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Abstract 23 

The importance of soils to society has gained increasing recognition over the past 24 

decade, with the potential to contribute to most of the United Nations’ Sustainable 25 

Development Goals (SDGs). With unprecedented and growing demands for food, 26 

water and energy, there is an urgent need for a global effort to address the 27 

challenges of climate change and land degradation, whilst protecting soil as a natural 28 

resource. In this paper we identify the contribution of soil science over the past 29 

decade to addressing gaps in our knowledge for major environmental challenges: 30 

climate change, food security, water security, urban development, and ecosystem 31 

functioning and biodiversity. Continuing to address knowledge gaps in soil science is 32 

essential for the achievement of the SDGs. However, with limited time and budget, it 33 

is also pertinent to identify effective methods of working that ensure the research 34 

carried out leads to real-world impact. Here, we suggest three strategies for the next 35 

decade of soil science, comprising a greater implementation of research into policy, 36 

interdisciplinary partnerships to evaluate function trade-offs and synergies between 37 

soils and other environmental domains, and integrating monitoring and modelling 38 

methods to ensure soil-based policies can withstand the uncertainties of the future. 39 
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Highlights 47 

1. We highlight the contributions of soil science to five major environmental 48 

challenges since 2010. 49 

2. Researchers have contributed to recommendation reports, but work is rarely 50 

translated into policy. 51 

3. Interdisciplinary work should assess trade-offs and synergies between soils and 52 

other domains.  53 

4. Integrating monitoring and modelling is key for robust and sustainable soils-54 

based policy making.  55 

  56 



5 
 

Introduction 57 

By the end of the decade, the United Nations (UN) Agenda for Sustainable 58 

Development – the 17 Sustainable Development Goals (SDGs) – are intended to be 59 

substantively realised (United Nations, 2015). Although only six SDGs mention the 60 

word ‘soil’ in their descriptions, the importance of maintaining productive soils for 61 

sustainable development has been increasingly recognized by scientists and policy 62 

makers (Banwart, 2011; Keesstra et al., 2016; IPBES, 2018). This is largely due to 63 

the fact that soils are an essential nexus between different spheres of the terrestrial 64 

environment, facilitating a diverse array of important functions such as producing 65 

food, purifying water, sequestering carbon, safeguarding energy, supporting critical 66 

infrastructure, providing acreage for development, and supplying raw materials 67 

(Blum, 2005).  68 

In response to an emerging need to better understand soils as key deliverers of 69 

these vital services, the make-up of the soil science research community has 70 

transformed. Soil science has arguably shifted from a discipline largely concerned 71 

with the fundamental mechanics of soil systems (soil physics, soil biology, soil 72 

chemistry, soil hydrology, etc), to one more focused on confronting contemporary 73 

environmental challenges (Hartemink and McBratney, 2008). The importance and 74 

need to understand the components of soil systems has not been made redundant, 75 

but more and more fundamental soil science is being translated into applied ‘real-76 

world’ solutions.  77 

This shift in the identity of soil science has arguably motivated soil scientists to work 78 

with a more diverse array of environmental disciplines (Hou et al., 2020). As a result 79 

of partnering with neighbouring (and sometimes tangential) fields, soil science has 80 
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become enriched with new methodological capabilities, transformed analytical 81 

techniques, and more holistic solutions to address the issues of the day. 82 

In this paper, we begin by spotlighting some of the work that soil scientists have 83 

carried out over the past decade to confront grand global challenges, including  84 

climate change, food security, water security, urban development, and ecosystem 85 

functioning and biodiversity. In each of these themes, there are still unanswered 86 

research questions and knowledge gaps, and a number of papers in recent years 87 

have sought to compile these into a manifesto for soil science (Blum, 2006; 88 

Adewopo et al., 2014; Rodrigo-Comino et al., 2020). This paper does not aim to 89 

embellish these lists. With less than ten years to go before the SDGs are intended to 90 

be achieved, and with finite resources and budget at disposal, we believe that now is 91 

the time to consider not what should be researched, but how soil science can best 92 

ensure that the research which has been, and continues to be, carried out can best 93 

support global efforts to secure sustainable development by 2030. We will suggest 94 

three ‘ways of working’, including (1) implementing research in policy and practice; 95 

(2) working across disciplines to evaluate function trade-offs and synergies between 96 

soils and other environmental domains; and (3) integrating monitoring and modelling 97 

methods to ensure that soils-based legislation is resilient. 98 

 99 

  100 
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2010-2020: The contributions of soil science to five grand 101 

challenges 102 

 103 

Climate change 104 

There is a growing recognition that soils have a crucial role in mitigating climate 105 

change, such as reducing methane and nitrous oxide emissions and sequestering 106 

carbon that would otherwise end up in the atmosphere (Smith, 2012; Paustian et al., 107 

2016; Smith, 2016). This has led to the development of high-profile, global initiatives 108 

such as ‘4p1000’, an international political effort launched at the 2015 COP21 109 

summit in France to preserve and increase soil organic carbon stocks, improve food 110 

security, and help tackle climate change (Chabbi et al., 2017; Rumpel et al., 2018; 111 

Soussana et al., 2019). Almost 50 governments and local authorities with hundreds 112 

of private and public sector partners are participating in this initiative.  113 

Several studies in the past decade have sought to estimate global soil organic 114 

carbon sequestration potential. The Intergovernmental Panel on Climate Change 115 

(IPCC) recently collated these estimates (Smith et al., 2019; Smith et al., 2020a) and 116 

found the global potential for soil organic carbon sequestration to be within the range 117 

of 1.3–5.1 GtCO2e yr-1, although the full range reported in the literature is wider (0.4–118 

8.6 GtCO2e yr-1) (Fuss et al. 2018; Bossio et al., 2020). This wide range is, in part, a 119 

reflection on the variable efficacy of different soil management practices to sequester 120 

organic carbon, and the non-linear decline of sequestration rates as fresh soil 121 

organic carbon steady state is reached (Amundson et al., 2015). In addition, there is 122 

a vast potential for the sequestration of soil inorganic carbon as secondary 123 

carbonates and bi-carbonates (Lal, 2019a). For instance, a recent study showed that 124 
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while biochar addition can expand soil organic carbon stocks, it can also increase 125 

the dissolved inorganic carbon content in soils (Shi et al., 2020). 126 

Cultural, economic, and physical barriers constrain the capacity for soils to mitigate 127 

climate change, demonstrating the need for the soil science community to articulate 128 

the benefits of carbon sequestration in order to achieve maximum societal impact 129 

and acceptance (Amundson and Biardeau, 2018). However, accurately quantifying 130 

soil organic carbon sequestration potential is also confronted by the difficulties in 131 

monitoring, reporting, and verifying (MRV) changes in soil organic carbon stocks, 132 

since these changes are relatively small and slow, and thus difficult to detect against 133 

large background stocks (Smith et al., 2020b). In the past decade, soil organic 134 

carbon MRV platforms harnessing new capabilities have been proposed. Amongst 135 

these are long- and short-term field experiments, well-calibrated models, state-of-136 

the-art spatial datasets, spatial soil survey data, activity data, and remote sensing 137 

(Smith et al., 2020b). Moreover, detailed MRV protocols are being developed, such 138 

as the Food and Agriculture Organisation’s (FAO) recarbonization of global soils 139 

(RECSOIL) programme (FAO, 2019a).  140 

Measuring soil organic carbon has, until recently, generally entailed destructive 141 

sampling, soil processing, and wet chemical analysis or dry combustion. However, 142 

research in the past decade has focused on developing non-destructive methods to 143 

measure soil organic carbon both in the laboratory and in the field. These methods 144 

rely mainly on reflectance of light by the soil in the mid‐ (4,000–600 cm−1) and near‐ 145 

to short‐wave infrared region (2,000–2,500 nm). The concentration of soil organic 146 

carbon can be estimated from these spectral measurements by comparing them with 147 

spectral libraries derived from samples on which soil properties have been 148 
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determined by traditional laboratory methods and reflectance measurements (Smith 149 

et al., 2020b). The ultimate aim of these innovations has been to obtain low-cost, 150 

scientifically-validated, field-based tools for the non-destructive measurement of soil 151 

organic carbon (Dhawale et al., 2015; Hutengs et al., 2018; Tang et al., 2019). While 152 

these tools are helping with the determination of soil organic carbon state, further 153 

rigorous testing is required to establish their reliability to determine soil organic 154 

carbon change.  155 

The past decade has also witnessed advances in remote sensing, by deploying 156 

Unmanned Aerial Vehicles (UAV), aeroplane, and satellite infrastructures to detect 157 

changes in soil properties. While these can infer changes in soil organic carbon 158 

through vegetation change, remote sensing technology that can directly measure soil 159 

organic carbon is yet to be developed (Smith et al., 2020b). Hyperspectral imagery 160 

can be interpreted directly in combination with spectral libraries for quantification of 161 

soil organic carbon for the top centimetre of bare soil (Gomez et al. 2012; Jaber et al. 162 

2011), or by using multivariate imagery to map bare soil patterns to indicate soil 163 

organic carbon or soil class differences (Gallo et al., 2018; Rogge et al., 2018).  164 

Furthermore, new-generation soil organic carbon models have been developed since 165 

2010 to complement traditional models. These represent soil organic carbon 166 

turnover with pseudo first-order decay approaches with a range of soil organic 167 

carbon pools, controls on turnover times, and decomposition pathways (Smith et al., 168 

2018). In particular, these new models include an explicit description of microbes, 169 

mineral-surface interactions, vertical transport, nutrient controls, and plant 170 

interactions (Smith et al., 2018). It is unclear whether these will lead to more 171 

accurate predictions, but there are some processes for which pool-based models are 172 
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unsuitable, and microbially explicit representations are required. These include soil 173 

priming (Georgiou et al., 2015), microorganism mortality (Georgiou et al., 2017), and 174 

the leaching and stabilisation of dissolved organic carbon (Dwivedi et al., 2017). 175 

While most of the recent research on soils and climate change has focused on 176 

climate mitigation, understanding the role of soils in climate change adaptation has 177 

also progressed. Management of soil organic carbon, erosion control, soil-borne 178 

diseases, and the prevention and reversal of topsoil salinisation have been promoted 179 

as actions for climate change adaptation (Dagar et al., 2016; Qadir et al., 2013; 180 

UNCTAD, 2011). Since these soil management measures are used to address land 181 

degradation, and since restoring degraded land helps to improve resilience to 182 

climate change, sustainable soil management has been championed as essential for 183 

climate change adaptation.  184 

 185 

Food security 186 

Of the 5 billion hectares of agricultural land used for crops (1.5 billion hectares) and 187 

livestock (3.5 billion hectares), one-third of this total area is classified as degraded 188 

(FAO, 2015a). Almost 70% of total freshwater withdrawal is used for irrigation, and 189 

one-third of all anthropogenic greenhouse gas emissions are attributed to agricultural 190 

activities (Crippa et al., 2021). Global agriculture produces enough food to feed 10 191 

billion people, yet as much as 30% of food is wasted globally (Lal, 2017). Therefore, 192 

judicious use of food, and a change in dietary preferences in favour of more plant-193 

based diets, has been increasingly implored. Rather than expanding the land area 194 

under agriculture, work over the past decade has explored producing ‘more from 195 

less’, by enhancing eco-efficiency of both soil and water, and reducing waste.  196 
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Since 2016, improved cropping systems have been studied worldwide marking a 197 

shift from using soils as a substrate to produce food, towards a multiple goal 198 

production system: producing food while improving soil quality. Widespread adoption 199 

of soil restorative measures to enhance soil organic carbon content and reduce 200 

erosion are critical for achieving food and nutritional security, particularly in 201 

developing countries (Oliver and Gregory, 2015; Rojas et al., 2016; Tittonell, 2015; 202 

Evans et al., 2020). Over the past decade, soil science has focused on recycling 203 

biomass to build soil organic carbon content to improve soil health (Scharlemann et 204 

al., 2014; Oliver and Gregory, 2015), with ‘soil health’ here being defined as ‘the 205 

vitality of a soil in sustaining the socio-ecological functions of its enfolding land’ 206 

following Janzen et al. (2021), but see Baveye (2021) for a critical analysis of soil 207 

health definitions. For example, implementing zero-till farming, in conjunction with 208 

crop residue mulching and cover cropping, has been found to enhance topsoil health 209 

(Knapp and van der Heijden, 2018). Improving soil organic carbon content has also 210 

been identified conceptually to enrich soil biodiversity and human health (Wall et al., 211 

2015), as well as increasing drought resilience through enhancing green water 212 

supply (i.e., the water stored in soil and available for plant uptake) in the root zone 213 

(Marasco et al., 2012; Sposito, 2013). Transformative advancements in soil biology 214 

have demonstrated that maintaining soil organic content content is critical to the 215 

rhizosphere microbiome (Berendsen et al., 2012) which, in turn, has been shown to 216 

drive plant productivity in agroecosystems. For example, Wei et al. (2015) showed 217 

that resident soil bacterial communities can significantly reduce the invasion success 218 

of pathogens into host plants.  219 

Recent work by Ball et al. (2018) has shown the importance of the soil–society nexus 220 

for improving food system sustainability. Their framework, involving three types of 221 



12 
 

connections, include: (i) direct connections that enhance soil awareness for 222 

innovative management, such as organic, no-till, or conservation agriculture; (ii) 223 

indirect connections between soil, food, and ecosystem services that can be 224 

promoted through home gardening and education (Lal, 2020a; Edmondson et al., 225 

2020); and (iii) temporal connections that draw on past usage of soil to raise 226 

awareness among policy-makers (Evans et al., 2021a).  227 

Water security 228 

Over the past decade, scientists have investigated approaches to boost water use 229 

efficiency, through either plant-based interventions (which are beyond the scope of 230 

this paper), or water management strategies. A significant advancement has been to 231 

test and develop measures to retain water within the soil by improving soil organic 232 

carbon content. Long-established techniques like mulching and cover cropping (Li et 233 

al., 2018; Wheeler and Marning, 2019) have been complemented with innovations 234 

such as using wetting agents (e.g. surfactants) and wax-degrading bacteria to 235 

reduce soil water-repellence (Saji, 2020), and developing soil conditioners composed 236 

from natural (e.g. cellulose, starch, yeast, chitosan) and biodegradable waste 237 

products (Saha et al., 2020). While these novel advancements have been trialled, 238 

continued investment is required to validate their effectiveness across a wider array 239 

of land-use and climatic contexts. 240 

Groundwater depletion is a rapidly increasing problem globally (Hohne et al., 2020). 241 

To meet increasing demand, several strategies have been developed over the past 242 

decade to efficiently manage groundwater conditions (Chatterjee et al., 2020). 243 

Artificial groundwater recharge has been performed through water harvesting 244 

structures, by collecting surface runoff, and increasing infiltration through a 245 
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combination of dry wells, percolation tanks, and/or bank infiltration recharge, while 246 

preventing water quality decrease (Sandoval and Tiburan, 2019; Ahirwar et al., 247 

2020). This has been upscaled by the deployment of remote sensing and geographic 248 

information system (GIS) techniques to precisely identify suitable sites to enhance 249 

groundwater recharge potential, through analyzing relevant factors such as 250 

geomorphology, geology, slopes, land use, and drainage characteristics (Machiwal 251 

et al., 2011; Chandra et al., 2015; Khan et al., 2020). Remote sensing has also been 252 

used to detect terrestrial water cycling through the detection of changes in Earth’s 253 

gravitational field (Rodell et al., 2007; Feng et al., 2018). These data monitoring 254 

efforts are essential for ensuring the efficient management of groundwater recharge, 255 

and to avoid the failure of aquifer systems. 256 

Quantifying spatiotemporal variations in green and blue water is a mainstay for 257 

ensuring water security. Here, ‘blue water’ is defined as the proportion of water 258 

resources stored in rivers, lakes, and groundwater which is directly available to 259 

humans, whereas ‘green water’ is the water stored in soil and available for plant 260 

uptake following Menzel and Matovelle (2010). Over the past decade, soil scientists 261 

have capitalized on major advances in data acquisition and modelling to inventorise 262 

the spatial distribution of the planet’s water supply (Obade and Moore, 2018; Chawla 263 

et al., 2020). With these data, and the development of models that link hydrological 264 

processes with other environmental, social, and economic factors, soil scientists are 265 

now better equipped to investigate and quantify water security in terms of scarcity 266 

and vulnerability (Bagheri and Babaeian, 2020), and to support integrated water 267 

resource management from a holistic perspective (Babel et al., 2011; Mahdavi et al., 268 

2019). This data revolution has catalysed the development of several machine 269 

learning methods that can forecast the effect of environmental and climate change 270 
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on future water and pollutant fluxes (Morellos et al., 2016; Yamaç et al., 2020). In 271 

addition, soil scientists are working more closely with critical zone scientists to 272 

advance current understanding of subsurface water stocks and dynamics (Hahm et 273 

al., 2019). For example, recent developments in ground-based gradiometry now 274 

allow for more accurate monitoring of subsurface structures and their associated 275 

water storage (Parsekian et al., 2014). As well as these technological 276 

advancements, the introduction of simplified water indices to indicate water scarcity 277 

(Veettil and Mishra, 2016; Chawla et al., 2020) has made it possible for both policy-278 

makers and public stakeholders to better understand the need to pay greater 279 

attention to water security in the future (Babel et al., 2020). 280 

Urban development 281 

Over the past decade, issues relating to, or originating from, urban soils have been 282 

addressed in various assessments, resulting in the development and implementation 283 

of different innovations, technologies, and strategies (EC, 2015; Biasi et al., 2015; 284 

Salvati et al., 2018; Barthel et al., 2019). There has been a rapidly increasing interest 285 

in urban soils, such as through the activity of the ‘Soils of Urban, Industrial, Traffic 286 

and Mining Areas (SUITMA) working group’ (Burghardt et al. 2013). By assessing 287 

the state of urban soils, soil scientists have conceived various strategies to improve 288 

soil structure and enhance water infiltration and retention (Kumar and Hundal, 2016; 289 

Kalantari et al., 2018). These include traditional strategies like tillage to alleviate soil 290 

compaction (EPA, 2011), and more state-of-the-art approaches like bioremediation 291 

to decrease soil contamination and enhance soil biodiversity (EPA, 2011; Sarwar et 292 

al., 2017). The application of soil amendments, such as compost, and the installation 293 

of blue-green infrastructures has also been experimented (Kumar and Hundal, 294 
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2016). Blue-green infrastructure is a multifunctional network of natural and designed 295 

areas, comprising water bodies, green spaces, and open spaces (Ghofrani et al., 296 

2017). Yet, all of these remediation and restoration strategies bring some 297 

challenges. For instance, the excavation and removal of contaminated soil can be 298 

highly or even prohibitively expensive, especially if required over a large area.  299 

Nature-based solutions (NBS) are now being widely adopted to specifically address 300 

decades of unsustainable spatial planning policies in urban areas (EC, 2015; Pan et 301 

al., 2018). Mitigating soil degradation in urban environments using NBS is both 302 

innovative (Goldenberg et al., 2018; Kalantari et al., 2019a) but also cost-effective, 303 

and it simultaneously provides environmental, social, and economic benefits that can 304 

help achieve numerous SDGs (EC, 2015; Seifollahi-Aghmiuni et al., 2019; Jaramillo 305 

et al., 2020). For example, street trees, parks, and wetlands have been shown to 306 

intercept dust and toxins, sequester carbon (Jonsson et al., 2019), buffer flooding, 307 

and prevent soil degradation (Jaramillo et al., 2020). In addition, straw mulches 308 

(Rodrigo-Comino et al., 2019), vegetative filter strips (Pan et al., 2018) and natural 309 

vegetation covers (e.g. green roofs and walls) are important NBS that reduce storm-310 

water runoff and prevent soil erosion in urban areas. Technosols constructed from 311 

city waste, such as compost or chipped wood, provide many ecosystem services and 312 

contribute to circular economies (Grard et al. 2018).  313 

Demonstrating the benefits of NBS in urban environments through proof-of-concept 314 

experiments is critical for underpinning their inclusion in urban planning (Kalantari et 315 

al., 2019b). Once implemented, their continuous maintenance requires long-term 316 

labour inputs, mostly at the community level (Ferreira et al., 2017). Since soils are 317 

central to supporting many urban NBS, soil scientists are beginning to enjoy 318 
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increasing levels of engagement in urban planning, and are working alongside 319 

stakeholders, local communities, authorities, architects, and construction companies 320 

to ensure that soils are sustainably managed and preserved in urban environments 321 

(Keesstra et al., 2016).  322 

Ecosystem functioning and biodiversity  323 

Over the past decade, the soil science community has transferred an understanding 324 

of soils into natural capital and ecosystem service frameworks (Robinson et al., 325 

2009; Dominati et al., 2010; Haines-Young and Potschin, 2012). One of these 326 

frameworks is the System of Environmental and Economic Accounts (SEEA) (United 327 

Nations, 2012a; Obst et al., 2016) which, by providing satellite green accounts 328 

alongside Gross Domestic Product (GDP) accounts (United Nations, 2012a), 329 

considers the soil as one of seven natural resources. The added value these 330 

frameworks bring to GDP accounting is the recognition that natural resources are not 331 

free or limitless, and that they can constrain the economy, if not carefully managed. 332 

Yet, some have argued that combining data on soil resources with natural capital 333 

and economic activity indicators is one of the least developed areas of the SEEA 334 

which has led to more efforts from soil scientists to address this gap over the past 335 

decade (Obst, 2015).  336 

Adopting a systems approach emphasises the importance of monitoring multiple 337 

ecosystem cycles to underpin reporting frameworks, including soil formation and 338 

erosion, soil carbon gains and losses, soil nutrient release and loss, and soil water 339 

and energy balance (Amundson et al., 2015; Robinson et al., 2017). Advances in 340 

both modelling (Borrelli et al., 2017) and monitoring (Panagos et al., 2014) over the 341 

past decade have rendered this approach feasible. They have also demonstrated a 342 
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way forward for addressing one of the key challenges identified in the ITPS report: 343 

the need for ‘state’ and ‘trend’ monitoring of soils (ITPS, 2015). While the 344 

development of a SEEA-style soil monitoring and modelling framework is an end in 345 

itself for policy making, it is also important for providing an understanding of soil 346 

change.  347 

Accounting for change in soil biodiversity and function remains a substantial 348 

challenge in soil science, yet has received significant investment over the past 349 

decade. Due to large variety of soil organisms, ranging from micro-organisms to 350 

invertebrates and vertebrates, surveys on soil biodiversity require specific tools and 351 

methods depending on which group of organism is studied. Transformative 352 

advances in omics have revealed the breadth and distribution of organisms in soils 353 

(Prosser, 2015), which are vital for ecosystem functioning (Delgado-Baquerizo et al., 354 

2018; Crowther et al., 2019) and their development in soil science represents a 355 

major achievement.  356 

Over the past decade, sequencing and informatics technologies have forged ahead, 357 

such that the retrieval of full genomes of previously unknown soil organisms is now 358 

becoming more common (Nesme et al., 2016). However, the contribution of soil 359 

organisms to health and wellbeing services has often been overlooked. Most 360 

antibiotics in use today were extracted from soil organisms in the 1940s-60s (Lewis, 361 

2013), and the first new antibiotic to be identified for decades was recently extracted 362 

from soil (Ling et al., 2015). 363 

Innovations in technology are therefore prompting scientists to revisit soils for 364 

biomedical and biotechnological resources (Lewis, 2012), and molecular 365 

technologies, which uncover previously unknown soil microbial species and 366 
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functions, provide many new opportunities in this regard (Hover et al., 2018). More 367 

generally these technologies allow for a better appreciation of the specific 368 

mechanistic roles of soil biodiversity in regulating wider ecosystem services such as 369 

nutrient recycling and storage (Hartman et al., 2017), greenhouse gas regulation 370 

(Hester et al., 2018), and plant productivity (Carrión et al., 2019). Linking soil 371 

biodiversity to a natural capital framework is therefore fundamentally important, and 372 

remains to be achieved, in SEEA. Significant challenges remain in how to assimilate 373 

the vast amounts of globally obtained molecular information, and experimentally 374 

determined ecological interactions between organisms into both soil process and 375 

wider ecosystem service models. Here, advances in digital technologies for 376 

biodiversity data synthesis (Choi et al., 2016), modelling, and dissemination 377 

(Větrovský et al., 2020), coupled with detailed biogeochemical investigation of the 378 

functional relevance of new genes under environmental change contexts, provide 379 

much scope for future exploration and discovery. In concert, a better understanding 380 

of how soil biodiversity interacts to deliver multiple ecosystem benefits, win-wins, and 381 

tradeoffs, offers the potential for new ways to both monitor of soil health, but also 382 

innovate towards more sustainable approaches to manage and optimise soil multi-383 

functionality in the face of environmental change (Rillig et al., 2019). 384 

Ecosystem service models continue to progress (Bagstad et al., 2013), but the 385 

incorporation of soil functions and feedbacks remains an area warranting further 386 

attention if we are to better understand the impacts of land use, pollution and climate 387 

change. Recent work has improved the understanding of linkages between soil 388 

attributes, functions, and ecosystem service provision (Adhikari and Hartemink, 389 

2016). However, incorporating this understanding into ecosystem service modelling 390 

has been slow. Some have pointed out that the majority of ecosystem service 391 
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models only account for a single soil function (Greiner et al., 2017). Failing to 392 

represent multiple functions of soil is a weakness given that a key role of ecosystem 393 

service models is to account for multiple services, and understand their relationships, 394 

trade-offs, and synergies. Recent work has attempted to address this, such as the 395 

Soil QUality InDex (SQUID), which assesses the provision of 16 different soil-based 396 

ecosystem services (Drobnik, 2020), soil function assessment methods (Greiner et 397 

al., 2017), and the Soil Navigator decision support system (Debeljak et al. 2019). 398 

However, most of the more widely used models fail to appropriately incorporate 399 

benefits from soils or soil degradation processes, while low availability of spatial soil 400 

data often leads to land cover data being used as a proxy (Adhikari and Hartemink, 401 

2016). While biophysical information is informative in itself, translating changes in 402 

resources into economic impacts is an important goal for natural capital accounting, 403 

yet to be achieved.  404 

Attempts have been made to account for economic costs at the national scale (e.g. 405 

Graves et al., 2015) which tend to rely on first-order cost evaluation. However, recent 406 

work has tried to use models to link soil degradation to the global economy (Sartori 407 

et al., 2019). This work goes “beyond the use of ‘first-order’ cost evaluation and 408 

captures the ‘second-round’ effects of structural economic change that arise owing to 409 

shifts in primary resources, particularly the land factor” (Sartori et al., 2019, p. 300). It 410 

provides proof of concept for realising a full benefit chain, from soil monitoring and 411 

modelling, through to economic impact assessment.  412 

  413 
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Towards 2030: An integrated agenda for sustainability 414 

 415 

There is less than ten years to go before the SDGs are intended to be achieved. At 416 

this critical juncture, it is pivotal to step back and analyse the work that soil scientists 417 

should do to contribute towards the realization of these goals. There have been a 418 

number of papers in recent years that have synthesized the research questions left 419 

outstanding in soil science and made calls to the community to tackle them (Blum, 420 

2006; Adewopo et al., 2014; Rodrigo-Comino et al., 2020). These have been useful 421 

for prescribing research agendas, justifying research rationale, and securing funding 422 

for new highlight topics and foci areas. As important as this process is, we argue that 423 

it cannot catalyse real-world impact alone. Therefore, in this section of the paper, we 424 

do not suggest which specific topics soil scientists should research next, but begin 425 

an important dialogue around how soil scientists can best ensure that their research 426 

over the next decade can best support global efforts to secure sustainable 427 

development by 2030. 428 

Implementing research in policy and practice 429 

This paper has summarised the research advances made over the past decade in 430 

soil science with respect to five critical areas. It is important to ask how this research 431 

has been utilized to drive sustainable development. Figure 1 presents a timeline of 432 

some of the global initiatives towards which soil scientists have contributed over the 433 

past decade. These can be divided crudely into four categories: (1) guidance 434 

documents and recommendations; (2) status reports; (3) expert group collaborations 435 

and public awareness campaigns; and (4) policy and legislation. It demonstrates that 436 

the majority of activities have either focused on compiling evidence for status reports 437 
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on the state of the world’s soils, or making recommendations on how best to manage 438 

and conserve them. Although these types of publications are important for conveying 439 

the outcomes of scientific research, their capacity to manifest real-world impact is 440 

relatively weak in comparison to concretized policy and legislation, for which there 441 

are very few examples to highlight. 442 

Effective translation of research into concrete legislation is essential for achieving 443 

sustainable development by 2030. Catalysing action requires a national or regional 444 

action plan, which reconciles local/national policy agendas and global assessments. 445 

An example of this is the new European Green Deal which represents an ideal 446 

opportunity for soil scientists to directly influence the policy agenda, as the European 447 

Commission aspires to make the EU the first climate-neutral continent by 2050 448 

through implementing a ‘Climate Law’ (Figure 1) (Montanarella and Panagos, 2021). 449 

In order to comply, it is likely that Member States will also conceive of and implement 450 

national policies over the next decade, too. This highlights the need to promote 451 

closer and more sustained working relationships between soil scientists and policy 452 

makers at national and international levels. 453 

Effective partnerships between soil scientists and policy makers cannot be 454 

manifested overnight, but the response to the COVID-19 pandemic, at the very least, 455 

demonstrated that science-informed policies can be tabled and implemented 456 

efficiently if a significant impetus is present. It therefore seems incumbent that soil 457 

scientists will need to tailor their approach to convey the urgency and capture the 458 

attention of policy makers (Lal, 2020b). While the publication of status reports and 459 

guidance documents can support this, it is also worthwhile to consider recent 460 

examples of environmental legislation. In the case of reducing plastic pollution, for 461 
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example, the development of UK legislation, in part, followed an outreach 462 

documentary film and similar public engagement activities. These were largely 463 

spearheaded by non-scientist individuals holding a sizeable public following, working 464 

closely with scientists (Davison, 2021). The question for the next decade, therefore, 465 

is to whom should soil scientists turn to stimulate public consciousness about the 466 

challenges facing soil resources and the importance of sustainable soil 467 

management? 468 

Integrating research agendas 469 

Agenda 2030 comprises goals for the biosphere, societies, and their economies. 470 

Achieving (and, perhaps more importantly, continuing to achieve) all 17 of the SDGs 471 

is a large task, but arguably the greatest challenge is co-ordinating action so that the 472 

delivery plans for one goal do not out-compete or nullify the potential to achieve 473 

others. Recently, research has examined the trade-offs and synergies between the 474 

SDGs, whether some goals act as pre-requisites for others, and how perceived 475 

trade-offs can be transformed into virtuous cycles of sustainable development 476 

(Scherer et al., 2018; Singh et al., 2018; Kroll et al., 2019). 477 

Throughout the decade, there will be more lessons to learn about the ways to 478 

identify and convert trade-offs to synergies, and these should inspire new ways of 479 

collaborating within and beyond soil science. With limited time and resources 480 

allocated to soil science departments, the first step here is to develop new and 481 

efficient methods to monitor and evaluate the trade-offs and synergies between 482 

functions across soil and other terrestrial/marine systems. A seemingly minor but 483 

important shift in our future nexus thinking here is a move from considering ‘soil 484 

functions’ or ‘soil ecosystem services’ to one which acknowledges that life depends 485 
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on an array of functions and services which are delivered by an integrated terrestrial-486 

marine ecosystem, of which soil is a vital part. This perspective shifts away from one 487 

focused on delivering all ecosystem functions and services in soils simultaneously, to 488 

one which considers how these are delivered across the wider terrestrial 489 

environment. For example, urban food growing using novel (soil-less) growing 490 

techniques (e.g., soil simulants, hydroponics, bioarchitecture) may help lessen the 491 

burden on soils to deliver on growing food demands and allow those most degraded 492 

to undergo extensive restoration treatment. The essential step, therefore, is to 493 

establish the role of soils in the wider ecosystem, which will require sustained 494 

collaboration between soil scientists and the wider environmental sciences. 495 

The infrastructure to accommodate these more strategic and collaborative networks 496 

has started to be developed (see Figure 1). On the ground, for example, Critical 497 

Zone Observatories (CZOs) host international and multidisciplinary expertise that 498 

encompass atmospheric, soil, ecological, biological, hydrological, and geological 499 

sciences (Banwart et al., 2011). Likewise, light houses and living labs (Evans, 500 

2021b) have also been established to better connect innovation, practitioners and 501 

scientists. More broadly, open cloud infrastructure has enabled researchers to share 502 

methods, training resources, data analysis toolkits, and associated computer code 503 

(Blair et al., 2019). Moreover, open access publishing has enabled greater 504 

availability, accessibility, and transparency of research outputs (Laakso et al., 2011). 505 

Supplementing these initiatives has been the development of publically available, 506 

global databases that not only allow researchers to share data, but standardise them 507 

for the benefit of the wider community (Benaud et al., 2020). 508 

 509 
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Reactive and proactive soil science 510 

Ultimately the SDGs, the European Green Deal, and environmental targets at the 511 

national level are both reactive and proactive programmes for the future. They are 512 

reactive in the sense that they each acknowledge current challenges, shortfalls, 513 

disequilibria, and inequalities, and seek to rectify these issues. They are also 514 

proactive because they consider how these pressures and demands will evolve over 515 

time. If soil science is to support and help achieve these national and international 516 

agenda, it is vital that researchers are armed with both a reactive and proactive 517 

strategy. In essence, this entails a balanced approach between responding 518 

reactively to existing challenges (e.g., monitoring and restoring degraded soils) and 519 

developing the foresight to predict how soils may respond to future perturbations 520 

(e.g., climate change). In practice, a critical objective is to link communities in 521 

monitoring and modelling across soil science. 522 

The relationship between empirical and model-derived data should be considered as 523 

symbiotic. The inevitable spatial and temporal limitations of observational data 524 

indicate a need for model data, while empirical data are crucial to both model 525 

development and validation. Both observations and models are required to 526 

understand and quantify the current state of the soil system, and to forecast future 527 

trajectories and magnitudes of soil change (Robinson, 2015) in order to inform 528 

planning and mitigation measures (or state and trend monitoring). This challenge is 529 

highlighted in previous sections of this paper in relation to MRV difficulties and the 530 

attempts to overcome such issues through combining heterogeneous empirical and 531 

model datasets. Addressing this challenge is critical to ensure that the contribution of 532 

soils to sustaining Earth system functions is accounted for, and weaknesses in Earth 533 



25 
 

system models are identified (Fatichi et al., 2020). More fundamentally, it is required 534 

for furthering scientific advancement of our understanding of the soil system such as 535 

feedbacks (Robinson et al., 2019). 536 

Another challenge will be to generate effective and harmonized map products. 537 

Recent advances in cloud computing provide huge potential to address this 538 

challenge (Hollaway et al., 2020), including greater data storage and discovery, 539 

additional computational capacities for model development, and coupling and 540 

uncertainty analyses. Integration of datasets creates the potential for geostatistical 541 

and machine learning approaches in relation to water and pollution, urban planning, 542 

and other environmental disciplines (Avanzi et al., 2019; Padarian and McBratney, 543 

2020). It also provides the basis for multi-goals research, such as developing 544 

cropping systems that boost food production, improving soil quality, storing carbon in 545 

soils, and reducing the use of pesticides. By linking monitoring and modelling in soil 546 

science in this way, we can both react to the present-day demands placed on soils, 547 

and scope out the challenges of the future. 548 

 549 

  550 
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Conclusion: 551 

Over the past decade, the importance of soils for realising the United Nations 552 

Sustainable Development Goals has been widely demonstrated. Soil scientists have 553 

increasingly foregrounded the roles that soils play in combatting grand global 554 

challenges such as climate change, food and water security, urban development, 555 

and ecosystem functioning, and have acknowledged their connectedness. These 556 

challenges place strong pressures on the long-term health and functioning of the 557 

biosphere. In spite of advancements in the last decade, there still remains a large 558 

number of knowledge gaps and research questions. In this paper, we have not set 559 

out an itinerary of questions for further research, rather we have argued for three 560 

ways of working that will best support global efforts to secure sustainable 561 

development by 2030. Implementing research into policy and practice is a key yet, 562 

so far, under-achieved objective. Clearly, much of this depends on the actions of 563 

policy makers, but soil scientists should acknowledge their responsibility over the 564 

next decade to build strategic relationships with them in order to support policy 565 

delivery, whilst considering innovative ways of engaging public consciousness about 566 

the challenges facing soils. It is also important that soils-based policies are 567 

sufficiently co-ordinated with those in other environmental domains. Here we suggest 568 

that specific collaborations between soil scientists and other disciplines to evaluate 569 

the trade-offs and synergies between soils and the wider environment are key. 570 

Finally, if policies for the future are to be built, it is important that soil scientists 571 

consider how soils will change and what issues they will face over time. Modelling 572 

can assist with this, and thus it is also vital to sustain and enhance soil monitoring 573 

programmes, on which the foundations of our models are based. 574 

 575 
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Figure 1: Timeline highlighting contributions of soil science to international policy and legislation, guidance and recommendation reports, 

status reports, and collaboration and public awareness campaigns across five major environmental challenges over the past decade. [1] 

UNCTAD, 2011; [2] EPA, 2011; [3] Global Soil Biodiversity Initiative, 2021; [4] European Commission, 2011; [5] United Nations, 2012a; [6] 

FAO, 2012; [7] United Nations, 2012b; [8] European Commission, 2012; [9] FAO, 2013; [10] European Union, 2014; [11] 4 pour 1000, 2021; 

[12] FAO, 2015a; [13] European Commission, 2015; [14] FAO, 2015b; [15] FAO, 2015c; [16] UN, 2015; [17] FAO, 2016; [18] UNCCD, 2017; 

[19] IPBES, 2018; [20] ECA, 2018; [21] European Commission, 2018; [22] IPCC, 2019; [23] IPBES, 2019; [24] FAO, 2019b; [25] European 
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