are the first e-voting schemes to allow voter's

verify their ballots without computational devices.

Kelsey et al. in [KRMC10] introduced methods for carrying out coercion attacks on

paper-based E2E-V e-voting systems such as [PH10,CRS05]. The authors also show how

to alter election results using misprinting attack with a countermeasure that requires

trusting a number of election observers.

Civitas [CCM08] achieves verifiability and coercion-resistance by allowing voters to

produce fake voting credentials used for generating ballots that are eventually deleted
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with a coercer not being able to detect. This requires the availability of an untappable

channel between a voter and one registration teller, and Civitas also requires anonymous

channel for voters to cast their votes for coercion-resistance.

Kiayias et al. introduced `DEMOS' in [KZZ15b], the first E2E-V and voter privacy

e-voting system in the standard model. Previous E2E-V systems such as [Adi08,ZCC+13]

rely on setup assumptions for their E2E-V. However, DEMOS also rely on the existence

of a bulletin board and a central election authority, and does not guarantee the recorded

as cast requirement [CZZ+16].

DEMOS-2 [KZZ15a] was introduced to address the heavy computation and storage

overload on the election authority, that arises from the pre-computation of multiple

ballot ciphertexts for each voter in an election. In DEMOS-2, voters generate their

ballot ciphertexts with associated non-interactive zero-knowledge (NIZK) proofs using

a common reference string (CRS) that is produced and proven secure by the election

authority.

To address the problem of single points of failure that affects prior e-voting sys-

tems [CRS05,PH10,CEC+08,BBE+13,CGS97,CCM08,Nef04,Cha04,KZZ15b], Chondros

et al. introduced D-DEMOS [CZZ+16]. For example, a common feature of e-voting sys-

tems is to assume the existence of a trusted public bulletin board [MSH17] such as Helios'

bulletin board. D-DEMOS is the first distributed end-to-end verifiable e-voting system

and it utilises a distributed bulletin board for election process verification. The scheme

depends on the honesty of a strong majority of election trustees who are responsible for

vote tallying, to guarantee privacy and E2E-V. Further, this scheme relies on a trusted

Election Authority (EA) at setup which is subsequently destroyed after it initializes all

other system components. Moreover, the scheme, like the other schemes explored, does

support delegable voting.

Next, we discuss some delegable voting scheme in the literature. Kulyk et

al. in [KMNV16] provides details about e-voting systems that are variants of He-

lios [CGGI14,CGGI13, KTV15,DvdGdSA12,CGG19] and introduced proxy voting to

Helios. This was done by using so-called delegation credentials to ensure proxies have
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authorisation to vote on behalf of a delegator. However, the scheme requires voters to

construct and anonymously send delegation tokens to delegates, who submit the tokens

and delegated votes. In essence, the delegate casts the vote on behalf of the delegator,

and the delegate may cast no vote at all [KMNV16]. Although, the authors provide a

back-up delegation option (a delegate assigned a lower priority) in case the main delegate

does not cast any vote. However, this implies that the voter has to generate multiple

delegation tokens and send to multiple delegates in an anonymised way. In addition

to the assumption of anonymous channels between voters and proxies (delegates), the

security of the system rely on the trustworthiness of the registration authority.

Zwattendorfer et al. in [ZHT13] proposed a proxy voting (based on liquid democracy)

system that relies on physical device (Austrian citizen card and associated eID) to

address the security issues with implementations of proxy voting systems. The authors

proposed two methods for vote delegation. Namely, server-based delegation (offline)

where voters encodes the delegation information similar to a ballot and client-based

delegation (online/manual) where voters copy the ballots of proxies. However, the

scheme requires strong assumptions to guarantee the security properties. For example,

the reliance on a Ballot Signer to authenticate voters constitutes a single point of failure.

Further, no formal proofs of security is provided to support the system claims and some

of the cryptographic components are unspecified.

The authors in [KNM+17] proposed a coercion-resistant proxy voting scheme which

builds on techniques of [JCJ05, CCM08] but requires additional delegation credential

that a voter, who wants to delegate their voting power, will send to their chosen proxy.

The coercion resistant property is claimed from the voter's ability to fake delegation

credentials (similar to voting credentials in the original schemes) However, there are no

formal proofs of secure delegation nor instantiation of the proposed scheme.

Unlike previous works, we designed and implemented the first provably secure

blockchain-based delegable voting scheme (i.e. that supports liquid democracy). We

extend the initial scheme to support privacy-preserving voting on blockchains with pri-

vate stake. These schemes are at the core of our proposed treasury system presented in
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Chapter 3 and general decision-making system in Chapter 4 respectively.

2.15 Blockchain voting and Governance

This section provides context on blockchain voting and governance in the academic

literature. A number of recent blockchain-based voting systems in the literature such as

[AmGMA20,KJ20] mainly discuss and leverage blockchains' distributed architecture as an

alternative to a trusted bulletin board. However, many of the claims from cryptographic

primitives are not instantiated and security analysis are missing. A survey of blockchain-

based e-voting systems in the literature and industry is detailed in [AKW19], and also

confirms the gap in literature of a provably secure blockchain-based delegable voting

system that supports liquid democracy with end-to-end verifiability.

Khan et al. in [KAK18] leverages the distributed ledger architecture of blockchains

and introduced a blockchain-based voting scheme based on [Rya08] and the Multichain12

blockchain platform. Their proposal mainly leverages the hash of voting transactions

to claim verifiability of elections. Moreover, the scheme does not support private proxy

voting and provides no formal treatment of the system security properties.

Hjalmarsson et al. in [HHHH18] evaluated the application of blockchain to e-voting

and proposed a private permissioned blockchain-based e-voting system that utilises smart

contracts. The introduced scheme requires electronic ID authentication.

Corry et al. in [MSH17] proposed The Open Vote Network, the first implementation

of a self-tallying (allowing any party to compute the tally) e-voting protocol (The Open

Vote Network) with voter privacy. The self-tallying procedure is susceptible to abortive

attacks which is addressed through a fund deposit (lock) and deposit paradigm. The

Open Vote network has a safe upper limit of about 50 voters [HHHH18] because all the

computations are performed on the smart contract [SGY20].

The need to securely evolve and develop blockchains has caused considerable interest

in blockchain governance among the community (of stakeholders), industry and in the

literature. Primarily, blockchain governance focuses on decision rights, accountability and

12https://www.multichain.com/
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incentives [LLZ+21] for the evolution (adaptability) and improvement of (the operations

of) blockchain. In other words, it covers participants, their powers, roles, rewards

(or penalties) and responsibilities. It covers how the different entities collaborate to

reach decisions that affects (maintain or change) the blockchain [CDP19]. Blockchain

governance covers how community members can provide authoritative decisions on

changes to blockchain that require human intervention [MARP20]. Governance is critical

for sustainable development and evolution of cryptocurrency systems [FCZ20].

Expectedly, research efforts have been focused on decentralised governance solutions

due to the decentralised architecture of blockchains. Some of the issues covered under

governance include, decisions of block size, consensus protocol (Proof-of-Work vs Proof-

of-Stake), etc.

DiRose et al. in [DM18] analysed the governance process of the Bitcoin and Dash

blockchains on the issue of increasing block size using the so-called Governance Analytical

Framework of [Huf11]. It investigated why Dash was able to receive approval for increasing

block size to 2MB in 24 hours while Bitcoin spent years without reaching a resolution.

Similar to the work in [KN+], Mosley et al. in [MPG+20] also analysed blockchain

governance through an exploration of the Dash governance system and explored the

possibility of collusion among masternodes, hence measure decentralisation in the voting

process by constructing a similarity matrix based on voting patterns of the masternodes.

The authors identified large clusters of similar voting patterns with more votes than the

decentralised majority. The open ballot of the voting system only serves to exacerbate

the problem because it makes it easy for a coercer to verify how masternodes voted.

Merrill et al. in [MARP20] proposed a voting scheme for updating blockchain-based

protocols that allows clients to vote by temporarily locking their tokens. The economic

cost to voting is used for gauging support for proposals in a so-called ping-pong governance

model that involves voting and counter-voting (or voting to veto outcome). This is to

allow minor changes pass easily and complex ones eventually pass. However, this can

result in an indefinite cycle of voting and counter-voting review periods. Moreover, voting

is neither private nor fair because new voters can see partial (current) tallies based on
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the choices of other voters, before they submit their own votes.

Baudlet et al. in [BFTK20] proposed the use of masternodes similar to Dash, but

allows nodes to reduce locked stake over a period of time, to accommodate other users

without much funds (compared to the current masternode requirements). It introduced

Importance score that can grant `honorary masternode' status to influential blockchain

nodes and enable them participate in governance. However, this proposal does not

address the privacy issues of the voting scheme. Moreover, there is no instantiation of

the proposed scheme nor the importance score algorithm as confirmed by the authors in

the paper.

Furthermore, Fan et al. proposed Multav [FCZ20] a multi-chain voting framework

for blockchain governance on new blockchains that distributes tokens to stakeholders

of other blockchains, to enable them vote on the new blockchain. The main aim is to

protect new cryptocurrencies that adopt on-chain governance from attack by wealthy

adversaries, due to their small market cap and initial circulating supply.

Zachariadis et al. [ZHS19] provides an exploration of issues surrounding blockchains to

enable better understanding of distributed governance of blockchain technology especially

as it relates to financial services. Smit et al. [SeMS+20] provides a literature review on

decision rights on blockchain governance and proposed a blockchain life-cycle model for

better understanding blockchain governance and decision rights. Additionally, Ziolkowski

et al. [ZMS20] provides a comprehensive analysis of governance of blockchain systems

through identification of decision problems to enable better understanding. Finally,

Liu et al. in [LLZ+21] provide a systematic literature review for understanding the

state-of-the-art on blockchain governance.

Unlike previous works, the system proposed in Chapter 4 is a useful solution to

support the process of reaching decisions that are necessary to evolve and upgrade the

blockchain itself, given the established need for blockchains (and software or technology

in general) to continually evolve throughout their life-cycles. Moreover, as far as we

know, it is the first UC-secure distributed voting scheme for private stake blockchains

that support liquid democracy. However, we emphasise that while the solution can be
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adapted to other use cases, it is not a solution for general (national/state) governance

through blockchains. Rather, it is a tool to support the development or evolution of the

blockchain itself.

2.16 Summary

This chapter explored sustainability of funding and fund utilisation for blockchains. It

examined different sources of blockchain funding, investigated real-world cryptocurrencies

with self-sustenance and community-inclusive development mechanisms, and introduced

a categorisation of treasury system models. Within blockchain research and practice,

there is increasing interest in treasury systems and increasing adoption among real-world

cryptocurrencies. Cryptocurrencies such as Dash, that deploy treasury systems have

benefited from its adoption e.g., through community participation in cryptocurrency

development, minimising operational centralisation, and avoidance of forks from dispute

on development issues etc.

Although treasury systems constitute interesting solution to sustainable blockchain

funding, they require careful design and analysis to avoid problems that will hinder

their utility. Notably, utmost consideration should be given to source of treasury

funds, management of funds, decision-making (e.g., voting rule and systems such as

liquid democracy, receipt-free voting), partitionary budgeting, usability, security and

privacy, incentives for stakeholders, game-theoretic analysis, cryptocurrency inflation and

blockchain (resource) utilisation.

Despite the benefit witnessed from early adoption of variants of the treasury system,

these systems experience a number of issues e.g. ad-hoc, lack of incentives, insecure/non-

private balloting. Thus, affecting improved adoption and success of pioneering treasury

systems. Some of these issues include inadequate design analysis, security, privacy and

game-theoretic analysis and `incentivisation' of the systems prior to development and

deployment [KNS+16]. Evidently from the reviewed earlier systems, it is clear that they

were created in an ad-hoc fashion and changes were made as the systems mature. That is,

the systems are not secure by design and provide little to no analysis of overall security
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goals and requirements. Thus, we present our solution, covering these gaps, in Chapter 3.

Further, we provide a description of research work in the literature around e-voting

systems, blockchain-based voting and governance. These are related concepts at the

core of our proposed blockchain treasury system for cryptocurrencies and the extended

privacy-preserving system of Chapter 3 and Chapter 4 respectively. The exploration

of the literature establishes the trend from early e-voting systems towards end-to-end

verifiable systems, and blockchain-based voting systems. Further, the exploration of

literature helps us to establish the research gap of a provably (UC) secure blockchain-

based (decentralised) decision-making system that supports delegable voting (liquid

democracy). The presentations in the next chapter addresses this gap in literature and

also fulfils our second objective from Section 1.2, an important step towards answering

the main research questions of this thesis.
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Chapter 3

A Collaborative Blockchain Treasury

System

This chapter elaborates on the design and development of our provably secure treasury

system for cryptocurrencies. The system enables community-inclusive collaborative

intelligence gathering and supports incentivised participation and delegative voting

(liquid democracy). Liquid democracy, also known as delegative democracy [For02], is

a hybrid of direct democracy and representative democracy that aims to provide the

benefits of both types of democracy [GA15] by enabling organisations to take advantage

of skilled experts in a voting process. Mainly, liquid democracy enhances choice of

voters by distributing voting power, assist voters in their decision, improve systems of

proportional representation and scale direct democracy through specialisation [For20].

Moreover, it lowers participation cost and optimise attention budgets of participants in a

decision-making system.

A treasury system is a community-controlled and decentralized collaborative decision-

making mechanism for sustainable funding of blockchain development and maintenance.

The Dash governance system (DGS), Zcash [Fou] and Decred [Decb] are real-world

examples of treasury systems. For the first time, we provide a rigorous design of the

treasury system that is compatible with most existing blockchain infrastructures, such as

Bitcoin, Ethereum, etc. because it mainly requires the blockchain to support payment
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transactions. At the core of the proposed treasury system is a distributed universally

composable secure end-to-end verifiable voting protocol.

The rest of this chapter is organised as follows: Section 3.1 introduces the research

presented in the chapter by providing pertinent background, motivates the presentation in

this chapter and summarises main contributions. The main contributions are provided in

Section 3.2. Section 3.3 discusses relevant cryptographic concepts, tools and abstractions

useful to the cryptographic schemes, algorithms and protocols that are used by the

treasury system. Section 3.4 details relevant zero-knowledge proofs and constructions

required to ensure parties honestly follow the protocol. Section 3.5 discusses the designed

treasury system and its features such as entities in the system, incentive mechanism,

funding sources, decision-making, etc.

Finally, Section 3.6 details the modeling of the voting scheme adopted in the treasury

system and Section 3.7 details the novel unit vector zero knowledge proof with logarithmic

communication. Note that, we defer the analysis of security the voting protocol of the

treasury system, implementation and performance to Chapter 5.

3.1 Overview

Absence of a centralized control over the operation process is a desirable key feature

expected of blockchains in general and cryptocurrencies in particular [AMM18,GKCC14]

i.e. blockchain solutions should neither rely on `trusted parties or powerful minority' for

their operations, nor introduce such (centralisation) tendencies into blockchain systems.

Decentralization help eliminates single point of failure and offers better security guarantees

and also enables enhanced user privacy techniques.

Real-world cryptocurrencies require steady funding for continuous development and

maintenance of the systems. Accordingly, their maintenance and developmental funding

should also be void of centralization. Therefore, secure and `community-inclusive' long-

term sustainability of funding and fund utilisation offers an avenue to fulfil this goal

towards ensuring the robustness of blockchains.

In the early years of blockchain development, cryptocurrencies such as Bitcoin,
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mainly rely on patron organizations and donations. Recently, an increasing number of

cryptocurrencies are funded through initial coin offering (ICO) -- a popular crowd-funding

mechanism to raise money for the corresponding startups or companies.

A major drawback of donations and ICOs is that they lack sustainable funding supply.

Consequently, they are not suitable as long-term funding sources for cryptocurrency

development due to the difficulty of predicting the amount of funds needed (or that will be

available) for future development and maintenance. Alternatively, some cryptocurrency

companies, such as Zcash Electric Coin Company, take certain percentage of hair-

cut/tax (founders reward) from the miners' reward. This approach would provide the

companies a more sustainable funding source for long-term planning of the cryptocurrency

development.

Nevertheless, the aforementioned development funding approaches have risks of

centralization in terms of decision-making on the development steering. Only a few

people (in the organisation or company) participate in the decision-making process on

how the available funds will be used. However, the decentralized architecture of blockchain

technologies makes it inappropriate to have a centralized control of the funding for secure

development processes. Sometimes disagreement among the organisation members may

lead to catastrophic consequences. Examples include the splitting of Ethereum to

Ethereum and Ethereum Classic and Bitcoin to Bitcoin and Bitcoin cash.

Ideally, all cryptocurrency stakeholders are entitled to participate in the decision-

making process on funding allocation. This democratic type of community-inclusive

decentralized decision-making enables a better collaborative intelligence due to the

optimisation of expertise and voter effort and time within the community. The concept

of treasury system has been raised to facilitate blockchain stakeholder participation in

decision-making [KNS+16,Fou,Decb,ZOB19,ZB18].

A treasury system is a community controlled and decentralized collaborative decision-

making mechanism for sustainable funding of the underlying blockchain development

and maintenance. The core component of a treasury system is a decision-making system

that allows members of the community collectively reach some resolution. During each
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treasury period, anyone can submit a proposal for projects to be funded. Due to shortage

of available funds, only a few of them can be supported. Therefore, a collaborative

decision-making mechanism is required.

The Dash governance system [DD14] is a real-world example of of such a system.

A treasury system consists of iterative treasury periods. During each treasury period,

project proposals are submitted, discussed, and voted for; top-ranked projects are then

funded. Earlier forms of treasury systems do not offer ballot privacy to voters [Dasb,

KNS+16,Decb,Fou], thereby conceivably adversely impacting soundness of any funding

decision due to risk of participant coercion. Moreover, they fail to effectively and efficiently

aggregate and optimise expertise within the community in the decision-making process.

This is due to the system only supporting basic type of voting schemes and limitation of

voting power (thus effective contribution) of experts within the systems. Furthermore, for

efficiency, these systems typically allow only a random subset of stakeholders, e.g. Decred

Pi, masternodes in DGS, to participate in treasury decision-making process, thereby

disenfranchising other community members.

In our treasury system, we put forward a different approach -- liquid democracy -- to

achieve better collaborative intelligence. Liquid democracy (also known as delegative

democracy [For02]) is a hybrid of direct democracy and representative democracy that

enables organisations to take advantage of experts in a treasury voting process by

supporting vote delegation, as well as giving the stakeholders the opportunity to directly

vote. For each project, a voter can either vote directly or delegate his/her voting power

to an expert who is knowledgeable and renowned in the corresponding area. Delegation

and ballot is private and voters and experts vote simultaneously, thereby eliminating

coercion risks and vote-buying.

In the literature, a few blockchain based e-voting schemes have been proposed [Dasb,

Dem17,McC16,nVo17,Ago18,LJEK16]. Some major differences between our treasury

system voting scheme and other e-voting schemes include:

• Conventional e-voting scheme requires real-world identity authentication while our

treasury decision-making do not need to link voters to their real identities.
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• Typically, each voter has one vote, while in our treasury decision-making, the voting

power is proportional to the corresponding stake.

• Our treasury decision-making supports liquid democracy with ballot privacy as-

surance, while, as far as we know, no other e-voting scheme can support liquid

democracy with provable security.

Proper selection of the voting scheme allows maximizing the number of voters satisfied

by the voting results as well as minimizing voters' effort required to study and adequately

analyse the issues being voted on. However, in practice, there are two widely used voting

schemes [KN+]:

• preferential or ranked voting

• approval voting

An extension of approval voting is the `Yes-No-Abstain' voting, where voters express

`Yes/No/Abstain' opinion for each proposal. Recent theoretical analysis of this election

rule with variable number of winners, called Fuzzy threshold voting [KKN+], shows

advantages of this voting scheme for treasury system application. These benefits include

simplicity, ease of understanding and result interpretation, election of more moderate

candidates [BF78, KKN+]. Furthermore, it guarantees that the Condorcet winner is

always a member of the winning set of proposals/candidates. Therefore, we adopt this

voting scheme in our treasury system. Nevertheless, we emphasize our treasury system

can adopt a different voting scheme with minimal changes to the underlying cryptographic

protocols.

Next, we provide a high level description of the basic protocol, covering the core

techniques and algorithms used.

3.1.1 Basic Protocol

Here, we provide a high-level description of the stake-weighted delegable voting scheme

at the core of our treasury system detailed in Section 3.5. For simplicity, without the
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loss of generality, this description covers the main processes in the pre-voting, voting and

post-voting stages by using an example treasury period with a single proposal.

Pre-voting: At the beginning of the treasury period, a proposer submits a

transaction with details of a proposal to support the blockchain. The proposal transaction

mainly covers the an identifier for the proposal, the amount of funds requested, and the

payment address for the proposal (if successful at the end of voting). Expectedly, these

transactions cost some coins to prevent denial of service attacks.

After the proposal submission process, intending participants (voters, experts, and

voting committee members) in the election process of the treasury system register to

participate in the voting process. Voters are stakeholders who deposit stake (corresponding

to their voting power) to partake in the election process while experts are a special

subset of voters that can receive delegation from other voters in the voting process.

The registration transaction mainly covers the participant's role, the amount of the

participant's deposited stake, and the return address for payment of voting rewards.

Voting: In the voting stage, the voting committee is selected using a procedure

that can be abstracted as follows. Potential committee members combine a seed with

their public key and compute a hash of the combination i.e.,

digest = hash
\bigl( 
verificationKey, signature(seed)

\bigr) 
The digest of the hash computation is compared with a system defined threshold T and

users are qualified as voting committee members by submitting registration transactions

that confirm they are able to satisfy the condition. See Subsection 3.5.4 for a complete

description of the voter committee selection. Consequently, the voting committee members

jointly generate the election public key to be used for encrypting unit-vector ballots in

the election. We adopt the distributed key generation (DKG) protocol of [GJKR99],

which uses a (t,n)-threshold verifiable secret sharing and can withstand the corruption of

less than half of the committee members. The public key is used to encrypt ballots and

the election tally is decrypted using partial decryption shares of the voting committee

members. Full details of the protocol is provided in Subsection 3.3.2.
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Following voter/expert registration and committee selection, we briefly describe the

ballot casting process for voters and experts. We adopt the ElGamal discrete-log problem

based cryptosystem due to its homomorphic property.

Specifically, for an election process involving m experts, a voter's ballot is an element-

wise encryption of a unit-vector of size m+ 3. Conceptually, this means that a ballot is a

length m + 3 `concatenation' of individual encryptions of either 0 or 1, where only one

position contains 1. In essence, the position of 1 in the individual encryptions indicate

whether a ballot is a delegation (positions 1 to m) or a direct vote (positions m + 1 to

position m + 3). The voter ballot is depicted in fig. 3.1 below.

Figure 3.1: A treasury system voter ballot with m experts.

However, the length of unit vector ballots for experts in the voting process is 3. That

is, representing a direct vote of yes, no, or abstain depending on the position of 1 in the

unit vector. To guarantee that ballots of voters and experts alike are formed correctly,

they must be accompanied by zero-knowledge proofs (cf. Section 3.7). These proofs are

necessary to prevent cheating because ballots are tallied homomorphically, i.e. without

first decrypting them. We provide more formal description of the ballot and voting

procedures in Subsection 3.6.4.

Post-Voting : At the end of voting, the voting committee members jointly compute

the voting tally. Essentially, the tally is a two-step process. In the first step, the delegation

section of voters' ballots are parsed and homomorphically added to obtain the (encryption

of ) total number of delegations received by individual experts as shown in fig. 3.2.
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Figure 3.2: First step of the ballot tally process showing the homomorphic addition of the
delegations received by individual experts

Following the delegation summation, the voting committee jointly decrypt the dele-

gations ciphertexts to reveal the delegation received by each expert. In the next step,

the latter part of voter ballots (m + 1, m + 2, m + 3) signifying direct voting, is homo-

morphically added to the ballots the m experts to obtain the encryptions of the tally.

Similarly, the voting committee members jointly decrypt the tally to produce the final

voting outcome signifying the total number of Yes, No, Abstain votes received by the

proposal. Note that before the computing the final tally, each voter ballot is weighted by

the voting power of the voter and expert ballot is weighted by the amount of received

delegation.

The rest of the presentations in this chapter provides formal and complete description

of the entities and processes that make up our proposed treasury system.

3.2 Our Results

In this work, we aim to resolve the funding sustainability issue for long-term cryptocur-

rency development and maintenance by proposing a novel treasury system. The proposed

treasury system is compatible with most existing off-the-shelf cryptocurrencies/blockchain
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platforms, such as Bitcoin and Ethereum. We highlight the major contributions of this

work as follows.

• For the first time, we provide a detailed security modeling for a blockchain-based

treasury voting system that supports liquid democracy/delegative voting. More

specifically, we model the voting system in the well-known Universally Composable

(UC) framework [Can00] via an ideal functionality \scrF t,k,n,m
Vote . The functionality

interacts with a set of voters and experts as well as k voting committee members.

It allows the voters to either delegate their voting power to some experts or vote

directly on the project. If at least t out of k voting committee members are honest,

the functionality guarantees termination. Even in the extreme case, when all the

voting committee members are corrupted, the integrity of the voting result is still

ensured by the non-interactive zero-knowledge proofs which can be publicly verified

by any party; however, in that case we don't guarantee protocol termination.

• We propose an efficient design of the treasury system. The system collects funding

via three potential sources: (i) Minting new coins; (ii) Taxation from miners' reward;

(iii) Donations or charity. In an iterative process (see Fig. 3.3), the treasury funds

accumulate over time, and the projects are funded periodically. Each treasury

period consists of pre-voting epoch, voting epoch, and post-voting epoch, which can

be defined in terms of number of blockchain blocks. In the pre-voting epoch, project

proposals are submitted, and the voters/experts are registered. In the voting epoch,

the voting committee is selected; after that, they jointly generate the voting key

for the treasury period. The voters and experts then cast their ballots. In the

post-voting epoch, the voting committee computes and signs the treasury decision.

Winning proposals will then be funded. Any stakeholder in the community can

participate in the treasury voting, and their voting power is proportional to their

possessed stake. (Without loss of generality, we assume a coin has certain storage

field for non-transactional data.)
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Figure 3.3: A treasury period depicting the parties and processes involved in the treasury system.
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• We proposed the world's first honest verifier zero-knowledge proof/argument for unit

vector encryption with logarithmic size communication. Conventionally, to show a

vector of ElGamal ciphertexts element-wise encrypt a unit vector, Chaum-Pedersen

proofs [CP93] are used to show each of the ciphertexts encrypts either 0 or 1 (via

Sigma OR composition) and the product of all the ciphertexts encrypts 1. Such

kind of proof is used in many well-known voting schemes, e.g., Helios. However,

the proof size is linear in the length of the unit vector, and thus the communication

overhead is quite significant when the unit vector length becomes larger. In this

work, we propose a novel special honest verifier ZK (SHVZK) proof/argument

for unit vector that allows the prover to convince the verifier that a vector of

ciphertexts (C0, . . . , Cn - 1) encrypts a unit vector e
(n)
i , i \in [0, n - 1] with O(log n)

proof size. The proposed SHVZK protocol can also be Fiat-Shamir transformed to

a non-interactive ZK (NIZK) proof in the random oracle model.

• We provide prototype implementation [IOH19] of the proposed treasury system

for running and benchmarking in the real world environment. Our implementation

is written in Scala programming language over Scorex 2.0 framework and uses

TwinsChain consensus for keeping the underlying blockchain. Main functionality

includes proposal submission, registration of voters, experts, voting committee

members and their corresponding deposit lock, randomized selection of the voting

committee members among voters, distributed key generation (6-round protocol),

ballots casting, joint decryption with recovery in case of faulty committee members

(4-round protocol), randomness generation for the next treasury period (3-round

protocol), reward payments, deposit paybacks, and penalties for faulty actors. All

implemented protocols are fully decentralized and resilient up to 50\% of malicious

participants. During verification we launched a testnet that consisted of 12 full

nodes successfully operating tens of treasury periods with different parameters.
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Figure 3.4: Coin and transaction structure.

3.3 Building Blocks

Details of notations adopted in this thesis are presented in Section 2.1. However, here,

we provide preparatory information about other key cryptographic abstractions, and

building blocks use in the proposed treasury system.

3.3.1 Blockchain Abstraction

Without loss of generality, we abstract relevant underlying cryptocurrency as encompass-

ing the following concepts: Coin, Address and Transaction. This abstraction helps to

simplify our presentation of the treasury system through the use of appropriate concepts

that minimise the exploration of inessential details.

\circ Coin. We assume the underlying blockchain has the notion of Coins or its equivalent.

Each coin can be spent only once, and all the value of a coin must be consumed in a

spend transaction. Fig. 3.4 depicts four key attributes of each coin explained as follows:

• Coin ID: An implicit property of every coin used to uniquely identify the coin

from other coins.

• Value: Holds the `amount' of a coin.

• Cond: Holds the conditions that must be satisfied for a coin to be correctly/validly

spent.

• Payload: Holds useful non-transactional data (meta-data for the checks and

validations in the treasury system).

\circ Address. Conventionally, in blockhain-based cryptocurrencies an address is usually

a public key, pk, or hash of a public key, h(pk) [Nak08,NBF+16,KRDO17]. To create
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coins associated with an address, the spending condition of the coin is specified as a

valid signature under the corresponding public key pk of the address. For the purpose of

the treasury system, an address is defined as a generic representation of some spending

condition of a coin. Using a recipient's address, a sender is able to create a new coin

whose spending condition is one that only the recipient can satisfy, based on the public

information of the recipient's address. Thus, the recipient may legitimately spend the

coin later in a valid transaction as specified by our blockchain abstraction.

\circ Transaction. Every transaction takes one or more unspent coins, denoted by

\{ Ini\} i\in [n], as input, and outputs one or more new coins, denoted by \{ Outj\} j\in [m]. Except

for special transactions (e.g. specific treasury system transactions), the following condition

holds for every transaction:

n\sum 
i=1

Ini.Value \geq 
m\sum 
j=1

Outj .Value

and the difference in value between the input and output coins is construed as transaction

fee. That is,

Tx\sansf \sanse \sanse =

n\sum 
i=1

Ini.Value - 
m\sum 
j=1

Outj .Value

As shown in Fig. 3.4, the transaction has a Verification Data field that contains pertinent

verification data to satisfy all the spending conditions of the input coins \{ Ini\} i\in [n]. An

example of verification data is valid signatures from all the owners of the input coins.

In addition, each transaction also has a Payload field that can be used to store any

additional non-transactional data. Formally, a transaction is denoted as:

Tx(A;B;C)

where A is the set of input coins, B is the set of output coins, and C is the Payload field.

We remark that to the simplify notation, the verification data in a transaction is implicit

(not explicitly declared).
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3.3.2 Distributed Key Generation

In this section, we give a full description of our distributed key generation (DKG) protocol.

A secure DKG is essential and a fundamental building block in the voting protocol within

our treasury system. This is because the underlying blockchain does not have a `single

trusted third-party' that can independently generate the public key credentials required

for securing the ballots (of participants) and other cryptographic operations within the

treasury.

Naively, threshold distributed key generation can be achieved in the following way.

Every party \scrP i, i \in [n] to the DKG protocol initially generates a public/private key

pair (pki, ski) \leftarrow KeyGen(param). Each \scrP i then posts pki publicly (on the blockchain

or bulletin board) and use (t + 1, n)-threshold verifiable secret sharing (VSS) to share

ski to all the other committee members. The combined voting public key can then be

constructed as pk :=
\prod n

i=1 pki.

However, this approach is insecure because an adversary can influence the distribution

of the final voting public key pk by allowing the corrupted parties to selectively abort the

protocol execution. A detailed discussion of this attack scenario is covered in [GJKR99].

We adopt the distributed key generation protocol proposed by Gennaro et al. [GJKR99]

that addresses the subtle attack described earlier. Mainly, the DKG protocol allows

parties \scrP i to initially post a `commitment' of pki. The committed pki for every party is

then revealed by \scrP i after sharing of the corresponding ski through (t + 1, n)-threshold

VSS. This helps to prevent malicious parties from influencing the distribution of the

generated key.

Specifically, our DKG is an adaptation of the DKG proposed by Genarro et al. which

allows accommodation of up to t < n/2 malicious parties in the protocol. Thereby,

guaranteeing that, with at least \lfloor n2 \rfloor + 1 honest parties, all players should be able to

agree on a uniformly random public key pk such that no malicious party (parties) can

influence the distribution of the generated public key. The corresponding secret key sk is

shared among all the parties. Ideally, protocol termination should be guaranteed when

up to t = \lceil n2 \rceil  - 1 out of n committee members are corrupted.
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Our protocols use the blockchain to realise the broadcast channel and peer-to-peer

channels. Next is a detailed description of our distributed key generation protocol.

3.3.2.1 The Treasury System Distributed Key Generation

Given (g, h) as the Common Reference String (CRS), let C := \{ C1,C2, ...,Ck\} be the set

of election committee members, and let pki be the public key associated with Ci, for

i \in [k]. The adversary is able to corrupt up to t < k/2 committee members.

In the first round, each committee member Ci selects a random (ai,0, ...ai,t) and

random (a\prime i,0, ..., a
\prime 
i,t) where t is maximum number of members that can be corrupted.

Each member then define two polynomials of degree t in the following form:

fi(x) = ai,0 + ai,1x + ... + ai,tx
t

and

f \prime 
i(x) = a\prime i,0 + a\prime i,1x + ... + a\prime i,tx

t

Therefore, each committee member Ci contributes xi = ai,0 = f(0) to the combined

secret x = sk. Furthermore, to confirm the correctness of commitments, each member Ci

posts a corresponding commitment Ei,l = gai,lha
\prime 
i,l on the blockchain. For every other

member of the election committee, each Ci computes si,j = fi(j) and s\prime i,j = f \prime 
i(j) and

posts the encryption of si,j and s\prime i,j under the public key of j to the blockchain. Note

that, j \not = i, i.e. each member posts ei,j \leftarrow Encpkj (si,j) and e\prime i,j \leftarrow Encpkj (s
\prime 
i,j). Only Cj

can decrypt these commitments and this signifies the end of the first round.

In the second round, each committee member Cj fetch all ei,j and e\prime i,j encrypted under

their public key from the blockchain and decrypt them using their private key ski to obtain

their corresponding shares si,j and s\prime i,j . In order to verify that the shares they have received

are valid and not in error, each committee member checks if: gsi,jhs
\prime 
i,j =

\prod t
l=0(Ei,l)

il for

i \in [k], i \not = j. Where this check fails, Cj posts a complain against Ci by revealing the

evidence:

(si,j , s
\prime 
i,j) and
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\pi \leftarrow NIZK
\bigl\{ 

(sj,i, s
\prime 
j,i, pki, ej,i, e

\prime 
j,i), (ski) :

sj,i = Dec\sanss \sansk i(ej,i)

\wedge s\prime j,i = Dec\sanss \sansk i(e
\prime 
j,i)

\wedge (pki, ski) \in \scrR PKE

\bigr\} 
.

Members with one valid complain against them are excluded from participating in the

key generation process.

In the third round, following the exclusion of no member or some members based

on the outcome of round 2, each qualified committee member Ci posts Ai,\ell := gai,\ell for

\ell \in [\scrJ ] to the blockchain. Each committee member also return its secret key share as

ski :=
\sum 
j\in [\scrJ ]

\gamma i \cdot sj,i

where \gamma i :=
\prod 

\ell \in \scrJ \setminus \{ i\} 
\ell 

\ell  - i .

In the fourth round, each qualified committee member Ci, for j \in \scrJ , j \not = i, checks if :

gsj,i =
t\prod 

\ell =0

(Aj,\ell )
i\ell .

Where the check fails, Ci posts complain against Cj together with the evidence (sj,i, s
\prime 
j,i)

on the blockchain, such that:

gsj,ihs
\prime 
j,i =

t\prod 
\ell =0

(Ej,\ell )
i\ell and

gsj,i \not =
t\prod 

\ell =0

(Aj,\ell )
i\ell 

In the fifth and final round, each qualified committee member Ci checks if complaints

raised against qualified committee members in the fourth round are valid. For all members

against whom valid complaints were raised, other qualified committee members posts the

shares sj,i they received from the members who have complaints against them. Thereby,
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enabling the reconstruction of the secret share of the erring qualified committee members

as follows:

skj :=
\sum 
i\in [\scrJ ]

\gamma j \cdot si,j and redefine Aj,0 := g\sanss \sansk j ,

where \gamma j :=
\prod 

\ell \in \scrJ \setminus \{ j\} 
\ell 

\ell  - j .

Finally, the combined (election) public key is computed as follows:

pk :=
\prod 
j\in [\scrJ ]

Aj,0

Distributed key generation \Pi DKG

Round 1: Each committee member Ci do the following:

• Pick random ai,0, ai,1, . . . , ai,t, bi,0, bi,1, . . . , bi,t \leftarrow \BbbZ p.

• Define two polynomials fi(x) :=
\sum t

\ell =0 ai,\ell x
\ell and f \prime 

i(x) :=
\sum t

\ell =0 bi,\ell x
\ell .

• For \ell \in [t], post Ei,\ell := gai,\ell hbi,\ell on the blockchain.

• For every other Cj , j \in [k], j \not = i, compute si,j := fi(j) and s\prime i,j := f \prime 
i(j) and

post ei,j \leftarrow Enc\sansp \sansk j (si,j) and e\prime i,j \leftarrow Enc\sansp \sansk j (s
\prime 
i,j) on the blockchain. (Only Cj

can decrypt them.)

Round 2: Each committee member Ci do the following:

• Fetch \{ (ej,i, e\prime j,i)\} j\in [k],j \not =i from the blockchain, and use pki to decrypt them,

obtaining the corresponding shares \{ (sj,i, s\prime j,i)\} j\in [k],j \not =i.

• For j \in [k], j \not = i, check if gsj,ihs
\prime 
j,i =

\prod t
\ell =0(Ej,\ell )

i\ell . If not, post complain

against Cj by revealing the evidence: (sj,i, s
\prime 
j,i) and

\pi \leftarrow NIZK
\bigl\{ 

(sj,i, s
\prime 
j,i, pki, ej,i, e

\prime 
j,i), (ski) :

sj,i = Dec\sanss \sansk i(ej,i)

\wedge s\prime j,i = Dec\sanss \sansk i(e
\prime 
j,i)

\wedge (pki, ski) \in \scrR PKE

\bigr\} 
.
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• (One valid complain against Cj , j \in [k] will disqualify Cj .)

Round 3: Define the indices of the qualified set of committee members as \scrJ .

Each committee member Ci do the following:

• For \ell \in [t], post Ai,\ell := gai,\ell to the blockchain.

• Return its secret key share as ski :=
\sum 

j\in [\scrJ ] \gamma i \cdot sj,i, where \gamma i :=
\prod 

\ell \in \scrJ \setminus \{ i\} 
\ell 

\ell  - i .

Round 4: Each committee member Ci do the following:

• For j \in \scrJ , j \not = i, check if gsj,i =
\prod t

\ell =0(Aj,\ell )
i\ell . If not, post complain

against Cj together with the evidence (sj,i, s
\prime 
j,i) on the blockchain. Such that

gsj,ihs
\prime 
j,i =

\prod t
\ell =0(Ej,\ell )

i\ell and gsj,i \not =
\prod t

\ell =0(Aj,\ell )
i\ell .

Round 5: Each committee member Ci do the following:

• If there is a valid complain against Cj , j \in \scrJ , then post the share sj,i on the

blockchain. (Everyone can reconstruct skj :=
\sum 

i\in [\scrJ ] \gamma j \cdot si,j and re-define

Aj,0 := g\sanss \sansk j , where \gamma j :=
\prod 

\ell \in \scrJ \setminus \{ j\} 
\ell 

\ell  - j .)

• Return the election public key as pk :=
\prod 

j\in [\scrJ ]Aj,0.

Figure 3.5: Distributed key generation \Pi DKG

3.3.3 UC Ideal Functionalities

In the following, we summarise UC ideal functionalities as building blocks adopted in

this research work.

3.3.3.1 The Distributed Key Generation Functionality

We use the key generation functionality \scrF t,k
DKG of [Wik04] for threshold key generation

of the underlying public key cryptosystem. The functionality is depicted in Fig. 3.6 and

it interacts with a set of committees \scrC := \{ C1, . . . ,Ck\} to generate a public key pk and
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deal the corresponding secret key sk among the committees. In Section 3.3.2, we provide

a detailed description of our threshold distributed key generation protocol adopted from

Gennaro et al. [GJKR99].

The functionality \scrF t,k
DKG interacts with a set of voting committees \scrC :=

\{ C1, . . . ,Ck\} , any party \scrP , and the adversary \scrA . It is parameterised with vari-
able \scrJ and algorithms KeyGen() and Deal().
Initially, set \scrJ := \emptyset .

• Upon receiving (KeyGen, sid) from Cj \in \scrC , set \scrJ := \scrJ \cup \{ Cj\} .

• If | \scrJ | = k, generate a public key pair (pk, sk)\leftarrow KeyGen(1\lambda ) and compute
(sk1, . . . , skk)\leftarrow Deal(t, k, sk). For j \in [k], send message
(PrivKey, sid, skj) to Cj .

• Upon receiving (ReadPK, sid) from any party p \in \scrP , if pk is not defined
yet, ignore the request. Otherwise, it sends (PublicKey, sid, pk) to the
requestor.

Functionality \scrF t,k
DKG

Figure 3.6: Functionality \scrF t,k
DKG

3.3.3.2 The Global Clock Functionality.

The global clock functionality \scrG Clock interacts with all the parties. To accommodate

offline parties, parties can register and deregister themselves to the functionality \scrG Clock.

The clock advances if and only if all registered honest parties have sent Tick command

to it. The functionality is depicted in detail in Fig. 3.7.

3.3.3.3 The Ledger Ideal Functionality

Our protocol builds on state-of-the-art ledger ideal functionality proposed by Badertscher

et al., [BMTZ17]. As shown, in Fig. 3.11, the functionality maintains a set of registered

parties \BbbP , a (sub-)set of honest parties \scrH \subseteq \BbbP , and a (sub-set) of de-synchronized honest

parties \BbbP DS \subset \scrH . The set \BbbP ,\BbbP DS ,\scrH are initially set to \emptyset . When a new honest party is

registered, it is added to \BbbP DS (hence also to \scrH and \BbbP ) and the current time of registration
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The functionality interacts with a set of parties \BbbP , a set of functionalities \BbbF ,
and the adversary \scrA . It is parametrized with variable \tau , \BbbP , and \BbbF .
Initially, set \tau := 0, \BbbP := \emptyset , and \BbbF := \emptyset .

Registration:

• Upon receiving (Register, sid) from party p, set \BbbP := \BbbP \cup \{ p\} and create
variable Tp := 0.

• Upon receiving (Register, sid) from functionality \scrF , set \BbbF := \BbbF \cup \{ \scrF \} 
and create variable T\scrF := 0.

• Upon receiving (De-Register, sid) from party p, set \BbbP := \BbbP \setminus \{ p\} and
remove variable Tp.

• Upon receiving (De-Register, sid) from functionality \scrF , set \BbbF := \BbbF \setminus \{ \scrF \} 
and remove variable T\scrF .

• Upon receiving (Get-Reg, sid) from \scrA , return (Get-Reg, sid,\BbbP ,\BbbF ) to \scrA .

Synchronization:

• Upon receiving (Tick, sid) from party p \in \BbbP , set Tp := 1; Invoke
procedure Clock-Update and send (Tick, sid, p) to \scrA .

• Upon receiving (Tick, sid) from functionality \scrF \in \BbbF , set T\scrF := 1; Invoke
procedure Clock-Update and send (Tick, sid,\scrF ) to \scrF .

• Upon receiving (GetTime, sid) from any participant, return
(GetTime, sid, \tau ) to the requester.

Procedure Clock-Update:

• If T\scrF = 1 for all \scrF \in \BbbF and Tp = 1 for all the honest p \in \BbbP , then set
\tau := \tau + 1, and reset T\scrF := 0 for all \scrF \in \BbbF and Tp := 0 for all p \in \BbbP .

Functionality \scrG Clock

Figure 3.7: Functionality \scrG Clock
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is recorded. Similarly, when a party is deregistered, it is removed from both \BbbP and \BbbP DS .

For each party p \in \BbbP , the functionality maintains a pointer pt\sansi (initially set to 1) and a

current state view state\sansi := \epsilon (initially set to empty). The functionality also keeps track

of the timed honest-input sequence in a vector I\sansT \sansH (initially I\sansT \sansH := \epsilon ).

Functionality \scrF Ledger

It is parametrized by four algorithms Validate,ExtendPolicy,Blockify, and

predict-time, along with two parameters: windowSize,Delay \in \BbbN . The functionality

manages variables state,NxtBC, buffer, \tau L and \tau \sanss \sanst \sansa \sanst \sanse .

Initially, state := \tau state := NxtBC :=\epsilon , buffer := \emptyset , \tau \sansL =1.

The functionality maintains the set of registered parties \BbbP , the (sub-)set of honest

parties \scrH \subseteq \BbbP , and the (sub-set) of de-synchronized honest parties \BbbP DS \subset \scrH . The

set \BbbP ,\BbbP DS ,\scrH are all initially set to \emptyset . When a new honest party is registered, it is

added to all \BbbP DS (hence also to \scrH and \BbbP and the current time of registration is also

recorded; similarly, when a party is deregistered, it is removed from both \BbbP and

\BbbP DS . For each party p \in \BbbP , the functionality maintains a pointer pt\sansi (initially set

to 1) and a current state view state\sansi := \epsilon (initially set to empty). The functionality

also keeps track of the timed honest-input sequence in a vector I\sansT \sansH (initially I\sansT \sansH := \epsilon )

Upon receiving any input I from any party or from the adversary, send

(GetTime, sid) to \scrG Clock and upon receiving response (GetTime, sid, \tau ) set

\tau L := \tau and do the following:

• Let \^\BbbP \subseteq \BbbP DS denote the set of desynchronized honest parties that were

registered at time \tau \prime \leq \tau L  - Delay. Set \BbbP DS := \BbbP DS \setminus \BbbP .

• If I was received from an honest party p \in \BbbP :

-- Set ITH := ITH| | (I, p, \tau L);

-- Compute N = (N1, . . . ,Nl) :=

ExtendPolicy(ITH, state,NxtBC, buffer, \tau state) and

if N \not = \epsilon , set state := state| | Blockify((Nl1)| | . . . ,Blockify((Nl)) and

\tau state := \tau state| | \tau lL, where \tau lL = \tau L| | , . . . \tau L
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-- For each BTX \in buffer: if (Validate,BTX, state, buffer) = 0 then delete

BTX from buffer. Also reset NxtBC := \epsilon 

-- If there exists pj \in \scrH such that | state|  - ptj > windowSize or ptj < | state| ,

then set ptk := | state| for all pk \in \scrH \setminus \BbbP DS

• Depending on the above input I and its sender's ID, \scrF Ledger executes the

corresponding code from the following list:

-- Submitting a transaction:

If I = (Submit, sid, tx) and is received from a party p \in \BbbP or from \scrA 

(on behalf of a corrupted party p) do the following

∗ Choose a unique transaction ID txid and set BTX :=

(tx, txid, \tau L, pi)

∗ if Validate(BTX), state, buffer = 1, then buffer := buffer \cup \{ BTX\} .

∗ Send (Submit,BTX) to \scrA 

-- Reading the state:

If I = (Read, sid) is received from a party p \in \BbbP then set

state| \sansm \sansi \sansn \{ \sansp \sanst \sansi ,| \sanss \sanst \sansa \sanst \sanse | \} and return (Read, sid, state\sansi ) to the requester. If

the requester is \scrA then send (state, buffer, ITH) to \scrA 

-- Maintaining the ledger state:

If I = (Maintain-Ledger, sid,minerID) is received by an honest

party p in \BbbP and (after updating ITH as above) predcit-time(ITH) = \^\tau > \tau L

then send (Tick, sid) to \scrG Clock. Else, send I to \scrA .

-- The adversary proposing the next block:

If I = (Next-Block, hFlag, (txid1, . . . , txidl)) is sent from the adver-

sary, update NxtBC as follows:

∗ Set listOfTxid\leftarrow \epsilon 

∗ For i = 1, . . . , l do: if there exists BTX :=

(x, txid,minerID, \tau L, pi) \in buffer with ID txid = txidi then
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set lisOfTxid := listOfTxid| | txidi

∗ Finally, set NxtBC := NxtBC| | (hF lag, listOfTxid) and output

(Next-Block, ok) to \scrA 

-- The adversary setting state-slackness:

If I = (Set-Slack, (pi1, \^pti1), (pil, \^ptil), ) with \{ pi1, . . . , pil\} \subseteq \scrH \setminus \BbbP DS

is received from the adversary \scrA do the following:

∗ If for all j \in [l] : | state|  - \^ptij \geq state\sansi \sansj | , setpti := \^pti for every j \in [l]

and return (Set-Slack, ok) to \scrA .

∗ Otherwise set ptj := state for all j \in [l]

-- The adversary setting the state for desynchronised parties:

If I = (DEesync-State, (pi1, state
\prime 
\sansi \sansl )) with \{ pi1, . . . , pil\} \subseteq \BbbP DS is

received from the adversary \scrA , set state\sansi \sansj := state\prime \sansi \sansj for each j \in [l] and

return (Desync-State, ok) to \scrA .

Figure 3.8: Functionality \scrF Ledger

3.4 Non-interactive Zero-knowledge Protocols

Looking ahead, in this section we cover non-interactive zero-knowledge proofs protocol

useful for convincing other participants of the voting process in the treasury system of

one's correct operation and following of the protocol. These pertinent zero-knowledge

proof protocols used in the treasury system are available in Appendix A.

3.5 The Proposed Treasury System

The proposed blockchain treasury system is characterised by iterative treasury periods

during which all of the treasury processes are repeated in every period. Conceptually,

every treasury period is divided into three epochs. Namely :
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• Pre-voting epoch

-- Project proposing stage

-- Voter/expert registration stage

• Voting epoch

-- Committee selection stage

-- Key setup stage

-- Ballot casting stage

• Post-voting epoch

-- Tally stage

-- Execution stage

Figure 3.9 depicts a treasury period, the three epochs and their attendant stages.

The pre-voting epoch consists of two concurrent stages: project proposing stage and

voter/expert registration stage. In the project proposing stage, users can submit project

proposals (to support cryptocurrency development) requesting funds from the treasury.

At the same time, interested stakeholders can register themselves as either voters and/or

experts to participate in the decision making process by locking certain amounts of their

stake in the underlying cryptocurrency. A voter's voting power is proportional to his

locked stake. For experts, their voting power is proportional to the amount of voting

(power) delegation they receive. Delegation is covered in more details in Section 3.5.6.

Similarly, a voter's (respectively expert's) treasury reward is proportional to his locked

stake (respectively his received delegations).

At the beginning of the voting epoch, there is a voting committee selection stage,

where a set of voting committee members are randomly selected from all registered

voters who are willing to be considered for selection to the committee. For any voter,

the probability of being selected to the committee is proportional to the amount of

locked stake. Following the selection of the voting committee members, they jointly
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run the distributed key generation protocol to setup the election public key. Thereafter,

voters and experts can submit their (encrypted) ballots in the ballot casting stage. Cast

ballots are either direct or indirect votes on the proposals, i.e. voters can either specify

their choice or delegate their voting powers to some expert. Voting is on a per-project

basis, therefore within a given treasury period, voters can delegate their voting power to

different experts for different projects, vote directly, or use a combination of both options

for different proposals.

In the post-voting epoch, the voting committee members jointly compute and announce

the tally result on the blockchain in the tally stage. Finally, in the execution stage, the

winning projects are funded, and voters, experts and voting committee members are

rewarded (or punished based on their actions in the treasury period) accordingly. These

transactions will be jointly signed and executed by the voting committee. Meanwhile,

the committee members also jointly commit to a random seed, which is used to select a

new voting committee for the next treasury period.

Project proposing stage

Voter/Expert registration stage

Pre-voting epoch 

Committee 
selection stage

Key setup 
stage

Voting epoch 

Ballot 
casting stage

Tally 
stage

Post-voting epoch 

Execution 
stage

Figure 3.9: Treasury system epochs.

In the following, we elaborate on the principal entities that constitute the treasury

system.

3.5.1 Entities

At the core of our treasury system exists a collaborative decision-making system that

enables all stakeholders to actively participate and make meaningful contributions towards

cryptocurrency development. Let k, \ell , n,m be integers in poly(\lambda ). The stakeholders may

have one or more of the following roles.

• The project owners \scrO := \{ O1, . . . ,Ok\} are a set of stakeholders (or general commu-

nity members) that have submitted project proposals for supporting the blockchain.
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• The voting committees \scrC := \{ C1, . . . ,C\ell \} are a set of stakeholders that are respon-

sible for generating the voting public key and announcing the voting result.

• The voters \scrV := \{ V1, . . . ,Vn\} are a set of stakeholders that lock certain amount of

stake to participate in the treasury system voting on proposals.

• The experts \scrE := \{ E1, . . . ,Em\} are a special type of voters with specialist knowl-

edge and expertise in some field e.g. blockchain, cryptocurrency, cryptography,

economics.

3.5.2 Project Proposal

We adopt a two-stage project proposal submission scheme to prevent granting unfair

advantage to late proposal submissions (who might have seen early submissions). To

achieve this, we also use the well-known `commit and open later' approach.

In the first stage, project owners O1, . . . ,Ok post an encryption of their project

proposals, encrypted under the election public key of the previous treasury period, to

the blockchain. At the end of pre-voting epoch and at the beginning of the voting epoch,

the voting committee of previous treasury period will jointly decrypt the `committed'

projected proposals submitted at the pre-voting epoch. In addition to decrypting the

proposals, they also reveal a seed, seed (cf. Section 3.5.9).

To commit a project, the project owner needs to submit a special transaction in the

following form:

Tx
\Bigl( 
\{ Ini\} ni=1;TCoin; \{ Project,TID,P-Enc,Addr\} 

\Bigr) 
,

where \{ Ini\} ni=1 are the input coins, and TCoin is a special output coin whose spending

condition is specified as : the coin can only be spent according to the corresponding

treasury decision (cf. Section 3.5.5). Moreover, for the coin value, the following condition

must hold:

TCoin.Value \geq \alpha \mathrm{m}\mathrm{i}\mathrm{n} ,

where \alpha \mathrm{m}\mathrm{i}\mathrm{n} is the minimum required fee for a project proposal submission, to prevent
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denial-of-service attacks. In the transaction Payload field, Project is a tag that indicates

it is a special project proposal transaction; TID is the treasury ID that is used to uniquely

identify a treasury period; P-Enc is the encrypted project proposal, and Addr is the

return address for the project owner to receive funds if the project is successful in the

decision-making (voting) process.

3.5.3 Voter/Expert Registration

In order to register to be a voter, a stakeholder (or a set of stakeholders combining their

stakes) need(s) to submit a special voter registration transaction in the following form to

the blockchain:

Tx
\Bigl( 
\{ Ini\} ni=1;TCoin;

\Bigl\{ 
Voter-Reg,TID, \{ Si\} \ell i=1, S-Cond, vk,Addr

\Bigr\} \Bigr) 
,

where \{ Ini\} ni=1 are the input coins, and TCoin is a special output coin whose spending

condition is defined in Section 3.5.5. In the Payload field, Voter-Reg is a tag that

indicates it is a special voter registration transaction; TID is the treasury ID that is used

to uniquely identify a treasury period; \{ Si\} \ell i=1 are the frozen unspent coins that will be

used to claim stake value (hence voting power); S-Cond is the required data that satisfies

all the stake attributes of \{ Si\} \ell i=1; vk is a freshly generated signature verification key;

and Addr is the return address for the voter to receive treasury reward. The voter's ID

denoted as Vi := hash(vk) is defined as the hash of vk.

Note that, the registration transaction is valid if and only if the payment conditions

of all the input coins are satisfied. Thus, this indicates that a registered voter may

represent a group of users' if the deposited coins in the registration transaction come

from different users. Moreover, the return address is especially useful and distinct for

a set of stakeholders that pool resources together to participate in the treasury system.

This allows for flexibility in payment of participation reward to an address agreed to

by all parties rather than to a fixed address. The address can have protective features

such as multi-signature spend requirements to prevent all parties in the pool e.g. Voting

Service Providers in Decred Treasury [Decc].
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Let \beta \mathrm{m}\mathrm{i}\mathrm{n} be a predefined treasury system parameter. To register as an expert, a

stakeholder (or a set of stakeholders) need(s) to deposit exact \beta \mathrm{m}\mathrm{i}\mathrm{n} amount of coins, by

submitting a special expert registration transaction in the following form:

Tx
\Bigl( 
\{ Ini\} ni=1;TCoin; \{ Expert-Reg,TID, vk,Addr\} 

\Bigr) 
,

where \{ Ini\} ni=1 are the input coins, and TCoin is a special output coin whose spending

condition is defined in Section 3.5.5. Moreover, for the coin value, the following condition

must hold:

TCoin.Value \geq \beta \mathrm{m}\mathrm{i}\mathrm{n} .

In the Payload field, Expert-Reg is a tag that indicates it is a special transaction for

expert registration; TID is the treasury ID that is used to uniquely identify a treasury

period; vk is a freshly generated signature key; and Addr is the return address for the

expert to receive treasury reward. The expert's ID denoted as Ej := hash(vk) is defined

as the hash of vk.

Note that the expert does not gain reward based on the amount of deposited coins,

so it is not rational to deposit significantly more than \beta \mathrm{m}\mathrm{i}\mathrm{n} coins in practice. Specifically,

expert rewards are based on the amount of received delegated votes.

3.5.4 Voting Committee Selection

At the beginning of the voting epoch, the voting committee of the previous treasury epoch

jointly reveal the committed seed. The seed serves as an unbiased source of randomness

for the cryptographic operation of selecting the new committee members (from all eligible

participants).

Let sti =
\sum \ell 

j=1 Sj .Value for all the stake coins Sj claimed in the payload of a voter

registration transaction of vki, i.e. sti is the total stake amount claimed by vki. Once seed

is announced, any registered voter, with address vki and claimed stake sti, can volunteer
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to participate in the voting committee if the following inequality is satisfied:

hash
\bigl( 
vki, sign\sanss \sansk \prime i(seed)

\bigr) 
\leq sti \cdot T

where sk\prime i is the corresponding signing key for vki, and T is a pre-defined threshold for

the blockchain treasury system. The threshold T is properly defined to ensure that

approximately \lambda \prime = \omega (log \lambda ), for example, \lambda \prime = polylog(\lambda ) committee members are

selected, assuming a constant fraction of them will be active. Note that, as is the case

with most proof-of-stake systems, T needs to be updated frequently to ensure required

security and efficiency performance. Chepurnoy et. al., in [CDFZ17] provides a good

example of a method for threshold/difficulty T adjustment.

When the above inequality holds, the voter can then submit a special registration

transaction in the following form:

Tx
\Bigl( 
\{ Ini\} ni=1;TCoin;

\Bigl\{ 
VC-Reg,TID, vk, \~pk, sign\sanss \sansk \prime i(seed),Addr

\Bigr\} \Bigr) 
,

where \{ Ini\} ni=1 are the input coins, and TCoin is a special output coin whose spending

condition is defined in Section 3.5.5. Moreover, for the coin value, the following condition

must hold:

TCoin.Value \geq \gamma \mathrm{m}\mathrm{i}\mathrm{n} .

In the Payload field, VC-Reg is a tag that indicates it is a special voting committee

registration transaction; TID is the treasury ID used to uniquely identify a treasury

period; vk is a freshly generated signature verification key; \~pk is a freshly generated

public key for a pre-defined public key cryptosystem (lifted ElGamal); sign\sanss \sansk \prime i(seed) is

the signature of seed under the signing key corresponding to vki; and Addr is the return

address for the committee member to receive treasury reward.

We remark that, honest majority of the voting committee is required to guarantee

voter privacy and protocol termination. Assuming the majority of the stake of all the

registered voters is honest, therefore, the probability that a selected committee member
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is honest is

p = 1/2 + \varepsilon , for any \varepsilon \in (0, 1/2].

Let X be the number of malicious committee members selected among all \lambda \prime committee

members. Since \lambda \prime = \omega (log \lambda ), based on Chernoff bound, we have that, for \delta = 2\varepsilon /(1 - 2\varepsilon ):

Pr[X \geq \lambda \prime /2] = Pr[X \geq (1 + \delta )(1/2 - \varepsilon )\lambda \prime ]

< exp( - \delta 2(1/2 - \varepsilon )\lambda \prime /4)

=
1

exp(\omega (log \lambda ))
= negl(\lambda )

Thus, the Chernoff bound allows us to control the probability of a malicious majority

of committee members.

3.5.5 Supplying the Treasury

As earlier discussed in Section 2.6, treasury funding is perhaps the most crucial ingredient

in a decentralised community-controlled decision-making system. Treasury funding should

be secure, regular, sustainable and centralisation-free. That is, source of funding for

treasury system should not introduce centralisation into the system.

Note that, although, individually not all the potential funding sources possess the

properties mentioned above, a clever combination of some (or all) of these sources satisfy

the set out requirements listed above. Therefore, we propose 3 main sources of funding

for the treasury system.

• Taxation/Haircut from block reward: Most blockchain platforms offer block re-

wards (including transaction fees) to proposers of new blocks, incentivizing honest

behaviour. A fraction of such block rewards can be taken and contributed to

the decentralised treasury. This type of funding source is sustainable as long as

the block rewards of the underlying blockchain platform remain. However, block

rewards may fluctuate (reduce) over time, and it could cause a reduction in the

amount of funds available to the treasury.
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• Minting new coins: Coin minting represents, perhaps, the most sustainable funding

source of the potential sources. At the beginning of each treasury period, certain

amount of new coins are created to fund projects. However, minting must be

properly analysed prior to adoption because it may cause inflation in terms of the

fiat market value of the underlying cryptocurrency.

• Donations or charity: Treasury funds can also be supplemented by donations

although given the ad-hoc nature of donations they are unsuitable and unsustainable

as the main (or only) source funding cryptocurrency treasury system.

Treasury funds are accumulated via a collection of coins. For instance, during each

treasury period, taxation of block rewards, minting and donations can be collected

through a special transaction at the beginning of each block. This special transaction

outputs new coins whose spending condition, Cond, specifies that the coins can only be

spent according to the corresponding treasury decision. Treasury funds will be distributed

in forms of transactions jointly made by the corresponding voting committee. Therefore,

the accumulated coins for a given treasury period must allow the voting committee in

that treasury period to jointly spend them.

Formally, there are \lambda \prime committee members selected at the beginning of the voting

epoch of each treasury period. Let seed\sansT \sansI \sansD i
denote the seed opened in the treasury period

indexed by TIDi. Let \{ vkj\} \ell j=1 be the set of signature verification keys in the valid

committee registration transactions proposed by vki such that the following condition

holds:

hash
\bigl( 
vki, sign\sanss \sansk \prime i(seed)

\bigr) 
\leq sti \cdot T

Therefore, the treasury coin spending condition is specified such that, a treasury coin can

only be spent in a transaction if the majority of the signatures with respect to \{ vkj\} \ell j=1

are present in the transaction.
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3.5.6 Enabling Stake Delegation

In our treasury system, we distinguish between the stake ownership and coin ownership.

In other words, the stake of a coin can be `owned' by a user other than the owner of

the coin. This distinction enables the delegation of the stake of a coin to a party (other

than the owner) without transferring the ownership of the coin. To realise this important

feature, we introduce a stake attribute, denoted as S-Attr, that can be attached to the

Payload of a coin. Any user/party who can provide the required data that satisfies the

condition(s) in the S-Attr is able to claim the stake (not own) of the coin.

Of course, the stake of an unspent coin can only be claimed at most once at any

moment (treasury period). In practice, to ensure secure realisation additional checks

might be executed. If a user A wants to delegate the stake of a coin to a user B, he

simply needs to put the user B's desired S-Attr in the Payload of the coin. Note that this

type of delegation is persistent in the sense that if the coin is not consumed, the S-Attr

of the coin remains the same. This feature allows users to stay offline while their coins'

stake can still be used in the treasury process by the delegatees. Hence, encouraging

increased stake (user) participation within treasury system decision-making. Recall that

voting power within the treasury system is proportional to the amount of locked stake.

However, this type of delegation only guarantees pseudonymity-based privacy, because

anyone can learn who the owner of the coin stake is, by checking the S-Attr of the coin.

3.5.7 Handling the Treasury Specific Data in the Payload

Typically, validation rules for most general blockchain transactions do not take into

account the content of transaction payload. Therefore, for treasury system transactions

with useful payload data, additional checks are required to support these treasury special

transactions. Specifically, we verify the payload data of those treasury system transactions

with additional algorithms.

For instance, a coin must be frozen during an entire treasury period in order to claim

its stake in the voting process. For example, this can be done by, adding extra constraints

in the spending condition, ensuring that the coin cannot be spent until a given block
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height, which is no earlier than the end of the treasury period. Furthermore, the stake of

one coin can only be claimed once during each treasury period to guarantee users' voting

power is tied to real (unused) stake and prevent Sybil attacks.

3.5.8 Decision-making

The voting committee members, voters, and experts follow the protocol described in

Section 3.6 for the decision-making process. The described protocol covers key generation

stage, the ballot casting stage, and the tally stage. In terms of security, as shown in

Section 3.5.4, with overwhelming probability, the majority of the committee members

are honest. Hence, guaranteeing voter privacy and protocol termination. In an unlikely

extreme case, where all voting committee members are corrupt, our voting scheme still

ensures the integrity of the voting tally result through the non-interactive zero-knowledge

proofs which can be publicly verified by any party. As a further deterrent to prevent

malicious behaviour from voting committee members, if a cheating voting committee

member is detected, their locked stake deposited is seized (not returned to them).

Voters/experts need to submit an independent ballot for each project proposal. The

voter's ballot is either a delegation of his voting power to an expert or a direct expression

of his choice/decision on the project. However, an expert's ballot is a direct vote on

the project. In our prototype treasury system implementation, we adopt the `YES-NO-

ABSTAIN' voting scheme. Specifically, after the voting by all eligible parties (voters and

experts), the project proposals are scored based on the number of yes votes minus the

number of no votes.

For a project to be shortlisted for potential funding from the treasury system, its net

vote received must be least 10\% of all votes in treasury period. Proposals that do not

meet the net vote threshold are discarded. Thereafter, shortlisted proposals are ranked

according to their score, and the top ranked proposals are funded in turns until available

treasury fund is expended. Each of the voting committee members will then sign the

treasury decision and transactions (payment to winning projects), and those transactions

are valid if and only if they are signed by more than t-out-of-k voting committee members.
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3.5.9 Post-voting Execution

Certain proportion (e.g. 20\%) of the treasury fund will be used to reward the voting

committee members, voters and experts for participation in the treasury system. A voter

Vi \in \scrV will receive reward that is proportional to his/her locked stake, denoted as \zeta 2 \cdot sti,

where sti is the amount of the stake claimed by Vi. The expert Ej \in \scrE will receive reward

that is proportional to his/her received delegations, denoted as \zeta 3 \cdot Dj , where Dj is the

amount of delegations that Ej received. The voting committee members C\ell \in \scrC will

receive a fixed amount of reward, denoted as \zeta 1. Note that as the voting committee

members are required to perform additional actions in the next treasury period (seed

revelation), their reward will only be transferred after the completion of those actions at

the end of pre-voting epoch in the next treasury period. Meanwhile, if a voting committee

member cheats or an expert fails to submit a valid ballot, he/she will lose their deposited

coin as a penalty.

Specifically for the additional tasks carried out by voting committee members, they

will jointly generate and commit to a random seed for the next treasury period, in

a protocol depicted as follows. To generate and commit a random seed seed, voting

committee members C\ell , \ell \in [k] need to invoke a coin flipping protocol. However, given

that the committee members already jointly setup a public key ap, the cost of such

a protocol is very small. Specifically, in the final epoch of each treasury period, each

voting committee member C\ell , \ell \in [k] will pick a random group element R\ell \leftarrow \BbbG and

posts its encryption, C\ell \leftarrow Enc\sansp \sansk (R\ell ) to the blockchain. C :=
\prod k

\ell =1C\ell is defined as the

committed/encrypted seed for the next treasury period. Note that C can then be jointly

decrypted as far as majority of the voting committee members are honest (threshold

decryption). This two stage-process for seed generation helps guarantee that malicious

voting committee members cannot influence the distribution of the seed.

3.5.10 Partitionary Budgeting

As earlier established, the main goal of the treasury system is decentralized community-

driven self-sustainable cryptocurrency development through adoption and funding of
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projects. Naively, selection of projects for funding is done by ranking all submitted

proposals according to the number of votes they receive. Subsequently, fund a number

of projects whose total funding request does not exceed the available treasury budget.

However, in practice, there exists a risk of underfunding vital areas of cryptocurrency

development due to numerous project submissions and inflated discussions and interests

in some other areas. To prevent this undesirable scenario, project proposals are classified

into different categories and each category is independently allocated a percentage of

available treasury funds. Thus, guaranteeing funds to all vital areas of cryptocurrency

development (as long as voting threshold is satisfied by projects requesting treasury

funds).

Analysis of existing blockchain development funding [KN+,Fou,Decb] reveal marketing,

PR, integration, software development and organisational costs are most prominent

categories. Therefore, given this background and general business development rules, we

propose (at least) the following categories.

• Marketing : This covers activities devoted to cryptocurrency market share growth;

market analysis, advertisement, conferences, etc. The vastness of the area demands

this category should take a sizeable percentage of the available funding budget.

• Technology adoption : This includes costs needed for wider spreading of cryp-

tocurrency; integration with various platforms, websites and applications, deploy-

ment of ATMs, etc.

• Development and security : This includes costs allocated for funding core

and non-core development, security incident response, patch management, running

testnets, as well as similar critical technology areas.

• Support : This category includes user support, documentation, maintaining of

web-infrastructure needed for the community and other similar areas.

• Organization and management : This category includes costs on team

coordination and management, legal support, etc.
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• General : This includes projects not covered by the above-listed categories,

e.g. research on prospective technologies for cryptocurrency application, external

security audit, collaboration with other communities, and charity.

It should be noted that the provided categories are recommendations and not an exhaustive

list. Specifically, each cryptocurrency treasury deployment will factor in the peculiarities

of its system, development stage, community, uses, law and regulations, in determining

its applicable categories. For instance, a cryptocurrency in its early development stage,

will assign greater preference towards software development, adoption and marketing

efforts.

Nonetheless, having a categorisation approach to treasury system guarantees that

critical areas for cryptocurrency routine operation, support and development will always

receive funding via treasury, which in turn, guarantees cryptocurrency self-sustainability.

3.6 The proposed voting scheme

In this section, we formally present the decentralized voting scheme used in the treasury

system. The voting scheme supports direct voting and vote delegation and the description

done in the UC framework. In the following, the security model of the voting scheme is

presented in Section 3.6.1.

3.6.1 Security Modeling

The entities involved in the voting schemes are a set of voting committee mem-

bers \scrC := \{ C1, . . . ,Ck\} , a set of voters \scrV := \{ V1, . . . ,Vn\} , and a set of experts

\scrE := \{ E1, . . . ,Em\} . The security of the treasury voting scheme is analysed in the

Universally Composable framework with static corruption. The security of the scheme is

based on the indistinguishability between real/hybrid world executions and ideal world

executions, i.e. for any PPT real/hybrid world adversary \scrA we will construct an ideal

world PPT simulator \scrS that can present an indistinguishable view to the environment \scrZ 

operating the protocol.
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3.6.2 The Ideal World Execution

In the ideal world, the voting committee \scrC , the voters \scrV , and the experts \scrE only com-

municate to an ideal functionality \scrF t,k,m,n
Vote during the execution. The ideal functionality

\scrF t,k,m,n
Vote accepts a number of commands from \scrC ,\scrV , \scrE . At the same time it informs the

adversary of certain actions that take place and is also influenced by the adversary to elicit

certain actions. The ideal functionality \scrF t,k,m,n
Vote is depicted in Fig. 3.10 and it consists of

three phases: Preparation, Voting/Delegation, and Tally summarised as follows:

• Preparation phase: During the preparation phase, the voting committees Ci \in \scrC 

need to initiate the voting process by sending (Init, sid) to the ideal functionality

\scrF t,k,m,n
Vote . The voting will not start until all the committees have participated the

preparation phase.

• Voting/Delegation phase: During the voting/delegation phase, the expert

Ei \in \scrE can vote for his choice vi by sending (Vote, sid, vi) to the ideal functionality

\scrF t,k,m,n
Vote . Note that the voting choice vi is leaked only when majority of the voting

committees are corrupted. The voter Vj \in \scrV , who owns \alpha j stake, can either vote

directly for his choice vj or delegate his voting power to an expert Ei \in \scrE . Similarly,

when all the voting committees are corrupted, \scrF t,k,m,n
Vote leaks the voters' ballots to

the adversary \scrS .

• Tally phase: During tally phase, the voting committee Ci \in \scrC sends (DelCal, sid)

to the ideal functionality \scrF t,k,m,n
Vote to calculate and reveal the delegations received

by each expert. After that, they then send (Tally, sid) to the ideal functionality

\scrF t,k,m,n
Vote to open the tally. Once all the committees have opened the tally, any party

can read the tally by sending (ReadTally, sid) to \scrF t,k,m,n
Vote . Note that due to the

nature of threshold cryptography, the adversary \scrS can see the voting tally result

before all the honest parties. Hence, the adversary can refuse to open the tally

depending on the tally result. The tally algorithm TallyAlg is described in Fig. 3.13.
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The ideal functionality \scrF t,k,n,m
Vote

The functionality \scrF t,k,n,m
Vote interacts with a set of voting committees

\scrC := \{ C1, . . . ,Ck\} , a set of voters \scrV := \{ V1, . . . ,Vn\} , a set of experts

\scrE := \{ E1, . . . ,Em\} , and the adversary \scrS . It is parameterized by a delegation

calculation algorithm DelCal (described in Fig. 3.12) and a tally algorithm TallyAlg

(described in Fig. 3.13) and variables \phi 1, \phi 2, \tau , J1, J2, J3, T1 and T2. Denote \scrC \sansc \sanso \sansr 

and \scrC \sansh \sanso \sansn \sanse \sanss \sanst as the set of corrupted and honest voting committees, respectively.

Initially, \phi 1 = \emptyset , \phi 2 = \emptyset , \tau = \emptyset , J1 = \emptyset , J2 = \emptyset , and J3 = \emptyset .

Preparation:

• Upon receiving (Init, sid) from the voting committee Ci \in \scrC , set J1 :=

J1 \cup \{ Ci\} , and send a notification message (InitNotify, sid,Ci) to the

adversary \scrS .

Voting/Delegation:

• Upon receiving (Vote, sid, vi) from the expert Ei \in \scrE , if | J1| < t, ignore the

request. Otherwise, record (Ei,Vote, vi) in \phi 1; send a notification message

(VoteNotify, sid,Ei) to the adversary \scrS . If | \scrC \sansc \sanso \sansr | \geq t, then additionally

send a message (Leak, sid,Ei,Vote, vi) to the adversary \scrS .

• Upon receiving (Cast, sid, vj , \alpha j) from the voter Vj \in \scrV , if | J1| < t, ignore

the request. Otherwise, record (Vj ,Cast, vj , \alpha j) in \phi 2; send a notification

message (CastNotify, sid,Vj , \alpha j) to the adversary \scrS . If | \scrC \sansc \sanso \sansr | \geq t, then

additionally send a message (Leak, sid,Vj ,Cast, vj) to the adversary \scrS .

Tally:

• Upon receiving (DelCal, sid) from the voting committee Ci \in \scrC , set J2 :=

J2 \cup \{ Ci\} , and send a notification message (DelCalNotify, sid,Ci) to the

adversary \scrS .
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• If | J2 \cup \scrC \sansh \sanso \sansn \sanse \sanss \sanst | + | \scrC \sansc \sanso \sansr | \geq t, send (LeakDel, sid,DelCal(\scrE , \phi 2)) to \scrS .

• If | J2| \geq t, set \delta \leftarrow DelCal(\scrE , \phi 2).

• Upon receiving (Tally, sid) from the voting committee Ci \in \scrC , set J3 :=

J3 \cup \{ Ci\} , and send a notification message (TallyNotify, sid,Ci) to the

adversary \scrS .

• If | J3 \cup \scrC \sansh \sanso \sansn \sanse \sanss \sanst | + | \scrC \sansc \sanso \sansr | \geq t, send (LeakTally, sid,TallyAlg(\scrV , \scrE , \phi 1, \phi 2, \delta ))

to \scrS .

• If | J3| \geq t, set \tau \leftarrow TallyAlg(\scrV , \scrE , \phi 1, \phi 2, \delta ).

• Upon receiving (ReadTally, sid) from any party, if \delta = \emptyset \wedge \tau = \emptyset ignore the

request. Otherwise, return (ReadTallyReturn, sid, (\delta , \tau )) to the requester.

Figure 3.10: The ideal functionality \scrF t,k,n,m
Vote

3.6.3 The Real/Hybrid World Execution

In the real/hybrid world, the treasury voting scheme utilises a number of supporting

components modelled as ideal functionalities. Specifically, the underlying blockchain

infrastructure upon which the treasury system is built is modeled as ideal blockchain

functionality [BMTZ17]. Moreover, the key generation functionality \scrF t,k
DKG [Wik04] is

adopted for threshold key generation of the underlying public key cryptosystem. Finally,

a global clock functionality \scrG Clock [BMTZ17] is adopted to model the synchronised

network environment.

Let EXEC\Pi ,\scrA ,\scrZ denote the output of the environment \scrZ when interacting with parties

running the protocol \Pi and real-world adversary \scrA . Let EXEC\scrF ,\scrS ,\scrZ denote the output

of \scrZ when running protocol \phi interacting with the ideal functionality \scrF and the ideal

adversary \scrS .

Definition 7. We say that a protocol \Pi UC-realizes an ideal functionality \scrF if for any
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real/hybrid world adversary \scrA there exists an ideal world adversary \scrS such that for any

environment \scrZ that follows the rules of interaction for Universally Composable security

we have:

EXEC\Pi ,\scrA ,\scrZ \approx EXEC\scrF ,\scrS ,\scrZ .

3.6.4 The Voting Scheme

Let m be the number of experts and n be the number of voters. Let e
(m)
i \in \{ 0, 1\} m be the

unit vector whose i-th coordinate is 1 and the remaining coordinates are 0. Furthermore,

we also use the notation e
(\ell )
0 to denote an \ell -vector that contains 0 in all its coordinates.

We use Enc\sansp \sansk (e
(\ell )
i ) to denote coordinate-wise encryption of e

(\ell )
i , i.e.

Enc\sansp \sansk (e
(\ell )
i ) := Enc\sansp \sansk (e

(\ell )
i,1), . . . ,Enc\sansp \sansk (e

(\ell )
i,\ell ),

where e
(\ell )
i = (e

(\ell )
i,1 , . . . , e

(\ell )
i,\ell ).

3.6.4.1 Vote Encoding

In the voting scheme, every vote is encoded into a unit vector. When a vote is from an

expert, it is encoded as the unit vector 100 when expert's choice is Yes, 010 for No and

001 when the input from the expert is Abstain. However, for other voters, the vote is

encoded as a unit-vector of length m+3, where m is the number of experts in the system.

The vote is encoded as a unit vector with 1 in the coordinate i, for i \in [m] where a voter

delegates their vote. Similarly, where a voter votes directly by themselves, the vote is

encoded as a unit vector with 1 in the coordinate i for i \in [m + 1, . . . ,m + 3].

Formally, let encode\sansE and encode\sansV be the vote encoding algorithm for the expert and

voter, respectively. For an expert, upon receiving input x \in \{ Yes,No,Abstain\} , the

encode\sansE returns 100, 010, 001 for Yes,No,Abstain, respectively. However, for a voter,

the input is y \in \{ E1, . . . ,Em\} \cup \{ Yes,No,Abstain\} . When y = Ei, for i \in [m], it implies

that the voter delegates his/her voting power to the expert Ei i.e. expert whose index is

i. Alternatively, when y \in \{ Yes,No,Abstain\} , it implies that the voter directly votes

on the project.
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The encode\sansV returns a unit vector of length (m+3), denoted as v, such that v = e
(m+3)
i

if y = Ei, for i \in [m]; and v is set to e
(m+3)
m+1 , e

(m+3)
m+2 , and e

(m+3)
m+3 if y is Yes,No,Abstain,

respectively.

Note that since sending data to the blockchain consumes coins, it is implicitly assumed

that all the experts \scrE and voters \scrV have spare coins to pay the transaction fees that is

incurred during the protocol execution. Given that participation in the voting scheme

is incentivised, voters and experts can reclaim the costs in the form of treasury reward.

Specifically, we let each party prepare \{ Ini\} \ell 1i=1, \{ Outj\} 
\ell 2
j=1 such that:

\ell 1\sum 
i=1

Ini.Value \geq 
\ell 2\sum 
j=1

Outj .Value .

The corresponding coins owned by a voter Vi \in \scrV , an expert Ej \in \scrE , and a voting commit-

tee member Ct \in \scrC is denoted as (\{ In(\sansV i)
\eta \} \ell 1\eta =1, \{ Out

(\sansV i)
\eta \} \ell 2\eta =1), (\{ In(\sansE j)

\eta \} \ell 1\eta =1, \{ Out
(\sansE j)
\eta \} \ell 2\eta =1),

and (\{ In(\sansC t)
\eta \} \ell 1\eta =1, \{ Out

(\sansC t)
\eta \} \ell 2\eta =1), respectively.

The vote encoding scheme is used in the voting protocol depicted in Fig. 3.11 and is

relevant to the voting/delegation phase, and tally phase of the voting protocol.

The voting protocol \Pi t,k,m,n
Vote

Denote the corresponding coins owned by a voter Vi \in \scrV , an expert Ej \in 

\scrE , and a voting committee member Ct \in \scrC as (\{ In(\sansV i)
\eta \} \ell 1\eta =1, \{ Out

(\sansV i)
\eta \} \ell 2\eta =1),

(\{ In(\sansE j)
\eta \} \ell 1\eta =1, \{ Out

(\sansE j)
\eta \} \ell 2\eta =1), and (\{ In(\sansC t)

\eta \} \ell 1\eta =1, \{ Out
(\sansC t)
\eta \} \ell 2\eta =1), respectively.

Preparation phase:

• Upon receiving (Init, sid) from the environment \scrZ , the committee Cj , j \in [k]

sends (KeyGen, sid) to \scrF t,k
DKG to generate pk.

Voting/Delegation phase:

• Upon receiving (Vote, sid, vj) from the environment \scrZ , the expert Ej , j \in [m]

does the following:

-- Send (ReadPK, sid) to \scrF t,k
DKG, and receive (PublicKey, sid, pk) from

\scrF t,k
DKG.
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-- Set the unit vector e(3) \leftarrow encode\sansE (vj). Compute cj
(3) \leftarrow Enc\sansp \sansk (e

(3))

and its NIZK proof \pi j (see Section 3.7).

-- Execute macro Send-Msg
\Bigl( 

(cj
(3), \pi j), \{ In

(\sansE j)
\eta \} \ell 1\eta =1, \{ Out

(\sansE j)
\eta \} \ell 2\eta =1

\Bigr) 
. (see

Fig. 3.14 )

• Upon receiving (Cast, sid, vi, \alpha i) from the environment \scrZ , the voter Vi,

i \in [n] does the following:

-- Send (ReadPK, sid) to \scrF t,k
DKG, and receive (PublicKey, sid, pk) from

\scrF t,k
DKG.

-- Set the unit vector e(m+3) \leftarrow encode\sansV (vi). Compute ui
(m+3) \leftarrow 

Enc\sansp \sansk (e
(m+3)) and its NIZK proof \sigma i (see Section 3.7).

-- Execute macro Send-Msg
\Bigl( 

(ui
(m+3), \sigma i, \alpha i), \{ In(\sansV i)

\eta \} \ell 1\eta =1, \{ Out
(\sansV i)
\eta \} \ell 2\eta =1

\Bigr) 
.

(see Fig. 3.14 )

Tally phase:

• Upon receiving (DelCal, sid) from the environment \scrZ , the committee Ct,

t \in [k] does:

-- Execute macro Read-Msg and obtain data.

-- Fetch the ballots \{ (ci(3), \pi i)\} i\in [m] and \{ (uj
(m+3), \sigma j , \alpha j)\} j\in [n] from data.

-- For i \in [m], check Verify(ci
(3), \pi i) = 1; for j \in [n], Verify(uj

(m+3), \sigma j) =

1. Remove all the invalid ballots.

-- For j \in [n], if a valid uj
(m+3) is posted, parse uj

(m+3) to (aj
(m),bj

(3)).

-- For j \in [n], \ell \in [0,m - 1], compute zi,\ell := a
\alpha j

j,\ell .

-- For i \in [0,m - 1], compute si :=
\prod n

\ell =1 z\ell ,i and jointly decrypt it to wi

(see [GJKR99]).

• Upon receiving (Tally, sid) from the environment \scrZ , the committee Ct,

t \in [k] does:
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-- For i \in [0,m - 1], \ell \in [0, 2], compute di,\ell := cwi
i,\ell .

-- For \ell \in [0, 2], compute x\ell :=
\prod m - 1

j=0 dj,\ell \cdot 
\prod n

j=1 b
\alpha j

j,\ell and

jointly decrypt it to y\ell (see [GJKR99]). Execute macro

Send-Msg
\Bigl( 

(x\ell , y\ell ), \{ In
(\sansC t)
\eta \} \ell 1\eta =1, \{ Out

(\sansC t)
\eta \} \ell 2\eta =1

\Bigr) 
. (see Fig. 3.14 )

• Upon receiving (ReadTally, sid) from the environment \scrZ , the party P does

the following:

-- Execute macro Read-Msg and obtain data.

-- Fetch \{ (xi, yi)\} i\in [0,2] from data, and return

(ReadTallyReturn, sid, (y0, y1, y2)) to the environment \scrZ .

Figure 3.11: The voting protocol \Pi t,k,m,n
Vote in \{ \scrF Ledger,\scrF t,k

DKG\} -hybrid model

Input: a set of the expert labels \scrE , and a set of ballots \phi 2

Output: the delegation result \delta 

Init:

• For i \in [1,m], create and initiate Di = 0.

Delegation interpretation:

• For each ballot B \in \phi 2: parse B in form of (Vj ,Cast, vj , \alpha j); if
vj = (Delegate,Ei) for some Ei \in \scrE , then Di := Di + \alpha j .

Output:

• Return \delta := \{ (Ei, Di)\} i\in [m].

Algorithm DelCal

Figure 3.12: The delegation calculation algorithm DelCal
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Input: a set of the voters \scrV , a set of the experts \scrE , two sets of ballots \phi 1, \phi 2

and the delegation \delta .
Output: the tally result \tau 

Init:

• Create and initiate \tau \sansy \sanse \sanss = 0, \tau \sansn \sanso = 0 and \tau \sansa \sansb \sanss \sanst \sansa \sansi \sansn = 0.

• Parse \delta as \{ (Ei, Di)\} i\in [m].

Tally Computation:

• For each ballot B \in \phi 2: parse B in form of (Vj ,Cast, vj , \alpha j); if
vj = (Vote, aj) for some aj \in \{ yes, no, abstain\} , then \tau aj := \tau aj + \alpha j .

• For each ballot B \in \phi 1: parse B in form of (Ei,Vote, bi) for some
bi \in \{ yes, no, abstain\} , then \tau bi := \tau bi + Di.

Output:

• Return \tau := (\tau \sansy \sanse \sanss , \tau \sansn \sanso , \tau \sansa \sansb \sanss \sanst \sansa \sansi \sansn ).

The tally algorithm TallyAlg

Figure 3.13: The tally algorithm TallyAlg

3.6.4.2 Sending/Reading Data to/from \scrF Ledger

For parties to send and read data from the blockchain, we provide a macro depicted

in Fig. 3.14. The macro captures the three main pertinent types of delay for sending

and reading blockchain data in the blockchain model of [BMTZ17]. First, we have a

bounded network delay, and assume that all messages can be delivered within \Delta 1 rounds,

which is 2\Delta 1 clock-ticks in [BMTZ17]. Subsequently, a desynchronised user can get

up-to-date within 2\Delta 1 rounds (i.e. 4\Delta 1 clock-ticks) after registration. The second type

of delay captures the fact that the adversary can hold a valid transaction up to certain

blocks, but the adversary cannot permanently deny service to (or DoS) such a transaction.

Specifically, this is modeled by the ExtendPolicy in \scrF Ledger, where if a transaction is

more than \Delta 2 rounds (i.e. 2\Delta 2 clock-ticks) old, and is still valid with respect to the

current state, then it will be included into the state. Finally, the third delay is windowsize.

This captures that the adversary can set state-slackness of all the honest parties up to

the windowsize, which is consistent with the common prefix property in [GKL15]. Hence,
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all the honest parties can have a common state of any block that has been proposed for

more than windowsize. The windowsize is denoted as \Delta 3 rounds (i.e. 2\Delta 3 clock-ticks).

To send a message x to \scrF Ledger, we need to first check that a party has deregistered

and desynchronized. If true, the party needs to first send (Register, sid) to \scrF Ledger. It

should be noted that a registered but desynchronised party can still send a transaction

before it is fully updated as synchronised. Effectively, the message x is stored in the

payload of a `dummy' transaction whose input coins and output coins share the same

owner (spending condition).

To read a message (stored in the payload of some transaction) from \scrF Ledger, anal-

ogously a deregistered party needs to first send (Register, sid) to \scrF Ledger. After 4\delta 1

clock-ticks, the party can become synchronised. In order to receive the latest message,

the party needs to wait a maximum of 2(\Delta 2 + \Delta 3) clock-ticks for the transaction that

carries the intended message to be included in the state of the party.

3.7 A Novel Unit Vector ZK Proof

We denote a unit vector of length n as: e
(n)
i = (ei,0, . . . , ei,n - 1), where its i-th coordinate is

1 and the rest coordinates are 0. Conventionally, to show a vector of ElGamal ciphertexts

element-wise encrypt a unit vector, Chaum-Pedersen proofs [CP93] are used to show each

of the ciphertexts encrypts either 0 or 1 (via Sigma OR composition) and the product

of all the ciphertexts encrypts 1. This type of proof is used in many well-known voting

schemes, e.g. Helios [Adi08]. Although this proof works (is valid), the proof size is

linear in the length of the unit vector. Thus the communication overhead is considerably

significant when the unit vector length becomes larger.

In this section, we propose a novel special honest verifier zero-knowledge (SHVZK)

proof for unit vector that allows the prover to convince the verifier that a vector of

ciphertexts (C0, . . . , Cn - 1) encrypts a unit vector e
(n)
i , i \in [0, n - 1] with O(log n) proof

size. Without loss of generality, assume n is a perfect power of 2. Otherwise, append

Enc\sansp \sansk (0; 0) (i.e. trivial ciphertexts) to take the total number of ciphertexts to the next
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Macro Send-Msg(x, \{ Ini\} \ell 1i=1, \{ Outj\} 
\ell 2
j=1):

• If the party has deregistered and desynchronized:

-- Send (Register, sid) to \scrF Ledger.

-- Send
\Bigl( 
Submit, sid,Tx(\{ Ini\} \ell 1i=1; \{ Outj\} 

\ell 2
j=1;x)

\Bigr) 
to \scrF Ledger.

-- Send (De-Register, sid) to \scrF Ledger.

• If the party is already synchronized:

-- Send
\Bigl( 
Submit, sid,Tx(\{ Ini\} \ell 1i=1; \{ Outj\} 

\ell 2
j=1;x)

\Bigr) 
to \scrF Ledger.

Macro Read-Msg:

• If the party has deregistered and desynchronized:

-- Send (Register, sid) to \scrF Ledger.

-- Wait for max\{ 4\Delta 1, 2(\Delta 2 + \Delta 3)\} clock-ticks by keeping sending
(Tick, sid) to the \scrG Clock.

-- Send (Read, sid) to \scrF Ledger and receive (Read, sid, data) from
\scrF Ledger.

-- Send (De-Register, sid) to \scrF Ledger.

• If the party is already synchronized:

-- Wait for max\{ 4\Delta 1, 2(\Delta 2 + \Delta 3)\} clock-ticks by keeping sending
(Tick, sid) to the \scrG Clock.

-- Send (Read, sid) to \scrF Ledger and receive (Read, sid, data) from
\scrF Ledger.

• Return data.

Sending and reading messages

Figure 3.14: Macro for sending and receiving message via \scrF Ledger
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power of 2. Our proposed novel SHVZK protocol can also be Fiat-Shamir transformed

to a non-interactive ZK (NIZK) proof in the random oracle model [BR93].

The basic idea of our construction is inspired by [GK15], where Groth and Kohlweiss

proposed a Sigma protocol for the prover to show that he (the prover) knows how to

open one out of many commitments. The key idea behind our construction is that there

exists a data-oblivious algorithm that can take as input i \in \{ 0, 1\} \mathrm{l}\mathrm{o}\mathrm{g}n and output the

unit vector e
(n)
i . Let i1, . . . , i\mathrm{l}\mathrm{o}\mathrm{g}n be the binary representation of i. The algorithm is

depicted in Fig. 3.15.

Input: index i = (i1, . . . , i\mathrm{l}\mathrm{o}\mathrm{g}n) \in \{ 0, 1\} \mathrm{l}\mathrm{o}\mathrm{g}n

Output: unit vector e
(n)
i = (ei,0, . . . , ei,n - 1) \in \{ 0, 1\} n

• For \ell \in [log n], set b\ell ,0 := 1 - i\ell and b\ell ,1 := i\ell ;

• For j \in [0, n - 1], set ei,j :=
\prod \mathrm{l}\mathrm{o}\mathrm{g}n

\ell =1 b\ell ,j\ell , where j1, . . . , j\mathrm{l}\mathrm{o}\mathrm{g}n is the binary
representation of j;

• Return e
(n)
i = (ei,0, . . . , ei,n - 1);

The algorithm that maps i \in [0, n - 1] to e
(n)
i

Figure 3.15: The algorithm that maps i \in [0, n - 1] to e
(n)
i

Intuitively, we let the prover first bit-wisely commit the binary presentation of

i \in [0, n - 1] for the unit vector e
(n)
i . The prover then shows that each of the commitments

of (i1, . . . , i\mathrm{l}\mathrm{o}\mathrm{g}n) indeed contains a 0 or 1, using the Sigma protocol proposed in Section

2.3 of [GK15]. Note that in the 3rd move of such a Sigma protocol, the prover reveals a

degree-1 polynomial of the committed message.

Let the corresponding degree-1 polynomials be denoted as:

z\ell ,1 := i\ell x + \beta \ell , \ell \in [log n]

where \beta \ell are chosen by the prover and x is chosen by the verifier. By linearity, we can

also define:

z\ell ,0 := x - z\ell ,1 = (1 - i\ell )x - \beta \ell , \ell \in [log n].
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According to the algorithm described in Fig.3.15, for j \in [0, n - 1], let j1, . . . , j\mathrm{l}\mathrm{o}\mathrm{g}n be the

binary representation of j, and the product
\prod \mathrm{l}\mathrm{o}\mathrm{g}n

\ell =1 z\ell ,j\ell can be viewed as a degree-(log n)

polynomial of the form

pj(x) = ei,jx
\mathrm{l}\mathrm{o}\mathrm{g}n +

\mathrm{l}\mathrm{o}\mathrm{g}n - 1\sum 
k=0

pj,kx
k

for some pj,k, k \in [0, log n - 1]. We then use batch verification to show that each of Cj

indeed encrypts ei,j . Particularly, for a randomly chosen y \leftarrow \BbbZ p, let

Ej := (Cj)
x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc( - pj(x); 0);

the prover needs to show that

E :=
n - 1\prod 
j=0

(Ej)
yj \cdot 

\mathrm{l}\mathrm{o}\mathrm{g}n - 1\prod 
k=0

(Dk)x
k

encrypts 0, where

D\ell := Enc\sansp \sansk (
n - 1\sum 
j=0

(pj,\ell \cdot yj);R\ell ), \ell \in [0, log n - 1]

with fresh randomness R\ell \in \BbbZ p.

Fig. 3.16 details our construction which consists of 5 moves. Both the prover and the

verifier share a common reference string (CRS), which is a Pedersen commitment key that

can be generated using random oracle. The prover first commits to each bits of the binary

representation of i, and the commitments are denoted as I\ell , \ell \in [log n]. Subsequently, it

produces B\ell , A\ell as the first move of the Sigma protocol in Sec. 2.3 of [GK15] showing I\ell 

commits to 0 or 1. Jumping ahead, later the prover will receive a challenge x\leftarrow \{ 0, 1\} \lambda ,

and it then computes the third move of the Sigma protocol by producing

\{ z\ell , w\ell , v\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1 .

To enable batch verification, before that, the prover is given another challenge y \leftarrow \{ 0, 1\} \lambda 

in the second move. The prover computes and sends \{ D\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n - 1
\ell =0 . The verification
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comprises two parts described as follows. In the first part, the verifier checks the following

equations to ensure that I\ell commits to 0 or 1.

• (I\ell )
x \cdot B\ell = Com\sansc \sansk (z\ell ;w\ell )

• (I\ell )
x - z\ell \cdot A\ell = Com\sansc \sansk (0; v\ell )

In the second part, the verifier checks if

n - 1\prod 
j=0

\bigl( 
(Cj)

x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc\sansp \sansk ( - 
\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

z\ell ,j\ell ; 0)
\bigr) yj \cdot \mathrm{l}\mathrm{o}\mathrm{g}n - 1\prod 

\ell =0

(D\ell )
x\ell 

is encryption of 0 by asking the prover to reveal the randomness.

Theorem 1. The protocol described in Fig. 3.16 is a 5-move public coin special honest

verifier zero-knowledge argument of knowledge of e
(n)
i = (ei,0, . . . , ei,n - 1) \in \{ 0, 1\} n and

(r0, . . . , rn - 1) \in (\BbbZ p)
n such that Cj = Enc\sansp \sansk (ei,j ; rj), j \in [0, n  - 1] under the DDH

assumption.

Proof. For perfect completeness, we first observe that the verification equations

(I\ell )
x \cdot B\ell = Com\sansc \sansk (z\ell ;w\ell )

and

(I\ell )
x - z\ell \cdot A\ell = Com\sansc \sansk (0; v\ell )

holds. Indeed, by additively homomorphic property of the commitment scheme,

(I\ell )
x \cdot B\ell = Com\sansc \sansk (i\ell \cdot x + \beta \ell ;\alpha \ell \cdot x + \gamma \ell )

and

(I\ell )
x - z\ell \cdot A\ell = Com\sansc \sansk (i\ell \cdot (x - z\ell ) + i\ell \cdot \beta \ell ;\alpha \ell \cdot (x - z\ell ) + \delta \ell ) = Com\sansc \sansk (i\ell (1 - i\ell ) \cdot x; v\ell ) .
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CRS: the commitment key ck
Statement: the public key pk and the ciphertexts C0 :=
Enc\sansp \sansk (ei,0; r0), . . . , Cn - 1 := Enc\sansp \sansk (ei,n - 1; rn - 1)

Witness: the unit vector e
(n)
i \in \{ 0, 1\} n and the randomness r0, . . . , rn - 1 \in \BbbZ p

Protocol:

• The prover P , for \ell = 1, . . . , log n, does:

-- Pick random \alpha \ell , \beta \ell , \gamma \ell , \delta \ell \leftarrow \BbbZ p;

-- Compute I\ell := Com\sansc \sansk (i\ell ;\alpha \ell ), B\ell := Com\sansc \sansk (\beta \ell ; \gamma \ell ) and
A\ell := Com\sansc \sansk (i\ell \cdot \beta \ell ; \delta \ell );

• P \rightarrow V : \{ I\ell , B\ell , A\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1 ;

• V \rightarrow P : Random y \leftarrow \{ 0, 1\} \lambda ;

• The prover P for \ell = 0, . . . , log n - 1, does:

-- Pick random R\ell \leftarrow \BbbZ p and compute D\ell := Enc\sansp \sansk 
\bigl( \sum n - 1

j=0 (pj,\ell \cdot yj);R\ell 

\bigr) 
• P \rightarrow V : \{ D\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n - 1

\ell =0 ;

• V \rightarrow P : Random x\leftarrow \{ 0, 1\} \lambda ;

• The prover P does the following:

-- Compute R :=
\sum n - 1

j=0 (rj \cdot x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot yj) +
\sum \mathrm{l}\mathrm{o}\mathrm{g}n - 1

\ell =0 (R\ell \cdot x\ell );
-- For \ell = 1, . . . , log n, compute z\ell := i\ell \cdot x + \beta \ell , w\ell := \alpha \ell \cdot x + \gamma \ell , and

v\ell := \alpha \ell (x - z\ell ) + \delta \ell ;

• P \rightarrow V : R and \{ z\ell , w\ell , v\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1

Verification:

• Check the followings:

• For \ell = 1, . . . , log n, does:

-- (I\ell )
x \cdot B\ell = Com\sansc \sansk (z\ell ;w\ell )

-- (I\ell )
x - z\ell \cdot A\ell = Com\sansc \sansk (0; v\ell )

•
\prod n - 1

j=0

\bigl( 
(Cj)

x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc\sansp \sansk ( - 
\prod \mathrm{l}\mathrm{o}\mathrm{g}n

\ell =1 z\ell ,j\ell ; 0)
\bigr) yj \cdot \prod \mathrm{l}\mathrm{o}\mathrm{g}n - 1

\ell =0 (D\ell )
x\ell 

= Enc\sansp \sansk (0;R),
where zj,1 = zj and zj,0 = x - zj .

Unit vector ZK argument

Figure 3.16: Unit vector ZK argument
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Since i\ell (1 - i\ell ) = 0 when i\ell \in \{ 0, 1\} , we have

(I\ell )
x - z\ell \cdot A\ell = Com\sansc \sansk (0; v\ell ) .

Moreover, for each j \in [0, n - 1],
\prod \mathrm{l}\mathrm{o}\mathrm{g}n

\ell =1 z\ell ,j\ell is a polynomial in the form of

pj(x) = ei,jx
\mathrm{l}\mathrm{o}\mathrm{g}n +

\mathrm{l}\mathrm{o}\mathrm{g}n - 1\sum 
k=0

pj,kx
k

where x is the verifier's challenge. Therefore, it is easy to see

n - 1\prod 
j=0

\bigl( 
(Cj)

x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc\sansp \sansk ( - 
\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

z\ell ,j\ell ; 0)
\bigr) yj

\cdot 
\mathrm{l}\mathrm{o}\mathrm{g}n - 1\prod 
\ell =0

Enc\sansp \sansk (
n - 1\sum 
j=0

(pj,\ell \cdot yj);R\ell )
x\ell 

= Enc\sansp \sansk 

\Bigl( n - 1\sum 
j=0

\bigl( 
ei,j \cdot x\mathrm{l}\mathrm{o}\mathrm{g}n  - pj(x) +

\mathrm{l}\mathrm{o}\mathrm{g}n - 1\sum 
\ell =0

pj,\ell \cdot x\ell 
\bigr) 
\cdot yj ;R

\Bigr) 
= Enc\sansp \sansk (0;R) .

For soundness, first of all, the Sigma protocols for commitments of i\ell , \ell \in [log n] is

specially sound, i.e., given two transactions with the same \{ I\ell , B\ell , A\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1 and two differ-

ent x and \{ z\ell , w\ell , v\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1 , there exists a PPT extractor that can output the corresponding

witness i\ell \in \{ 0, 1\} .

Moreover,
n - 1\prod 
j=0

\bigl( 
(Cj)

x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc\sansp \sansk ( - 
\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

z\ell ,j\ell ; 0)
\bigr) yj

builds a degree-log n polynomial with respect to x in the plaintext, while

\mathrm{l}\mathrm{o}\mathrm{g}n - 1\prod 
\ell =0

(D\ell )
x\ell 

encrypts a degree-(log n - 1) polynomial w.r.t. x. Since x is randomly sampled after D\ell 
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is committed, Schwartz-Zippel lemma,

n - 1\prod 
j=0

\bigl( 
(Cj)

x\mathrm{l}\mathrm{o}\mathrm{g}n \cdot Enc\sansp \sansk ( - 
\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

z\ell ,j\ell ; 0)
\bigr) yj \cdot \mathrm{l}\mathrm{o}\mathrm{g}n - 1\prod 

\ell =0

(D\ell )
x\ell 

encrypts a zero polynomial with respect to x with overwhelming probability if the

polynomial evaluation is 0. Therefore,

Q(y) :=
n - 1\sum 
j=0

(ei,j  - 
\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

i\ell ,j\ell ) \cdot y
j = 0

with overwhelming probability. Similarly, by Schwartz-Zippel lemma, Q(y) is a zero

polynomial. Hence, we have for j \in [0, n - 1],

ei,j =

\mathrm{l}\mathrm{o}\mathrm{g}n\prod 
\ell =1

i\ell ,j\ell 

with overwhelming probability.

In terms of special honest verifier zero-knowledge (SHVZK), we now construct a

simulator Sim that takes as input the statement (C0, . . . , Cn - 1) and the given challenges

x, y \in \{ 0, 1\} \lambda , and outputs a simulated transcript whose distribution is indistinguishable

from the real one. Specifically, Sim first randomly picks i\ell \leftarrow \{ 0, 1\} and

\alpha \ell , \beta \ell , \gamma \ell , \delta \ell \leftarrow \BbbZ p, \ell \in [log n] .

It then computes

\{ I\ell , B\ell , A\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1

and

\{ z\ell , w\ell , v\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1

according to the protocol description. For \ell \in \{ 1, . . . , log n - 1\} , it then picks random

U\ell , R\ell \leftarrow \BbbZ p and computes

D\ell := Enc\sansp \sansk (U\ell ;R\ell ) .
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It then randomly picks R\leftarrow \BbbZ p, computes

D0 :=
Enc\sansp \sansk (0;R)\prod n - 1

j=0

\bigl( 
(Cj)x

\mathrm{l}\mathrm{o}\mathrm{g}nEnc\sansp \sansk ( - 
\prod \mathrm{l}\mathrm{o}\mathrm{g}n

\ell =1 z\ell ,j\ell ; 0)
\bigr) yj \cdot \prod \mathrm{l}\mathrm{o}\mathrm{g}n - 1

\ell =1 (D\ell )x
\ell 

After that, Sim outputs the simulated transcript as

\Bigl( 
\{ I\ell , B\ell , A\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1 , y, \{ D\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n - 1

\ell =0 , x, \{ z\ell , w\ell , v\ell \} \mathrm{l}\mathrm{o}\mathrm{g}n\ell =1

\Bigr) 
.

This concludes our proof.

3.8 Summary

In this chapter, we described our proposed treasury system for supporting decentralised

cryptocurrency development. This is a really important step towards answering our

research question and fulfils our second objective. Specifically, it enables us to provide an

affirmative answer to our research question of designing provably secure self-sustenance

mechanism for blockchain development through community collaboration. The proposed

system leverage insights from our exploration of current blockchain practices in the

industry and literature presented in Chapter 2.

We explain our design choices and provide a robust funding source for the treasury

to support community proposals. Additionally, we abstract the underlying blockchain

and explained how the different entities in our treasury system leverage the blockchain.

Moreover, we formally discuss crucial protocols e.g., the distributed key generation

protocol, that make up the voting scheme at the core of our treasury system.

Given the distributed architecture of our voting scheme, we provide details of voter/-

expert registration and voting committee selection. The voting scheme supports liquid

democracy by allowing voters to either delegate their votes to experts or vote directly on

proposals in the treasury system.

The integrity of the voting tally and privacy of voter and expert ballots are guaranteed

as long as a majority of the voting committee members are honest. However, in the
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unlikely scenario where the majority (or all) committee members are corrupted by an

adversary, the integrity of the election tally is still guaranteed using the zero-knowledge

proofs publicly available on the blockchain. Although, the ballot secrecy of all voters and

experts can is no longer guaranteed.

Furthermore, we provide the formal description of our novel zero-knowledge proofs

for unit vector ballot with log size communication. This helps improves efficiency when

compared with similar schemes e.g. Helios, that require proof size that is linear in the

size of the ballot.

However, the current scheme supports blockchains where the amount of stake of any

stakeholder is publicly available on the public distributed ledger. Therefore, we provide

an extension of the techniques and protocols in Chapter 4 to support blockchains with

private stake i.e. private voting power/weight.
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Chapter 4

Privacy-Preserving Blockchain

Decision-making and Consensus

Evaluation

4.1 Overview

Closely related to treasury system operations on distributed ledger technologies is

blockchain governance. Governance is mainly concerned with the process of establishing

and maintaining order within systems (comprising agents with potentially conflicting

interests) to ensure continued assured mutual benefits. Generally, IT governance is

defined as a framework for decision rights and accountabilities to promote helpful conduct

in the IT utilisation [MZZS18]. Specifically, within the context of blockchains, while

principally, a treasury system is focused on decentralised funding of blockchain projects

towards self-sustenance for maintenance and development [ZOB18,KKN+], blockchain

governance is mostly concerned with the procedures to approving or making protocol

changes that affect blockchain consensus rules.

Despite the profound enthusiasm and promise of disruptive innovation around

blockchain technologies, there remain questions around coordination and governance

of activities on the blockchain, i.e. who is in charge? [ZPMS19]. Although, related to
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free open-source software operations, a crucial goal of governance in blockchains is to

prevent adverse forks (which are largely cheap to carry out on open-source software)

from disagreements.

It is well documented that disagreement within communities of blockchain technologies

(cryptocurrencies) stakeholders and practitioners can result in forks of the systems,

thereby, leading to severe weakening, diminished exchange value and utility, etc. of those

systems [DFL16, DuP17]. Real-world examples of such cryptocurrency forks include

Bitcoin Cash, Bitcoin Gold, Ethereum Classic, etc.

The research presented in this chapter mainly represents non-trivial extension of the

concepts, techniques, and model of the blockchain-based treasury system presented in

Chapter 3. Specifically, the collaborative blockchain-based treasury system in Chapter 3

finds application in blockchain cryptocurrencies with public stake distribution. Namely,

the treasury systems assumes that information about the amount of stake/coins owned

by all stakeholders is publicly available on the public ledger. Note that, the public

availability of stake distribution does not imply that identity of stakeholders is also public,

i.e. identities could be pseudonymous, e.g. tied to addresses which are (hash of) public

keys.

The Bitcoin blockchain represents a good example of such a blockchain protocol

because information about the amount of Bitcoins owned by any address can be obtained

from publicly available data on the blockchain [WHO19] whilst the identity of the owner

is not revealed by the blockchain. However, we note that there exists several heuristics

and techniques (e.g. transaction graph analysis, network de-anonymisation) to attack

and compromise privacy and anonymity on public blockchains. The interested reader is

referred to [CELR18] for a detailed survey on the topic.

The public availability of transaction information on the ledger resulted in privacy and

security issues in first generation blockchain protocols. Consequently, privacy enhancing-

techniques such as stealth addresses [NBF+16], coin mixing, coinjoin [Max13] were

introduced to Bitcoin. Additionally, entirely new privacy-centric blockchain protocols

e.g. Zerocash [BCG+14] and CryptoNote [vS13] were also created to address the privacy
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issues of the Bitcoin protocol. Recently, for the first time [KKKZ19] provided a secure

PoS-based blockchain protocol that securely realises a distributed ledger under the UC

framework. The PoS-based privacy-preserving protocol of [KKKZ19] rely on combinations

of new cryptographic primitives key-private forward-secure encryption and evolving coins

to achieve security while Zerocash [BCG+14] rely on `transaction pouring' through

zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs).

Meanwhile, our new general decision-making system for blockchain governance pro-

vides a means for reaching resolutions and supports cryptocurrencies with private stake

information where amount of stake owned by any stakeholder is not publicly available

on the open ledger e.g. Zcash, Monero. Beyond supporting general blockchain decision-

making, it is compatible with most existing off-the-shelf cryptocurrencies and is easily

adaptable to a variety of decision-making rules, e.g. simple majority, fuzzy threshold

voting. For instance, the approval voting rule in the treasury system can easily be

extended to accommodate beyond the three main options- `YES, NO, ABSTAIN' - based

on the issues being decided upon.

Furthermore, to accommodate private stake information, in addition to the novel

unit vector proof in Section 3.7, a new honest verifier zero-knowledge (HVZK) proof-

s/arguments for the multiplicative relation between two vector ciphertexts is provided in

Section 4.3. In essence, it is a \sigma -protocol for making proofs that the contents of some com-

mitments have a multiplicative relationship with each other, i.e. a zero-knowledge proof

of knowledge to demonstrate that two ciphertexts satisfy a multiplicative relationship.

Liquid democracy (also known as delegative democracy [For02]) as a hybrid of direct

democracy and representative democracy provides the benefits of both system [GA15,

CMM+16,KMP18] by enabling organisations to take advantage of the experts in a voting

process and also gives every member the opportunity to vote [ZZ17a, ZZ17b]. Green

in [GA15] axiomatically analysed that a delegation system is more democratic than

traditional representative or a direct voting system. Although the advantages of liquid

democracy has been widely discussed in the literature [Lom03,BBCV09,Nor03,GA15,

Ito04], there are few provably secure construction of liquid democracy voting.
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Most real-world implementations of liquid democracy only focus on the functionality

aspect of their schemes. For instance, Google Vote [HL15] is an internal Google experiment

on liquid democracy over the social media, Google+, which does not consider voter privacy.

Similarly, systems such as proxyfor.me [Pro15], LiquidFeedback [Liq], Adhocracy [ Ad],

GetOpinionated, [Deg] also offer poor privacy guarantees. It is worth mentioning that

Sovereign [Dem17] is a blockchain-based voting protocol for liquid democracy; therefore,

its privacy is inherited from the underlying blockchain, which provides pseudonymity-

based privacy. Wasa2il [McC16] is able to achieve end-to-end verifiability because this

foils privacy. The best known liquid democracy and proxy democracy voting schemes are

nVotes [nVo17] and Statement Voting [ZZ17a,ZZ17b]. However, those systems require

mix-nets as their underlying primitive. This makes them less compatible to the blockchain

setting due to the heavy work load of the mixing servers.

There are a few blockchain based e-voting schemes in the literature, but most of

them, e.g. Agora [Ago18], only use the blockchain as a realization of the public bulletin

board. The actual e-voting schemes are not integrated with the blockchain. Lee et. al.,

in [LJEK16] proposed a blockchain-based voting solution that heavily relies on an external

`trusted third party' between users and the election authority/authentication authority,

in order to ensure anonymity/privacy of voters. Each candidate is voted for by having

transactions sent to them. Nonetheless, privacy or anonymity of voters can be broken by

collusion between the authentication organisation and the trusted third party. Bistarelli

et. al., in [BMSS17] proposed an end-to-end voting system based on Bitcoin that utilises

a Kerberos-based protocol to achieve voter identity anonymisation. Voting takes place

via sending of tokens from voters to address (public key) of candidates. However, voting

is not private and other voters can be influenced by the trend or likelihood of the overall

results (before voting is concluded). Furthermore, the scheme is susceptible to coercion.

Our work differs from these earlier works because it supports liquid democracy whilst

preserving privacy of the voters and delegates involved in the decision-making process.

The remainder of this chapter is organised as follows. In Section 4.2, we present

the polling system for decision-making in Section 4.2 and a high-level description of the
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main extensions to the scheme presented in Subsection 3.6.4. Next, we provide the new

multiplicative relation zero-knowledge proof in 4.3. Finally, an examination of the quality

of individual choices with respect to final polling decisions is presented in Section 4.4.

The analysis serves as `soft-consensus' evaluation of the general blockchain decisions

by enabling individual participants and the entire system to evaluate agreement on

issues based on decision outcomes. Consequently, this encourages increased discussions,

interactions and general understanding and context among community members towards

issues being decided upon within the system.

4.2 The Proposed Polling Scheme

Here, we briefly describe the main differences between the original scheme in the proposed

treasury system and the privacy-preserving scheme covered in this chapter. Specifically,

two main changes are required to support blockchains with private stake. The first change

involves the voter ballot and the other change covers the process of computing the voting

tally at the end of voting. Next, we recall the ballot encoding process from the treasury

system voting scheme below and thereafter explain the change in the ballot creation

process.

Let m be the number of experts and n be the number of voters. Let e
(m)
i \in \{ 0, 1\} m

be the unit vector where its i-th coordinate is 1 and the rest coordinates are 0.We use

Enc\sansp \sansk (e
(\ell )
i ) to denote coordinate-wise encryption of e

(\ell )
i , i.e. Enc\sansp \sansk (e

(\ell )
i,1), . . . ,Enc\sansp \sansk (e

(1)
i,\ell ),

where e
(\ell )
i = (e

(\ell )
i,1 , . . . , e

(\ell )
i,\ell ). Let u

(\ell )
i = Enc\sansp \sansk (e

(\ell )
i,1)

In the treasury system, a voter's ballot is represented as Enc\sansp \sansk (e
(\ell )
i ). However, in the

privacy-preserving voting scheme, the original unit-vector ballot is accompanied with a

second unit-vector ballot v
(\ell )
i = (v

(\ell )
i,1 , . . . , v

(\ell )
i,\ell ).

Basically, at a high-level, each voter provides a zero-knowledge proof that confirms

that there exists a multiplicative relationship between u
(\ell )
i , v

(\ell )
i and their stake \alpha 

whose encrypted value can be verified on the public ledger. See Section 4.3 for a formal

presentation of the multiplicative relation zero-knowledge proof. Therefore, the additional

ballot v
(\ell )
i can be interpreted as a weighted version of the original ballot e

(\ell )
i as described
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in the equation below.

v
(\ell )
i = \alpha \cdot e(\ell )i

Therefore, given the already weighted unit vector ballots, the tally procedure no

longer requires the weighting of voter ballots before homomorphic addition. The tally

procedure then proceeds as described in the original delegative voting scheme in Chapter 3.

Specifically, the delegations section of each ballot is homomorphically combined and jointly

decrypted by the voting committee using decryption shares they provide. Thereafter,

expert ballots are weighted by the amount of delegation received and homomorphically

combined with the direct voting sections of the voters' ballots to obtain the encrypted

tally. Finally, voting committee members provide decryption shares and jointly decrypt

the election tally ciphertext. Figure 4.1 depicts an overview of the main pre-voting,

voting and post-voting operations in the privacy-preserving scheme. Basically, it depicts

operations carried out by the voting committee, voters and experts in the election process.

It covers the ballot casting procedures by voters and experts as well as the procedures

involved in the election tally computation. Additionally, a formal presentation of the

protocol for the polling scheme is depicted in Fig. 4.2.

4.3 A New Vector Multiplicative Relation Zero-knowledge Proof

Besides the novel unit vector zero-knowledge proof of Section 3.7, the multiplicative

relation zero-knowledge protocol presented in this section are required for secure execution

of the polling protocol \scrF Poll described in Fig. 4.2.

Let u(n) = (u0, . . . , un - 1) and v(n) = (v0, . . . , vn - 1) be two vectors of n elements such

that vi = \alpha \cdot ui for i \in [n]. Given element-wise encryption of u(n), v(n) and \alpha , we now

construct a 3-move honest verifier ZK proof of knowledge showing that u(n) and v(n) are

in the correct multiplicative relation with respect to \alpha . Specifically, for i \in [0, n - 1], given

C := Enc\sansp \sansk (\alpha ;\beta ) and Ai := Enc\sansp \sansk (ai; ri), we set Vi := Cai \cdot Enc\sansp \sansk (0; ti). This allows the

127



Chapter 4: Blockchain Decision-making Multiplicative Relation ZK

Figure 4.1: An overview of interactions among voting committee members, voters, experts and
the underlying blockchain in the privacy-preserving delegable voting scheme for
general blockchain-based decision-making.
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\bfS \bfe \bft \bfu \bfp \bfp \bfh \bfa \bfs \bfe :

• Upon receiving (Init, \sanss \sansi \sansd ) from the environment \scrZ , the committee \sansC j , j \in [k] sends
(KeyGen, \sanss \sansi \sansd ) to \scrF t,k

DKG to generate \sansp \sansk .

\bfB \bfa \bfl \bfl \bfo \bft \bfc \bfa \bfs \bft \bfi \bfn \bfg \bfp \bfh \bfa \bfs \bfe :

• Upon receiving (Vote, \sanss \sansi \sansd , vj) from the environment \scrZ , the expert \sansE j , j \in [m] does
the following:

-- Send (ReadPK, \sanss \sansi \sansd ) to \scrF t,k
DKG, and receive (PublicKey, \sanss \sansi \sansd , \sansp \sansk ) from \scrF t,k

DKG.

-- Set the unit vector \bfe (3) \leftarrow \sanse \sansn \sansc \sanso \sansd \sanse \sansE (vj). Compute \bfc \bfj 
(3) \leftarrow \sansE \sansn \sansc \sansp \sansk (\bfe 

(3)) and its
NIZK proof \pi j

-- Post (\sansE j , \bfc \bfj 
(3), \pi j) to \scrF Ledger.

• Upon receiving (Cast, \sanss \sansi \sansd , vi, \alpha i) from the environment \scrZ , the voter \sansV i, i \in [n] does
the following:

-- Send (ReadPK, \sanss \sansi \sansd ) to \scrF t,k
DKG, and receive (PublicKey, \sanss \sansi \sansd , \sansp \sansk ) from \scrF t,k

DKG.

-- Set the unit vector \bfe (m+3) \leftarrow \sanse \sansn \sansc \sanso \sansd \sanse \sansV (vi). Compute \bfc \bfi 
(m+3) \leftarrow \sansE \sansn \sansc \sansp \sansk (\bfe 

(m+3))
and its NIZK proof \sigma i

-- Compute \^\alpha i \leftarrow \sansE \sansn \sansc \sansp \sansk (\alpha i) and \bfv \bfi 
(m+3) := ((\^\alpha i)

e0 \cdot \sansE \sansn \sansc \sansp \sansk (0), . . . , (\^\alpha i)
em+2 \cdot \sansE \sansn \sansc \sansp \sansk (0))

together with a NIZK proof \rho i.

-- Post (\sansV i,\bfu \bfi 
(m+3),\bfv \bfi 

(m+3), \sigma i, \^\alpha i, \rho i) to \scrF Ledger.

\bfT \bfa \bfl \bfl \bfy /\bfR \bfe \bfs \bfu \bfl \bft \bfp \bfh \bfa \bfs \bfe :

• Upon receiving (DelCal, \sanss \sansi \sansd ) from the environment \scrZ , the committee \sansC t, t \in [k]
does:

-- Read \scrF Ledger and obtain \sansd \sansa \sanst \sansa .

-- Fetch the ballots \{ (\sansE i, \bfc \bfi 
(3), \pi i)\} i\in [m] and \{ (\sansV i,\bfu \bfi 

(m+3),\bfv \bfi 
(m+3), \sigma i, \^\alpha i, \rho i)\} i\in [n]

from \sansd \sansa \sanst \sansa .

-- For i \in [m], check \sansV \sanse \sansr \sansi \sansf \sansy (\bfc \bfi 
(3), \pi i) = 1; for j \in [n], \sansV \sanse \sansr \sansi \sansf \sansy (\bfu \bfj 

(m+3), \sigma j) = 1 and
\sansV \sanse \sansr \sansi \sansf \sansy (\^\alpha i,\bfu \bfj 

(m+3),\bfv \bfj 
(m+3), \rho j) = 1. Remove all the invalid ballots.

-- For j \in [n], if a valid \bfv \bfj 
(m+3) is posted, parse \bfv \bfj 

(m+3) to (\bfa \bfj 
(m),\bfb \bfj 

(3)).

-- For i \in [0,m - 1], compute si :=
\prod n

\ell =1 a\ell ,i and jointly decrypt it to wi

• Upon receiving (Tally, \sanss \sansi \sansd ) from the environment \scrZ , the committee \sansC t, t \in [k] does:

-- For i \in [0,m - 1], \ell \in [0, 2], compute di,\ell := cwi
i,\ell .

-- For \ell \in [0, 2], compute x\ell :=
\prod m - 1

j=0 dj,\ell \cdot 
\prod n

j=1 bj,\ell and jointly decrypt it to y\ell 

• Upon receiving (ReadTally, \sanss \sansi \sansd ) from the environment \scrZ , the party P does the
following:

-- Read \scrF Ledger and obtain \sansd \sansa \sanst \sansa .

-- Fetch \{ (xi, yi)\} i\in [0,2] from \sansd \sansa \sanst \sansa , and return (ReadTallyReturn, \sanss \sansi \sansd , (y0, y1, y2))
to the environment \scrZ .

The voting protocol \Pi t,k,m,n
Poll

Figure 4.2: The voting protocol \Pi t,k,m,n
Poll in \{ \scrF Ledger,\scrF t,k

DKG\} -hybrid model
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prover to be oblivious about the plaintext inside C to complete the proof. The protocol

is depicted in Fig. 4.3. Details of implementation performance metrics e.g. running time

and proof size, are provided in Chapter 5.

Vector multiplicative relation ZK argument

Statement: pk, C, \{ Ai := Enc\sansp \sansk (ai; ri)\} n - 1
i=0 and \{ Vi := Cai \cdot Enc\sansp \sansk (0; ti)\} n - 1

i=0

Witness: \{ ai, ri, ti\} n - 1
i=0

Protocol:

• The prover P :

-- Pick random x, y, z \leftarrow \BbbZ p;

-- Compute X := Enc\sansp \sansk (x, y) and Z := Cx \cdot Enc\sansp \sansk (0; z);

• P \rightarrow V : X,Z;

• V \rightarrow P : Random \rho \leftarrow \{ 0, 1\} \lambda ;

• The prover P does:

-- Set x\prime := x +
\sum n - 1

i=0 ai \cdot \rho i+1, y\prime := y +
\sum n - 1

i=0 ri \cdot \rho i+1, and z\prime :=

z +
\sum n - 1

i=0 ti \cdot \rho i+1;

• P \rightarrow V : x\prime , y\prime , z\prime ;

Verification:

• Return valid if and only if the following are true:

-- Z \cdot 
\prod n - 1

i=0 V \rho i+1

i = Cx\prime \cdot Enc\sansp \sansk (0; z\prime )

-- X \cdot 
\prod n - 1

i=0 A\rho i+1

i = Enc\sansp \sansk (x
\prime , y\prime )

Figure 4.3: Vector multiplicative relation ZK argument
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Theorem 2. The protocol described in Fig. 4.3 is a 3-move public coin special honest

verifier zero-knowledge argument of knowledge of \{ ai, ri, ti\} n - 1
i=0 such that:

\{ Ai := Enc\sansp \sansk (ai; ri)\} n - 1
i=0

and

\{ Vi := Cai \cdot Enc\sansp \sansk (0; ti)\} n - 1
i=0 .

Proof. For perfect completeness, we first observe that the following verification equations

hold:

Z \cdot 
n - 1\prod 
i=0

V \rho i+1

i = Cx\prime \cdot Enc\sansp \sansk (0; z\prime )

and

Y \cdot 
n - 1\prod 
i=0

A\rho i+1

i = Enc\sansp \sansk (x
\prime , y\prime ) .

Indeed, by additively homomorphic property,

Z \cdot 
n - 1\prod 
i=0

V \rho i+1

i = Cx \cdot 
n - 1\prod 
i=0

(Cai)\rho 
i+1 \cdot Enc\sansp \sansk (0; z) \cdot 

n - 1\prod 
i=0

Enc\sansp \sansk (0; ti)
\rho i+1

= Cx+
\sum n - 1

i=0 ai\cdot \rho i+1 \cdot Enc\sansp \sansk (0; z +

n - 1\sum 
i=0

ti \cdot \rho i+1)

= Cx\prime \cdot Enc\sansp \sansk (0; z\prime ) .

Similarly,

X \cdot 
n - 1\prod 
i=0

A\rho i+1

i = Enc\sansp \sansk (x, y) \cdot 
n - 1\prod 
i=0

Enc\sansp \sansk (ai \cdot \rho i+1; ri \cdot \rho i+1) = Enc\sansp \sansk (x
\prime , y\prime ) .

For soundness, we show that the protocol is an argument of knowledge (AoK),

by showing that it has a witness-extended emulator. Since the challenge \rho \in \BbbZ p is

randomly chosen, by Schwartz-Zippel lemma, the prover has negligible probability of

convincing the verifier unless all \rho i related terms match on each side of the equality for all

i \in \{ 0, . . . , n - 1\} . The witness-extended emulator Ext runs \langle P \ast , V \rangle to get a transcript.
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If the prover P \ast has probability p(\lambda ) of making an acceptable argument, the black-box

witness-extended emulator Ext also has success probability p(\lambda ) to produce an accepting

argument. It rewinds the protocol to the challenge phase and runs it with fresh challenges

until it has n acceptable arguments. Since the prover P \ast has probability p(\lambda ) of making

an accepting argument in the first place, the emulator Ext will take an average of n/p(\lambda )

rewinds, which takes poly(\lambda ) running time. Again, there is overwhelming probability

that we have transcripts with n different challenges. The n different challenges give us a

n\times n transposed Vandermonde matrix

\scrV =

\left[         

1 1 . . . 1

\rho 1 \rho 2 . . . \rho n
...

...
. . .

...

\rho n - 1
1 \rho n - 1

2 . . . \rho n - 1
n

\right]         
Note that \scrV is invertible because \rho 1, . . . , \rho n are different, so Ext can compute \scrV  - 1. Let

x\prime i, y
\prime 
i, z

\prime 
i denote the prover's replay when \rho i is challenged in the accepting transcripts. By

concatenating x\prime i, y
\prime 
i, z

\prime 
i, we can get three vectors

\scrX := (x\prime 1, . . . , x
\prime 
n),\scrY := (y\prime 1, . . . , y

\prime 
n),\scrZ := (z\prime 1, . . . , z

\prime 
n) .

Hence, Ext can compute

(x, u0, . . . , un - 1) := \scrX \cdot \scrV  - 1,

(y, r0, . . . , rn - 1) := \scrY \cdot \scrV  - 1,

and

(z, t0, . . . , tn - 1) := \scrZ \cdot \scrV  - 1

Thereafter, Ext outputs the witness \{ ai, ri, ti\} n - 1
i=0 .

For perfect special honest verifier zero-knowledge, we need to construct a simulator \scrS ,

that on receiving challenge \rho outputs the simulated argument that is indistinguishable

from a real argument with challenge \rho . On challenge \rho , the simulator \scrS randomly selects
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x\prime , y\prime , z\prime \leftarrow \BbbZ p. It then computes

X := Enc\sansp \sansk (x
\prime , y\prime )/

n - 1\prod 
i=0

A\rho i+1

i

and

Z := Cx\prime \cdot Enc\sansp \sansk (0; z\prime )/

n - 1\prod 
i=0

V \rho i+1

i

The simulator \scrS then outputs (X,Z, \rho , x\prime , y\prime , z\prime ). Clearly, the distribution of simulated

transcript is identical to the distribution of a real one. Hence, the protocol is perfect

special honest verifier zero-knowledge.

4.4 Analysing Consensus

The overarching aim of decision-making mechanisms is to reach the best decision. However,

it is usually unclear what constitutes the best alternative. In other words, in a multi-party

decision-making process, it is difficult to agree on what constitutes the best solution,

due to differences in individual preferences, interests, knowledge, skill, orientation, etc.

Therefore, integration of community-wide knowledge, skills and expertise of members is

fundamental for long-term sustainability of jointly-maintained utilities such as blockchain

(developmental projects).

Consensus building [IB99] has been proposed as a way to deal with complex, strate-

gic and often controversial planning and decision-making. Sustained innovation and

development requires the continued maintenance of the complex interaction between

all stakeholders (with varying expertise, skill sets and values). The goal is to select

and implement solutions that offers `mutual' gains among contending, and potentially

conflicting stakeholders. Within collaborative governance, consensus emanates from

inclusive representation of all relevant participants with shared objective, and com-

mitment to providing solutions and establishing and building trust towards marginal

successes [IB99,ENB11,AG07].

Consensus building or processes are typically time-costly and resource-consuming.
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However, the nature of decentralised blockchain infrastructure helps mitigate against these

potential challenges. For instance, by design, planning on decision-making within the

governance and treasury system supports lengthy discussions and deliberations spanning

a range of system epochs in any given system period. Specifically, there is ample time to

discuss and deliberate on submissions, issues and proposals before the voting process.

Similarly, the decentralised nature of blockchain technologies and `electronic' voting

reduces required resources associated with general decision-making, e.g. access to web

browser and internet [Adi08].

Conversely, within collaborative decision-making settings, it is suggested that consen-

sus kills innovation, creativity and uniqueness by encouraging individuals that participate

in the process to (tend to) abandon their decisions and align with the group decision.

However, this is not necessarily true considering that the debates and discussions take

place before compromises are made or decisions are reached. Moreover, our decision-

making systems provide vote privacy because ballots are encrypted. Hence, it is difficult

for any individual participant to pre-emptively align their votes with others (or the group

choice) because it is not clear what other participants' choices or the most popular choices

are (before tally results are released). Accordingly, rather than suppress the individual,

consensus empowers the individual through social activity and interaction [Tri89], and

can lead to novel practices, ideas, and relationships within the community.

Research evidence shows that engaged citizenry/community is better than a passive

one [IS04] and collaborative decision-making with community-inclusive participation can

also help achieve improved community relations. As a result, participants become willing

evaluators of decisions and policies, which results in improved community-wide support

for decisions reached rather than factional support. Thus, enhancing the effectiveness

of collaborative decision-making for governance, which is particularly important to

maintaining sustainable blockchain systems.

Agreement represents, perhaps, the single most popular criterion for evaluating

consensus. Typically in the literature, consensus is analysed in terms of agreement [IB99,

ENB11,BM10]. We emphasise that consensus is not Majority Rule. Consensus involves the
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evaluation of agreement among a set of parties on a set of alternative solutions [HVHC02]

in a multi-party collaborative decision-making process (e.g. blockchain decision-making

process). Classical definitions of consensus imply absolute agreement among all parties

as a condition for consensus [IB99]. This type of (full) consensus is quite feasible within

small teams or organisations with members having relevant information needed for

decision-making, although, it allows a single `opposing' member to stall the process of

decision-making. Moreover, the extreme implausibility of guaranteed/continuous full

agreement on all issues among parties, makes this definition of consensus problematic

and less useful. By extension, this definition would equate the utility of decisions with

`almost unanimous', i.e. very high but not perfect, agreement to those with complete

disagreement - as both being not useful. Nonetheless, in real-world scenarios multi-party

decisions need not be unanimous or in absolute agreement (full consensus) for decisions

to be useful.

Soft consensus or acceptable threshold of consensus (rather than full consensus)

suffices for collaborative decision-making systems involving dispersed and cross-functional

networks/participants [IH18]. We remark that setting thresholds for consensus is difficult

due to the inherent dynamic nature of consensus and the issues/topics being decided upon.

No two decision-making scenarios are the same. In evaluating consensus, it is critical to

identify the uniqueness and nuances of each decision-making scenario. For instance, any

real-world assessment of consensus of a collaborative decision-making process need to

consider the nature of the decision, the open and available facts, the issues of contention,

amount of funds involved (in the case of treasury), proposal submission and deliberation

time, participants, etc., for any useful inference to be drawn about understanding and

improving consensus. Identifying consensus building processes and outcomes is difficult

and effective consensus requires adaptation and can sometimes be autonomous [IB99].

Therefore, in order to accommodate the spectrum of consensus between unanimous

agreement and total disagreement, soft agreement is defined as an iterative dynamic

process that evaluates the agreement between all participants, and the agreement between

the individual participant's preference and the group solution [HVHC02]. Typically, two
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primary related measures are used to evaluate consensus. Namely, Consensus measure

- measure of agreement among all participants - and Proximity measure - measure of

agreement between individual solutions and collective solution [HVHC02, IB99].

In line with the aim of collaborative decision-making, we note that our key goal

of evaluating consensus is not to produce `winners and losers', rather, the goal is to

build, enhance and encourage community-wide participation and acceptance (sense of

belonging and responsibility) and ownership of the growth, changes and developments

of the underlying blockchain system. Consequently, feedback is a key component of

consensus evaluation because information obtained from proximity measure is useful for

influencing discussion and minimising disagreement among stakeholders [HVHC02].

Evidently, developments or changes with better consensus are more durable and

sustainable because high consensus implies a higher agreement (support) among the

parties of the decision-making process. Furthermore, agreements of this nature tend to

be of very high quality because they generally take into consideration the knowledge

offered by each participant [IB99] rather than only interests of some parties.

With the help of an illustrative example of a system period, we now provide an

evaluation of consensus of our blockchain-based decision-making process.

4.4.1 Example of Consensus Evaluation

Typically, consensus is measured through the use of some dissimilarity function e.g. cosine

of angles, Euclidean distance. The dissimilarity is measured between corresponding

individual preferences/solutions (proximity measure) and group solution, as well as

the evaluation of agreement among all participants on the group solution (consensus

measure).

For the purpose of consensus measurement in our blockchain decision-making system,

we propose an adaptation of the approach of [BM10], which itself is an adaptation

of [HVHC02]. In [BM10], proximity measure and consensus measure were utilised in

evaluating the degree of consensus on a spatial-GIS decision among relevant stakeholders.

Our adaptation is essential in order to accommodate subtleties peculiar to blockchain
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systems (or cryptocurrencies) e.g. cryptocurrency stake distribution. Specifically, for

consensus measurement on our blockchain-based decision-making system, we identify the

following key elements:

• Proposals, issues or alternative solutions

• Stakeholders or participants in the decision-making process

• Available resources (or system funds)

• The decision-making process (or voting scheme)

• Outcomes of the decision-making process (or solution set)

• Agreement among all participants (or consensus measure)

• Agreement between individual solutions and the system outcome/solution (or

proximity measure)

Furthermore, below is a list of the processes/steps for consensus evaluation (of

decisions) within our blockchain-based collaborative decision-making system:

• Preference specification

• Collective solution calculation

• Distance measure

• Distance aggregation

• Consensus measure and

• Proximity measure

We now present an explanation of each of the above-outlined steps involved in the

consensus evaluation process using 10 hypothetical example proposals that have been

submitted to the blockchain and decided upon using the decision making system.

Following results in usability [Vir92,Lew94], we assume 5 participants (2 experts and

3 voters) are involved in the current voting process. For simplicity, without the loss of
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generality, we also assume a flat model of stake distribution in this illustrative period

of the decision-making system. Namely, we assume that all participants (expert/voter)

have equal stake in the system e.g. 1 coin each.

4.4.1.1 Preference Specification

Each participant respectively specify his preferences based on his assessment of the

individual proposals, using criteria/guidelines such as: usefulness of proposal, timeliness,

cost-benefit impact of proposal, profile of proposer, relevance of proposal, urgency of

proposal, amount of funds requested, duration of proposal, quality of proposal, etc.

However, users are free to further evaluate proposals as they deem fit (or based on their

personal judgement).

Particularly, users vote Yes,No,Abstain for proposals either directly or indirectly

by delegating their voting power to experts in that particular topic. For consensus

evaluation, we encode a Yes,No, or Abstain vote as 1, 0, or \bot respectively. We remark

that the ballots of users who vote Abstain (\bot ) for any proposal are treated as being

the same as the system outcome for that proposal. Hence, for consensus evaluation,

they are considered as being in agreement with whatever is the outcome of the group

decision-making for the affected proposal.

4.4.1.2 Collective Solution Calculation

The group solution of our decision-making system is obtained through the application of

the voting rule on all the ballots cast by the experts and voters in the system. Specifically,

for our system, where the voting rule is Fuzzy Threshold Voting, this corresponds to

ranking of the alternative proposals based on the number of votes for minus the number

of votes against, and checking that the remainder is at least 10\% of all votes recorded (or

system threshold).

Particularly, in the case of treasury system voting, winning proposals are determined

as those that receive funding from the (ranked) list of all `qualified proposals'. Therefore,

proposals that meet the minimum threshold but do not receive funding because of the
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limitation of available funds are not considered members of the set of `winning proposals'.

The set of `winning proposals' are those that satisfy all the winning requirements within

the decision-making system.

Details of how the participants voted on all 10 proposals in our illustrative example

is presented below. Table 4.1 provides information on how all voters and experts cast

their ballots.

Table 4.1: User preference

Prj 1 Prj 2 Prj 3 Prj 4 Prj 5 Prj 6 Prj 7 Prj 8 Prj 9 Prj 10

User 1 / Voter 1 1 B 1 B 1 B A A B \bot 
User 2 / Voter 2 \bot 1 1 \bot 0 1 1 0 \bot 1
User 3 / Expert A 1 1 1 0 0 1 0 0 1 0
User 4 / Expert B 1 1 0 1 0 1 0 1 1 0
User 5 / Voter 3 0 1 A 1 \bot A 1 \bot A 1
Total 3 5 4 3 1 5 2 1 4 2

System Decision 0 1 1 0 0 1 0 0 1 0

4.4.1.3 (Normalised) Distance Measure

For each participant, we calculate the distance measure (DM) of every vote/ballot for

each proposal by comparing the participant's choice with the system decision. We apply

the dissimilarity function given below:

DMi,j = | PPi,j  - TSj | 

NDMi,j =
DMi,j

| PS| 

where DMi,j (respectively, NDMi,j) is the distance (respectively, normalised distance)

between the ith participant's choice for project j and the system solution for proposal

j is TSj . PPi,j is the ith participant's preference/choice for project j and PS is the

preference size of voter's choice.

In the case of our blockchain decision-making system PS = 2, for choices Yes and No

because Abstain is interpreted differently. As earlier explained, for consensus evaluation,

the choice of voters/experts who vote Abstain i.e. \bot for any proposal is considered
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as being the same as system decision for that particular proposal. Hence, a distance

measure of zero (0) is assigned for a participant who votes Abstain for any project

proposal. The distance measure based on the users' choice specification for the system

decision-making is presented in Table 4.2.

Table 4.2: Distance specification

Prj 1 Prj 2 Prj 3 Prj 4 Prj 5 Prj 6 Prj 7 Prj 8 Prj 9 Prj 10

Voter 1 1 0 0 1 1 0 0 0 0 0
Voter 2 0 0 0 0 0 0 1 0 0 1
Expert A 1 0 0 0 0 0 0 0 0 0
Expert B 1 0 1 1 0 0 0 1 0 0
Voter 3 0 0 0 1 0 0 1 0 0 1

4.4.1.4 Distance Aggregation and Consensus Degree on Projects

Using the normalised distance measure, NDM, we calculate the degree of consensus

among all participants (voters and experts) on each project as follows:

CDj = 1 - 
p\sum 

i=1

NDMi,j

p

where CDj is the consensus degree for project j, and p is the size/number of participants.

The consensus degree based on the distance measure of users' choice in the system

decision-making is presented in Table 4.3.

Table 4.3: Consensus degree

Prj 1 Prj 2 Prj 3 Prj 4 Prj 5 Prj 6 Prj 7 Prj 8 Prj 9 Prj 10

Voter 1 0.5 0 0 0.5 0.5 0 0 0 0 0
Voter 2 0 0 0 0 0 0 0.5 0 0 0.5
Expert A 0.5 0 0 0 0 0 0 0 0 0
Expert B 0.5 0 0.5 0.5 0 0 0 0.5 0 0
Voter 3 0 0 0 0.5 0 0 0.5 0 0 0.5
Total 1.5 0 0.5 1.5 0.5 0 1.0 0.5 0 1.0

Consensus degree 0.7 1.0 0.9 0.7 0.9 1.0 0.8 0.9 1.0 0.8
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4.4.1.5 Consensus Measure

We now proceed to calculate the overall consensus among all participants (for our

illustrative example through an aggregation of the consensus degrees, CD. The consensus

measure, CM , is calculated through the aggregation procedure of [YF94], which utilises

Ordered Weighted Average (OWA). The aggregation operator enables the consensus

degrees on the `winning proposals' have more importance or weight [HVHC02] in the

aggregation procedure. The expression for CM is as follows:

CM = (1 - \beta ) \cdot 
n\sum 

i=1

CDi

n
+ \beta \cdot 

t\sum 
s=1

CDWs

t

where CDW is the set of consensus degrees for `winning proposals', t is its cardinality, n

is the total number of projects, and \beta \in [0, 1] is used to control the influence of consensus

degree of the winning projects on the overall consensus measure in the decision-making

system.

Evidently, higher values of \beta causes consensus degree of the winning proposals to

highly influence the overall consensus measure. Typical values of \beta recommended in

the literature are 0.7, 0.8, and 0.9 [HVHC02, BM10]. We use a \beta value of 0.8 in our

example to emphasize the importance of consensus degree among the participants on the

winning projects. Clearly, the value of \beta at any given (system) period will be influenced

and determined by a number of system factors, e.g. number of proposals, urgency and

crucialness of proposal, previous \beta values. Table 4.4 shows the consensus measure for

different values of \beta .

Table 4.4: Consensus measure for various values of \beta 

\beta 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CM 0.87 0.881 0.891 0.902 0.912 0.923 0.933 0.944 0.954 0.964 0.975
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4.4.1.6 Proximity Measure of Participants

Here, we evaluate the proximity measure, PM , of each participant's voting preference to

the collective system-wide decision by aggregating each participant's distance measure

across all the proposals. Analogous to the calculation of consensus measure, we utilise

OWA aggregation operator as follows:

PMi = (1 - \beta )

\sum p
j=1(1 - NDMi,j)

p
+ \beta 

\Bigl( 
1 - 

\sum t
k=1NDMWi,k

t

\Bigr) 

where NDMi,j is the distance measure between participant i\prime s preference for proposal

j and the collective decision for proposal j. For participant i, NDMWi,k is a special

normalised distance measure between the collective decision for proposal k in the `set of

winning proposals' and the corresponding participant i\prime s preference for that proposal.

Thus, NDMW only considers normalised distance measures for proposals that satisfy the

decision-making system winning requirements, i.e. winning proposals.

Table 4.5: Proximity measure for \beta = 0.8

\mathrm{P}\mathrm{r}\mathrm{j}. 1 \mathrm{P}\mathrm{r}\mathrm{j}. 2 \mathrm{P}\mathrm{r}\mathrm{j}. 3 \mathrm{P}\mathrm{r}\mathrm{j}. 4 \mathrm{P}\mathrm{r}\mathrm{j}. 5 \mathrm{P}\mathrm{r}\mathrm{j}. 6 \mathrm{P}\mathrm{r}\mathrm{j}. 7 \mathrm{P}\mathrm{r}\mathrm{j}. 8 \mathrm{P}\mathrm{r}\mathrm{j}. 9 \mathrm{P}\mathrm{r}\mathrm{j}. 10 \mathrm{A}\mathrm{v}\mathrm{g}. PMi PMi(\beta = 0.8)

\mathrm{U}1 0.5 1 1 0.5 0.5 1 1 1 1 1 0.85 (1 - \beta )0.85 + \beta 0.97
\mathrm{U}2 1 1 1 1 1 1 0.5 1 1 0.5 0.9 (1 - \beta )0.9 + \beta 0.98
\mathrm{E}.\mathrm{A} 0.5 1 1 1 1 1 1 1 1 1 0.95 (1 - \beta )0.95 + \beta 0.99
\mathrm{E}.\mathrm{B} 0.5 1 0.5 0.5 1 1 1 0.5 1 1 0.8 (1 - \beta )0.8 + 0.875\beta 0.86
\mathrm{U}5 1 1 1 0.5 1 1 0.5 1 1 0.5 0.85 (1 - \beta )0.85 + \beta 0.97

As earlier explained, we assign a value of 0.8 to \beta and present the proximity measure

between each participant's preference and the system decision in Table 4.5 above. Table 4.5

summarises the proximity measure for the example considered. Evidently, participants

with high proximity measures contribute positively towards the system consensus while

proximity measures close to zero signify negative contribution towards overall decision-

making system consensus. Besides, it can be observed that Voter 1 and Voter 5 both

have the same proximity measure of 0.97, despite having different voting preferences.

This can be explained by the observation that these two voters voted exactly the same

way for proposals in the `winning set'. In turn, the `winning set' or collective decision

highly influenced our aggregated measures due to the high \beta value used.
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4.5 Applications

In this section we briefly discuss additional independent applications for some of the

delegable voting systems at the core of our treasury system presented in Chapter 4

and its extension discussed in Chapter 5. Specifically, we explore the use of the system

in decentralised blockchain oracles and provide general guideline for their adoption by

ERC20 token based blockchains on Ethereum.

For increased utility of blockchains, there is need for these platforms to provide data to

and access data from sources that are external to the blockchains themselves [ZCC+16b].

Oracles are simply external/additional sources of data/information for a system e.g.,

hashing oracles, decryption oracles, etc. For blockchain systems, an oracle is an agent

that provides additional real-world data that are external to the blockchain's system.

Data oracles can be used to retrieve general data which may be needed for triggering

certain conditions in smart contracts applications based on real-world events.

Decentralised oracles can be used as market data oracles for providing blockchains

with data about real-world markets. For instance, decentralised oracles are used in

decentralised prediction markets such as Augur1 and Gnosis2 to support placement of

wages on future real-world events. Decentralised oracles also find application in smart

securities, derivatives, insurance, Trade Finance, etc.

Typically, on the native web, oracles can be thought of as third-party APIs. However,

a critical factor to consider for deployment of oracles on blockchain platforms is the

absence of `a trusted party'. Therefore, it is crucial that decentralised oracles are

used to provide data to blockchains, to prevent single point of failure. For example,

TownCrier [ZCC+16b] provides an authenticated data feed for blockchain platforms

by using trusted hardware (Intel's SGX) to retrieve data from trusted HTTPS-enabled

website and serving same to smart-contracts on the Ethereum blockchain. TownCrier

adopts simple majority voting among multiple websites offering the same information,

and multiple SGXs. Similarly, Chainlink3 proposes a decentralised network oracle to

1https://augur.net/
2https://gnosis.io/
3https://link.smartcontract.com/whitepaper
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solve the oracle problem of blockchain platforms and smart contracts. To prevent single

point of failure, Chainlink relies on many nodes to source responses for off-chain data

requests.

Our proposed voting scheme can be deployed within decentralised oracle networks to

determine `truth' among competing solutions or answers proposed by oracle nodes as

response to data request on a decentralised oracle network. The voting scheme can be

deployed in a majority election rule to determine the `truth' among the available options.

We remark that computational expense (gas in Ethereum) is a key factor that

impacts design choices for contracts on the Ethereum blockchain. Code execution cost

on Ethereum is standardised using gas, and opcode's gas cost is based on its expected

execution time. Gas is the measure of computational complexity of a transaction on

Ethereum, i.e. the more the operations, the higher the cost of gas needed for execution.

Naturally, similar to xMcCorry et al. in [MSH17], the voting protocol can be deployed

as multiple smart contracts directly on the Ethereum blockchain and rely on nodes the

network to ensure the correct execution of the protocol. A single smart contract that

handles the election process and the logic of the voting protocol and zero-knowledge

verification, and another contract for distribution of zero-knowledge proofs required for

correct protocol execution by the parties involved. The second contract is to ensure all

participants use the same codes for the creation and verification of the zero-knowledge

proofs. The codes for the second contract are to only be run by users locally (not on the

network).

The cost of computing reconstructed keys in [MSH17] is the predominant factor

for deciding the number of voters the scheme can support. Specifically, because the

reconstruction of the keys must be done in a single transaction, and the block's gas limit

must not be surpassed by the gas used for the reconstruction. However, the contract

can be modified to perform the processing in batches and allow multiple transactions to

complete the task. Thereby, supporting a voter size beyond the current 50 voter upper

limit. Moreover, the authors explain that a dedicated blockchain will almost certainly be

a requirement to support a large-scale election.
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Alternatively, instead of carrying out all computations on the smart contract, a more

efficient approach would require significant off-chain computation as shown in [SGY20].

This approach would involve incorporating the off-chain process in a publicly verifiable

and efficient way to reduce on-chain computation on the Ethereum blockchain.

To improve efficiency and minimise gas costs in the execution of the protocol, several

cost optimisations will be required. Specifically, it will be important to use the recently

introduced Ethereum pre-compiled smart contracts for elliptic curve operations [Rei17]

because the cost of gas is lower in pre-compiled smart contracts in comparison to native

Ethereum smart contract. s For deployment, the voting protocol can be encapsulated in

a smart contract and deployed on the Ethereum blockchain. The smart contract holding

the voting protocol logic can be deployed to use the contract address of an ERC-20 token

contract as its constructor variable. Holders of the token can then participate in the

voting process using transactions sent to the address of the contract smart contract.

The smart contract will require the token cap data for all token holders of a given

ERC-20 token, which can be computationally expensive depending on the actual number4,

or associated Merkle proof [SGY20].

4.6 Summary

In this chapter, we described a privacy-preserving delegable blockchain-based voting

scheme for general decision-making. We provide a brief discussion of existing works in

practice similar to our scheme by highlight key differences (limitations) in comaprison

to our proposed scheme. Our solution mainly leverage concepts and building blocks

from our treasury system presented in Chapter 3, to support voting on blockchains with

private stake information.

The presentation of this chapter further supports the presentations in Chapter 3 in

relation to the main research question of this thesis. Specifically, in addition to addressing

the thesis research question, it extends the scheme in Chapter 3 to support blockchains

4Some tokens have as small as 6 users and others as high as over 3 million holders. See
https://etherscan.io/tokens for details
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with private stake information.

Specifically, we provide a new multiplicative relation non-interactive zero-knowledge

(MR NIZK) proofs to prove the relationship between two unit vector ciphertexts and

an encrypted scalar value. This allows a voter to submit a vector encryption that is

essentially an encryption of their stake multiplied by a unit vector encryption (same as

in the treasury system but already weighted with the voter's stake). Further, we provide

formal descriptions of the MR NIZK proofs and the extended polling scheme.

Finally, to enhance utility of decisions reached on the system, we provide metrics

that enable system participants evaluate their decisions within the context of collective

solutions reached on the blockchain. These metrics are 1) distance measure which

covers the distance between individual choices and collective choice (system outcome)

2) consensus measure which is essentially a weighted aggregation of individual distance

measures and 3) proximity measure which is an aggregation of individual distance

measures across all the proposals voted on in a system period.

Next, in Chapter 5, we provide a security analysis of our proposed systems using

traditional security properties in the voting literature. We also provide details of im-

plementations and benchmarks of tests of prototype implementations of the proposed

schemes.
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Analysis and Implementation

Following the presentations of the treasury system in Chapter 3 and the privacy-preserving

general decision-making system for blockchains in Chapter 4, in this chapter we formally

analyse the security of the designed systems. Specifically, we evaluate the security of our

proposed system by examining how the system satisfy traditional securities properties

expected of blockchain-based and e-voting systems e.g. robustness, ballot secrecy, voter

eligibility enforcement, fairness, verifiability, coercion-resistance, [DGS03,KY04,KKW06,

Adi06,CCFG16,Adi08,CZZ+19]. Formal proofs of security of the systems can be found in

Appendix B. Moreover, we discuss the security of the designed voting (polling) protocol

under the UC static corruption model. Thus, we prove that the protocol UC-realises the

ideal voting functionality \scrF t,k,m,n
Vote , under the stated static corruption model.

Furthermore, we present information on implementation and performance of the

prototypes. The result of the implementation confirms the feasibility and practicality of

the proposed systems for use within real-world cryptocurrencies or general blockchain

technologies.

The remainder of this chapter is organised as follows. Section 5.1 examines the

security of the proposed systems using conventional properties of secure electronic voting

systems in the literature. Thereafter, in Section 5.2, we present details of implementation

and performance of the complete prototype. Particularly, we elaborate on prototyping

information and details of the test network used in the experiments to evaluate the
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practicality of the proposed blockchain-based systems. Subsequently, Section 5.3 details

the evaluations and benchmark of the prototypes. Specifically, it provides graphical

representations of the communication and proof size of the prototypes implementation.

5.1 Security Properties

Below we discuss our scheme within the context of conventional electronic voting secu-

rity properties established in the literature [Gri03,BY86,KY04,Adi08,Ben06,DGS03].

Specifically, for each listed property, an explanation of how our scheme satisfies the given

property is provided. Our analysis implicitly assumes honesty or accurate functioning of

voting clients of all participants.

• Robustness / Reliability: In our voting scheme, it is unconditionally guaranteed

that any individual voter, stakeholder, or participant may fail resulting in no

negative effect on the protocol, i.e. there is no single-point of failure. Furthermore,

through the use of distributed threshold key generation and decryption, our protocol

is not affected when any number of voting committee members \scrC less than the

threshold t fail or become corrupted. The protocol guarantees termination under

the given scenarios.

• Privacy: This property guarantees that no information about individual ballots

is leaked except the final tally result. Our scheme achieves this through the

CPA-security of the elliptic curve lifted ElGamal encryption scheme under which

individual ballots are encrypted. Moreover, the additively homomorphic property

of lifted ElGamal, which is exploited for adding individual ballots to obtain the

voting result in our tally algorithm, does not require that ballots are decrypted.

Therefore, an adversary cannot learn additional information about the voter's

choice by observing the unit vector ballot ciphertext.

• Eligibility / Authentication: This property ensures that only qualified parties

are authenticated and allowed to vote. Specifically, in our scheme, this property

is achieved through a registration stage at the beginning of the system epoch.
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Also, we remark that given the decentralised blockchain architecture, every eligible

participant is able to participate and vote in the decision-making process by

submitting a valid stake-locking registration transaction (that also assigns them a

voting power corresponding to their locked-stake).

• Uniqueness: Closely related to the authentication property of ensuring only

eligible users participate in the decision-making process, the uniqueness property

generally ensures that no voter should be allowed to vote more than once. However,

within our scheme, we construe uniqueness to guarantee that users only submit a

number of valid votes relative to their locked stake. In other words, a user's vote

is directly proportional to their voting stake. In our scheme, we guarantee that a

user does not gain any advantage by splitting their stake into multiple accounts,

each with a smaller fraction of the original stake (Sybil attacks). We remark that

although users can submit multiple ballots during the voting stage, only the latest

valid ballot is included in the tally process. The motivation for multiple voting is to

enable users change their decisions e.g. vote directly after initially delegating their

voting power or contrariwise, throughout the voting stage. Furthermore, we prevent

ballot copying through the use of encrypted ballots, i.e. a voter (respectively expert)

cannot copy other voters' (respectively other experts') ballot without the knowledge

of the randomness in the encrypted ballot.

• Integrity: Through the use of non-interactive zero-knowledge proofs and spe-

cialised blockchain transactions, the scheme guarantees that only properly formatted

unit vector ballots are considered in the tally process (and discards of invalid ballots).

Thus, guaranteeing the correctness or accuracy of the voting outcome because only

validly recorded ballots published on the blockchain, are used in the tally process.

The inherent immutability of blockchain transactions prevents the adversary from

altering the recorded blockchain ballots without detection by other parties on the

network. Moreover, in a worst-case scenario where the majority of the voting

committee members are malicious, the integrity of the voting result is guaranteed.

However, the privacy of the ballots become compromised in this case.
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• Fairness: The semantic security of the lifted ElGamal homomorphic encryption

scheme and the non-interactive zero-knowledge proofs/arguments of correct unit-

vector ballot encryption helps guarantee that no partial sum or intermediate tally

results can be revealed before the tally is completed. Therefore, for any voter/expert,

their voting decision in not influenced by the recorded ballot (on the blockchain) of

how other parties voted, i.e. a party gains no advantage by delaying their voting

decision until after others have submitted their ballots.

• Coercion: The distributed and decentralised nature of blockchain-based voting

makes large-scale coercion difficult to achieve (when compared to conventional

voting systems) because of the high technical and monetary cost of efficiently

coordinating, enforcing and ensuring that users comply with coerced/forced voting

choices. Furthermore, rational honest voters within the system are incentivised

to support decisions that improve the overall health of the platform (underlying

cryptocurrency) because of the direct implications of bad decisions on their held

stake. Therefore, they can submit multiple ballots to falsely `convince' a coercer

of voting in a manner required by the coercer (because only the last valid ballot

is considered in the tallying process). However, we note that it is impossible to

eliminate coercion risk because a `willing' voter can supply the coercer with their

credentials. Also, a coercer watching over the shoulder of a voter can physically

ensure the voter's ballot corresponds to his decision.

• Voter anonymity / pseudonymity: Our construction inherits the privacy

e.g. anonymity or pseudonymity , provided to users by the underlying blockchain.

Specifically, participation in the voting process does not reveal additional user

information (except the fact/observation that they submitted a ballot). Therefore,

there is no association between identity of voters and how they voted.

• Verifiability: Verifiability allows observers/participants to verify that votes have

been recorded, tallied and declared correctly. Following the definitions of [KRS10],

our scheme satisfies individual, universal and eligibility verifiability. The individual
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verifiability property ensures a voter can check that their ballot is successfully

`published' on the underlying blockchain while universal verifiability guarantees

that any party can check that the tally corresponds to published ballots on the

blockchain. Additionally, eligibility verifiability covers the requirement that any

party can verify that all ballots published on the blockchain are from eligible voters.

This property is particularly useful in preventing against ballot stuffing. Evidently,

our scheme satisfies individual and universal verifiability because a voter can verify

their vote is properly recorded on the blockchain and anyone can verify that the

final `encrypted' tally corresponds to the homomorphic addition of all valid ballots

recorded on the blockchain and their associated zero-knowledge proofs of validity.

Also, any party can verify the tally outcome by combining published decryption

shares (accompanied with valid proofs of correct decryption) from the committee

members and comparing with the outcome from the committee. Moreover, our

scheme achieves eligibility verifiability because the registration transaction can be

used to support eligibility checks in verifying that ballots recorded on the blockchain

are from eligible participants. We remark that this verifiability relies on the fact

that the voting committee is cryptographically distributed.

5.2 Implementation and Performance

Here, we provide details of the implementation for both the treasury system and privacy-

preserving decision making system for blockchain governance. Mainly, we produced two

independent implementations of the main algorithms and unit vector non-interactive zero-

knowledge proofs in Scala and Python. The implementations are based on elliptic curve

groups for efficiency. The results from these distinct implementations were compared for

consistency and correctness. The Python implementation1 uses Petlib [Dan] - a Python

library that implements a number of privacy enhancing technologies. Moreover, the

Scala implementation also includes a full-prototype of the systems built upon Scorex 2.0

[IOH] - a modular blockchain framework for designing blockchain systems. Therefore,

1https://github.com/balogunh/TreasuryPrototype
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the systems rely on Scorex 2.0 for the underlying blockchain functionalities of storing

ordered sequences of transactions and messages. Specifically, the transactions or messages

involved are:

• proposal submissions

• voter, expert and committee stake locking

• voting results

• additional data e.g. signatures for results or proofs for verification of results,

randomness for committee member selection

Note that to minimise storage space on the blockchain, service messages for the decision-

making processes are stored in a dedicated side-chain (whose entries are also anchored to

the main chain). We now provide more detailed information about the implementation

prototyping.

5.2.1 Prototyping

For the prototype implementations, the voting protocol carries the main computational

and storage workload. Therefore, performance testing and evaluations focuses on the

voting protocol. The proposed systems were implemented as a fully functional cryp-

tocurrency prototype using the Scorex 2.0 framework to provide the underlying required

blockchain functionalities. Scorex 2.0 is a flexible modular framework designed partic-

ularly for fast prototyping with a rich set of already implemented functionalities such

as asynchronous peer-to-peer network layer, built-in blockchain support with pluggable

and extensible consensus module, simple transactions layer, JSON API for accessing the

running node, etc.

Socrex 2.0 offers some key benefits for rapid efficient prototyping in comparison

to other blockchain frameworks. These include, its flexible modular design, compact

functional code written in Scala programming language, full-fledged implementation of a

blockchain system built on top of Scorex - TwinsCoin, a hybrid Proof-of-Work (PoW) and
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Proof-of-Stake (PoS) cryptocurrency [CDFZ17]. Hence, we adapt and extend Twincoin

with the adequate functionalities for the voting protocol. For example, treasury integration

requires modification of the existing transactions structure and block validation rules, as

well as introduction of new modules for keeping treasury state and prevent transaction

forging and other relevant attacks.

To ease code maintenance, we also adopt a modular approach to developing different

elements of the voting protocol e.g. distributed key generation. All cryptographic proto-

cols related to the voting procedure were implemented in a separate library. Therefore,

these protocols can also be reused within other blockchain systems or within other stan-

dalone voting systems. The cryptographic protocol implementation uses BouncyCastle 2

library (ver.1.58) that provides required elliptic curve operations. Additionally, some

operations in the finite field were implemented with help of the BigInteger class from the

Java Core. Note that sub-protocols of the developed system were implemented exactly

as described, without any protocol-level optimizations.

In the pre-voting stage (see Fig.3.9), the implemented registration procedure includes

functionalities proposal submission, voters, experts and committee members registration

and random selection of the voting committee. Locked stake (security deposits) were

implemented through locked unspent transaction output (UTXO) records. All system

events are recorded in the blockchain so everyone can easily verify correctness of the

operations at each stage of the voting protocol.

The implementation also contains a full-fledged distributed key generation protocol

with non-interactive zero-knowledge proofs for correctness of messages. The protocol is

resistant to the corruption of up to half of the committee members. During the protocol

execution, a list of malicious members is maintained. This is used to prevent corrupted

committee members from further participation in further stages of the protocol and

allows for punishing them (through stake forfeiture) in the future.

Furthermore, the voting ballot is implemented as a special ballot transaction and it

is also accompanied with a non-interactive zero-knowledge proof of correctness (of unit

2a collection of Java cryptographic APIs
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vector encryption). Invalid ballots are rejected when their verification fails and are never

be included in the blockchain. For the post-voting stage separate transactions are used for

joint decryption of tally, randomness submission for the next system epoch, punishment

for the malicious and disqualified members, incentive rewards for participants, locked

stake or deposit refund and distribution of payments for approved/winning proposals.

We remark that most of the operations are automatised and do not require direct

user involvement except for the proposal submission and ballots casting operations. A

user only needs to configure the node properly and run it to participate in the system.

All complex operations such as randomness extraction, distributed key generation, joint

tally decryption and payments are implemented as completely automated operations.

Also, each stage lasts a fixed number of blocks and comprises its own special transactions.

These transactions are included in the blockchain if and only if valid against the current

(treasury and general-decision making) system and blockchain state.

5.2.2 Test Network

The test of the developed system prototypes were carried out in a real environment

comprising a local network of 12 blockchain full-nodes. The deployment was successfully

run for several days spanning dozens of system epochs. A completed cycle consists of 780

blocks (or approximately 4.5 hours treasury cycle) because the underlying blockchain

(TwinsCoin) consensus had a block generation time of 10 seconds. The network had

9 voters, 3 experts and 12 candidates with varying amount of cryptocurrency stake.

Besides, there are 12 candidates for membership of the voting committee from which 10

were selected. For the tests carried out, the number of proposals varied from 1 to 7.

Furthermore, the tests involved the simulation of multiple unusual or adversarial

conditions. For instance, a malicious committee member in the distributed key generation

provides incorrect shares, non-participation by some experts or voters in the actual voting

process despite registering, refusal to participate in the decryption of tally by some voting

committee members, etc. As long as there exist a working honest majority of the voting

committee members, the voting outcomes (tally) were always successfully obtained and
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rewards were correctly distributed to participants.

5.3 Evaluations

For evaluating performance of the cryptographic protocols a special set of tests were

developed as a part of the cryptographic library. Tests were run on the working station

with Intel Core i7-6500U CPU @ 2.50GHz, 16GB RAM, running Linux Ubuntu 16.04 64 bit

and scalaVersion 2.12.3 . All performance benchmarks are obtained for single-threaded

version of the implementation. Providing multi-threaded execution and native code

implementation, as well as protocol-level optimizations, allows for further improvement

of running time.

We are interested in the computational and communicational complexity of the

messages for processing the generation of the shared secret/public key, ballot casting

and validation, and tally calculation. Thus, we evaluate the computation time and space

requirement of the distributed key generation protocol execution, voters' and experts'

ballots processing and tally calculation during one system cycle (epoch).

We benchmarked key generation protocol running time for varying number of voting

committee members e.g. from 10 to 100. Note that, higher numbers of committee

members might be required to guarantee honest majority on random selection from a

large amount of system participants. Moreover, we generated shared public keys for the

setting where all committee members are honest, as well as other settings with malicious

committee members. With a minority malicious voting committee members, the exact

number or ratio of malicious parties does not influence the protocol running time for any

honest participant. Fig. 5.1 depicts the running time of the distributed key generation

protocol.

Clearly, as seen in fig. 5.1 the overall running time of the protocol increases with

increasing number of committee members and ratio of malicious committee members. For

example, the DKG protocol execution takes about 0.3 second and 2.4 seconds for fully

honest committee sizes of 40 and 100 respectively. Moreover, to complete distributed key
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Figure 5.1: DKG protocol execution time depending on the number of committee members

generation protocol execution, it is necessary to transmit data/messages (communication)

over the peer-to-peer network. The dominant factor in the execution time is the size

of the committee because each member committee member needs to verifiably share

their secret with all other members of the committee according to the protocol in fig. 3.6.

Latency is a real-world factor that affects the execution time of the DKG protocol shown

in Fig. 5.1 if the tests involved geographically distributed committee members. However,

this is accommodated by the fact that the protocol is expected to occur over a given time

frame where the involved parties post appropriate data (transactions) to the blockchain

(semi-synchronous communication). Moreover, a system epoch comprising the election

process is designed to take place over an extended period of time, e.g. 30 days.

Expectedly, the communication size depends on the size of the committee and the

ratio of malicious committee members. Similar to DKG protocol execution time, the size

of the committee and corruption ratio are dominant factors in the overall size of messages

required to complete the protocol execution. For example, the traffic size for the DKG is

156



Chapter 5: Analysis and Implementation Evaluations

Figure 5.2: Total size of the DKG protocol messages sent over the peer-to-peer network depend-
ing on the number of committee members

about 50kB and 800kB for fully honest committee sizes of 20 and 80 respectively. The

increase in overall message size for given committee size and varying member corruption

ratio is is explained by the fact that additional messages (communication) are needed

between honest members to report malicious activities of erring committee members.

Further, additional messages are also needed to reconstruct the secret shares of erring

members. Fig. 5.2 depicts the communication sizes for varying committee sizes, as well

as for different ratios of malicious committee members.

Recall that an adversary controlling 50\% of the committee members, can only break

confidentiality of voters' ballots, but not the integrity of tally result or individual ballots.

For any voter, to generate a single ballot takes less than 1 second in a voting epoch

with hundreds of experts. Hence, ballot generation has little influence on the overall

performance of the voting protocol.

Meanwhile, the number/size of experts is the most important factor in the time it
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Figure 5.3: Execution time for voter ballot generation with varying number of experts.

takes a voter to generate a ballot. Specifically, since a ballot is encoded as coordinate-

wise encryptions of a unit vector, therefore, the length of the vector dominates the time

required to create a ballot. As explained in Subsection 3.6.4, the length of the unit-vector,

in turn, depends on the number of experts in a given election epoch. Specifically, a

voter's unit-vector ballot (m + 3)-bits long, where m is the number of experts. However,

for an expert, the length of the unit vector ballot is always 3-bits long (because experts

vote directly on proposals) and it's creation time is also negligible in the overall protocol

performance. Fig 5.3 depicts typical running time for a voter to generate ballot for

varying number of experts.

However, unlike ballot generation, the tally process involves considerable computation.

Specifically, to obtain tally outcomes, all ballots submitted to the blockchain are collected

and their correctness is validated using their accompanying NIZK proofs. Subsequently,

the tally is computed using only ballots with valid proofs (that pass the verification checks).

The tally involves homomorphic addition of expert ballots, and voters' ballots, and
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subsequent joint decryption to obtain tally. Given a fixed, expert size, the computation

here is dominated by the number of voters. Specifically, the number of voters directly

affect the number of homomorphic additions required for computing the tally encryption

while the size of experts already influence the length of the unit vector ballots as earlier

discussed.

Fig. 5.4 depicts the average time required to actually compute tally results given

different number of voters. As shown in the figure, the time to compute the tally of the

voting process is linear in the size of voters. We note that, in case there is malicious

behaviour by a committee member in the tally computation, the execution time will

increase to accommodate the process on reconstructing the shared secret of the malicious

member by other committee members.

Figure 5.4: Execution time for computing tally outcomes of the entire voting process with
varying voter size.

Fig. 5.5 shows the prover's running time, the verifier's running time and the size of

the unit vector zero-knowledge proof that has been used in the ballot casting. The time
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to create the NIZK proofs is mostly influenced by the size(length) of the unit vector

ballot. This length (m + 3) is dominated by the number of experts, m in a voting epoch.

As seen in fig. 5.5, there is a sharp increase in the unit vector NIZK creation time between

unit vector size of 250 and 500. The time increase from about 0.6sec to about 3.4sec is

attributed to increased computation for NIZK proof, which is caused by the increase

in number of experts (which is the direct implication of increasing the size of the unit

vector). Clearly, this negatively impacts the scalability of the system for large values of

experts, m. However, in practice the number of experts expected in an election epoch

is smaller than 500 and these proofs along with corresponding ballots are generated

locally by voters. Further discussion on anticipated sizes in real-world systems is provided

in Section 5.4.

Figure 5.5: The prover's running time, verifier's running time and the size of the unit vector
ZK proof.

Recall that the privacy-preserving decision-making system requires additional vector

multiplicative relation zero-knowledge proofs. Hence, fig. 5.6 depicts the prover's running

time, the verifier's running time and the size of the needed zero-knowledge proof. Similar
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to the special honest verifier unit vector zero-knowledge proof in fig. 5.5, the length of

the unit vector ballot is the dominant factor in time to create and verify the proof. The

proof creation time scales poorly with increase in the size of the the unit vector (number

of experts) in an election epoch as shown in fig. 5.5. Moreover, details of anticipated

size of the unit vector ballot in a real-world deployment is provided in Section 5.4, to

mitigate the scalability issues in the zk proofs.

Figure 5.6: The prover's running time, verifier's running time and the size of the vector multi-
plicative relation ZK proof.

Finally, the overall communication cost for all the voting ballots per project during

the entire treasury period and privacy-preserving decision-making is depicted in Fig. 5.7

and Fig. 5.8 respectively. In particular, for a treasury period with 2000 voters and 50

experts, the overall communication is approximately 10MB per project. For a period of

the privacy-preserving decision-making system (respectively the treasury system) with

5000 voters and 50 experts the overall communication is approximately 40MB per project
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Figure 5.7: The overall communication for all the voting ballots during a treasury period.

Figure 5.8: The overall communication for all the voting ballots during a period of the privacy-
preserving decision-making system.
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(respectively 25MB for the treasury system). From fig. 5.7 and fig. 5.8, the communication

sizes is dominated by the number of experts (unit vector size) and the size of voters in

the voting epoch.

Remark. Note that in practice, the treasury period is long enough, e.g. 30 days

(approximately 4320 blocks for Bitcoin), so blockchain space overhead for treasury

deployment in the cryptocurrency blockchain is insignificant. Moreover, we consider

a sidechain approach [BCD+14, KZ19, GKZ19] for the system implementations as an

effective solution. This allows for separation of treasury/decision-making functionalities

from the main blockchain consensus, thereby providing a number of advantages e.g.

maximising transaction block space for other pertinent transactions. In particular, the

system protocols do not influence the main blockchain consensus, therefore, enabling

transfer of all implementation complexity to a sidechain. Additionally, storage space on

the mainchain is preserved for core clients as a result of the modular construction.

5.4 Discussion

In a real-world blockchain, voters only need to create their ballots and associated proofs

and post these to the blockchain. For voters, these processes are done on their local clients

and the outputs are posted as appropriate transactions to the blockchain network where

it is propagated to other nodes. Mainly, the time between submitting ballot transactions

and confirmation that the transaction has been committed by majority of nodes on the

blockchain, is a factor to consider in real-world deployment. For example, currently on

the Bitcoin blockchain, transaction propagation time to about 90\% of all network nodes

is about 15 seconds3 [NAH16].

Additionally, from the evaluations it is clear that the size of the unit vector is a very

dominant factor in the performance of the protocols. However, since the size of a unit

vector ballot is exactly three more than the number of experts, i.e. | unit vector ballot| =

| experts + 3| , some of the performance bottleneck can be mitigated. Specifically, this

requires that the number of experts is set to a reasonably practical number.

3https://www.dsn.kastel.kit.edu/bitcoin/
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One way of doing this, is through classification of experts based on the topics of

proposals such that no individual can participate as an expert across all the areas being

voted on. Moreover, an alternative approach would involve ranking of available experts

based on a so-called reputation or prestige [KSG03,WS06,Szt15,PK15,dPLC17,HWC+21,

KSA+21] and allowing a subset of the top-ranked experts to participate in the voting

process. Essentially, reputation is a measure of quality of contributions (or honesty) of

the expert to select activities e.g., consensus building, on the blockchain.

Now, we provide discussion on potential numbers of a deployment of our proposed

systems in a real-world cryptocurrency. This anticipated size is based on numbers from

real-world deployments of cryptocurrency treasury system 4. Given the recent summary

from the Cardano Project Catalyst Fund 45 with about 216,749 ballots across all 267

proposals, spanning categories such as dapp integrations, distributed decision-making,

developer ecosystem, proposer outreach, etc. and 56 winning proposals6. This implies

an average of about 800 individual ballots per proposal. Note that the total number of

ballots cast for a proposal does not depend on the amount of stake involved. Rather,

each ballot is weighted by the stake of its `caster' in the tally process.

The anticipated communicational overhead of a proposal for a treasury system

(respectively privacy-preserving general decision-making system) with 1000 ballots and

100 experts is estimated at about 8.3MB (respectively, 15.3MB). The increase in size

in the privacy-preserving system is attributed to the additional multiplicative relation

zero-knowledge proof required in the ballot casting process. Moreover, in a given system

epoch, with an expert size of 50 and 10, 000 voters , the anticipated communicational

overhead for a single proposal is about 74MB .

4https://bit.ly/3rf4p4v
5https://bit.ly/3xMiWXT
6https://bit.ly/2Uo6hvJ
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Conclusion

The goal of this thesis has been to construct provably-secure community-inclusive cryp-

tographic protocols that exploits the decentralised nature of blockchains and optimises

community intelligence through appropriate decision-making systems. The work pre-

sented in this thesis explored sustainable development and inclusive maintenance of

blockchains.

The importance and proliferation of blockchain technology has been well documented,

both in the literature and in practice. The decentralised architecture of blockchain tech-

nologies that enable (sometime) mutually distrustful parties to engage in a computation

tasks without the need for a `trusted third party' or single point of failure has enabled

the deployment and adoption of blockchains across multiple sectors such as finance,

healthcare, futures and prediction markets, retail, etc.

However, this consensus layer decentralisation or decentralised ethos of blockchains

is often not reflected in the development and management of blockchains. Typically,

decisions on development and maintenance of these platforms serves as a source of

centralisation in the system with `powerful minority' decision-making. Moreover, some

of the prevalent practices have been described as benevolent dictatorship [AMM18].

Consequently, there has been a number of cryptocurrency platforms such as Dash with

DGBB, to provide treasury system support for blockchain development. The goal is to

democratise the development process of the blockchains, by providing funding support
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for community members (or any interested parties) with proposals that improve the

blockchain in particular or the general cryptocurrency ecosystem.

As demonstrated in this thesis, we explored existing solutions and literature and

provide an affirmative answer to the question - is it possible to have provably secure

community-inclusive blockchain-based self-sustenance mechanisms that will ensure long-

term sustainability of cryptocurrencies? Specifically, we identified and explored the role of

funding (and funding source) in the overall management of blockchains. We highlighted

the various funding sources and their suitability towards long-term cryptocurrency

development funding. In our proposed treasury, system we adopt a hybrid funding that

guarantees the availability of funds for cryptocurrency development funding (even with

decreasing miner's reward) and does suffer from the deficiencies associated with a funding,

for example, based only on donations or patron organisations.

To optimise community-inclusion in contributions to blockchain development and

allocation of blockchain development funds, for the first time, we proposed and developed

a UC-secure blockchain-based voting scheme (for treasury systems) that supports liquid

democracy. It is an incentivised voting scheme, and supports private ballots and is robust

to adversarial attacks from the corruption of less 50\% of the voting committee members.

We guarantee the integrity of election outcome in the rare scenario where all committee

members are corrupt using the zero-knowledge proofs which are publicly posted to the

blockchain.

Given the increased interest in decentralised governance in blockchains, we extend

the applicability of the delegable voting scheme at the core of our treasury system and

proposed a privacy-preserving system to support general decision-making on blockchains

with private stake information. Besides, to enhance community acceptance and increased

participation in the decision-making process, we provide a method for evaluating `con-

sensus' on decisions reached within the system. The analysis utilises a set of distance

measure metrics.

Moreover, for improved efficiency, we propose a novel honest-verifier zero-knowledge

proof for unit vector ballot encryption with logarithmic size communication. Whereas,
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similar homomorphic-tallying based cryptographic schemes such as Helios [Adi08] and

its variants, the proof size is linear in the size of the ballot.

We provide implementations of the the algorithms and full-prototype of the proposed

systems (treasury and privacy-preserving general decision-making) and benchmarks from

tests on the feasibility of the proposed schemes for use in real-world blockchains. The

prototype leverage the Scorex framework which utilises TwinsCoin consensus for the

underlying blockchain. Results show promise for adoption in real-world systems.

Recall that the voting schemes requires locking (freezing) the deposits (stakes) of

entities who participate in an election epoch. This mainly serves as a mechanism to

incentivise correct behaviour from the different participants. For example, locked deposits

of election committee members and experts who behave maliciously are confiscated.

Moreover, for other voters, this provide an incentive to vote in support of proposals that

are healthy to the overall growth of the blockchain. This is because voting for proposals

that for example negatively affect the exchange rate of a cryptocurrency directly affect

the value of their locked stake. Further, without the coin locking, it is trivial for an

adversary to collect sufficient coins for a single snapshot of the system epoch for the

purpose of attacking the scheme.

Despite the above incentivisation provided by locking stake, it is true that this

affects the usability of stakeholders. For example, owners of locked stake cannot spend

their coins for other purposes e.g., purchasing a good online, while it is locked. For

general deployment of the voting schemes proposed in this thesis outside of blockchains

(cryptocurrencies), malicious activities by participants will still be detected. However,

it is left to be decided what the incentive (reward/punishment) mechanisms will be to

encourage honest behaviour by the entities involved in the execution of the protocol.

In our schemes, to prevent Sybil attacks, we assume a flat model of stake dis-

tribution, i.e. every stakeholder owns exactly 1 coin, and voting power is directly

proportional to the amount of stake owned. Indirectly, this can lead to a situation

where blockchain development decisions are mostly made by the wealthy (plutocracy).

Given the pseudonymity/anonymity provided by blockchains and the separation from
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real-world identities of stakeholders, it is difficult to securely distribute voting powers

(one-man one-vote) based on real-world identities. However, there are potential measures

to mitigate excessive influence or dominance by the wealthy in the blockchain schemes.

An example of this measure, is to leverage a metric that captures the contributions of

stakeholders based on their activities on the blockchain e.g. reputation, and allow users

that meet a certain threshold participate in the election process (without the requirement

to have sufficient funds). This is particularly useful for allowing community members

with technical know-how to serve as experts in the decision-making system even if they

do not possess the required fund. However, it is also important to achieve a balance and

prevent scenarios where it is possible to compromise the underlying blockchains with

little to no resources in the system, as an attack against other stakeholders with major

stake.

This requires careful design and game-theoretic analysis to ensure secure imple-

mentation or adoption and protection against new attack vectors that make it easy to

compromise the long-term value and overall development of the underlying blockchain.

This is an interesting area of future work considering new results in decentralised identity

management platforms such as CANDID [MMZ+20] that offers Sybil-resistance.

Overall, the work presented in this thesis provides insights into new research directions

to further developments in blockchain research and beyond.

6.1 Future Directions

In this thesis, we investigated funding sources and decision-making on utilisation of funds

in blockchains. Thereafter, we initiated the study of blockchain treasury systems for

the community to collaboratively collect and distribute funds, for supporting the system

in a decentralised manner. Thereby, eliminating single point of failure or unhealthy

centralisation of power. The proposed treasury system is currently adopted in practical

deployment in real world cryptocurrencies. In particular, the treasury model is in

the Voltaire release [Car18b] of Cardano [Car18a]. Horizen (formerly ZenCash) also

implements DAO Treasury Protocol-level Voting System [Hor18] based on our scheme.
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We note that, the voting scheme in the privacy-preserving general blockchain decision-

making and treasury system can further be enhanced with game-theoretic approaches

to optimise individual contributions. Thus, enabling better intelligent collaborative

decision-making. However, the current voting schemes do not provide coercion resistance

or receipt freeness because voters can prove how they voted to a coercer. The schemes can

be improved to achieve receipt-freeness or coercion resistance by adopting the well-known

cast or validate process of schemes such as Helios. Although, this also does not address

the problem of a malicious client edited to output ballot randomness to users.

We remark that the current voting scheme in our proposed blockchain systems of

Chapter 3 and Chapter 4 assumes correct/honest operation of the clients of all participants

in the system for its security. Additionally, privacy of our schemes can be further enhanced

by providing a ranked output of winning proposals without revealing the tally numbers.

Moreover, the treasury and decision-making systems in Chapter 3 and Chapter 4

respectively, can be improved by building on recent advancements in practical Fully-

Homomorphic Encryption (FHE) e.g. SEAL [SEA19]. Specifically, the efficiency of the

schemes can be significantly improved by exploiting the Single-Instruction Multiple-Data

(SIMD) [SV14] operations for ballot creation, as well as the cyclic rotation capability on

encrypted vectors in the tally computation process.

Another interesting potential application of our blockchain-based voting system is

in efficient decentralised oracle network for blockchain platforms. Finally, it will be

interesting to conduct further research, especially as it relates to usability of the proposed

system when it is finally in production in real-world cryptocurrencies.
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Appendices

In Chapter 3 and Chapter 4, we provide the details of our blockchain-based treasury
system and privacy-preserving general decision-making system. Recall that both systems
rely on the delegable stake-weighted voting scheme for their operations. Therefore, this
appendix presents the relevant zero-knowledge proof protocols used to guarantee that
participants (voters, experts and voting committee members) in the systems behave
honestly in the protocol execution. Finally, Appendix B provides the security proof for
the voting protocol at the core of our systems proposed in this thesis.
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A Non-interactive Zero-knowledge Proofs Protocols

A.1 NIZK for Lifted Elgamal Encryption of 0

Non-Interactive Zero Knowledge proof for Lifted-Elgamal Encryption of 0

NIZK\{ (pk, C), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m = 0\} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
Witness: m = 0 and r \in \BbbZ p

Prover:

• Pick random w \leftarrow \BbbZ p; Compute A1 := gw and A2 := hw

• Compute e1 = hash(h,C,A1, A2) and z = r \ast e1 + w

• Return \pi 1 := (A1, A2, z1)

Verifier:

• Compute e1 = hash(h,C,A1, A2) and return valid if and only if

-- gz1 = C1
e1 \cdot A1

-- hz1 = C2
e1 \cdot A2

Figure 1: Non-Interactive Zero Knowledge proof for Lifted-Elgamal Encryption of 0
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A.2 NIZK for Lifted Elgamal Encryption of 1

Non-Interactive Zero Knowledge proof for Lifted-Elgamal encryption of 1

NIZK\{ (pk, C), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m = 1\} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
Witness: m = 1 and r \in \BbbZ p

Prover:

• Pick random v \leftarrow \BbbZ p; Compute B1 := gv and B2 := hv

• Compute e2 = hash(h,C,B1, B2) and z2 = r \ast e2 + v

• Return \pi 2 := (B1, B2, z2)

Verifier:

• Compute e2 = hash(h,C,B1, B2) and return valid if and only if

-- gz2 = C1
e2 \cdot B1

-- hz2 = (C2 \cdot g - 1)e2 \cdot B2

Figure 2: Non-Interactive Zero Knowledge proof for Lifted-Elgamal encryption of 1

A.3 NIZK for Lifted Elgamal Encryption of 0 or 1

Non-Interactive Zero Knowledge proof for Lifted-Elgamal encryption of 0 or 1

NIZK\{ (pk, C), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m \in \{ 0, 1\} \} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
Witness: m \in \{ 0, 1\} and r \in \BbbZ p

Prover:

• if m=0:

-- Pick random w \leftarrow \BbbZ p; Compute A1 := gw and A2 := hw

-- Pick random z2 \leftarrow \BbbZ p, e2 \leftarrow \{ 0, 1\} 256; Compute B1 := gz2
C1

e2 and B2 :=
hz2

(
C2
g
)e2

-- Compute e := hash(C, h,A1, A2, B1, B2) and e1 := e\oplus e2

-- Compute z1 := r \cdot e1 + w

-- Return: \pi 3 := (A1, A2, B1, B2, e1, e2, z1, z2)

• else m=1:
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-- Pick random v \leftarrow \BbbZ p; Compute B1 := gv and B2 := hv

-- Pick random z1 \leftarrow \BbbZ p, e1 \leftarrow \{ 0, 1\} 256; Compute A1 := gz1 \cdot C1
 - e1 and

A2 := hz1

C2
e1

-- Compute e := hash(C, h,A1, A2, B1, B2) and e2 := e\oplus e1

-- Compute z2 := r \cdot e2 + v

-- Return: \pi 3 := (A1, A2, B1, B2, e1, e2, z1, z2)

Verifier:

• Computer e = hash(C, h,A1, A2, B1, B2) and return valid if and only if

-- e = e1 \oplus e2

-- gz1 = C1
e1 \cdot A1

-- hz1 = C2
e1 \cdot A2

-- gz2 = C1
e2 \cdot B1

-- hz2 = (C2
g )e2 \cdot B2

Figure 3: Non-Interactive Zero Knowledge proof for Lifted-Elgamal encryption of 0 or 1
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A.4 Alternative NIZK for Lifted Elgamal Encryption of 0/1

Non-Interactive Zero Knowledge proof for lifted Elgamal Encryption of 0/1

NIZK\{ (pk, C), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m \in \{ 0, 1\} \} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
Witness: m \in \{ 0, 1\} and r \in \BbbZ p

Prover:

• Pick random \beta , \gamma , \delta \leftarrow \BbbZ p; Compute B = EC.Enc\sansp \sansk (\beta ; \gamma ) and A =
EC.Enc\sansp \sansk (m \cdot \beta ; \delta )

• Compute e = hash(C, pk,B,A);

• Compute f = m \cdot e + \beta and w = r \cdot e + \gamma ; and v = r \cdot (e - f) + \delta 

• Return \pi 5 := (B,A, f, w, v)

Verifier:

• Compute e = hash(C, pk,B,A) and return valid if and only if

-- Ce \cdot B = EC.Enc\sansp \sansk (f ;w)

-- Ce - f \cdot A = EC.Enc\sansp \sansk (0; v)

Figure 4: Non-Interactive Zero Knowledge proof for lifted Elgamal Encryption of 0/1
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A.5 NIZK for Correct Lifted Elgamal Decryption

Non-Interactive Zero Knowledge proof for correct lifted Elgamal decryption

NIZK\{ (pk, C,D), (sk) : D = C\sanss \sansk 
1 \wedge pk = g\sanss \sansk \} 

Statement: Public key, pk := h \in \BbbG , ciphertext C := (C1, C2), and the decryption
share D
Witness: sk \in \BbbZ p

Prover:

• Pick random w \leftarrow \BbbZ p; Compute A1 := gw and A2 := Cw
1

• Compute e = hash(C,D,A1, A2) and z = sk \ast e + w

• Return \pi 4 := (A1, A2, D, z)

Verifier:

• Compute e = hash(C,D,A1, A2) ; and D = C2
gm , and return valid if and only

if

-- gz = he \cdot A1

-- Cz
1 = De \cdot A2

Figure 5: Non-Interactive Zero Knowledge proof for correct lifted Elgamal decryption
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A.6 NIZK for m

Non-Interactive Zero Knowledge proof for knowledge of message m

NIZK\{ (pk, C), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m \in \{ 0, 1\} \lambda \} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
Witness: m \in \{ 0, 1\} \lambda and r \in \BbbZ p

Prover:

• Pick random s, t\leftarrow \BbbZ p; Compute E = EC.Enc\sansp \sansk (s; t)

• Compute e = hash(C, pk,E); and w = e \cdot m + s; and v = e \cdot r + t

• Return \pi 6 := (w, v,E)

Verifier:

• Compute e = hash(C, pk,E) and return valid if and only if

-- EC.Enc\sansp \sansk (w; v) = Ce \cdot E

Figure 6: Non-Interactive Zero Knowledge proof for knowledge of message m

A.7 Designated NIZK for Message m

Designated Non-Interactive Zero Knowledge proof for knowledge of message m

NIZK\{ (pk, C, \^e), (m, r) : C = EC.Enc\sansp \sansk (m; r) \wedge m \in \{ 0, 1\} \lambda \} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gmhr)
and \^e = EC.Enc\sansp \sansk (e)
Witness: m \in \{ 0, 1\} \lambda and r \in \BbbZ p

Prover:

• Pick random s, t \leftarrow \BbbZ p; Compute E = EC.Enc\sansp \sansk (s; t) and B = \^em \cdot Enc(s)
and D = \^er \cdot Enc(t)

• Return \pi \prime 
6 := (B,D,E)

Verifier:

• Compute e = Dec(\^e) and return valid if and only if

-- B,D = Ce \cdot E
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Figure 7: Designated Non-Interactive Zero Knowledge proof for knowledge of message m

A.8 Designated Verifier NIZK for \pi 

Designated Verifier Non-Interactive Zero Knowledge proof

NIZK\{ (pk, C,X), (s) : C = EC.Enc\sansp \sansk (e) \wedge X = gs\} 

Statement: Public key, pk := h \in \BbbG , and ciphertext C := (C1, C2) = (gr, gehr)
and X
Witness: s, r \in \BbbZ p

Prover:

• Pick random w \leftarrow \BbbZ p; Compute A = gw; and D = Cs \cdot EC.Enc\sansp \sansk (w)

• Return \pi 7 := (A,D)

Verifier:

• Compute e = Decsk(C) and z = Decsk(D) and return valid if and only if

-- gz = Xe \cdot A

Randomise:

• Pick random v, t\leftarrow \BbbZ p

• Compute A\prime = A \cdot gv and X \prime = X \cdot gt and D\prime = D \cdot Ct \cdot EC.Encpk(v)

• \pi \prime 
7 := (A\prime , D\prime )

• Return \pi 8 := (X \prime , \pi \prime 
7)

Figure 8: Designated Verifier Non-Interactive Zero Knowledge proof
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B Security Proofs

The security of the treasury voting protocol is analysed in the universal composability
(UC) framework. We provide Theorem 3.

Theorem 3. Let t, k, n,m = poly(\lambda ) and k/2 < t \leq n. Protocol \Pi t,k,n,m
Vote described

in Fig. 3.11 UC-realizes \scrF t,k,m,n
Vote in the \{ \scrF Ledger,\scrF t,k

DKG\} -hybrid world against static
corruption under the DDH assumption.

Proof. To prove the theorem, we construct a simulator \scrS such that no non-uniform PPT

environment \scrZ can distinguish between (i) the real execution EXEC
\scrF Ledger,\scrF t,k

DKG

\Pi t,k,n,m
Vote ,\scrA ,\scrZ 

where

the parties \scrV := \{ V1, . . . ,Vn\} , \scrE := \{ E1, . . . ,Em\} and \scrC := \{ C1, . . . ,Ck\} run protocol

\Pi t,k,n,m
Vote in the \{ \scrF Ledger,\scrF t,k

DKG\} -hybrid world and the corrupted parties are controlled
by a dummy adversary \scrA who simply forwards messages from/to \scrZ , and (ii) the ideal

execution EXEC\scrF t,k,m,n
Vote ,\scrS ,\scrZ where the parties interact with functionality \scrF t,k,m,n

Vote in the

ideal model and corrupted parties are controlled by the simulator \scrS . Let \scrV \sansc \sanso \sansr \subseteq \scrV ,
\scrE \sansc \sanso \sansr \subseteq \scrE and \scrC \sansc \sanso \sansr \subseteq \scrC be the set of corrupted voters, experts and voting committee
members, respectively. Note that the underlying encryption scheme is IND-CPA secure,
and its corresponding NIZK proofs are simulatable ZK under the DDH assumption.

Simulator. The simulator \scrS internally runs \scrA , forwarding messages to/from the
environment \scrZ . The simulator \scrS simulates honest voters Vi \in \scrV \setminus \scrV \sansc \sanso \sansr , honest experts

Ei \in \scrE \setminus \scrE \sansc \sanso \sansr , trustees Cj \in \scrC \setminus \scrC \sansc \sanso \sansr and functionalities \scrF Ledger,\scrF t,k
DKG. In addition, the

simulator \scrS simulates the following interactions with \scrA .

In the preparation phase:

• Upon receiving (InitNotify, sid,Cj) from the external \scrF t,k,m,n
Vote for an honest voting

committee Cj \in \scrC \setminus \scrC \sansc \sanso \sansr , the simulator \scrS acts as Cj , following the protocol \Pi t,k,n,m
Vote

as if Cj receives (Init, sid) from the environment \scrZ .

• \scrS simulates \scrF t,k
DKG so that it generates and stores (pk, sk).

In the voting/delegation phase:

• Upon receiving (VoteNotify, sid,Ej) from the external \scrF t,k,m,n
Vote for an honest

expert Ej \in \scrE \setminus \scrE \sansc \sanso \sansr , the simulator \scrS reads pk from \scrF t,k
DKG. \scrS computes cj

(3) \leftarrow 
Enc\sansp \sansk (0

(3)) and simultates its NIZK proof \pi j using the NIZK simulator. It then

executes macro Send-Msg
\Bigl( 

(cj
(3), \pi j), \{ In

(\sansE j)
\eta \} \ell 1\eta =1, \{ Out

(\sansE j)
\eta \} \ell 2\eta =1

\Bigr) 
.

• Upon receiving (CastNotify, sid,Vi, \alpha j) from the external \scrF t,k,m,n
Vote for an honest

expert Vi \in \scrV \setminus \scrV \sansc \sanso \sansr , the simulator \scrS reads pk from \scrF t,k
DKG. \scrS computes ui

(m+3) \leftarrow 
Enc\sansp \sansk (0

(m+3)) and simultates its NIZK proof \pi i using the NIZK simulator. It then

executes macro Send-Msg
\Bigl( 

(ui
(m+3), \sigma i, \alpha i), \{ In(\sansV i)

\eta \} \ell 1\eta =1, \{ Out
(\sansV i)
\eta \} \ell 2\eta =1

\Bigr) 
.

• Once the simulated \scrF Ledger receives (Post, sid, cj
(3)) from a corrupted expert

Ej \in \scrE \sansc \sanso \sansr , the simulator \scrS uses sk to decrypt cj
(3), obtaining the vote vj . \scrS then

sends (Vote, sid, vi) to \scrF t,k,m,n
Vote on behave of Ej .
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• Once the simulated \scrF Ledger receives (Post, sid,ui
(m+3), \alpha i) from a corrupted voter

Vi \in \scrV \sansc \sanso \sansr , the simulator \scrS uses sk to decrypt ui
(m+3), obtaining the vote vi. \scrS then

sends (Vote, sid, vi, \alpha i) to \scrF t,k,m,n
Vote on behave of Vi.

In the tally phase:

• Upon receiving (DelCalNotify, sid,Cj) from the external \scrF t,k,m,n
Vote for an honest

trustee Cj \in \scrC \setminus \scrC \sansc \sanso \sansr , the simulator \scrS acts as Cj , following the protocol \Pi t,k,n,m
Vote as

if Cj receives (DelCal, sid) from \scrZ .

• Upon receiving (TallyNotify, sid,Cj) from the external \scrF t,k,m,n
Vote for an honest

trustee Cj \in \scrC \setminus \scrC \sansc \sanso \sansr , the simulator \scrS acts as Cj , following the protocol \Pi t,k,n,m
Vote as

if Cj receives (Tally, sid) from \scrZ .

• Upon receiving (LeakDel, sid, \delta ) from the external \scrF t,k,m,n
Vote , the simulator \scrS simu-

lates the last honest committee Ct's decryption share according to \delta , and it simulates
the corresponding NIZK proof in the 1st round of the tally phase.

• Upon receiving (LeakTally, sid, \tau ) from the external \scrF t,k,m,n
Vote , the simulator \scrS 

simulates the last honest committee Ct's decryption share according to \tau , and it
simulates the corresponding NIZK proof in the 2nd round of the tally phase.

Indistinguishability. The indistinguishability is proven through a series of hybrid
worlds \scrH 0, . . . ,\scrH 4.

Hybrid \scrH 0: It is the real protocol execution EXEC
\scrF Ledger,\scrF t,k

DKG

\Pi t,k,n,m
Vote ,\scrA ,\scrZ 

.

Hybrid \scrH 1: \scrH 1 is the same as \scrH 0 except that during the voting/delegation phase, in \scrH 1,
the honest voter Vj 's encrypted ballots are replaced with Enc\sansp \sansk (0

(m+3)) and simulates
its corresponding unit vector NIZK proof.

Claim 1. \scrH 1 and \scrH 0 are indistinguishable if the underlying encryption scheme is IND-
CPA and the unit vector NIZK proof is simulatable ZK.

Proof. The proof is straightforward. Namely, if an adversary \scrA can distinguish \scrH 1 from
\scrH 0, then we can construct an adversary \scrB who can either break the IND-CPA game of
the PKE encryption or the ZK probability of the unit vector NIZK proof.

Hybrid \scrH 2: \scrH 2 is the same as \scrH 1 except the following: During the voting/delegation
phase, in \scrH 2, the honest expert Ei's encrypted ballots are replaced with Enc\sansp \sansk (0

(3)) and
simulates its corresponding unit vector NIZK proof.

Claim 2. \scrH 2 and \scrH 1 are indistinguishable if the underlying encryption scheme is IND-
CPA and the unit vector NIZK proof is simulatable ZK.

Proof. The same as the previous proof.

Hybrid \scrH 3: \scrH 3 is the same as \scrH 2 except the followings. During the tally phase, \scrH 3

uses NIZK simulator to simulate all the decryption proofs instead of the real ones.

Claim 3. \scrH 3 and \scrH 2 are indistinguishable if the underlying decryption NIZK is simulat-
able ZK.
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Proof. The advantage of the adversary is bounded by the ZK property of the decryption
NIZK.

Hybrid \scrH 4: \scrH 4 is the same as \scrH 3 except the followings. During the tally phase, the
honest committee Ct's decryption shares are backwards calculated from the \delta and \tau 
received from the \scrF t,k,m,n

Vote .

Claim 4. \scrH 4 and \scrH 3 are statistically indistinguishable.

Proof. The distribution of the decryption shares in \scrH 4 have identical distribution to the
shares in \scrH 3.

The adversary's view of \scrH 4 is identical to the simulated view EXEC\scrF t,k,m,n
Vote ,\scrS ,\scrZ . There-

fore, no PPT \scrZ can distinguish the view of the ideal execution from the view of the real
execution with more than negligible probability. This concludes our proof.
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