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Abstract

This thesis aims to develop on literature for modelling the extremal behaviour of

aggregates of random variables or spatial processes, where here the aggregate refers

to the arithmetic mean, or sum, of a collection of random variables, or the integral of

a stochastic process. The tail behaviour of aggregates is of interest to practitioners in

industries such as financial trading, where extreme returns or losses of a portfolio, i.e.,

a weighted aggregate of financial derivatives, are of interest. Another area where the

literature is applicable is in risk management for river flooding, which typically occur

with heavy rain- or snowfall over a catchment area; this problem can be formulated

as an extreme value analysis of the total volume of rain or snow that falls within a

specified spatio-temporal region.

Aggregation acts as a smoothing operation, meaning that all information about the

underlying process that feeds the aggregate variable is lost; this can potentially lead to

unreliable inference when only the sample aggregate data are available for modelling.

However, given that data for the underlying process are available, we can exploit

the relationship between the statistical properties of this process and the extremal

behaviour of the aggregate to improve on inference; we provide some approaches for

establishing such a relationship.

We derive the first-order behaviour of the survival function of the weighted sum

of random variables, as this aggregate variable tends to its upper-endpoint. We do

this first for a bivariate sum with dependence within the set of underlying variables
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modelled using two widely applied limiting characterisations of extremal dependence.

We then extend these results to a d−variate sum for finite d, and with dependence

modelled fully using certain copulae. In both cases, we establish links between the

extremal behaviour of the underlying random variables and the aggregate variable.

We further detail a data-driven approach for modelling the extremes of spatial

aggregates. Here we propose a fully spatial model for the extremal behaviour of the

underlying process, which relies on conditional methods; we then draw replications

from this model to approximate the distribution of the spatial aggregate. Whilst this

approach can be applied to any spatial process, we apply it to precipitation and detail

considerations that must be taken to make this feasible.

A method for accommodating spatial non-stationarity in the extremal dependence

structure of data is also proposed. This relies on transformation of the original coor-

dinate system to a new latent space where stationarity can reasonably be assumed.
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Introduction

1.1 Motivation

Quantification of the stochastic behaviour of extreme events is important in numerous

applications, ranging from financial, e.g., stock market analysis and insurance pricing,

to those of an environmental nature, e.g., modelling of extreme weather or climate

events. In both cases, the questions that we wish to address often concern risk mit-

igation of some kind; can our understanding of the occurrence of extreme events be

used to lessen the negative impacts associated with these events, such as financial

loss, damage to infrastructure or property, and loss of life?

An intuitive example of risk mitigation for extreme events can be found within the

design criteria for weather defences, which are built to withstand all events that they

are likely to experience within their projected T -year lifespan. For such a defence

to retain this lifespan, they must be built to withstand an event that is expected to

occur, or be exceeded, at least once in a T -year period and extreme value theory is a

particularly powerful tool that can be used to estimate such events. Here, conventional

statistical methods are likely to perform poorly as the T -year period of interest is

typically longer than the historical record for which data are observed; that is, we

1



1. INTRODUCTION 2

may be interested in events that are more extreme than those that have ever been

observed. Extreme value theory is underpinned by asymptotic or limit arguments

that facilitate a framework which allows extrapolation beyond the maxima of data to

estimate such events. For example, if were interested in the upper-tail of a random

variable X, i.e., its most extreme values, then we could consider the distribution of

exceedances a(u)(X−u)|X > u as u→ xF , where xF denotes the upper-endpoint of X

and a(u) is a normalising function which is selected so that there is a non-degenerate

limit distribution for the threshold exceedances. Extreme value theory can be used to

illustrate that an appropriate distribution for such a random variable is the generalised

Pareto distribution, often denoted GPD, with scale and shape parameters, σ > 0 and

ξ ∈ R respectively, see Section 2.1.3.

Whilst there exists a richly studied class of statistical models that can be used

for inference on the extremal behaviour of univariate random variables, these alone

are not sufficient for applications where problems of interest cannot be succinctly

described as being univariate, e.g., modelling the aggregate of a multivariate random

vector. It is often apt to account for dependence between variables through the use of

multivariate models. However, it can quickly become cumbersome to fit said models to

high-dimensional data, especially if we expect dependence between variables to differ

over different pairs; environmental data often suffers from both of these issues, and it is

this type of data that we are most interested in studying in the context of aggregation.

We must then turn to certain classes of multivariate models, termed spatial models,

which are derived from stochastic processes that are indexed over space; these are

appropriate for data that we expect to exhibit statistical characteristics that are

affected by the location at which an observation is measured, and dependence is

typically characterised as a function of distance between locations, making inference

computationally easier.

A key concept that motivates this thesis is that of extremal dependence, i.e.,
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the tendency for variables to exhibit extreme events simultaneously, and how this

underlying structure affects the univariate aggregate over random vectors or processes.

Spatial models for extremal dependence often fall into one of two classes: those that

model asymptotic dependence or those that model asymptotic independence, where

the two definitions correspond to a non-zero, and zero, probability of extreme events

occurring together in the limit as the events become increasingly extreme, respectively.

An active area of focus in the literature is the development of parsimonious spatial

models that can account for both classes simultaneously.

Modern risk assessments in many areas of interest require estimation of the ex-

tremal behaviour of sums or averages of random variables. Such areas include financial

risk management, where one may be interested in extreme losses or profits associated

with a financial portfolio; this can be formulated as the weighted average of returns

from a number of securities. Another key area is fluvial flood risk management, as

river flooding is typically caused by prolonged heavy rainfall over a catchment area,

which can be quantified as the total volume of rainfall over a spatial region and tem-

poral period.

We consider there to be two main strategies for studying the extremal behaviour of

aggregates of random variables: the first is analytical in nature, where we can derive

the theoretical behaviour of the upper-tails (or lower-tails) of aggregates of random

variables using asymptotic arguments: the second is a data-driven approach and relies

on simulation from fitted statistical models. The first approach is a very natural

extension of the literature for extreme value theory, as much of this is underpinned

by limiting arguments that characterise the first-order behaviour of the extremes of

random variables. However, when relying on asymptotics, we only gain insight into

the behaviour of the most extreme values of the aggregate, and we might find that

this is completely dominated by only a subset of the marginal variables. To learn

about the extremes of the aggregate at a sub-asymptotic level, we propose a second
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strategy: a model is proposed and fitted to the data that we wish to aggregate and then

Monte-Carlo methods can be used to approximate the distribution of the extremes of

the aggregate. Both approaches have their advantages and disadvantages, which we

discuss.

We begin by deriving the first-order upper-tail behaviour of the weighted sum of

bivariate random variables under weak assumptions on their marginal distributions

and their copula. The extremal behaviour of the marginal variables is characterised by

the generalised Pareto distribution, and for their dependence, we rely on subclasses of

the two most general characterisations of joint tail dependence. These representations

were first proposed by Ledford and Tawn (1997) and Heffernan and Tawn (2004), and

describe both components being jointly extreme, and the behaviour of one component

conditional on the other component being large, respectively. We find that the upper-

tail behaviour of the aggregate is driven by different factors dependent on the signs

of the marginal shape parameters, and the strength of extremal dependence; these

relationships are quantified and succinctly presented in four theorems. We also derive

the upper-tail behaviour of the aggregate for some well-known copulae which reveals

further insight into the tail structure when the copula falls outside the conditions for

the subclasses of the limiting dependence representations.

Inference on the extremal behaviour of spatial aggregates of precipitation is im-

portant for quantifying river flood risk. There are two classes of previous approach,

with one failing to ensure self-consistency in inference across different regions of ag-

gregation and the other requiring highly inflexible marginal and spatial dependence

structure assumptions. To overcome these issues, we propose a model for the extremes

of high-resolution precipitation data, from which we can simulate realistic fields and

explore the extremal behaviour of spatial aggregates. Recent developments in spatial

extremes literature have seen promising progress with spatial extensions of the Heffer-

nan and Tawn (2004) model for conditional multivariate extremes, which can handle a
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wide range of dependence structures, and so we use an extension of this model for the

extremal behaviour of the high-resolution fields. Our contribution is two-fold: new

parametric forms for the dependence parameters of the spatial conditional extremes

model; and a novel framework for deriving aggregates addressing edge effects and

sub-regions without rain. By simulating from our model, we are able to approximate

the distribution of aggregates over different spatial regions and can illustrate that this

approach provides comparatively more reliable inference on the extremes of spatial

aggregates than previous approaches.

Modelling the extremal dependence structure of spatial data is considerably eas-

ier if that structure is stationary; that is, pairwise dependence of data observed at

different locations is simply a function of the distance beween them. However, for

data observed over large or complicated domains, non-stationarity will often pre-

vail. Current methods for modelling non-stationarity in extremal dependence rely on

models that are either computationally difficult to fit or require prior knowledge of

covariates. Sampson and Guttorp (1992) proposed a simple technique for handling

non-stationarity in spatial dependence by smoothly mapping the sampling locations

of the process from the original geographical space to a latent space where stationarity

can be reasonably assumed. This methodology is designed for modelling dependence

in the bulk of the distribution, and it is possible that the strength of dependence

changes as we move into the tails, making models for dependence in the bulk no

longer appropriate. We thus adapt this methodology to make it appropriate for mod-

elling extremal dependence in a spatial framework, which we achieve by considering

least squares minimisation of pairwise theoretical and empirical extremal dependence

measures.
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1.2 Thesis outline

This thesis aims to develop on methods for modelling the extremal behaviour of ag-

gregates of random variables or spatial processes. The models for aggregates that we

introduce in Chapters 3, 4 and 5 rely on weak stationarity assumptions on the depen-

dence structure of the underlying process; when this assumption is not satisfied in an

application, a novel methodology for addressing this issue is presented in Chapter 7.

The rest of this section follows with an outline of the thesis.

Chapter 2 provides an overview of existing methodology for modelling extreme val-

ues. We begin by conducting a thorough review of univariate methods before detailing

multivariate extensions of these approaches. The concept of extremal dependence and

measures for its quantification are discussed before we provide extensions of multi-

variate extreme value models to a spatial setting. We conclude with an introduction

to the Heffernan and Tawn (2004) conditional approach to modelling multivariate

extremes and the spatial extension of this model proposed by Wadsworth and Tawn

(2019); these methods provide the foundation for the content of Chapter 5.

Chapters 3 and 4 concern the tail behaviour of aggregates of random vectors. These

studies are conducted analytically by deriving the first order upper-tail behaviour of

the survival function of the aggregate as the aggregate tends to its upper-endpoint.

A wide range of dependence structures and marginal tail behaviour are considered for

the components of the random vector and we discuss their effect on the upper-tail of

the aggregate. In both chapters, marginal components Xi are assumed to be GPD

random variables with scale and shape parameters, σi > 0 and ξi ∈ R respectively,

for i = 1, . . . , d and for d ∈ N; note that we do not have necessarily have equality in

the marginal parameters. The value of d and the approach to modelling dependence

differs between the two chapters, and is to be discussed.

In Chapter 3, we consider the sum of bivariate random variables X1 and X2, where

their extremal dependence is modelled using the limiting dependence characterisations
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of Ledford and Tawn (1996) and Heffernan and Tawn (2004). An interesting collection

of results are presented that show that, in some cases, the tail behaviour of the

aggregate X1+X2 can be linked to the coefficient of asymptotic independence (Ledford

and Tawn, 1996). We further illustrate that the derived results can provide good

approximations in practice by conducting inference on the upper-tail behaviour of

aggregates of gridded precipitation and temperature data. In Chapter 4, we consider

instead the d−dimensional sum of a random vector (X1, . . . , Xd), where dependence is

modelled fully using copulas, rather than limiting dependence models. A comparison

of the results derived using the two different approaches to modelling dependence is

detailed in Chapter 3.

Chapter 5 presents a method for inference on the tail behaviour of spatial aggre-

gates of spatial processes. We first fit a model to high-resolution data; this model is

an extension of the spatial conditional extremes model proposed by Wadsworth and

Tawn (2019). We then use Monte-Carlo methods to approximate the distribution of

the upper-tail of aggregates over different spatial regions. Although this approach is

particularly versatile and can be used for inference on the tails of spatial aggregates

of any environmental data, we detail specific methodology that allow us to model

extreme precipitation. We apply our modelling approach to gridded East-Anglia, UK

precipitation data from a convection permitting climate model.

Chapter 6 extends the modelling approach presented in Chapter 5. We utilise

an algorithm developed at the Met Office Hadley Centre, UK, to cluster observed

precipitation fields from the UK climate predictions (2018) into one of two classes:

data produced from a convective storm cell and otherwise. We then fit extensions of

the model detailed in Chapter 5 to the two clusters, separately, and contrast their

estimated extremal dependence structures. Monte-Carlo methods can then be used

to draw realisations from both fitted models, which can be combined into a single

sample and used for approximating the upper-tail behaviour of spatial aggregates; we
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compare this modelling approach to that detailed in Chapter 5 and find that improved

inference on the tails of spatial aggregates is made.

In Chapter 7, we present an extension of the deformation method proposed by

Sampson and Guttorp (1992) to a spatial extremes framework. Along with some prac-

tical advice on applying these deformations, we provide a detailed simulation study

in which we propose three spatial processes with varying degrees of non-stationarity

in their extremal and central dependence structures. The methodology is applied

to Australian summer temperature extremes and UK precipitation to illustrate its

efficacy compared to a naive modelling approach where non-stationarity is ignored.

Chapter 8 concludes with a summary of the contribution of this thesis and a

discussion of potential opportunities for further work.



2

Literature review

2.1 Univariate extreme value theory

2.1.1 Overview

Classical univariate extreme value theory is underpinned by the properties of max-

stability and threshold-stability which give rise to uniquely defined distributions for

the limiting characteristics of random variables. We present the two most widely used

approaches for modelling univariate extreme values: the block maxima approach using

the generalised extreme value distribution, and the peaks-over-threshold approach,

which models exceedances above a threshold with the generalised Pareto distribution.

We further present an alternative characterisation of both approaches using point

processes. A comphrehensive overview of these methods is given in Coles (2001).

2.1.2 Limiting distribution of maxima

Fisher and Tippett (1928) provide a class of limiting distributions for the maxima

of univariate random variables via the extremal types theorem. Let X1, . . . , Xn be

independent random variables with common distribution function F and consider the

maximum Mn = max{X1, . . . , Xn}.

9
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Theorem 2.1.1 (Extremal types theorem). If there exist sequences of normalising

constants {an > 0}∞n=1 and {bn}∞n=1, such that

Pr

(
Mn − bn
an

≤ z

)
→ G(z) as n→∞ (2.1.1)

for z ∈ R and for non-degenerate distribution function G, then G belongs to one of

three extreme value classes: Fréchet, negative Weibull or Gumbel.

The extreme value classes of distributions are defined as:

• Gumbel: G(z) = exp
[
− exp

{
−
(
z−b
a

)}]
, z ∈ R;

• Negative Weibull: G(z) =


exp

{
−
[
−
(
z−b
a

)α]}
, z < b,

1, z ≥ b;

• Fréchet: G(z) =


0, z ≤ b,

exp
{
−
(
z−b
a

)α}
, z > b,

for a > 0, b ∈ R and α > 0, and, if (2.1.1) holds, we say that F is in the maximum

domain of attraction (MDA) of G. It can be shown that the above distributions can be

represented by special cases of a single family. The generalised extreme value (GEV)

distribution has distribution function

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ

+

}
, z ∈ R, (2.1.2)

with {y}+ = max{0, y} and location and scale parameters µ ∈ R and σ > 0, respec-

tively. The shape parameter ξ ∈ R determines the extreme value class: for ξ > 0

and ξ < 0, we have Fréchet and negative Weibull distributions, respectively, and we

interpret ξ = 0 as the limit ξ → 0, which leads to the Gumbel family. This implies

that the lower- and upper-endpoints, zG and zG, respectively, of G are dependent on

the value of ξ. If ξ < 0, then zG = µ− σ/ξ and if ξ > 0, we have zG = µ− σ/ξ.
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To motivate the importance of the normalising sequences, consider the distribution

function of Mn, which is

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x) = {Pr(X ≤ x)}n = F n(x).

In practice, F (x) is unknown and F n(x) is degenerate as n→∞. This follows as, for

all x < xF where xF is the upper end-point of F , we have that F n(x)→ 0 as n→∞.

Conversely, F n(x)→ 1 as n→∞ for all x ≥ xF .

The GEV family is the only class of distributions which satisfy the max-stability

property. A distribution G is said to be max-stable if there exist constants αt > 0

and βt such that

{G(αtz + βt)}t = G(z),

for all t ∈ N and z ∈ R. That is, max-stability is the property satisfied by distributions

for which the operation of taking sample maxima of independent copies leads to an

identical distribution, albeit with a change of location and scale. If we assume equality

in (2.1.1) holds for large n, then

Pr{Mn ≤ z} = G

(
z − bn
an

)
= Ḡ(z),

where Ḡ is a GEV distribution with a different location and scale parameter to that

of G. This result allows us to model maxima in practice, as data can be blocked into

sections of equal length m and the maxima of each block treated as a realisation from

Ḡ. This is termed the block maxima approach, which we illustrate in Figure 2.1.1.

Inverting equation (2.1.2) provides a method for estimating the quantiles zp for
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the GEV distribution. The solution to G(zp) = 1− p is

zp =


µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
, for ξ 6= 0,

µ− σ log {− log(1− p)} , for ξ = 0.

We term the quantile zp as the return level associated with a return period of 1/p

“blocks” for a GEV fitted to block maxima of length m, i.e., the probability of exceed-

ing zp in a given period of length m is p. For example, if p = 0.01 and each of the m

blocks corresponds to a year of observations, then z0.01 is the return level associated

with a return period of 1/0.01 = 100 years.

Coles (2001) detail methods for obtaining parameter and uncertainty estimates of

the GEV parameters (µ, σ, ξ) via maximum likelihood estimation. However, we note

that the standard asymptotic normality properties of maximum likelihood estimators

do not necessarily apply in the case of the GEV distribution when the shape parameter

ξ < −1/2, as the upper-endpoint of the distribution is a function of the parameters;

Smith (1985) studies this particular problem and highlight that if the true shape

ξ < −1, then maximum likelihood estimators may not exist and alternative means of

parameter estimation must be used.

We further note that if the variable of interest is minima, rather than maxima,

then this can be studied under the same framework by considering

min{X1, . . . , Xn} = −max{−X1, . . . , Xn}.

2.1.3 Threshold exceedance modelling

An alternative approach to modelling univariate extreme events is to consider ex-

ceedances above a high threshold u. This approach has the immediate advantage over

the former that typically more data is available for model fitting. We illustrate this
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in Figure 2.1.1 by comparing the two approaches, applied to a common simulated

dataset.

Figure 2.1.1: Illustration of block maxima (left) and threshold exceedance (right)
modelling for univariate extremes. Both approaches are applied to the same simulated
data with the red points denoting those used for inference.

With justifcation from Pickands (1975), exceedances above a fixed high threshold

u are modelled using the generalised Pareto distribution (GPD). Consider X ∼ F ,

where F is in the MDA of a GEV(µ, σ, ξ) distribution. Then the distribution function

of (X − u)|X > u is approximated by

H(y) =

(
1 +

ξ

σu
y

)−1/ξ

+

, (y > 0),

where σu = σ + ξ(u − µ) > 0. The scale parameter σu is determined by the choice

of threshold u and the shape parameter ξ is equal to that of the associated GEV

distribution. Davison and Smith (1990) define the characterising property of the

GPD as that of threshold stability, which is unique to this class of distributions.

Suppose that (X − u0)|X > u0 is GPD(σu0 , ξ) above threshold u0. By definition of a

GPD, the distribution of (X − u)|X > u for u > u0 is also GPD, with a scale change

to σu = σu0 + ξ(u− u0).

This model provides information on the upper-tail behaviour of X, i.e., X|X > u,

only and so an appropriate model must be chosen for X < u; we refer to this as

the bulk of the distribution of X. A typical non-parametric model for the bulk is

the empirical distribution F̃ (x) of observations less than u, see Coles (2001). The
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resulting distribution function of X is

F (x) =


F̃ (x) if x ≤ u

1− λu
[
1 + ξ(x−u)

σu

]−1/ξ

+
if x > u,

where λu = 1− F̃ (u). Parametric models for the bulk of X with GPD lower and/or

upper tails, have been proposed in the literature, e.g., Gamma-GPD and Weibull-

GPD mixtures (Behrens et al., 2004) and Normal-GPD mixture (de Melo Mendes

and Lopes, 2004); these models rely on continuity constraints to ensure that the

density of X is smooth across the exceedance threshold.

The choice of u is particularly important when conducting inference using a GPD;

if u is too small, then it is unlikely that the asymptotic arguments which give rise

to the GPD will hold in practice. Choosing u too high reduces the number of data

available for inference, and so parameter estimates will have higher standard errors.

There are numerous heuristic techniques for selecting the threshold and one of the

most commonly used is parameter stability plots. For this technique, estimates of

the shape parameter are observed for a range of u and a suitable u chosen such that

the parameter value lies in a “stable” region, i.e., estimates appear to be somewhat

constant over a neighbourhood of u values. A review of alternative techniques is

provided by Scarrott and MacDonald (2012). To avoid the trade-off entirely, there

has been recent developments in parametric mixture models for the entire distribution

of X, but do not require threshold selection, see Papastathopoulos and Tawn (2013)

and Naveau et al. (2016).

2.1.4 Point process characterisation

Pickands (1971) provides a framework for characterising the modelling approaches

detailed in Sections 2.1.2 and 2.1.3 using point processes. Coles (2001) formulates the
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result in the following theorem:

Theorem 2.1.2. Let X1, . . . , Xn be a sequence of independent and identically dis-

tributed (i.i.d.) random variables and suppose there exists sequences of normalising

constants {an > 0}∞n=1 and {bn}∞n=1 such that (2.1.1) holds, where G takes the form

given in (2.1.2) with lower- and upper-endpoints, zG and zG, respectively. Then for

any u > zG, the sequence of point processes

Nn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

converges on regions of the form (0, 1)× [u,∞) as n→∞, to a Poisson process with

intensity measure

Λ(A) = (t2 − t1)

[
1 + ξ

(
z − µ
σ

)]−1/ξ

+

, (2.1.3)

where A = [t1, t2]× [z, zG) and 0 ≤ t1 < t2 ≤ 1.

To use the point process framework for modelling the extremes of an observed sam-

ple x1, . . . , xn, we select a high exceedance threshold u. We considerA = (0, 1)× [u,∞)

and re-label the N(A) points observed in A as {(t1, x1), . . . , (tN(A), xN(A))}. Note that

if data are observed in k blocks of length m, and we are interested in the distribution

of block-maxima, rather than k−block maxima, we must make a slight adjustment

to the intensity measure in (2.1.3), as the parameters in this measure currently cor-

respond to a GEV for k−block maxima. For example, if we observe 20 years of data,

we may be interested in the distribution of yearly maxima; moreover, we are unlikely

to be interested in the distribution of 20−year maxima as only a single observation

will be available for inference. Thus to make this approach applicable for modelling

block maxima of length m, we simply replace the intensity measure in (2.1.3) with

Λ(A) = k(t2 − t1)

[
1 + ξ

(
z − µ
σ

)]−1/ξ

+

.
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As all data larger than u are used for estimating the GEV parameters, rather than

just the sample of block maxima, this approach can result in more accurate inference

compared to that described in Section 2.1.2.

We can now establish a link to the approaches detailed in Sections 2.1.2 and 2.1.3.

Let Nn(A) be the number of points in A, where Nn(A)→ N(A) ∼ Poi{Λ(A)}, as n→

∞. The event {(Mn − bn)/an ≤ z} is equivalent toNn(Az) = 0 forAz = (0, 1)× (z,∞).

It follows that

Pr

(
Mn − bn
an

≤ z

)
= Pr{Nn(az) = 0}

→ Pr{N(Az) = 0} = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ

+

}
,

as n→∞, and so equality with (2.1.1) is achieved.

A similar approach can be used to show equivalence with the threshold exceedance

approach; first, we factorise Λ(Az) into Λ1([t1, t2])× Λ2([z,∞)) where Λ1([t1, t2]) =

(t2 − t1) and Λ2([z,∞)) =
[
1 + ξ

(
z−µ
σ

)]−1/ξ

+
. It follows that

Pr

{(
Xi − bn
an

≥ z

) ∣∣∣∣ (Xi − bn
an

> u

)}
→ Λ2([z,∞))

Λ2([u,∞))
=

[1 + ξ(z − µ)/σ]−1/ξ

[1 + ξ(u− µ)/σ]−1/ξ

=

[
1 + ξ

(
z − u
σ̃

)]−1/ξ

,

as n → ∞ and for σ̃ = σ + ξ(u − µ). Although equivalence is achieved between the

models themselves, there are differences in how inference is conducted. For the ap-

proach described in Section 2.1.3, the probability of exceeding the threshold u and the

two model parameters are estimated separately; for the point process representation

given above, estimation of the threshold exceedance probability is incorporated into

the inference for the three model parameters. The latter approach is often favourable

over the former as its parameter values are independent of the threshold u; this is par-

ticularly advantageous when incorporating covariate effects into the parameters.
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2.2 Multivariate extreme value theory

2.2.1 Multivariate ordering

Unlike in the univariate case, there exists no natural ordering of variables to define

extremes in a multivariate setting. Barnett (1976) suggest several methods for defining

multivariate extremes; we focus on the two most commonly studied.

A natural extension of the univariate block-maxima approach is component-wise

maxima. We let Xi = {Xi,1, . . . , Xi,d} for i = 1, . . . , n be a sequence of independent

d-dimensional random vectors with common distribution function F , then

Mn =

(
max
1≤i≤n

Xi,1, . . . , max
1≤i≤n

Xi,d

)
(2.2.1)

is the vector of component-wise maxima. Note that the indices for which the compo-

nents attain their respective maxima need not be equal, i.e., arg max1≤i≤nXi,j is not

necessarily equal to arg max1≤i≤nXi,k where j 6= k. This implies that the vector Mn

does not necessarily correspond to an observed vector of the original data, which we

illustrate in Figure 2.2.1. We discuss the limiting distribution of (2.2.1) as n→∞ in

Section 2.2.3.

Alternative characterisations for multivariate extremes can be conducted by con-

sidering the distribution of X conditioned on some event defined through a risk func-

tional l : Rd → R. The univariate random variable l(X) summarises characteristics of

the random vector X, and so X|(l(X) > v), for some v ∈ R, is the variable of interest.

The form of l(·) is usually specific to the application; Coles and Tawn (1994) provide

some natural examples of l(X) which correspond to combinations of variables that

cause structural failure in certain applications, e.g., offshore structures, river-bank

flood defences. A pertinent choice for l(·) is a weighted sum of the components of

X, which has application in extreme precipitation and flooding models, as l(X) can
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denote the total volume of rain over a river catchment area; models for this particular

case are discussed in Sections 2.3.6 and 2.3.5. Another example is l(X) = miniXi,

equivalent to considering X| ∪i (Xi > v), which can be seen to be a natural exten-

sion of the peaks-over-threshold modelling approach; this scenario is considered in

Section 2.2.5.

Illustration of two approaches to defining multivariate extreme events is illustrated

in Figure 2.2.1. Before detailing models for these cases, we proceed by describing a

general approach to modelling dependence in multivariate random vectors, which is

done using copula models. Note that as the j−th component of X is a sequence of

i.i.d. univariate random variables, the results discussed in Section 2.1 are applicable

to their marginal behaviour.

Figure 2.2.1: Examples of classifying bivariate extremes. The left panel gives com-
ponentwise maxima, where the red cross corresponds to the vector Mn. The right
panel illustrates the use of a structure variable, where the red crosses correspond to
the vector {(X1, X2) : X1 +X2 ≥ m} and the blue line is X1 +X2 = m.

2.2.2 Copula based modelling

A valid and oft used approach for modelling multivariate extremes utilises a copula to

describe dependence between univariate variables (Joe, 1997; Nelsen, 2006). Marginal
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modelling and dependence modelling is conducted separately, which can lead to faster

and more intuitive inference. All dependence is encapsulated in the copula, which is

established by Sklar’s Theorem (Sklar, 1959).

Theorem 2.2.1 (Sklar’s Theorem). If X = (X1, . . . , Xd) has joint distribution F ,

and Xi ∼ Fi for i = 1, . . . , d and each Fi are continuous, then there exists a unique

copula C such that

F (x) = C{F1(x1), . . . , Fd(xd)}.

The copula C is a multivariate distribution function C : [0, 1]d → [0, 1] on standard

uniform margins. A copula can incorporate any marginal distributions and preserves

the dependence in X if the margins are transformed; this can be achieved using

the probability integral transform. That is, if Xi is a continuous random variable

with distribution function Fi, and its inverse distribution function F−1
i exists, then

U = Fi(X) ∼ Unif(0, 1) and F−1
i (U) ∼ Fi. For example, if CU = C is a copula on

uniform margins, a copula CF on standard Frechét margins is simply

F (x) = CF{−1/ logF1(x1), . . . ,−1/ logFd(xd)}.

Similarly, a copula on standard exponential margins would be

F (x) = CE{− log[1− F1(x1)], . . . ,− log[1− Fd(xd)]},

and further examples can be found using the corresponding inverse distribution func-

tions for the desired margins.

Two examples of widely used parametric copulae are the logistic, or Gumbel,

copula (Gumbel, 1960), given by

CF (x) = exp

{
−

[
d∑
j=1

x
−1/α
j

]α}
(2.2.2)
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for α ∈ (0, 1], and the Gaussian copula,

CU(x) =

∫ Φ−1(x1)

−∞
· · ·
∫ Φ−1(xd)

−∞
φd(y; Σ)dy, (2.2.3)

where φd(·; Σ) denotes the standard d−dimensional Gaussian density with correlation

matrix Σ, which determines the dependence. Dependence in (2.2.2) is determined by

α: if α = 1, we have independence and as α→ 0, we have perfect dependence.

Results in multivariate extreme value theory are often given in standardised mar-

gins; for example, we consider the multivariate max-stable distribution in Section 2.2.3

which is given on standard Fréchet margins, and Heffernan and Tawn (2004) use stan-

dard Gumbel margins for their conditional extremes approach, which is discussed in

Section 2.4.2. Different margins are often used to accentuate different properties of

X; Fréchet margins accentuate the dependence in the largest values, whilst Gaus-

sian margins accentuate dependence in the body. This is illustrated in Figure 2.2.2,

where we plot transformations of simulated data from a standard bivariate Gaussian

distribution.

Figure 2.2.2: Illustration of marginally transformed data. The parent distribution is
the left panel, which is standard Gaussian with correlation 0.8.

2.2.3 Multivariate extreme value distribution

We now consider componentwise maxima as defined in (2.2.1). The probability dis-

tribution for Mn can be derived exactly by considering an i.i.d. sample X1, . . . ,Xn
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with common distribution F (x) for x ∈ Rd. Then

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . ,Xn ≤ x) = F n(x),

with vector operations taken componentwise above and thereafter. As in the uni-

variate case discussed in Section 2.1.2, the distribution F n is not typically used in

practice as F is unknown and F n is potentially degenerate for n → ∞. We instead

detail a normalisation of Mn for which the limiting distribution, as n → ∞, is the

multivariate extreme value distribution; the multivariate analogue of (2.1.2), which is

reviewed in (Beirlant et al., 2006, Chapter 8).

Assume that there exist vectors an = (an1, . . . , and) > 0 and bn, such that

Pr

{
Mn − bn

an
≤ x

}
→ G(x), as n→∞, (2.2.4)

for some d-dimensional distribution G, which is non-degenerate in each marginal.

Similarly to the univariate case, we say that F is in the MDA of G if the limit in

(2.2.4) holds. Here G is termed the multivariate extreme value (MEV) distribution,

and can be considered as a copula, i.e.,

G(x1, . . . , xd) = CMEV (G1(x1), . . . , Gd(xd)), (2.2.5)

where Gj, for j = 1, . . . , d, is the distribution function of a GEV(µj, σj, ξj) random

variable. Following the discussion in Section 2.2.2, we standardise the margins of this

copula; without loss of generality, we rewrite (2.2.5) asG(x) = CMEV
F (x) = exp{−V (x)},

which has standard Fréchet margins, i.e,

G(∞, . . . ,∞, xj,∞, . . . ,∞) = Pr{Xj ≤ xj} = exp

{
− 1

xj

}

for xj > 0 and all j = 1, . . . , d. We now discuss properties of the exponent measure
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V , which is used to model dependence in X.

Analogously to the univariate case, we require that G must satisfy max-stability,

which implies that the function V must satisfy certain criteria. A multivariate distri-

bution is said to be max-stable if, for allN ∈ N, there exists vectors AN > 0 = (0, . . . , 0)

and BN , such that

GN(x) = G(ANx + BN). (2.2.6)

A random vector follows an MEV distribution if and only if its distribution function

satisfies max-stability, which implies that V is an homogeneous function of order −1,

i.e., V (sx1, . . . , sxd) = s−1V (x) for all s > 0. Furthermore, the copula CMEV
F : Rd →

[0, 1] must satisfy all properties of a valid probability distribution function. Pickands

(1981) illustrates that these two conditions are met if and only if

V (x) = d

∫
Sd−1

max
i=1,...,d

{
wi
xi

}
dH(w), (2.2.7)

where Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1} is a (d − 1)-dimensional unit simplex, and

H is termed the spectral measure and satisfies

∫
Sd−1

dH(w) = 1, and

∫
Sd−1

widH(w) = 1/d for i = 1, . . . , d, (2.2.8)

i.e., H is a valid probability distribution, or measure, on Sd−1. Special cases of

dependence in X arise when H is a discrete measure, e.g., if H puts equal mass 1/d on

the boundaries of Sd−1, this leads to V (x1, . . . , xd) = x−1
1 +· · ·+x−1

d , i.e., independence

between all components of X. Alternatively, if H place all mass along the diagonal

of Sd−1, i.e., H({1/d}, . . . , {1/d}) = 1, this leads to V (x) = max{x−1
1 , . . . , x−1

d },which

corresponds to perfect dependence between all components of X.

If H is a differentiable distribution function with valid density h, then Coles and
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Tawn (1991) provide an alternate link between V and H, i.e.,

∂V

∂x1 . . . ∂xd
= − 1

(
∑

i xi)
d+1

h

(
x∑
i xi

)
.

Using this link, it is possible to derive classes of parametric forms for V through

careful specification of h. One notable example is the Gumbel, or logistic copula,

given in (2.2.2), which follows by specifying

h(w) =
1

d

{
d−1∏
i=1

(
j

α
− 1

)}( d∏
i=1

wi

)−1/α−1( d∑
i=1

w
−1/α
i

)α−d

,

for w ∈ Sd−1 and α ∈ (0, 1]. The limiting value of α leads to the boundary cases for H

detailed above; for α = 1 and α→ 0, we induce independence and perfect dependence,

respectively. Other examples for V include the asymmetric logistic, negative logistic

and Hüsler-Reiss distribution, for which forms were first proposed by Tawn (1990),

Galambos (1975) and Hüsler and Reiss (1989), respectively.

2.2.4 Regular variation

Resnick (1987) details an alternative approach to characterising the extremal de-

pendence in a random vector X in terms of pseudo-radial and -angular components

(R,W). Let X ∈ Rd+ have common marginals satisfying Pr{Xj > x} ∼ cx−1, as

x→∞, for j = 1, . . . , d and for some c > 0. With ‖·‖ the L1 norm, we define (R,W)

as

R = ‖X‖ and W =
X

‖X‖
,

and it follows that R > 0 and W ∈ Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1}; the (d − 1)-

dimensional unit simplex. The vector X is said to be regularly varying if, for r ≥ 1,

lim
t→∞

Pr{R > tr,W ∈ B|R > t} = H(B)r−1, (2.2.9)
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where B ⊂ Sd−1 is a measurable set and the spectral measure H satisfies the con-

straints detailed in (2.2.8). We note that (2.2.9) states that under the assumption of

regular variation, that we have independence of R and W in the limit; and so for the

largest magnitude events, i.e., large R, the distribution of mass on Sd−1 controls the

extremal dependence of X. de Haan et al. (1984) illustrate that the distribution of X

is in the MDA of the multivariate extreme value distribution if X is regularly varying.

2.2.5 Multivariate peaks-over-threshold

In Section 2.2.1, we briefly discussed the use of risk functionals for modelling the

distribution of X, given that some univariate function l(X) exceeds a threshold; this

can be regarded as a multivariate analogue of the univariate peaks-over-threshold

approach to modelling extreme events, described in Section 2.1.3. Another analogue

is the multivariate GPD distribution proposed by Rootzén and Tajvidi (2006) with

further work by Rootzén et al. (2018b), Rootzén et al. (2018a) and Kiriliouk et al.

(2019).

Using the notation in Section 2.2.3 and assuming that the limit in (2.2.4) holds,

we define xG ∈ (−∞, 0]d as the vector of lower endpoints of the marginal distributions

G1, . . . , Gd. Rootzén et al. (2018b) show that, as n→∞,

max

{
X− bn

an
,xG

} ∣∣∣∣(X 
 bn)

converges in distribution to the random vector Y, which follows a multivariate gen-

eralised Pareto distribution. We denote the CDF of Y by G∗(y1, . . . , yd) and its

marginals G∗i (yi) for i = 1, . . . , d; we can link G∗ and the corresponding G in (2.2.4)

through the expression

G∗(y) =
logG(min{y1, 0}, . . . ,min{yd, 0})− logG(y)

logG(0)
, (2.2.10)
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which implies that the dependence in G∗ is determined by that of G. Whilst we do not

detail models for the dependence structure in G∗ here, we do discuss some interesting

properties that it holds.

We begin by noting that the marginals, G∗1, . . . , G
∗
d, need not be univariate GPD,

as the conditioning of the events {Xj > bn,j} and {X 
 bn} are not equivalent.

However, conditioning on the marginal distributions being strictly positive does yield

GPD margins; that is,

Pr{Yj > y|Yj > 0} = 1−
(

1 + ξj
y

σj

)−1/ξj

+

,

for σj > 0 and for all j = 1, . . . , d.

Furthermore, G∗ satisfies a multivariate analogue of threshold stability (see Sec-

tion 2.1.3). Formally, if Y ∼ G∗ and we have u ≥ 0, σ + ξu > 0 and G∗(u) < 1,

then the distribution of (Y − u)|(Y 
 u) is also multivariate GPD with the same

marginal shape parameters ξ as G∗, but with translated scale parameters σ + ξu.

2.2.6 Extremal dependence

A particularly important consideration for modelling multivariate, or spatial, extremes

is the notation of extremal dependence, i.e., the tendency of variables to concurrently

experience extreme events. Extremal dependence within a random vector is often

described by one of two classes: asymptotic dependence, for which there is a non-zero

probability of the most extreme events occurring together, and asymptotic indepen-

dence; here our variables of interest may exhibit positive association, but their most

extreme values do not occur simultaneously. Limiting sub-classes of these two depen-

dence types include perfect dependence and independence, respectively.

We formally define asymptotic dependence and asymptotic independence using

some commonly used measures in the literature; Coles et al. (1999) detail these for
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bivariate data. The extremal dependence models discussed in Section 2.2.3 and 2.2.5

are designed for modelling asymptotic dependence only. The copula models described

in Section 2.2.2 can be used for modelling asymptotic independence and this is dis-

cussed in a spatial setting in Section 2.3.3.

For a bivariate vector (X1, X2) with arbitrary margins, asymptotic dependence

can be quantified through the upper tail index, χ ∈ [0, 1] (Joe, 1997), where

χ := lim
q↑1

χ(q), with χ(q) = Pr{X1 > F−1
1 (q)|X2 > F−1

2 (q)}, (2.2.11)

and F1 and F2 the distribution functions of X1 and X2, respectively. In practice, χ

cannot be estimated in the limit as q ↑ 1; instead, estimates are provided by fixing

high q < 1 and approximating χ via χ(q). Assessing the choice of q can be achieved

through the use of threshold stability plots, similar to those described in Section 2.1.3.

Estimates of χ > 0 suggest asymptotic dependence in (X1, X2), with strengthening

dependence as χ→ 1. For χ = 1 and χ = 0, we have perfect dependence and asymp-

totic independence, respectively, in (X1, X2). Theoretical values of χ for distributions

can often be derived; consider a bivariate extreme value distribution for (X1, X2) with

distribution function G(x1, x2) = exp{−V (x1, x2)}, with V defined in (2.2.7). It can

be shown that χ = 2 − V (1, 1), e.g., the logistic copula in (2.2.2) has χ = 2 − 2α

for α ∈ (0, 1]. Furthermore, it can be shown that V (1, 1) < 2, except in the special

case of independence; it follows that χ > 0 for all (X1, X2) ∼ G that exhibit positive

association and thus all other bivariate extreme value distributions are asymptotically

dependent. We further note that χ = 0 for the bivariate Gaussian distribution with

ρ < 1, implying that data of this type are asymptotically independent.

The measure χ gives a simple summary measure of extremal dependence within

the class of asymptotically dependent distributions, but it fails to provide any measure

of discrimination for asymptotically independent variables; thus we require another

measure alongside χ. Coles et al. (1999) define the coefficient of asymptotic indepen-
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dence as the measure χ̄ ∈ [−1, 1], with χ̄ := limq↑1 χ̄(q) where

χ̄(q) =
2 log Pr{X1 > F−1

1 (q)}
log Pr{X1 > F−1

1 (q), X2 > F−1
2 (q)}

− 1.

This measure has the following properties: if (X1, X2) are asymptotically dependent,

then χ̄ = 1 and the strength of the extremal dependence between X1 and X2 decreases

with χ̄; a value of χ̄ = 0 corresponds to near extremal independence. Tail dependence

can be completely summarised using the pair of measures (χ, χ̄). For asymptotic

dependence, we have (χ > 0, χ̄ = 1) where χ increases with the level of asymptotic

dependence. Conversely, we have (χ = 0, χ̄ ≤ 1) for the class of asymptotically

independent variables; and χ̄ increasing with the strength of extremal dependence.

An alternative measure for characterising asymptotic independence, provided by

Ledford and Tawn (1996), is the coefficient of tail dependence 0 < η ≤ 1. This

measure is defined through the assumption on the joint tail distribution that

Pr

{
F1(X1) > 1− 1

u
, F2(X2) > 1− 1

u

}
= L(u)u1/η, as u→∞, (2.2.12)

where L is a slowly-varying function1. It can be shown that χ̄ = 2η − 1, but we detail

both as η plays a particularly vital role in Chapters 3 and 4.

We now detail measures that characterise extremal dependence in higher dimen-

sional settings, and so consider now X = (X1, . . . , Xd). Schlather and Tawn (2003)

propose a measure for quantifying multivariate dependence using the extremal coef-

ficient θd ∈ [1, d]; in the bivariate case, the subscript d is often dropped. Assuming

that all marginals of X are unit Fréchet, they illustrate that

Pr{X1 ≤ z, . . . , Xd ≤ z} = exp

(
−V (1, . . . , 1)

z

)
= exp

(
−θd
z

)
=

[
exp

(
−1

z

)]θd
,

1L(x) satisfies L(cx)/L(x)→ 1 as x→∞ for any fixed c > 0.
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which follows as V is homogeneous of order −1. The measure can be interpreted as

the effective number of independent marginal variables in X; for θd = 1 and θd = d we

have complete dependence and independence, respectively, between all d marginals.

Given D as the set of all possible subsets of {1, . . . , d} of cardinality at least

equal to two, Wadsworth and Tawn (2013) provide a multivariate extension of χ to

d dimensions, which we denote χ(D) for D ∈ D. Asserting that X has arbitrary

marginals with distribution functions F1, . . . , Fd, then the d-dimensional joint tail

dependence for marginals of X indexed by D is

χ(D) = lim
q↑1

Pr{Xj > F−1
j (q),∀j ∈ D|Xi > F−1

i (q), i ∈ D}.

Wadsworth and Tawn (2013) refer to the cases χ(D) > 0 and χ(D) = 0 as strong

joint tail dependence and weak joint tail dependence, respectively, between variables

{Xj : j ∈ D}.

The d-dimensional extension of η, denoted ηD ∈ (0, 1], is defined by Eastoe and

Tawn (2012) and describes extremal dependence amongst a subset of components of

X; they make the assumption that

Pr

(
min
i∈D
{Fi(Xi)} > 1− 1

u

)
= LD(u)u−1/ηD , as u→∞, (2.2.13)

for a slowly-varying function LD. If there is asymptotic dependence between all

components, i.e., X(D) > 0 for all D ∈ D, then ηD = 1. The cases 1/|D| < ηD < 1,

ηD = 1/|D| and 0 < ηD < 1/|D| correspond to positive extremal association, near

extremal independence and negative extremal association, respectively.
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2.3 Spatial extremes

2.3.1 Overview of spatial statistics

Before detailing models for the extremes of spatial processes, we provide a brief

overview of some fundamental concepts of spatial statistics; this material is covered

by Diggle and Ribeiro (2007).

We define a stochastic process {X(s) : s ∈ S} for some index set S ⊆ Rp for

p ∈ N. When considering spatial processes, it is often appropriate to take p = 2 as this

corresponds to (x, y) or (lon, lat) coordinates, and so we proceed as such. Typically,

data that are available for inference are realisations Xt = (Xt(s1), . . . , Xt(sd)) for

times t = 1, . . . , n and are treated as observations of said process {X(s)} at sampling

locations (s1, . . . , sd) for d ∈ N. Inference on Xt can be made by specification of some

distribution F to describe the characteristics of {X(s)}, such that for a finite collection

of sites (s1, . . . , sd), we have (X(s1), . . . , X(sd)) ∼ F . A common specification for

distribution F is a multivariate Gaussian, which gives rise to a Gaussian process.

Properties of F are often specified to be a function of s ∈ S; that is, the statistical

characteristics of a spatial process are dependent on location. For example, if {X(s)}

is a Gaussian process, then F is determined by a mean component µ(s) = E[X(s)],

a variance component σ2(s) = Var (X(s)), and a correlation function ρ(s, s′) which

determines the dependence between X(s) and X(s′) for s, s′ ∈ S.

A practical assumption that is often made about spatial processes is one of station-

arity. If a Gaussian process {X(s)} is second-order stationary, then its marginal char-

acteristics are constant over S and correlation is a function of displacement h = s−s′;

we can then rewrite the correlation function as ρ(h) where ρ(0) = 1. A further assump-

tion to make is that the process is isotropic, i.e., invariant to rotation or direction.

In this case, we can replace displacement s − s′ with ‖s − s′‖, where ‖ · ‖ denotes

the Euclidean norm; this implies that correlation is a function of distance only, and
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not dependent on the orientation of sites. Potential parametric forms for the cor-

relation function include the Matérn, or powered exponential, families (Diggle and

Ribeiro, 2007). The assumption of stationarity further implies that the variogram,

denoted γ(s, s′) = var [X(s) −X(s′)]/2 for s, s′ ∈ S, can be written as a function of

h; we mention the variogram as some dependence models are specified through its

characteristics, rather than those of ρ(·).

Although Gaussian processes are well studied and full inference with them is com-

putationally feasible, they may not be well suited for modelling the extreme char-

acteristics of some spatial processes as they do not necessairly capture tail decay

appropriately; Gaussian processes are inherently asymptotically independent, i.e., for

any s, s′ ∈ S we have χ = 0 for (X(s), X(s′)), regardless of the distance ‖s− s′‖. We

follow with an overview of methods for statistical modelling of the extremes of spatial

processes; a review of these methods is given by Davison et al. (2012) with recent

advances detailed by Huser and Wadsworth (2020).

2.3.2 Max-stable processes

Max-stable processes concern the behaviour of spatial maxima and are widely applied

in the literature, as they provide a convenient analogue of the multivariate extreme

value distribution discussed in Section 2.2.3; a review of max-stable processes is pro-

vided by Ribatet (2013). Let {Xt(s) : s ∈ S}nt=1 for index set S ⊆ Rp, p ∈ N be

a sequence of n independent replications of a continuous stochastic process {X(·)}.

For suitable scaling functions an(s) > 0 and bn(s) ∈ R, which are continuous over all

s ∈ S, we define the spatial process of maxima as

{Zn(s) : s ∈ S} =

{
max
1≤t≤n

Xt(s)− bn(s)

an(s)
: s ∈ S

}
. (2.3.1)
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This can be thought of as the point maxima of n independent and identically dis-

tributed copies of {X(s) : s ∈ S}. Figure 2.3.1 illustrates an example of spatial

maxima for a 1-dimensional process, i.e., p = 1.

Figure 2.3.1: Illustration of spatial maxima for a 1-dimensional process. The red line
gives the maxima over n = 5 replications. The underlying process is Gaussian with
powered exponential correlation, with margins transformed to standard exponential.

Our interest lies in the limiting process {Zn(s) : s ∈ S} as n → ∞: if it exists

and is non-degenerate in all marginals, then {Z(s)} = limn→∞{Zn(s)} is a stationary

max-stable process with GEV marginals. Similarly to Section 2.2, it is convenient to

assert unit Fréchet margins for {Z(s)} and so we do so throughout the remainder of

this section. The joint distribution of (Z(s1), . . . , Z(sd)) at a finite collection of sites

s = (s1, . . . , sd) is an MEV distribution, and so the distribution function is given by

Pr{Z(s1) ≤ z1, . . . , Z(sd) ≤ zd} = exp (−V (z1, . . . , zd)) , (2.3.2)

with exponent V , defined in (2.2.7); if {Z(s) : s ∈ S} is stationary, then V is a

function of the pairwise distances between sites s. Models for V arise through point

process constructions of max-stable processes; we detail two here and describe some

of the forms for V that they generate.
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Smith (1990) propose the following construction for a max-stable process. Let

{(Wi, Ri)}∞i=1 be points of a Poisson process P on the space S ×R+ for S ⊆ Rp, with

intensity given by λ(w, r) = dw × r−2dr. With f a non-negative function on S such

that
∫
S f(s)ds = 1, then

{Z(s) : s ∈ S} =

{
sup

(W,R)∈P
Rf(s−W ) : s ∈ S

}
(2.3.3)

is a stationary max-stable process with standard Fréchet margins. Smith (1990) pro-

vide a physical interpretation of (2.3.3) by suggesting that the function f defines the

shape of an event, centred at W , and R describes its magnitude. Specification of f

can lead to parametric models for {Z(s)}; Smith (1990) develops a model, usually

termed the Smith process, by letting f be a p−variate Gaussian density with covari-

ance matrix Σ. This leads to closed parametric form for the joint distribution (2.3.2)

with exponent

V (z1, z2) =
1

z1

Φ

{
a(h)

2
+ a(h)−1 log

(
z2

z1

)}
+

1

z2

Φ

{
a(h)

2
+ a(h)−1 log

(
z1

z2

)}
,

(2.3.4)

where a2(h) = hTΣ−1h with h = ‖s1− s2‖, and Φ is the standard normal distribution

function. Figure 2.3.2 illustrates a simulated Smith process; these are typically too

smooth to provide realistic models for environmental data.

Schlather (2002) provides another characterisation of {Z(s)} which gives rise to

other commonly used models, and is detailed in Davison et al. (2012). Let {Ri}∞i=1

be points of a Poisson process on R+ with intensity measure given by r−2dr and let

{Wi(s)}∞i=1 be independent replicates of a stationary stochastic process {W (s) : s ∈ S}

for S ⊆ Rp, that satisfies E[max{0,Wi(s
∗)}] = 1 for any s∗ ∈ S. Then

{
Z(s) : s ∈ S

}
=

{
max
i
Ri max{0,Wi(s)} : s ∈ S

}
. (2.3.5)
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Similarly to (2.3.3), the stochastic process {W (s)} describes the shape of an event

with R being its magnitude. Specification of W (s) leads to parametric forms for the

exponent V in (2.3.2). For example, the Schlather process (Schlather, 2002) is derived

by taking W (s) to be a stationary standard Gaussian process with correlation function

ρ(h), scaled such that E[max{0,Wj(s
∗)}] = 1. This gives rise to the exponent

V (z1, z2) =
1

2
(z−1

1 + z−1
2 )

(
1 +

[
1− 2

{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2
)
.

An example realisation of a Schlather process can be found in Figure 2.3.2.

Other popular models that can arise from the representation given by (2.3.5)

are the Brown-Resnick (Davis and Resnick, 1984; Kabluchko et al., 2009), and the

extremal-t (Opitz, 2013), processes. The former takes W (s) = exp [ε1(s)− γ(s)],

where ε1(s) is an intrinsically Gaussian process with variogram γ(h) and with ε1(o) =

0 almost surely; here o denotes the origin. This is a generalisation of the Smith process,

as its exponent is equal to (2.3.4) except with a2(h) = 2γ(h); note that if γ(h) ∝ h2,

then the two processes are equivalent. Furthermore, if {Z(s)} is a Brown-Resnick

process, then (Z(s1), . . . , Z(sd)) follows the Hüsler-Reiss distribution mentioned in

Section 2.2.3. The extremal-t process generalises the Schlather process by replacing

max{0,Wi(s)} in (2.3.5) with cν max{0, ε2(s)}ν , where cν =
√
π2−(ν−2)/2Γ ((ν + 1)/2)−1

for ν ≥ 1 and Γ denotes the Gamma function; here ε2 is a standard Gaussian process

with correlation function ρ. The exponent function for this model is

V (z1, z2) =
1

z1

Tν+1

{
−ρ(s2 − s1)

b
+ b−1

(
z2

z1

)1/ν
}

+
1

z2

Tν+1

{
−ρ(s2 − s1)

b
+ b−1

(
z1

z2

)1/ν
}
,

where Tν denotes the CDF of a Student’s t random variable with ν degrees of freedom

and b2 = {1− ρ(s2 − s1)2}/(ν + 1).

The extremal dependence measures in Section 2.2.6 can be naturally extended

to a spatial setting. For example, replacing X1 and X2 in (2.2.11) with Z(s1) and
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Z(s2), we can rewrite χ as χ(s1, s2), i.e., a function of s1, s2 ∈ S. For stationary Z,

we expect these measures to be a function of distance h = ‖s1 − s2‖. Following the

properties of V discussed in Section 2.2.6, max-stable processes exhibit asymptotic

dependence, or independence, at all distances. That is, if {Z(s) : s ∈ S} exhibits

positive spatial association, then χ(s1, s2) > 0 for all s1, s2 ∈ S, regardless of the

value of h. This makes them an inappropriate choice for modelling environmental

data that exhibits asymptotic independence. Wadsworth and Tawn (2012) describe

an inverted max-stable process that exhibits asymptotic independence, detailed in

Section 2.3.3.

2.3.3 Inverted max-stable processes

Following the approach of Wadsworth and Tawn (2012), let {Z(s) : s ∈ S} be a max-

stable process with unit Fréchet margins, as defined in (2.3.5). Then Y (s) = 1/Z(s)

is the corresponding inverted max-stable process on standard exponential margins.

The joint survivor function for Y (s) is

Pr{Y (s1) ≥ y1, . . . , Y (sd) ≥ yd} = exp{−V (1/y1, . . . , 1/yd)}, (2.3.6)

where V is the exponent for Z(s), defined in (2.3.2). From (2.3.6), it can be shown

that η(s1, s2) = 1/V (1, 1) for all s1, s2 ∈ S, i.e., unless Z is perfectly dependent, Y (s)

is asymptotically independent at all distances. The intuition behind this follows by

noting that the reciprocal is a monotonically decreasing transformation, which means

that the copula for Z(·) is inverted; the lower tails of the max-stable process become

the upper tails of the inverted max-stable process, and vice-versa. As the lower tails

of Z(s) are asymptotically independent, so too are the upper tails of Y (s).

Figure 2.3.2 illustrates two max-stable processes and their respective inverted max-

stable counterparts; we observe that tail dependence is reversed by taking the inverse.
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Any of the max-stable models in Section 2.3.2 can be transformed in this way, and

will exhibit asymptotic independence.

Figure 2.3.2: Simulated max-stable (left panels), and inverted max-stable (right pan-
els), processes. Top row: Smith, with covariance matrix Σ ∈ (2.3.4) with σ2

1 = 1,
σ2

2 = 1 and σ12 = 0.3. Bottom row: Schlather process with powered exponential ρ(h)
with scale and shape parameters, 1 and 0.5, respectively. All processes are on Gumbel
margins.

2.3.4 Alternatives to max-stable processes

Recent developments in the literature propose extensions of max-stable, and inverted

max-stable, processes that are able to capture a much wider range of extremal depen-

dence structures. We follow Huser and Wadsworth (2020) and give a brief overview

of these models.

Wadsworth and Tawn (2012) propose a hybrid process, often termed a max-

mixture, that takes point-wise maxima of a weighted mixture of an asymptotically

dependent process, say {Z1(s) : s ∈ S}, and an asymptotically independent process

{Z2(s) : s ∈ S}; both of which have common Fréchet margins. They define the
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max-mixture process by Z(s) = max{αZ1(s), (1−α)Z2(s)} for α ∈ [0, 1]. The result-

ing process exhibits a mixture of the dependence in Z1 and in Z2, with the mixing

proportion controlled by the weight α. We briefly consider a model of this type in

Chapter 7.

Another proposed set of models for spatial extremes are random scale mixtures,

which are of the form X(s) = RW (s) for general R > 0 and W ; processes of this type

have been almost fully characterised in a bivariate setting by Engelke et al. (2019b).

Models constructed from random scale mixtures can be particularly flexible as they

can be constructed to be able to capture either class of extremal dependence. The

heaviness of the tails of R relative to those of W is the driving factor of the dependence

exhibited by the resulting X(s) (Huser and Wadsworth, 2020). For example, if W is

a standard Gaussian process and R has Pareto upper-tails, i.e., Pr{R > r} ∼ Kr−γ

as r → ∞ for K > 0 and γ > 0, then X(s) is asymptotically dependent; for the

same W and R with Weibull upper-tails, i.e., Pr{R > r} ∼ Krα exp(−θrβ) as r →∞

for constants K, θ, β > 0 and α ∈ R, then X(s) exhibits asymptotic independence.

Thus, through careful model specifciation for R which allows for both heavy and

light tail decay as sub-classes, a model can be constructed that is appropriate for

data exhibiting either class of extremal dependence; an approach first considered by

Huser et al. (2017). An alternative approach is proposed by Huser and Wadsworth

(2019), where they let X∗(s) = RδW (s)1−δ for δ ∈ [0, 1] with R ≥ 1 a Pareto random

variable and W (s) an asymptotically independent process with unit Pareto margins.

The relative heaviness of the tails of R and of W (s) in this mixture is controlled by

the parameter δ. Huser and Wadsworth (2019) show that if δ ≤ 0.5 then X(s) is

asymptotically independent, and asymptotically dependent otherwise.

The final class of models we discuss are max-infinitely divisible (max-id) processes,

which were first considered in the context of modelling block-maxima by Padoan

(2013). Whilst we omit full details for these processes, we note that they satisfy a
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similar property to max-stability, namely max-infinite divisiblity. A d-dimensional

distribution G is max-id if Gt is a valid distribution for all t ∈ R+. Every max-id

distribution is max-stable, which can be seen by setting t = N ∈ N and considering

(2.2.6); however, the reverse is not true. Thus, max-id processes can theoretically

capture a wider range of dependence structures than max-stable processes, which

includes asymptotic independence. Whilst the max-id model of Padoan (2013) does

not allow for max-stable processes as a sub-class, recent advances by Bopp et al.

(2020) and Huser et al. (2020) have developed models that accommodate this feature.

2.3.5 Pareto processes

Whilst max-stable processes can be considered to be the spatial extension of MEV

random variables, the natural spatial analogue of multivariate generalised Pareto ran-

dom variables is the generalised Pareto process. First considered by Buishand et al.

(2008) with further details provided by Ferreira and de Haan (2014), these processes

arise as the limiting distribution of

[
1 + ξ(s)

{
X(s)− bn(s)

an(s)

}]1/ξ(s)

+

∣∣∣∣∣
(

sup
s∈S

X̃n(s) > 0

)
, as n→∞, (2.3.7)

where {X̃n(s)} = {(X(s) − bn(s))/an(s)} for sequences an(s) > 0 and bn(s) as de-

scribed in (2.3.1), and ξ(s) is the shape parameter of the GEV distribution at site

s ∈ S. Although we do not discuss models for (2.3.7), we note that inference for

Pareto processes is conducted in a finite-dimensional setting and so the modelling

techniques for the multivariate Pareto distribution described in Section 2.2.5 can be

applied here, i.e., the relationship described in (2.2.10) can be exploited. It follows

that the Pareto process is asymptotically dependent at all distances; note that if

the underlying process X(s) is asymptotically independent, then the corresponding

Pareto process is degenerate.
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Recent extensions of generalised Pareto processes, termed l−Pareto processes by

Dombry and Ribatet (2015) and r−Pareto processes by de Fondeville and Davi-

son (2018), generalise the formulation in (2.3.7) by replacing the conditioning event

sups∈S{X̃(s)} > 0 with the exceedance of a risk-functional l, i.e., l({X̃(s)}) > v for

some s ∈ S and fixed v ∈ R. Valid functionals must be homogeneous of order 1

when {X̃(s)} has standardised Pareto-type marginals, and so possible examples in-

clude
∫
A X̃(s)ds, infs∈A{X̃(s)} or sups∈A{X̃(s)} for A ⊆ S. Equivalent functionals

can be derived for a finite dimensional domain S, and extensions to accommodate

other types of functionals have been recently proposed by de Fondeville and Davison

(2020).

2.3.6 Aggregation of spatial processes

We now detail some of the approaches that have been developed for modelling the

extremal behaviour of the aggregate of a spatial process over a region A ⊂ S, i.e., the

upper tail behaviour of

Ri(A) =
1

|A|

∫
A
Xi(s)ds,

where |A| denotes the area of A.

Following a recharacterisation of the max-stable process construction in (2.3.3)

by Coles (1993), Coles and Tawn (1996) derive results for the distribution of the

maxima of the aggregate max1≤i≤n{Ri(A)}. They begin with the assertion that

max1≤i≤n{Xi(s)} ∼ GEV {µ(s), σ(s), ξ(s)} for each s ∈ A and then derive the CDF of

max1≤i≤n{Ri(A)} as a function of the marginal GEV parameters and the components

of (2.3.3). We omit this full derivation here as in the general case it has no analytical

solution; however, if the shape parameter is homogeneous over A, i.e., ξ(s) = ξ for all
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s ∈ A, then Coles and Tawn (1996) illustrate that

Pr

(
max
i=1,...,n

{Ri(A)} ≤ r

)
=


exp[−nθA{1 + ξ(r − µ̄)/σ̄}−1/ξ

+ ], if ξ 6= 0,

exp[−nθA exp{−(r − µ̄)/σ̄}], if ξ = 0,

(2.3.8)

where µ̄ = |A|−1
∫
A µ(s)ds and σ̄ = |A|−1

∫
A σ(s)ds. The scaling factor θA is termed

the areal coefficient, and summarises the effect of extremal dependence over A; fol-

lowing the notation in (2.3.3), it is defined as

θA =


(σ̄|A|)−1/ξ

∫
A

{∫
A f(s− w)ξσ(s)ds

}1/ξ
dw), if ξ 6= 0,∫

A exp
{

(σ̄|A|)−1
∫
A log f(s− w)σ(s)ds

}
dw, if ξ = 0.

Further formalisation of this work is provided by Ferreira et al. (2012).

Extensions of this framework are given by Engelke et al. (2019a) who derive a

similar coefficient to θA, which they denote θl. This approach differs slightly from

that of Coles and Tawn (1996) as it links the distribution of X(s∗) for any s∗ ∈ S

to the distribution of a general risk functional l(·) of the process; examples of these

were given in Section 2.3.5. Engelke et al. (2019a) illustrate that, for any s∗ ∈ S and

x ∈ R, then

Pr

[
l({X(s)})− l(bn(s))

l(an(s))
> x

]
≈ θl Pr

{
X(s∗)− bn(s∗)

an(s∗)
> x

}
, (2.3.9)

for sufficiently large n, and where the sequences an(s) > 0 and bn(s) are as described

in (2.3.1). While we omit the form for θl, we note that equality with θA can be

achieved by considering l({X(s)}) = |A|−1
∫
AX(s)ds.

Alternative modelling approaches for RA utilise the functional Pareto processes de-

scribed in Section 2.3.5, see de Fondeville and Davison (2020) for one example. These,

and the earlier approaches described, rely on models constructed from asymptotically
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dependent processes, which means that they may be inappropriate for application to

data that exhibits asymptotic independence. We detail an approach for modelling RA

in Chapter 5 which can accommodate the underlying marginal process {X(s)} being

asymptotically independent; this is based on the conditional extremes framework.

2.4 Conditional extremes

2.4.1 Overview

We now introduce a wholly different approach to modelling multivariate and spa-

tial extremes. First proposed by Heffernan and Tawn (2004) with generalistions by

Heffernan and Resnick (2007), the conditional extremes approach differs from the

methods described in Sections 2.2 and 2.3 as it does not focus on the joint extremal

behaviour of a random vector or process; rather, Heffernan and Tawn (2004) study

the behaviour of a random vector by conditioning on one component being extreme

and then modelling the vector with the conditioning variable removed. Inference for

this model and its extensions are typically less computationally expensive than other

models for multivariate extremes, and they prosper from the benefit of being able to

model both asymptotic dependence and asymptotic independence in a parsimonious

manner.

2.4.2 Multivariate conditional extremes

Suppose we have a random vector X = (X1, . . . , Xd) with exponential upper-tails

for each margin, i.e., Pr{Xj ≥ x} ∼ C exp(−x) as x → ∞ for all j = 1, . . . , d

and constant C > 0. We denote one of its components as a conditioning variable

Xi for any i = 1, . . . , d, and define X−i as the vector X with the i−th component

removed. Heffernan and Tawn (2004) define the vector of standardised residuals

by Z|i = [X−i − a|i(Xi)]/b|i(Xi), for normalising functions a|i,b|i : R → Rd−1, and
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assume that

Pr(Z|i ≤ z|i|Xi = x)→ G|i(z|i), (2.4.1)

as x→∞, where G|i is non-degenerate in each marginal. From (2.4.1), and for fixed

Z|i and x > 0, they show that

Pr(Z|i ≤ z|i, Xi − u > x|Xi > u)→ G|i(z|i) exp(−x), (2.4.2)

as u→∞; that is, Z|i and Xi − u|Xi > u are independent in the limit as u→∞.

Modelling using (2.4.2) can be conducted by assuming that the limit holds for

large fixed u, and with parametric forms given for the normalising functions and for

G|i; the former are typically simplified to location and scale parameter vectors given

by a|i(x) = α|ix for α|i ∈ (0, 1], under positive dependence, and b|i(x) = xβ|i for

β|i ≤ 1, and where operations are taken component-wise. Tail dependence between

Xi and components of X−i is characterised through the values of α|i and β|i. For

example, asymptotic dependence between Xj and Xi is implied by values αj|i = 1

and βj|i = 0. Within the class of asymptotically independent variables αj|i < 1, with

αj|i = βj|i = 0 giving near extremal independence. Usually G|i is modelled using a

(d− 1)-dimensional Gaussian copula with some chosen margins; Heffernan and Tawn

(2004) use Gaussian, but recent extensions of this methodology to a spatial context

use more flexible alternatives.

2.4.3 Spatial conditional extremes

A natural extension of the Heffernan and Tawn (2004) multivariate conditional ex-

tremes model to a spatial setting is given by Wadsworth and Tawn (2019); the general

proposal replaces the random vectors described in Section 2.4.2 with corresponding

spatial processes, and represents a|i and b|i as functions of space. They begin by

defining {X(s) : s ∈ S ⊂ R2} as a stationary spatial process with standard exponen-
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tial upper-tailed marginals and condition that it is extreme at a specified site sO ∈ S.

Under the assumption that there exists normalising function {a : (R × R2) → R},

with a(x, 0) = x, and {b : (R× R2)→ (0,∞)}, such that as u→∞, Wadsworth and

Tawn (2019) assume that for each sO ∈ S,

({
X(s)− a{X(sO), s− sO}

b{X(sO), s− sO}
: s ∈ S

}
, X(sO)− u

) ∣∣∣∣∣
(
X(sO) > u

)
d−→

({
Z(s|sO) : s ∈ S

}
, E

)
, (2.4.3)

where convergence is in the sense of finite-dimensional distributions, and E is a stan-

dard exponential variable that is independent of the process {Z(s|sO)}, assumed to

be non-degenerate for all s ∈ S where s 6= sO. That is, there is convergence in distri-

bution of the normalised process to {Z(s|sO) : s ∈ S}, termed the residual process,

which is independent of E, and Z(sO|sO) = 0 almost surely. A discussion of modelling

choices for the normalising functions a and b, and the residual process Z(s|sO) is given

in Chapter 5.

The strength and class of extremal dependence between X(s) and X(sO) can be

determined by the corresponding values of a and b. Equivalence with previously

discussed spatial processes can arise if a, b and Z(s|sO) take certain forms:

• l-Pareto process: If a(x, s− sO) = x and b(x, s− sO) = 1 for s, sO ∈ S, then

X(s) and X(sO) are asymptotically dependent. If this is achieved for all sO ∈ S,

then the formulation (2.4.3) is equivalent to an l-Pareto process with valid risk

functional l{X(sO)} = X(sO) (see Section 2.3.5).

• Gaussian process: If X(s) is a Gaussian process with correlation function

ρ(·) ≥ 0 and a(x, s − sO) = ρ(s − sO)2x and b(x, s − sO) = 1 + ρ(s − sO)x1/2,

then Z(s|sO) is a zero mean Gaussian process, subject to the condition that

Z(sO|sO) = 0. As discussed previously, this process is asymptotically indepen-
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dent at all distances.

• Mixture process: If b(x, s − sO) = 1 for all s, sO ∈ S, and a(x, s − sO) = x

for ‖s − sO‖ ≤ τ and 0 ≤ α(x, s − sO) < x otherwise, then the process is

asymptotically dependent up to distance τ from the conditioning site sO, and

asymptotically independent thereafter.



3

On the tail behaviour of sums of

random variables

3.1 Introduction

The extremal behaviour of aggregated data is of importance in two key areas of risk

management; financial portfolio optimisation and fluvial flooding. In financial risk

management, it is standard practice to aggregate over returns from several assets in

a portfolio in an attempt to mitigate investment risk. It is important that the uncer-

tainty surrounding the tail behaviour of the aggregate is assessed so that the risk of

large negative cumulative returns can be quantified (Hauksson et al., 2001; Chen et al.,

2012; Embrechts et al., 2015; Kole et al., 2017; Bernard et al., 2018). For flood risk

management, consider that fluvial floods are typically caused by prolonged extreme

precipitation over a catchment area; more succinctly, precipitation aggregated both

spatially and temporally (Coles and Tawn, 1996; Sangati and Borga, 2009; Spekkers

et al., 2013; Eggert et al., 2015; Morbidelli et al., 2018). In both cases, the assump-

tion of independence within the multivariate variable of interest is unlikely to hold;

we derive the first order behaviour of the upper-tail of a weighted sum of a bivari-

44
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ate random vector with different marginal tail behaviours and extremal dependence

structures and demonstrate that both factors have a significant effect on the extremal

behaviour of the aggregate variable.

We define the aggregate R as a weighted sum of the components of a random

vector X = (X1, . . . , Xd), with marginal distribution functions Fi for i = 1, . . . , d, as

R =
d∑
i=1

ωiXi, (3.1.1)

with weights ω = {ωi; 0 ≤ ωi ≤ 1,
∑d

i=1 ωi = 1}, and where components of X are

all positive and not necessarily independent and identically distributed and X has a

joint density. Dependence between components can be described using copulae, see

Sklar’s theorem (Nelsen, 2006). The joint distribution function of X can be uniquely

written as

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ Rd

where C is the copula, i.e., some multivariate distribution function C : [0, 1]d → [0, 1]

on uniform margins. Our interest lies in the tail behaviour of R, which we quantify

by considering Pr{R ≥ r} as r → rF , where rF ≤ ∞ is the upper-endpoint of R,

and how this behaviour is driven by the marginal tails and dependence structure of

X. Modelling the marginal tails of a random vector X has been widely studied, see

Pickands (1975); Davison and Smith (1990) and Coles (2001). The typical approach

is to assume that there exists a threshold ui for each Xi, such that the distribution of

(Xi−ui)|(Xi > ui) can be characterised by a generalised Pareto distribution, denoted

GPD(σi, ξi), which has distribution function

Fi(x) =


1−

(
1 + ξix

σi

)−1/ξi

+
, ξi 6= 0,

1− exp
(
− x
σi

)
, ξi = 0,

(3.1.2)
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for x > 0, scale parameter σi > 0, shape parameter ξi ∈ R and where z+ = max{0, z}.

The operator z+ forces Xi to have upper-endpoint xFi = −σi/ξi if and only if ξi ≤ 0

and the shape parameter ξi controls the heaviness of the upper tails of Xi: for ξi >

0, ξi = 0 and ξi < 0, we have that Xi has heavy, exponential and bounded, upper

tails, respectively. It is important to make the distinction between these three cases as

we show that the sign of the marginal shape parameters, ξi, has a large effect on the

tail behaviour of R. To analytically quantify the effect of the marginal tail behaviour

and dependence on the sum, we focus on the bivariate sum R = X1 + X2, where

Xi ∼ GPD(σi, ξi) and Xi > 0 for i = 1, 2, and with some specified joint distribution

on (X1, X2). We assume that ui = 0 for i = 1, 2 and discuss the implications of this

choice in Section 3.2.

It remains to specify the dependence structure between X1 and X2 which leads

to large R. The dependence between extreme values of variables is often classified

into one of two classes: asymptotic dependence or asymptotic independence with

respective measures of dependence: χ the coefficient of asymptotic dependence and χ̄

the coefficient of asymptotic independence (Coles et al., 1999). The former is defined

χ = lim
q↑1

Pr{F1(X1) > q|F2(X2) > q}, (3.1.3)

where the value of χ determines the class and stength of extremal dependence between

X1 and X2; for χ = 0 and χ > 0, we have asymptotic independence and asymptotic

dependence, respectively, between X1 and X2, with χ increasing with strength of

extremal dependence. Conversely, Ledford and Tawn (1996) characterise asymptotic

independence between X1 and X2 through the assumption that the joint survivor

function has the property

Pr

{
F1(X1) > 1− 1

u
, F2(X2) > 1− 1

u

}
= L(u)u−1/η, as u→∞, (3.1.4)
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where 0 < η ≤ 1, L(·) is slowly varying and χ̄ = 2η−1, so −1 < χ̄ ≤ 1. In particular,

if χ̄ = 1 and L(u) tends to a positive constant as u → ∞, we have asymptotic

dependence, and for χ̄ ∈ [0, 1) we have asymptotic independence with decreasing

strength of dependence as χ̄ → 0. We consider two special cases of these extremal

dependence classes, namely perfect positive dependence and independence. For the

former, we have χ = 1 in (3.1.3) and η = 1 in (3.1.4), and for the latter, χ = 0 and

η = 1/2. In both cases, L(u) = 1 for u > 1.

Previous studies on the tail behaviour of aggregated random variables focus on the

effects of the marginal distributions, with limited cases of the dependence structure

being considered. Numerous studies on the sum of independent (χ = 0, χ̄ = 0) Pareto

random variables, corresponding to GPD random variables with ξ = 1, have been con-

ducted, see Zaliapin et al. (2005); Ramsay (2006, 2008); Nguyen and Robert (2015).

Goovaerts et al. (2005) study the tail behaviour of weighted sums of Pareto random

variables, where the weights are random and exhibit dependence which is modelled us-

ing elliptical distributions. Opitz (2016) describes the relationship between marginal

exceedance probabilities for both an exponential-tailed Laplace random vector and

its sum. Nadarajah (2008) give the exact distribution of independent exponential

random variables with nonhomogenous, i.e., different, marginal scale parameters, and

Nadarajah and Kotz (2008); Nadarajah et al. (2018) extend this framework to inde-

pendent GPD margins. Nadarajah and Espejo (2006) further derive the distribution

of R with GPD margins and a Clayton copula (χ > 0, χ̄ = 1), see Ghosh and Banks

(2020). Under a general assumption that χ > 0 and that the shape parameters are

equal, studies that focus on the extremal behaviour of R include Coles and Tawn

(1994) and Klüppelberg and Resnick (2008) and where R is an integral of a stochas-

tic process by Coles and Tawn (1996) and Engelke et al. (2019a). The extension to

asymptotically independent structures has been made by Engelke et al. (2019b), who

study the relationship between the relative tail decay rates of the bivariate sum R and
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random vector (X1/R,X2/R), and the corresponding values of χ and η for (X1, X2);

however, these are general results and do not link the marginal shapes to the tail

decay rate of R. Other general results for the tail behaviour of sums include exten-

sions of Breiman’s lemma (Breiman, 1965), which link the decay rate of a multivariate

regularly varying random vector (see Resnick (1987)) to the decay rate of the sum

of its components, see Fougeres and Mercadier (2012) and Li (2018); whilst we omit

the details of these results, we note that they apply to cases where min{ξ1, ξ2} > 0.

Therefore there are important gaps in the literature for the tail behaviour of R relat-

ing unequal marginal shape parameters and copulae with χ = 0 and χ̄ < 1. The case

where χ̄ < 0 implies negative dependence between X1 and X2; this case is also absent

from the literature, but we constrain our focus to χ̄ ≥ 0.

The paper is structured as follows. Section 3.2 follows with a numerical study that

motivates our use of the limiting dependence models of Ledford and Tawn (1997) and

Heffernan and Tawn (2004). Section 3.3 introduces preliminary model set-up and the

results that follow by modelling dependence in (X1, X2) using the limit models given

above; these are easily interpretable and give a strong insight into the tail behaviour

of the aggregate. In Section 3.4, we provide examples of our results for widely used

copulae and give further insight into the tail behaviour of R when the dependence in

(X1, X2) does not satisfy the conditions detailed in Section 3.3.2. We apply our results

to UK precipitation and temperature data in Section 3.5. Appendix A provides the

proofs of the results in Section 3.3.2.

3.2 Motivation

We explore the upper-tail of R numerically using Monte-Carlo methods for copulas

with a range of χ and χ̄ values; this is to motivate the form in which we present the

results in Section 3.3.2 and our choice of the frameworks of Ledford and Tawn (1997)
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and Heffernan and Tawn (2004) for modelling. We consider two copulas based on the

bivariate extreme value copula, see Tawn (1988) and Gudendorf and Segers (2010).

An example of a bivariate extreme value copula is the logistic model,

CL(u, v) = exp
{
−
[
(− log u)1/γ + (− log v)1/γ

]γ}
, u, v ∈ [0, 1], (3.2.1)

where γ ∈ [0, 1); where here we avoid the case γ = 1 which is the independence

copula, but allow γ = 0, taken as the limit in (3.2.1) as γ → 0. From (3.1.3)

and (3.1.4), this copula gives values χ = 2 − 2γ > 0 and χ̄ = 1, and the variables

are asymptotically dependent with the strength of asymptotic dependence decreases

with γ increasing. Inverting this copula gives the inverted-logistic copula which is

asymptotically independent, see Wadsworth and Tawn (2012). This is defined through

its survival copula,

C̄IL(u, v) = exp
{
−
[
(− log(1− u))1/γ + (− log(1− v))1/γ

]γ}
, u, v ∈ [0, 1],

(3.2.2)

where γ ∈ (0, 1]. In contrast to the logistic copula, we have χ = 0 and χ̄ = 21−γ − 1,

with strength of asymptotic independence increasing as γ decreases.

In Section 3.3.2, we present our results for Pr{R ≥ r} in the form

Pr{R ≥ r} ∼


K1r

−1/ξR , if ξR > 0,

K2 exp
{
− r
σR

}
, if ξR = 0,

K3

{
1− r

rF

}−1/ξR , if ξR < 0,

(3.2.3)

as r tends to rF , the upper-endpoint of R, which is infinite if ξR ≥ 0 and is finite

when ξR < 0. Here σR > 0 and K1, K2, K3 > 0 are proportionality constants.

In Supplementary Material A.2, we show how expression (3.2.3) links to the GPD

tail formulation which is typically required for modelling using (3.1.2). We use this
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formulation, instead of the GPD form, to avoid introducing an arbitrary threshold

uR. Expression (3.2.3) highlights that the tail of R is predominantly determined by

ξR, with σR important when ξR = 0, and rF when ξR < 0. Note that in general

rF ≤ xF1 + xF2 , where xFi is the upper-endpoint of Xi for i = 1, 2, but for the copulas

considered in this section the equality holds.

Figure 3.2.1: Quantiles rp of R; the sum of two GPD(1, ξ) random variables, with
copula (3.2.1) in red and (3.2.2) in blue and for ξ = −1, 0, 1/2, 1 and γ = 0.3, 0.5, 0.9
and p ∈ [0.95, 0.999]. To emphasise their similarities, these are displayed on the scales
− log(rF − rp), rp and log(rp) for ξ < 0, ξ = 0 and ξ > 0 respectively, where rF is the
upper-endpoint of R. Solid lines correspond to perfect dependence and independence,
and the values on the y−axis decrease in each plot with increasing γ. Curves are
estimated using Monte Carlo methods, with samples taken to be sufficiently large
that any observed differences in the plot are statistically significant.

Figure 3.2.1 provides simulated quantiles of samples of size 5×106 for R = X1+X2,

where X1, X2 ∼ GPD(1, ξ) with copulae (3.2.1) and (3.2.2) for selected values of ξ
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and the copulae parameter γ. Quantiles rp, where F̃R(rp) = p for F̃R the empirical

distribution of R, are given for p close to 1. We observe that growth of the quantiles of

R is affected by both the underlying dependence in (X1, X2) and the marginal shape

parameters. The scales of the axes in Figure 3.2.1 are chosen so that the gradients

of the lines reveal structure about the shape parameter of R. To illustrate this, let

Pr{R ≥ rp} = 1− p where the survivor function of R takes the form (3.2.3). Then

− log(1− p) ∼



1
ξR

log(rp)− log(K1), if ξR > 0,

rp
σR
− log(K2), if ξR = 0,

− 1
ξR

log(rF − rp)− log(K3)− 1
ξR

log(rF ), if ξR < 0,

(3.2.4)

as p → 1. Thus, with the axes scaling used in Figure 3.2.1, we expect the gradient

of each quantile curve to be 1/ξR, 1/σR and −1/ξR if ξR > 0, ξR = 0 and ξR < 0,

respectively.

Relationship (3.2.4) and Figure 3.2.1 reveal interesting preliminary insights into

the upper tail behaviour of R. For marginal positive shape parameters, we find that

the gradients in Figure 3.2.1 are approximately equal; implying that the dependence

structure has no significant effect on the shape parameter of R. For zero and neg-

ative marginal shape parameters, the reverse is true; for ξ = 0, we observe that for

the asymptotically independent copulas, the scale parameter of R changes with the

strength of dependence; a similar property can be observed for ξ < 0, albeit giving

a change in the shape parameter for R. In both cases, the gradients remain approx-

imately equal for the quantiles derived using the asymptotically dependent copula,

which implies that some of the structure in the shape parameter of the survival func-

tion of R is driven by the strength of asymptotic independence, rather than the degree

of asymptotic dependence.

Figure 3.2.2 motivates our choice of the regions on which we focus for charac-
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Figure 3.2.2: Scatter plots of 20000 simulated X1, X2 ∼ GPD(1, ξ) with copula (3.2.1)
(top) and (3.2.2) (bottom). Both copulas take parameter value γ = 0.5 and so
(χ, η) = (2 − 21/2, 1) and (0, 2−1/2) in the two rows, respectively. The red points are
those for which X1 +X2 > r0.999, the estimated 0.999−quantile of R = X1 +X2.

terising dependence within (X1, X2) to derive the extremes of R. Here we plot

simulated X1, X2 ∼ GPD(1, ξ) with dependence induced through the logistic and

inverted-logistic copula, equations (3.2.1) and (3.2.2), respectively. The regions of

(X1, X2) for which R ≥ r0.999 are shown, with points in these regions highlighted in

red. The combinations of (X1, X2)|(R > r0.999) highlight which aspects of the copula

are important for studying the tail behaviour of R. These combinations are similar

for different copulas, or dependence structures, but differ for different signs on the

marginal shape parameter. For ξ ≤ 0, the large values of R occur for values which

are large in both marginals, which suggests that the important regions of the copula

are those where both arguments are simultaneously large; Ledford and Tawn (1997,

1998) detail dependence in these regions. Conversely, Figure 3.2.2 illustrates that for

ξ > 0, large values of R occur when (X1, X2) is extreme in at least one component.



3. ON THE TAIL BEHAVIOUR OF SUMS OF RANDOM VARIABLES 53

We thus require a model that considers the distribution of one variable whilst the

other is already extreme; which is covered by the characterisation of Heffernan and

Tawn (2004). We use both approaches for describing limiting dependence of (X1, X2)

and detail these characterisations in Section 3.3.1.

In Section 3.1, we specified that throughout we would assume that Xi > 0 with

Xi ∼ GPD(σi, ξi) for i = 1, 2. These assumptions are clearly highly restrictive when

describing marginal behaviour, but as our interest lies in the upper tail behaviour

of R, we find that the full distribution of Xi is not always relevant. For example,

Figure 3.2.2 indicates that when max{ξ1, ξ2} < 0, the combinations of (X1, X2) which

give large R require both Xi variables to be in their upper tails. When max{ξ1, ξ2} ≥ 0

and (X1, X2) are positively dependent in their extremes, large values of R tend to

occur when both marginal variables are in their tails. In the case where extremal

dependence is weak and the marginal tails are heavy, then R is dominated by only

one large marginal variable; the distribution of the values in the body of the smaller

variable is not important for the characteristics of the upper tail of R.

These arguments indicate that it is predominantly the upper tail of the marginal

variables that are important. The widely adopted approximation for the upper tails

of arbitrary marginal variables is that, for some high quantile ui > 0 of Xi, that

(Xi − ui)|(Xi > ui) follows a GPD (Pickands, 1975). Our approach is consistent

with this, following the threshold stability property (Coles, 2001) of the GPD: that

for all 0 < ui < xFi we have (Xi − ui)|(Xi > ui) ∼ GPD(σi − ξiui, ξi), and so our

approach is consistent with the usual tail model without any loss of generality. Thus,

our modelling of the marginal distribution has the following properties: it avoids the

arbitrary choice of ui; it determines the shape parameter of the tail of R for all ξi;

when ξi = 0 it uniquely determines the scale parameter of the tail through σi; and if

the marginal variables are not lower bounded by zero, then similar results are obtained

by location shifting the Xi, where Xi has a finite lower bound.



3. ON THE TAIL BEHAVIOUR OF SUMS OF RANDOM VARIABLES 54

3.3 Limit results

3.3.1 Background and model set-up

We now describe the extremal dependence characteristics that we assume for (X1, X2).

Figure 3.2.2 illustrates that we require two characterisations; one for when X1 and

X2 are joint large, and one where at least one is large. For the former, Ledford and

Tawn (1997, 1998) present an extension of (3.1.4); this model was further extended

by Ramos and Ledford (2009). Presented here for general marginals F1 and F2, they

characterise the joint survival function as

Pr

{
F1(X1) > 1− 1

x1

, F2(X2) > 1− 1

x2

}
=
L(x1 + x2)

(x1x2)
1
2η

g

(
x1

x1 + x2

)
, (3.3.1)

for any x1 → ∞, x2 → ∞ such that x1/(x1 + x2) → w for 0 < w < 1, and where

L(·) is slowly-varying and the continuous function g : (0, 1) → R+. Ledford and

Tawn (1997) have different powers of x1 and x2 which then requires that g satisfies

a property they term quasi-symmetry; however, Ramos and Ledford (2009) use equal

powers of x1 and x2 in the denominator which removes the need for this property.

Ledford and Tawn (1997) provide examples of g for certain copulae, e.g., for the

logistic copula, they illustrate that g(w) = {w(1 − w)}−1/2[1 − V ((1 − w)−1, w−1)]

where V (x, y) = (x−1/γ + y−1/γ)γ for γ defined in (3.2.1), and for the inverted logistic

copula defined in (3.2.2), they show that g(w)→ 1 for all w ∈ [0, 1] as r → rF .

Heffernan and Tawn (2004) and Keef et al. (2013) quantify extremal dependence

between variables by conditioning on one variable being extreme; whilst their charac-

terisations can accommodate negative extremal dependence, we focus on non-negative

association only. To model extremal dependence in (X1, X2), they consider the trans-

formed variables Y1 = − log{1−F1(X1)} and Y2 = − log{1−F2(X2)}, such that Y1, Y2

are standard exponential random variables. Under the assumption that there exists
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normalising functions a : R → R, b : R → R+, then for any fixed z ∈ R, y ∈ R+ and

for any sequence u→∞, we have

Pr

{
Y2 − a(Y1)

b(Y1)
< z, Y1 − u > y

∣∣∣∣Y1 > u

}
→ exp(−y)G(z), as u→∞, (3.3.2)

where G(·) is non-degenerate and limz→∞G(z) = 1. Often, for the purposes of mod-

elling non-negative extremal association, the normalising functions are simplified to lo-

cation and scale parameters, i.e., a(y) = αy for α ∈ [0, 1] and b(y) = yβ for 0 ≤ β < 1.

The values of α and β determine the strength of dependence between Y1 and Y2, and,

thus, between X1 and X2. For example, asymptotic dependence between the two is

implied by values α = 1, β = 0. Within the class of asymptotic independence, we

have α < 1, β ≥ 0, with α = β = 0 giving near perfect independence; we further

require G(·) to be standard exponential if (X1, X2) are independent.

3.3.2 Results

We now present the results for the tail behaviour of R = X1 +X2 derived by using the

limiting structures described in (3.3.1) and (3.3.2) to model dependence in (X1, X2).

Recall in (3.1.1) we define R as a weighted sum, i.e., R = ω1X1 + ω2X2 with 0 <

ω1, ω2 < 1 and ω1 + ω2 = 1. By setting Yi = ωiXi where Xi ∼ GPD(σi, ξi) it follows

from (3.1.2) that Yi ∼ GPD(ωiσi, ξi) and R = Y1 + Y2, and so we present results for

R = X1 + X2 without loss of generality. We begin with Theorems 3.3.1 and 3.3.2,

which detail the cases where the marginal shape parameters are equal and non-zero,

and zero, respectively. Theorems 3.3.3 and 3.3.4 provides results for the cases where

the marginal shapes are unequal; Theorem 3.3.3 covers those cases where both shapes

are strictly negative and the other cases are covered by Theorem 3.3.4. The proofs

for all theorems are provided in Appendix A.

Throughout Theorems 3.3.1-3.3.3, we make the assumption thatX1 ∼ GPD(σ1, ξ1)
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and X2 ∼ GPD(σ2, ξ2), with distribution functions defined in (3.1.2), and that the

extremal dependence in (X1, X2) satisfies the regularity conditions for model (3.3.1);

we further assume that there exists a fixed v > 0 such that, for all y > v, we have

L(y) acts like a positive constant which is absorbed by the function g. We assume

that model (3.3.1) holds in equality for x1 + x2 ≥ max{c, u∗} for a fixed constant

0 < c < rF , and where u∗ = max{xF1 , xF2 } if max{ξ1, ξ2} < 0, and u∗ = 0 otherwise;

that is, we require that model (3.3.1) holds for large R. We make the assumption that

the first- and second-order derivatives of g exists; further assumptions on g are made

for specific cases. If min{ξ1, ξ2} = ξ > 0, we require an additional assumption that the

limit in (3.3.2) holds in equality for fixed u > 0 and that the residual distribution G

is differentiable. For the theorems that require specific assumptions for g, we consider

g satisfying different conditions:

Condition 1 There exists a fixed v∗ > 0, such that for r = x1 + x2 > v∗, we have

g(ωx) = 1 for all ωx = exp(x1/σ1)/[exp(x1/σ1) + exp(x2/σ2)] ∈ [0, 1]; or equivalently,

X1 and X2 are independent when R = X1 +X2 > v∗, and where Xi ∼ Exp(1/σi) for

σi > 0 and i = 1, 2.

Condition 2 The tails of g satisfy g(w) ∼ Kgw
κ as w → 0 and g(w) ∼ Kg(1−w)κ

as w → 1 for constant Kg > 0 and fixed 0 ≤ κ < 1/(2η).

Condition 3 As w → 0 or w → 1, we have that

g(w) ∼ w−1/(2η)(1− w)−1/(2η)[1−H((1− w)−1, w−1)],

where the bivariate function H is homogeneous of order −1 and its first and second-

order partial derivatives exist and are continuous, and H(∞, t) = H(t,∞) = t−1

for t > 0. We denote H1 and H2 as the first-order partial derivatives of H with

respect to the first and second arguments respectively, and H12 the second-order
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partial derivative with respect to both arguments, and present two sub-conditions of

Condition 3: Condition 3a, H12(1, z) ∼ −KH1z
c1 as z → 0 for constants KH1 > 0 and

c1 > −1 and H12(1, z) ∼ −KH2z
c2 as z → ∞ for constants KH2 > 0 and c2 < −2;

Condition 3b, H1(1,∞) <∞ and H1(1, z)→ 0 as z → 0.

Although Conditions 3a and 3b appear quite restrictive, they are both satisfied by

the bivariate extreme value distribution with κ = 1/2; this is a widely-applied copula

for modelling asymptotic dependence, with the logistic copula as a special case.

Theorem 3.3.1. If ξ1 = ξ2 = ξ 6= 0, then

Pr{R ≥ r} ∼


K
(

1 + ξr
σ1+σ2

)− 1
ηξ
, if ξ < 0,

K∗r−1/ξ, if ξ > 0, and ∗,

as r → rF , where rF = ∞ for ξ > 0 and rF = −(σ1 + σ2)/ξ for ξ < 0, and for

constants K and K∗ defined in (A.3.3) and (A.3.15), respectively. ∗Condition 2 holds

or Condition 3 with η = 1 holds

Theorem 3.3.2. If ξ1 = ξ2 = 0, then

Pr{R ≥ r} ∼



σmax
σmax−σmin exp

(
− r

2ησmax

)
, if σ1 6= σ2,Condition 1 holds,

r
2ησ

exp
(
− r

2ησ

)
, if σ1 = σ2 = σ,Condition 1 holds,

K exp
(
− r

(σ1+σ2)

)
, if Condition 3a holds with η = 1,

as r →∞ and for constant K defined (A.4.3), where σmax = max{σ1, σ2} and σmin =

min{σ1, σ2}.

Note that there is a power term in the second case for Pr{R ≥ r} given by

Theorem 3.3.2 that is not covered by the general form given by (3.2.3). However, this

is in the domain of attraction of a GPD with shape and scale parameters zero and

2ησ, respectively.
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Theorem 3.3.3. If ξ1 6= ξ2 and max{ξ1, ξ2} < 0, then

Pr{R ≥ r} ∼


K1

(
1 + ξ1ξ2r

σ1ξ2+σ2ξ1

)− 1
ξmax

( 1
2η

+κ)− 1
ξmin

( 1
2η
−κ)

, if Condition 2 holds,

K2

(
1 + ξ1ξ2r

σ1ξ2+σ2ξ1

)− 1
ηξmax

, if Condition 3b holds,

as r → rF = −(σ1/ξ1 + σ2/ξ2), and for constants K1 > 0 and K2 > 0 defined in

(A.5.3) and (A.5.6), respectively, and ξmax = max{ξ1, ξ2}, ξmin = min{ξ1, ξ2}.

The set conditions on the dependence between X1 and X2 described above for The-

orems 3.3.1-3.3.3 are not necessary for Theorem 3.3.4; instead, this theorem applies

for any non-negative association between X1 and X2.

Theorem 3.3.4. If ξ1 6= ξ2 and max{ξ1, ξ2} ≥ 0, then

Pr{R ≥ r} ∼


(
ξmax
σmax

)−1/ξmax
r−1/ξmax , if max{ξ1, ξ2} > 0,

C exp
(
− r
σmax

)
, if max{ξ1, ξ2} = 0,

as r → ∞ and where ξmax = max{ξ1, ξ2} and σmax = {σi; i is s.t. ξi = ξmax} and

for constant C ∈ [C1, C2] for C1 > 0 and C2 > 0 defined in (A.6.1) and (A.6.2)

respectively.

To illustrate that ξR = max{ξ1, ξ2} for ξR defined in (3.2.3), Koutsoyiannis (2020)

provide a similar result to the case in Theorem 3.3.4 where min{ξ1, ξ2} > 0 using a

different approach. We further note that the cases where min{ξ1, ξ2} > 0 in The-

orems 3.3.1 and 3.3.3 agree with Breiman’s Lemma (Breiman, 1965), as we have

ξR = max{ξ1, ξ2}.

3.4 Copula examples

We now compare the limit results detailed in Section 3.3.2 with results for the upper-

tail behaviour ofR when dependence in (X1, X2) is fully modelled using copula families
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and their marginal models remain the same, i.e., Xi ∼ GPD(σi, ξi) for i = 1, 2. The

assumptions we made in Section 3.3.2 hold in some cases and in these we obtain

identical results to Section 3.3.2. However, where the assumptions of Section 3.3.2

are too strong, our direct derivations from the copulae, with details in Chapter 4,

provide insight into the tails of R in these specific cases. We consider the extreme

value copula and the inverted extreme value copula and the limiting forms of these two

classes, i.e., perfect dependence and independence. We further consider a standard

Gaussian copula with correlation parameter ρ (0 < ρ < 1); this copula exhibits

asymptotic independence, i.e., χ = 0, χ̄ = ρ.

The extreme value copula takes the form

Cev(u, v) = exp {−V (−1/ log(u),−1/ log(v))} , (3.4.1)

where

V (x, y) = 2

∫ 1

0

max

{
w

x
,
1− w
y

}
dM(w), (3.4.2)

is a homogeneous function of order −1 and M(w) is a univariate distribution func-

tion/probability measure for w ∈ [0, 1], which has expectation 1/2. Note that 1 ≤

V (1, 1) ≤ 2, where the boundary cases correspond to special cases of the extreme

value copula, i.e., we have perfect dependence, and independence, between X1 and

X2 when V (1, 1) = 1 and V (1, 1) = 2 respectively. This copula gives η = 1 (χ̄ = 1)

and η = 1/2 (χ̄ = 0) when V (1, 1) < 2 and V (1, 1) = 2, respectively. Furthermore,

Ledford and Tawn (1997) illustrate that this copula satisfies Condition 3a/3b, with

H = V and κ = 1/2, that is required for Theorems 3.3.2 and 3.3.3.

The inverted extreme value copula follows by inverting (3.4.1), see Wadsworth and

Tawn (2012), and is defined through its survival copula

C̄iev{u, v} = exp {−V (−1/ log(1− u),−1/ log(1− v))} , (3.4.3)
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with a similarly defined V . This, and the Gaussian copula, have η = V (1, 1)−1 and

η = (1 + ρ)/2, respectively, where χ̄ = 2η − 1. The logistic and inverted logistic cop-

ulas defined in (3.2.1) and (3.2.2), respectively, are subclasses of (3.4.1) and (3.4.3),

respectively. When discussing results pertaining to copulas (3.4.1) and (3.4.3), we as-

sume that the first- and second-order partial derivatives of V exist, which corresponds

to the existence of a joint density, hence this excludes perfect dependence which is

derived separately.

We report the parameters that determine the behaviour of Pr{R ≥ r} as r →

∞ as given by form (3.2.3), i.e., ξR 6= 0 and σR, otherwise. Consider three cases:

min{ξ1, ξ2} > 0, sgn(ξ1) 6= sgn(ξ2), and max{ξ1, ξ2} ≤ 0. In the first two cases,

no further insight into the uper-tails of R is revealed when modelling dependence in

X using copulaes, and Chapter 4 gives the same results as detailed in Section 3.3.2,

i.e., ξR = max{ξ1, ξ2}; this suggests that, for these cases, modelling dependence using

the limiting models of Ledford and Tawn (1997) and Heffernan and Tawn (2004) is

sufficient to derive the first-order behaviour of the upper-tail of R.

However, if we have that max{ξ1, ξ2} ≤ 0 and (X1, X2) exhibits asymptotic in-

dependence but positive association, then Chapter 4 shows that further insight into

the tail behaviour of R can be gained by modelling dependence with copulas in the

following two cases: ξ1 = ξ2 = ξR = 0 and max{ξ1, ξ2} < 0, ξ1 6= ξ2, see Table 3.4.1;

we find no change in all other cases. Ledford and Tawn (1997) illustrate that none of

Conditions 1-3 are met by either the inverted extreme value, or standard Gaussian,

copulas, and so the results for these copulae, given in Chapter 4, are presented in

Table 3.4.1. We observe that for these copulae, the parameters in (3.2.3) cannot be

represented as the product of a function of the marginal parameters and the sum-

mary measure η; instead, the upper-tail behaviour of R is driven by a function of

both the marginal parameters and dependence structure which cannot be factorised,

which suggest that there is a more subtle relationship between the marginal shapes,
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extremal dependence structure and tail behaviour of R.

ξ1 = ξ2 = ξR = 0 max{ξ1, ξ2} < 0, ξ1 6= ξ2

Dependence Structure σR ξR

Theorems 3.3.2/3.3.3, χ > 0 σ1 + σ2 max{ξ1, ξ2}
Theorems 3.3.2/3.3.3, 0 ≤ χ̄ < 1 2ηmax{σ1, σ2} 2η

(
1
ξ1

+ 1
ξ2

)−1

Independence χ̄ = 0 max{σ1, σ2}
(

1
ξ1

+ 1
ξ2

)−1

Perfect dependence χ = 1 σ1 + σ2 max{ξ1, ξ2}
Extreme value copula χ > 0 σ1 + σ2 max{ξ1, ξ2}

Inverted extreme
value copula 0 ≤ χ̄ < 1 max

0≤w≤1
{
[
V
(
σ1
w
, σ2

1−w

)]−1} −1/V (−ξ1,−ξ2)

Standard Gaussian
χ̄ = ρ, ρ ∈ [0, 1) (1− ρ2) max

0≤w≤1
{h(w)−1} 1−ρ2

ξ−1
1 +2ρ(ξ1ξ2)−1/2+ξ−1

2

Table 3.4.1: Parameter values for R = X1 + X2 where (X1, X2) have GPD margins
with max{ξ1, ξ2} ≤ 0, and h(w) = σ1w − 2ρ

√
σ1σ2w(1− w) + σ2(1− w).

3.5 Application to aggregated environmental data

We now present an application of the results discussed in Section 3.3.2 to climate

model data. We study precipitation and temperature data, which have heavy and

bounded marginal upper-tails respectively. Both datasets are obtained from the UK

climate projections 2018 (UKCP18) (Lowe et al., 2018) which contains values aggre-

gated over a given time interval and a spatial grid-box. The size of these grid-boxes

and the specified time interval differ between the two studies. In both cases, we

investigate the marginal upper-tail for the variables observed at a configuration of

grid-boxes and the spatial average of them over adjacent boxes. Note that we aggre-

gate the data as we are interested in the extremal behaviour of the climate processes

at lower resolutions; for precipitation, this is for the reasons described in Section 3.1,

and for temperature, we are interested in the average extreme heat over a large spatial

domain since a heatwave has societal impact owing to it affecting a spatial region not

simply a single location.
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Recall from Section 3.3.1 that the driving factor for the extremal behaviour of the

aggregates is the GPD shape parameter, ξ. We focus on just the relationship between

estimates of ξ for the marginal variables and ξ for the aggregates. To investigate

this relationship, we begin with a 2 by 2 configuration of adjacent grid-boxes. For

each grid-box, we fit the GPD to excesses above the sample p-th quantile using max-

imum likelihood methods, under the assumption that observations are independent

and identically distributed (Coles, 2001). Following many spatial extreme value ap-

plications (Coles and Tawn, 1990, 1996; Fowler and Kilsby, 2003; Coelho et al., 2008;

Li et al., 2019; Davison et al., 2012, 2019), we anticipate that the shape parameters

for each grid-box should be identical. Therefore we also pool information across grid-

boxes with a model that the distribution of excesses in grid-box i is GPD(σi, ξ), i.e.,

a common shape parameter but with the scale parameter unconstrained over grid-

boxes. For each of the 4 pairs of adjacent grid-boxes, we take the spatial aggregate of

the data at each separate time interval and fit a GPD to excesses of these data above

its empirical p-th quantile. Quantiles are estimated separately for marginal, pooled

and aggregate variables. To account for strong spatial and temporal dependence in

the data, standard errors for ξ are estimated using a stationary bootstrap (Politis and

Romano, 1994) with 1000 samples, with temporal block size drawn randomly from a

Geometric distribution with expectation corresponding to a week of observations.

3.5.1 Precipitation

The data are precipitation flux (mm/day) from a convection permitting model on

2.2 × 2.2km2 grid-boxes and hourly intervals. To account for seasonality, we use

only winter, December to February, observations between the years 1980 and 2000.

We study a 2× 2 configuration of grid-boxes centred around (52.18◦, 0.14◦), approxi-

mately Cambridge, UK; this is a flat area so no orographic features are important and

marginal distributions are expected to be nearly homogeneous. We conduct our anal-
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ysis on outputs of the model at two spatial resolutions - high using data on (2.2)2km2

and coarse (22)2km2 grids. The latter is produced by taking the spatial average over

10 by 10 configurations of the former data. We analyse both resolutions to investigate

the effect of extremal dependence on the observed results. This is quantfied using the

measure η, given in (3.3.1), which is estimated as in Coles et al. (1999). All GPD

models are fit to exceedances above 99.5% quantiles.

Table 3.5.1 presents estimates and the 95% confidence intervals for the shape pa-

rameters using the three inference methods. The marginal shape parameter estimates

are predominately positive which suggests that Theorem 3.3.1 is relevant, i.e., for a

homogeneous marginal shape parameter ξ > 0, the shape parameter of the aggregate

is also ξ, regardless of the dependence structure. We aim to see if this applies in the

observed tail.

Marginal

0.210(0.045, 0.339) 0.197(0.037, 0.350)

Marginal

0.154(-0.030, 0.286)
0.172(0.017, 0.306) 0.178(0.019, 0.320)

0.160(-0.006, 0.288) 0.172(0.020, 0.328)

0.225(0.040, 0.344)
0.214(0.049, 0.333) 0.168(-0.001, 0.283)

0.177(0.036, 0.316) 0.184(0.041, 0.347)

Table 3.5.1: High resolution precipitation case study: shape parameter estimates and
95% confidence intervals for margins (black), pooled marginals (red) and aggregate
variable (blue).

Table 3.5.1 shows the point estimates of confidence intervals for ξ using the

marginal variables and the pooled analysis. As we observe similar estimates for ξ

as well as substantial overlap in the confidence intervals, this suggests that it is rea-

sonable to assume homogeneous marginal shape parameters. Using the same criteria

as above, the marginal estimates also have good agreement with ξ for the aggregate

variable, suggesting that the positive shape result in Theorem 3.3.1 holds well for
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these data. Pairwise η estimates for Table 3.5.1 fall in the range [0.956, 0.967], which

suggests strong extremal dependence between the marginal variables.

Marginal

0.146(-0.033, 0.277) 0.089(-0.024, 0.197)

Marginal

0.104(-0.083, 0.218)
0.108(-0.015, 0.239) 0.101(0.000, 0.186)

0.177(-0.095, 0.318) 0.011(-0.123, 0.085)

0.068(-0.055, 0.183)
0.105(-0.119, 0.212) 0.082(-0.012, 0.176)

0.085(-0.082, 0.182) 0.061(-0.065, 0.189)

Table 3.5.2: Coarse resolution precipitation case study: shape parameter estimates
and 95% confidence intervals for margins (black), pooled marginals (red) and aggre-
gate variable (blue).

To investigate the effect of weaker dependence on the relationship between the

marginal and aggregate ξ parameter, we now consider the coarse resolution data and

conduct the same analyses as previously; pairwise η̂ for the coarser data are in the

range [0.859, 0.895], which is lower than the estimates for Table 3.5.1. Table 3.5.2

suggests that it is reasonable to assume homogeneous marginal shape parameters at

this coarse resolution, as we again observe good agreement between the ξ estimates for

both the marginal and pooled variables. We also observe good agreement between ξ for

the pooled variables and aggregate variables even with weaker extremal dependence.

3.5.2 Temperature

The data are average daily temperature (◦C) from a global climate model scaled to

60 × 60km2 grid-boxes and to account for seasonality we use only summer, July to

August, observations. The model is run through the years 1899 to 2099, providing

18000 observations per grid-box. We consider a 2 × 2 configuration of grid-boxes

centred around (53.14◦,−1.70◦), south of the Peak District, UK. As in Section 3.5.1,

we conduct our analyses on outputs of the model at two spatial resolutions - high
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using data on (60)2km2 and coarse (300)2km2 grids; the latter produced by taking

the spatial average over 5 by 5 configurations of the former data. All GPD models

are fit to exceedances above 98% quantiles.

Table 3.5.3 presents estimates and the 95% confidence intervals for the shape

parameter for the marginal and pooled variables, which suggest that these variables

have bounded upper-tails. As such, we consider the results in Theorem 3.3.1; this

states that, asymptotically, the shape parameter of the aggregate should be ηξ given

that the marginal variables have equal, negative shape ξ < 0. To see if this result is

consistent with the observed tails, Table 3.5.3 presents estimates and 95% confidence

intervals for a scaling of the aggregate shape parameter by 1/η̂, where the estimate η̂

of η is calculated for each bootstrap sample of the aggregate; if Theorem 3.3.1 holds

for these data, then this should be equal to the marginal ξ.

Marginal

-0.156(-0.276, -0.067) -0.211(-0.308, -0.108)

Marginal

-0.198(-0.310, -0.106)
-0.180(-0.268, -0.106) -0.199(-0.293, -0.133)

-0.214(-0.339, -0.103) -0.201(-0.318, -0.103)

-0.148(-0.266, -0.082)
-0.165(-0.255, -0.069) -0.161(-0.250, -0.094)

-0.166(-0.278, -0.083) -0.160(-0.297, -0.067)

Table 3.5.3: High resolution temperature case study: shape parameter estimates and
95% confidence intervals for margins (black) and pooled variable (red). Blue confi-
dence intervals are for a scaling of the aggregated shape parameter by 1/η.

Table 3.5.3 suggests that we can assume homogeneous marginal shape parameters

and these estimates also have clear agreement with the scaled shape parameter for the

aggregate variable, suggesting that the negative shape result in Theorem 3.3.1 holds

well for these data. Pairwise η estimates for Table 3.5.3 fall in the range [0.918, 0.981],

which suggests strong extremal dependence between the marginal variables, and so we

repeat the analyses with the coarser data to investigate the effect of weaker dependence
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on the aggregate shape parameter.

Marginal

-0.113(-0.277, -0.020) -0.207(-0.298, -0.132)

Marginal

-0.183(-0.280, -0.106)
-0.145(-0.219, -0.088) -0.200(-0.272, -0.158)

-0.200(-0.356, -0.102) -0.204(-0.342, -0.129)

-0.053(-0.317, 0.057)
-0.138(-0.258, -0.067) -0.066(-0.255, 0.010)

-0.083(-0.338, 0.011) -0.178(-0.410, -0.071)

Table 3.5.4: Coarse resolution temperature case study: shape parameter estimates
and 95% confidence intervals for margins (black) and pooled variable (red). Blue
confidence intervals are for a scaling of the aggregated shape parameter by 1/η.

Table 3.5.4 suggests that it is still reasonable to assume homogeneous marginal

shape parameters at the coarser resolution, as we again observe good agreement be-

tween the ξ estimates for both the marginal and pooled variables. We found that

pairwise values of η̂ for Table 3.5.4 were in the range [0.789, 0.921], which suggests

weaker extremal dependence than that observed for the high resolution temperature

data. We also observe good agreement between these estimates and the estimates for

the scaled aggregate shape parameter, confirming that the result in Theorem 3.3.1

applies well, even for weaker extremal dependence.

3.6 Discussion

In Section 3.3.2, we provide results that begin to explore the extremal behaviour of

R; the bivariate aggregate of two GPD random variables, X1 and X2. These results

focus primarily on the effect of the marginal ξ parameters and dependence within

(X1, X2) on the shape parameter of the aggregate, or the scale parameter if we have

ξ = 0. Through Figure 3.2.1 and Section 3.3.1, we illustrate that the value of ξ is the

most important driver in the tail behaviour of the aggregate, and so when we apply
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our results to data in Section 3.5, we investigate the behaviour of ξ only. However, it

is important that the behaviour of the scale parameter of R is still explored.

Although the results given in Section 3.3.2 were derived by modelling the depen-

dence in (X1, X2) using the limiting extremal dependence models of Ledford and Tawn

(1996) and Heffernan and Tawn (2004), results using full copula dependence models

are given in Section 3.4. Here we show broad agreement between results derived us-

ing the two methods, and so we conclude that the extremal behaviour of R is mostly

driven by the limiting behaviour of (X1, X2) as x1 → ∞ and/or x2 → ∞, and that

modelling the full dependence in (X1, X2) is not necessary to capture the first order

behaviour of Pr{R ≥ r} as r →∞.

We cannot analytically determine the theoretical scale parameter for R in appli-

cation, as the results described in Section 3.3.2 follow from asymptotic arguments

that remove the conditioning typically found in GPD modelling. However, this is

not to say that the results in Section 3.3.2 are not useful for modelling the extremal

behaviour of aggregates; on the contrary, we can utilise these results for inference on

the shape parameter ξR of R and then estimate the scale parameter given that ξR is

fixed. This technique is viable as the GPD shape parameter is independent of the

exceedance threshold used for modelling, and so does not suffer the same issues as the

scale; this follows from the threshold-stability property of the GPD, see Coles (2001).



4

Copula-based aggregation

4.1 Introduction

In Chapter 3, we derived the upper-tail behaviour of the bivariate sum of GPD random

variables with dependence characterised by the limiting models of Ledford and Tawn

(1997) and Heffernan and Tawn (2004). Here we conduct a similar study, but with

the following differences: first, we study the upper-tail behaviour of Rd, where

Rd =
d∑
i=1

Xi,

where Xi ∼ GPD(σi, ξi) for σi > 0 and ξi ∈ R and d ∈ N, i.e., Rd is the sum of

d positive random components, rather than two. We use an identical framework for

the marginal distributions of the components of X = (X1, . . . , Xd) as was proposed

in Section 3.1, i.e., that Xi > 0 is GPD above zero for all i = 1, . . . , d. However, we

stipulate that dependence in X is characterised fully using one of five copulae described

in Section 2.2.2: these are the extreme value copula, inverted extreme value copula and

the standard Gaussian copula with zero mean, unit variance and correlation matrix

Σ, and the limiting forms of these classes, i.e., perfect dependence and independence.

Copulae are described by Sklar’s theorem (Nelsen, 2006), which illustrates that

68
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the joint distribution function of X can be written as

F (x) = C{F1(x1), . . . , Fd(xd)}, x ∈ Rd (4.1.1)

where C is the copula. The d-dimensional extreme value copula is given by

CMEV {u1, . . . , ud} = exp

{
−V

(
− 1

log(u1)
, . . . ,− 1

log(ud)

)}
, (4.1.2)

for (u1, . . . , ud) ∈ [0, 1]d and where

V (z1, . . . , zd) = d

∫
Sd−1

max
i=1,...,d

{
wi
zi

}
dH(w), (z1, . . . , zd) ∈ (0,∞)d, (4.1.3)

where Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1} is the (d − 1)-dimensional unit simplex,

and H is a valid multivariate distribution function or probability measure for w ∈

Sd−1 with 1-dimensional marginal expectations 1/d. Inverting each of the marginal

distributions of (4.1.2) gives the inverted extreme value copula (Wadsworth and Tawn,

2012), which is defined through its survival copula

C̄iev{u1, . . . , ud} = exp

{
−V

(
− 1

log(1− u1)
, . . . ,− 1

log(1− ud)

)}
, (4.1.4)

for (u1, . . . , ud) ∈ [0, 1]d and V as above.

In Section 3.3.2, we found that the driving behaviour of R2 was often linked to

the coefficient of tail dependence (Ledford and Tawn, 1997), denoted η, which is a

measure that characterises extremal dependence between two random variables. In

this chapter, we now consider Rd, which is a d-dimensional sum and so we require

an extension of η to d-dimensions. Eastoe and Tawn (2012) detail such a measure,
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denoted ηd, which is defined through the assumption that

Pr

(
min
i=1,...,d

{Fi(Xi)} > 1− 1

u

)
= L(u)u−1/ηd , as u→∞, (4.1.5)

where Fi denotes the CDF of Xi and L is a slowly-varying function. Whilst ηd ∈ (0, 1],

we constrain our focus to ηd ∈ (1/d, 1] which corresponds to positive extremal asso-

ciation only. The value of ηd implies asymptotic dependence between all components

of X when ηd = 1. The cases 1/d < ηd < 1 and ηd = 1/d correspond to asymptotic

independence and near extremal independence of the full collection of d variables,

respectively.

Theoretical values of ηd can be derived for the copulae discussed above; the ex-

treme value, and perfect dependence, copulae exhibit asymptotic dependence and

hence give ηd = 1. For those copulae exhibiting asymptotic independence, we have

ηd = 1/V (1, . . . , 1), ηd = [1Td Σ−1
1d]
−1 and ηd = 1/d for the inverted extreme value

copula, standard Gaussian copula and independence copula, respectively. Note that

1d denotes a d-vector of ones.

The rest of this chapter is structured as followed: in Section 4.2, we detail the

strategies and assumptions that are required to prove the results we derive and present

in Section 4.3; these pertain to the form of the survival function Pr{Rd ≥ r} as r → rF ,

where rF denotes the upper-endpoint of Rd. The proofs for these results are given

in Section 4.4 and Appendix B; the former contains proofs for the main results in

Section 4.3 which pertain to Rd with non-zero marginal shapes; the latter contains

the proofs for Rd where X has exponential margins, i.e., ξi = 0 for all i = 1, . . . , d,

and proofs of technical results required for the main proofs.
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4.2 Strategy and assumptions

4.2.1 Auxiliary variables

Following the same strategy as used in Chapter 3, we begin by deriving the joint

density of (X1, . . . , Xd) and conducting some transformation to Rd =
∑d

i=1Xi and an

auxiliary variable, which we typically denote by W = (W1, . . . ,Wd−1); this variable

is chosen so that we can analytically integrate W out of the joint density of (Rd,W)

as Rd tends to its upper-endpoint. We first provide a discussion of the different forms

for W and the transformations used to achieve them.

Pseudo-radial and -angular components

The most common transformation used is one to pseudo-radial and -angular compo-

nents, namely X→ (Rd,W), where

W =

{
Wj =

Xj∑d
i=1Xi

; j = 1, . . . , d− 1

}
, (4.2.1)

which can be rearranged to give

Xi = RWi, Xd = Rd

(
1−

d∑
j=1

Wj

)
,

for all i = 1, . . . , d − 1. For the sake of notation, we introduce Wd as a place holder

for 1−
∑d

j=1 Wj. The determinant of the Jacobian of this transformation is rd−1, and

a proof of this is provided in Appendix B.1.1.

Scaled pseudo-angular components

In cases where the marginal shape parameters are negative, i.e., ξi < 0 for all i =

1, . . . , d, we use scaled and shifted pseudo-angular components. This is to ensure that

the range of W is independent ofRd, given thatRd is greater than some fixed threshold
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to be defined. We first use the transformation X→ U, where for all i = 1, . . . , d,

Ui = 1 + ξiXi/σi, (4.2.2)

and where
∏d

i=1
σi
ξi

is the determinant of the Jacobian for this transformation. A

second transformation, U→ (Rd,W), is then applied, where

Rd =
d∑
i=1

Xi =
d∑
i=1

σi(Ui − 1)

ξi
and Wj =

σjUj/ξj∑d
i=1 σiUi/ξi

, (4.2.3)

for all j = 1, . . . , d− 1. This can then be rearranged to give, for all j = 1, . . . , d− 1,

Uj =
ξj(
∑d

i=1
σi
ξi

+Rd)Wj

σj
and Ud =

ξd(
∑d

i=1
σi
ξi

+Rd)Wd

σd
, (4.2.4)

where Wd = 1 −
∑d

j=1 Wj. The determinant of the Jacobian for this transformation

is (
d∑
i=1

σi
ξi

+ r

)d−1 d∏
i=1

ξi
σi
.

Combining both of these transformations, it can be shown that the support of W is

[0, 1]d−1, independent of the value Rd given that Rd > t, where

t = − min
1≤j≤d

{
d∑
i 6=j

σi
ξi

}
= max

1≤j≤d

{
σj
ξj

}
−

d∑
i=1

σi
ξi

= − min
1≤j≤d

{
−σj
ξj

}
−

d∑
i=1

σi
ξi
. (4.2.5)

In Section A.3.1, we proved this property for the case where d = 2. The proof for

arbitrary d ∈ N is given in Appendix B.1.2.

Pseudo-angular to radial power

In certain cases, we find that it is helpful to re-write the auxiliary variable as some

power of Rd. In those cases where Rd has no upper-endpoint, we use the transforma-
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tion (Rd,W)→ (Rd,Z) for Z ∈ (0,∞)d−1, where

Wi = R−Zid (4.2.6)

for all i = 1, . . . , d−1. This transformation has Jacobian with determinant r−z{log(r)}d−1.

In cases where Rd is bounded above by finite rF > 0, we instead consider the

transformation (Rd,W)→ (V,Z) for V ∈ [0, 1] and Z ∈ (0,∞)d−1, where

V = (rF −Rd)/r
F , and Wi = V Zi , (4.2.7)

for all i = 1, . . . d− 1. The Jacobian of this transformation has determinant 1/rF ×

{− log(v)}d−1
∏d−1

j=1 v
zj , where 1/rF corresponds to the transformation Rd → V and

the other terms correspond to the transformation W→ Z.

4.2.2 Assumptions on the behaviour of the extreme value

copula

The densities for the extreme value, and inverted extreme value, copulae are particu-

larly complex; the full d-dimensional density for both copulae is the sum of the d−th

Bell number of terms, i.e., the number of possible partitions for the set {1, . . . , d}.

Thus, use of the full density in an analytical framework is infeasible for a general

d ∈ N. For the extreme value copula, we are able to make reasonable assumptions

on how the density acts for large Rd which allows us to identify only the important

terms in the density that are necessary for investigating the first-order behaviour of

the upper-tail of Rd.

To derive the results forRd where X has an extreme value copula, we make assump-

tions on how the density of X acts for large Rd. We begin by making the assumption

that the measure/distribution H defined in (4.1.3) places some mass/density on the
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centre of the simplex Sd−1; equivalently, we have

Pr

{
min
i 6=j
{Fi(Xi)} > 1− 1

u

∣∣∣∣Fj(Xj) > 1− 1

u

}
> 0,

as u→∞ and for all j = 1, . . . , d. We now make the assumption that as R→ rF that

all components of X tends to their respective upper-endpoints with associated rates

determined by the following; we assume that F̄1(x1)/F̄j(xj) ∼ cj as F̄1(x1) → 0 for

constants cj > 0 and for j = 1, . . . , d, i.e., each component of X tends to its respective

upper-endpoint at a similar rate, and that R → rF ⇒ F̄1(x1) → 0. Now consider

the distribution function for the multivariate extreme value copula, which is given by

combining (4.1.1) and (4.1.2). Then the density of X is

fX(x) =

{
d∏
i=1

fi(xi)

Fi(xi)(log(Fi(xi)))2

}
exp{−V (−{log(F1(x1))}−1, . . . ,−{log(Fd(xd))}−1)}

×
∑
π∈P

∏
πI∈π

{−VπI (−{log(F1(x1))}−1, . . . ,−{log(Fd(xd))}−1)}

∼

{
d∏
i=1

fi(xi)

F̄ 2
i (xi)

}
exp{−V ([F̄1(x1)]−1, . . . , [F̄d(xd)]

−1)}

×
∑
π∈P

∏
πI∈π

{−VπI ([F̄1(x1)]−1, . . . , [F̄d(xd)]
−1)}

∼

{
d∏
i=1

fi(xi)

F̄ 2
i (xi)

}∑
π∈P

∏
πI∈π

{−VπI ([F̄1(x1)]−1, . . . , [F̄d(xd)]
−1)}, (4.2.8)

as r → rF and where P is the set of all partitions of {1, . . . , d} and π = {π1, . . . , πk} ∈

P is one of these partitions and VπI is the partial derivative of V with respect to all

indices in {πI}; the second line follows as

−{log(Fi(xi))}−1 = −{log(1− F̄i(xi))}−1 ∼ [F̄i(xi)]
−1,
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as F̄j(xj)→ 0 and Fj(xj) ∼ 1 for all j = 1, . . . , d and the last line follows as

exp{−V (F̄−1
1 (x1), . . . , F̄−1

d (xd))} ∼ 1 as (F̄1(x1), . . . , F̄d(xd))→ 0d.

We then have

fX(x) ∼

{
d∏
i=1

fi(xi)

F̄ 2
i (xi)

}∑
π∈P

[F̄1(x1)]kπ
∏
πI∈π

{−VπI (1, c2, . . . , cd)}, (4.2.9)

as F̄1(x1)→ 0; note that kπ is equal to the negative of the order of homogeneity for the

expression
∏

πI∈π−VπI ([F̄1(x1)]−1, . . . , [F̄d(xd)]
−1). As V is a homogeneous function

of order −1, it follows that its n-th order partial derivatives are homogeneous order

−(n+1). From the properties of homogeneous functions, we have that the product of

a function of order −a and a function of order −b gives a function of order −(a + b)

and so it follows that the term in the summation in (4.2.9) with the highest order

of homogeneity is VπI , where πI = {1, . . . , d} is the partition with all indices in

1, . . . , d; this term is non-zero if H has positive mass/density at the centre of Sd−1.

This corresponds to the d-th order partial derivative of V with respect to all of its

components, which from now we denote Vx, and has order of homogeneity −(d + 1).

We then have

fX(x) ∼

{
d∏
i=1

fi(xi)

F̄ 2
i (xi)

}
[F̄1(x1)]−(d+1){−Vx(1, c2, . . . , cd)}

∼

{
d∏
i=1

fi(xi)

F̄ 2
i (xi)

}
{−Vx([F̄1(x1)]−1, . . . , [F̄d(xd)]

−1)},

as r → rF . We assume that form (4.2.9) holds for the proofs in Section 4.4.3 and

Appendix B.3.3.

In the case where max{ξ1, . . . , ξd} < 0, we require a further assumption on Vx and

its lower order derivatives. For D ⊂ {1, . . . , d}, let Vx−D denote the (d−|D|)−th order
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partial derivative of V with respect to the components indexed by {1, . . . , d}\D. Now

let zI denote the components of z = (z1, . . . , zd) ∈ (0,∞]d indexed by the set I, and

consider the function

l(z) = Vx−D(z1, . . . , zd).

Under the assumption that each component of z{1,...,d}\D is fixed at a non-zero, finite

value, then we assume that the following properties hold for any D: firstly, we have

that 0 < l(z∗) < ∞ for z∗ = {z : zD = (∞, . . . ,∞)}; secondly, we assume that

l(z) → 0 if zi → 0 for any i ∈ D. Whilst we omit discussion for general V , we note

that these two properties are satisfied by the logistic copula, see (2.2.2), and so may

be applicable to other extreme value copulae.

4.2.3 Laplace’s method

Some of the proofs in Section 4.4 require solutions to integrals of the form

∫
Ω

h(w, r) exp{−L(r)g(w, r)}dw,

where w = (w1, . . . , wd−1) ∈ Ω. Here h is a positive function, the Hessian for the

function g with respect to w, which we denote G(w, r), exists and is negative definite

and the function L(r) → ∞ as r → rF . We further require that the global minima

of L(r)g(w, r) + log(h(w, r)) with respect to w exists and is unique. For integrals of

this form, Laplace (1986) gives the approximate solution as

∫
Ω

h(w, r) exp{−L(r)g(w, r)}dw ∼
(

2π

L(r)

)(d−1)/2
h(w∗, r)

| −G(w∗, r)|1/2
exp{−L(r)g(w∗, r)},

as L(r)→∞ and where w∗ = arg minw∈Ω{L(r)g(w, r)+log(h(w, r))} and |·| denotes

the determinant of a matrix. For derivations that require Laplace’s method, we have

assumed that w∗ without explicitly statement.
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4.3 Results

The results for Pr{Rd ≥ r} as r → rF are presented in a similar form to that given

in (3.2.3); that is, we have

Pr{Rd ≥ r} ∼



(
ξR
σR

)−1/ξR
L1(r)r−1/ξR , if ξR > 0,

K1r
αR exp

(
− r
σR

)
, if ξR = 0,

K2L2(r)
(
1− r

rF

)−1/ξR , if ξR < 0,

(4.3.1)

as r → rF which is infinite if ξR ≥ 0 and finite when ξR < 0. Here σR > 0 and αR ≥ 0

and K1, K2 > 0 are proportionality constants. The form (4.3.1) given here differs

from the form (3.2.3) proposed in Chapter 3 by the introduction of slowly varying

functions L1(r), L2(r) and the term rαR . Note that these terms do not change the

dominant behaviour of Pr{Rd ≥ r} as r → rF ; the power term rαR varies slower

than the exponential term exp (−r/σR), and both L1 and L2 vary slower than the

corresponding power terms. We further note that for the considered copulae, that

rF =
∑d

i=1 x
F
i , where xFi is the upper-endpoint of Xi for i = 1, . . . , d; if xFi = ∞ for

any i ∈ {1, . . . , d}, then rF =∞.

In Tables 4.3.1-4.3.5, we tabulate the values of the parameters ξR, σR and αR given

in (4.3.1) that arise from modelling dependence in X with each of the five copulae

presented in Section 4.1 and for a number of different cases for the marginal GPD

scale and shape parameters, ξi and σi, respectively. The five cases we consider are:

• ξi = ξ > 0 for all i = 1, . . . , d,

• ξi = ξ < 0 for all i = 1, . . . , d,

• ξi < 0 for all i = 1, . . . , d,

• ξi = 0, σi = σ for all i = 1, . . . , d,
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• ξi = 0 for all i = 1, . . . , d.

In the cases where max
1≤i≤d

{ξi} < 0 and the copula is asymptotically independent, but

not independent, we give the results for d = 2 only. For those cases where ξi = ξ > 0

for all i = 1, . . . , d, and the copula is asymptotically independent, the proofs have

been conducted for d = 2 only; however, we postulate that this behaviour can be

extended to any finite d ∈ N, and so present the results as such. We further recall

that all results for the extreme value copula hold only if the assumptions described in

Section 4.2.2 are met.

ξi = ξ > 0 for all i = 1, . . . , d

Copula σR ξR

Independence
(∑d

i=1 σ
1/ξ
i

)ξ ...

Perfect dependence
∑d

i=1 σi
...

Extreme value copula Kξ ξ

Inverted extreme value copula
(∑d

i=1 σ
1/ξ
i

)ξ ...

Gaussian (0,Σ)
(∑d

i=1 σ
1/ξ
i

)ξ ...

Table 4.3.1: Theoretical parameter values for the first-order behaviour of Pr{Rd > r}
as r →∞ if ξi = ξ > 0 for all i = 1, . . . , d. The constant K is defined in (4.4.11).
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ξi = ξ < 0 for all i = 1, . . . , d

Copula ξR

Independence ξ/d

Perfect dependence ξ

Extreme value copula ξ

Inverted extreme value copula (d = 2) ξ/V (1, 1)

Gaussian (0,Σ) (d = 2) ξ {12Σ−1
12}−1

Table 4.3.2: Theoretical parameter values for the first-order behaviour of Pr{Rd > r}
as r →∞ if ξi = ξ < 0 for all i = 1, . . . , d. The exponent V is defined in (4.1.3) and
12 denotes a 2-vector of ones.

We note that the results in Table 4.3.2 can be summarised for all copulas as

ξR = ηdξ, where ηd is defined in (4.1.5).

ξi < 0 for all i = 1, . . . , d

Copula ξR

Independence
(∑d

i=1
1
ξi

)−1

Perfect dependence max
i=1,...,d

{ξi}

Extreme value copula∗ max
i=1,...,d

{ξi}

Inverted extreme value copula (d = 2) −1/V (−ξ1,−ξ2)

Gaussian (0,Σ) (d = 2) −{ATΣ−1A}−1

Table 4.3.3: Theoretical parameter values for the first-order behaviour of Pr{Rd > r}
as r → ∞ if ξi < 0 for all i = 1, . . . , d. The exponent V is defined in (4.1.3) and
A = (

√
−1/ξ1,

√
−1/ξ2)T . For the extreme value copula, we have | arg max

i=1,...,d
ξi| = 1.

We note that if ξi = ξ for all i = 1, . . . , d, then each of the results given in

Table 4.3.3 is equal to the results in Table 4.3.2.
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ξi = 0 and σi = σ for all i = 1, . . . , d

Copula αR σR

Independence d− 1 σ

Perfect dependence 0 dσ

Extreme value copula 0 dσ

Inverted extreme value copula (symmetric V ) (d− 1)/2 dσ/V (1, . . . , 1)

Gaussian (0,Σ) (Σi,j = ρ for all i 6= j) (1TΣ−1
1)−1/2 dσ(1TΣ−1

1)−1

Table 4.3.4: Theoretical parameter values for the first-order behaviour of Pr{Rd > r}
as r →∞ if ξi = 0 and σi = σ for all i = 1, . . . , d. The exponent V is defined in (4.1.3)
and must be a symmetric function, and 1d denotes a d-vector of ones and ρ ∈ [0, 1).

Note that, similarly to Table 4.3.2, the scale parameters presented in Table 4.3.4

can be written in terms of ηd, namely σR = dηdσ. However, this property does not

extend to the case where the marginal scale parameters are heterogeneous; these re-

sults are provided below. In the case of the inverted extreme value, and Gaussian,

copulas, we have further constraints; for the former, we require that V is a symmetric

function, and for the latter, we require that the correlation parameters are homoge-

neous, i.e., Σi,j = ρ for all i 6= j. For cases where these constraints are not met, the

corresponding σR is presented in Table 4.3.5.
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ξi = 0 for all i = 1, . . . , d

Copula αR σR

Independence |{arg max
j=1,...,d

{σj}}| − 1 max
i=1,...,d

{σi}

Perfect dependence 0
∑d

i=1 σi

Extreme value copula 0
∑d

i=1 σi

Inverted extreme value copula (d− 1)/2 min
w

V
(
σ1
w1
, . . . , σd

wd

)
Gaussian (0,Σ) αG σG

Table 4.3.5: Theoretical parameter values for the first-order behaviour of Pr{Rd > r}
as r →∞ if ξi = 0 for all i = 1, . . . , d and where w ∈ Sd−1. The exponent V and Sd−1

are defined in (4.1.3), and V must satisfy the property that arg min
w∈Sd−1

V
(
σ1
w1
, . . . , σd

wd

)
is

unique. The Gaussian parameters αG and σG are given in (B.3.11) in Appendix B.3.5.

We note that if σi = σ for all i = 1, . . . , d (and, for the Gaussian copula, Σi,j = ρ

for all i 6= j), then the results in Table 4.3.5 are equal to those presented in Table 4.3.4.

The property of which the parameters ξR and σR in Tables 4.3.2 and 4.3.4, respec-

tively, are functions of ηd only occurs when the tails of the marginal variables decay

at an equal rate; that is, if ξR < 0 we require that ξi = ξ < 0 for all i = 1, . . . , d;

similarly, if ξR = 0, we require σi = σ for all i = 1, . . . , d.

The proofs for the results in Tables 4.3.1, 4.3.2 and 4.3.3 are provided in Sec-

tion 4.4. The proofs for the results in Tables 4.3.4 and 4.3.5 are provided in Ap-

pendix B.3.

4.4 Proofs

This section details some of the proofs of the results detailed in Section 4.3. The

proofs are presented in the following manner: each subsection considers a different

copula, and then within each subsection we consider two cases separately; these cases

are ξi = ξ > 0 for all i = 1, . . . , d and ξi < 0 for all i = 1, . . . , d. In the case where the
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marginal shape parameters are positive, we consider equality for all i = 1, . . . , d only.

4.4.1 Perfect dependence

Strictly positive marginal shapes

Perfect dependence in X is induced by letting X1 ∼ GPD{σ1, ξ} and then setting

Xi = σiXi/σ1 for all i = 1, . . . , d. Then if Rd =
∑d

i=1Xi =
∑d

i=1
σi
σ1
X1, it follows that

Pr{Rd ≥ s} = Pr

{
d∑
i=1

σi
σ1

X1 ≥ s

}
= Pr

X1 ≥ sσ1

[
d∑
i=1

σi

]−1
 (4.4.1)

=

1 + ξs

[
d∑
i=1

σi

]−1
−1/ξ

∼

(
ξ∑d
i=1 σi

)−1/ξ

s−1/ξ, (4.4.2)

as s→∞ and as needed.

Strictly negative marginal shapes

Let X1 ∼ GPD{σ1, ξ1}, for ξ1 < 0 and then let

Xi =
σi
ξi

(
−1 +

(
1 +

ξ1

σ1

X1

)ξi/ξ1)
,

for ξi < 0 and for all i = 1, . . . , d. It follows that Xi ∼ GPD{σi, ξi} with perfect

dependence induced in X. We can then write Rd as

Rd =
d∑
i=1

Xi =
d∑
i=1

σi
ξi

(
−1 +

(
1 +

ξ1

σ1

X1

)ξi/ξ1)
= rF +

d∑
i=1

σi
ξi

(
1 +

ξ1

σ1

X1

)ξi/ξ1
,

(4.4.3)

where rF = −
∑d

i=1 σi/ξi is the upper-endpoint of Rd. We now consider X1 →

−σ1/ξ1, i.e., the upper end-point of X1. Subsequently, all other Xi, for i = 2, . . . , d,

approach their respective upper end-points, and thus Rd approaches rF . Defining

J = arg max1≤i≤d{ξi} and ξmax = max1≤i≤d{ξi}, and considering a realisation r of Rd,
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it follows that

r ∼ rF +
∑
j∈J

σj
ξmax

(
1 +

ξ1

σ1

x1

)ξmax/ξ1
∼ rF +

1

ξmax

(
1 +

ξ1

σ1

x1

)ξmax/ξ1∑
j∈J

σj,

as 1 + ξ1x1/σ1 → 0, and hence

Pr{Rd ≥ s} ∼ Pr

{
rF +

1

ξmax

(
1 +

ξ1

σ1

X1

)ξmax/ξ1∑
j∈J

σj ≥ s

}

∼ Pr

X1 ≥
σ1

ξ1

−1 +

[
ξmax∑
j∈J σj

(
s− rF

)]ξ1/ξmax


∼

1 +
ξ1

σ1

σ1

ξ1

−1 +

[
ξmax∑
j∈J σj

(
s− rF

)]ξ1/ξmax
−1/ξ1

∼


[

ξmax∑
j∈J σj

(
s− rF

)]ξ1/ξmax
−1/ξ1

=

{
ξmax∑
j∈J σj

(
s− rF

)}−1/ξmax

∼

{
− ξmax∑

j∈J σj

(
rF − s

)}−1/ξmax

=

{
− ξmaxr

F∑
j∈J σj

}−1/ξmax (
1− s

rF

)−1/ξmax
,

as s→ rF and as required.

4.4.2 Independence

Strictly positive marginal shapes

For the independence copula with ξi = ξ > 0 for all i = 1, . . . , d, we have by induction

that, as s→∞,

Pr{Rd ≥ s} ∼
(

ξ

σRd

)−1/ξ

s−1/ξ, (4.4.4)

where σRd =
(∑d

k=1 σ
1/ξ
k

)ξ
That is, without loss of generality we can derive the result

for Rd−1 =
∑d−1

k=1 Xi and then derive the result for R by considering Rd = Xd +Rd−1.
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We begin with the base case, i.e., d = 1. For X1 ∼ GPD(σ1, ξ), we have

Pr{R1 ≥ s} = Pr{X1 ≥ s} =

{
1 +

ξ

σ1

s

}−1/ξ

∼
{
ξ

σ1

s

}−1/ξ

=

{
ξ

σ1

}−1/ξ

s−1/ξ,

as s → ∞. Thus (4.4.4) holds and we have σR1 = σ1 =
(∑1

k=1 σ
1/ξ
1

)ξ
, as needed.

As the base case holds, we assume that the result in (4.4.4) holds for Rd−1 with and

consider Rd = Rd−1 +Xd. The joint density of (Rd−1, Xd) is

fRd−1,Xd(r, xd) ∼
1

σRd−1
σd

{
ξ

σRd−1

}−1/ξ

r−1/ξ−1

{
1 +

ξxd
σd

}−1/ξ−1

∼ 1

σRd−1
σd

{
1 +

ξ

σRd−1

r

}−1/ξ−1{
1 +

ξxd
σd

}−1/ξ−1

, (4.4.5)

as rd−1 →∞ and for any xd ∈ [0,∞). We now use the transformation given by (4.2.2),

i.e., (Rd−1, Xd) → (U, V ). The joint density of (U, V ) is fU,V (u, v) ∼ 1
ξ2

(uv)−1/ξ−1 as

u → ∞ and for v > 1. We then apply the second transformation (U, V ) → (Rd,W )

given by (4.2.3), where Rd = Rd−1 + Xd and W = (σRd−1
/ξ + Rd)/(σRd−1

/ξ + Rd +

σd/ξ +Xd). The joint density of (Rd,W ) is

fRd,W (r, w) ∼ ξ−2/ξ−2

(σRd−1
σd)−1/ξ

(
σRd−1

ξ
+
σd
ξ

+ r

)−2/ξ−1

[w(1− w)]−1/ξ−1 ,

as r →∞ and for w ∈ [t1, 1− t2], where

t1 =
σRd−1

ξ

(
σRd−1

ξ
+
σd
ξ

+ r

)−1

, t2 =
σd
ξ

(
σRd−1

ξ
+
σd
ξ

+ r

)−1

.

The marginal density of Rd is then

fRd(r) =

∫ c1

t1

fRd,W (r, w)dw +

∫ 1−c2

c1

fRd,W (r, w)dw +

∫ 1−t2

1−c2
fRd,W (r, w)dw (4.4.6)
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where c1, c2 > 0 are constants chosen such that c1 > t1, c2 > t2 and c1 < 1 − c2. We

then have

fRd(r) ∼
ξ−2/ξ−2

(σRd−1
σd)−1/ξ

(
σRd−1

ξ
+
σd
ξ

+ r

)−2/ξ−1 ∫ 1−t2

t1

[w(1− w)]−1/ξ−1 dw

∼ ξ−2/ξ−2

(σRd−1
σd)−1/ξ

r−2/ξ−1

[∫ c1

t1

[w(1− w)]−1/ξ−1dw +

∫ 1−c2

c1

[w(1− w)]−1/ξ−1dw

+

∫ 1−t2

1−c2
[w(1− w)]−1/ξ−1dw

]

∼ ξ−2/ξ−2

(σRd−1
σd)−1/ξ

r−2/ξ−1

[∫ c1

t1

w−1/ξ−1dw +K1 +

∫ 1−t2

1−c2
(1− w)−1/ξ−1dw

]
,

as r → ∞ and for some constant K1 > 0. The last line follows as c1 and c2 can be

chosen small enough so that (1 − w) ≈ 1 and w ≈ 1 on their respective domains.

Then

fRd(r) ∼
ξ−2/ξ−2

(σRd−1
σd)−1/ξ

r−2/ξ−1

[∫ c1

t1

w−1/ξ−1dw +K1 +

∫ 1−t2

1−c2
(1− w)−1/ξ−1dw

]
∼ ξ−2/ξ−2

(σRd−1
σd)−1/ξ

r−2/ξ−1
[
ξ(t
−1/ξ
1 + t

−1/ξ
2 ) +K2

]
∼ ξ−2/ξ−2

(σRd−1
σd)−1/ξ

r−2/ξ−1

[
ξ

({
σRd−1

ξ

}−1/ξ

+

{
σd
ξ

}−1/ξ
)(

σRd−1

ξ
+
σd
ξ

+ r

)1/ξ

+K2

]

∼ ξ−1/ξ−1

(σRd−1
σd)−1/ξ

(
σ
−1/ξ
Rd−1

+ σ
−1/ξ
d

)
r−1/ξ−1 ∼ ξ−1/ξ−1

(
σ

1/ξ
Rd−1

+ σ
1/ξ
d

)
r−1/ξ−1,

as r →∞ and for constant K2 > 0. It follows that

Pr{Rd ≥ s} ∼
∫ ∞
s

ξ−1/ξ−1
(
σ

1/ξ
Rd−1

+ σ
1/ξ
d

)
r−1/ξ−1dr =

 ξ[
σ

1/ξ
Rd−1

+ σ
1/ξ
d

]ξ

−1/ξ

s−1/ξ,

as s→∞. Then as σRd =
(
σ1ξ
Rd−1

+ σ
1/ξ
d

)ξ
, we have proven that (4.4.4) holds for any

finite d by induction. Note that if σi = σ for all i = 1, . . . , d, then σR = dξσ.
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Strictly negative marginal shapes

If we instead have ξi < 0 for all i = 1, . . . , d, then the joint density of X is

fX(x) =
d∏
i=1

1

σi

(
1 +

ξixi
σi

)−1/ξi−1

,

for 0 ≤ xi ≤ −σi/ξi and all i = 1, . . . , d. We now conduct the two-step transformation

given by (4.2.2) and (4.2.3), i.e., X → U → (Rd,W). Recall that we use this

transformation as we are able to proof that the support of W ∈ [0, 1]d−1 is invariant

of the value Rd, given that Rd > t for t defined in (4.2.5). Thus, we consider fRd,W

for Rd > t and as r → rF = −
∑d

i=1 σi/ξi. For w = (w1, . . . , wd−1), we have

fRd,W(r,w) =
(
rF − r

)−∑i 1/ξi−1
g(w),

where

g(w) =

{
d−1∏
i=1

(−ξiwi)−1/ξi−1

σ
−1/ξi
i

}
×

(
−ξd

[
1−

∑d
i=1 wi

])−1/ξd−1

σ
−1/ξd
d

.

The survival function of Rd is then

Pr{Rd ≥ s} =

∫ rF

s

(
rF − r

)−∑i 1/ξi−1
dr

∫
w

g(w)dw

= K

∫ rF

s

(
rF − r

)−∑i 1/ξi−1
dr =

K

−
∑d

i=1 1/ξi

(
rF − s

)−∑i 1/ξi
,

where K =
∫
w
g(w)dw > 0 is a finite constant. Note that the integral of g(w) has an

analytical solution given by the distribution function of a Dirichlet random variable.

4.4.3 Extreme value copula

LetXi ∼ GPD(σi, ξi) for ξi 6= 0 for all i = 1, . . . , d and with dependence in X described

using the extreme value copula defined in Section 4.1. Following the assumptions made
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in Section 4.2.2, the density of X is of the form

fX(x) ∼ −


d∏

k=1

(
1 + ξ

σk
xk

)1/ξ−1

σk

× Vx
([

1 +
ξ

σ1

x1

]1/ξ

, . . . ,

[
1 +

ξ

σd
xd

]1/ξ
)
,

(4.4.7)

as each component of x = (x1, . . . , xd) tends to its respective upper-endpoint and

where Vx denotes the d-th partial derivative of V , defined in (4.1.3), with respect to

all components.

Strictly positive marginal shapes

We now let ξi = ξ > 0 for all i = 1, . . . , d and apply the transformation given by

(4.2.1), namely X→ (Rd,W). The joint density of (Rd,W) is

fRd,W(r,w) ∼ −rd−1


d∏

k=1

(
1 + ξ

σk
rwk

)1/ξ−1

σk

 (4.4.8)

× Vx

([
1 +

ξ

σ1

rw1

]1/ξ

, . . . ,

[
1 +

ξ

σd
rwd

]1/ξ
)

∼ −rd−1


d∏

k=1

(
ξ
σk
rwk

)1/ξ−1

σk

× Vx
([

ξ

σ1

rw1

]1/ξ

, . . . ,

[
ξ

σd
rwd

]1/ξ
)

∼ −r−1/ξ−1ξd/ξ−d


d∏

k=1

(
wk
σk

)1/ξ−1

σk

× ξ−(d+1)/ξVx

([
w1

σ1

]1/ξ

, . . . ,

[
wd
σd

]1/ξ
)

∼ r−1/ξ−1ξ−1/ξ−1g(w) (4.4.9)

as r →∞, and where the third line follows as Vx is a homogeneous function of order

−(d+ 1), and

g(w) = −ξ−(d−1)

{
d∏

k=1

w
1/ξ−1
k

σ
1/ξ
k

}
Vx

([
w1

σ1

]1/ξ

, . . . ,

[
wd
σd

]1/ξ
)
, (4.4.10)
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for w ∈ Sd−1, i.e., the (d − 1)-dimensional unit simplex defined in (4.1.2). It follows

that

Pr{Rd ≥ s} =

∫ ∞
s

∫
Sd−1

fRd,W(r,w)dwdr ∼
∫ ∞
s

Kξ−1/ξ−1r−1/ξ−1dr ∼
{
ξ

Kξ

}−1/ξ

s−1/ξ,

as s→∞, and where

K =

∫
w

g(w)dw <∞. (4.4.11)

We now give a brief discussion on the scaling constant K > 0. If H defined in (4.1.3)

is a valid distribution function with related density h, then Coles and Tawn (1991)

show that Vx can be redefined in terms of h. We do this now, and rewrite g(w) in

(4.4.10) as

ξ−(d−1)[∑d
i=1(wi/σi)1/ξ

]d+1

{
d∏

k=1

w
1/ξ−1
k

σ
1/ξ
k

}
h

(
w

1/ξ
1

σ
1/ξ
1

∑d
i=1(wi/σi)1/ξ

, . . . ,
w

1/ξ
d−1

σ
1/ξ
d−1

∑d
i=1(wi/σi)1/ξ

)
,

(4.4.12)

for w ∈ ∫d−1. Using the transformation

ωj =
w

1/ξ
1

σ
1/ξ
1

∑d
i=1(wi/σi)1/ξ

,

for all j = 1, . . . , d− 1, it can be shown that K in (4.4.11) can be rewritten as

K =

∫
Ω

1∑d
i=1 fi(ω)

× h∗ (ω1, . . . , ωd−1, ωd) dω, (4.4.13)

where

ωd = 1−
d−1∑
i=1


d−1∑
j=1

σi
σj

(
ωi
ωj

)ξ
+
σd
σi

(
1−

∑d−1
k=1 ωk
ωi

)ξ

−1

, (4.4.14)
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and

fi(ω) =


{∑d−1

j=1
σi
σj

(
ωi
ωj

)ξ
+ σd

σi

(
1−
∑d−1
k=1 ωk
ωi

)ξ}−1/ξ

σ
−1/ξ
i if, i 6= d,

(wd/σd)
1/ξ, if i = d,

and

Ω =

ω : ωd +
d−1∑
i=1


d−1∑
j=1

σi
σj

(
ωi
ωj

)ξ
+
σd
σi

(
1−

∑d−1
k=1 ωk
ωi

)ξ

−1

= 1

 .

We use h∗ in (4.4.13) to denote the same density as given in (4.4.12), except with

a different constraint on the variables. With abuse of notation, we rewrite h as

h(z1, . . . , zd−1) = h(z1, . . . , zd−1, zd), where the last variable is constrained so that

zd = 1 −
∑d−1

j=1 zj, i.e., z lies in Sd−1. The function h∗(·) has the same form as h,

except with the simplex constraint replaced with the constraint detailed in (4.4.14).

A proof of the transformation of (4.4.11) to (4.4.13) is given in Appendix B.2.

Note that if we have homogeneous scale parameters, i.e., σi = σ for all i = 1, . . . , d,

and that the marginal shape parameter is ξ = 1, we can use a linear transformation

to reclaim the original (d− 1)-dimensional simplex. This gives

K =

∫
Ω

1∑d
i=1 fi(ω)

× h∗ (ω1, . . . , ωd−1, ωd) dω = σ

∫
Sd−1

h (ω1, . . . , ωd−1) dω = dσ.

Strictly negative marginal shapes

For ξi < 0 for all i = 1, . . . , d, the joint density of X is given by (4.4.7). We conduct

the two-step transformation given by (4.2.2) and (4.2.3), i.e., X → U → (Rd,W).

Recall that we use this transformation as we are able to illustrate that the support

of W ∈ [0, 1]d−1 is independent of the value of Rd, given that Rd > t for t = rF +

max1≤j≤d{σi/ξi} defined in (4.2.5). Thus, we consider fRd,W for Rd > t and as
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r → rF = −
∑d

i=1 σi/ξi. For w = (w1, . . . , wd−1), we have

fRd,W(r,w) ∼ K1

(
rF − r

){∑i 1/ξi}−1

{
d∏

k=1

w
1/ξk−1
k

}

×

{
−Vx

([
(−ξ1)

σ1

(
rF − r

)
w1

]1/ξ1

, . . . ,

[
(−ξd)
σd

(
rF − r

)
wd

]1/ξd
)}

(4.4.15)

as r → rF and for constant K1 > 0 and where wd = 1 −
∑d−1

j=1 wj. We now conduct

the transformation Rd → V , for V defined in (4.2.7), and consider v < rF − t. The

joint density of (V,W) is

fV,W(v,w) ∼ K2v
{∑i 1/ξi}−1

{
d∏
i=1

w
1/ξi−1
i

}

×

{
−Vx

([
−ξ1

σ1

rFvw1

]1/ξ1

, . . . ,

[
−ξd
σd

rFvwd

]1/ξd
)}

∼ K3v
{∑i 1/ξi}−1

{
d∏
i=1

w
1/ξi−1
i

}
(vwd)

−(d+1) {−Vx (g1(v,w), . . . , gd(v,w))} ,

(4.4.16)

as v ↓ 0 and w ∈ [0, 1]d−1 and for constants K2, K3 > 0, where

gi(v,w) = v1/ξi−1/ξd

[
−ξirF

σi

]1/ξi [−ξdrF
σd

]−1/ξd w
1/ξi
i

w
1/ξd
d

,

for i = 1, . . . , d. The last line of (4.4.16) follows as Vx is a homogeneous function of

order −(d+ 1).

We now set ξd = max
i=1,...,d

ξi and assume that ξd > ξj for all j = 1, . . . , d − 1. To

understand the behaviour of (4.4.16) and gi for each i = 1, . . . , d and as v ↓ 0, we

conduct the second half of the transformation given by (4.2.7), namely W→ Z, where

Wj = V Zj for Zj ∈ (0,∞) and j = 1, . . . , d − 1; note that wd becomes 1 −
∑d−1

j=1 v
zj .
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The joint density of (V,Z) is

fV,Z(v, z) ∼ K3 [− log(v)]d−1 v{
∑
i 1/ξi}−1

{
d−1∏
j=1

vzj/ξj

}{
1−

d−1∑
j=1

vzj

}1/ξd−1

×

(
v

{
1−

d−1∑
j=1

vzj

})−(d+1)/ξd

{−Vx (g1(v, z), . . . , gd(v, z))}

∼ K3[− log(v)]d−1v{
∑
i 1/ξi}−1

{
d−1∏
j=1

vzj/ξj

}
v−(d+1)/ξd

× {−Vx (g1(v, z), . . . , gd(v, z))} , (4.4.17)

for z = (z1, . . . , zd−1) ∈ (0,∞)d−1 and as v ↓ 0 and where

gi(v, z) =

[
−ξirF

σi

]1/ξi [−ξdrF
σd

]−1/ξd v(1+zi)/ξi−1/ξd(
1−

∑d−1
j=1 v

zj

)1/ξd

∼
[
−ξirF

σi

]1/ξi [−ξdrF
σd

]−1/ξd

v(1+zi)/ξi−1/ξd , (4.4.18)

for i = 1, . . . , d. We note that the last lines of (4.4.17) and (4.4.18) follow as 1 −∑d−1
j=1 v

zj → 1 as v ↓ 0 and that gd(v, z) = 1. Note that when we consider v ↓ 0,

the asymptotic behaviour of each gi depends on zi only, rather than the full vector z;

from here we rewrite these functions as gi(v, zi). Now, consider

fV (v) ∼ K3[− log(v)]d−1v{
∑
i 1/ξi}−1v−(d+1)/ξd

×
∫ ∞

0

· · ·
∫ ∞

0

{
d−1∏
j=1

vzj/ξj

}
{−Vx (g1(v, z1), . . . , gd−1(v, zd−1), 1)} dz1 . . . zd−1,

(4.4.19)

as v ↓ 0. To evaluate the integral in (4.4.19), we consider the integral as an iterative

procedure; we begin by integrating fV,Z with respect to z1 and then determine the

first-order behaviour of the expression as v ↓ 0. We then integrate this first-order
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expression with respect to z2. Continuing in this fashion, it is possible to derive the

first-order behaviour of
∫
z
fV,Z(z, z)dz as v ↓ 0.

We first consider the integral

∫ ∞
0

{
d−1∏
j=1

vzj/ξj

}
{−Vx (g1(v, z1), . . . , gd−1(v, zd−1), 1)} dz1

= K∗1
v1/ξd−1/ξ1

[− log(v)]

{
d−1∏
j=2

vzj/ξj

}{
− Vx−1 (∞, g2(v, z2), . . . , gd−1(v, zd−1), 1)

+ Vx−1 (g1(v, 0), g2(v, z2), . . . , gd−1(v, zd−1), 1)

}
, (4.4.20)

as v ↓ 0 and for constant K∗1 > 0, and where Vx−1 denotes the (d− 1)-th order partial

derivative of V with respect to all components except the first. To evaluate the first

order behaviour of (4.4.20) as v ↓ 0, we note that the two terms

Vx−1 (∞, g2(v, z2), . . . , gd−1(v, zd−1), 1) , and Vx−1 (g1(v, 0), g2(v, z2), . . . , gd−1(v, zd−1), 1) ,

differ in only their first component, and so we consider their behaviour as v ↓ 0

with the other (d − 1) components treated as fixed. From the assumptions made in

Section 4.2.2, we have that 0 < −Vx−1 (∞, g2(v, z2), . . . , gd−1(v, zd−1), 1) <∞ and we

can show that

Vx−1 (g1(v, 0), g2(v, z2), . . . , gd−1(v, zd−1), 1)→ 0, (4.4.21)

as v ↓ 0; this follows as g1(v, 0)→ 0 as v ↓ 0 as ξd > ξj for all j = 1, . . . , d− 1 and so

1/ξ1 − 1/ξd > 0. It then follows from Section 4.2.2 that (4.4.21) holds. Hence,

∫ ∞
0

{
d−1∏
j=1

vzj/ξj

}
{−Vx (g1(v, z1), . . . , gd−1(v, zd−1), 1)}dz1

∼ K∗1
v1/ξd−1/ξ1

[− log(v)]

{
d−1∏
j=2

vzj/ξj

}{
−Vx−1 (∞, g2(v, z2), . . . , gd−1(v, zd−1), 1)

}
, (4.4.22)
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as v ↓ 0. We now let Vx−(1,2)
denote the (d− 2)-th order partial derivative of V with

respect to all components except the first and second From (4.4.22), we have that

∫ ∞
0

∫ ∞
0

{
d−1∏
j=1

vzj/ξj

}
{−Vx (g1(v, z1), . . . , gd−1(v, zd−1), 1)}dz1z2

∼ K∗1

∫ ∞
0

v1/ξd−1/ξ1

[− log(v)]

{
d−1∏
j=2

vzj/ξj

}
{−Vx−1 (∞, g2(v, z2), . . . , gd−1(v, zd−1), 1)}dz2

∼ K∗2
v2/ξd−1/ξ1−1/ξ2

[− log(v)]2

{
d−1∏
j=3

vzj/ξj

}{
− Vx−(1,2)

(∞,∞, g3(v, z3), . . . , gd−1(v, zd−1), 1)

+ Vx−(1,2)
(∞, g2(v, 0), g3(v, z3), . . . , gd−1(v, zd−1), 1)

}

∼ K∗2
v2/ξd−1/ξ1−1/ξ2

[− log(v)]2

{
d−1∏
j=3

vzj/ξj

}
{−Vx−(1,2)

(∞,∞, g3(v, z3), . . . , gd−1(v, zd−1), 1)}

as v ↓ 0 and for constant K∗2 > 0; the last line follows for the same reasoning as

provided above for (4.4.22) and with assumptions made in Section 4.2.2. That is, we

have that −Vx−(1,2)
(∞,∞, g3(v, z3), . . . , gd−1(v, zd−1), 1) is a finite, positive constant

and

Vx−1 (∞, g2(v, 0), g3(v, z3), . . . , gd−1(v, zd−1), 1)→ 0,

as v ↓ 0. Continuing in this manner, it follows that

∫
Z

{
d−1∏
j=1

vzj/ξj

}
{−Vx (g1(v, z), . . . , 1)}dz ∼ K∗

v(d−1)/ξd−
∑d−1
j=1 1/ξj

[− log(v)]d−1
{−Vxd (∞, . . . ,∞, 1)},

(4.4.23)

as v ↓ 0 and for constant K∗ > 0 and where Vxd (∞, . . . ,∞, 1) = −1 denotes the

first-order partial derivative of V with respect to the d-th component. Combining

(4.4.19) and (4.4.23), the marginal density of V is fV (v) ∼ K∗2v
−1/ξd−1 as v ↓ 0 and

for constant K∗2 > 0. Transforming V back to Rd and deriving the survival function,
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it can be shown that

Pr{Rd ≥ r} ∼ K∗Rd

(
1− r

rF

)−1/ξd

as r → rF and for constant K∗Rd > 0. Note that the choice ξd = max
i=1,...,d

ξi was arbitrary,

and so we can simply replace ξd with max
i=1,...,d

ξi to achieve the desired result.

4.4.4 Inverted extreme value copula

Let R2 = X1 + X2, where Xi ∼ GPD(σi, ξi) for ξi 6= 0, sgn(ξ1) = sgn(ξ2) and

i = 1, 2, and with dependence in (X1, X2) induced by the inverted extreme value

copula described in Section 4.1. By combining (4.1.1) and (4.1.4) and differentiating

with respect to all arguments, the joint density of (X1, X2) is

fX1,X2(x1, x2) =
ξ2

1ξ
2
2

σ1σ2

{log (x̃1) log (x̃2)}−2 e
−V
(

ξ1
log(x̃1)

,
ξ2

log(x̃2)

)
{x̃1x̃2}−1

×

{
Vx1

(
ξ1

log (x̃1)
,

ξ2

log (x̃2)

)
Vx2

(
ξ1

log (x̃1)
,

ξ2

log (x̃2)

)
− Vx

(
ξ1

log (x̃1)
,

ξ2

log (x̃2)

)}
,

(4.4.24)

where x̃i = 1+ξixi/σi for i = 1, 2 and V is defined in (4.1.3), with Vx1 and Vx2 denoting

the first-order partial derivatives of V with respect to the first and second components,

respectively, and Vx denoting the second-order partial derivative of V with respect to

both components. Throughout we make the assumption that 1 < V (1, 1) ≤ 2; we

omit the case V (1, 1) = 1, corresponding to perfect dependence, as this is covered by

the proofs in Section 4.4.1.

Strictly positive marginal shapes

We now set ξi = ξ > 0 for all i = 1, . . . , d. Furthermore, we constrain this proof to

the case d = 2 only, but assume that the relationship holds for Rd. To justify this, we
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illustrate that the form for Pr{R2 > s} as s→∞ for this case is exactly that of the

case where X exhibits independence, and so the same relationship will hold for Rd.

We rewrite (4.4.24) with ξ1 = ξ2 = ξ as

fX1,X2(x1, x2) =
(x̃1x̃2)−1

σ1σ2

e
− 1
ξ
V
(

1
log(x̃1)

, 1
log(x̃2)

)

×

{
Vx1

(
1,

log(x̃1)

log(x̃2)

)
Vx2

(
log(x̃2)

log(x̃1)
, 1

)
− ξ log(x̃1) log(x̃2)Vx (log(x̃2), log(x̃2))

}
,

which follows as Vx1 and Vx2 are homogeneous functions of order −2. We then use

the transformation (X1, X2)→ (R2,W ) given by (4.2.1); the joint density of (R2,W )

is

fR2,W (r, w) =
r

σ1σ2

e
− 1
ξ
V

(
1

log(1+ξ rwσ1 )
, 1

log(1+ξ
r(1−w)
σ2 )

){(
1 + ξ

rw

σ1

)(
1 + ξ

r(1− w)

σ2

)}−1

×

{
Vx1

1,
log
(

1 + ξ rw
σ1

)
log
(

1 + ξ r(1−w)
σ2

)
Vx2

 log
(

1 + ξ r(1−w)
σ2

)
log
(

1 + ξ rw
σ1

) , 1


− ξ log

(
1 + ξ

rw

σ1

)
log

(
1 + ξ

r(1− w)

σ2

)
× Vx

(
log

(
1 + ξ

r(1− w)

σ2

)
, log

(
1 + ξ

rw

σ1

))}
, (4.4.25)

for w ∈ [0, 1] and r ∈ [0,∞). We now note that

fR2(r) =

∫ 1

0

fR2,W (r, w)dw

=

∫ 1

1/2

fR2,W (r, w)dw +

∫ 1/2

0

fR2,W (r, w)dw, (4.4.26)

and so we consider only the second integral; the first can be derived by symmetric

arguments. To derive the second integral in (4.4.26), we apply the transformation

(R2,W ) → (R2, Z) for Z ∈ (log(r)/ log(2),∞) given by (4.2.6). The joint density of
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(R2, Z) is

fR2,Z(r, z) =
r1−z log(r)

σ1σ2

gr(z)

{(
1 + ξ

r1−z

σ1

)(
1 + ξ

r(1− r−z)
σ2

)}−1

×

{
Vx1

1,
log
(

1 + ξ r
1−z

σ1

)
log
(

1 + ξ r(1−r
−z)

σ2

)
Vx2

 log
(

1 + ξ r(1−r
−z)

σ2

)
log
(

1 + ξ r
1−z

σ1

) , 1


− ξ log

(
1 + ξ

r1−z

σ1

)
log

(
1 + ξ

r(1− r−z)
σ2

)
× Vx

(
log

(
1 + ξ

r(1− r−z)
σ2

)
, log

(
1 + ξ

r1−z

σ1

))}

∼ r−z log(r)

σ1ξ
gr(z)

(
1 + ξ

r1−z

σ1

)−1

×

{
Vx1

1,
log
(

1 + ξ r
1−z

σ1

)
log (r)

Vx2

 log (r)

log
(

1 + ξ r
1−z

σ1

) , 1


− ξ log

(
1 + ξ

r1−z

σ1

)
log (r)Vx

(
log (r) , log

(
1 + ξ

r1−z

σ1

))}
(4.4.27)

as r →∞ and where

gr(z) = exp

−1

ξ
log

(
1 +

ξr

σ2

)
V

 log
(

1 + ξr
σ2

)
log
(

1 + ξ r
1−z

σ2

) , log
(

1 + ξr
σ2

)
log
(

1 + ξ r(1−r
−z)

σ2

)


∼ exp

−1

ξ
log

(
1 +

ξr

σ2

)
V

 log (r)

log
(

1 + ξ r
1−z

σ2

) , 1
 .

To integrate (4.4.27) with respect to Z, we consider the derivative of

G(1)
r (z) = gr(z)Vx2

 log (r)

log
(

1 + ξ r
1−z

σ1

) , 1


with respect to z, which is

d

dz
G(1)
r (z) = −r

1−z log(r)

σ1

gr(z)

(
1 + ξ

r1−z

σ2

)−1
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×

{
Vx1

1,
log
(

1 + ξr1−z

σ1

)
log (r)

Vx2

 log (r)

log
(

1 + ξ r
1−z

σ1

) , 1


− ξ log

(
1 + ξ

r1−z

σ1

)
log (r)Vx

(
log (r) , log

(
1 + ξ

r1−z

σ1

))}

∼ −rξfR2,Z(r, z),

as r →∞. Hence
∫∞

log(2)/ log(r)
fR2,Z(r, z)dz =

∫ 1/2

0
fR2,W (r, w)dw is

∼ −ξ−1r−1
[
G(1)
r (∞)−G(1)

r (log(2)/ log(r))
]

∼ −ξ−1r−1

[
exp

{
−1

ξ
log

(
1 +

ξr

σ2

)
V (∞, 1)

}
Vx2 (∞, 1)

− exp

−1

ξ
log

(
1 +

ξr

σ2

)
V

 log
(

1 + ξr
σ2

)
log
(

1 + ξ r
2σ1

) , 1
Vx2

 log
(
ξ r
σ2

)
log
(

1 + ξ r
2σ1

) , 1
]

∼ ξ−1r−1

[(
1 + ξ

r

σ2

)−1/ξ

+ Vx2(1, 1)

(
1 + ξ

r

σ2

)−V (1,1)/ξ
]

∼ ξ−1r−1

(
ξr

σ2

)−1/ξ

(4.4.28)

as r → ∞ and where the penultimate line follows as V (∞, 1) = V (1,∞) = 1 and

Vx2(∞, 1) = Vx1(1,∞) = −1; the last line follows as V (1, 1) > 1. A symmetric

argument can be used to show that

∫ 1

1/2

fR2,W (r, w)dw ∼ ξ−1r−1

(
ξr

σ1

)−1/ξ

,

as r →∞, and hence

fR2(r) ∼ ξ−1r−1

(
ξr

σ2

)−1/ξ

+ ξ−1r−1

(
ξr

σ1

)−1/ξ

= ξ−1r−1
[
σ

1/ξ
1 + σ

1/ξ
2

]
(ξr)−1/ξ ,



4. COPULA-BASED AGGREGATION 98

as r →∞. We then have

Pr{R2 ≥ s} =

∫ ∞
s

fR2(r)dr ∼

 ξ[
σ

1/ξ
1 + σ

1/ξ
2

]−ξ

−1/ξ

s−1/ξ,

as s→∞, and so we have the required result; this is equivalent to the result derived

for the independence case (see Section 4.4.2), which justifies our assumption that

similar structures are found in Rd as R2, and so we claim that Pr{Rd ≥ s} is of the

form

Pr{Rd ≥ s} ∼

 ξ[∑d
i=1 σ

1/ξ
i

]−ξ

−1/ξ

s−1/ξ,

as s→∞.

Strictly negative marginal shapes

We now let ξi < 0 for i = 1, 2. From (4.4.24), we apply the transformations

(X1, X2) → (U1, U2) and (U1, U2) → (R2,W ) given by (4.2.2) and (4.2.3), respec-

tively, and consider (R2,W ) for R2 > t, with t defined in (4.2.5). The joint density

of (R2,W ) for w ∈ [0, 1] is

fR2,W (r, w) = (σ1σ2)−1
(
rF − r

)−1
{

log

(
−ξ1

(
rF − r

) w
σ1

)
log

(
−ξ2

(
rF − r

) (1− w)

σ2

)}−2

× exp

−V
 ξ1

log
(
−ξ1 (rF − r) w

σ1

) , ξ2

log
(
−ξ2 (rF − r) (1−w)

σ2

)


× {w(1− w)}−1

{
Vx1

 ξ1

log
(
−ξ1 (rF − r) w

σ1

) , ξ2

log
(
−ξ2 (rF − r) (1−w)

σ2

)


× Vx2

 ξ1

log
(
−ξ1 (rF − r) w

σ1

) , ξ2

log
(
−ξ2 (rF − r) (1−w)

σ2

)


− Vx

 ξ1

log
(
−ξ1 (rF − r) w

σ1

) , ξ2

log
(
−ξ2 (rF − r) (1−w)

σ2

)
},
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where rF = −σ1/ξ1 − σ2/ξ2 is the upper-endpoint of R2. We now apply another

transformation (R2,W ) → (V, Z) for V ∈ [1 − t/rF , 1] and Z ∈ (0,∞), given by

(4.2.7) and consider v ↓ 0. The joint density of (V, Z) is

fV,Z(v, z) = −(rF )−2(σ1σ2)−1v−1 log(v)

{
log

(
−ξ1vr

F v
z

σ1

)
log

(
−ξ2vr

F (1− vz)
σ2

)}−2

× exp

−V
 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log
(
−ξ2vrF

(1−vz)
σ2

)
 (1− vz)−1

×

{
Vx1

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log
(
−ξ2vrF

(1−vz)
σ2

)


× Vx2

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log
(
−ξ2vrF

(1−vz)
σ2

)


− Vx

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log
(
−ξ2vrF

(1−vz)
σ2

)
}

∼ −(rF )−2(σ1σ2)−1v−1 log(v)

{
log

(
−ξ1vr

F v
z

σ1

)
log
(
−ξ2vr

F/σ2

)}−2

× exp

−V
 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


×

{
Vx1

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


× Vx2

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


− Vx

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)

},
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where the last line follows as 1− vz → 1 for any fixed z 6= 0 and as v ↓ 0. To find the

marginal density of V , we consider the derivative of

Gv(z) = Vx2

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


× exp

−V
 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)

 ,

with respect to z, which is

d

dz
Gv(z) =

ξ1 log(v)[
log
(
−ξ1vrF

vz

σ1

)]2 exp

−V
 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


×

{
− Vx

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


+ Vx1

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


× Vx2

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)

}

∼ K1v
[
log
(
−ξ2vr

F/σ2

)]2
fV,Z(v, z),

as v ↓ 0 and for constant K1 = −σ1σ2(rF )2/ξ1 > 0. Hence,

fV (v) =

∫ ∞
0

fV,Z(v, z)dz ∼
[

1

K1

v−1
[
log
(
−ξ2vr

F/σ2

)]−2
Gv(z)

]∞
0

∼ 1

K1

[
v−1

[
log
(
−ξ2vr

F/σ2

)]−2
Vx2

 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


× exp

−V
 ξ1

log
(
−ξ1vrF

vz

σ1

) , ξ2

log (−ξ2vrF/σ2)


]∞

0
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∼ 1

K1

[
v−1Vx2

−ξ1 log
(
−ξ2vr

F/σ2

)
log
(
−ξ1vrF

vz

σ1

) ,−ξ2

 e
log
(
−ξ1vrF vz

σ1

)
V

(
−ξ1,

−ξ2 log(−ξ1vrF vz
σ1 )

log(−ξ2vrF /σ2)

)]∞
0

∼ − 1

K1

v−1Vx2

(
−ξ1 log

(
−ξ2vr

F/σ2

)
log (−ξ1vrF/σ1)

,−ξ2

)
e

log(−ξ1vrF /σ1)V
(
−ξ1,

−ξ2 log(−ξ1vrF /σ1)
log(−ξ2vrF /σ2)

)

∼ − 1

K1

v−1Vx2 (−ξ1,−ξ2) elog(v)V (−ξ1,−ξ2) ∼ K2v
−1vV (−ξ1,−ξ2) = K2v

V (−ξ1,−ξ2)−1,

as v ↓ 0 and for constant K2 = −(K1)−1Vx2(−ξ1,−ξ2) > 0, and where the third line

follows as V and Vx2 are homogeneous functions of order −1 and −2, respectively;

the fourth line follows as

Vx2

−ξ1 log
(
−ξ2vr

F/σ2

)
log
(
−ξ1vrF

vz

σ1

) ,−ξ2

→ Vx2(∞,−ξ2),

as z →∞ and where Vx2(∞,−ξ2) < 0 is a constant, and

e
log
(
−ξ1vrF vz

σ1

)
V

(
−ξ1,

−ξ2 log(−ξ1vrF vz
σ1 )

log(−ξ2vrF /σ2)

)
∼ vzV (−ξ1,∞) → 0,

as z → ∞ and for any v < 1. Hence, the product of the two terms equals zero as

z →∞, and the result follows. Transforming back to R2, it can be shown that

Pr{R2 ≥ s} ∼ K3

(
1− s

rF

)V (−ξ1,−ξ2)

,

as s→ rF and for constant K3 = K2(rF )2+V (−ξ1,−ξ2)/V (−ξ1, ξ2) > 0.

4.4.5 Standard Gaussian copula

We begin by considering the 2−dimensional random vector Y ∼ N2(02,Σ), where

02 denotes a 2-vector of zeroes and Σ is a 2 × 2 positive definite matrix, where

Σii = 1 and Σ12 = Σ21 = ρ ∈ (0, 1). To perform the transformation Y → X where
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Xi ∼ GPD(σi, ξi) for i = 1, 2, we let

Φ̄(Yi) =

(
1 +

ξi
σi
Xi

)−1/ξi

,

for i = 1, 2. Here Φ̄(·) denotes the survival function of the univariate standard Gaus-

sian distribution. By Mill’s ratio (Grimmett, 2020), we have that Φ̄(x) ∼ φ(x)
x

as

x → ∞ and where φ denotes the density of the univariate standard Gaussian distri-

bution. Thus, we can approximate the transformation Yi → Xi by finding a solution

to

1

y

1√
2π
e−

1
2
y2 ∼

{
1 +

ξ

σ
x

}−1/ξi

, (4.4.29)

which holds as x→ xF , where xF denotes the upper endpoint of X. To solve (4.4.29),

we begin with an initial solution y0 that solves

(
1 +

ξ

σ
x

)−1/ξ

= e−
1
2
y2 ,

which gives y0 =
√

2
ξ

log
{

1 + ξ
σ
x
}

, where ξ−1 log(1 + ξxσ) ≥ 0. Now, let y1 = x0 + ε

where ε = o

(√
log
{

1 + ξ
σ
x
})

. Substituting this into (4.4.29) gives

(
1 +

ξ

σ
x

)−1/ξ

∼ 1√
2
ξ

log
{

1 + ξ
σ
x
}

+ ε

1√
2π
e−

1
ξ

log{1+ ξ
σ
x}e−ε

√
2
ξ

log{1+ ξ
σ
x}e−

1
2
ε2

∼ 1√
2
ξ

log
{

1 + ξ
σ
x
}

+ ε

1√
2π

{
1 +

ξ

σ
x

}−1/ξ−1

e
−ε
√

2
ξ

log{1+ ξ
σ
x}e−

1
2
ε2 ,

as x→ xF and thus

1 ∼ 1√
2
ξ

log
{

1 + ξ
σ
x
}

+ ε

1√
2π
e
−ε
√

2
ξ

log{1+ ξ
σ
x}e−

1
2
ε2

∼ 1√
2
ξ

log
{

1 + ξ
σ
x
} 1

1 + ε√
2
ξ

log{1+ ξ
σ
x}

1√
2π
e
−ε
√

2
ξ

log{1+ ξ
σ
x}e−

1
2
ε2
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∼ 1√
2
ξ

log
{

1 + ξ
σ
x
} 1√

2π
e
−ε
√

2
ξ

log{1+ ξ
σ
x}e−

1
2
ε2 , (4.4.30)

where the last line follows as

1

1 + ε√
2
ξ

log{1+ ξ
σ
x}
→ 1,

as x→ xF . Taking logs of both sides of (4.4.30) and rearranging gives

ε ∼ −
log
(

4π
ξ

log
{

1 + ξ
σ
x
})

2
√

2
ξ

log
{

1 + ξ
σ
xP
} − ε2

2
√

2
ξ

log
{

1 + ξ
σ
x
}

∼ −
log
(

4π
ξ

log
{

1 + ξ
σ
x
})

2
√

2
ξ

log
{

1 + ξ
σ
x
} ,

as x→ xF . Thus, an approximate solution to (4.4.29) is

y =

√
2

ξ
log

{
1 +

ξ

σ
x

}
−

log
(

4π
ξ

log
{

1 + ξ
σ
x
})

2
√

2
ξ

log
{

1 + ξ
σ
x
} [1 + o(1)]

as x → xF , and which can be applied to all components of Y. To calculate the

determinant of the Jacobian of this marginal transformation, we note that

∂yi
∂xi
∼

√
ξi

2σ2
i

(
log

{
1 +

ξi
σi
xi

})−1(
1 +

ξi
σi
xi

)−1

− ξi
2σi

√
ξi
2

(
log

{
1 +

ξi
σi
xi

})−3(
1 +

ξi
σi
xi

)−1{
1− 1

2
log

(
4π

ξi
log

{
1 +

ξi
σi
xi

})}

∼

√
ξi

2σ2
i

(
log

{
1 +

ξi
σi
xi

})−1(
1 +

ξi
σi
xi

)−1

,

as xi → xFi and for i = 1, 2. Note that if ξi < 0, then 0 ≤ xi ≤ −σi/ξi, and

so ξi/ log(1 + ξixiσi) ≥ 0. We now make the assumption that as R → rF that
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all components of X tends to their respective upper-endpoints with associated rates

determined by the following; we assume that F̄1(x1)/F̄2(x2) ∼ c as F̄1(x1) → 0 for

constant c > 0, and that R→ rF ⇒ F̄1(x1)→ 0. The joint density of X is then

fX(x) ∼ (2π)−1|Σ|−1/22−1 exp

{
−1

2
(A−B)TΣ−1(A−B)

}
×

2∏
i=1

σ−1
i

√√√√ ξi

log
{

1 + ξi
σi
xi

} (1 +
ξi
σi
xi

)−1

, (4.4.31)

as each component of x tends to its respective upper-endpoint, and where

A =



√
2
ξ1

log
{

1 + ξ1
σ1
x1

}
√

2
ξ2

log
{

1 + ξ2
σ2
x2

}

 and B =



log
(

4π
ξ1

log
{

1+
ξ1
σ1
x1
})

2

√
2
ξ1

log
{

1+
ξ1
σ1
x1
}

log
(

4π
ξ2

log
{

1+
ξ2
σ2
x2
})

2

√
2
ξ2

log
{

1+
ξ2
σ2
x2
}


.

We now consider the two cases: ξ1 = ξ2 = ξ > 0 and max{ξ1, ξ2} < 0.

Strictly positive marginal shapes

We now set ξi = ξ > 0 for all i = 1, . . . , d. Furthermore, we constrain this proof to

the case where d = 2 only. To justify this, we illustrate that the form for Pr{R2 > s}

as s → ∞ for this case is exactly that of the case where X exhibits independence,

and so the same relationship will hold for Rd.

We first perform the two-step transformation (X1, X2)→ (R2,W )→ (R2, Z) given

by (4.2.1) and (4.2.6); from these transformations, and from (4.4.31), the joint density

of (R2, Z) for z ∈ (0,∞) is

fR2,Z(r, z) ∼ r1−z log(r)σ−1
1 σ−1

2 (2π)−1|Σ|−1/22−1 exp {Gr(z)}

×Hr(z)

√√√√ ξ

log
{

1 + ξ
σ1
r1−z

}
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×
√√√√ ξ

log
{

1 + ξ
σ2
r(1− r−z)

} (1 +
ξ

σ1

r1−z
)−1(

1 +
ξ

σ2

r(1− r−z)
)−1

,

(4.4.32)

as r →∞ and where Gr(z) = −1
2
ATr,zΣ

−1Ar,z and

Hr(z) = exp

{
−1

2

[
−BT

r,zΣ
−1Ar,z − ATr,zΣ−1Br,z +BT

r,zΣ
−1Br,z

]}
(4.4.33)

with

Ar,z =

√
2

ξ



√
log
{

1 + ξ
σ1
r1−z

}
√

log
{

1 + ξ
σ2
r(1− r−z)

}

 and Br,z =
1

2

√
ξ

2



log
(

4π
ξ

log
{

1+ ξ
σ1
r1−z

})
√

log
{

1+ ξ
σ1
r1−z

}

log
(

4π
ξ

log
{

1+ ξ
σ2
r(1−r−z)

})
√

log
{

1+ ξ
σ2
r(1−r−z)

}


.

We now note that the marginal density of R2 can be written as

fR2(r) =

∫ ∞
log(2)/ log(r)

fR2,Z(r, z)dz +

∫ log(2)/ log(r)

0

fR2,Z(r, z)dz,

and we focus on the first integral only, which we approximate using Laplace’s method

Laplace (1986); the second integral follows by symmetry. To use Laplace’s method,

we require the second derivative of Gr(z) and its minimum, which we derive now.

We first note that on z ∈ (log(2)/ log(r),∞), we have

Ar,z =

√
2

ξ



√
log
{

1 + ξ
σ1
r1−z

}
√

log
{

1 + ξ
σ2
r(1− r−z)

}

 =

√
2

ξ
log

{
1 +

ξ

σ2

r

}


√
log
{

1+ ξ
σ1
r1−z

}
log
{

1+ ξ
σ2
r
}

√
log
{

1+ ξ
σ2
r(1−r−z)

}
log
{

1+ ξ
σ2
r
}


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∼
√

2

ξ
log(r)



√
log
{

1+ ξ
σ1
r1−z

}
log(r)

1


and

Br,z =
1

2

√
ξ

2
log

{
1 +

ξ

σ2

r

}−1



log
(

4π
ξ

log
{

1+ ξ
σ1
r1−z

})
√

log
{

1+ ξ
σ1
r1−z

}
/ log

{
1+ ξ

σ2
r
}

log
(

4π
ξ

log
{

1+ ξ
σ2
r(1−r−z)

})
√

log
{

1+ ξ
σ2
r(1−r−z)

}
/ log

{
1+ ξ

σ2
r
}



∼ 1

2

√
ξ

2 log(r)



log
(

4π
ξ

log
{

1+ ξ
σ1
r1−z

})
√

log
{

1+ ξ
σ1
r1−z

}
/ log(r)

log
(

4π
ξ

log(r)
)

 ,

as r → ∞, and which follows as 1 − r−z ∼ 1 for any fixed z ∈ (0,∞). Now, let

Σ1,2 = ρ ∈ (0, 1) and consider

Gr(z) = − 1

ξ|Σ|
ATr,z

 1 −ρ

−ρ 1

Ar,z

∼ − 1

ξ|Σ|
log

(
ξ

σ2

r

)


√
log
{

1+ ξ
σ1
r1−z

}
log
(
ξ
σ2
r
)

1



−T  1 −ρ

−ρ 1




√
log
{

1+ ξ
σ1
r1−z

}
log
(
ξ
σ2
r
)

1


∼ − 1

ξ|Σ|
log

(
ξ

σ2

r

)
(Kr(z)2 − 2ρKr(z) + 1),
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as r →∞ and where

Kr(z) =

√√√√√ log
{

1 + ξ
σ1
r1−z

}
log
(
ξ
σ2
r
) > 0,

for all z ∈ (0,∞). Recall that, as we are using Laplace’s method, we require the

minimum of Gr(z) with respect to z; trivially, this is minimised when Kr(z
∗) = ρ or,

equivalently, where

z∗ = 1−
log

{
σ1
ξ

[
e

(
ρ2 log

(
ξ
σ2
r
))
− 1

]}
log
(
ξ
σ2
r
) ∼ 1−

log
{
σ1
ξ

[
rρ

2 − 1
]}

log(r)

∼ 1− ρ2 log(r)

log(r)
∼ 1− ρ2,

as r →∞ and so

Gr(z
∗) ∼ − 1

ξ|Σ|
log

(
ξ

σ2

r

)
(1− ρ2) = −1

ξ
log

(
ξ

σ2

r

)
,

as |Σ| = 1 − ρ2; note that we consider r → ∞, and so we have that log(r)/ log(r) <

1 − ρ2 for ρ < 1, hence 1 − ρ2 ∈ (log(2)/ log(r),∞). The derivative of Gr(z) with

respect to z is

d

dz
Gr(z) ∼ d

dz

[
− 1

ξ|Σ|

{
log

{
1 +

ξ

σ1

r1−z
}
− 2ρ

√
log(r) log

{
1 +

ξ

σ1

r1−z
}

+ log

(
ξ

σ2

r

)}]

∼ − 1

ξ|Σ|


−ξ log

(
ξ
σ2
r
)
r1−z

σ1

(
1 + ξ

σ1
r1−z

) + ρ

√√√√√ log
(
ξ
σ2
r
)

log
{

1 + ξ
σ1
r1−z

} ξ log
(
ξ
σ2
r
)
r1−z

σ1

(
1 + ξ

σ1
r1−z

)


∼ 1

σ1|Σ|

log
(
ξ
σ2
r
)

(
rz−1 + ξ

σ1

) {1− ρK−1
r (z)

}
,
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as r →∞ and its second derivative, which we denote G
′′
r (z), is

G
′′

r (z) ∼ −

{
log
(
ξ
σ2
r
)}2

rz−1

σ1|Σ|

(
rz−1 +

ξ

σ1

)−2 {
1− ρK−1

r (z)
}

+
ρξ

2σ2
1|Σ|

{
log
(
ξ
σ2
r
)}2

r2−2z(
1 + ξ

σ1
r1−z

)2

√√√√√ log
(
ξ
σ2
r
)

log
{

1 + ξ
σ1
r1−z

} log

{
1 +

ξ

σ1

r1−z
}−1

∼ −

{
log
(
ξ
σ2
r
)}2

rz−1

σ1|Σ|

(
rz−1 +

ξ

σ1

)−2 {
1− ρK−1

r (z)
}

+
ρξ

2σ2
1|Σ|

log(r)r2−2z(
1 + ξ

σ1
r1−z

)2Kr(z)−3,

as r →∞. Substituting z = z∗ into G
′′
r (z) gives G

′′
r (z
∗) ∼ (2ξρ2|Σ|)−1 log (ξr/σ2), as

r → ∞. Now consider the function Hr(z), defined in (4.4.33). Denoting Ar,z∗ and

Br,z∗ as Ar,z and Br,z, respectively, but with z = z∗, it follows that

Ar,z∗ ∼
√

2

ξ
log(r)

ρ
1

 , and Br,z∗ ∼
1

2

√
ξ

2 log(r)


1
ρ

log
(

4π
ξ
ρ2 log(r)

)

log
(

4π
ξ

log(r)
)

 ,

as r →∞, and so ATr,z∗Σ
−1Br,z∗ +BT

r,z∗Σ
−1Ar,z∗ is asymptotically (as in ∼)

1

2|Σ|


ρ

1


T  1 −ρ

−ρ 1

Br,z∗ +Br,z∗
T

 1 −ρ

−ρ 1


ρ

1


T

∼ 1

2|Σ|


 0

1− ρ2


T

Br,z∗ +Br,z∗
T

 0

1− ρ2


T

∼ 2(1− ρ2)

2|Σ|
log

(
4π

ξ
log(r)

)
∼ log

(
4π

ξ
log(r)

)
, (4.4.34)
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and we have

Br,z∗
TΣ−1Br,z∗ ∼

ξ

8|Σ| log(r)

[
1

ρ2

{
log

(
4π

ξ
ρ2 log(r)

)}2

+

{
log

(
4π

ξ
log(r)

)}2

− 2 log

(
4π

ξ
ρ2 log(r)

)
log

(
4π

ξ
log(r)

)]
, (4.4.35)

as r →∞. By comparing the leading terms of (4.4.34) and (4.4.35), we have that

(Ar,z∗
TΣ−1Br,z∗+Br,z∗

TΣ−1Ar,z∗)+Br,z∗
TΣ−1Br,z∗ ∼ Ar,z∗

TΣ−1Br,z∗+Br,z∗
TΣ−1Ar,z∗ ,

as r →∞, and so

Hr(z
∗) ∼ exp

{
1

2
log

(
4π

ξ
log(r)

)}
=

{
4π

ξ

}1/2

(log(r))1/2 ,

as r →∞. By using Laplace’s method, the integral
∫∞

log(2)/ log(r)
fR2,Z(r, z)dz is asymp-

totically (as in ∼)

r1−z∗ log(r)σ−1
1 σ−1

2 (2π)−1|Σ|−1/22−1 exp {Gr(z
∗)}Hr(z

∗)

×

√
2π

|G′′r (z∗)|

√√√√ ξ

log
{

1 + ξ
σ1
r1−z∗

}√√√√ ξ

log
{

1 + ξ
σ2
r(1− r−z∗)

}
×
(

1 +
ξ

σ1

r1−z∗
)−1(

1 +
ξ

σ2

r(1− r−z∗)
)−1

∼ r1−z∗ log(r)σ−1
1 σ−1

2 (2π)−1|Σ|−1/22−1 exp {Gr(z
∗)}
{

4π

ξ

}1/2

{log(r)}1/2

×
√

2π(2ξρ2|Σ|)1/2

{
log

(
ξ

σ2

r

)}−1/2
√√√√ ξ

log
{

1 + ξ
σ1
r1−z∗

}√√√√ ξ

log
{

1 + ξ
σ2
r
}

× σ1ξ
−1
1 r−1+z∗

(
1 +

ξ

σ2

r

)−1

∼

 log(r)

log
(
ξ
σ2
r
)


3/2

σ−1
2 exp {Gr(z

∗)} ρ

Kr(z∗)

(
1 +

ξ

σ2

r

)−1
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∼ ξ−1

(
ξ

σ2

)−1/ξ

r−1/ξ−1,

as r →∞. Symmetric arguments can be used to show that

∫ log(2)/ log(r)

0

fR2,Z(r, z)dz ∼ ξ−1

(
ξ

σ1

)−1/ξ

r−1/ξ−1.

By integrating fR2(r), it follows that

Pr{R2 ≥ s} ∼

 ξ[
σ

1/ξ
1 + σ

1/ξ
2

]−ξ

−1/ξ

s−1/ξ,

for s → ∞; this is equivalent to the result derived for the independence case (see

Section 4.4.2).

Strictly negative marginal shapes

We now consider max{ξ1, ξ2} < 0 and, without loss of generality, we assume that

ξ1 ≥ ξ2. Recall from (4.4.31) that the joint density of X is

fX(x) ∼ K(σ1σ2)−1 exp

{
−1

2
(Ax −Bx)TΣ−1(Ax −Bx)

}

×
2∏
i=1


√√√√ ξi

log
{

1 + ξi
σi
xi

} (1 +
ξi
σi
xi

)−1


for constant K = 2−2(π)−1|Σ|−1/2 > 0 and as xi → xFi for i = 1, 2, where

Ax −Bx =


√

2
ξ1

log
{

1 + ξ1
σ1
x1

}
√

2
ξ2

log
{

1 + ξ2
σ2
x2

}
−


log
(

4π
ξ1

log
{

1+
ξ1
σ1
x1
})

2

√
2
ξ1

log
{

1+
ξ1
σ1
x1
}

log
(

4π
ξ2

log
{

1+
ξ2
σ2
x2
})

2

√
2
ξ2

log
{

1+
ξ2
σ2
xd2

}

 .
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We now apply the two-stage transformation X→ U→ (R2,W ) given by (4.2.2) and

(4.2.3), respectively, and consider (R2,W ) for R2 > t, with t defined in (4.2.5). The

joint density of (R2,W ) is

fR2,w(r, w) ∼ K(ξ1ξ2)−1
(
r − rF

)−1
exp

{
−1

2
(Ar,w −Br,w)TΣ−1(Ar,w −Br,w)

}
×

2∏
i=1

√√√√ ξi

log
{
ξi(r−rF )wi

σi

}w−1
i

as r → rF and where w1 = w, w2 = 1− w1 and where

Ar,w −Br,w =



√
2
ξ1

log
{
ξ1(r−rF )w1

σ1

}
√

2
ξ2

log
{
ξ2(r−rF )w2

σ2

}

−


log

(
4π
ξ1

log

{
ξ1(r−r

F )w1
σ1

})
2

√
2
ξ1

log

{
ξ1(r−rF )w1

σ1

}
log

(
4π
ξ2

log

{
ξ2(r−r

F )w2
σ2

})
2

√
2
ξ2

log

{
ξ2(r−rF )w2

σ2

}

 .

We now apply another transformation (R2,W ) → (V, Z) for V ∈ [1 − t/rF , 1] and

Z ∈ (0,∞), given by (4.2.7), and consider v ↓ 0. The joint density of (V, Z) as v ↓ 0

is

fV,Z(v, z) ∼ K(ξ1ξ2)−1v−1(− log(v)) exp

{
−1

2
(Av,z −Bv,z)

TΣ−1(Av,z −Bv,z)

}
×
√√√√ ξ1

log
{
−ξ1vrF vz

σ1

}√√√√ ξ2

log
{
−ξ2vrF (1−vz)

σ2

} (1− vz)

∼ K(ξ1ξ2)−1v−1(− log(v)) exp

{
−1

2
(Av,z −Bv,z)

TΣ−1(Av,z −Bv,z)

}
×

√
ξ1

(1 + z) log(v)

√
ξ2

log(v)

∼ K(ξ1ξ2)−1/2v−1(1 + z)−1/2 exp {−E(v, z)} ,
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and where the second line follows as 1− vz ∼ 1 as v ↓ 0 for all z ∈ (0,∞), and where

Ev,z =
1

2
(Av,z −Bv,z)

TΣ−1(Av,z −Bv,z)

=
1

2
[ATv,zΣ

−1Av,z − ATv,zΣ−1Bv,z −BT
v,zΣ

−1Av,z +BT
v,zΣ

−1Bv,z].

We now note that

Av,z =



√
2
ξ1

log
{
− ξ1rF v1+z

σ1

}
√

2
ξ2

log
{
− ξ2rF v(1−vz)

σ2

}

 ∼

√

2
ξ1

(1 + z) log(v)

√
2
ξ2

log(v)



∼
√
−2 log(v)


(−ξ1)−1/2(1 + z)1/2

(−ξ2)−1/2


and

Bv,z =


log

(
4π
ξ1

log

{
−ξ1r

F v1+z

σ1

})
2

√
2
ξ1

log

{
−ξ1rF v1+z

σ1

}
log

(
4π
ξ2

log

{
−ξ2r

F v(1−vz)
σ2

})
2

√
2
ξ2

log

{
−ξ2rF v(1−vz)

σ2

}

 ∼


log
(

4π
ξ1

(1+z) log(v)
)

2
√

2
ξ1

(1+z) log(v)

log
(

4π
ξ2

log(v)
)

2
√

2
ξ2

log(v)

 ∼ 2−3/2

 log(− log(v))√
ξ−1
1 (1+z) log(v)

log(− log(v))√
ξ−1
2 log(v)



∼ 2−3/2(− log(v))−1/2 log(− log(v))

(−ξ1)1/2(1 + z)−1/2

(−ξ2)1/2

 ,

as v ↓ 0. Hence, we have that

1

2
ATv,zΣ

−1Av,z ∼
log(v)

1− ρ2

{
1 + z

ξ1

+ 2ρ

(
1 + z

ξ1ξ2

)1/2

+
1

ξ2

}
:=

log(v)

1− ρ2
g1(z),



4. COPULA-BASED AGGREGATION 113

for g1(z) = ξ−1
1 (1 + z) + 2ρ(ξ1ξ2)−1/2(1 + z)1/2 + ξ−1

2 and

1

2
[BT

v,zΣ
−1Av,z + ATv,zΣ

−1Bv,z]

∼ log(− log(v))

2(1− ρ2)

{
2− ρ

(
ξ1

ξ2

)1/2

(1 + z)−1/2 − ρ
(
ξ1

ξ2

)−1/2

(1 + z)1/2

}

∼ log(− log(v))

2(1− ρ2)
g2(z)

for g2(z) = 2− ρ(ξ1ξ
−1
2 )1/2(1 + z)−1/2 − ρ(ξ1ξ

−1
2 )−1/2(1 + z)1/2 and

1

2
[BT

v,zΣ
−1Bv,z]

∼ (1− ρ2)−12−4(− log(v))−1[log(− log(v))]2[−ξ1(1 + z)−1 − 2ρ(ξ1ξ2)1/2(1 + z)−1/2 − ξ2]

∼ (1− ρ2)−12−4(− log(v))−1[log(− log(v))]2g3(z)

for g3(z) = −ξ1(1+z)−1−2ρ(ξ1ξ2)1/2(1+z)−1/2−ξ2 as v ↓ 0. Comparing the dominant

terms in each component, we have that

E(v, z) ∼ log(v)

1− ρ2
g1(z)− log(− log(v))

2(1− ρ2)
g2(z) +

[log(− log(v))]2

24(1− ρ2)
(− log(v))−1g3(z),

as v ↓ 0. We now proceed under the assumption that the asymptotic behaviour of

∂E(v, z)/∂z as v ↓ 0 can be derived by taking partial derivatives of a function that is

asymptotically equivalent to E(v, z) as v ↓ 0. That is, we assume that

∂E(v, z)

∂z
∼ log(v)

1− ρ2

∂g1(z)

∂z
− log(− log(v))

2(1− ρ2)

∂g2(z)

∂z
+

[log(− log(v))]2

24(1− ρ2)
(− log(v))−1∂g3(z)

∂z

∼ log(v)

1− ρ2

∂g1(z)

∂z
=

log(v)

1− ρ2
[ξ−1

1 + ρ(ξ1ξ2)1/2(1 + z)−1/2],

as v ↓ 0. Hence it follows that

fV (v) ∼
∫ ∞

0

K(ξ1ξ2)−1/2v−1(1 + z)−1/2 exp {−E(v, z)} dz
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∼
[
−K2(v log(v))−1

{
(1 + z)−1/2

ξ−1
1 + ρ(ξ1ξ2)1/2(1 + z)−1/2

}
exp{−E(v, z)}

]∞
0

+K2(v log(v))−1

∫ ∞
0

{
d

dz

(
(1 + z)−1/2

ξ−1
1 + ρ(ξ1ξ2)1/2(1 + z)−1/2

)}
exp{−E(v, z)}

∼
[
−K2(v log(v))−1

{
(1 + z)−1/2

ξ−1
1 + ρ(ξ1ξ2)1/2(1 + z)−1/2

}
exp{−E(v, z)

]∞
0

as v ↓ 0 for constant K2 = (ξ1ξ2)−1/2(1 − ρ2) > 0. The last line follows by com-

paring the dominant terms of v in the two integrands; the latter integrand includes

a (log(v))−1 which satisfies (log(v))−1 → 0 as v ↓ 0, hence the term on lines four

dominates as v ↓ 0. It follows that

fV (v) ∼ K3(−v log(v))−1 exp{−E(v, 0)}

∼ K3(−v log(v))−1 exp

{
− log(v)

1− ρ2
g1(0) +

log(− log(v))

2(1− ρ2)
g2(0)

− [log(− log(v))]2

24(1− ρ2)
(− log(v))−1g3(0)

}
∼ K3(− log(v))αR−1v−1/ξR−1

as v ↓ 0 where

ξR = (1−ρ2)(ξ−1
1 +2ρ(ξ1ξ2)−1/2+ξ−1

2 )−1, and αR =
2− ρ(ξ1ξ

−1
2 )1/2 − ρ(ξ1ξ

−1
2 )−1/2

2(1− ρ2)
≤ 1,

and where K3 = −K2(ξ−1
1 + ρ(ξ1ξ2)1/2)−1 > 0; this follow as ρ < 1 and ξ1 ≥ ξ2. We

now make the transformation back to R2. The marginal density of R2 is

fR2(r) ∼ K4

[
− log

(
1− r

rF

)]αR−1 (
1− r

rF

)−1/ξR−1

,

as r → rF and for constant K4 = K3r
F > 0. It follows that

Pr{R2 ≥ s} ∼ K4

∫ rF

s

[
− log

(
1− r

rF

)]αR−1 (
1− r

rF

)−1/ξR−1

dr
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∼ K5

[
− log

(
1− s

rF

)]αR−1 (
1− s

rF

)−1/ξR

− ξR(αR − 1)K4

∫ rF

s

[
− log

(
1− r

rF

)]αR−2 (
1− r

rF

)−1/ξR−1

dr

∼ K5

[
− log

(
1− s

rF

)]αR−1 (
1− s

rF

)−1/ξR

as s→ rF and for constant K5 = −ξRrFK4 > 0. Hence, the survival function of R2 is

Pr{R2 ≥ s} ∼ K5L(s)
(

1− s

rF

)−1/ξR
,

where L(s) is a slowly-varying function and as required. Note that in the case where

ξ1 = ξ2 = ξ, we have that

ξR = (1− ρ2)(ξ−1 + 2ρ((−ξ)2)−1/2 + ξ−1)−1 = (1− ρ2)ξ(2− 2ρ)−1 = ξ(1 + ρ)/2 = ξη2,

or equivalently, ξR = ξ{12Σ−1
12}−1, see Table 4.3.2.



5

Modelling extremes of spatial

aggregates of precipitation using

conditional methods

5.1 Introduction

Fluvial flooding is typically not caused by high intensity extreme rainfall at single

locations, but by the extremes of precipitation events which are aggregated over spatial

catchment areas. Accurate modelling of such events can help to mitigate the financial

impacts associated with floods, especially if river defences are built to withstand a

T−year event of this kind. Approaches to quantifying the tail behaviour of spatial

aggregates exist in the literature; however, these techniques are often simplistic or

make unrealistic assumptions about the behaviour of the process for which they are

trying to model. We present a novel methodology for making inference on the tail

behaviour of spatial aggregates, which we apply in the context of extreme precipitation

aggregates.

We define a spatial process {Y (s) : s ∈ S} for some spatial domain S. Our interest

116
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lies in the upper tail behaviour of the spatial aggregate RA on regions A ⊂ S ⊂ R2,

RA =

∫
A
Y (s)ds, (5.1.1)

for different, possibly overlapping, A, and the joint behaviour of (RA, RB) for A,B ⊂

S. Typically, the data we would have available for inference are realisations of Yt =

(Yt(s1), . . . , Yt(sd)) for t = 1, . . . , n, which are observations of said process {Y (s)} at d

sampling locations s = (s1, . . . , sd) ⊂ S at n sampling times. Note that s need not be

point locations; they can instead be non-overlapping grid-boxes. Data produced by

climate models are often available in this form and observations of Y (si), i = 1, . . . , d,

correspond to spatial aggregates themselves, as they are typically presented as an

average over the grid box si. In these circumstances, the integral in (5.1.1) can be

replaced with the equivalent summation, but our methodology is still applicable; see

Section 5.4. We assume that both the full marginal behaviour, and dependence, of

{Yt(s)} is stationary with respect to time. Marginally, the upper tail behaviour of

Y (s) is assumed to be characterised by a generalised Pareto distribution (GPD) with

scale and shape parameters, υ(s) > 0 and ξ(s), respectively, that vary smoothly over

s ∈ S (Davison and Smith, 1990). Dependence in {Y (s)} is characterised through

a marginal transformation to the process {X(s) : s ∈ S}, which has standardised

margins; further details are given in Section 5.2.2. Thus, we can rewrite (5.1.1) as

RA =

∫
A
Y (s)ds =

∫
A

F−1
Y (s) {FX [X(s)]} ds,

where FY (s)(·) and FX(·) are the marginal CDFs of {Y (s)} and {X(s)}, respectively.

We will focus on the situation where {X(s)} is a stationary process; an assumption

that we find holds well for our application (see Section 5.4.4). If this assumption did

not hold, a wide-range of literature exists for both non-parametric, and parametric,

methods that account for non-stationarity in extremal dependence (Huser and Genton,
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2016; Richards and Wadsworth, 2021), and these methods can easily be incorporated

into our methodology.

There are three main existing modelling approaches for inference on the upper

tails of RA: univariate methods, spatial approaches that focus on modelling all of the

data, and spatial approaches that focus on modelling only the extremes; our approach

falls in the latter class, making less restrictive assumptions than previous methods of

this type.

We first consider the univariate case. Within an extreme value analysis frame-

work, univariate methods for estimating the size of T−year events are well studied

and cemented in asymptotic theory (Coles, 2001). If we can create a sample of ob-

servations of RA, we can use univariate methods to make inference on its upper tail,

i.e., fit a GPD to exceedances of a sample of RA above some fixed threshold and then

extrapolate to high quantiles. However, creating this sample can be challenging. If s

are regularly spaced point locations, or contiguous non-overlapping grid-boxes, then

(5.1.1) can be approximated using the sum of the elements of Yt. However, if s are

irregularly spaced, we may be required to compute a weighted sum to approximate

(5.1.1), with the weights to be determined somehow. Further complications arise if

we have partially missing observations of {Y (s)}. Even if these issues are overcome,

when using univariate methods we lose the information present in the margins of

{Y (s)} and dependence of {X(s)}. If the process we are considering is precipitation,

this can lead to inference that is not self-consistent and may be physically unrealistic;

a trait that can be undesirable to practitioners. To explain this further, observe that,

for precipitation, {Y (s)} is non-negative everywhere, i.e., Y (s) ≥ 0 for all s ∈ S.

Trivially it follows that RA ≥ RB for all B ⊆ A ⊂ S and hence return levels should

be similarly ordered. This natural ordering may not follow if we take a simple uni-

variate approach to modelling the upper tail behaviour of the RA and RB aggregates

separately (Nadarajah et al., 1998). To prevent this from occurring, we fit a model
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for the process {Y (s)}, of which observations may be partially missing or complete.

We then simulate from our model for {Y (s)} for s ∈ S and compute realisations of

RA.

In the context of precipitation aggregates, one richly studied approach has de-

veloped a class of stationary stochastic processes to model the whole precipitation

intensity process, continuous in both time and space. These models typically describe

the intensity as the accumulation, at each point in time and space, over a random

number of simple shaped individual stochastic rain cells, which cluster in time and

space, and move on stochastic trajectories. These models were first developed for a

single site by Rodriguez-Iturbe et al. (1987), then developed spatially by Northrop

(1998) and some of the more recent methods are summarised by Wheater et al. (2005).

These models are typically estimated by optimising the fit against a range of charac-

teristics of observed fields. As a result, these models can capture well the features of

typical precipitation fields. However, for deriving the distribution of quantities like

the upper tail of RA, the models and their inference have limitations as there is no

guarantee that models for the body of a process fit well to the extremes. Yet it is

precipitation fields that are extreme somewhere in A that yield extremes of RA unless

A is very large relative to the range of spatial dependence, but in that case their

method’s assumption of stationarity is likely to be unreliable.

A typical approach to modelling extreme fields is the use of max-stable models, see

Padoan et al. (2010); Westra and Sisson (2011); Reich and Shaby (2012). These mod-

els are predominately fit to component-wise block maxima, typically annual maxima,

at sampling locations, but cannot be used to make inference about the extremal de-

pendence structure of individual precipitation fields as they cannot account for zeros,

and hence neither can be used to describe the distribution of the aggregate. Typically

annual maxima do not occur concurrently for different sampling locations and so ag-

gregating over realisations from a max-stable process is not appropriate for inference
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on aggregates.

Coles (1993) rectified some of these issues by using a point-process representation

of a max-stable field to derive the profile of concurrent events. Coles and Tawn

(1996) used this formulation to derive closed form results for the tail behaviour of

RA where the tail parameters are determined by the marginal GPD parameters of

{Y (s)} and its dependence structure; Ferreira et al. (2012) formalise these results

and provide some non-parametric extensions. Further extensions of this framework

by Engelke et al. (2019a) relate not only the extremal behaviour of {Y (s)} and the

aggregates RA, but also the joint behaviour of aggregates over different regions, A.

All of these modelling approaches rely on the marginal shape parameters of {Y (s)}

to be spatially homogeneous i.e., ξ(s) = ξ for all s ∈ A, for each A of interest. This

assumption is unlikely to hold for applications to larger regions. When ξ(s) varies

over a region, models based on the limiting behaviour of the aggregates of {Y (s)} are

likely to fail. For example, Richards and Tawn (2021) show that when ξ(s) > 0 for

at least one s ∈ S, the tail behaviour of RA will be driven solely by the upper tail

behaviour at locations s = arg max{ξ(s) : s ∈ S}. We construct a sub-asymptotic

spatial model that avoids the spatial homogeneity constraint. For non-homogeneous

shape parameters, de Fondeville and Davison (2020) use functional Pareto processes

to model the dependence in {Y (s)} and Palacios-Rodŕıguez et al. (2020) illustrate

non-parametric Pareto process modelling to simulate extreme precipitation fields, re-

sampling event profiles from observed, gridded data. Both approaches have major

limitations for applications due to their dependence structure, as described next.

A particular restriction of using models based on max-stable, or Pareto, processes

is that they allow for a restrictive class of dependence structures only. Asymptotic

dependence describes the co-occurrence of extremal events and is often quantified

through the upper tail index χ(sA, sB) (Joe, 1997) for all sA, sB ∈ S, which can be
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defined for {Y (s)} as χ(sA, sB) = limq↑1 χq(sA, sb), where

χq(sA, sB) = Pr{Y (sB) > F−1
Y (sB)(q)|Y (sA) > F−1

Y (sA)(q)}. (5.1.2)

In practice, we cannot estimate χ(sA, sB) as q ↑ 1. Instead, estimates are provided by

fixing some high threshold q < 1 and approximating χ(sA, sB) using χq(sA, sB). Max-

stable, or Pareto, processes are asymptotically dependent (Coles et al., 1999; Coles,

2001), or perfectly independent, at all spatial distances. That is, for any max-stable,

or Pareto, process exhibiting positive spatial association, we have χ(sA, sB) > 0 for all

sA, sB ∈ S. These models are then unable to account for cases where we have positive

association, but χ(sA, sB) = 0 for some sA, sB ∈ S which holds for all Gaussian

processes when sA 6= sB; we refer to this scenario as asymptotic independence, i.e.,

the tendency for extreme events to occur increasingly independently as the magnitude

of the events gets larger. Extensions of max-stable processes, such as max-infinitely

divisible processes (Huser et al., 2020), for component-wise maxima can account for

asymptotic independence in data. Bopp et al. (2020) illustrate good fits for these

models to block-maxima data, but they are not appropriate for precipitation event

data.

Wadsworth and Tawn (2019) have developed a conditional approach to spatial

extremes. They provide a spatial extension of the multivariate Heffernan and Tawn

(2004) model, which enables the modelling of processes given that at least one location

in the process is extreme. Dependence parameters within the Heffernan and Tawn

(2004) model are represented as smooth functions, parametric or splines, of distance

between variables at the site of interest and the conditioning site, and the residual

process is driven by a latent Gaussian process, see Section 5.2.2. This modelling

approach allows for both asymptotic dependence and asymptotic independence at

different spatial distances. We adapt this approach for modelling extreme precipita-

tion fields. Our model outperforms approaches that restrict the dependence in {Y (s)}
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to asymptotic dependence when the true process is asymptotically independent; this

is illustrated in Section 5.4.4. However, even if the true process was asymptotically

dependent, our model is able to capture this behaviour.

Extensions of Wadsworth and Tawn (2019) are provided by Tawn et al. (2018);

Shooter et al. (2021); Simpson and Wadsworth (2021); Simpson et al. (2020); Huser

and Wadsworth (2020). These papers cover extremal modelling of air and sea temper-

ature fields and spatial wave heights. Most of these applications use a small numbers

of sampling locations (d < 300), and full inference is computationally feasible. One

exception is Simpson et al. (2020) who detail an approach for fitting the conditional

spatial extremes model with much larger d using INLA; however, this imposes re-

strictions on the dependence structure parameters that are not appropriate in our

application. We have d = 934 and so find that some non-parametric approaches to

modelling dependence parameters are infeasible; we explore novel parametric forms

for these. Due to the high value of d, we explore a stratified sampling scheme for

model fitting and develop a novel bootstrap method that allows us to estimate un-

certainty for estimated parameters. We find that when using Monte-Carlo methods

to approximate Pr{RA > r}, that the position and size of A within S are important

considerations that must be taken into account, as we observe edge effects on this

inference for RA.

The model is applied to precipitation data from the 2018 UK climate projections

(Lowe et al., 2018). The data are from a convection permitting model, and we find

that the extremal behaviour of the underlying process is driven by spatially-localised

events consistent with intensive convective rainfall. We observe high variability in the

fitted model for {Y (s)} as we move further away from the centre of an event, which

corresponds to the observed roughness in events that generate extreme precipitation.

We further find that the dependence model for {Y (s)} fits well and that we are able

to comfortably handle zeroes in the data. We find strong indication that we can
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replicate the empirical distribution of RA using Monte-Carlo methods, and so we

have evidence to suggest that the further inferences we make about the tail behaviour

of the aggregates are well-founded.

The layout of this paper is as follows: Section 5.2 describes our model for the

process {Y (s)}. We describe methods for model inference and simulation of events

in Section 5.3, which includes our censoring technique for handling zero values. In

Section 5.4 we discuss the marginal and dependence model fits for the precipitation

data, and inference on the tail behaviour of spatial aggregates of these data. We

compare the results from our approach with those using GPD fitted to the sample

aggregates and using a spatial asymptotically dependent model in Section 5.4.4. We

end with further discussion and model extensions in Section 5.5.

5.2 Modelling the extremes of the spatial process

5.2.1 Marginal model

The site-wise marginals of {Y (s)} can be modelled using a fitted GPD distribution

above some high threshold and the empirical distribution below (Coles, 2001). We

extend this approach by incorporating a third component, which we denote p(s), that

describes the probability that there is no rain at site s. The marginal distribution

function of Y (s) for each s ∈ S is

FY (s)(y) =


p(s) if y = 0

1−λ(s)−p(s)
FY+(s)(q(s))

FY+(s)(y) + p(s) if 0 < y ≤ q(s)

1− λ(s)
[
1 + ξ(s)(y−q(s))

υ(s)

]−1/ξ(s)

+
if y > q(s),

(5.2.1)

where υ(s) > 0 and FY+(s)(y) denotes the distribution function of strictly positive

values of Y (s) and p(s) ≥ 0, λ(s) > 0 and p(s) + λ(s) < 1; this ensures that the
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marginal distribution is continuous across components. We expect spatial smoothness

over FY (s) and so define full spatial models for the three components of (5.2.1) which

also enable us to make inference about FY (s) for all s ∈ S, i.e., including where Y (s)

is not observed.

We first consider the distribution of Y (s) above q(s). Following the approach of

Youngman (2019), we fit a generalised additive GPD model (GAM) to exceedances

Y (s) − q(s). This allows us to represent the GPD scale and shape parameters, υ(s)

and ξ(s), respectively, through a basis of smooth splines. We set λ(s) = λ for all

s ∈ S, allowing us to estimate q(s) for s ∈ S. We use a non-parametric approach,

and simply fit a thin-plate spline to point-wise estimates of q(s) for the associated λ,

as the parametric method of Youngman (2019) fails as we have point masses below

q(s), caused by rounding of data.

We estimate p(s) = Pr{Y (s) = 0} for s ∈ S as a spatially smooth surface by

using a logistic GAM (Fasiolo et al., 2020); that is, we fit logit{E[p(s)]} = g(s) where

g(·) is a smoothing spline. The degree of smoothness in the surface p(s) is determined

by the choice of spline used for g.

For the distribution for 0 < y ≤ q(s), we estimate FY+(s) using the empirical

distribution of strictly positive values of Y (s), which we denote F̃Y+(s)(·). We use

the site-wise empirical distribution for fitting and recognise that, should we require

simulation of Y (s) for s ∈ S \s, we can use additive quantile regression (Fasiolo et al.,

2020) to compute the empirical distributions at unobserved locations. This can be

performed, if necessary, using only a local neighbourhood of sampling locations, as

this method is too computationally expensive for large d and so is not viable without

dimension reduction.

We use (5.2.1) to perform a site-wise standardisation of the margins of the data.

For modelling dependence within a process {X(s) : s ∈ S} using the Wadsworth and

Tawn (2019) conditional extremes framework, we require its margins to have standard



5. MODELLING EXTREMES OF SPATIAL AGGREGATES 125

exponential upper tails, i.e., Pr{X(s) > x} ∼ C exp(−x) for some C > 0, as x→∞

and for all s ∈ S. We follow Keef et al. (2013) and Tawn et al. (2018) and use Laplace

margins.

5.2.2 Dependence modelling

Wadsworth and Tawn (2019) model the underlying extremal dependence in our stan-

dardised process {X(s)}, given that it is extreme for some s ∈ S, by first conditioning

on the process being above some high threshold u at a specified site sO ∈ S. We in-

troduce the function h(sA, sB) = ‖sA − sB‖ for sA, sB ∈ S, where ‖ · ‖ is some

distance metric (we use the anisotropic measure (5.2.11)). Under the assumption

that there exists normalising functions {a : (R,R+) → R}, with a(x, 0) = x, and

{b : (R,R+)→ (0,∞)}, such that as u→∞, they assume that for each sO ∈ S

({
X(s)− a{X(sO), h(s, sO)}

b{X(sO), h(s, sO)}
: s ∈ S

}
, X(sO)− u

) ∣∣∣∣∣
(
X(sO) > u

)
d−→

({
Z(s|sO) : s ∈ S

}
, E

)
, (5.2.2)

where E is a standard exponential variable and process {Z(s|sO)} which is non-

degenerate for all s ∈ S where s 6= sO. That is, there is convergence in distribution of

the normalised process to {Z(s|sO) : s ∈ S}, termed the residual process, which is in-

dependent of E, and Z(sO|sO) = 0 almost surely. Characterisations of the normalising

functions, a and b and the residual process Z(s|sO) are given in Section 5.2.2.

To make inference on the upper tail of RA for any A ⊂ S we require the process

{X(s)} given an extreme value somewhere in the domain S, i.e.,

{
X(s) : s ∈ S

}∣∣∣∣ (max
s∈S

X(s) > u

)
(5.2.3)

for large u. Limit (5.2.2) conditions only on observing an exceedance at a spe-
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cific site sO ∈ S, so cannot be immediately used. However, this limit provides a

core building block for what is required when combined with a limiting model for

{X(sO) > u : sO ∈ S}|(maxs∈S X(s) > u) as u → ∞. For a stationary process, this

limiting model will be invariant to sO for all sO ∈ S which are sufficiently far from

the boundaries of S. Wadsworth and Tawn (2019) show how simulation from pro-

cess (5.2.3) can be achieved through an importance sampling method; the outline of

this is given in Section 5.3.4.

For the process {X(s)} to be ergodic over R2, we need conditions on a and b and

Z(s|sO) so that independence is achieved as h = h(s, sO) → ∞ for any sO ∈ S and

suitably distanced s ∈ S. This requires for any fixed x > 0, that a(x, h) → 0 and

b(x, h) → 1 as h → ∞. Further, the residual process Z(s|sO) must have identical

margins to X(s) as h → ∞; in particular, we require standard Laplace margins for

Z(s|sO) as h→∞.

Normalising functions

For inference, we assume parametric forms for the a and b normalising functions in

limit (5.2.2). Wadsworth and Tawn (2019) provide a discussion of these normalis-

ing functions and provide some suggestions for their possible parametric forms. We

considered the range of parametrics forms discussed by Wadsworth and Tawn (2019);

Tawn et al. (2018); Shooter et al. (2021), but for brevity we report only the models

that provided the best fit. We let

a(x, h) = xα(h), with α(h) =


1, h ≤ ∆,

exp(−{(h−∆)/κα1}κα2 ), h > ∆,

(5.2.4)
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where ∆ ≥ 0 and κα1 , κα2 > 0 which allows {X(s)} to be asymptotically dependent

up to distance ∆ from sO, and asymptotically independent thereafter. We also take

b(x, h) = xβ(h), with β(h) = κβ3 exp(−{h/κβ1}κβ2 ) (5.2.5)

for κβ1 , κβ2 > 0 and κβ3 ∈ [0, 1], and so b(0, x) = xκβ3 . Ergodicity holds for {X(s)}

whatever the parameters of a and b, as a(x, h) → 0 and b(x, h) → 1 as h → ∞ for

fixed x > 0.

Residual process {Z(s|sO)}

We follow Shooter et al. (2021) by imposing that the residual process {Z(s|sO)} has

delta-Laplace margins; a random variable follows a delta-Laplace distribution, i.e.,

DL(µ, σ, δ), with location, scale and shape parameters µ ∈ R, σ > 0 and δ > 0,

respectively, if its density is

f(z) =
δ

2kσΓ
(

1
δ

) exp

{
−
∣∣∣∣z − µkσ

∣∣∣∣δ
}
, (z ∈ R) (5.2.6)

with Γ(·) as the standard gamma function and k2 = Γ(1/δ)/Γ(3/δ). The scaling by k

is used to improve identifiability between σ and δ, as the random variable has expecta-

tion µ and variance σ2 regardless of the value of δ. Use of the delta-Laplace distribu-

tion introduces flexibility in the marginal choice for Z(s|sO), as for δ = 1 or 2, we have

the Laplace or Gaussian distributions respectively. As with the normalising functions,

we parametrise the delta-Laplace parameters as smooth functions of distance from the

conditioning site sO. That is, Z(s|sO) ∼ DL(µ{h(s, sO)}, σ{h(s, sO)}, δ{h(s, sO)}),
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with

µ(h) = κµ1h
κµ2 exp{−h/κµ3}, (κµ2 > 0, κµ3 > 0),

σ(h) =
√

2 (1− exp{−(h/κσ1)
κσ2}) , (κσ1 > 0, κσ2 > 0),

δ(h) = 1 + (κδ1h
κδ2 − κδ4) exp{−h/κδ3}, (κδ1 ≥ 0, κδ2 > 0, κδ3 > 0, κδ4 ≥ 0),

(5.2.7)

for h ≥ 0. These functions satisfy the constraint that µ(0) = σ(0) = 0, which ensures

that Z(sO|sO) = 0 holds and provides a flexible modelling choice for δ. We do not

constrain any particular value of δ(0) and instead let δ(0) = 1 − κδ4 > 1. Note that

we require that δ(h) ≥ 1 for all h to ensure that the residual process Z(s|sO) does not

have heavier upper-tails than X(s) for any s ∈ S. Furthermore, ergodicity of X(s) is

achieved as µ(h) → 0, σ2(h) → 2, and δ(h) → 1 as h → ∞, where the variance of a

standard Laplace random variable is 2.

Following the approach of Shooter et al. (2021), dependence in {Z(s|sO)} is in-

duced by first considering the process

W (s|sO)} = {W (s)|(W (sO) = 0)} (5.2.8)

for all s ∈ S, where {W (s)} is a standard stationary Gaussian process with correlation

function ρ(h). We set {Z(s|sO)} = {F−1
Z(s|sO){Φ[W (s|sO)]}} for all s ∈ S, where Φ(·)

and FZ(s|sO) are the CDFs of a standard Gaussian distribution and Z(s|sO), respec-

tively. The corresponding density function to FZ(s|sO) is fZ(s|sO), defined by (5.2.6)

and (5.2.7).

To illustrate the dependence in {Z(s|sO) : s ∈ S}, we consider the joint distribu-

tion of Z(s|sO) in a finite-dimensional setting, which we achieve by using a Gaussian

copula model. Consider any sO ∈ (s1, . . . , sd), and without loss of generality, rewrite

the sampling locations as sO, (s1, . . . , sd−1), i.e., here we illustrate with sO = sd. The
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joint distribution of {Z(s1|sO), . . . , Z(sd−1|sO)} for sO is, for z = (z1, . . . , zd−1),

FsO(z) = Φd−1

{
Φ−1(FZ(s1|sO)(z1)), . . . ,Φ−1(FZ(sd−1|sO)(zd−1)); 0,Σ

}
, (5.2.9)

where Φd−1(·; 0,Σ) is the CDF of a (d − 1)−dimensional Gaussian distribution with

mean 0. The correlation matrix Σ must account for the conditioning W (s)|(W (sO) =

0). To create Σ, we initialise a stationary correlation matrix Σ∗ using correlation

function ρ(·) evaluated for all pairwise distances, and we condition on observing

W (sO) = 0. That is, the correlation matrix Σ has (i, j)-th element

Σij =
Σ∗ij − Σ∗i0Σ∗j0

(1− Σ∗2i0 )1/2(1− Σ∗2j0)1/2
. (5.2.10)

Note the elements of Σ are normalised such that the diagonal elements are equal to

one. In our application, ρ(·) is taken to be the Matérn correlation function

ρ(h) =
1

2κρ2−1Γ(κρ2)

(
2h
√
κρ2

κρ1

)κρ2
Kκρ2

(
2h
√
κρ2

κρ1

)
, (κρ1 > 0, κρ2 > 0),

where Kκρ2
(·) is the modified Bessel function of the second kind of order κρ2 .

To account for spatial anisotropy in the extremal dependence structure of {X(s)}

we use the transformation of coordinates

s∗ =

1 0

0 1/L


cos θ − sin θ

sin θ cos θ

 s, (5.2.11)

where θ ∈ [−π/2, 0] controls rotation and L > 0 controls the coordinate stretching

effect; with L = 1 recovering the isotropic model. We define our distance metric

‖sA − sB‖ = ‖s∗A − s∗B‖∗, where ‖ · ‖∗ denotes great-circle, or spherical, distance.
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Extensions for censored precipitation data

The non-zero probability of zeroes for precipitation Y (s) causes the X(s), for all

s ∈ S, to have non-zero mass at a finite lower endpoint. Consequently, the Gaussian

copula and delta-Laplace marginal model described in (5.2.9) are not appropriate

for the transformed precipitation data in these lower tail regions. To circumvent

this issue, we apply censoring at all points where Yt(s) = 0 for all s ∈ S and t =

1, . . . , n. A spatially-varying censoring threshold c(s) is attained by transforming p(s)

in Section 5.2.1 to the Laplace scale, using c(s) = F−1
L {p(s)}, where FL(·) is the

standard Laplace CDF. We then assert that Yt(s) = 0⇔ Xt(s) ≤ c(s), which in turn

implies that Zt(s|sO) ≤ c
(sO)
t (s) where c

(sO)
t (s) is dependent on the value observed at

the conditioning site and given in (5.3.1).

For inference, the number of censored components varies at each time point; the

number, locations and censoring values can all vary, with a maximum value of d− 1

locations with censoring. If the number of censored components is large, it is clear

from (5.2.9) that evaluation of a censored distribution function will be computationally

expensive. We take a pseudo-likelihood approach to inference, which we detail in

Section 5.3.1; this requires only a bivariate density. We also detail its multivariate

analogue; although this is not used for inference, it has a variety of uses, i.e., infilling

of extreme events with missing observations or inference at sites s ∈ S \ s. These

features are detailed in Appendix C.1.

5.3 Inference and simulation

5.3.1 Model fitting

Our censored triplewise likelihood approach for model fitting is based on the pseudo-

likelihood approach of Padoan et al. (2010); their pairwise approach provides unbi-

ased estimation of model dependence parameters. Recall that some observations are
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right-censored at different sampling locations with varying rate of occurrence over

time. To define a single likelihood contribution at time t, we begin by consider-

ing a single conditioning site amongst the observed sites si ∈ (s1, . . . , sd) such that

yt(si) > F−1
Y (si)
{FL(u)} and hence xt(si) > u. We then define the set of all such

times by T (si) = {t = 1, . . . , n : xt(si) ≥ u}. For the observed sites, we define

hi,j = h(si, sj) for i, j = 1, . . . , d with i 6= j. Then for each site sj , j = 1, . . . , d, j 6= i,

we define the residual for time t ∈ T (si) for conditioning site si as

z
(si)
t (sj) =


[xt(sj)− a{xt(si), hi,j}]/b{xt(si), hi,j, } if xt(sj) > c(sj),

c
(si)
t (sj), otherwise,

(5.3.1)

where a and b are described in Section 5.2.2, and c
(si)
t (sj) =

c(sj)−a{xt(si),hi,j}
b{xt(si),hi,j} is the

censored residual for site sj with conditioning site si and t ∈ T (si). The full pseudo-

likelihood is given, for residuals z
(si)
t with conditioning site si and parameter vector

ψ, by

LCL(ψ) =
d∏
i=1

∏
t∈T (si)

LsiCL(ψ; z
(si)
t )

=
d∏
i=1

∏
t∈T (si)

∏
∀j<k;j&k 6=i

gsi(z
(si)
t (sj), z

(si)
t (sk), c

(si)
t (sj), c

(si)
t (sk))

J(z
(si)
t (sj), z

(si)
t (sk), c

(si)
t (sj), c

(si)
t (sk))

, (5.3.2)

where LsiCL is the censored likelihood contribution for si and the bivariate density g is

defined in Appendix C.1. The Jacobian term J
(
z

(si)
t (sj), z

(si)
t (sk), c

(si)
t (sj), c

(si)
t (sk)

)
is

b{xt(si), hi,j}1{zt(sj)>c
(si)
t (sj)}b{xt(si), hi,k}1{zt(sk)>c

(si)
t (sk)},

where 1{·} is the indicator function. The parameter vector ψ contains all parameters

of the normalising functions a and b, the marginal parameter functions µ, σ and δ,
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the correlation ρ and the anisotropy. Estimation of ψ can be achieved by maximising

(5.3.2).

5.3.2 Stratified sampling regime

Clearly, maximising (5.3.2) is computationally infeasible if d is large, as evaluation

of (5.3.2) requires (d− 1)(d− 2)
∑d

i=1 |T (si)|/2 evaluations of g(si), which can require

double integrals and grows as O(d3n). We detail a stratified sampling regime to create

a pseudo-likelihood that circumvents the computational issue. To construct a sub-

sample of data that can be used to estimate the parameters ψ via pseudo-likelihood

estimation, we first need to consider what these parameters represent. These param-

eters control characteristics of the dependence functions described in Section 5.2.2,

which are functions of either distance to the conditioning site hi,j or pairwise dis-

tances hj,k for si, sj, sk ∈ s. Thus, we construct our sub-sample by drawing triples

of sites (si, sj, sk) ∈ s; there are d(d − 1)(d − 2)/2 possible triples of sites, and our

sub-sample must adequately represent the distribution of the distances in the full

data. However, not all distances can be represented in the sub-sample. If we pick

triples randomly, then we are more likely to pick sites with larger pairwise distances.

This has two disadvantages: pairs with larger pairwise distances are not informa-

tive about the dependence parameters, as at these distances the process may exhibit

near-independence, and we are also unlikely to learn about the dependence for small

distances, as less pairs with smaller pairwise distances are sampled. To ensure this is

not the case, each triple (si, sj, sk) is chosen so that the distances hi,j, hi,k and hj,k do

not exceed a specified threshold. This is a natural extension of the approach of Huser

and Davison (2013) who suggest using only pairs of locations that are within some

low distance hmax > 0 of each other - we instead impose this constraint on triples.

To sub-sample ds � d(d− 1)(d− 2)/2 triples of locations for inference, we begin

by uniformly sampling a conditioning site si ∈ (s1, . . . , sd). A pair of sites are then
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drawn randomly from the set {sj, sk ∈ s \ si, j < k : max{hi,j, hi,k} < hmax} without

replacement, and the process is repeated. In sampling in this way, only sites within

distance hmax of the conditioning site are used for inference. That is, we estimate

the spatial functions of the dependence parameters for hi,j < hmax and hi,k < hmax,

and so hj,k < 2hmax only, and then extrapolate to larger distances. There is a trade-

off involved in choosing the value of hmax: if too low, then extrapolations to larger

distances are likely to be poor; if too high, fit at small distances is compromised. In

Section 5.4.3, we describe a heuristic technique for choosing hmax and we find this

works well in practice. The number of triples ds is chosen to be as large as possible,

whilst pseudo-likelihood estimation remains computationally feasible.

5.3.3 Scaled bootstrap sampling distributions

Our aim is to estimate the sampling distribution of ψ̂ds , the parameter estimates of

the model fit using the ds triples sampled under the regime described in Section 5.3.2.

However, to derive this using a bootstrapped sample of ψ̂ds , denoted ψ̂
∗
ds , may be

computationally infeasible; if ds is large, as it is computationally expensive to get the

required number of replicated values. We detail a bootstrapping regime that uses less

data, and hence is computationally feasible, but it is still reliable.

We denote ψ̂m of length Q as parameter estimates using a sample of m ∈ N

stratified sampled triples with m ≤ ds. We further denote ψ̂
∗
m as a bootstrap samples

of parameter estimates achieved via maximum pseudo-likelihood estimation of (5.3.2)

with m triples, and Vm as the Q × Q variance matrix of the estimator of ψ̂m which

are calculated using ψ̂
∗
m. We take a scaling approach to approximate the sampling

distribution of ψ̂ds . This is achieved by creating a bootstrap sample of ψ̂
∗
ds ; although

we cannot compute this directly, we can compute a bootstrap sample ψ̂
∗
ds/w for w > 1,

such that ds/w ∈ N; that is, a sample created using ds/w < ds triples where the

replicates of ψ̂
∗
ds/w can be estimated in a feasible time-frame. We then apply a linear
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transformation to ψ̂
∗
ds/w to create an approximate sample of ψ̂

∗
ds . To illustrate this,

let ψ̃ds/w be the component-wise mean of the ψ̂
∗
ds/w replicates. Then each replicate is

transformed to give

ψ̂
∗
ds = ψ̂ds + V

−1/2
ds

V
1/2
ds/w

(
ψ̂
∗
ds/w − ψ̃ds/w

)
= ψ̂ds + λ−1/2

(
ψ̂
∗
ds/w − ψ̃ds/w

)
, (5.3.3)

where λ > 0 is to be defined in (5.3.5) and Vds is to be specified below. This ensures

that the bootstrap sample ψ̂
∗
ds has expectation ψ̂ds and variance Vds . The sampling

distribution of ψ̂ds is then approximated empirically from ψ̂
∗
ds .

To estimate λ, we begin by estimating Vds ; although direct computation is infea-

sible, we can estimate Vds/w for ds > ds/w ∈ N, i.e., the variance of the parameter

estimates for the model fit using ds/w triples. As long as the same sampling mecha-

nism is used to create the sub-sampled triples of size ds and ds/w, i.e., that described

in Section 5.3.2, it follows that Vds ≈ λVds/w for some λ > 1. If observations in both

samples are truly independent of one another, we have that λ = w. However, this is

unlikely to be the case as observations will exhibit spatial dependence. To estimate

λ, we note that

|Vds| ≈ |λVds/w| = λQ|Vds/w|, (5.3.4)

where | · | denotes the matrix determinant and Q is the size of ψ; this follows from the

property |λM | = λQ|M | for constant λ > 0 and M a Q×Q matrix. Ideally, we would

rewrite (5.3.4) to approximate λ; however, we cannot compute Vds directly. Instead we

estimate Vds/w and Vds/(2w), and use (5.3.4) to estimate λ2 such that Vds/w ≈ λ2Vds/(2w).

It follows that

λ = λ
log2(w)
2 =

(
|Vds/w|
|Vds/(2w)|

)log2(w)/Q

, (5.3.5)

and we can use this to estimate (5.3.3). The exponent in (5.3.5) follows as λ2 corre-

sponds to the variance matrix scaling factor if the sample size doubles; it would take

log2(w) repetitions of doubling ds/w to reach ds.
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5.3.4 Simulation of an event

We now detail a technique that will allow us to draw realisations of {Y (s) : s ∈ S}.

First, we note that the model in Section 5.2.2 does not describe the dependence in all

of {Y (s)}; instead, it describes

{
Y (s) : s ∈ S

}∣∣∣∣ (max
s∈S

{
F−1
L (FY (s){Y (s)})

}
> v

)
≡
{
F−1
Y (s)(FL{X(s)}) : s ∈ S

}∣∣∣∣ (max
s∈S
{X(s)} > v

)
, (5.3.6)

for v ≥ u with u used for fitting in Section 5.3.1. Thus, to create a realisation of

{Y (s) : s ∈ S}, we draw realisations of (5.3.6) with probability

Pr

{
max
s∈S

{
F−1
L (FY (s){Y (s)})

}
> v

}
, (5.3.7)

and otherwise draw realisations of

{
Y (s) : s ∈ S

}∣∣∣∣ (max
s∈S

{
F−1
L (FY (s){Y (s)})

}
< v

)
. (5.3.8)

As we do not expect realisations of (5.3.8) to contribute to the tail behaviour of RA,

we simply draw realisations of (5.3.8) from the observed data. We estimate (5.3.7)

empirically; although this could be inferred using the parametric model of Section

5.2. If S does not correspond to the set of sampling locations, then we would have to

approximate (5.3.8) though some form of infilling, i.e., using the quantile regression

technique (Fasiolo et al., 2020) discussed in Section 5.2.1.

We now describe a simulation technique that will allow us to draw realisations of

(5.3.6). That is, the field {Y (s) : s ∈ S} given that an extreme value above a threshold

is observed anywhere in the domain. This threshold varies with s and corresponds to

the relative quantile v on the Laplace scale. Wadsworth and Tawn (2019) detail the

procedure for achieving this. There are three steps: drawing conditioning sites sO ∈ S,
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simulating the fields {Y (s) : s ∈ S}|(F−1
L (FY (sO){Y (sO)}) > v) using the fitted model

described in Section 5.2, and then using importance sampling to approximate (5.3.6),

see Algorithm 1, Step 2. The first step requires random sampling of conditioning sites

sO for some sO ∈ S; we do this uniformly, which provides a good first approximation

of the occurrence of these sites in S and then improve on this via the importance

sampling regime described below.

To simulate N realisations from process (5.3.6), we follow Wadsworth and Tawn

(2019) and draw an initial N ′ > N realisations of the process {X(s) : s ∈ S} on the

Laplace scale. Then, using importance sampling, we sub-sample N realisations from

{X(s) : s ∈ S}|maxs∈S X(s) > v, and transform the margins of the sample to the

original scale, {Y (s)}. The sub-sampling regime adds extra weight to realisations for

which the conditioning site is near the boundary of the domain. This is to alleviate

the edge effect caused by not using conditioning sites outside of the boundaries of

S. A discussion of a related issue is given in Section 5.3.5. We found that setting

N ′ ≈ 5N was sufficient for our application, although this may be dependent on the

size of S and value of N .

5.3.5 Inference on spatial aggregates

Using the sample of realisations of {Y (s) : s ∈ S} generated in Section 5.3.4, we make

inference about the tail behaviour of RA in (5.1.1) or the corresponding sum; here

we focus on the latter, but a discussion of the integral is given in Section 5.5. The

possible size of the aggregation region A in relation to the region S is of particular

interest. Trivially, we require A ⊆ S. However, we cannot have A = S, as if we did,

the simulation algorithm will never generate an event for which the conditioning site

lies outside of the boundaries of S, but we still observe an extreme event somewhere

inside A. To avoid such edge-effects, we require the boundaries of A to be far enough

inside the interior of S, such that the distribution (5.3.6) does not change if the size
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Algorithm 1 Simulating (5.3.6)

1. For i = 1, . . . , N ′ with N ′ > N :

(a) Draw a conditioning location s
(i)
O from S with uniform probability density

1/|S|.

(b) Simulate E(i) ∼ Exp(1) and set xi(s
(i)
O ) = v + E(i).

(c) Simulate a field {zi(s|s(i)
O ) : s ∈ S} from the residual process model defined

in Section 5.2.2.

(d) Set {xi(s) : s ∈ S} = a{xi(s(i)
O ), h(s, s

(i)
O )} + b{xi(s(i)

O ), h(s, s
(i)
O )} ×

{zi(s|s(i)
O ) : s ∈ S}.

2. Assign each simulated field {xi(s) : s ∈ S} an importance weight of{∫
S

1{xi(s) > v}ds
}−1

,

for i = 1, . . . , N
′
, and sub-sample N realisations from the collection with prob-

abilities proportional to these weights.

3. Transform each {xi(s) : s ∈ S} to {yi(s) : s ∈ S} using the marginal transfor-
mation (5.2.1). If xi(s) ≤ c(s), set yi(s) = 0, where for some s

′ ∈ S, yi(s
′
) is

above its FL(v)-th quantile.

of S increases. Informally, we require a buffer zone between the boundaries of A and

S which is large enough, such that any event with conditioning site outside of S has

negligible effect on the distribution within A. We select the width τ of this buffer zone

by using the measure χq(sA, sB) given in (5.1.2) and stationarity. We choose τ such

that for any s ∈ A and sO ∈ R2 \ S, such that for h(s, sO) > τ , we have χq(sO, s) < γ

for small γ > 0 and for all large q; that is, we have small probability less than γ of

observing a large event at s given that there is an extreme event at any site outside of

S. This measure can be evaluated empirically or by simulating from the fitted model;

we take the latter approach in Section 5.4.4.
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5.4 Application

5.4.1 Data

We consider data consisting of average hourly precipitation rate (mm/hour) taken

from the UK convection-permitting climate model projections 2018 (UKCP18) (Lowe

et al., 2018). Data are from a model which produces values over hourly intervals

between the years 1980 and 2000, using the observed atmospheric conditions. The

sampling locations are (5km)2 grid boxes corresponding to the British National Grid

from Ordnance Survey (OSGB). The spatial domain S of interest is East-Anglia, UK

(see Figure 5.4.1) and only data sampled over land have been included, leaving 934

sampling locations. Each observation corresponds to the average over the assigned

spatio-temporal grid-box. The data represent the average in each grid-box, and so a

natural quantity of interest is R̄A := RA/|A|, rather than RA, but we present results

on RA as this variable must satisfy the ordering constraints discussed in Section 5.1.

To remove any seasonal effect observed in the data, we use summer, i.e., July-August,

observations only, leaving 43200 fields1 We chose to take summer precipitation events

as these typically exhibit higher intensity than winter events (Sharkey and Winter,

2019). We treat the centre of each grid box as a sampling location, and as the grid-

boxes are non-overlapping and contiguous, we can approximate the integral RA in

(5.1.1) using a sum. We use the great-circle distance as our distance metric described

in Section 5.2.2.

5.4.2 Marginal analysis

Initial analysis shows that the data consists of 8.7% hours with zero precipitation,

but much of the data with non-zero values exhibits noise around zero produced by

the climate model. Thus, the data less than 1 × 10−5mm/hour were set to zero2,

1Note that the UKCP18 data uses a 360 day calendar, and so each month is composed of 30 days.
2A level which would be recorded as zero by a rain gauge.
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increasing the average number of dry hours to 83.7%. Figure 5.4.1 gives a spatial

map of the estimated probability of zero precipitation p(s) within a given hour; this

is estimated using the logistic regression GAM detailed in Section 5.2.1. We observe

some spatial variation in p(s), with slightly lower estimates being found along the

north-east coast.

We fit the spatial marginal model detailed in Section 5.2.1. We take λ(s) = 0.995

for all s ∈ S in (5.2.1) and the corresponding GPD threshold q(s), estimated using

a thin-plate spline, is illustrated in Figure 5.4.1 with q(s) varying roughly over S;

larger values are found along the east coast. The GPD GAM model with spatially

smooth estimate parameters is then fit to site-wise exceedances above q̂(s) at each

site; a spatial map of the shape parameters are given in Figure 5.4.1. We take the

approach of Youngman (2019) and use as many knots as is computationally feasible

in the thin-plate splines, which is 300. This creates a potentially overly rough spline

which may over-fit the data and not capture true physical smoothness; however, our

primary interest is in the dependence structure when studying aggregates as this is

the novel element of our model, so we chose this approach to ensure that the empirical

marginal distributions are as well modelled as possible. We observe ξ̂(s) > 0 for all

s ∈ S, and so the marginal upper tails are unbounded at each site. Q-Q plots of the

marginal fits at five randomly sampled locations are presented in Figure C.3.2, all

showing good fits. To evaluate the fit over all locations, we use a pooled Q-Q plot,

transforming all data onto standard exponential margins using the fitted model, see

Figure C.3.2. Again the fit is remarkably good, although confidence intervals are not

provided due to the spatial dependence in the pooled data.

5.4.3 Dependence model

All dependence models are fitted by taking the exceedance threshold u in (5.2.2)

to be the standard Laplace 98% quantile. This leaves 864 fields for fitting the ex-
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Figure 5.4.1: Spatially smoothed marginal distribution parameter estimates for East
Anglia. Left: p̂(s), centre: q̂(s), right: ξ̂(s). υ̂(s) is illustrated in Figure C.3.1.

tremal dependence model given an observed extreme at a single conditioning site.

The empirical estimate (and 95% confidence interval) for the probability in (5.3.7) is

0.273 (0.257, 0.290); this corresponds to the proportion of all observed fields used for

fitting when we pool over all 934 conditioning sites. Confidence intervals for (5.3.7)

were created using the approach of Politis and Romano (1994) with 1000 stationary

bootstrap samples with expected block size of 48 hours. A lower threshold u was con-

sidered; however, we found that this leads to poorer model fits as the data exhibits

a partial mixing of dependence structures. We believe this is due to the presence of

multiple data generating processes in the climate model. Precipitation is typically

generated by either high intensity events with localised spatial profiles, i.e., convec-

tive cells, or low intensity events with much large spatial profiles, i.e., frontal storms

(Thomassen et al., 2020). In the absence of covariates to distinguish between these

events in the data, we use a higher exceedance threshold to remove any frontal events;

this is discussed further in Section 5.5.

We proceed with an initial analysis by fitting a simple version of the model of

Section 5.2.2 to these data. We fit the model with two caveats: we make the temporary

assumption that the residual process {Z(s|sO)} is independent at all distances; and

evaluate a sequence of “free” pairwise parameter estimates (Wadsworth and Tawn,

2019) for the normalising functions and those functions that describe the marginal
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characteristics of {Z(s|sO)}. That is, we fit individual parameters, i.e., α
(sO)
si etc. for

i = 1, . . . , d with si 6= sO, rather than a spatial function α{h(s, sO)}, and we do this

for seven different conditioning sites sO sampled randomly over S. This approach

can be used to assess non-stationarity in {X(s)}; if we observe clear disagreement in

the parameter estimates for the different conditioning sites, then the assumption of

stationarity of {X(s)} is unlikely to be appropriate. We find no evidence for non-

stationarity in the parameter estimates presented in Figure 5.4.2; while we observe

some volatility in the free parameter estimates, the general patterns appear to be the

same regardless of the choice of conditioning site. We use the spatial structure in the

free estimates to motivate our choice for the forms of the parameter functions detailed

in Section 5.2.2.

Using the sampling method described in Section 5.3.2, the full spatial fit uses

ds = 5000 triples of sites with each sampling location being used as a conditioning site

at least once. As the estimates of α and β in Figure 5.4.2 decay quickly with increasing

spatial distance, i.e., for any distance greater than 25km, α ≈ 0 and β < 0.5; this

illustrates that the underlying process Y (s) exhibits fairly localised strong extremal

dependence. This suggests that we should focus on modelling extremal dependence

locally, as this will be the driving factor of the aggregate behaviour. A distance of

25km in the anisotropic setting corresponds to an approximate distance of 28km in

the original setting, and so we set hmax = 28km. Although 5000 triples of sites

represents a very small proportion of all possible triples, we observe a good model fit

from Figure 5.4.2, which shows that, even at distances greater than 28km, the fitted

parametric functions for the dependence parameters correspond well to the sequences

of free estimates. We further investigate the choice of hmax after fitting the model

Figure 5.4.2 can be used to make further inference about the underlying depen-

dence structure of the precipitation process. For example, we find that ∆ in (5.2.4)

can be taken to be zero without restricting the quality of the fit and similarly we can
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Figure 5.4.2: Estimates of parameters that determine the extremal dependence struc-
ture plotted against inter-site distance h, which is calculated under the anisotropy
transformation for the full spatial model. Estimates from the free fits described in
Section 5.4.3 are given by the black points, parametric spatial functions are given in
red (asymptotically independent model) and blue (asymptotically dependent model).
Bottom right: estimates from model for χq(s, sO) in (5.1.2) with q = 1/(24 × 90).
Distances (km) are given in the spatial anisotropy setting.

set κβ3 = 1. We further note that we set κδ4 = 1 for this application, which does

not satisfy the constraint that κδ4 ≤ 0, given in (5.2.7), and hence implies that the

upper-tails of the fitted residual process are too heavy; we found that this did not

cause any issues in our analysis and so we chose to take κδ4 = 1 as this provided

a better model fit. The estimate ∆ = 0 suggests that the process is asymptotically

independent at even the closest distances as asymptotic dependence requires both

α(h) = 1 and β(h) = 0 for all h, which the estimates in Figure 5.4.2 suggest is not the

case; a fit imposing asymptotic dependence is discussed later. Furthermore, we found

that incorporating spatial anisotropy into the dependence model improved the over-

all fit; stronger extremal dependence was found along an approximate −10◦ bearing,

reducing by at most 7% over different directions. Parameter estimates (and standard

errors) are provided in Table C.2.1. Although not illustrated in Figure 5.4.2, ρ decays

quickly with distance, with ρ(100) ≈ 0.2. Standard errors are estimated using the

bootstrap scheme described in Section 5.3.3 with w = 20 and the use of 250 bootstrap
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samples. We estimate λ̂2 = 1.042 in (5.3.5).

To further support the choice of hmax, we estimate χq(s, sO) in (5.1.2) for sO ∈ S

in the centre of S, taking q corresponding to a one-year return level probability, and

look to see how far away s must be for χq(s, sO) to be less than γ for small γ > 0

(see Section 5.3.5). We estimate χq(s, sO) by simulating 5 × 104 replications, using

Algorithm 1, from the fitted model and is illustrated in Figure 5.4.2, bottom-right

panel; for γ = 0.1, we find that a distance of hmax is sufficient and so we set τ = hmax

in Section 5.3.5, discussed further in Section 5.4.4.

Figure 5.4.3 illustrates six extreme fields: three realisations from the model defined

in (5.3.6) and three observations from the data. Fields are chosen such that the site

in the centre of S exceeds its 99.9%-quantile but the maximum over the entire field

does not exceed 30mm/hr; this is to make it easier to compare the spatial structure in

the fields. Realisations from the model appear to replicate the roughness in observed

events well. Furthermore, in Figure 5.4.3 we observe that replications from the model

are able to exhibit some of the different physical properties of extreme precipitation.

For example, the top-left panel displays a spatially flat event whilst the other two

illustrate localised extreme events; multiple events in the top-middle and a single

event in the top-right.

As α quickly goes to zero with distance, all extremal dependence is instead exhib-

ited through β. This is atypical of fits of this model for other applications (Wadsworth

and Tawn, 2019; Shooter et al., 2021; Simpson and Wadsworth, 2021), where the α

function drives the extremal behaviour of the considered processes, e.g., temperature

and sea wave heights. Having β controlling extremal dependence would suggest that

the process that generates the extreme precipitation we are modelling is somewhat

rough; this concurs with the observed fields containing an extreme value shown in

Figure 5.4.3, and consistent with the spatial nature of strong convective rainfall. To

illustrate this, we note that, for small h = h(s, sO), we have α(h) ≈ 0 and β(h) ≈ 1,
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Figure 5.4.3: Extreme precipitation fields (mm/hr). Top-row: realisations from the
fitted model described in (5.3.6). Bottom-row: observed fields from the data.

then E[X(s)|X(sO) = x] ≈ µ(h)x and var (X(s)|X(sO) = x) ≈ x2σ2(h), and so the

largest events at sO are the most variable. This has not been observed in other appli-

cations as the extremal dependence in these processes is typically quite smooth with

var (X(s)|X(sO) = x) ≈ σ2(h) as β(h) ≈ 0 when h is small. Even at the largest h,

the process {X(s)} does not exhibit independence; although α and β tend to zero the

residual process does not attain standard Laplace margins with δ(h) = 1.

Existing literature for approaches that rely on modelling the underlying process

to make inference the extremal behaviour of spatial aggregates of precipitation typi-

cally use models that only allow for asymptotic dependence (Coles, 1993; Coles and

Tawn, 1996; Buishand et al., 2008). We fit such a model to illustrate that imposing

asymptotic dependence may lead to poor inference for the tails of spatial aggregates.

We term this the “AD model” and the model described above as the “AI model”. To

specify the AD model, we fix α(h) = 1 and β(h) = 0 for all h and we change σ(h) in
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(5.2.7) to σ(h) = κσ3 (1− exp{−(h/κσ1)
κσ2}) with κσ1 , κσ2 , κσ3 > 0, as we no longer

require that σ(h) →
√

2 as (h) → ∞. The corresponding µ(·) and δ(·) functional

forms remain the same and the spatial anisotropy setting described in (5.2.11) is still

used. To fully capture the behaviour of µ(·), we found we had to take hmax = 75km.

The estimated spatial functions for the AD model are illustrated in Figure 5.4.2. With

α and β fixed, we observe that the other parameters are forced to compensate for this

misspecification. For example, we observe a strictly negative µ function; this is to

compensate for fixing the α value too large for the data. Given this, we re-estimated

the free parameters with α = 1 and β = 0 fixed and observed good agreement between

the spatial functions and these new estimates. However, this does not imply that the

model as a whole fits well, this is emphasised in Section 5.4.4 where spatial aggregates

of simulated fields {Y (s)} are studied.

5.4.4 Diagnostics and tails of spatial aggregates

Q-Q plots, presented in Figure 5.4.4, assess how well the tails of the simulated distri-

butions compare against the tails of the empirical distribution of the spatial averages.

Confidence intervals given for the simulated quantiles are derived using the bootstrap;

for each of the 250 bootstrap parameter estimates discussed in Section 5.3.3, we draw

5× 105 realisations of {Y (s) : s ∈ S} using the regime described in Section 5.3.4.

Then R̄A is calculated for each sample and for each region A; per the discussion in

Section 5.4.3, each A is at least τ = 28km away from the boundaries of S. Figure 5.4.4

illustrates generally good fits for the tails of R̄A with nested regions A. The AI model

appears to slightly underestimate the true magnitude of the largest aggregates for the

largest regions; while this may suggest that the model is not capturing dependence at

further distances from the conditioning site, Figure 5.4.2 suggests that the model fits

well even at the furthest distances. This leads us to suspect that there is a mixture

of events present in the data when we consider large spatial regions for aggregation,
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and that the model is not flexible enough to capture these mixtures, see Section 5.5.

To illustrate the benefits of using our approach, Figure 5.4.4 also illustrates the same

diagnostics for the AD model described in Section 5.4.3 for the smallest and largest

regions. The AD model provides much poorer fits than the AI models, as it always

overestimates the quantiles; this suggests that the AD model overestimates the de-

pendence within the original process even for the smallest aggregation regions. A

similar plot for non-overlapping regions is illustrated in Figure C.3.5; here we observe

some underestimation in the largest estimated return levels for the regions closest to

the east coast, which is a possible indication of non-stationarity along this coast.

Figure 5.4.4: Q-Q plots for model, and empirical, R̄A of regions of increasing size. Left:
AI model, right: AD model. Probabilities range from 0.7 to a value corresponding
to the 20 year return level. 95% confidence intervals are given by the blue dashed
lines. Q-Q plots for all six regions for the AD model are given in Figure C.3.4. Centre:
aggregate regions A with corresponding areas (125, 525, 1425, 2425, 3350, 5425)−km2.
Regions 1-6 are coloured red, green, blue, cyan, purple, yellow; regions include both
the coloured and interior points.

As discussed in Section 5.1, obtaining physically consistent return level estimates

of spatial aggregates is essential. We compare two methods for achieving this: (i)

performing a long-run simulation from our model, deriving empirical estimates of

return-levels from these replicates; (ii) fitting a GPD distribution to the observed

aggregate tails and extrapolating to the desired return-level. Ideally, we want to use

only the former approach as this mitigates the potential issues with using method (ii)

discussed in Section 5.1; however, for computational efficiency, we perform a shorter
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run for method (i) with 5 × 105 realisations and use a fitted GPD to extrapolate to

the largest return-levels. Figure 5.4.5 presents estimates of return level curves for

RA over the nested regions, illustrated in Figure 5.4.4, using methods (i) and (ii),

top-left and top-right panels, respectively. For each region A, a GPD distribution

is fitted to exceedances of the respective sample RA above the 99.9% quantile and

return level curves are estimated from these fits. In the top-right panel of Figure

5.4.5, we observe intersection in the return level curves estimated for the two smallest

regions using method (ii). This problem does not arise using the computationally

efficient version of approach (i), e.g., in the top-left panel of Figure 5.4.5, where we

have 5 × 105 × 20/43200 ≈ 231, and 20, years of data for inference, respectively.

Furthermore, the confidence intervals produced by method (i) are tighter, as more

data are used for extrapolation; we illustrate this in the bottom-left panel of Figure

5.4.5, where we overlay return level estimates RA using both methods, for a single

region A. Confidence intervals are derived for both methods by fitting a GPD to

250 bootstrap samples of RA: in method (i), these are the samples as described

at the top of this section; for (ii), we perform a simple bootstrap of the observed

data, assuming temporal independence. A higher exceedance threshold for approach

(i) was considered, but we found that the difference in estimates was negligible; to

support the use of the 99.9% quantile, we illustrate a pooled Q-Q plot in Figure 5.4.5,

transforming exceedances from all 250 bootstrap samples onto standard Exponential

margins using their respective GPD fits and observe an excellent overall fit.

A further point of interest for practitioners is inference on the joint behaviour of

(R̄A, R̄B) for different regions A,B ∈ S. We investigate this joint behaviour for the

different aggregate regions given in Figure 5.4.4. Figure 5.4.6 illustrates realisations

of pairwise (R̄A, R̄B) for both model and empirical estimates with nested regions A,B,

showing that the model captures the joint distributions well; a similar figure is given

for non-overlapping regions in Figure C.3.6, in which we observe that extreme events
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Figure 5.4.5: Top: Estimated return level curves of RA using the model (left) and
observations (right). Colours correspond to the regions illustrated in Figure 5.4.4.
Bottom-left: return level estimates for Region 5 in Figure 5.4.4 using methods (i)
and (ii) in black and red, respectively. 95% confidence intervals for the methods are
given by the coloured dashed lines. Bottom-right: Q-Q plot for pooled GPD fit for
approach (i), over all 250 bootstrap samples, on standard Exponential margins. 95%
tolerance bounds are given by the dashed lines.

do not typically occur together. This suggests that the extremal behaviour of the

aggregates is driven by spatially-localised events. Further evidence for this can be

found in Figure 5.4.6 for aggregates over nested regions, as we observe weakening

extremal dependence between aggregates over the smallest, and increasingly larger,

regions.

5.5 Discussion

We have presented extensions of the Heffernan and Tawn (2004) and Wadsworth and

Tawn (2019) models for modelling the extremal dependence for precipitation data.

As illustrated in Section 5.2.2, this model provides flexibility over existing models for

extreme precipitation as it can capture asymptotic independence. Simulating from
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Figure 5.4.6: Plots of 2×104 realisations of pairwise (R̄A, R̄B) for nested regions A,B,
illustrated in Figure 5.4.4. Black points are model estimates, red points are from the
data. The regions A,B are labelled on the respective panels.

this model is simple, and replications can be used to make reliable inference about

the tail behaviour of spatial aggregates of the underlying process once issues linked

to edge effects are addressed. This approach circumvents an issue that is common

with independent inference on the tails of spatial aggregates over different regions,

namely that they run the risk of making inference that is inconsistent with the physical

properties of the process.

A particular drawback of our our approach is that inference using the full likelihood

is computationally infeasible. To overcome this issue, we proposed methods for model

fitting and assessing parameter uncertainty that are based on a pseudo-likelihood

approach which requires specification of a hyper-parameter hmax and a novel scaling

approach respectively. We found that these methods worked well in our application,

as we were able to choose a suitable hmax quite low for which the model fits well in

a reasonable time-frame, see Figure 5.4.2. This is because our data exhibits fairly

localised extreme events; in applications where this is not the case, a larger hmax will

be required which could potentially lead to more samples being required for fitting.

Data used in Section 5.4 are from a climate model, which means that sampling

locations are comprised of non-overlapping grid-boxes, rather than point locations.

In our application, we take RA to be the corresponding summations, rather than the



5. MODELLING EXTREMES OF SPATIAL AGGREGATES 150

integrals defined in (5.1.1); however, this is not to say that our approach cannot be

used if we require inference on the tail of an integral. We have detailed a fully spatial

model for both the dependence and marginal behaviour of {Y (s)}, and so it is possible

to create a sample of {Y (s) : s ∈ S} where S is not necessarily the sampling locations.

We can then approximate RA by specifying S as a fine-grid and taking the sum of

{Y (s) : s ∈ A}.

When considering spatial aggregates over the largest regions A, we find that our

approach slightly underestimates the largest events, see Figure 5.4.4. Whilst this may

be caused by boundary effects, it could also be caused by a complexity of the data

generating process that is not captured by the model. As the size of A increases,

it becomes less likely that the tail behaviour of RA is driven by a single type of

extreme event. There are two possible areas of complexity that are missed for re-

gions that are sufficiently large: (i) multiple occurrences of localised high-intensity

convective events (Schroeer et al., 2018), whereas we modelled single occurrences in

Section 5.4; (ii) events consisting of a mixture of localised high-intensity convective

and widespread low-intensity non-convective, events. Our data appears to exhibit

these; recall in Section 5.4.3 we remarked that we considered a lower threshold u in

(5.2.2) for modelling, but we found that this was not feasible as the data exhibits

mixtures of dependence. A higher threshold had to be specified to remove observed

fields that exhibited long-range spatial dependence to improve model fitting. Further

improvements can be made to inference on the tails of RA by modelling frontal events.

To illustrate this, consider that we model RA|(maxs∈S X(s) > v), i.e., RA given an

extreme event somewhere in S, and undo said conditioning using the data. We do

not model RA given that there is no extreme event anywhere in S, i.e., such caused

by a frontal event. As the size of A grows, we will increasingly find that these events

will drive the extremal behaviour of RA; this could be further explanation behind the

underestimation in Figure 5.4.4, and so should be incorporated into the model. We
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also considered another measure of the extremal dependence in Appendix C.2, which

suggests improvement may be possible using mixture modelling. A possible approach

to this problem is to incorporate covariates on precipitation field type into the model.

————————————————–



6

Mixture modelling of extreme

precipitation

6.1 Motivation

In Chapter 5, we detailed a methodology for modelling the upper-tail behaviour of

spatial aggregates of precipitation. We proposed a model for high-resolution extreme

precipitation and fit this model to data, and we found that the extremal behaviour

of the underlying process was driven primarily by spatially localised, high-intensity

events, which we believed to be caused by convective storm cells (Schroeer et al., 2018).

From our fitted model, we simulated events and used these realisations to conduct

inference on the extremal behaviour of variables corresponding to averages over spatial

regions. We illustrated that this approach was particularly effective for modelling

aggregates over small regions (see Figure 5.4.4), but we found that our approach

began to underestimate the extremes of the aggregate as the regions grew sufficiently

large. For larger spatial regions, we hypothesise that the extremal behaviour of spatial

aggregates is not solely driven by convective precipitation events, rather it is driven

by a mixture of convective and non-convective events, with the latter being of lower

152
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intensity but having a much larger area of effect (Berg et al., 2013; Gregersen et al.,

2013). To investigate this hypothesis, we adapt the modelling approach proposed

in Chapter 5; we propose separate extremal dependence models for convective and

non-convective precipitation and simulate events from both models to approximate

the upper-tails of spatial aggregates.

Using the same notation as given in Chapter 5, our interest lies in the upper-tail

behaviour of the aggregate variable

R̄A =
1

|A|

∫
A
Y (s)ds, (6.1.1)

where {Y (s) : s ∈ S} denotes a spatial process for some spatial domain S ⊂ R2,

and for different regions A ⊂ S. Data available for inference are realisations Yt =

(Yt(s1), . . . , Yt(sd)) for times t = 1, . . . , n and sampling locations s = (s1, . . . , sd) ⊂ S.

In Chapter 5, we made the assumption that the marginal and dependence behaviour of

{Yt(s)} is stationary with respect to time. Here we instead assume that times t can be

partitioned into two sets, denoted C and NC, which correspond to “convective” times

and “non-convective” times; that is, if t ∈ C, then the observed field {Yt(s) : s ∈ S}

is caused by a convective event, and similarly for non-convective events. We assume

that there are two processes {Y Ct (s) : t ∈ C} and {Y NCt (s) : t ∈ NC}, which denote

a convective, and non-convective, process respectively and that these processes have

different marginal and dependence structure. For each process, both the marginal

behaviour and dependence structures are stationary with respect to the corresponding

time sets; that is, the process {Y Ck (s)} is equivalent to {Y Cl (s)} for all l, k ∈ C, and

similarly for the non-convective process and NC. Defining R̄CA = |A|−1
∫
A Y

C(s)ds

and R̄NCA = |A|−1
∫
A Y

NC(s)ds, we have that

Pr{R̄A ≤ r} = Pr{R̄CA ≤ r}pC + Pr{R̄NCA ≤ r}pNC, (6.1.2)
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where pC = 1− pNC denotes the probability that a realisation of R̄A is produced by a

convective-event, i.e., pC = |C|/(|C|+ |NC|).

To model R̄CA and R̄NCA , we adapt the approach detailed in Chapter 5, and propose

separate models for the two variables. Inference for the underlying processes is con-

ducted by first estimating C and NC for the observation times, which we do using the

algorithm detailed in Section 6.4.2; we then fit separate models to the two classes of

data using the pseudo-likelihood framework described in Section 5.3.2. We simulate

from our fitted models for {Y C(s)} and {Y NC(s)} using a framework that extends the

procedure described in Section 5.3.4, and then combine realisations from both models

to estimate the upper-tail behaviour of R̄A; details of both of these techniques are

provided in Section 6.3.1. To illustrate the efficacy of this approach to that of Chap-

ter 5, we also fit the single process model described therein and compare inference on

aggregates using both approaches; that is, one where we model a single underlying

process, which we denote {Y ∗(s)}, and one where we model a mixture process with

two components, {Y C(s)} and {Y NC(s)}.

6.2 Modelling convective and non-convective ex-

treme precipitation

6.2.1 Marginal model

For each of the three processes {Y C(s)}, {Y NC(s)} and {Y ∗(s)}, we propose a separate

marginal model; this is similar to the model described in Section 5.2.1, albeit with

two differences. Firstly, we include elevation as a smooth predictor in the components

of the marginal distributions, which we denote ε ∈ R+. The distribution function for



6. MIXTURE MODELLING OF EXTREME PRECIPITATION 155

a general Y (s), s ∈ S is

FY (s)(y) =


p(s, ε), if y = 0,

1−λ(s,ε)−p(s,ε)
FY+(s)(q(s,ε))

FY+(s)(y) + p(s, ε), if 0 < y ≤ q(s, ε),

1− λ(s, ε)
[
1 + ξ(y−q(s,ε))

υ(s,ε)

]−1/ξ

+
, if y > q(s, ε),

(6.2.1)

for all s ∈ S, and where υ(s, ε) > 0 and p(s, ε) ≥ 0, λ(s, ε) > 0 and p(s, ε) + λ(s, ε) < 1;

here FY+(s)(y) denotes the distribution function of strictly positive values of Y (s),

which we estimate this using the empirical estimator. Note that (6.2.1) further differs

from (5.2.1) as here we fix ξ ∈ R for all s ∈ S; this is a common approach taken

when modelling spatial characteristics of extreme rainfall, see Thibaud et al. (2013);

Zheng et al. (2015); Saunders et al. (2017) and Brown (2018). We fix λ(s, ε) = λ for

all (s, ε) ∈ S × R+ and estimate q(s, ε) for this λ. In Section 5.2.1, we describe a

technique for estimating q(s, ε) whereby we fit a thin-plate spline through point-wise

estimates of q(s, ε) for each s ∈ (s1, . . . , sd); however, this approach does not account

for uncertainty associated with the quantile estimator and so here we used additive

quantile regression (Fasiolo et al., 2020) instead. This technique is particularly com-

putationally expensive and so we use a subset of sites for estimating q(s, ε).

Each of the parameters is represented through a basis of thin-plate splines with

separate bases being used for location s and for elevation ε. Recall that in Section 5.2.1

we advocate the use of splines with as many knots as is computationally feasible, i.e.,

overly rough splines. Here, we instead use as few knots as possible, i.e., four, to ensure

that the splines are smooth. This is to avoid over-fitting and makes the marginal

fits more interpretable; furthermore, we fully expect the marginal parameters to be

functions of elevation, see Coles and Tawn (1996); Cooley et al. (2007); Cooley and

Sain (2010).
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6.2.2 Dependence model

We use (6.2.1) to perform site-wise standardisation of {Y C(s)}, {Y NC(s)} and {Y ∗(s)}

to standard Laplace margins; we denote the standardised processes as {XC(s)},

{XNC(s)} and {X∗(s)}, respectively. Extremal dependence in {XC(s)} and {X∗(s)}

is characterised using the exact same model described in Section 5.2.2. For {XNC(s)},

we use a similar model but with different parametric forms for β and σ to those given

by (5.2.5) and (5.2.7), respectively; we denote these new forms by βNC and σNC.

For β, we adopt the approach of Shooter et al. (2021) and let

βNC(h) =
κβ1h

κβ2 exp(−h/κβ3)
maxh>0{hκβ2 exp(−h/κβ3)}

, (κβ1 ∈ [0, 1], κβ2 > 0, κβ3 > 0). (6.2.2)

Note that βNC satisfies similar properties to β, e.g., 0 ≤ βNC(h) ≤ 1 for all h ≥ 0

and βNC(h) → 0 as h → ∞. However, they differ in their values at the conditioning

site, as βNC(0) = 0 whereas β(0) = 1. Recall from the discussion in Section 5.4.3 that

β is an apt choice for the process Y C as it is exhibits spatial roughness and this can

be accommodated into the model by letting β(0) = 1. This property is not required

for Y NC as we expect this process to be much smoother; to support this claim, we

provide example observations of Y C and Y NC in Figure 6.4.2.

For σNC, we introduce another parameter into σ and let

σNC(h) = κσ3 (1− exp{−(h/κσ1)
κσ2}) , (κσ1 > 0, κσ2 > 0, κσ3 > 0), (6.2.3)

and so equivalence with σ is achieved by setting κσ3 =
√

2. Use of σNC implies

that, if κσ3 6=
√

2, then {XNC(s)} does not satisfy the desirable long-range indepen-

dence property described in Section 5.2.2, i.e., we do not have independence between

{XNC(sO)} and {XNC(s∗)} as ‖s∗ − sO‖ → ∞ for sO, s
∗ ∈ S. However, this is not

an issue if the domain of interest S is relatively small, where independence might not

be a reasonable assumption at even the largest distances; non-convective events can
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have a very large spatial extent, for example, Houze Jr (1997) note that stratiform

precipitation can cover a contiguous area of up to 1000km in length. We find that for

our S, there is little evidence of independence in XNC at even the largest distances,

see Section 6.4.4.

Inference for the three extremal dependence models is conducted using the pseudo-

likelihood procedure described in Section 5.3; however, we note that for the stratified

sampling regime in Section 5.3.2, we require different values of hmax for the three

processes that we consider.

6.3 Simulation

6.3.1 Simulating events

To simulate from the three processes {Y C(s)}, {Y NC(s)} and {Y ∗(s)}, we adapt the

procedure detailed in Section 5.3.4 and Algorithm 1; throughout we consider a general

process {Y (s)}, but this approach can be applied to any of the three processes given

above. We first note that the techniques described in Section 5.3.4 suffer from the

following two limitations: firstly, if S corresponds to the set of sampling locations

s = (s1, . . . , sd) and d is large, it may be computationally infeasible to simulate a field

{Y (s)} at all s ∈ S. Secondly, in Section 5.3.5 we discussed edge effects that occur

when considering aggregates over regions A ⊂ S, as the simulation procedure never

generates events for which the conditioning sites lies outside of the boundaries of S

but an extreme event is still observed within A. To address this issue, we proposed

a heuristic for choosing the position of A; we required that the boundaries of A were

at least τ > 0 distance within the boundaries of S. Here τ was chosen so that for any

s ∈ A and sO ∈ R2 \ S such that h(s, sO) > τ , we had χq(sO, s) < γ for small γ > 0

and for large q, with χq(sO, s) defined in (5.1.2). In some case, picking a suitable τ

may not be feasible. This may occur if the process {Y (s)} exhibits particularly strong
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extremal dependence even at the largest distances; in our application, we find this to

be the case for {Y NC(s)}.

To address the two issues above, first consider a region over which we wish to

aggregate, denoted A ⊂ S, where S is our entire spatial domain. We now define

two sets D and O which we use for creating samples of the aggregate RA. Here D

is the set of locations at which we simulate fields, i.e., {Y (s) : s ∈ D}, that satisfies

A ⊂ D ⊆ S; recall that if |S| is large, it may be computationally infeasible to simulate

fields {Y (s) : s ∈ S}, and so in this case we would have D ⊂ S. Each extreme event we

simulate requires a conditioning site sO; we denote the set of all possible conditioning

sites used for simulation by O, which satisfies D ⊆ O, but not necessarily O ⊆ S.

Illustrations of A, S, D and O for our application are presented in Figure 6.3.1 and

a heuristic for choosing both D and O is given in Section 6.3.2.

To simulate {Y (s) : s ∈ D}, we draw realisations of

{
Y (s) : s ∈ D

}∣∣∣∣ (max
s∈S

{
F−1
L (FY (s){Y (s)})

}
> v

)
≡
{
F−1
Y (s)(FL{X(s)}) : s ∈ D

}∣∣∣∣ (max
s∈S
{X(s)} > v

)
, (6.3.1)

with probability

Pr

{
max
s∈S

{
F−1
L (FY (s){Y (s)})

}
> v

}
, (6.3.2)

and otherwise draw realisations of

{
Y (s) : s ∈ D

}∣∣∣∣ (max
s∈S

{
F−1
L (FY (s){Y (s)})

}
< v

)
, (6.3.3)

from the observed {Y (s) : s ∈ D}. To draw realisations of (6.3.1), we use Algorithm 2.

Note that in Step 2, we require that

{∫
D

1{xi(s) > v}ds
}−1

≈
{∫
S

1{xi(s) > v}ds
}−1

, (6.3.4)



6. MIXTURE MODELLING OF EXTREME PRECIPITATION 159

Figure 6.3.1: Regions A, D and O. Aggregate regions A with corresponding areas
(179, 1263, 3257, 6200)−km2 are coloured red, green, blue, cyan; regions include both
the coloured and interior points and are numbered 1 to 4 in Figures 6.4.9 and 6.4.10.
The orange and black points denote D \A and S \ D, respectively; the purple points
outside of the boundaries of S denote O \D. Note that nD = 500, τD = 27.5km, and
nO = 500; these values mean that |D| = 3385 and |O| = 4635.

to account for the conditioning event in (6.3.1). We can improve the accuracy of this

approximation by ensuring that sites in D are sufficiently spread out across S.
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Algorithm 2 Simulating (6.3.1)

1. For i = 1, . . . , N ′ with N ′ > N :

(a) Draw a conditioning location s
(i)
O from O with uniform probability density

1/|O|.

(b) Simulate E(i) ∼ Exp(1) and set xi(s
(i)
O ) = v + E(i).

(c) Simulate a field {zi(s|s(i)
O ) : s ∈ D} from the residual process model.

(d) Set {xi(s) : s ∈ D} = a{xi(s(i)
O ), h(s, s

(i)
O )} + b{xi(s(i)

O ), h(s, s
(i)
O )} ×

{zi(s|s(i)
O ) : s ∈ D}.

2. Assign each simulated field {xi(s) : s ∈ D} an importance weight of


{∫
D 1{xi(s) > v}ds

}−1
, if

∫
D 1{xi(s) > v}ds > 0,

0, otherwise,

(6.3.5)

for i = 1, . . . , N
′
, and sub-sample N realisations from the collection with prob-

abilities proportional to these weights.

3. Transform each {xi(s) : s ∈ D} to {yi(s) : s ∈ D} using the marginal transfor-

mation (6.2.1). If xi(s) ≤ c(s), set yi(s) = 0, where for some s
′ ∈ D, yi(s

′
) is

above its FL(v)-th quantile.

Using the procedure outlined in Algorithm 2, we can draw realisations of {Y C(s) :

s ∈ D} and {Y NC(s) : s ∈ D}; we can then use these to derive samples of R̄CA and

R̄NCA , see (6.1.2). To then acquire a sample of R̄A, we draw from the samples of R̄CA

and R̄NCA with probabilities pC and 1 − pC, respectively. Estimates of pC are derived

empirically.
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6.3.2 Choosing D and O

We proceed by assuming that S = (s1, . . . , sd), i.e., our spatial domain of interest is

the set of sampling locations, and that these sampling locations correspond to non-

overlapping grid-boxes. However, the heuristic we describe for choosing D and O can

be extended to a spatially continuous setting. We begin by considering D, which is

the set of locations at which we simulate fields. We require that A ⊂ D ⊆ S and

that sites in D are sufficiently spread out across S to ensure that the approximation

in (6.3.4) is accurate. To this end, we use a two-step procedure to create D. We first

set D = {s ∈ S : ‖s− sA‖ ≤ τD, sA ∈ A}. That is, we take all points in A and those

in S that are at most τD ≥ 0 distance outside the boundaries of A. We do this as we

expect events with conditioning sites within this area to have a large effect on the tail

behaviour of the aggregate R̄A. We then sample nD sites uniformly at random across

S \ D and add these to D.

When considering the processes Y C and Y ∗, we found that setting O = D was

sufficient for simulating events. In some cases, setting O = D may be a reasonable

choice to make. In our application, we found that this was the case for the processes

Y C and Y ∗, i.e., we found no further improvement in our inference on the extremes

of spatial aggregates by using a set O that satisfies D ⊂ O. However, in cases where

the spatial process we wish to simulate from exhibits strong extremal dependence

at even the greatest observed distances between sampling locations, it may not be

sufficient to set O = D; we found this to be the case for Y NC in our application. For

processes of this type, we need a technique to increase maxs∈D,sO∈O{‖s − sO‖}. In

lieu of obtaining data over a larger spatial domain, we can instead take O to be a set

of “fake” sampling locations, i.e., sites at which we do not observe any data.

We begin by setting O = D and then add sites s∗ ∈ S∗, where S∗ = {s∗ : s∗ 6∈ S}

and |S∗| = nO. Whilst we note that there exists more elegant solutions, we create

S∗ via a brute-force approach; we add independent Gaussian noise to the coordinates
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of a site in the centre of S and remove any new points s∗ that are located within

the boundaries of S. Note that by simulating events using conditioning sites sO 6∈ S,

we are likely to simulate events at sites s ∈ D such that the distance ‖s − sO‖ is

not observed in the data, and thus not used for fitting the dependence model. Any

inferences made at these distances are from extrapolations of the fitted extremal

dependence model at smaller distances, and may not be entirely accurate; however,

events of these type are unlikely to affect the tail behaviour of R̄NCA unless the process

Y NC does not exhibit monotonically decreasing extremal dependence with distance. It

is unlikely that data will exhibit non-decreasing extremal dependence in applications

and moreover this property is avoided through our model specification in Section 6.2.2.

We note that in both cases D and O should be chosen as large as is computation-

ally feasible. Furthermore, suitable values for the hyper-parameters nD, τD and nO

can be chosen through validation techniques. For example, the simulated aggregate

diagnostics (see Figures 6.4.9 and 6.4.10) can be used to validate the choice of the

parameter values; if the fits look poor, one can increase the value of the parameters

to improve the fits. Note that if increasing the hyper-parameter values does not im-

prove the aggregate fits, there may instead be issues with the dependence parameter

estimates themselves.

6.4 Application

6.4.1 Data

Similarly to Chapter 5, we consider data consisting of average hourly precipitation

rate (mm/hour) taken from the UK convection-permitting climate model projections

2018 (UKCP18) (Lowe et al., 2018). We conduct the following analysis for the first

and fourth ensemble members from these projections; however, we present only the

latter analysis. Data are from a model which produces values for hourly intervals,
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between the years 1980 and 2000, and use the observed atmospheric conditions in this

period. The sampling locations are (2.2km)2 grid boxes and the spatial domain S of

interest is the region of the UK, approximately centred at Northampton, pictured in

Figure 6.4.1; only data sampled over land have been included, leaving 7526 sampling

locations. Each observation corresponds to the average over the assigned spatio-

temporal grid-box and to remove any seasonal effect observed in the data, we use

summer (JJA) observations only, which leaves 43200 field. The centre of each grid box

is treated as a sampling location, and we use the great-circle distance as our distance

metric for the dependence parameter functions. We further follow Section 5.4.2 and

set all values of the data less than 1× 10−5mm/hour to zero.

Figure 6.4.1: A map of elevation (m) for the spatial domain S of interest.
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6.4.2 Classification

To classify observation times as convective for the Y (s) field observed over s ∈ S, we

use the following algorithm developed at the Met Office Hadley Centre, UK (Roberts

and Kendon, 2020); this procedure is intended for summer precipitation data with

gridded sampling locations and has been avocated by Kendon et al. (2012) for its

efficacy in identifying convective rainfall. The algorithm identifies a single value yt(si)

at time t ∈ {1, . . . , n} and grid box si for i ∈ {1, . . . , d} as “convective” if the gradient

of the surface of yt(s) in a neighbourhood surrounding si is sufficiently steep. This

procedure is repeated for all t = 1, . . . , n and i = 1, . . . , d; we then label the field

{Yt(s) : s ∈ S} at time t as convective if any yt(si) for i = 1, . . . , d are identified as

convective.

To formally describe the algorithm, we first specify four constant hyper-parameters:

gl > 0, gu > gl, p
∗ ∈ [0, 1] and ns ∈ {2d∗ − 1, d∗ ∈ N}. We define a neighbourhood Ni

as all si for i = 1, . . . , d that create an ns × ns grid of sampling locations, with si at

the centre of Ni. Then we proceed with Algorithm 3.

Algorithm 3 Identify convective fields

For all t = 1, . . . n:

1. For all i = 1, . . . , d:

(a) Identify the ns × ns neighbourhood Ni for si, defined in Section 6.4.2.

(b) Evaluate all differences Gi = {yt(sj)− yt(sk) : sj, sk ∈ Ni}.
(c) Calculate the proportion pg,i = |{g ∈ Gi : g ≥ gu}|/|{g ∈ Gi : g ≥ gl}|.
(d) If pg,i ≥ p∗ and |Ni| = n2

s, then yt(si) is labelled as convective and hence
t ∈ C. If |Ni| < n2

s, then yt(si) is labelled as undetermined.

2. If none of yt(si) for all i = 1, . . . , d, are labelled as convective, then t ∈ NC.

Note that for a value yt(si) to be labelled as either convective or not, we require

that |Ni| = n2
s; we have removed any sampling locations where |Ni| < n2

s from the

analysis. In our application, we set the hyper-parameters to values provided by the
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Met Office, i.e., gl = 0.01, gu = 1 and p∗ = 0.2 and ns = 9; these particular values

were tuned specifically for the model that generates the data we use in our application,

described in Section 6.4.1 (Roberts and Kendon, 2020).

For the data described in Section 6.4.1, we identify 13510 convective hours, i.e.,

|C| = 13510, which leaves 29690 non-convective hours; from (6.1.2), we then estimate

pC = 13510/43200 ≈ 31.3%. Example extreme observations of {Y C(s) : s ∈ S} and

{Y NC(s) : s ∈ S} are presented in Figure 6.4.2. Illustrated fields {Y C(s) : s ∈ S}

are chosen by randomly sampling from the set of fields for which site-wise maxima

are observed, i.e., {Y Ck (s) : s ∈ S, k ∈ K}, such that K = {k ∈ C : Y Ck (si) =

max
t∈C
{Y Ct (si)}, i = 1, . . . , d} is the set of convective times for which the marginal max-

ima at any site s ∈ S is observed. A similar approach is taken for {Y NC(s) : s ∈ S}.

We observe that observations identified as non-convective appear smoother over space,

but with much lower marginal magnitude; note the difference in the scales of Fig-

ure 6.4.2.
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Figure 6.4.2: Observed extreme fields identified as convective (left) and non-convective
(right) (mm/hr).
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6.4.3 Marginal analysis

Marginal analysis is conducted by fitting the model described in Section 6.2.1 to each

of the three datasets, i.e., convective, non-convective, and all, data. Figures 6.4.3,

6.4.4 and 6.4.5 give the estimates for the parameters of the marginal models for

{Y C(s)}, {Y NC(s)} and {Y ∗(s)}, respectively; we further provide 20-year return level

estimates for each of the fits. Note that different image colour scales are used across

each panel and each of Figures 6.4.3-6.4.5. We set λ = 0.995 in (6.2.1) for each of the

three processes and use a subset of 500 sites sampled randomly over S to estimate

q(s, ε); to estimate p(s, ε), υ(s, ε) and ξ, we use all sampling locations.

We observe similar patterns in estimates of p(s, ε) and q(s, ε) for each of the three

processes, namely that both are intrinsically linked to elevation, i.e., both p(s, ε) and

q(s, ε) decrease and increase, respectively, with elevation. For the estimates of υ(s, ε)

and the 20-year return level, we observe differences between the three fits; for Y C,

we observe spatially smooth estimates of both, with larger values being found in the

east of the domain (see Figure 6.4.3). In Figure 6.4.4, we observe that υ(s, ε) and

the 20-year return level estimates for Y NC both increase with elevation, suggesting

that more intense storms form at higher altitudes. For Y ∗, we find that elevation

has much less of an effect on υ(s, ε) and the 20-year return level; however, we do

note that for the areas with the highest elevations we observe the lowest values of

υ(s, ε), suggesting that, for Y ∗, we may have less intense storms at higher altitude.

Comparing the 20-year return level estimates across the three figures, we observe much

higher levels for Y C and Y ∗ than for Y NC, which suggests that non-convective events

are generally of much lower intensity, as expected. Further evidence for this is given

by the shape parameter estimates for Y C, Y NC and Y ∗, which are 0.226, -0.075 and

0.287, respectively. These estimates suggest that Y C(s) and Y ∗(s) have unbounded

marginal upper-tails, but the tails of Y NC(s) are instead bounded above at each site

s ∈ S.
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To validate the goodness of fits of the GPD GAM models, we present Q-Q plots of

the marginal fits at five randomly sampled locations; we do this for Y C, Y NC and Y ∗

in Figures D.1.1, D.1.2 and D.1.3, respectively, which can be found in Appendix D. All

figures show good individual fits for each of the processes. To evaluate the fit over all

locations, we use a pooled Q-Q plot (Heffernan and Tawn, 2001), transforming all data

onto standard exponential margins using the fitted model; the respective pooled Q-Q

plot is given alongside the individual marginal fits for each process. Again, we observe

good fits for each process. Confidence intervals for the Q-Q plots are estimated using

the following bootstrap procedure: we create 250 boostrap samples of the data using

the stationary bootstrap approach of Politis and Romano (1994) with expected block

size of 48 hours. With q(s, ε) treated as fixed across all samples, we then estimate

υ(s, ε) and ξ for each bootstrap sample. For the pooled diagnostic plot, we apply the

marginal transformation to the original data using the 250 estimated GPD parameter

sets.
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Figure 6.4.3: Spatially smoothed marginal distribution parameter estimates for
{Y C(s)}, i.e., convective rainfall. Top-left: p̂(s, ε), top-right: q̂(s, ε), bottom-left:
υ̂(s, ε), bottom-right: 20-year return level estimate.
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Figure 6.4.4: Spatially smoothed marginal distribution parameter estimates for
{Y NC(s)}, i.e., non-convective rainfall. Top-left: p̂(s, ε), top-right: q̂(s, ε), bottom-
left: υ̂(s, ε), bottom-right: 20-year return level estimate.
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Figure 6.4.5: Spatially smoothed marginal distribution parameter estimates for
{Y ∗(s)}, i.e., all rainfall. Top-left: p̂(s, ε), top-right: q̂(s, ε), bottom-left: υ̂(s, ε),
bottom-right: 20-year return level estimate.

6.4.4 Dependence modelling

We proceed by fitting separately the extremal dependence models described in Sec-

tion 6.2.2 to {XC(s)}, {XNC(s)} and {X∗(s)}. We use a different exceedance thresh-

old, i.e., u in (5.2.2), for each of the processes; we take u as the 96% and 99% stan-

dard Laplace quantiles for {XC(s)} and {XNC(s)}, respectively. Ideally for {X∗(s)}



6. MIXTURE MODELLING OF EXTREME PRECIPITATION 172

we would set u such that the number of observations used for inference with both

modelling approaches is the same, so as to provide a fair comparison of the two ap-

proaches. However, we found that using such a threshold provided poorer inference

for {X∗(s)}. Following the reasoning given in Section 5.4.3, we instead take a higher

threshold of u for {X∗(s)} as the 99% standard Laplace quantile.

Inference is conducted in the same manner as described in Section 5.3.2 using the

stratified sampling regime. Each fit uses ds = 6000 triples of sites, and we set hmax to

35km, 50km and 250km for {XC(s)}, {X∗(s)} and {XNC(s)}, respectively. We note

that for XNC we conducted inference using both forms of β, i.e., (5.2.5) and (6.2.2);

however, we found better results when using the latter and so we present findings with

this form only. Following the reasoning given in Section 5.4.3, we allow the fitted δ

functions for all three processes to satisfy δ(h) 6≥ 1 for some h ≥ 0.

We present a comparison of the dependence parameter estimates for the three

processes in Figure 6.4.6. As each process has its own anisotropy parameters, we

cannot compare estimates of the functions evaluated at h, i.e., the pairwise distance

under the anisotropy transformation. Thus, we instead fix a conditioning site sO in

the centre of the domain and evaluate the estimated functions at each ‖s∗i − s∗O‖

for i = 1, . . . , d, where s∗1, . . . , s
∗
d denote the sampling locations under the estimated

anisotropy transformation; we then explore how these estimates change with distance

‖si − sO‖ for each of the processes.

Figure 6.4.6 suggests that {XC(s)} and {X∗(s)} have similar structures in their

extremal dependence, which gives evidence to support our claim in Section 5.4.3 that

we model predominantly convective events when applying the spatial conditional ex-

tremes modelling approach to unclassified precipitation data; thus we can draw similar

conclusions about the extremal dependence in {XNC(s)} as we did in Section 5.4.3,

namely that all dependence is exhibited through the β function which suggests that

the underlying process that generates extreme events is somewhat rough. Figure 6.4.6
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gives strong justification for the use of a mixture model approach for extreme precipi-

tation, as we observe widely different structures in the α and β estimates for {XC(s)}

and {XNC(s)}; for the latter, the α parameter decays much slower with distance and

gives no evidence that independence is achieved at even the largest distances within

the region S. Moreover, as all dependence is exhibited through the α function, this

suggests that extreme realisations of {XNC(s)} are smoother than events from the

other two processes.

To compare both the full processes, i.e., both the marginal and dependence struc-

tures, we investigate how {Y (s)}|(Y (sO) = v) changes with distance ‖s − sO‖ for

s ∈ S; here Y denotes a generic process that we replace with Y C, Y NC and Y ∗.

To this end, we take a transect of points P ∈ S and simulate 50000 realisations of

{Y (s) : s ∈ P}|(Y (sO) = v
(l)
Y (sO)) where v

(l)
Y (sO) denotes the l-year return level for

Y (sO). We use these realisations to estimate the conditional median, and the 2.5%

and 97.5% marginal quantiles, of {Y (s : s ∈ P)}|(Y (sO) = v
(l)
Y (sO)), which we present

in Figure 6.4.7. We consider two values for l, i.e., l = 1 and l = 50, and take into ac-

count the respective length of observation periods when evaluating v
(l)
Y (sO); that is, we

take v
(l)

Y C(sO)
= F−1

Y C(sO)
(1−1/(l×|C|/20)) and v

(l)

Y NC(sO)
= F−1

Y NC(sO)
(1−1/(l×|NC|/20))

and v
(l)
Y ∗(sO) = F−1

Y ∗(sO)(1 − 1/(l × 43200/20)). We observe that the estimates for Y C

and Y ∗ are almost identical, with the return-level estimates for Y (sO) being approx-

imately equal and the conditional medians both decaying quickly with distance. For

Y NC, we observe that the conditional median maintains a fairly slow decay rate, with

non-zero values at even the largest distances.

Figure 6.4.8 presents realisations of {Y C(s) : s ∈ S}|(Y C(sO) > v), {Y NC(s) : s ∈

S}|(Y NC(sO) > v) and {Y ∗(s) : s ∈ S}|(Y ∗(sO) > v), where v = F−1
L (0.99). The con-

ditioning sites sO were sampled uniformly at random over S. We observe similarities

between realisations of {Y C(s) : s ∈ S}|(Y C(sO) > v) and {Y ∗(s) : s ∈ S}|(Y ∗(sO) >

v); both models produce realisations that have characteristics we would expect to
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Figure 6.4.6: Estimates of extremal dependence functions evaluated at ‖s∗i − s∗O‖ for
i = 1, . . . , d, i.e., anisotropic distances, against original distances ‖si− sO‖, which are
given in km. The conditioning site sO is in the centre of the spatial domain S. The
colours correspond to the estimates for the different spatial processes; these are green,
red and blue for {XC(s)}, {XNC(s)} and {X∗(s)}, respectively.

observe for convective rainfall, e.g., these are high intensity, spatially localised events

with a large proportion of the domain S being dry. We further observe that the model

for {Y NC(s) : s ∈ S}|(Y NC(sO) > v) produces events that are much smoother than

those produced by the other two models; moreover, these events are lower in their

intensity and cover a much larger area.
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Figure 6.4.7: Summary statistics for {Y (s) : s ∈ P}|(Y (sO) = v
(l)
Y (sO)) against distance

‖s − sO‖ with l = 1 and l = 50 in the left and right plots, respectively. Solid lines
correspond to estimates for conditional medians, dashed lines denote 95% confidence
intervals. Lines are coloured green, red and blue for Y C, Y NC and Y ∗, respectively.
Centre: red and blue points denote P and sO.

6.4.5 Inference on spatial aggregates

For each of the three processes, we draw 5 × 105 realisations using the procedure

detailed in Section 6.3. For Y C and Y ∗, we used N
′

= 8N for N
′

in Algorithm 2; for

Y NC, we found that a larger N
′

was required, and so we set N
′

= 20N . Realisations

were created using the regions illustrated in Figure 6.3.1, i.e., D and O as described

in Section 6.3.2. Note that the regions A and D do not change between the three

processes, but we take O as the empty set for Y C and Y ∗ and specify O for Y NC

using the heuristic described in Section 6.3.2; the purple points in Figure 6.3.1 denote

O \ D and are created by adding noise to the coordinate in the centre of S. Using

these regions, we create samples of R̄CA, R̄NCA and R̄∗A = |A|−1
∫
A Y

∗(s)ds for different

A (see Figure 6.3.1); we then create a sample R̄A by drawing from R̄CA and R̄NCA with

probability pC and 1− pC, respectively.

Recall that R̄A is created using our new modelling approach whilst R̄∗A uses the

single process approach detailed in Chapter 5. To illustrate how well the two modelling

approaches can capture the extremal behaviour of spatial aggregates, we present Q-Q

plots in Figures 6.4.9 and 6.4.10 comparing the quantiles of the simulated aggregates

against their empirical equivalents. In Figure 6.4.9, we use just convective and just

non-convective data for R̄CA and R̄NCA , respectively; for Figure 6.4.10, we use all data
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Figure 6.4.8: Extreme precipitation fields (mm/hr). Realisations from the fitted
models for {Y C(s) : s ∈ S}|(Y C(sO) > v), {Y NC(s) : s ∈ S}|(Y NC(sO) > v) and
{Y ∗(s) : s ∈ S}|(Y ∗(sO) > v) in the top, middle and bottom rows, respectively. The
conditioning sites sO are given by the red crosses. Scales differ within each panel and
row.

for both R̄∗A and R̄A. Note that due to computational constraints, we were unable

to produce tolerance intervals for the estimated quantiles; however, should these be

required then the procedure described in Section 5.3.3 can be used separately for each

of the three processes.

In Figures 6.4.9 and 6.4.10, we observe good fits for all components of both mod-
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elling approaches, with some slight underestimation for the smaller quantiles of R̄NCA .

By eye, we seem to have that R̄∗A provides slightly better fits than the corresponding

R̄A for most of the tail. However, observe that for the larger regions, numbered 3

and 4, that R̄∗A overestimates the largest quantiles; this is less of an issue for R̄A, as

we observe better better estimates for the very largest quantiles, suggesting that we

have made some improvements to the approach in Chapter 5 by including the non-

convective component into the model. To further support this claim, we estimate the

proportion of non-convective events that contribute to R̄A > v∗, where v∗ denotes the

99% and 99.5% quantile of the simulated R̄A > v∗. Both proportions increase with

the size of A; for the 99% quantile, this proportion ranges from 0.013 to 0.069, and

for the 99.5%, the values range between 0.001 and 0.050. Whilst we observe good fits

for the largest regions, we observe that neither the models for R̄A nor R̄∗A are able

to capture the very largest empirical quantile. When we investigated this, we found

that this discrepancy was caused by two large events at consecutive hours that are

not captured by either dependence model; a discussion of potential extensions to the

model that may help to capture these events is given in Section 6.5.

We require some diagnostic metric to provide support for oue claim that R̄A pro-

vides better fits than model R̄∗A. We adapt a measure proposed by Varty et al.

(2021); we begin by denoting Q(p;Z) : [0, 1] → R+ as the sample quantile function

of some random variable Z, which is evaluated at a probability p ∈ [0, 1]. Note that

we take Z to be one of three variables; either R̄A or R̄∗A, which are taken to be re-

alisations from the model proposed in this chapter and Chapter 5, respectively, or

the observed spatial aggregate which we denote R̃A. Let pmin ∈ [0, 1] and then let

{pj = pmin + j(1 − pmin)/(m + 1) : j = 1, . . . ,m} for m ∈ N+ be equally spaced

probabilities, such that pj ∈ (pmin, 1) for all j; as our interest lines in the tails of

the spatial aggregate, we take pmin > 0 to be close to one. Then we define the two
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Figure 6.4.9: Q-Q plots for model, and empirical, aggregates of regions of increasing
size. Left: R̄NCA , right: R̄CA. Probabilities range from 0.8 to a value corresponding
to the respective 20 year return level. Regions 1-4 correspond to those illustrated in
Figure 6.3.1.

Figure 6.4.10: Q-Q plots for model, and empirical, aggregates of regions of increasing
size. Left: R̄A, right: R̄∗A, Probabilities range from 0.8 to a value corresponding to
the respective 20 year return level. Regions 1-4 correspond to those illustrated in
Figure 6.3.1. The blue and red horizontal lines denote the 99% and 99.5% quantiles
of the respective simulated aggregates.

measures

Λ1(Z) =
1

m

m∑
j=1

|Q(pj;Z)−Q(pj; R̃A)|, Λ2(Z) =
1

m

m∑
j=1

(Q(pj;Z)−Q(pj; R̃A))2,

(6.4.1)
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as the expected deviance in the Q-Q plot for Z against R̃A from the line y = x, with

deviation being described through the mean absolute, and mean squared, distances

in Λ1 and Λ2, respectively. We evaluate Λ1 and Λ2 for Z := R̄A and Z := R̄∗A,

and for each region A illustrated in Figure 6.3.1. These metrics are estimated using

pmin = 0.95 and m = (1 − 0.95) ∗ 43200 = 2160, i.e., the number of observations

R̃A that exceed the 0.95-quantile; estimates are tabulated in Table 6.4.1. Although

by eye it appears that R̄∗A outperforms R̄A for the largest regions, the estimates in

Table 6.4.1 suggest otherwise; observe that the latter model provides lower estimates

for both diagnostics, Λ1 and Λ2, for the three largest regions.

A
1 2 3 4

Λ1(R̄A) 0.132 0.030 0.043 0.035
Λ1(R̄∗A) 0.098 0.075 0.087 0.086

Λ2(R̄A) 0.142 0.003 0.007 0.005
Λ2(R̄∗A) 0.169 0.010 0.016 0.015

Table 6.4.1: Estimates of aggregate diagnostics Λ1 and Λ2 defined in (6.4.1) to 3 d.p.
Bold values denote the lower of the two estimates.

6.5 Discussion

We have presented a simple but effective extension of the approach proposed in Chap-

ter 5 for modelling the extremes of spatial aggregates of precipitation. We proposed a

two-step mixture modelling approach whereby we first classify observed fields as be-

ing either convective or non-convective, and then fit separate spatial models to either

dataset; we then detail an approach to simulate from both models and combine sam-

ples to explore the upper-tail behaviour of R̄A. Our dual-process modelling approach

was compared against the single process approach and we found that the former was

able to better capture the extremal behaviour of aggregates over very large spatial

regions. We now discuss some further extensions that can be made to improve the
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model.

In Section 6.4.5, we identified two consecutive convective events that provided

the two largest values of the empirical R̄A over the smallest aggregate region A,

denoted region 1; neither the model for R̄A nor R̄∗A was able to capture either of

these two anomalous events. As these particular events were at consecutive time

points, this leads us to suspect that there is a temporal aspect to the data that we

cannot currently capture with the model. The data themselves are aggregates of

precipitation over a temporal interval of one hour and a spatial grid-box. Hence, the

data values, which are produced by storms moving through a grid-box, are likely to be

more extreme if said storm is moving at a slower rate. A potential model extension

may be to incorporate the speed of a storm as a covariate in the model. Another

natural extension is to incorporate a temporal component into the dependence models;

Simpson and Wadsworth (2021) have already proposed a spatio-temporal extension

of the conditional extremes framework, and we may be able to adapt this model to

allow for modelling of extreme precipitation.

We found that proposing a simple mixture of only two processes for extremal pre-

cipitation was sufficient for modelling the extremal behaviour of spatial aggregates;

however, this approach is still somewhat unrealistic and does not capture the true

underlying physical properties of extreme rainfall. In Section 6.4.2, we detailed the

algorithm that we use to classify observed fields; recall that we identify an entire field

as convective if any single grid-box within that field is identified as convective. That

is, we model under the assumption that the properties of the process that generates

extreme convective rainfall are the same regardless of the amount of convective rain-

fall within S, or the presence/proportion of non-convective rainfall within the same

spatial domain. A more realistic approach is to accommodate the effect of mixing of

convective and non-convective rainfall in our model, as we become more and more

likely to observe both within a single field as the spatial domain S grows in size. A



6. MIXTURE MODELLING OF EXTREME PRECIPITATION 181

simple approach to tackling this issue is to incorporate the proportion of non-zero

rainfall within a field, identified as convective, as a covariate in at least one of the

marginal and dependence components of the process Y C; a similar idea could be used

for Y NC.

We find evidence to suggest that the identification algorithm detailed in Sec-

tion 6.4.2 works well, as we observe distinctly different structures in the extremal

dependence models fitted to the two classified datasets. However, the technique for

identification is deterministic in nature, and so improvements could potentially be

made by adopting a more probabilistic approach, i.e., through the use of mixture

process models and a Bayesian framework for inference. For example, we could con-

struct the residual process Z(s|sO) using a Dirichlet mixture of Gaussian processes

(see Duan et al. (2007)), rather than a single Gaussian process. This would have

the added benefit of the model not being limited to only two mixture components:

convective and non-convective. Instead, a number of mixture components could be

used, each with their own dependence structure.Hazra and Huser (2019) advocate the

use of Dirichlet mixtures of Student-t processes for modelling extremal dependence in

sea surface temperature data. They propose a computationally inexpensive inference

procedure that relies on low-rank approximations of the correlation matrices for each

mixture component. However, due to the censored approach we take to inference, a

Bayesian approach may be computationally infeasible.



7

Spatial deformation for

non-stationary extremal

dependence

7.1 Introduction

Statistical methodology for spatial extremes can increasingly handle data sampled at

more observation locations. If these observations are taken over large domains with

complex features, then there is a strong chance that the data will exhibit spatial non-

stationarity in both the marginal distributions and dependence structure. Marginal

non-stationarity can often be dealt with by site-wise modelling and transformation.

However, there are currently few methods to deal with non-stationarity in extremal

dependence structures, and a typical approach is to falsely assume stationarity when

fitting spatial extremes models. This may be appropriate when modelling data sam-

pled over small and/or homogeneous regions in space, but as we will illustrate through

the examples in Section 7.3, this assumption is not realistic for many datasets with

larger spatial domains.

182
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Beyond site-wise transformation of margins, marginal non-stationarity can be han-

dled by jointly modelling marginal parameters as functions of covariates. This can

either be achieved parametrically (Mannshardt-Shamseldin et al., 2010; Davison et al.,

2012; Ribatet, 2013; Eastoe, 2019) or semiparametrically (Jonathan et al., 2014; Ross

et al., 2017; Youngman, 2019, 2020; Zanini et al., 2020) through the use of splines.

Another widely applied approach is the use of Bayesian hierarchical models, in which

the marginal parameters are assumed to come from some non-stationary latent pro-

cess (Casson and Coles, 1999; Cooley et al., 2007; Sang and Gelfand, 2010; Opitz

et al., 2018).

Non-stationarity in the spatial dependence structure has been studied by Huser

and Genton (2016) in the context of max-stable models, through incorporation of

a non-stationary variogram. However, this approach requires knowledge of relevant

covariates, and asymptotically dependent max-stable models for spatial extremes have

been shown to be too inflexible for many spatial datasets (Wadsworth and Tawn,

2012; Davison et al., 2013; Huser et al., 2017; Huser and Wadsworth, 2019). Another

approach is to assume local stationarity for model fitting, see Blanchet and Creutin

(2017); Castro-Camilo and Huser (2020). This framework is well-suited to modelling

processes with short-range dependence but is unlikely to fully capture dependence at

large distances. Cooley et al. (2007) and Blanchet and Davison (2011) account for

non-stationarity by transforming their spatial domain of interest to some new ‘climate

space’ in which observation locations with similar characteristics are grouped closer

together. Again, this approach requires access to relevant covariates and a deeper

understanding of the processes which are being modelled.

In this work we develop a computationally quick and simple method, which does

not require prior knowledge of covariates and which can be applied before fitting any

model suited to spatial extremes. Our method uses spatial deformation and is based

on the work of Sampson and Guttorp (1992) and Smith (1996), which has not been
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fully adapted for use in a spatial extremes framework. The deformation methodology

may reveal physical features and/or covariates that can be incorporated into a spatial

extremes model, removing the need for models with complex dependence structures.

Wadsworth and Tawn (2019) applied the deformation method of Smith (1996)

before fitting a conditional spatial extremes model to the same Australian summer

temperatures data that we explore in Section 7.4.1. However, because this method

is not tailored to extremal dependence, it was neccesary to assume that patterns

in non-stationarity were similar for both the extremal and non-extremal dependence

structures. Youngman (2020) and Chevalier et al. (2020) provide extensions of the

Sampson and Guttorp (1992) methodology and fit models for spatial extremes us-

ing deformations: a Gaussian process using a censored pairwise likelihood and a

max-stable model, respectively. Although these models may be reasonable for some

processes, use of either puts restrictions on the types of dependence that the process

can exhibit. We look to develop a method that makes no strong assumptions on the

extremal dependence structure.

The remainder of this section provides an overview of existing methodology for spa-

tial deformation and modelling of spatial extremes. Our developments of the spatial

deformation methodology are detailed in Section 7.2. We present a simulation study

in Section 7.3, which is usually absent from the literature on spatial deformations.

This study is used to convey that our adaptations to the deformation methodology

are necessary when considering extremal dependence and that our method can be

used for different processes with a wide range of extremal dependence structures. Fi-

nally, we apply our method to temperature and precipitation datasets in Section 7.4,

and conclude with a discussion in Section 7.5.
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7.1.1 Non-stationary spatial processes

The spatial deformation approach for handling non-stationarity in spatial processes

was first proposed by Sampson and Guttorp (1992) and Guttorp and Sampson (1994),

with further developments by Meiring et al. (1997), see Sampson (2010, Ch. 9.5). The

underlying principle of their approach is that a smooth non-linear transformation can

be used to map the sampling locations of a process from a geographical plane, or G-

plane, to some latent space, which they name a D-plane, or dispersion plane. Within

the D-plane, the dependence structure of the process is assumed to be both stationary

and isotropic, and the usual statistical inferences can be made using stationary geosta-

tistical models. To obtain the D-plane, optimisation techniques are used to minimise

some objective function which is associated with a stationary geostatistical model.

Here Sampson and Guttorp (1992) use multi-dimensional scaling and a stationary

spatial dispersion function, whereas further work proposed by Smith (1996) uses the

likelihood for a stationary Gaussian process. Our approach is to change this objective

function for one which is associated with a stationary spatial extremes model, such

as the max-stable, or inverted max-stable, processes.

We begin by assuming we have realisations Z = {Z1, . . . , ZN} from a spatial field

observed at sampling locations s1, . . . , sd, and so we have Zk = {Zk(s1), . . . , Zk(sd)}

for all k = 1, . . . , N . We require some smooth mapping function from the G-plane to

the D-plane, given by f(si) = s∗i for i = 1, . . . , d, where si = (xi, yi) and s∗i = (x∗i , y
∗
i )

are the corresponding locations in the D-plane. Both Sampson and Guttorp (1992)

and Smith (1996) propose the use of thin-plate splines to achieve this mapping. How-

ever, we note that under certain conditions on the correlation structure, analytical

forms for f(·) do exist. Perrin and Meiring (1999) prove that this mapping is iden-

tifiable assuming differentiability of the stationary and isotropic correlation function

used for fitting and Perrin and Senoussi (2000) derive analytical forms for f(·) under

the same assumption, with extensions to anisotropic correlation structures. As these
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results are available only for correlation functions, and not for extremal dependence

functions, we instead use the more flexible thin-plate spline approach.

A thin-plate spline is a mapping function f(·), passing through a finite number of

data points f ∗i = f ∗(xi, yi), (i = 1, . . . , n), minimising the bending energy

J(f) =

∫∫
R2

{(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
}

dxdy.

Here we have denoted f ∗ the ‘true’ function that we wish to estimate with the thin-

plate spline, f , and f ∗i are observations. Green and Silverman (1994) give a solution

to this problem in the form

f(x, y) = a+ bx+ cy +
n∑
i=1

δigi(x, y), (7.1.1)

where
n∑
i=1

δi =
n∑
i=1

δixi =
n∑
i=1

δiyi = 0, (7.1.2)

and gi(x, y) = h2
i log hi, with hi the Euclidean distance between (x, y) and (xi, yi).

This represents f as the sum of linear terms and n radial basis functions with centres

at the observed data locations (xi, yi) and the constraints are in place to ensure that

the system of equations does not become overdetermined. An interpolating spline

satisfies f ∗i = f(xi, yi) for all i = 1, . . . , n, whereas we desire a smoothing spline; this

can be created by minimising

S(f) =
n∑
i=1

{f ∗i − f(xi, yi)}2 + αJ(f),

for some smoothing parameter α > 0. Sampson and Guttorp (1992) give a method

for estimating α in the context of multidimensional scaling, but here we take the

approach of Smith (1996), who uses a restricted representation of (7.1.1) instead. A

subset of m radial basis functions is used and so we let δi = 0 for all i /∈ {i1, . . . , im}.
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The choice of this subset is discussed in Section 7.3.

The function in (7.1.1) maps R2 to R, so the spline is applied twice with different

parameter estimates to produce both components. Smith (1996) gives a parametrisa-

tion as

f (1)(x, y) = b2
1x+ ρb1b2y +

m∑
i=1

δ
(1)
i gi(x, y) (7.1.3)

f (2)(x, y) = b2
2y + ρb1b2x+

m∑
i=1

δ
(2)
i gi(x, y), (7.1.4)

where b1 > 0, b2 > 0, ρ ∈ R and each of the sequences δ(1), δ(2) satisfy the constraint

in (7.1.2). The introduction of the parameters b1, b2 and ρ is to ensure that the model

is invariant under orthogonal rotations when m = 0. Overall, this yields a spline with

2m− 3 free parameters whenever m ≥ 3.

The resulting spline is then used to map the sampling locations si to locations s∗i

in a latent space. Parameters are estimated by minimising some objective function

provided by a stationary model. As previously mentioned, Sampson and Guttorp

(1992) use a stationary spatial dispersion model and multidimensional scaling, the

details of which are not given here. Instead, we focus on the approach by Smith (1996),

who uses a stationary Gaussian likelihood. It is assumed that (Z(s∗1), . . . , Z(s∗d)) ∼

Nd(µ,Ω), where µ and Ω are the mean vector and a stationary covariance matrix,

respectively. As we are only interested in measuring the dependence structure, it is

assumed that the means and variances at each location are known. Analysis is then

simplified to only considering the minimisation of the negative log likelihood given by

− logL(Ω) =
N

2
log |Ω|+ N − 1

2
tr
(

Ω−1Ω̂
)
, (7.1.5)

where Ω and Ω̂ are the theoretical, and sample, correlation matrices and tr(·) and | · |

are the trace and determinant operators, respectively. The entries of the theoretical
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correlation matrix are produced by using a stationary covariance function. Smith

(1996) uses the Matérn covariance function, and so

Ωij =
1

2θ2−1Γ(θ2)

(
2h∗ij
√
θ2

θ1

)θ2

Kθ2

(
2h∗ij
√
θ2

θ1

)
, (7.1.6)

where θ1 > 0, θ2 > 0 and Kθ2(·) is the modified Bessel function of the second kind of

order θ2 and h∗ij = ‖s∗i − s∗j‖ is the Euclidean distance between locations s∗i and s∗j in

the D-plane. It is noted that θ1 can be set to 1 as the spatial scaling of the locations

is controlled by the spline.

7.1.2 Spatial extremes

Before describing an extension of the spatial deformation methodology tailored to

spatial extremes, we first provide a brief review of methods for modelling spatial

extremes.

Max-stable and inverted max-stable processes

Max-stable processes were introduced by de Haan (1984) and developed further by

Smith (1990) and Schlather (2002), who suggested models that were first fitted by

pairwise composite likelihood in Padoan et al. (2010). They are usually described by

a spectral construction. Suppose {ri; i ≥ 1} are points of a Poisson process on (0,∞)

with unit intensity. Let S ⊆ R2 be a spatial index set, and {Wi(s); s ∈ S, i ≥ 1}

be independent and identically distributed copies of a non-negative stochastic process

satisfying E[W (s)] = 1. Then

Z(s) = max
i≥1
{Wi(s)/ri} (7.1.7)
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is a max-stable process with unit Fréchet margins. The d-dimensional joint distribu-

tion function for Z is

Pr{Z(s1) ≤ z1, . . . , Z(sd) ≤ zd} = exp{−V (z1, . . . , zd)}, (7.1.8)

where the exponent is

V (z1, . . . , zd) = E
[
max

{
W (s1)

z1

, . . . ,
W (sd)

zd

}]
. (7.1.9)

Careful specification of the stochastic process W (s) leads to a limited selection of

parametric models for the max-stable process. A particularly flexible model is the

Brown-Resnick model (Brown and Resnick, 1977; Kabluchko et al., 2009). This in-

volves specifying W (s) = exp{U(s) − γ∗(s, 0)} for U(s) a centred Gaussian process

with semivariogram γ∗(·, ·) and where U(0) = 0 almost surely. This leads to a 2-

dimensional joint distribution with exponent function

V (zi, zj) =
1

zi
Φ

{
a

2
− 1

a
log

(
zi
zj

)}
+

1

zj
Φ

{
a

2
− 1

a
log

(
zj
zi

)}
, (7.1.10)

where a = [2γ∗(si, sj)]
1/2 and Φ(·) denotes the standard normal distribution function.

Note that for a stationary and isotropic Brown-Resnick process, γ∗(si, sj) is depen-

dent on hij = ‖si − sj‖ only. For clarity, we write γ(hij) when Z is stationary and

isotropic, and γ∗(si, sj), otherwise. Representations for (7.1.10) in higher dimensions

exist (see Huser and Davison (2013) or Wadsworth and Tawn (2014)), but due to

their computational complexity, inference for max-stable processes is typically done

pairwise, providing a reasonable balance between computation time and efficiency.

Max-stable processes are inherently asymptotically dependent, or perfectly inde-

pendent. That is, Z(si) and Z(sj) are asymptotically dependent, or perfectly inde-

pendent, for all si, sj ∈ S. Here we characterise asymptotic dependence using the
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upper tail index χ (Joe, 1997). Assuming Z(si) ∼ Fi, Z(sj) ∼ Fj, we have

χ(si, sj) = lim
q→1

Pr{Fi{Z(si)} > q|Fj{Z(sj)} > q}, (7.1.11)

where the process is asymptotically independent at locations si and sj if χ(si, sj) = 0,

and asymptotically dependent otherwise. Here we write χ(si, sj) as Z is not necessarily

stationary; henceforth, we write χ(hij) for hij = ‖si−sj‖ when it is assumed that χ is

a function of distance only. As this measure is theoretically non-zero at all spatial lags

for any max-stable process exhibiting positive spatial association i.e., χ(si, sj) > 0 for

all si, sj ∈ S, we require other modelling approaches to deal with processes that may

exhibit asymptotic independence.

Wadsworth and Tawn (2012) introduced the inverted max-stable process as that

obtained by applying a monotonically decreasing marginal transformation to a max-

stable process. For example, with Z as defined in (7.1.7), taking Y (s) = 1/Z(s) gives

an inverted max-stable process with exponential margins and joint survival function

Pr{Y (s1) ≥ y1, . . . , Y (sd) ≥ yd} = exp{−V (1/y1, . . . , 1/yd)}, (7.1.12)

where V is as given in (7.1.9). Such a process is asymptotically independent with

χ(si, sj) = 0 for all si 6= sj, but can accommodate a variety of flexible extremal

dependences structures exhibiting positive association. The dependence in asymptot-

ically independent processes may be characterised by a pre-limiting version of (7.1.11).

Specifically, under an assumption of hidden regular variation (Ledford and Tawn,

1996; Resnick, 2002),

χq(si, sj) = Pr{Fi{Z(si)} > q|Fj{Z(sj)} > q} = L(1− q)(1− q)1/η(si,sj)−1, (7.1.13)

with L(·) slowly varying at 0 and η(si, sj) ∈ (0, 1] the coefficient of tail dependence.



7. SPATIAL DEFORMATION 191

For an inverted max-stable process, χq(si, sj) = (1− q)V (1,1)−1.

We fit both max-stable and inverted max-stable models after applying our defor-

mation method for non-stationary spatial extremes. Note that although max-stable

processes are typically taken to represent the limiting behaviour of maxima, in prac-

tice they, along with inverted max-stable processes, can be used for all extreme values

through specification of a censored likelihood; see Section 7.2.5. Inference on these

models can then be used to determine the efficacy of our deformation method.

Conditional extremes

An alternative approach to modelling spatial extremes is to condition on the behaviour

of the process when it is extreme at a single site. Here we give a brief overview of

modelling the extremal behaviour of the process at two sites using this approach.

For a full characterisation, see Wadsworth and Tawn (2019) or Shooter et al. (2019).

We suppress some of the notation used by Wadsworth and Tawn (2019) and Shooter

et al. (2019) as we are only considering a discrete pairwise fit, that we will employ in

Section 7.4 as a diagnostic measure. For further details of the discrete approach, see

Heffernan and Tawn (2004). Winter et al. (2016) apply this same methodology to a

dataset of Australian temperatures, which we revisit in Section 7.4.1.

We begin by assuming that {X(s) : s ∈ S ⊂ R2} is a stationary and isotropic

process with exponential-tailed marginals and denote X(si) = Xi. Conditioning on

Xi = xi > u being large and considering Xj, i 6= j, Heffernan and Tawn (2004) assume

that there exist normalising functions a(xi) : R→ R, b(xi) : R→ R+, for which

lim
xi→∞

[Pr(Xj ≤ a(xi) + b(xi)z|Xi = xi)] = G(z),

where G is non-degenerate. Re-writing Z = {Xj − a(xi)}/b(xi) as the standardised

residual, and making the assumption that the limit holds above some high threshold
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u, we have

Pr(Z ≤ z|Xi = xi) = G(z), xi > u,

where Xi|Xi > u ∼ Exp(1) is independent of Z. Inference on G is often simplified

by making the working assumption that Z ∼ N(µ, σ2) and using a specified para-

metric form for the normalising functions a(·), b(·). For positively dependent data,

we simplify the normalising functions to a(xi) = αxi for α ∈ [0, 1] and b(xi) = xβi for

β ∈ [0, 1). The bivariate form of the conditional model can thus be expressed

Xj| (Xi = xi) = αxi + xβi Z, xi > u.

The conditional model holds some useful advantages over joint modelling using max-

stable, or inverted max-stable, processes. For one, it is able to handle both asymptoti-

cally dependent, or asymptotically independent, data. Parameter estimates for α and

β can indicate the nature of the dependence between Xj and Xi. For example, asymp-

totic dependence between Xj and Xi is implied by estimates α = 1, β = 0. Within the

class of asymptotically independent variables, α < 1, β > 0, with α = β = 0 giving

near extremal independence.

The spatial extensions of this model (Wadsworth and Tawn, 2019; Shooter et al.,

2019) specify α and β as functions of distance between sites, when the underlying

process is stationary and isotropic. As such, we can use these parameter estimates as

diagnostics, to determine whether our deformation method has created a process that

has a more stationary extremal dependence structure. We are motivated to use these

estimates as our deformation method does not use a conditional extremes approach

for fitting.
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7.2 Spatial deformation for extremes

In this section, we discuss our adaptations of the deformation methodology for appli-

cation in a spatial extremes framework. We begin in Section 7.2.1 by proposing a new

objective function to that of (7.1.5). Instead, we consider minimising the difference

between theoretical and empirical χ measures, where the former are produced through

specification of a stationary max-stable dependence structure for the process in the

D-plane. This does not in fact mean that this method will not work for asymptotically

independent data; on the contrary, in Sections 7.2.2 and 7.2.3 we show that the model

choice for χ(·) is somewhat arbitrary and a single, simple parametric form works well

for both classes of extremal dependence. Section 7.2.4 follows with some practical

advice for choosing the anchor points used in estimating the thin-plane spline and

we conclude with details of model fitting and selection using censored pairwise likeli-

hoods in Section 7.2.5. To assess the efficacy of the deformations we produce, we fit

full max-stable, and inverted max-stable, dependence models.

7.2.1 Objective function

To adapt the methodology of Sampson and Guttorp (1992) and Smith (1996) to

better suit a spatial extremes framework, we change the objective function given in

(7.1.5) to the Frobenius norm of the difference between theoretical and empirical

pairwise dependence matrices X := [χ(h∗ij)] and X̂ := [χ̂(h∗ij)]. That is, we estimate

the parameters of the thin plate spline through computing

min ‖X− X̂‖F = min

√√√√ d∑
i=1

d∑
j=1

{
χ(h∗ij)− χ̂(h∗ij)

}2
, (7.2.1)

where χ(h∗ij), defined in (7.1.11), is the upper tail index calculated between the process

at locations s∗i and s∗j in the D-plane and χ̂(h∗ij) is its empirical estimate. Recall that
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we assume stationarity in the D-plane, and so write χ(h∗ij), rather than χ(s∗i , s
∗
j). In

practice, this measure cannot be estimated in the limit as q → 1. As such, we estimate

χ̂(h∗ij) by fixing some high threshold q < 1 and calculating

χ̂q(h
∗
ij) = Pr{F̂i{Z(s∗i )} > q|F̂j{Z(s∗j)} > q} = Pr{F̂i{Z(si)} > q|F̂j{Z(sj)} > q},

(7.2.2)

where F̂k(·) is the empirical distribution of observations Z(s∗k) = Z(sk). Under asymp-

totic dependence, we assume that χq(h
∗
ij) ≡ χ(h∗ij) for large enough q. Under asymp-

totic independence, although χq(h
∗) → 0 as q → 1, we typically have χq(h

∗) > 0

for q < 1 and spatial structure in this measure that makes it informative about non-

stationarity.

We now focus on a choice of function χ(h∗), which we only require to be monotoni-

cally decreasing from 1 to 0. This leaves several options, including specific parametric

forms for χ(h∗) and χq(h
∗) from max-stable, and inverted max-stable, processes. We

remark that while we have used χ to measure extremal dependence, other extremal

dependence measures exist, and can also be used in this framework. For example, the

coefficient of tail dependence, η(h∗ij), from (7.1.13) can also be used to characterise the

strength of asymptotic independence in extremes. This can be estimated separately

from χ(h∗ij), however, we found that due to the high variance of the estimator for

η(h∗ij), it was often outperformed by using χ(h∗ij).

7.2.2 Asymptotic dependence versus asymptotic independence

As a parametric model for χ(h∗) we take the form implied by the stationary Brown-

Resnick process,

χ(h∗ij) = 2− θ(h∗ij) = 2− 2Φ

{
[2γ(h∗ij)]

1/2

2

}
, (7.2.3)
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where θ(·) is the extremal coefficient function (Schlather and Tawn, 2003) and θ(h∗ij) =

V (1, 1), with V (·, ·) defined in (7.1.10). The semivariogram γ(h∗ij) controls the depen-

dence of the max-stable field and a typical choice for the semivariogram would be

γ(h∗ij) = (h∗ij/λ)κ, (7.2.4)

where λ > 0 is a scaling parameter and κ ∈ (0, 2] is a smoothing parameter. Note

that setting κ = 2 yields the Smith process (Smith, 1990), a special case of the

Brown-Resnick process. As previously mentioned when discussing the Smith (1996)

methodology for spatial deformation, we can set the scaling parameter λ to 1, as

the spatial scaling of locations is controlled by the deformation itself. Note that

the motivation for using the Brown-Resnick process as a parametric model is that

χ(h∗) → 0 as h∗ → ∞, unlike other popular parametric models. For a stationary

inverted Brown-Resnick process, we have

χq(h
∗
ij) = (1− q)θ(h∗ij)−1. (7.2.5)

We denote the dependence measures in (7.2.3) and (7.2.5) as χBR and χIBRq , respec-

tively. Note that although these two measures have different parametric forms, and are

applicable to different dependence structures, they often approximate each other very

closely when used within a deformation framework; this is illustrated in Figure 7.2.1.

Here we create deformations for a simulated dataset as described in Section 7.3.1

using both χBR and χIBRq . The plots show that both methods give very similar defor-

mations when considering the non-stationarity in the χ(h∗ij) estimates. This seems to

be the case for both asymptotically dependent and asymptotically independent data.

Hence, for the sake of simplicity we only use χBR to create deformations in the case

studies in Section 7.4, as it appears to be flexible enough to capture non-stationarity

in both classes of extremal dependence.
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Figure 7.2.1: Comparison of deformations created using both parametric forms χBR

and χIBRq for χ(·) for both max-stable data (left) and inverted max-stable data (right).
Plots show empirical χ(h∗ij) estimates against distance, where the black triangles cor-
respond to those created using χ(·) given by (7.2.3) and green triangles for those
created using (7.2.5). The blue and red lines give the fitted function from (7.2.3)
and (7.2.5), respectively. Distances are normalised so that the maximum distance is
consistent between deformations.

7.2.3 Choice of parametric model for χ(h∗)

We have also found that the function χ(h∗) from a Brown-Resnick process is suf-

ficiently flexible to create suitable deformations for a variety of different extremal

dependence structures. This is for similar reasons to above; different functions χ(h∗)

which decrease to zero as h∗ → ∞ can approximate each other well. To illustrate

this, we also considered the Gaussian-Gaussian process (Wadsworth and Tawn, 2012),

which encompasses different dependence structures to the Brown-Resnick process, but

for which χ(h∗)→ 0 as h∗ →∞. Its theoretical form is

χGG(h∗) = 1− 1

2

∫
R2

{φ(u)2 − 2ρ(h∗)φ(u)φ(u− h̃) + φ(u− h̃)2}1/2du,

where ρ(h∗) is a stationary correlation function and h̃ = (h∗, h∗)T and φ(·) is the bivari-

ate Gaussian density function with mean 0 and covariance matrix Σ = diag(σ2, σ2).

Note that using a Matérn correlation function given in (7.1.6) with parameters θ1 > 0
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and θ2 > 0, this function has one extra parameter than χBR(h∗), namely σ > 0.

We chose not to use this parametric form for χ(h∗), due to the high computational

cost required to compute the double integral for each pair of locations. However,

we have found that the deformation method described in Section 7.2 appears fairly

robust to the choice of χ(h∗). As Figure E.1.1 in Appendix E shows, the much simpler

χBR(h∗) can approximate the more complex χGG(h∗) very closely for much of h∗ ∈ R+.

7.2.4 Practical aspects for creating deformations

We now comment on practical aspects of creating the deformations, including choosing

a subset of radial basis functions for the thin-plate spline and reducing the chances of

producing a non-bijective transformation.

We found that there is no simple robust method for picking the number m, or

configuration, of the anchor points used in the deformation splines given in (7.1.3).

As detailed in Sampson and Guttorp (1992), there is a trade-off in picking m. Larger

values provide “better” deformations, in the sense that the objective function to be

calculated is lower and the deformations seem to capture more of the non-stationarity

in the process. However, this comes at the price of computational cost, the risk

of over-fitting and the phenomenon in which the D-plane folds on to itself. This

provides a non-bijective transformation, which is physically unrealistic. Iovleff and

Perrin (2004) detail an approach to ensure that the deformation is always bijective

through use of a simulated annealing algorithm, with later extensions by Youngman

(2020). These approaches add further constraints into the modelling procedure, which

we have chosen to avoid. Instead we use a more heuristic approach for avoiding non-

bijectivity.

We begin by randomly sampling m0 initial anchor points with index set given

by I0 = {i1, . . . , im0}. There is no single best way to choose I0; however, we found

that ensuring that the anchor points are spread out over the spatial domain helped
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to create better deformations. Performing a deformation with I0 yields parameter

estimates ψ̂0 = (b̂1, b̂2, ρ̂, κ̂, δ̂
(1)
4 , δ̂

(2)
4 , . . . , δ̂

(1)
m0 , δ̂

(2)
m0). Recall that we have parameters

δ
(1)
i , δ

(2)
i indexed by i ≥ 4 as those indexed by i = 1, 2, 3 are uniquely determined by

the constraints given in (7.1.2). If the deformation for I0 is bijective, we create a new

set of indices I1 = {I0, im0+1}, where im0+1 is sampled from the remaining indices. A

deformation is then created using I1, but with initial parameters in the optimisation

program given by ψ̂1 = {ψ̂0, δ
(1)
m0+1 = 0, δ

(2)
m0+1 = 0}. This ensures that the initial

input into the optimisation program creates a deformation that is already bijective.

We then continue in this fashion until we have created a deformation using m∗ anchor

points. Bijectivity is checked by eye.

Using this approach reduces the chances of the D-plane folding as m increases and

provides a deformation with m∗ anchor points. Here we set m∗ as approximately a

quarter of the sampling locations as we have not found a clear way to optimize this as-

pect. Typically this approach can be used for a number of initial index sets. However,

in the interest of reducing computational cost, the simulation studies in Section 7.3

are conducted using the same initial index set for each deformation method. We

also ensure that the new index sampled at each iteration is consistent across different

samples, processes and deformation methods.

7.2.5 Model fitting and selection

To determine whether the deformation has created a process that is more stationary

in the extremal dependence structure, and to compare between deformation methods,

we look to fitting max-stable and inverted max-stable models to the data using the

sampling locations in both the G-plane and the D-plane. In Section 7.1, the computa-

tional complexities of the max-stable and inverted max-stable models were discussed.

To accommodate for this, we take a pairwise composite likelihood approach and as-

sume independence between pairs (Padoan et al., 2010). The joint distribution for a
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Brown-Resnick process is given in (7.1.8) and the joint survival function for an in-

verted Brown-Resnick process is given in (7.1.12). Note that the former is on standard

Fréchet margins, whereas the latter is on standard exponential. To compare between

the asymptotically dependent and asymptotically independent structures provided by

the two models, we calculate all likelihoods on exponential margins, by first using a

site-wise empirical transformation.

Given realisations {z1, . . . , zN} from a spatial field, observed at sampling locations

s1, . . . , sd, the censored composite likelihood is

LCL(λ, κ) =
N∏
i=1

LCL(λ, κ; zi) =
N∏
i=1

d∏
k=2

∏
l<k

gu(zi(sk), zi(sl);λ, κ), (7.2.6)

where

gu(zi(sk), zi(sl);λ, κ) =



f(zi(sk), zi(sl);λ, κ) if min(zi(sk), zi(sl)) > u,

∂
∂zi(sk)

F (zi(sk), u;λ, κ) if zi(sk) > u, zi(sl) ≤ u,

∂
∂zi(sl)

F (u, zi(sl);λ, κ) if zi(sk) ≤ u, zi(sl) > u,

F (u, u;λ, κ) if max(zi(sk), zi(sl)) ≤ u,

(7.2.7)

with u a high threshold and F (·) and f(·) the bivariate joint distribution and density

functions for the model. Note that although we set λ = 1 when producing the

deformation, here we treat it as a free parameter. Although the likelihoods give a

good indication of the performance of the deformation methods, we use the Composite

Likelihood version of the Akaike Information Criterion (CLAIC) for model selection.

As given in Varin et al. (2011), the CLAIC is

− 2{logL(λ̂, κ̂)− tr(J(λ̂, κ̂)H−1(λ̂, κ̂))}, (7.2.8)

where (λ̂, κ̂) are the maximum likelihood estimates from (7.2.6), H(·) is the Hessian
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matrix and J(·) is the variance of the score function, i.e.

J(λ̂, κ̂) = var∇ logLCL(λ̂, κ̂) = var
N∑
i=1

∇ logLCL(λ̂, κ̂; zi).

In practice, we estimate J(·) by using numerical methods to find ∆i = ∇ logLCL(λ̂, κ̂; zi),

and then estimating the variance of the score function by setting a block of length

b < N and computing

Ĵ(λ̂, κ̂) =
N

b
× var

b∑
i=1

∆i, . . . ,
N∑

i=N−b+1

∆i. (7.2.9)

The block sizes are chosen such that each block of data is more reasonably assumed

approximately independent. This is usually specific to the data and will be given

alongside any results.

7.3 Simulation study

We conduct three simulation studies to illustrate the efficacy of the deformation frame-

work for modelling extremal dependence of non-stationary spatial processes. These

studies are designed to highlight the following:

• When fitting a stationary model to the extremal dependence of non-stationary

spatial data, using a deformation method will improve the fit when compared

to using the original sampling locations in the G-plane;

• The deformation methodology described in Section 7.2.1 is more effective than

the original Smith (1996) method when modelling non-stationary extremal de-

pendence, as the latter is tailored towards modelling dependence in the body of

the data rather than the extremes;

• It is often necessary to use a deformation method that is tailored explicitly to
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extremal dependence, rather than dependence throughout the body; especially

for processes that exhibit different degrees of non-stationarity throughout their

extremal and central dependence structures.

In order to illustrate these points, we consider five different processes. These pro-

cesses are chosen as they each exhibit different behaviour in their respective extremal

dependence structures. In Section 7.3.1, we consider two processes: a non-stationary

Brown-Resnick process and a non-stationary inverted Brown-Resnick process. In Sec-

tion 7.3.2, we consider two more processes which are both mixtures of stationary

and non-stationary processes. We term these max-mixture process and one exhibits

asymptotic dependence whilst the other exhibits asymptotic independence. A final

process is considered in Section 7.3.3, which is an asymptotically independent Gaus-

sian mixture process.

For each setting, we begin with a sample of 1000 realisations of a spatial process.

For this sample, we create four separate deformations using the procedure set out

in Section 7.2.4. The first two deformations are created using the approach detailed

in Section 7.2.1; with χBR from (7.2.3) and χIBRq from (7.2.5) as the dependence

measures used in the objective function in (7.2.1). The latter two are correlation-

based deformation methods: one of these is the original Smith (1996) methodology,

while the other method replaces χ(h∗ij) in (7.2.1) with pairwise correlation ρ(h∗ij) as the

dependence measure, and replaces the theoretical χ(h∗) function with the stationary

Matérn correlation function detailed in (7.1.6). Note that in both of the latter two

methods, correlation is estimated on a Gaussian marginal scale, and for the former

two methods, we set q = 0.9 in (7.2.2) and (7.2.5).

As detailed in Section 7.2.5, we evaluate the efficacy of each of the four deforma-

tions by fitting a model to the extremal dependence of the sample. We fit the same

dependence model five times: once using the sampling locations in the original G-

plane and then once for each of the respective D-plane sampling locations given from
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the four deformations. For each fitted model, we calculate the CLAIC given in (7.2.8).

Ordering of the CLAIC allows us to determine which deformation method (if any) was

the most effective in accounting for the non-stationarity in that sample. As the under-

lying process from which the sample is drawn is known, we fit a stationary extremal

dependence model of an appropriate class. That is, for processes that are asymptoti-

cally dependent, we fit a stationary Brown-Resnick model, and for processes that are

asymptotically independent, we fit a stationary inverted Brown-Resnick model.

This procedure is repeated for 50 different samples of a single process. In this

simulation study, each deformation for each sample is created using the same anchor

points. For each sample, we determine which deformation method was the most ef-

fective and the proportion of times this occurred over all samples is reported, with

the results in Tables 7.3.1, 7.3.2 and 7.3.3. These results show that stationary de-

pendence models for non-stationary spatial processes routinely provide a better fit if

the deformation methodology is used as a preprocessing step. We also show that the

original Smith (1996) deformation is outperformed by our extensions.

7.3.1 Non-stationary Brown-Resnick and inverted Brown-Resnick

process

The first setting we consider consists of replications of a non-stationary Brown-

Resnick, and inverted Brown-Resnick, process sampled at 64 equally spaced locations

on [−1, 1] × [−1, 1]. We use a non-stationary variogram in the exponent function in

(7.2.3) to ensure that χ(hij) is not simply a function of distance. In the context of

non-stationary Gaussian processes, Fouedjio et al. (2015) propose a semivariogram of

the form γ∗(si, sj) where

γ∗(si, sj) = γ(‖ψ(sj)− ψ(sj)‖), (7.3.1)
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and

ψ(s) = o+ (s− o)‖s− o‖

is a radial basis function with some centre point o and γ(·) is the stationary and

isotropic semivariogram given in (7.2.4). The use of the radial basis function ψ(s)

within this semivariogram causes pairs that are closer to o to be more strongly de-

pendent than those pairs that are further away. From (7.2.3) and (7.2.4), the Brown-

Resnick process with this semivariogram has theoretical χ(si, sj) given by

χ(si, sj) = 2− 2Φ

{
‖ψ(si)− ψ(sj)‖κ/2

λκ/2
√

2

}
, (7.3.2)

for locations si, sj and κ ∈ (0, 2], λ > 0. For this study, we take the centre o to be the

origin and use scale and shape parameters λ = 2 and κ = 0.8 in (7.3.2). To illustrate

the process a high resolution realisation is given in Figure E.2.1. Simulations are

produced using the method of Dieker and Mikosch (2015).
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Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Non-stationary
Brown-Resnick

Stationary
Brown-Resnick

None 0

χBR 0.22
0.34

χIBRq 0.12

ρ 0.44
0.66

Smith (1996) 0.22

Non-stationary
Inverted

Brown-Resnick

Stationary
Inverted

Brown-Resnick

None 0

χBR 0.24
0.56

χIBRq 0.32

ρ 0.28
0.44

Smith (1996) 0.16

Table 7.3.1: Proportion of lowest CLAIC estimates provided by fitting models to de-
formations for 50 realisations of non-stationary Brown-Resnick and inverted Brown-
Resnick processes. The CLAIC has been estimated with a block size of b = 1, cor-
responding to temporal independence. Composite likelihoods are estimated with the
threshold in (7.2.7) as the 90% empirical quantile, which is also used for estimating
χ(h∗ij) in (7.2.2).

Table 7.3.1 contains some interesting results. Most notably, in all cases a defor-

mation has aided in model fitting when compared to using the original simulation

grid. For both the max-stable, and inverted max-stable, cases, improvements on the

efficacy of the original Smith (1996) method are made by utilising the Frobenius norm

in the objective function. However, it is not entirely clear whether use of an extremal

dependence measure for creating deformations is necessary in this case. We often

found that deforming the space using measures for dependence throughout the distri-

bution created better deformations than those using extremal dependence measures.

We believe that this is because the variance of the estimator for ρ(h∗ij) is much lower

than that of χ(h∗ij), as we use all of the data to estimate correlation, and that there are

strong similarities in patterns of spatial non-stationarity for the central- and extremal-
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dependence structures of this process. We next consider other processes with more

complicated dependence structures.

7.3.2 Max-mixture process

We now consider the hybrid dependence model, detailed in full by Wadsworth and

Tawn (2012). Let X(s) be a max-stable process and Y (s) an asymptotically in-

dependent spatial process, both with standard Fréchet margins. For ω ∈ [0, 1],

H(s) = max{ωX(s), (1 − ω)Y (s)} is an asymptotically dependent spatial process

with standard Fréchet margins. In particular, we take X(s) to be the non-stationary

Brown-Resnick process detailed in Section 7.3.1 and Y (s) to be a marginally trans-

formed stationary Gaussian process with the Matérn correlation structure detailed in

(7.1.6).

It can be shown that the theoretical χ(hij) values for H(s) are the same as for

X(s), but multiplied by ω. There is no closed form for the correlation for H(s)

on the Gaussian scale. Computationally, it can be shown that it is a mixture of

the correlation from both X(s) and Y (s). As such, we would expect the extremal

dependence and central dependence of H(s) to be mixtures of those coming from

X(s) and Y (s), with different amounts of mixing occurring for both. We set ω to be

0.3 and take (θ1, θ2) = (1, 1.2) in (7.1.6).

By construction of H(s), taking its reciprocal creates an asymptotically inde-

pendent process on standard exponential margins, as with the inverted max-stable

process. As in Section 7.3.1, the simulation study is repeated separately for the

asymptotically dependent and asymptotically independent mixtures. The results are

given in Table 7.3.2.
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Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Asymptotically-dependent
Max-mixture

Stationary
Brown-Resnick

None 0.06

χBR 0.14
0.78

χIBRq 0.64

ρ 0.16
0.16

Smith (1996) 0

Asymptotically-independent
Max-mixture

Stationary
Inverted

Brown-Resnick

None 0

χBR 0.42
0.90

χIBRq 0.48

ρ 0.06
0.10

Smith (1996) 0.04

Table 7.3.2: Proportion of lowest CLAIC estimates provided by fitting models to
deformations of 50 realisations of asymptotically dependent and asymptotically inde-
pendent max-mixture processes. The CLAIC has been estimated with a block size of
b = 1, corresponding to temporal independence. Composite likelihoods are estimated
with the threshold in (7.2.7) as the 90% empirical quantile, which is also used for
estimating χ(h∗ij) in (7.2.2).

In contrast to the results given in Table 7.3.1, Table 7.3.2 shows a clearer need

for an extremal dependence-based approach when creating deformations for a process

that exhibits more complicated dependence structures. Here this max-mixture process

is designed to represent a process with a mixture of stationarity in both the extremal

dependence and dependence throughout the distribution. We now consider a process

that has non-stationary extremal dependence, but is nearly stationary in the body.

7.3.3 Gaussian mixture process

With previous simulations, we found it is sometimes sufficient to simply use measures

of central dependence when deforming the spatial domain to create a process with

a more stationary extremal dependence structure. This is because the central- and
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extremal-dependence structures of these processes are closely related and using either

approach typically creates similar deformations. In applications, we may find that

these structures are not so closely related. As such, we are motivated to consider a

process that is designed to have completely different dependence in the body to the

tails.

Let YS(s), YNS(s) be stationary and non-stationary Gaussian processes, respec-

tively, each with standard Gaussian margins. We then consider the process

Y ∗(s) =


YS(s), if Φ(Y (s0)) ≤ p

YNS(s), if Φ(Y (s0)) > p

, (7.3.3)

where s0 ∈ S is a fixed location, Φ(·) is the standard Gaussian cdf, and p ∈ [0, 1] is a

probability. By specifying Y ∗(s) in this manner, we create a process with an extremal

dependence structure determined mostly by the correlation structure of YNS and with

dependence through the body determined mostly by YS. Simulation of this process is

simple; we draw Y (s0) ∼ N(0, 1) and then simulate the rest of the field conditioning

on that value and whether Φ(Y (s0)) ≤ p or Φ(Y (s0)) > p.

For this particular study, we use replications of this Gaussian mixture sampled at

81 equally spaced locations in [−1, 1]×[−1, 1]. We take s0 to be the origin and p = 0.9.

Both YS and YNS are specified to have the Matérn correlation structure given in (7.1.6),

with respective parameter sets θ(S) = (θ
(S)
1 , θ

(S)
2 ) and θ(NS) = (θ

(NS)
1 , θ

(NS)
2 , o). Note

that θ(NS) contains an extra parameter as we use the difference of the radial basis

functions given in (7.3.1) and detailed by (Fouedjio et al., 2015) as a measure of

pairwise distance, rather than Euclidean distance. The parameters for this study are

set to θ(S) = (2, 1) and θ(NS) = (2, 0.8, (0, 0)). Results are given in Table 7.3.3.
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Process
(G-plane)

Fitted Model
(D-plane)

Deformation
Method

Proportion of
lowest CLAIC

Gaussian
Mixture

Stationary
Inverted

Brown-Resnick

None 0

χBR 0.08
1

χIBRq 0.92

ρ 0
0

Smith (1996) 0

Table 7.3.3: Proportion of lowest CLAIC estimates provided by fitting models to
deformations of 50 realisations of the Gaussian mixture process, see (7.3.3). The
CLAIC has been estimated with a block size of b = 1, corresponding to temporal
independence. Composite likelihoods are estimated with the threshold in (7.2.7) as
the 90% empirical quantile, which is also used for estimating χ(h∗ij) in (7.2.2).

Table 7.3.3 highlights a clear need for extremal dependence-based methods when

creating deformations for processes that have different patterns of non-stationarity in

their central- and extremal dependence structures. In contrast to the results given in

the previous studies, here using χ(h∗ij) or χq(h
∗
ij) is always favoured.

7.4 Case studies

We present two case studies using our deformation methodology. In both cases, we

follow the procedure set out in Section 7.2.4. However, as we consider relatively large

spatial domains we use Great Earth distance in place of Euclidean distance for h

and h∗. We consider 30 different initial index sets, taking the best deformation over

all sets. Here we define the best deformation to be that which provides the lowest

objective value in (7.2.1) whilst remaining a bijective mapping. When using extremal

dependence measures, we focus on deformations based on χBR only, following the

justification in Section 7.2.2. We then fit max-stable and inverted max-stable models

to the data in the G-plane and D-plane, comparing the model fits using CLAIC

estimates. For both studies, all pairs of sampling locations are used in model fitting
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and the block size in (7.2.9) corresponds to a season. We propose two diagnostics for

scrutinising the model fits and deformations.

7.4.1 Australian summer temperatures

Data consist of daily summer (DJF) maximum near-surface air temperatures taken

from the HadGHCND global gridded dataset (Caesar et al., 2006) and interpolated to

72 grid point locations covering Australia, for the period 1957-2014. Previous analysis

of this data has been conducted using the multivariate conditional extremes model,

detailed in Section 7.1.2 (Winter et al., 2016) and its spatial extension (Wadsworth

and Tawn, 2019). Figure 7.4.1 shows the original sampling locations and estimated

pairwise χ(hij) against distances. We estimate χ(hij) by setting q = 0.98 in (7.2.2).

The deformation was produced using m∗ = 18, i.e. a quarter of the original sampling

locations. These are presented as the blue points on Figures 7.4.1 and 7.4.2, where the

latter figure depicts the sampling locations in the D-plane. Figure 7.4.2 also presents

χ̂(h∗ij) against distance in the deformed space. We observe that the deformation has

created a process that appears to be much more stationary with regards to the χ(h∗ij)

estimates in the new coordinates.
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Figure 7.4.1: Australia summer temperatures. Left: the original 72 sampling loca-
tions. The blue points are the anchor points used for the thin-plate splines. Right:
empirical χ(hij) measures against distance (km). Estimates χ̂(hij) are calculated
above a threshold given by the 98% empirical quantile.
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Figure 7.4.2: Australia summer temperatures. Left: the 72 sampling locations in the
D-plane. The blue points are the anchor points used for the thin-plate splines. The
coordinates have been scaled to [0, 1]× [0, 1], which equals the aspect ratio of the left
plot in Figure 7.4.1. Right: empirical χ(h∗ij) measures against distance in the D-plane.
The red line gives the fitted function χ(h∗) used in the deformation.
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Model
Negative Composite

Log-Likelihood (×106) (κ̂, λ̂) (2 d.p.) CLAIC (×107)

G-Plane
IMSP∗ 3.078 (2.00, 1048.20) 6.157

MSP 3.078 (1.59, 358.30) 6.157

D-Plane
IMSP∗ 3.074 (2.00, 2.61) 6.148

MSP 3.073 (1.71, 0.95) 6.146

Table 7.4.1: Model parameters and diagnostics for the Australian summer tempera-
tures data. Composite likelihoods are estimated with the threshold in (7.2.7) as the
98% empirical quantile. (∗ estimated using Smith process likelihood). CLAIC and
negative composite log-likelihood estimates are given to four significant figures.

The fits of the max-stable and inverted max-stable models are summarised in Ta-

ble 7.4.1. The CLAIC estimates suggest that a max-stable model is more appropriate

for the data. This becomes even more apparent when we consider that fitting an

inverted Brown-Resnick model yields an inverted Smith model as the best fit. These

processes are typically quite smooth and often provide unrealistic representations of

actual data. However, we note that when naively fitting models on the G-plane,

the inverted Smith model provided the lowest CLAIC estimate. This is further ev-

idence that non-stationarity in this data should be incorporated into the modelling

procedure.

We use two diagnostics to scrutinise the deformation and the model fit. As our

deformation method is tailored to χ(h∗ij), we seek to use other extremal dependence

measures to verify that the resulting deformation is not subject to overfitting. To

do this, the conditional extremes model described in Section 7.1.2 is fitted pairwise

and the parameter estimates are used to calculate the conditional expectation of one

variable when the other variable is at the modelling threshold u, taken as the 98%

quantile of the marginal distribution. For each pair, (X(si), X(sj)), i 6= j, we have

E [X(sj)|X(si) = u] = α̂u+ uβ̂µ̂,
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where (α̂, β̂, µ̂) are the maximum likelihood estimates for the model. For a stationary

and isotropic process, we would expect this measure to be a smooth function of

Euclidean distance. The conditional expectation is plotted against distance for both

the process on the G-plane and the D-plane.

A second diagnostic is used to evaluate the best model fit in the D-plane. As we

have used χ(h∗ij) to create the deformations, we compare the theoretical triple-wise

χ, which we denote χ(s∗i , s
∗
j , s
∗
k) = χ(si, sj, sk), from the model fits against empirical

estimates. The triple-wise χ is defined as

χ(s∗i , s
∗
j , s
∗
k) = lim

q→1
Pr[Fi{Z(s∗i )} > q, Fj{Z(s∗j)} > q|Fk{Z(s∗k)} > q]

= lim
q→1

Pr[Fi{Z(si)} > q, Fj{Z(sj)} > q|Fk{Z(sk)} > q] = χ(si, sj, sk)

for i 6= j 6= k. For a Brown-Resnick process, the theoretical value for this measure is

χ(s∗i , s
∗
j , s
∗
k) = 3− V2(1, 1; i, j)− V2(1, 1; i, k)− V2(1, 1; j, k) + V3(1, 1, 1),

where V2(·, ·; l,m) is the pairwise exponent given in (7.1.10) and V3(·, ·, ·) is the triple-

wise exponent measure, for which the parametric form is given in Huser and Davison

(2013); recall that if the process is stationary, both of these are functions of Euclidean

distance. A similar parametrisation can be given for χq(s
∗
i , s
∗
j , s
∗
k) for an inverted

Brown-Resnick process, which is χq(s
∗
i , s
∗
j , s
∗
k) = (1− q)V3(1,1,1)−1.

Standard errors for empirical estimates of χq(s
∗
i , s
∗
j , s
∗
k) are estimated using a sta-

tionary bootstrap (Politis and Romano, 1994). We begin by drawing a random block

size B from a geometric distribution with mean K. The bootstrap sample for loca-

tions si, sj, sk, i 6= j 6= k is built by drawing a random starting time τ and creating a

block of observations

{z∗τ , . . . , z∗τ+B−1}, where z∗t = {zt(si), zt(sj), zt(sk)},
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which we add to the bootstrap sample. This procedure is repeated and the bootstrap

is built up iteratively until it has length n. We then estimate χ(s∗i , s
∗
j , s
∗
k) for that

sample and repeat for a number of samples. When choosing locations to compare

empirical and theoretical values of χ(s∗i , s
∗
j , s
∗
k), we take advantage of the gridded

structure of the coordinates in the G-plane, and ensure that each set of points share

roughly the same configuration and pairwise distances. This is used to evaluate the

stationarity of the dependence structure on the original G-plane, as we would expect

the empirical values of χ(s∗i , s
∗
j , s
∗
k) to be consistently similar across sets of locations

with the same configuration.

Diagnostics for the deformations and best model fit are given in Figure 7.4.3. For

the estimation of χ(s∗i , s
∗
j , s
∗
k), 30 sets of three adjacent locations along the north/south

transect in the G-plane are randomly selected and a stationary bootstrap with mean

block size K = 14 and 1000 samples is used to create 95% confidence intervals for the

empirical estimates of χ(s∗i , s
∗
j , s
∗
k). Empirical estimates of χ(s∗i , s

∗
j , s
∗
k) are calculated

above the 98% quantile. The right panel of Figure 7.4.3 displays estimates for the

conditional expectation from the conditional extremes model, where distances are

normalised so that the average distance is equal for both the values in the G-plane

and the D-plane.
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Figure 7.4.3: Australian summer temperatures diagnostics. Left: estimates of
χ(s∗i , s

∗
j , s
∗
k) (black dots) and 95% confidence intervals using the stationary bootstrap.

Red dots are the respective theoretical values suggested by the model fit. Right: con-
ditional expectation from conditional extremes model. Red points denote estimates
for the process on the D-plane; black points are those on the G-plane.

The diagnostic based on χ(s∗i , s
∗
j , s
∗
k) from Figure 7.4.3 suggests that a max-stable

model is a reasonable fit for the data in the deformed space, as the patterns of the

theoretical χ(s∗i , s
∗
j , s
∗
k) values follow the empirical estimates. The large variability in

the bootstrap estimates across sets of locations with similar configurations suggests

that the process on the original plane is highly non-stationary. Estimates from the

conditional extremes model provide further evidence that the deformation has pro-

duced something more stationary with regards to the dependence structure, especially

at smaller distances. The use of a measure for extremal dependence that is not used

for fitting lends credibility to the χ(h∗ij) plot in Figure 7.4.2 and suggests that the

deformation has worked well.

7.4.2 UK precipitation rate

Data consist of hourly precipitation rate (mm/day) observed at locations on two

10 × 10 grids; the first is centred in Snowdonia, Wales and the second is centred in

the Scottish Highlands. Observations are taken from the UK climate projections 2018

(UKCP18) (Lowe et al., 2018) which contain values produced at hourly intervals on
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2.2×2.2km2 grid boxes between the years 1980 and 2000. We have treated the centre

of each grid box as a sampling location and we take every fifth grid box to create the

10 × 10 grid of sampling locations. Observations are aggregated to 12-hr intervals,

beginning at 12pm, and to remove the seasonal effect often observed in precipitation

data, we have taken only winter observations (DJF). This leaves 3600 observations at

each sampling location.

Figure 7.4.4 shows both sets of original sampling locations and their respective

estimates of χ(hij) against distances. In both cases, we estimate χ(hij) by setting

q = 0.95 in (7.2.2). Both deformations are produced using m∗ = 25 and these are

presented as the blue points in Figure 7.4.4. Figure 7.4.5 presents both deformations

and estimates of χ̂(h∗ij) against distance in the respective deformed spaces. We ob-

serve that both deformations have created a process that appears to be much more

stationary with regards to their respective χ(h∗ij) estimates in the new coordinates.

In both cases, deformations are more prominent around areas of higher elevation.
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ĉ
(h
ij)

Figure 7.4.4: Top row: Snowdonia. Bottom row: Scottish Highlands. Left: the
original 100 sampling locations. The blue points are the anchor points used for the
thin-plate splines. Right: empirical χ(hij) measures against distance (km) in the
respective G-planes. Estimates χ̂(hij) are calculated above a threshold given by the
95% empirical quantile.
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Figure 7.4.5: Top row: Snowdonia. Bottom row: Scottish Highlands. Left: the 100
sampling locations in their respective D-planes. The points are coloured such that
darker points correspond to sampling locations with higher elevation and black points
correspond to locations over sea. The coordinates have been scaled to [0, 1] × [0, 1],
which equals the aspect ratio of the left plots in Figure 7.4.4. Right: empirical χ(h∗ij)
measures against distance in the D-plane. The red line gives the fitted function χ(h∗)
used in the deformation.
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Model
Negative Composite

(κ̂, λ̂) (2 d.p.)
CLAIC

Log-Likelihood (×106) (×107)

Snowdonia

G-Plane
IMSP 8.023 (1.40, 111.84) 1.605

MSP 8.050 (1.00, 25.96) 1.610

D-Plane
IMSP 8.011 (1.29, 3.33) 1.602

MSP 8.037 (0.93, 0.69) 1.607

Highlands

G-Plane
IMSP 8.099 (1.25, 143.77) 1.620

MSP 8.124 (0.87, 27.37) 1.625

D-Plane
IMSP 8.076 (1.30, 3.34) 1.615

MSP 8.099 (0.93, 0.69) 1.620

Table 7.4.2: Model parameters and diagnostics for the UK precipitation data. Com-
posite likelihoods are estimated with the threshold in (7.2.7) as the 95% empirical
quantile. CLAIC and negative composite log-likelihood estimates are given to four
significant figures.

Table 7.4.2 summarises the fits for the Brown-Resnick and inverted Brown-Resnick

models for both sets of sampling locations. The CLAIC estimates in Table 7.4.2 sug-

gest that an inverted max-stable model is the most appropriate for both the Snowdonia

and Highlands data. Both see improved fits using the sampling locations mapped to

the respective D-planes. In Figures 7.4.6 and 7.4.7, we present diagnostics for the

deformations and best model fits using the same measures described in Section 7.4.1.

As the best fitting model for both datasets is the inverted Brown-Resnick process, Fig-

ure 7.4.6 compares empirical estimates and model-based values of χq(s
∗
i , s
∗
j , s
∗
k) with

q = 0.95. Confidence intervals for the empirical estimates of χq(s
∗
i , s
∗
j , s
∗
k) are calcu-

lated by randomly selecting 30 sets of three adjacent locations along the east/west

transect and a using stationary bootstrap with mean block size K = 14 and 1000

samples. For the diagnostic given in Figure 7.4.7, the 95% quantile is used for fit-

ting the conditional extremes model and we plot the pairwise conditional expectation
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estimates against distance. Distances are normalised so that the average distance is

equal for both the values in the G-plane and the D-plane.
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Figure 7.4.6: UK precipitation model fit diagnostics. Estimates of χq(s
∗
i , s
∗
j , s
∗
k) (black

dots) with q = 0.95 and 95% confidence intervals using the stationary bootstrap.
Red dots are the respective theoretical values suggested by the model fits. Left:
Snowdonia. Right: Highlands.
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Figure 7.4.7: UK precipitation deformation diagnostics. Conditional expectation from
conditional extremes model. Red points denote estimates for the process on the D-
plane; black points are those on the G-plane. Left: Snowdonia. Right: Highlands.

Figure 7.4.6 shows that the inverted max-stable model gives a relatively good fit

to the extremal dependence of both datasets with sampling locations mapped to their

respective D-planes, but the fit appears better for the Scottish Highlands. The low

variability in the χq(s
∗
i , s
∗
j , s
∗
k) estimates suggests that the original process may not be
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highly non-stationary. The pairwise conditional expectation estimates in Figure 7.4.7

suggest that both deformations have produced a more stationary process, albeit more

so in the case of the Snowdonia D-plane. The small change in the Highlands estimates

may suggest that overfitting to the χ(hij) values has occurred, especially when com-

pared to the Snowdonia estimates. This may also explain the stronger agreement of

the χq(s
∗
i , s
∗
j , s
∗
k) measures in Figure 7.4.7. To investigate the possibility of overfitting,

we recreated the diagnostic using deformations created with fewer anchor points, but

this did not show any improvements.

7.5 Discussion

In this paper, we presented a simple yet effective approach to modelling non-stationary

extremal dependence. This approach extends that of Sampson and Guttorp (1992)

and Smith (1996) to be applicable for modelling extremal dependence, rather than

dependence throughout the body. We do this by replacing the objective function

in these methods with the Frobenius norm of the difference between empirical, and

theoretical, pairwise dependency matrices, with the theoretical measures coming from

a stationary dependence model. Although most of our focus is on χ(h∗ij) as the

dependence measure, we have also shown that this is easily replaced by other measures,

such as χq(h
∗
ij) and correlation. Model selection is carried out using pairwise composite

likelihoods and CLAIC estimation and we propose diagnostics for evaluating these

model fits.

We presented two case studies; in each scenario, we showed that when modelling

the extremal dependence of the data using stationary models, better fits are provided

using our methodology. Here we have fit very simple models to the data. However, in

practice these deformations may be used as a pre-processing step to reveal covariates

or orography that can be incorporated into the modelling procedure. Two diagnostics
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were introduced and used to provide evidence that our approach has produced a

process which is more stationary with regards to the extremal dependence.

As with many areas of extreme value analysis, there is a bias-variance trade-

off present when estimating χq. Using values of q closer to 1 puts greater focus on

extremal dependence at the expense of increased variance of the estimator. In Sections

7.3 and 7.4, we choose q close to 1 whilst preserving some initial spatial structure

observed in the χ estimates. However, if q is too high then it is possible that any

structure is masked by the high variability of the estimators and the deformation

methodology is likely to fail in such circumstances. We have not considered the effect

of estimator variability on the deformation, but note this could form a future research

direction.

A further issue that could be considered is the possible non-bijectivity of the

mapping used in the deformation. We detail an approach to reduce this in Section

7.3, however, this method is not particularly robust. Bijectivity of deformations must

be checked by eye which can become cumbersome when a large number are produced.

To avoid this necessary supervision, the G-plane can be represented as a Delaunay

triangulation, see Iovleff and Perrin (2004) and Youngman (2020). Incorporating

this extra computational aspect into the model adds to the complexity, and so as to

preserve the simplicity of our approach, we leave this as a future consideration.
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Conclusions and further work

The research presented in this thesis develops on methodology for modelling the ex-

tremal behaviour of aggregates of random variables and spatial processes. We consider

the thesis to be composed of two main aspects of work: the first half takes a theoretical

approach to describing the extremal behaviour of aggregates by providing results for

the first order upper-tail behaviour of weighted sums of random variables; the latter

half takes a data-driven approach and provides statistical modelling techniques for

spatial aggregates, with particular interest being taken in precipitation aggregates.

The thesis concludes with a brief study of non-stationarity in the extremal depen-

dence structure of spatial processes and proposes a methodology for handling this

issue if it presents itself in an application; this is increasingly likely to be an issue

when modelling aggregates over increasingly large spatial regions. We now provide

summaries of the chapters of this thesis and propose some avenues for further work.

Chapters 3 and 4 detail theoretical results for the first order behaviour of the

survival function Pr{Rd ≥ r} as r → rF , where rF is the upper-endpoint of the

distribution for the random variable Rd =
∑d

i=1Xi; the marginals of the random

vector X = (X1, . . . , Xd) are described by Xi ∼ GPD(σi, ξi) for σi > 0, ξi ∈ R and

all i = 1, . . . , d. The two main differences between Chapters 3 and 4 are as followed:

222
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firstly, we consider d = 2 and d ∈ N in Chapters 3 and 4, respectively; the second

difference is in how dependence within X is described. In Chapter 3, we model

extremal dependence in X using the limiting dependence characterisations of Ledford

and Tawn (1996) and Heffernan and Tawn (2004); in Chapter 4, we instead fully

model dependence in X using one of five copulas: perfect dependence, independence,

the standard Gaussian copula and both the upper, and lower, joint tails of the extreme

value copula. In both chapters, the form of Pr{Rd ≥ r} as r → rF is shown to be

driven both by the extremal dependence class of the associated X and the value of

the marginal shape parameters ξi; furthermore we illustrate that, in certain cases,

the driving behaviour of the upper-tails of Rd is heavily linked to the d-dimensional

coefficient of tail dependence, ηd, first proposed by Ledford and Tawn (1996) for d = 2

and extended to d > 2 by Eastoe and Tawn (2012).

The theorems described in Section 3.3.2 apply only when specific assumptions are

met by the extremal dependence structure of X. Whilst these conditions may appear

quite restrictive, they are often met by widely applied copula models; moreover, situ-

ations where the conditions are not met may instead be covered by the results derived

in Chapter 4. However, that is not to say that the results across both Chapters 3

and 4 comprehensively describe all possible dependence models for X; on the con-

trary, there exists structures that are not covered by Chapter 4 and do not satisfy the

conditions given in 3.3.2, e.g., the Gumbel (1960) type 1 distribution or Morgenstern

(1956) distribution. Thus, a natural area for extensions of Chapters 3 and 4 is to

weaken the constraints in Section 3.3.2 or cover further examples of different copulas

in Chapter 4, thereby expanding the catalogue of distributions for X for which results

on Rd can be derived.

Although we consider d > 2 in Chapter 4, we constrain our focus to d = 2 when

deriving the results in Chapter 3. However, whilst we present the two-dimensional

representations of the Ledford and Tawn (1997) and Heffernan and Tawn (2004)
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models in Section 3.3.1, d-dimensional variants do exist (see Eastoe and Tawn (2012)),

and so it is reasonable to assume that the results given in Section 3.3.2 can be extended

to any finite d.

Chapters 3 and 4 provide an interesting study into the driving factors of the

extremal behaviour of aggregates, but extensions can be given for the initial model

for X. For example, we assert that Xi follows a GPD for all Xi > 0, rather than using

the typical exceedance modelling framework, i.e., (Xi − ui)|Xi > ui follows a GPD

where ui ≥ 0 is some fixed threshold; whilst we argue in Section 3.2 that this does

not affect the driving behaviour of Pr{Rd ≥ r} as r → rF , certain scaling constants

will be affected by the value of ui. A potential avenue for future work is to generalise

the marginals for Xi and allow for ui > 0. However, this will require that some

assumptions are proposed for the distribution of Xi < ui, which will contribute to the

complexity of the derivations. It may also be desirable to model the aggregate in this

framework as well; that is, we model (Rd − uR)|Rd > uR for fixed uR, which we may

assume is GPD. Deriving the relationship between each ui, i = 1, . . . , d and uR may

also be an interesting study to conduct. Finally, we assert throughout Chapters 3 and

4 that the marginal components of X are positive and we allow for positive association

only; weakening these two constraints may also provide interesting behaviour in the

upper-tail of Rd.

The results in Chapters 3 and 4 describe the first-order behaviour of Pr{Rd ≥ r}

in the limit as r → rF . Although many extreme value models are underpinned by

these such limit properties of random variables, they only characterise the behaviour

of the most extreme values of the aggregate; from a practical stance, this may not be

too useful for statistical modelling, as we will never observe data that achieve these

limits, e.g., we will never observe precipitation aggregates that attain their physical

maximum prescribed by the underlying hydrological processes. In practice, we are

often much more interested in the aggregate at a sub-asymptotic level, and so instead
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require a model for Pr{Rd ≥ r} for some large, but finite, r; as analytical results

for these probabilities do not exist in closed form, we instead rely on inference using

data-driven approaches.

In Chapter 5, we propose extensions of the spatial conditional extremes model

(Wadsworth and Tawn, 2019), which include novel parametric forms for the depen-

dence parameters and a framework for deriving aggregates of spatial processes over

spatial regions. For our model, we introduce a novel censored pseudo-likelihood ap-

proach to inference which has two benefits: firstly, we are able to address an issue

commonly attributed to modelling rainfall, namely that data often contain multiple

zero values corresponding to spatio-temporal periods without rain, and secondly, we

are able to fit our model to high-dimensional data. We detail a procedure for simu-

lating from our model and discuss methods for avoiding edge-effects; a common issue

with inference using spatial models. From our fitted model, we simulate fields that

can be used for inference on the extremal behaviour of spatial aggregates, and we

illustrate that this approach reduces the uncertainty of return level estimates. More-

over, it preserves self-consistency of return level estimates for aggregates over different

nested regions. That is, for a spatial process {Y (s) : s ∈ S} which is non-negative

everywhere, i.e., Y (s) ≥ 0 for all s ∈ S, and any nested regions B ⊂ A ⊂ S, then

our approach guarantees that estimates of return-levels for
∫
A Y (s)ds and

∫
B Y (s)ds

satisfy their natural ordering, regardless of the return period.

Chapter 6 provides an extension of the methodology detailed in Chapter 5. We use

a deterministic algorithm to classify data as being either generated by a convective,

or a non-convective, process, and then fit extensions of the marginal and extremal

dependence models described in Chapter 5 to both clusters of data, separately. We

detail extensions of the simulation procedure proposed in Section 5.3.4 which allow

us to draw realisations from both the non-convective and convective fitted models; we

then combine these into a single sample, which we use for inference on the upper-tail
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behaviour of spatial aggregates. Whilst we find that this mixture model approach

provides some improvements over the single process approach proposed in Chapter 5,

there are some limitations to both approaches which may require further considera-

tion.

The modelling approach we propose in Chapters 5 and 6 is underpinned by an

assumption that the underlying data generating process and, hence, the extremal de-

pendence structure is stationary; that is, the strength of extremal dependence between

sites is a function of their displacement. Although this assumption seems appropriate

in our application, we may find that the assumption is not realistic when considering

rainfall aggregates over much larger spatial domains; this issue has been identified

by Blanchet and Creutin (2017) and Castro-Camilo and Huser (2020) for regions in

southern France and the contiguous USA, respectively. Literature on incorporating

non-stationary extremal dependence into the spatial conditional extremes model is

limited; Wadsworth and Tawn (2019) use the deformation methodlogy that we dis-

cuss in Chapter 7. However, this approach can be computationally burdensome and

so may not be appropriate for high-dimensional data. A further extension of Chap-

ters 5 and 6, and more generally the spatial conditional extremes framework, may be

to adapt the model described in Section 5.2.2 to allow for non-stationary data. This

may involve weakening the constraint that the process {W (s)}, defined in (5.2.8), is

stationary; a possible alternative could be a Gaussian process with non-stationary

correlation function, see Stein (2005) and Paciorek and Schervish (2006). Another

possible route is to allow the dependence parameters, e.g., α and β, to be dependent

on the conditioning site sO; this could be achieved by incorporating covariates into α

and β that relate to sO, e.g., distance of sO to a feature of orography, such as the open

sea (Vandeskog et al., 2021), or by having an individual set of dependence parameters

for each conditioning site sO.

Full inference for our model is computationally infeasible for any reasonable num-
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ber of sampling locations d, as it would require evaluations of k-dimensional condi-

tional Gaussian distribution functions where k ≤ d − 1, i.e., k-variate integrals, see

Sections 5.2.2 and 5.3.2, and (C.1.4) in Appendix C.1.3. Whilst full computation of

these integrals may not be feasible, we could instead consider using approximations.

For example, in Section 4.2.3 we detail Laplace’s method (Laplace, 1986) for approx-

imating multivariate integrals of a particular form, which can be applied to evaluate

(C.1.4); thus, this technique could be used here to reduce the computational time of

inference. Application of Laplace’s method for approximating Gaussian CDFs has

already been applied successfully in the literature; a class of latent Gaussian mod-

els rely on the integrated nested Laplace approximation (INLA) for high-dimensional

Bayesian inference (Rue et al., 2009), and INLA is a method that relies on approxi-

mating posterior distributions via Laplace’s method.

We note that even if evaluation of (C.1.4) was computationally feasible, we may

still be constrained to smaller dimension d due the computational cost of inverting

the (d− 1)× (d− 1) correlation matrix, required when evaluating the Gaussian den-

sity given by (C.1.1). This is a common problem with models for high-dimensional

data that rely on Gaussian processes, but these issues can often be circumvented with

“sparse” modelling techniques, which rely on low-rank approximations of the corre-

lation matrix, which are computationally easier to invert. Such techniques include

the stochastic partial differential equation (SPDE) approach, proposed by Lindgren

et al. (2011), which approximates a Gaussian process by a finite-dimensional Gaussian

Markov random field; when combined with INLA, this proves to be a particularly pow-

erful tool for conducting inference for spatial models of high-dimensional data, and

has been applied in the context of extreme quantile regression by Castro-Camilo et al.

(2019) and Castro-Camilo et al. (2021), with Opitz et al. (2018) and Vandeskog et al.

(2021) using this framework to model precipitation extremes. Moreover, Simpson

et al. (2020) use the INLA-SPDE framework to conduct inference using the spatial
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conditional extremes framework, which presents a potential means of accommodat-

ing large d in the modelling approach described in Chapter 5. However, to extend

the work of Simpson et al. (2020) to allow sparse modelling of extreme preciptation,

certain shortcomings must first be addressed: firstly, they assert that the dependence

parameters β(h) and σ(h), given in Section 5.2.2, are constant for all distances, i.e.,

β(h) = β and σ(h) = σ for all h = ‖s − sO‖, which would be inappropriate for

modelling precipitation following the discussion given in Section 5.4.3; secondly, they

model the residual process Z(s|sO) with Gaussian margins, i.e., δ(h) = 2 for all h ≥ 0,

which again is not an appropriate modelling choice for precipitation, see Figure 5.4.2;

and finally, Simpson et al. (2020) fit their model to uncensored data, and so adapta-

tions would need to be made to accommodate the censoring techniques we describe

in Section 5.2.2. Although the INLA-SPDE approach is an appealing framework for

inducing sparsity in spatial models, it is not the only method; Hazra and Huser (2019)

propose a low-rank t-process for modelling extreme sea surface temperatures that is

constructed using a low-rank Gaussian process (Wikle, 2010). Similar techniques may

be applicable to the residual process Z(s|sO) in our model, as it is also constructed

from a Gaussian process.

Fluvial floods are generally caused by extreme rainfall aggregated over both spatial

regions and temporal periods, and whilst the model in Chapter 5 addresses the first

aspect, as it stands it cannot be used for inference on spatio-temporal aggregates; this

would require a temporal component in the model, that describes dependence between

Xt(sO)|Xt(sO) > u and {Xt+τ (s) : s ∈ S} for τ > 0. Simpson and Wadsworth

(2021) propose a spatio-temporal extension of the spatial conditional extremes model

which could be applied to precipitation using the inference techniques we propose in

Section 5.3.1. However, it is not immediately clear how we would use replications

from a spatio-temporal model to obtain a sample of spatio-temporal aggregates, and

so extending the technique we describe in Section 5.3.5 could be potential further
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work.

We find that our modelling approach in Chapter 5 is able to capture the extremal

behaviour of spatial aggregates well, see Section 5.4.4. That is, when we average over

realisations from our fitted model for extreme rainfall, we find similar characteristics

to those present in the data. For the purposes of this work that is sufficient, as our

interest lies in the average behaviour of the underlying process, rather than the process

itself. However, when we consider single realisations from this model, we find that

they may not appear realistic when compared to observed extreme rainfall events, see

Figure 5.4.3; this suggests that there are some improvements that can be made to the

model so that it can capture more realistic properties of rainfall. Firstly, our model

assumes that rainfall is generated by a single underlying process. However, we know

that in real life this is not the case; extreme precipitation is generated by a mixture

of processes, e.g., high-intensity and spatially localised, convective events, and low-

intensity, frontal events that cover a much larger spatial area (Schroeer et al., 2018),

and that these processes will have their own respective marginal and dependence

behaviour. Incorporating separate models for these two types of processes in our

approach will be particularly useful when we consider modelling spatial aggregates,

as we are likely to find that the respective rates at which these two types of process

contribute to the extremal behaviour of spatial aggregates will vary with the region

size, i.e., the extremal behaviour of aggregates for smaller and larger regions will be

driven mostly by convective and frontal events, respectively. We begin to explore

mixture modelling in Chapter 6 by taking a very simple approach and assuming that

rainfall in a given hour is generated by one of two processes, and that these processes

are independent of one another, with separate margins and dependence structure. We

assume that all values in an observed field can be classified as coming from only one

of these two processes. This is likely to be a good approximation over regions of the

size that we study, but for larger regions we might actually expect that there is a
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mixture of rainfall and convective events within a single field. A possible extension of

our model could be to introduce extra spatial processes to help to account for events

that are not generated by the first two processes; this would require either adapting

the identification algorithm we use to allow for more than two labels or adopting a

means of probabilistic clustering using a Bayesian framework.

Another way of improving the realism in our model is to remove the constraint

that dependence within the residual process Z(s|sO) is stationary, but anisotropic, and

Gaussian, as this constraint causes realised events to exhibit a generally consistent

orientation and elliptical profile. In fact, extreme precipitation often occurs along

weather fronts, i.e., boundaries that separate air masses with different atmospheric

properties (Egger and Hoinka, 1992); this results in events forming as bands of rainfall,

where the orientation is affected by wind direction, rather than elliptical events At

present, our dependence model cannot capture events of this type; however, a first step

may be to relate the anisotropy parameters (θ, L), given in (5.2.11), to covariates that

describe atmospheric conditions. An alternative, non-parametric approach could be to

use the empirical distribution of the residuals, rather than a parametric model, which

could be achieved using the following two-step procedure: we first make the working

assumption that Z(s|sO) follows the parametric model we propose in Section 5.2.2,

and then fit the model under this assumption to attain estimates for the parameter

functions α and β; these estimates can then be used to get an empirical sample of

residuals, which are then used for simulation. We could then further assume that

the residual process is a mixture of processes, and apply dimensionality reduction

techniques, e.g., empirical orthogonal function (EOF) analysis, to identify classes of

dependence structures that the residuals exhibit; simulation of an event may then

require choosing one of these dependence classes with some probability. To simulate

using the empirical residuals, we would be required to employ resampling techniques,

which have been used in the context of spatial extremes by Palacios-Rodŕıguez et al.
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(2020) and Opitz et al. (2021), with the former applied to extreme precipitation.

In Chapter 7, we propose an approach to modelling non-stationary extremal de-

pendence, which extends the spatial deformation methodology of Sampson and Gut-

torp (1992) and Smith (1996). We do this by replacing the objective function in these

methods with the Frobenius norm of the difference between empirical, and theoretical,

pairwise dependency matrices, with the theoretical measures coming from a station-

ary dependence model. Most of our focus is on χ(h∗ij) as the dependence measure,

where χ(h∗ij) = limq→1 χq(h
∗
ij) for χq(h

∗
ij) defined in (7.2.2) and h∗ij = ‖s∗i −s∗j‖ denotes

pairwise distance between sites s∗i and s∗j in the deformed space; however, we show

that χ(h∗ij) can easily be replaced by other measures, such as χq(h
∗
ij) with q < 1,

correlation or the coefficient of tail dependence, η. As with many areas of extreme

value analysis, there is a bias-variance trade-off present when estimating χq. Using

values of q closer to 1 puts greater focus on extremal dependence at the expense of

increased variance of the estimator. In Sections 7.3 and 7.4, we choose q close to 1

whilst preserving some initial spatial structure observed in the χ estimates. However,

if q is too high then it is possible that any structure is masked by the high variability

of the estimators and the deformation methodology is likely to fail in such circum-

stances. We have not considered the effect of estimator variability on the deformation,

but note this could form a future research direction.

A further issue that could be considered is the possible non-bijectivity of the map-

ping used in the deformation. We detail an approach to reduce the chances of a

non-bijective deformation occuring in Section 7.3, however, this method is not par-

ticularly robust. Without prior specification of a triangulation on the coordinate

system, bijectivity of deformations must be checked by eye which can become cum-

bersome when a large number are produced. To avoid this necessary supervision, the

G-plane can be represented as a Delaunay triangulation, see Iovleff and Perrin (2004)

and Youngman (2020). Incorporating this extra computational aspect into the model
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adds to the complexity, and so as to preserve the simplicity of our approach, we leave

this as a future consideration.



Appendix A

Supplementary material for

Chapter 3

A.1 Outline

Appendix A.2 provides justification for the tail formulation for R in (3.2.3) in the main

text by linking this characterisation to the GPD tail model, (3.1.2) in the main text.

The rest of the Supplementary Material then follows with proofs for Theorem 3.3.1-

3.3.4 which are detailed in Section 3.3.2 in the main text. Appendix A.4 and A.5

provide the proofs of Theorems 3.3.2 and 3.3.3, respectively; both proofs follow a

similar outline to that of the proof for the ξ < 0 case for Theorem 3.3.1, which is

given in Appendix A.3.1 of the main text. Appendix A.6 concludes with the proof of

Theorem 3.3.4.

233
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A.2 Linking (3.2.3) to the usual GPD modelling

framework

Assume that (3.2.3) holds in equality, rather than asymptotically (as in = not ∼), for

r ≥ uR for fixed uR ≥ 0. If ξR > 0, we have Pr{R ≥ r} = K1r
−1/ξR for r ≥ uR, and

then for r > 0

Pr{R ≥ r + uR|R > uR} =
K1(r + uR)−1/ξR

K1u
−1/ξR
R

=

(
1 +

r

uR

)−1/ξR

=

(
1 +

ξRr

uRξR

)−1/ξR

.

It follows that (R− uR) | (R > uR) ∼ GPD(σR, ξR), with σR = uRξR. A similar

approach can be used to show that if ξR = 0, then (R− uR) | (R > uR) is GPD(σR, 0).

For ξR < 0 and r > 0 with r + uR < rF , we have

Pr{R ≥ r + uR|R > uR} =
K3

(
1− r+uR

rF

)−1/ξR

K3

(
1− uR

rF

)−1/ξR
=

(
1− r

(rF − uR)

)−1/ξR

=

(
1 + ξR

r

(−ξR)(rF − uR)

)−1/ξR

,

and so (R− uR) | (R > uR) ∼ GPD(σR, ξR), with σR = (−ξR)(rF − uR). Note that

we have made no assumptions about rF as this is fully determined by the marginal

upper-endpoints.

A.3 Proof of Theorem 3.3.1

A.3.1 Negative Shape Case: ξ < 0

The general framework of the proof is as followed: we begin by deriving the joint

density of (X1, X2) implied by the dependence model given in (3.3.1), which we give on

GPD margins. We use the probability integral transform to perform a transformation

(X1, X2)→ (R,W ), where R = X1 +X2 and W is an auxiliary variable, chosen as its
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support does not depend on R for R greater than some threshold. We integrate out

W to give the density of R and derive its survival function.

Combining (3.3.1) and (3.1.2) with ξ1 = ξ2 = ξ < 0, we have that

Pr

{
1−

(
1 + ξ

X1

σ1

)−1/ξ

> 1− 1

x1

, 1−
(

1 + ξ
X2

σ2

)−1/ξ

> 1− 1

x2

}

=
L(x1 + x2)

(x1x2)
1
2η

g

(
x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 + x2) is bounded by (0, 1). Under the

assumption that L(y) acts as a constant which can be absorbed by g for y > v for

some v > 0, we have Pr {X1 > x1, X2 > x2} ∼ x̃
− 1

2ηξ

1 x̃
− 1

2ηξ

2 g (ωx) for x1 → xF1 and

x2 → xF2 , such that ωx = x̃
1/ξ
1 /(x̃

1/ξ
1 + x̃

1/ξ
2 )→ ω∗x ∈ (0, 1) and where x̃i = (1 + ξxi/σi)

for i = 1, 2. Assuming that the first and second derivatives of g exist, then the density

of (X1, X2) is

fX1,X2(x1, x2) ∼ (x̃1x̃2)−
1

2ηξ
−1

σ1σ2

(A.3.1)

×

[
g (ωx)

4η2
+ (x̃1x̃2)

1
ξ

x̃
1/ξ
1 − x̃1/ξ

2(
x̃

1/ξ
1 + x̃

1/ξ
2

)3 g
′
(ωx)−

(x̃1x̃2)
2
ξ(

x̃
1/ξ
1 + x̃

1/ξ
2

)4 g
′′

(ωx)

]
,

(A.3.2)

as x1 → xF1 and x2 → xF2 such that ωx → ω∗x ∈ (0, 1). We now apply the transforma-

tion (X1, X2)→ (R,W ), where

R = X1 +X2, W =
(σ1 + ξX1)

(σ1 + ξX1) + (σ2 + ξX2)
,

where (1 + ξX1/σ1) = − ξ
σ1

(rF − R)W and (1 + ξX2/σ2) = − ξ
σ2

(rF − R)(1−W ) for

rF = −(σ1/ξ + σ2/ξ) the upper-endpoint of R and where (rF − r) is the determinant
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of the Jacobian of the transformation. The density of (R,W ) as r → rF , is

fR,W (r, w) ∼ (−ξ)−
1
ηξ
−1

η(σ1 + σ2)−
1
ηξ

(rF − r)−
1
ηξ
−1g∗(w)

where

g∗(w) =
η(σ1 + σ2)

1
ηξ

(−ξ)(σ1σ2)−
1
ηξ

{w(1− w)}−
1

2ηξ
−1

[
g (tw)

4η2

+

(
w(1− w)

σ1σ2

) 1
ξ

(
w
σ1

)1/ξ

−
(

1−w
σ2

)1/ξ

((
w
σ1

)1/ξ

+
(

1−w
σ2

)1/ξ
)3 g

′
(tw)−

(
w(1−w)
σ1σ2

) 2
ξ((

w
σ1

)1/ξ

+
(

1−w
σ2

)1/ξ
)4 g

′′
(tw)

]
,

and

tw = (w/σ1)1/ξ
{

(w/σ1)1/ξ + ((1− w)/σ2)1/ξ
}−1

∈ (0, 1).

We now show that the support of W is independent of R given that R is above

u = max{xF1 , xF2 }. Let xmax = max{−σ1/ξ,−σ2/ξ} and xmin = min{−σ1/ξ,−σ2/ξ}.

As X1 +X2 ≤ −(σ1/ξ+σ2/ξ) = xmax+xmin, there exists a random variable P ∈ [0, 1],

such that X1 +X2|(X1 +X2 > xmax) = xmax + xminP . Now for i = arg max
j=1,2

{−σj/ξ},

let Xi|(X1 +X2 > xmax) = xmaxQi for random 0 < Qi ≤ 1. Then as

0 ≤ (X1 +X2−Xi)|(X1 +X2 > xmax) ≤ xmin ⇒ 0 ≤ xmax + xminP − xmaxQi ≤ xmin,

it follows that Qi must satisfy

− P

1− P
< 0 ≤ xmax(1−Qi)

xmin(1− P )
< 1.

Now consider W . If we have i = 1, then

W =

σ1
ξ

+X1

σ1
ξ

+ σ2
ξ

+X1 +X2

=
−xmax + xmaxQ1

−xmax − xmin + xmax + xminP
=
xmax(1−Q1)

xmin(1− P )
,
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and so W ∈ [0, 1] as needed. However, if i = 2 we instead have W = 1 − xmax(1 −

Q2)/{xmin(1−P )}; this also gives W ∈ [0, 1] and so the support of W does not depend

on R when R > u. Now consider the survival function of R as s→ rF , so s > u, then

Pr{R ≥ s} ∼
∫ ∞
s

∫ 1

0

(−ξ)−
1
ηξ
−1

η(σ1 + σ2)−
1
ηξ

(rF − r)−
1
ηξ
−1g∗(w)dwdr

∼ K

∫ ∞
s

(−ξ)−
1
ηξ
−1

η(σ1 + σ2)−
1
ηξ

(rF − r)−
1
ηξ
−1dr

∼ K
(−ξ)−

1
ηξ

(σ1 + σ2)−
1
ηξ

(rF − s)−
1
ηξ = K

(
1 + ξ

s

σ1 + σ2

)− 1
ηξ

,

where the limits hold as fR,W is a valid probability density, and K is a constant, given

by

K =

∫ 1

0

g∗(w)dw <∞. (A.3.3)

A.3.2 Positive Shape Case: ξ > 0

We begin by noting that

Pr{R ≥ r} = Pr{R ≥ r∩X1 > u1}+Pr{R ≥ r∩X2 > u2}−Pr{R ≥ r∩X1 > u1∩X2 > u2},

(A.3.4)

for any fixed constants u1, u2 > 0. To derive Pr{R ≥ r}, we consider each of the terms

in (A.3.4) in turn. We first derive Pr{R ≥ r ∩X1 > u1} for large u1, which we do by

starting with the dependence model in (3.3.2) and deriving the joint density of (Y1, Y2)

on standard Exponential margins. We then transform these to heavy tailed GPD

margins, X1 and X2, and we perform the transformation (X1, X2) → (R,W ), where

W is an auxiliary variable. To integrate out W , we perform another transformation

W → T where T is an auxiliary variable chosen so that it is possible to integrate

over and derive the marginal density of R|X1 > u1; we then use this to determine

the asymptotic behaviour of fR≥r∩X1>u1 and derive its survival function. The Pr{R ≥
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r∩X2 > u2} follows by symmetry, and we then evaluate Pr{R ≥ r∩X1 > u1∩X2 > u2}

using (3.3.1).

Assume that limit (3.3.2) holds for a(y) = α(y) and b(y) = yβ for some α ∈ [0, 1]

and β ∈ [0, 1] for some large u. We denote the residual distribution by GZ(·) and

assume it is differentiable with density gZ . Then the joint density of (Y1, Y2)|Y1 > u

is

f(Y1,Y2)|Y1>u(y1, y2) = exp(−y1)y−β1 gZ

(
y2 − αy1

yβ1

)
,

for y1 > u1 and y2 ≥ 0. We now transform to heavy tailed marginals X1 ∼ GPD(σ1, ξ)

and X2 ∼ GPD(σ2, ξ) for ξ > 0 through the transformation (Y1, Y2) → (X1, X2)

where Yi = 1
ξ

log(1 + ξXi/σi) for i = 1, 2. We also note that Y1 > u is equivalent to

X1 >
σ1
ξ
{exp(ξu)− 1} := u1 and so we rewrite the condition as X1 > u1. The joint

density of (X1, X2)|X1 > u1 is

f(X1,X2)|X1>u1(x1, x2) = |J |ξβx̃−1/ξ
1 {log (x̃1)}−β gZ (z∗x)

=
ξβ

σ1σ2

x̃−1
2 x̃

−1/ξ−1
1 {log (x̃1)}−β gZ (z∗x) ,

for large u and where x̃i = 1 + ξxi/σi for i = 1, 2 and |J | = (σ1σ2x̃1x̃2)−1 is the

determinant of the Jacobian of the transformation and z∗x = ξβ−1{log(x̃1)}−β[log(x̃2)−

α log(x̃1)] where z∗x ∈ R if β < 1 and z∗x ≥ −α, otherwise. A final transformation

to pseudo-radial and -angular components (X1, X2)→ (R,W = X1/R) is performed,

with Jacobian determinant |J | = R. The density of (R,W )|X1 > u1 is

f(R,W )|X1>u1(r, w) = r
ξβ

σ1σ2

(
1 + ξ

r(1− w)

σ2

)−1(
1 + ξ

rw

σ1

)−1/ξ−1

×
{

log

(
1 + ξ

rw

σ1

)}−β
gZ (z∗w) ,
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with

z∗w = ξβ−1
log
(

1 + ξ r(1−w)
σ2

)
− α log

(
1 + ξ rw

σ1

)
{

log
(

1 + ξ rw
σ1

)}β .

Note that as we have X1 > u1, this implies that w ∈ [u1/r, 1]. However, we can prove

that ∫ c1

u1/r

f(R,W )|X1>u1(r, w)dw ∼
∫ c1

0

f(R,W )|X1>u1(r, w)dw (A.3.5)

as r →∞ by showing that f(R,W )|X1>u1(r, w) goes to infinity at a sufficiently slow rate

as w → 0. This follows as

f(R,W )|X1>u1(r, w) ∼ ξβ−1

σ1

{
log

(
1 + ξ

rw

σ1

)}−β
gZ (z∗w) ∼ ξβ−1

σ1

(
ξ
r

σ1

)−β
w−βgZ (z∗w) ,

as w → 0. Note that as w → 0, we have that z∗w → ∞; as gZ is a valid density, it

follows that gZ(z∗w) → 0 as w → 0 and so f(R,W )|X1>u1(r, w) must go to infinity at a

slower rate than w−β as w → 0 for β ≤ 1. Hence, f(R,W )|X1>u1(r, w) must integrate

to a function that goes to zero as w → 0, and so it follows that the asymptotic

relationship in (A.3.5) holds.

To integrate W out of fR,W , we use the transformation W → T , where W =

1 − R−T for T ∈ (0,∞). The determinant of the Jacobian of this transformation is

R−T log(R), and the joint density of (R, T ) for t ∈ (0,∞) and as r →∞ is

f(R,T )|X1>u1(r, t) ∼
ξβr1−t log(r)

σ1σ2

(
1 + ξ

r1−t

σ2

)−1(
1 + ξ

r(1− r−t)
σ1

)−1/ξ−1

×
{

log

(
1 + ξ

r(1− r−t)
σ1

)}−β
gZ (z∗t )

∼ r−1/ξ−1r1−t{log(r)}1−β ξ
β−1ξ−1/ξ

σ
−1/ξ
1 σ2

(
1 + ξ

r1−t

σ2

)−1

gZ (z∗t )
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where

z∗t = ξβ−1
log
(

1 + ξ r
1−t

σ2

)
− α log

(
1 + ξ r(1−r

−t)
σ1

)
{

log
(

1 + ξ r(1−r
−t)

σ1

)}β ∼ ξβ−1
log
(

1 + ξ r
1−t

σ2

)
− α log (r)

{log (r)}β
,

as r → ∞; this follows as 1 − r−t ∼ 1 as r → ∞ and for any t ∈ (0,∞). Hence the

density of R is

fR|X1>u1(r) ∼
∫ ∞

0

f(R,T )|X1>u1(r, w)dw

∼
(
ξ

σ1

)−1/ξ

r−1/ξ−1

∫ ∞
0

r1−t{log(r)}1−β ξ
β−1

σ2

(
1 + ξ

r1−t

σ2

)−1

gZ (z∗t ) dw

∼ (ξr)−1/ξ−1

σ
−1/ξ
1

[
ḠZ (z∗t )

]∞
0

∼ (ξr)−1/ξ−1

σ
−1/ξ
1

[
ḠZ

(
−αξβ−1{log(r)}1−β)− ḠZ

(
ξβ−1(1− α){log(r)}1−β)]

∼ KG
(ξr)−1/ξ−1

σ
−1/ξ
1

,

as r →∞ and where

KG =


ḠZ(0), if α = 0,

ḠZ(−α)− ḠZ(1− α), if β = 1,

1, otherwise,

(A.3.6)

and so we have Pr{R ≥ s|X1 > u1} ∼ KGξ
−1/ξσ

1/ξ
1 s−1/ξ as s→∞. It follows that

Pr{R ≥ s ∩X1 > u1} ∼ exp(−u)KGξ
−1/ξσ

1/ξ
1 s−1/ξ, (A.3.7)

as s → ∞ and for large u as Pr(X1 > u1) = Pr(Y1 > u) = e−u. We now assume

that Y1 and Y2 in (3.3.2) are interchangeable, i.e., a similar limit holds for (Y2 > u) ≡

(X2 > u2) with u2 = σ2
ξ
{exp(ξu)− 1}. By a symmetric argument, we can also show
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that

Pr{R ≥ s ∩X2 > u2} ∼ exp(−u)KGξ
−1/ξσ

1/ξ
2 s−1/ξ, (A.3.8)

as s→∞ and for large u. From (A.3.4), we now require only

Pr{(R ≥ s) ∩ (X1 > u1) ∩ (X2 > u2)}.

To derive this term, we first consider Pr{R ≥ s|(X1 > u1 ∩ X2 > u2)}, which we

derive using characterisation (3.3.1). Assuming limit (3.3.1) to hold for fixed u1 and

u2, we follow the beginning of the proof in Section A.3.1. We derive the joint density

of (X1, X2)|(X1 > u1 ∩ X2 > u2) and then perform the marginal transformation

(X1, X2) → (R,W ), where W is an auxiliary variable that is to be integrated out.

This leaves us with the marginal density of R|(X1 > u1 ∩ X2 > u2) which allows us

to find the survival function of R|(X1 > u1 ∩X2 > u2).

From (A.3.1), we have the density of (X1, X2) is

fX1,X2(x1, x2) ∼ (x̃1x̃2)−
1

2ηξ
−1

σ1σ2

×

[
g (ωx)

4η2
+ (x̃1x̃2)

1
ξ

x̃
1/ξ
1 − x̃1/ξ

2(
x̃

1/ξ
1 + x̃

1/ξ
2

)3 g
′
(ωx)−

(x̃1x̃2)
2
ξ(

x̃
1/ξ
1 + x̃

1/ξ
2

)4 g
′′

(ωx)

]
,

as x1 → ∞ and x2 → ∞ such that ωx = x̃
1/ξ
1 /(x̃

1/ξ
1 + x̃

1/ξ
2 ) → ω∗x ∈ (0, 1) and where

x̃i = (1+ξxi/σi) for i = 1, 2. We now perform the transformation (X1, X2)→ (R,W =

X1/R) where W ∈ [u1/R, 1− u2/R], which has Jacobian determinant |J | = r, and it

follows that f(R,W )|(X1>u1∩X2>u2)(r, w) ∼ r
σ1σ2

g∗(r, w) for w ∈ [u1/r, 1 − u2/r] and as
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r →∞ and where

g∗(r, w) =

(
1 + ξ

rw

σ1

)− 1
2ηξ
−1(

1 + ξ
r(1− w)

σ2

)− 1
2ηξ
−1

×

[
g (tr,w)

4η2
+ tr,w(1− tr,w)(2tr,w − 1)g

′
(tr,w)− t2r,w(1− tr,w)2g

′′
(tr,w)

]
,

(A.3.9)

and

tr,w =

(
1 + ξ rw

σ1

)1/ξ

(
1 + ξ rw

σ1

)1/ξ

+
(

1 + ξ r(1−w)
σ2

)1/ξ
.

Now, recall that we have W ∈ [u1/R, 1− u2/R]. It follows that, as r →∞, that

fR|(X1>u1∩X2>u2)(r) ∼ (σ1σ2)−1rI(r),

where I(r) =
∫ 1−u2/r
u1/r

g∗(r, w)dw for g∗ defined in (A.3.9). To evaluate the integral

I(r), we make different assumptions on how the tails of g, and hence g∗, behave; we

consider two cases, each with I(r) <∞.

Case 1 We assume Condition 2. Note that w → 0⇒ tr,w → 0. We now rewrite the

integral I(r) = Id(r) + I1(r) + I2(r), where

Id(r) =

∫ 1−d2

d1

g∗(r, w)dw, I1(r) =

∫ d1

u1/r

g∗(r, w)dw, and I2 =

∫ 1−u2/r

1−d2
g∗(r, w)dw,

where d1 and d2 are constants chosen such that d1 > u1/r, d2 > u2/r and d1 < 1− d2.

We show that, as r →∞, we have that I(r) ∼ I1(r) + I2(r). First, consider Id(r). As
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r →∞, we have

tr,w ∼

(
ξ rw
σ1

)1/ξ

(
ξ rw
σ1

)1/ξ

+
(
ξ r(1−w)

σ2

)1/ξ
=

(
w
σ1

)1/ξ

(
w
σ1

)1/ξ

+
(

(1−w)
σ2

)1/ξ
= tw,

and it follows that g∗(r, w) ∼ ξ−
1
ηξ
−2(σ1σ2)

1
2ηξ

+1r−
1
ηξ
−2hw(w), where

hw(w) = w−
1

2ηξ
−1(1−w)−

1
2ηξ
−1

[
g (tw)

4η2
+ tw(1− tw)(2tw − 1)g

′
(tw)− t2w(1− tw)2g

′′
(tr,w)

]
.

Thus, we have Id(r) ∼ Kdr
− 1
ηξ
−2 for constantKd = ξ−

1
ηξ
−2(σ1σ2)

1
2ηξ

+1
∫ 1−d2
d1

hw(w)dw >

0. Now, consider I1(r). We begin by noting that as r →∞ and for w ∈ [u1/r, c1], we

have

tr,w ∼
(

1 + ξ
rw

σ1

)1/ξ (
ξr

σ2

)−1/ξ

→ 0.

From (A.3.9), it follows that

g∗(r, w) ∼ Kg

(
1

4η2
− κ2

)
ξ−

1
2ηξ
−κ
ξ
−1(σ2)

1
2ηξ

+κ
ξ

+1r−
1

2ηξ
−κ
ξ
−1

(
1 + ξ

rw

σ1

)− 1
2ηξ

+κ
ξ
−1

,

and

I1(r) ∼ Kg

(
1

4η2
− κ2

)
ξ−

1
2ηξ
−κ
ξ
−1(σ2)

1
2ηξ

+κ
ξ

+1r−
1

2ηξ
−κ
ξ
−1

∫ d1

u1/r

(
1 + ξ

rw

σ1

)− 1
2ηξ

+κ
ξ
−1

dw

∼
(
κ− 1

2η

)−1

Kg

(
1

4η2
− κ2

)
ξ−

1
2ηξ
−κ
ξ
−1(σ2)

1
2ηξ

+κ
ξ

+2r−
1

2ηξ
−κ
ξ
−2

×

[(
1 + ξ

rw

σ1

)− 1
2ηξ

+κ
ξ

]d1
u1/r

∼ K4r
− 1

2ηξ
−κ
ξ
−2,
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for constant

K4 =

(
1

2η
− κ
)−1

Kg

(
1

4η2
− κ2

)
ξ−

1
2ηξ
−κ
ξ
−1(σ2)

1
2ηξ

+κ
ξ

+2

(
1 + ξ

u1

σ1

)− 1
2ηξ

+κ
ξ

> 0

and where the last line follows as − 1
2ηξ

+ κ
ξ
< 0. A symmetric argument can be used

to show that I2(r) ∼ K5r
− 1

2ηξ
−κ
ξ
−2 where

K5 =

(
κ− 1

2η

)−1

Kg

(
1

4η2
− κ2

)
ξ−

1
2ηξ
−κ
ξ
−1(σ1)

1
2ηξ

+κ
ξ

+2

(
1 + ξ

u2

σ2

)− 1
2ηξ

+κ
ξ

> 0.

Comparing the powers on the r term in Id(r), I1(r) and I2(r), and with − 1
ηξ
< − 1

2ηξ
+ κ

ξ

for all η, κ, it follows that I(r) ∼ I1(r)+I2(r) ∼ (K4+K5)r−
1

2ηξ
−κ
ξ
−2 as r →∞. Hence,

fR|(X1>u1∩X2>u2)(r) ∼ (σ1σ2)−1(K4 +K5)r−
1

2ηξ
−κ
ξ
−1

and

Pr{R ≥ s|(X1 > u1) ∩ (X2 > u2)} ∼ (σ1σ2)−1(K4 +K5)

∫ ∞
s

r−
1

2ηξ
−κ
ξ
−1dr ∼ K6s

− 1
2ηξ
−κ
ξ ,

as s→∞ and where K6 = ξ(σ1σ2)−1(K4 +K5)(1/2η + κ)−1 > 0.

Recall that ui = σi
ξ
{exp(ξu)− 1} for i = 1, 2. From (3.3.1), we have Pr{(X1 >

u1) ∩ (X2 > u2)} = exp(−u/η)g(1/2) for large u1, u2, and hence

Pr{(R ≥ r) ∩ (X1 > u1) ∩ (X2 > u2)} ∼ K6 exp

(
−u
η

)
g

(
1

2

)
r−

1
2ηξ
−κ
ξ , (A.3.10)

as r →∞ and for large u. Combining (A.3.7), (A.3.8) and (A.3.10), we have Pr{R ≥
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r} ∼ K+r−1/ξ as r →∞, where

K+ =


exp(−u)KG

{
ξ(

σ
1/ξ
1 +σ

1/ξ
2

)ξ
}−1/ξ

−K6 exp
(
−u
η

)
g
(

1
2

)
, if 1

2η
+ κ = 1,

exp(−u)KG

{
ξ(

σ
1/ξ
1 +σ

1/ξ
2

)ξ
}−1/ξ

, if 1
2η

+ κ > 1,

(A.3.11)

for KG defined in (A.3.6). Note that as η ∈ [1/2, 1] and κ < 1/(2η), we have 1
2η

+κ ≥ 1

only.

Case 2 We now assume that η = 1 and g satisfies Conditions 3 and 3a. Then

I(r) =

∫ 1−u2/r

u1/r

g∗(r, w)dw ∼
∫ 1

0

g∗(r, w)dw, (A.3.12)

for g∗ defined in (A.3.9). To illustrate this, we first show that for fixed r, we have

that g∗(r, w) ∼ C1(r) as w → 0 and g∗2(w) ∼ C2(r) as w → 1, where C1(r), C2(r) > 0

are constants with respect to w. As g satisfies Condition 3, we have that

g∗(r, w) =

(
1 + ξ

rw

σ1

)− 1
ξ
−1(

1 + ξ
r(1− w)

σ2

)−1
1− tr,w
tr,w

{
−H1,2

(
1,

1− tr,w
tr,w

)}
,

where H12(1, ·) < 0. We then have

g∗(r, w) ∼
(

1 + ξ
r

σ2

)1/ξ−1
{
−H1,2

(
1,

(
1 + ξ

r

σ2

)1/ξ
)}

:= C1(r)

as w → 0, which follows as 1 − w ∼ 1 and (1 − tr,w)/tr,w ∼ (1 + ξr(1 − w)/σ1)1/ξ.

Conversely,

g∗(r, w) ∼
(

1 + ξ
r

σ1

)− 2
ξ
−1
{
−H1,2

(
1,

(
1 + ξ

r

σ1

)− 1
ξ

)}
:= C2(r)
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as w → 1. Hence, (A.3.12) holds, and we have that, as r →∞,

I(r) ∼
∫ 1

0

(
1 + ξ

rw

σ1

)− 1
ξ
−1(

1 + ξ
r(1− w)

σ2

)−1
1− tr,w
tr,w

{
−H1,2

(
1,

1− tr,w
tr,w

)}
dw

∼
∫ 1

0

(
ξ
rw

σ1

)− 1
ξ
−1(

ξ
r(1− w)

σ2

)−1
1− tw
tw

{
−H1,2

(
1,

1− tw
tw

)}
dw

∼ ξ−
1
ξ
−1(σ1σ2)

1
2ξ r−

1
ξ
−1

∫ 1

0

g∗2(w)dw,

where

tr,w ∼

(
w
σ1

)1/ξ

(
w
σ1

)1/ξ

+
(

1−w
σ2

)1/ξ
:= tw

as r →∞ and where

g∗2(w) =

(
σ1

σ2

) 1
2ξ

ξ−1w−
1
2ξ
−1(1− w)−1 1− tw

tw

{
−H12

(
1,

1− tw
tw

)}
.

It follows that

Pr{R ≥ s|(X1 > u1) ∩ (X2 > u2)} ∼ K

∫ ∞
s

ξ−
1
ξ
−1(σ1σ2)

1
2ξ r−

1
ξ
−1dr ∼ Kξ−

1
ξ (σ1σ2)

1
2ξ s−

1
ξ ,

(A.3.13)

as s → ∞ and where K =
∫ 1

0
g∗2(w)dw < ∞. From (3.3.1), we have Pr{(X1 >

u1) ∩ (X2 > u2)} = exp(−u)g(1/2) for large u1, u2, and hence

Pr{(R ≥ r)∩(X1 > u1)∩(X2 > u2)} ∼ K exp(−u)g (1/2) ξ−
1
ξ (σ1σ2)

1
2ξ r−

1
ξ , (A.3.14)
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as r →∞ and for large u. Combining (A.3.7), (A.3.8) and (A.3.14), we have

Pr{R ≥ r} ∼ exp(−u)KG

 ξ(
σ

1/ξ
1 + σ

1/ξ
2

)ξ

−1/ξ

r−1/ξ

−K exp (−u) g

(
1

2

)
ξ−

1
ξ

(σ1σ2)−
1
2ξ

r−
1
ξ ,

as r →∞ and for K defined in (A.3.13).

Combining Cases 1 and 2 we have that Pr{R ≥ s} ∼ K∗s−
1
ξ as s→∞, where

K∗ =


K+, for Case 1,

exp(−u)ξ−1/ξ
{
KG(σ

1/ξ
1 + σ

1/ξ
2 )− ξKg

(
1
2

)
(σ1σ2)

1
2ξ

}
, for Case 2,

(A.3.15)

and for K+ and KG defined in (A.3.11) and (A.3.6), respectively.

A.4 Proof of Theorem 3.3.2

We now provide the proof of Theorem 3.3.2. The general framework of the proof

is similar to that of the ξ < 0 case for Theorem 3.3.1. We begin by deriving the

joint density of (X1, X2) implied by the dependence model given in (3.3.1). We use

the probability integral transform to perform the transformation (X1, X2)→ (R,W ),

where R = X1 + X2 and W is an auxiliary variable. This particular transformation

does not leave R and W independent and so we make some assumptions about the

relationship between R and W , and g(w), which allow us to integrate W out from

the joint density analytically and derive the survival function of R. Two cases are

presented for assumptions on g(w) that provide different forms for Pr{R ≥ r}.
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From (3.3.1) and (3.1.2), we have that

Pr

{
1− exp

{
−X1

σ1

}
> 1− 1

x1

, 1− exp

{
−X2

σ2

}
> 1− 1

x2

}
=
L(x1 + x2)

(x1x2)
1
2η

g

(
x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 + x2) is bounded by (0, 1). Under the

assumption that L(y) acts as a constant which can be absorbed by g for y > v for

some v > 0, we have Pr {X1 > x1, X2 > x2} ∼ (x̃1x̃2)−
1
2η g (ωx) as x1, x2 → ∞ such

that ωx = x̃1/(x̃1 + x̃2) → ω∗x ∈ (0, 1) and where x̃i = exp(xi/σi) for i = 1, 2; this

implies that x2 ∼ σ2

(
x1
σ1

+ log
(

1−ω∗x
ω∗x

))
as x1 → ∞. Under the assumption that the

first and second derivatives of g exist, the joint density of (X1, X2) is

fX1,X2(x1, x2) ∼ (x̃1x̃2)−
1
2η

σ1σ2

[
g(ωx)

4η2
+ (x̃1x̃2)

x̃1 − x̃2

(x̃1 + x̃2)3 g
′
(ωx)−

(x̃1x̃2)2

(x̃1 + x̃2)4 g
′′

(ωx)

]
,

as x1, x2 → ∞ such that ωx = x̃1/(x̃1 + x̃2) → ω∗x ∈ (0, 1). We now apply the

transformation (X1, X2)→ (R,W ), where

R = X1 +X2, W =
X1

σ1

− X2

σ2

,

where X1 = (σ1R + σ1σ2W )/(σ1 + σ2) and X2 = (σ2R − σ1σ2W )/(σ1 + σ2) with

σ1σ2/(σ1 +σ2) the determinant of the Jacobian. Note that the limits of W and R are

not independent and we have W ∈ [−R/σ2, R/σ1]. The density of (R,W ) is

fR,W (r, w) ∼ 1

η(σ1 + σ2)
exp

(
− r

η(σ1 + σ2)

)
g∗(w),

for w ∈ [−r/σ2, r/σ1] and as r →∞, and where

g∗(w) = η exp

(
− (σ2 − σ1)w

2η(σ1 + σ2)

)[
g(tw)

4η2
+ tw(1− tw)(2tw − 1)g

′
(tw)− t2w(1− tw)2g

′′
(tw)

]
(A.4.1)
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and we have

tw =
exp

(
σ2w
σ1+σ2

)
exp

(
σ2w
σ1+σ2

)
+ exp

(
− σ1w
σ1+σ2

) =
exp (w)

exp (w) + 1
∈ (0, 1),

which follows by multiplying the denominator and numerator of tw by exp(σ1w/(σ1 +

σ2)). It follows that with I(r) =
∫ r/σ1
−r/σ2 g

∗(w)dw, as r →∞,

fR(r) =

∫ r/σ1

−r/σ2
fR,W (r, w)dw ∼ I(r)

η(σ1 + σ2)
exp

{
− r

η(σ1 + σ2)

}
. (A.4.2)

To evaluate I(r), we make different assumptions on how g(w) behaves; we consider

two cases, each with I(r) <∞.

A.4.1 Case 1

We first make the assumption that there exists a fixed v > 0 such that g(w) = 1 for

all w ∈ [0, 1] and for r > v. Hence, I(r) in (A.4.2) becomes

I(r) =

∫ r/σ1

−r/σ2

1

4η
exp

{
− (σ2 − σ1)w

2η(σ1 + σ2)

}
dw

=


(σ1+σ2)r
4ησ1σ2

, if σ1 = σ2,

σ1+σ2
2(σ2−σ1)

[
exp

{
− (σ1−σ2)r

2ησ2(σ1+σ2)

}
− exp

{
− (σ2−σ1)r

2ησ1(σ1+σ2)

}]
, if σ1 6= σ2.

When σ1 = σ2 = σ (say), the marginal density of R is fR(r) ∼ r
4η2σ2 exp

{
− r

2ησ

}
as

r → ∞, hence, Pr{R ≥ r} ∼ r
2ησ

exp(−r/(2ησ)) as r → ∞. Whereas when σ1 6= σ2,

we assume, without loss of generality, that σ2 > σ1. Then the marginal density of R
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is

fR(r) ∼ 1

2η(σ2 − σ1)

[
exp

{
(σ2 − σ1)r

2ησ2(σ1 + σ2)

}
− exp

{
(σ1 − σ2)r

2ησ1(σ1 + σ2)

}]
exp

{
− r

η(σ1 + σ2)

}
∼ 1

2η(σ2 − σ1)
exp

{
(σ2 − σ1)r

2ησ2(σ1 + σ2)

}
exp

{
− r

η(σ1 + σ2)

}
∼ 1

2η(σ2 − σ1)
exp

{
− r

2ησ2

}
,

as r →∞ and so Pr{R ≥ s} ∼ σ2
σ2−σ1 exp

{
− s

2ησ2

}
as s→∞. By symmetry, this can

be written as

Pr{R ≥ r} ∼ σmax
σmax − σmin

exp

{
− r

2ησmax

}
,

as r →∞ and where σmax = max{σ1, σ2} and σmin = min{σ1, σ2}.

A.4.2 Case 2

We now assume that η = 1 and that Conditions 3 and 3a hold. In this case, we can

show that

I(r) =

∫ r/σ1

−r/σ2
g∗(w)dw ∼

∫ ∞
−∞

g∗(w)dw := K, (A.4.3)

for finite constant K > 0. To show this, we first derive that g∗(w) → 0 at an

exponential rate as w →∞ or as w → −∞. From Condition 3 and (A.4.1) and with

η = 1, it follows that

g∗(w) = − exp

(
−(σ2 − σ1)w

2(σ1 + σ2)

)(
1− tw
tw

)3/2

H12

(
1,

1− tw
tw

)
= − exp

({
σ1

(σ1 + σ2)
− 2

}
w

)
H12 (1, exp(−w)) = − exp(aw)H12 (1, exp(−w))
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where a = σ1/(σ1 + σ2)− 2 ∈ (−2,−1). It then follows that

g∗(w) = − exp(aw)H12 (1, exp(−w)) ∼


KH1 exp((a− c1)w)→ 0 as w →∞,

KH2 exp((a− c2)w)→ 0 as w → −∞,

where the first limit follows as a− c1 < −2 < 0 and the second follows as a− c2 > 0.

Hence, (A.4.3) holds, and it follows that the survival function of R as s→∞ is

Pr{R ≥ s} ∼
∫ ∞
s

K
1

(σ1 + σ2)
exp

{
− r

(σ1 + σ2)

}
dr = K exp

{
− s

(σ1 + σ2)

}
.

A.5 Proof of Theorem 3.3.3

The general framework of the proof follows that of the ξ < 0 case for Theorem

3.3.1. We begin by deriving the joint density of (X1, X2) implied by the dependence

model given in (3.3.1), on GPD margins. We use the probability integral transform

to perform an initial transformation (X1, X2)→ (R,W ), where R = X1 +X2 and W

is an auxiliary variable, chosen so that we are able to show that the support of W

is independent of R for R greater than some threshold. At this point, we make two

different assumptions on how g(w) acts as w → 1 and w → 0; for the first case, we

can simply marginalise W out of fRW and derive the survival function of R. For the

second case, we find that we must perform another transformation (R,W ) → (V, Z)

where V is a normalisation of R and Z is an auxiliary variable chosen so that it is

possible to integrate over and derive the marginal density of V . We then transform

V back to R and derive the survival function.
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Combining (3.3.1) and (3.1.2), we have that

Pr

{
1−

(
1 + ξ1

X1

σ1

)−1/ξ1

> 1− 1

x1

, 1−
(

1 + ξ2
X2

σ2

)−1/ξ2

> 1− 1

x2

}

=
L(x1 + x2)

(x1x2)
1
2η

g

(
x1

x1 + x2

)
,

as x1, x2 → ∞ such that the limit of x1/(x1 + x2) is bounded by (0, 1). Under the

assumption that L(y) acts as a constant which can be absorbed by g for y > v for some

v > 0, we have Pr {X1 > x1, X2 > x2} ∼ x̃
− 1

2ηξ1
1 x̃

− 1
2ηξ2

2 g (ωx) for x1 → xF1 and x2 → xF2 ,

such that ωx = x̃
1/ξ1
1 /(x̃

1/ξ1
1 + x̃

1/ξ2
2 ) → ω∗x ∈ (0, 1) and where x̃i = (1 + ξixi/σi) for

i = 1, 2. Assuming that the first and second derivatives of g exist, then the density

of (X1, X2) is

fX1,X2(x1, x2) ∼ x̃
− 1

2ηξ1
−1

1 x̃
− 1

2ηξ2
−1

2

σ1σ2

×

[
g (ωx)

4η2
+ x̃

1
ξ1
1 x̃

1
ξ2
2

x̃
1/ξ1
1 − x̃1/ξ2

2(
x̃

1/ξ1
1 + x̃

1/ξ2
2

)3 g
′
(ωx)−

x̃
2
ξ1
1 x̃

2
ξ2
2(

x̃
1/ξ1
1 + x̃

1/ξ2
2

)4 g
′′

(ωx)

]
,

as x1 → xF1 and x2 → xF2 such that ωx → ω∗x ∈ (0, 1). We now apply the transforma-

tion (X1, X2)→ (R,W ), where

R = X1 +X2, W =

(
σ1
ξ1

+X1

)
(
σ1
ξ1

+X1

)
+
(
σ2
ξ2

+X2

) ,
where 1 + ξ1X1/σ1 = − ξ1

σ1
(rF − R)W and 1 + ξ2X2/σ2 = − ξ2

σ2
(rF − R)(1 − W )

for rF = −(σ1/ξ1 + σ2/ξ2) the upper-endpoint of R and where the numerator and

denominator of W are both negative. The density of (R,W ) as r → rF is

fR,W (r, w) ∼ (−ξ1)
− 1

2ηξ1
−1

(−ξ2)
− 1

2ηξ2
−1

σ
− 1

2ηξ1
1 σ

− 1
2ηξ2

2

(
rF − r

)− 1
2ηξ1
− 1

2ηξ2
−1
w
− 1

2ηξ1
−1

(1− w)
− 1

2ηξ2
−1
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×

[
g (tr,w)

4η2
+ tr,w(1− tr,w)(2tr,w − 1)g

′
(tr,w)− t2r,w(1− tr,w)2g

′′
(tr,w)

]
,

(A.5.1)

as r → rF , which includes the determinant, (rF − r), of the Jacobian of the transfor-

mation and where

tr,w =

{
−ξ1
σ1

(
rF − r

)
w
}1/ξ1

{
−ξ1
σ1

(rF − r)w
}1/ξ1

+
{
−ξ2
σ2

(rF − r) (1− w)
}1/ξ2

.

Recall from the proof of Theorem 3.3.1 that we use this transformation to ensure

that the support of W ∈ [0, 1] is independent of R, given that R is above a fixed

threshold u > 0; here we show that this holds when u = max{−σ1/ξ1,−σ2/ξ2}. This

proof is identical in its layout to the similar proof given in Section A.3.1, however,

the details are slightly different as here we have ξ1 6= ξ2, rather than equal shape

parameters. Let xmax = max{−σ1/ξ1,−σ2/ξ2} and xmin = min{−σ1/ξ1,−σ2/ξ2}. As

X1 +X2 ≤ −(σ1/ξ1 +σ2/ξ2) = xmax +xmin, there exists a random variable P ∈ [0, 1],

such that

X1 +X2|(X1 +X2 > xmax) = xmax + xminP.

Now for i = arg max
j=1,2

{−σj/ξj} let Xi|(X1 +X2 > xmax) = xmaxQi for random Qi ≤ 1.

Then as

0 ≤ (X1 +X2−Xi)|(X1 +X2 > xmax) ≤ xmin ⇒ 0 ≤ xmax + xminP − xmaxQi ≤ xmin,

it follows that Qi must satisfy

− P

1− P
< 0 ≤ xmax(1−Qi)

xmin(1− P )
≤ 1.
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Now consider W . If we have i = 1, then

W =

σ1
ξ1

+X1

σ1
ξ1

+ σ2
ξ2

+X1 +X2

=
−xmax + xmaxQ1

−xmax − xmin + xmax + xminP
=
xmax(1−Q1)

xmin(1− P )
,

and so W ∈ [0, 1] as needed. However, if i = 2 we instead have W = 1 − xmax(1 −

Q2)/{xmin(1− P )}; this also gives W ∈ [0, 1]. So the support of W does not depend

on R when R > u.

We now explore how fR,W (r, w) and fR(r) behave for r → rF , i.e., hence for r such

that r > u. Without loss of generality, we assume that 0 > ξ1 > ξ2, with the other

case following by symmetry. If ξ1 > ξ2, we have tr,w → 1 as r → rF , and so require

assumptions on how g(t) behaves as t→ 1. We consider two cases:

A.5.1 Case 1

We now assume that Conditions 2 holds. Then the joint density of (R,W ) is

fR,W (r, w) ∼ K1

(
rF − r

)− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

−1

[
1

4η2
− κ(2tr,w − 1)− κ(κ− 2tr,w + 1)

]
g∗(w)

∼ K1

(
rF − r

)− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

−1

[
1

4η2
− κ2

]
g∗(w),

as r → rF , where g∗(w) = K2w
− 1

2ηξ1
− κ
ξ1
−1

(1− w)
− 1

2ηξ2
+ κ
ξ2
−1

, and for constants

K1 = −

(
1+2ηκ
2ηξ1

+ 1−2ηκ
2ηξ2

)
(rF )

− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

> 0 and K2 = −Kg(−ξ1)
− 1

2ηξ1
− κ
ξ1
−1

(−ξ2)
− 1

2ηξ2
+ κ
ξ2
−1

K1σ
− 1

2ηξ1
− κ
ξ1

1 σ
− 1

2ηξ2
+ κ
ξ2

2

> 0.
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The survival function of R is

Pr{R ≥ s} ∼

[
1

4η2
− κ2

]∫ ∞
s

∫ 1

0

K1

(
rF − r

)− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

−1
g∗(w)dwdr

∼ KK1

∫ ∞
s

(
rF − r

)− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

−1
dr

∼ K

(
1 + ξ1ξ2

s

σ1ξ2 + σ2ξ2

)− 1+2ηκ
2ηξ1

− 1−2ηκ
2ηξ2

, (A.5.2)

as s→ rF , and where

K =

[
1

4η2
− κ2

]∫ 1

0

g∗(w)dw = K2

[
1

4η2
− κ2

]
B

(
− 1

2ηξ1

− κ

ξ1

,− 1

2ηξ2

+
κ

ξ2

)
> 0

(A.5.3)

is constant; here B(·, ·) denotes the beta function and both of its arguments are posi-

tive, and we note that the limits in (A.5.2) hold as fR,W is a valid probability density.

The general result follows by replacing ξ1 and ξ2 with max{ξ1, ξ2} and min{ξ1, ξ2}

respectively and using the behaviour of g as t→ 0 as well as t→ 1.

A.5.2 Case 2

We now assume that Conditions 3 and 3b hold. From (A.5.1), the joint density of

(R,W ) for w ∈ [0, 1] is

fR,W (r, w) ∼
(
rF − r

)− 1
ηξ1
−1

×

[
(2κ+ 2tr,w − 1)tr,w(1− tr,w)L

′
(tr,w)− t2r,w(1− tr,w)2L

′′
(tr,w)

]
g∗(w)

∼
(
rF − r

)− 1
ηξ1
−1

[
− 1− tr,w

tr,w
H12

(
1,

1− tr,w
tr,w

)

+ (2κ− 1)

{
tr,w

1− tr,w
+

1− tr,w
tr,w

H2

(
1,

1− tr,w
tr,w

)}]
g∗(w), (A.5.4)
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as r → rF and which follows by exploiting the homogeneity properties of H2 and H12,

and

g∗(w) = (−ξ1)
− 1
ηξ1
−1

(−ξ2)−1σ
1
ηξ1
1 w

− 1
ηξ1
−1

(1− w)−1.

To marginalise W out of (A.5.4), we make the transformation (R,W )→ (V, Z), where

V = (rF −R)/rF and W = 1−V Z for Z ∈ (0,∞), and so large R now corresponds to

small positive V . The determinant of the Jacobian of this transformation is (rF )−1×(
−vZ log(v)

)
, and the joint density of (V, Z) for z ∈ (0,∞) and as v ↓ 0 is

fV,Z(v, z) ∼ K2 (− log(v)) (vrF )
− 1
ηξ1
− 1
ξ1

+ 1
ξ2
−1
vz/ξ2

[
− xrH12

(
1, xr(vr

F )−1/ξ1+1/ξ2vz/ξ2
)

+ (2κ− 1)

{
x−1
r (vrF )2/ξ1−2/ξ2v−2z/ξ2 + xrH2

(
1, xr(vr

F )−1/ξ1+1/ξ2vz/ξ2
)}]

,

which follows by exploiting 1− vz ∼ 1 as v ↓ 0 for z > 0, and for constants

K2 = (−ξ1)
− 1
ηξ1
−1

(−ξ2)−1σ
1
ηξ1
1 (rF )−1 > 0

and xFi = −ξi/σi for i = 1, 2 and the ratio xr = (xF2 )1/ξ2/(xF1 )1/ξ1 . Consider now the

integrals

I1(v) =
xr
ξ2

∫ ∞
0

log(v)(vrF )−1/ξ1+1/ξ2vz/ξ2H12

(
1, xr(vr

F )−1/ξ1+1/ξ2vz/ξ2
)

dz

= H1 (1,∞)−H1

(
1, xr(vr

F )−1/ξ1+1/ξ2
)
,

and

I2(v) =
xr
ξ2

∫ ∞
0

log(v)(vrF )−1/ξ1+1/ξ2vz/ξ2H2

(
1, xr(vr

F )−1/ξ1+1/ξ2vz/ξ2
)

dz

= H (1,∞)−H
(
1, xr(vr

F )−1/ξ1+1/ξ2
)
.
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It follows that, as fV (v) =
∫∞

0
fV,Z(v, z)dz is, as v ↓ 0,

fV (v) ∼ K2ξ2(vrF )
− 1
ηξ1
−1

×

[
I1(v)− (2κ− 1)

{
(ξ2xr)

−1

∫ ∞
0

log(v)(vrF )1/ξ1−1/ξ2v−z/ξ2dz + I2(v)

}]

∼ K2ξ2(vrF )
− 1
ηξ1
−1

[
H1 (1,∞)−H1

(
1, xr(vr

F )−1/ξ1+1/ξ2
)

− (2κ− 1)

{
x−1
r (vrF )1/ξ1−1/ξ2 +H (1,∞)−H

(
1, xr(vr

F )−1/ξ1+1/ξ2
)}]

∼ K2ξ2 {H1 (1,∞)− (2κ− 1)} (vrF )
− 1
ηξ1
−1
, (A.5.5)

where H(1,∞) = 1. The last line of (A.5.5) follows as 1/ξ2 − 1/ξ1 > 0 and

H1(1, z) → 0 as z → 0; furthermore, as H(1, z) ∼ 1/z as z → 0, we have that

H
(
1, xr(vr

F )−1/ξ1+1/ξ2
)
∼ x−1

r (vrF )1/ξ1−1/ξ2 , as v ↓ 0. Transforming back to R, then

the density of R is fR(r) ∼ ξ2 {H1 (1,∞)− (2κ− 1)}K2r
F (rF − r)−

1
ηξ1
−1

as r → rF

and so

Pr{R ≥ r} ∼ K3

(
1 + ξ1ξ2

r

σ1ξ2 + σ2ξ2

)− 1
ηξ1

for constant

K3 = |H1 (1,∞)− (2κ− 1)|η(−ξ1)
− 1
ηξ1 (rF )

− 1
ηξ1 σ

1
ηξ1
1 > 0. (A.5.6)

The limits in the respective integrals that lead to Pr{R ≥ s} are valid as fR,W and

fV,Z are valid joint densities. The general result follows by replacing ξ1 and ξ2 with

max{ξ1, ξ2} and min{ξ1, ξ2} respectively.

A.6 Proof of Theorem 3.3.4

We show that the result holds for the two limiting cases of positive association between

X1 and X2, namely perfect dependence and independence; this implies that the results
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hold for any cases where X1 and X2 have positive association. To illustrate why this

is possible, let RI be R such that X1 and X2 are independent, and RD be R such that

X1 and X2 are perfectly-dependent, i.e., X2 is some, possibly non-linear, function of

X1. It is clear that, for any y > 0, we have

min {Pr{RI ≤ y},Pr{RD ≤ y}} ≤ Pr{R ≤ y} ≤ max {Pr{RI ≤ y},Pr{RD ≤ y}} ,

and hence, if we have that Pr{RI ≥ y} ∼ C1S(y) and Pr{RD ≥ y} ∼ C2S(y)

for some function S(y) and constants C1, C2 > 0 and as y → ∞, we have that

Pr{R ≥ y} ∼ CS(y) for C ∈ [C1, C2] also holds.

The proof follows by considering the limiting cases of perfect dependence and

independence, separately. For X1 ∼ GPD(σ1, ξ1) and X2 ∼ GPD(σ2, ξ2) consider four

cases: (ξ1 > 0, ξ2 < 0), (ξ1 > 0, ξ2 = 0), (ξ1 = 0, ξ2 < 0) and (ξ1 > ξ2, ξ2 > 0); the

other cases follow by symmetry.

A.6.1 Perfect dependence

We begin by considering those cases where X1 and X2 are perfectly dependent; this

is induced by letting X2 = F−1
2 {F1(X1)}. We then illustrate that

Pr{R ≥ r} = Pr{X1 +X2 ≥ r} = Pr{X1 + F−1
2 {F1(X1)} ≥ r}

= Pr{X1 ≥ x∗} ∼ Pr{X1 ≥ r},

as r → ∞ and where x∗ solves r = x∗ + F−1
2 {F1(x∗)}. In each case, we find an

approximate solution for x∗ as r →∞, using an iterative procedure.

Case 1 Let X1 ∼ GPD(σ1, ξ1 > 0) and X2 ∼ GPD(σ2, ξ2 < 0). From (3.1.2), we

have that

X2 =
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

X1

)ξ2/ξ1]
.
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To solve for x∗, we begin with the initial solution x∗0 = r and consider x∗1 = r+ ε. We

then have

r = r + ε+
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

(r + ε)

)ξ2/ξ1]
∼ r + ε+

σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

r

)ξ2/ξ1]
,

as r → ∞. Hence, ε = −σ2
ξ2

[
−1 +

(
1 + ξ1

σ1
r
)ξ2/ξ1]

and an approximate solution for

x∗ is

x∗ ∼ r +
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

r

)ξ2/ξ1]
= r

{
1 +O

(
rξ2/ξ1−1

)}
,

as r →∞. It follows that

Pr{R ≥ r} =

(
1 +

ξ1

σ1

r
{

1 +O
(
rξ2/ξ1−1

)})−1/ξ1

∼
(

1 +
ξ1

σ1

r

)−1/ξ1

= Pr{X1 ≥ r},

as r →∞, and as ξ2/ξ1 − 1 < 0.

Case 2 Let X1 ∼ GPD(σ1, ξ1 > 0) and X2 ∼ GPD(σ2, 0). From (3.1.2), we have

that

X2 =
σ2

ξ1

log

(
1 +

ξ1

σ1

X1

)
.

To solve for x∗, we begin with the initial solution x∗0 = r and consider x∗1 = r+ ε. We

then have

r = r + ε+
σ1

ξ1

log

(
1 +

ξ1

σ1

(r + ε)

)
∼ r + ε+

σ1

ξ1

log

(
1 +

ξ1

σ1

r

)
,

as r →∞. Hence, ε = −σ1
ξ1

log
(

1 + ξ1
σ1

)
and an approximate solution for x∗ is

x∗ ∼ r +
σ1

ξ1

log

(
1 +

ξ1

σ1

)
= r

{
1 +O

(
log(r)

r

)}
,
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as r →∞. It follows that

Pr{R ≥ r} =

(
1 +

ξ1

σ1

r

{
1 +O

(
log(r)

r

)})−1/ξ1

∼
(

1 +
ξ1

σ1

r

)−1/ξ1

= Pr{X1 ≥ r},

as r →∞.

Case 3 Let X1 ∼ GPD(σ1, 0) and X2 ∼ GPD(σ2, ξ2 < 0). From (3.1.2), we have

that

X2 =
σ2

ξ2

[
−1 + exp

(
X1

ξ2σ1

)]
.

To solve for x∗, we begin with the initial solution x∗0 = r and consider x∗1 = r+ ε. We

then have

r = r + ε+
σ2

ξ2

[
−1 + exp

(
r + ε

ξ2σ1

)]
∼ r + ε+

σ2

ξ2

[
−1 + exp

(
r

ξ2σ1

)]
,

as r →∞. Hence, ε = −σ2
ξ2

[
−1 + exp

(
r

ξ2σ1

)]
and an approximate solution for x∗ is

x∗ ∼ r − σ2

ξ2

[
−1 + exp

(
r

ξ2σ1

)]
= r

{
1−O

(
exp({σ1ξ2}−1r)

r

)}
+
σ2

ξ2

,

as r →∞. It follows that

Pr{R ≥ r} = exp

(
− r

σ1

{
1−O

(
exp({σ1ξ2}−1r)

r

)}
− σ2

σ1ξ2

)
∼ C exp

(
− r

σ1

)
= C Pr{X1 ≥ r}, (A.6.1)

as r →∞ and for C = exp(−σ2(σ1ξ2)−1) > 0 , and as ξ2 < 0.
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Case 4 Let X1 ∼ GPD(σ1, ξ1 > 0) and X2 ∼ GPD(σ2, ξ2 > 0) with ξ1 > ξ2. From

(3.1.2), we have that

X2 =
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

X1

)ξ2/ξ1]
.

To solve for x∗, we begin with the initial solution x∗0 = r and consider x∗1 = r+ ε. We

then have

r = r + ε+
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

(r + ε)

)ξ2/ξ1]
∼ r + ε+

σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

r

)ξ2/ξ1]
,

as r → ∞. Hence, ε = −σ2
ξ2

[
−1 +

(
1 + ξ1

σ1
r
)ξ2/ξ1]

and an approximate solution for

x∗ is

x∗ ∼ r +
σ2

ξ2

[
−1 +

(
1 +

ξ1

σ1

r

)ξ2/ξ1]
= r

{
1 +O

(
rξ2/ξ1−1

)}
,

as r →∞. It follows that

Pr{R ≥ r} =

(
1 +

ξ1

σ1

r
{

1 +O
(
rξ2/ξ1−1

)})−1/ξ1

∼
(

1 +
ξ1

σ1

r

)−1/ξ1

= Pr{X1 ≥ r},

as r →∞, and as ξ2/ξ1 − 1 < 0.

A.6.2 Independence

We now consider the cases where X1 and X2 are independent. In each case, we

consider the joint density of (X1, X2) and use a marginal transformation to R and

some auxiliary variable W . We then derive the marginal density of R as r →∞.
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Case 1 Let X1 ∼ GPD(σ1, ξ1 > 0) and X2 ∼ GPD(σ2, ξ2 < 0). The density of

(X1, X2) is

fX1,X2(x1, x2) =
1

σ1σ2

(
1 +

ξ1

σ1

x1

)−1/ξ1−1(
1 +

ξ2

σ2

x2

)−1/ξ2−1

,

with x1 ∈ (0,∞) and x2 ∈ (0,−σ2/ξ2). Using the transformation (X1, X2)→ (R,W =

X2), the joint density of (R,W ) is

fR,W (r, w) =
1

σ1σ2

(
1 +

ξ1

σ1

(r − w)

)−1/ξ1−1(
1 +

ξ2

σ2

w

)−1/ξ2−1

,

for r ∈ (0,∞) and w ∈ [0,−σ2/ξ2]. Note that as w = x2 has a finite upper-endpoint

−σ2/ξ2, we have that

fR,W (r, w) ∼ 1

σ1σ2

(
ξ1

σ1

r

)−1/ξ1−1(
1 +

ξ2

σ2

w

)−1/ξ2−1

,

as r →∞. Hence,

fR(r) =

∫ −σ2/ξ2
0

fR,W (r, w)dw ∼
∫ −σ2/ξ2

0

1

σ1σ2

(
ξ1

σ1

r

)−1/ξ1−1(
1 +

ξ2

σ2

w

)−1/ξ2−1

dw

∼ 1

σ1

(
ξ1

σ1

r

)−1/ξ1−1

∼ fX1(r),

and hence Pr{R ≥ r} ∼ Pr{X1 ≥ r} as r →∞.

Case 2 Let X1 ∼ GPD{σ1, ξ > 0} and let X2 ∼ GPD{σ2, 0}. The density of

(X1, X2) is

fX1,X2(x1, x2) =
1

σ1σ2

(
1 +

ξ

σ1

x1

)−1/ξ−1

exp

{
− 1

σ2

x2

}
, (x1, x2 ≥ 0).
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We now use the transformation (X1, X2) → (R,W = X1/R), which has Jacobian

determinant |J | = R. The density of (R,W ) is

fR,W (r, w) =
r

σ1σ2

(
1 +

ξ

σ1

rw

)−1/ξ−1

exp

{
− 1

σ2

r(1− w)

}
,

for r ∈ (0,∞) and w ∈ [0, 1] and it follows that

fR(r) =

∫ 1

0

fR,W (r, w)dw =
r

σ1σ2

∫ 1

0

(
1 +

ξ

σ1

rw

)−1/ξ−1

exp

{
− 1

σ2

r(1− w)

}
dw

=
r

σ1σ2

[
σ2

r

(
1 +

ξ

σ1

r

)−1/ξ−1

− σ2

r
exp

{
− r

σ2

}

+
σ2ξ

(1/ξ − 1)σ1

∫ 1

0

(
1 +

ξ

σ1

rw

)−1/ξ−2

exp

{
− 1

σ2

r(1− w)

}
dw

]

=
r

σ1σ2

[
σ2

r

(
1 +

ξ

σ1

r

)−1/ξ1−1

− σ2

r
exp

{
− r

σ2

}

+
σ2ξ

(1/ξ − 1)σ1

{
σ2

r

(
1 +

ξ

σ1

r

)−1/ξ−2

− σ2

r
exp

{
− r

σ2

}

+
σ2ξ

(1/ξ − 2)σ1

∫ 1

0

(
1 +

ξ

σ1

rw

)−1/ξ−3

exp

{
− 1

σ2

r(1− w)

}
dw

}]

=
1

σ1

(
1 +

ξ

σ1

r

)−1/ξ1−1 [
1−O

(
r1/ξ+1 exp(−r)

)
−O(r−1)

]
∼ 1

σ1

(
1 +

ξ

σ1

r

)−1/ξ1−1

= fX1(r),

as r →∞, and so Pr{R ≥ r} ∼ Pr{X1 ≥ r} as r →∞.

Case 3 We now let X1 ∼ GPD(σ1, 0) and X2 ∼ GPD(σ2, ξ2 < 0). The density of

(X1, X2) is

fX1,X2(x1, x2) =
1

σ1σ2

exp

{
−x1

σ1

}(
1 +

ξ2

σ2

x2

)−1/ξ2−1

,
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with x1 ∈ (0,∞) and x2 ∈ (0,−σ2/ξ2). Using the transformation (X1, X2)→ (R,W =

X2), the density of (R,W ) is

fR,W (r, w) =
1

σ1σ2

exp

{
−r − w

σ1

}(
1 +

ξ2

σ2

w

)−1/ξ2−1

,

and hence

fR(r) =

∫ −σ2/ξ2
0

1

σ1σ2

exp

{
− r

σ1

}
exp

{
w

σ1

}(
1 +

ξ2

σ2

w

)−1/ξ2−1

dw

=
C

σ1

exp

{
− r

σ1

}
= CfX1(r), (A.6.2)

for C =
∫ −σ2/ξ2

0
σ−1

2 exp {w/σ1} (1 + ξ2w/σ2)−1/ξ2−1 dw > 0. Hence, it follows that

Pr{R ≥ r} = C Pr{X1 ≥ r}.

Case 4 We now let X1 ∼ GPD(σ1, ξ1 > 0) and X2 ∼ GPD(σ2, ξ2 > 0) for ξ1 > ξ2.

The density of (X1, X2) is

fX1,X2(x1, x2) =
1

σ1σ2

(
1 +

ξ1x1

σ1

)−1/ξ1−1(
1 +

ξ2x2

σ2

)−1/ξ2−1

, (x1, x2 ≥ 0).

We now apply the transformation (X1, X2)→ (R,W ), where

R = X1 +X2, W =

(
σ1
ξ1

+X1

)
(
σ1
ξ1

+X1

)
+
(
σ2
ξ2

+X2

) ,
and for 1 + ξ1X1/σ1 = ξ1

σ1
(σ1
ξ1

+ σ2
ξ2

+R)W and 1 + ξ2X2/σ2 = ξ2
σ2

(σ1
ξ1

+ σ2
ξ2

+R)(1−W ).

The joint density of (R,W ) for r > 0 is

fR,W (r, w) = σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2

(
σ1

ξ1

+
σ2

ξ2

+ r

)−1/ξ1−1/ξ2−1

w−1/ξ1−1(1− w)−1/ξ2−1

∼ σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1w−1/ξ1−1(1− w)−1/ξ2−1
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as r →∞, and for w ∈ [t1(r), 1− t2(r)] where

t1(r) =
σ1

ξ1

(
σ1

ξ1

+
σ2

ξ2

+ r

)−1

, t2(r) =
σ2

ξ2

(
σ1

ξ1

+
σ2

ξ2

+ r

)−1

.

We can write the marginal density of R as

fR(r) =

∫ c1

t1(r)

fR,W (r, w)dw +

∫ 1−c2

c1

fR,W (r, w)dw +

∫ 1−t2(r)

1−c2
fR,W (r, w)dw

where c1 and c2 are constants chosen such that c1 > t1, c2 > t2(r) and c1 < 1− c2(r).

We then have

fR(r) ∼ σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1

[∫ c1

t1(r)

w−1/ξ1−1(1− w)−1/ξ2−1dw

+

∫ 1−c2

c1

w−1/ξ1−1(1− w)−1/ξ2−1dw +

∫ 1−t2(r)

1−c2
w−1/ξ1−1(1− w)−1/ξ2−1dw

]

∼ σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1

×

[∫ c1

t1(r)

w−1/ξ1−1dw +K1 +

∫ 1−t2(r)

1−c2
(1− w)−1/ξ2−1dw

]
,

as r → ∞ and for constant K1 =
∫ 1−c2
c1

w−1/ξ1−1(1 − w)−1/ξ2−1dw > 0. The last line

follows as (1− w) ≈ 1 and w ≈ 1 on their respective domains. This gives

fR(r) ∼ σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1

[
ξ1{t1(r)}−1/ξ1 + ξ2{t2(r)}−1/ξ2 +K2

]
∼ σ

1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1

[
ξ1

{
ξ1

σ1

(
σ1

ξ1

+
σ2

ξ2

+ r

)}1/ξ1

+ ξ2

{
ξ2

σ2

(
σ1

ξ1

+
σ2

ξ2

+ r

)}1/ξ2

+K2

]

∼ σ
1/ξ1
1 σ

1/ξ2
2 ξ

−1/ξ1−1
1 ξ

−1/ξ2−1
2 r−1/ξ1−1/ξ2−1ξ2

{
ξ2

σ2

r

}1/ξ2

∼ σ
1/ξ1
1 ξ

−1/ξ1−1
1 r−1/ξ1−1 ∼ fX1(r)
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as r →∞, for constant K2 = K1 − ξ1c
−1/ξ1
1 − ξ2c

−1/ξ2
2 , and where the last line follows

as 1/ξ2 < 1/ξ1. Hence Pr{R ≥ r} ∼ Pr{X1 ≥ r} as r →∞.



Appendix B

Supplementary material for

Chapter 4

B.1 Proofs relating to Section 4.2.1

B.1.1 Proof of determinant for Jacobian of pseudo-radial and

-angular transformation

Here we derive the determinant of the Jacobian for the transformation given in (4.2.1).

The Jacobian is given by the matrix

A =



w1 w2 w3 . . . wd−1

(
1−

∑d−1
j=1 wj

)
r 0 0 . . . 0 −r

0 r 0 . . . 0 −r

0 0
. . . . . .

...
...

...
...

. . . r 0 −r

0 0 . . . 0 r −r


.

267
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Note that by conditioning along the top row of the matrix, we have

|A| =
d−1∑
j=1

(−1)j+1wj|Aj|+ (−1)d−1

(
1−

d−1∑
j=1

wj

)
|Ad|

where

A1 =



0 0 0 . . . 0 −r

r 0 0 . . . 0 −r

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 −r

0 . . . . . . 0 r −r


, A2 =



r 0 0 . . . 0 −r

0 0 0 . . . 0 −r

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 −r

0 . . . . . . 0 r −r


, . . .

. . . , Ad−1 =



r 0 0 . . . 0 −r

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 −r

0 . . . . . . 0 r −r

0 0 0 . . . 0 −r


, Ad =



r 0 0 . . . 0 0

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 0

0 . . . . . . 0 r 0

0 0 0 . . . 0 r


.

Note that for i = 1, . . . , d − 2, we have Ai and Ai+1 are identical matrices with two

rows swapped. This implies that |Aj| = −|Aj+1| for j = 1, . . . , d− 2 and thus

|Aj| = (−1)j−1|A1|
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for j = 1, . . . , d− 1, where

|A1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 . . . 0 −r

r 0 0 . . . 0 −r

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 −r

0 . . . . . . 0 r −r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)d(−r)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r 0 0 . . . 0 0

0 r
. . . . . .

...
...

0
. . . . . . . . .

...
...

...
. . . . . . r 0 0

0 . . . . . . 0 r 0

0 0 0 . . . 0 r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)d−1rrd−2 = (−1)d−1rd−1.

Trivially |Ad| = rd−1, and so it follows that

|A| =
d−1∑
j=1

(−1)j+1wj|Aj|+ (−1)d−1

(
1−

d−1∑
j=1

wj

)
|Ad|

=
d−1∑
j=1

(−1)j+1wj(−1)j−1(−1)d−1rd−1 + (−1)d−1

(
1−

d−1∑
j=1

wj

)
rd−1

=(−1)d−1rd−1

d−1∑
j=1

wj + (−1)d−1rd−1

(
1−

d−1∑
j=1

wj

)
= (−1)d−1rd−1.

As the determinant of the Jacobian requires the absolute value of |A|, this provides

the required result.

B.1.2 Proof of (4.2.5)

Here we prove that if Rd =
∑d

i=1 Xi with upper end-point rF = −
∑d

i=1 σi/ξi and

Wj =

σj
ξj

+Xj

R− rF
,

for j = 1, . . . , d − 1, then the support of W is [0, 1]d−1, independent of the value of

Rd for Rd > t, where t = rF + max1≤j≤d{σj/ξj} = rF −min1≤j≤d{−σj/ξj}. We begin
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by letting xmin = min1≤j≤d{−σj/ξj} > 0 and xmax = rF − xmin. As Rd ≤ rF =

xmax + xmin, there exists a random variable P ∈ [0, 1], such that

Rd|(Rd > xmax) = xmax + xminP.

Now for i = arg min
1≤k≤d

{−σk/ξk}, we let Xk|(Rd > xmax) = −σk
ξk
Qk, for k = 1, . . . , d, k 6=

i, for random Qk ≤ 1. Then as

0 ≤

(
Rd −

∑
k 6=i

Xj

)∣∣∣∣(Rd > xmax) ≤ xmin ⇒ 0 ≤ xmax + xminP +
∑
k 6=i

σk
ξk
Qk ≤ xmin,

and

0 ≤ (Rd −Xk) |(Rd > xmax) ≤ xmin + xmax +
σk
ξk

⇒ 0 ≤ xmax + xminP +
σk
ξk
Qk ≤ xmin + xmax +

σk
ξk
,

it follows that Qk for all k = 1, . . . , d, k 6= i must satisfy

− P

1− P
< 0 ≤

xmax −
∑

k 6=i
σk
ξk
Qk

xmin(1− P )
≤ 1,

and

− P

1− P
− xmax

xmin(1− P )
< 0 ≤

−σk
ξk

(1−Qk)

xmin(1− P )
≤ 1.

Hence, we have that

Wi =

σi
ξi

+Xi

Rd − rF
=

−xmin +Rd −
∑

k 6=iXk

−xmax − xmin + xmax + xminP

=
−xmin + xmax + xminP −

∑
k 6=i

σk
ξk
Qk

−xmin(1− P )
= 1−

xmax −
∑

k 6=i
σk
ξk
Qk

xmin(1− P )
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and so Wi ∈ [0, 1] as needed. Conversely, for j 6= i, we have that

Wj =

σj
ξj

+Xj

Rd − rF
=

σj
ξj
− σj

ξj
Qj

−xmin(1− P )
=
−σj
ξj

(1−Qj)

xmin(1− P )

which gives Wj ∈ [0, 1] for all j = 1, . . . , d − 1, j 6= i. Hence, the support of W does

not depend on R when R > t.

B.2 Proof of transformation of (4.4.11) to (4.4.13)

Here we provide a proof of the transformation of the integral in (4.4.11), namely

∫
Sd−1

ξ−(d−1)[∑d
i=1(wi/σi)1/ξ

]d+1

{
d∏

k=1

w
1/ξ−1
k

σ
1/ξ
k

}

× h

(
w

1/ξ
1

σ
1/ξ
1

∑d
i=1(wi/σi)1/ξ

, . . . ,
w

1/ξ
d−1

σ
1/ξ
d−1

∑d
i=1(wi/σi)1/ξ

)
dw, (B.2.1)

for w ∈ Sd−1, the (d − 1)-dimensional unit simplex, to the integral in (4.4.13) given

by ∫
Ω

1∑d
i=1 fi(ω)

× h (ω1, . . . , ωd−1, ωd) dω, (B.2.2)

where

ωd = 1−
d−1∑
i=1


d−1∑
j=1

σi
σj

(
ωi
ωj

)ξ
+
σd
σi

(
1−

∑d−1
k=1 ωk
ωi

)ξ

−1

,

and

fi(ω) =


{∑d−1

j=1
σi
σj

(
ωi
ωj

)ξ
+ σd

σi

(
1−
∑d−1
k=1 ωk
ωi

)ξ}−1/ξ

σ
−1/ξ
i , if i 6= d,

(wd/σd)
1/ξ, if i = d,
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and

Ω =

{
ω : 0 ≤ ωi ≤ 1, i = 1, . . . , d,

ωd +
d−1∑
i=1


d−1∑
j=1

σi
σj

(
ωi
ωj

)ξ
+
σd
σi

(
1−

∑d−1
k=1 ωk
ωi

)ξ

−1

= 1

}
.

Recall that for all j = 1, . . . , d− 1 we apply the transformation

ωj =
w

1/ξ
1

σ
1/ξ
1

∑d
i=1(wi/σi)1/ξ

=
w

1/ξ
1

σ
1/ξ
1

S−1,

where S =
∑d

i=1(wi/σi)
1/ξ. This transformation has partial derivatives

∂ωj
∂wj

= ξ−1σ−1
j S−1

(
wj
σj

)1/ξ−1

− S−2

(
wj
σj

)1/ξ
[
ξ−1σ−1

j

(
wj
σj

)1/ξ−1

− ξ−1σ−1
d

(
wd
σd

)1/ξ−1
]

= ξ−1σ−1
j S−2

(
wj
σj

)1/ξ−1
[
S −

(
wj
σj

)1/ξ

+ σ−1
d wj

(
wd
σd

)1/ξ−1
]
,

and

∂ωi
∂wj

= S−2

(
wi
σi

)1/ξ
[
ξ−1σ−1

j

(
wj
σj

)1/ξ−1

− ξ−1σ−1
d

(
wd
σd

)1/ξ−1
]

= ξ−1S−2

(
wi
σi

)1/ξ
[
σ−1
j

(
wj
σj

)1/ξ−1

− σ−1
d

(
wd
σd

)1/ξ−1
]
,

for i 6= j. The reciprocal of the determinant of the Jacobian of the transformation is

|J | = ξ(d−1)

[
d∑
i=1

(wi/σi)
1/ξ

]d{ d∏
k=1

σ
1/ξ
k

w
1/ξ−1
k

}
= ξ(d−1)Sd

{
d∏

k=1

σ
1/ξ−1
k

w
1/ξ−1
k

σk

}
. (B.2.3)

We prove this analytically for d = 2 and d = 3, and note that certain software, e.g.,

Maple, can be used to show that (B.2.3) holds for d > 3.
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For d = 2, we require only that

∂ω1

∂w1

= ξ−1σ−1
1 S−2

(
w1

σ1

)1/ξ−1
[
S −

(
w1

σ1

)1/ξ

+ σ−1
2 w1

(
w2

σ2

)1/ξ−1
]

= ξ−1σ−1
1 S−2

(
w1

σ1

)1/ξ−1
[(

w2

σ2

)1/ξ

+ σ−1
2 w1

(
w2

σ2

)1/ξ−1
]

= ξ−1σ−1
1 σ−1

2 S−2

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1

[w2 + w1]

= ξ−1σ−1
1 σ−1

2 S−2

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1

,

as its reciprocal gives (B.2.3). For the case where d = 3, we have

|J |−1 =
∂ω1

∂w1

× ∂ω2

∂w2

− ∂ω1

∂w2

× ∂ω2

∂w1

= ξ−1σ−1
1 S−2

(
w1

σ1

)1/ξ−1
[
S −

(
w1

σ1

)1/ξ

+ σ−1
3 w1

(
w3

σ3

)1/ξ−1
]

× ξ−1σ−1
2 S−2

(
w2

σ2

)1/ξ−1
[
S −

(
w2

σ2

)1/ξ

+ σ−1
3 w2

(
w3

σ3

)1/ξ−1
]

− ξ−1S−2

(
w2

σ2

)1/ξ
[
σ−1

1

(
w1

σ1

)1/ξ−1

− σ−1
3

(
w3

σ3

)1/ξ−1
]

× ξ−1S−2

(
w1

σ1

)1/ξ
[
σ−1

2

(
w2

σ2

)1/ξ−1

− σ−1
3

(
w3

σ3

)1/ξ−1
]

= ξ−2σ−1
1 σ−1

2 S−4

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1
{[

S −
(
w1

σ1

)1/ξ

+
w1

σ3

(
w3

σ3

)1/ξ−1
]

×

[
S −

(
w2

σ2

)1/ξ

+
w2

σ3

(
w3

σ3

)1/ξ−1
]
− w1w2

[
σ−1

1

(
w1

σ1

)1/ξ−1

− σ−1
3

(
w3

σ3

)1/ξ−1
]

×

[
σ−1

2

(
w2

σ2

)1/ξ−1

− σ−1
3

(
w3

σ3

)1/ξ−1
]}

= ξ−2σ−1
1 σ−1

2 S−4

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1
{
S2 − w2

σ3

(
w1

σ1

)1/ξ (
w3

σ3

)1/ξ−1

− w1

σ3

(
w2

σ2

)1/ξ (
w3

σ3

)1/ξ−1

+

(
w2w2

σ1σ2

)1/ξ
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−
(
w2w2

σ1σ2

)1/ξ

S

[(
w2

σ2

)1/ξ

+

(
w1

σ1

)1/ξ

− w2

σ3

(
w3

σ3

)1/ξ−1

− w1

σ3

(
w3

σ3

)1/ξ−1
]

+
w1w2

σ2
3

(
w3

σ3

)2/ξ−2

−
(
w1w2

σ1σ2

)1/ξ

+
w2

σ3

(
w1

σ1

)1/ξ (
w3

σ3

)1/ξ−1

+
w1

σ3

(
w2

σ2

)1/ξ (
w3

σ3

)1/ξ−1

− w1w2

σ2
3

(
w3

σ3

)2/ξ−2
}

= ξ−2σ−1
1 σ−1

2 S−4

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1

×

{
S2 − S

[(
w2

σ2

)1/ξ

+

(
w1

σ1

)1/ξ

− w2

σ3

(
w3

σ3

)1/ξ−1

− w1

σ3

(
w3

σ3

)1/ξ−1
]}

= ξ−2σ−1
1 σ−1

2 S−3

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1

×

{
S −

(
w2

σ2

)1/ξ

−
(
w1

σ1

)1/ξ

+
w2

σ3

(
w3

σ3

)1/ξ−1

+
w1

σ3

(
w3

σ3

)1/ξ−1
}

= ξ−2σ−1
1 σ−1

2 S−3

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1

×

{(
w3

σ3

)1/ξ

+
w2

σ3

(
w3

σ3

)1/ξ−1

+
w1

σ3

(
w3

σ3

)1/ξ−1
}

= ξ−2σ−1
1 σ−1

2 σ−1
3 S−3

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1(
w3

σ3

)1/ξ−1
{
w3 + w2 + w1

}

= ξ−2σ−1
1 σ−1

2 σ−1
3 S−3

(
w1

σ1

)1/ξ−1(
w2

σ2

)1/ξ−1(
w3

σ3

)1/ξ−1

= ξ−2S−3

3∏
k=1

(
wk
σk

)1/ξ−1

σ−1
k ,

as needed. It can then be shown that for each marginal transformation, we have

wi =


d−1∑
j=1

σi
σj

(
ωi
ωj

)ξ
+
σd
σi

(
1−

∑d−1
k=1 ωk
ωi

)ξ

−1

for all i = 1, . . . , d− 1. Recalling that wd = 1−
∑d−1

j=1 wj and combining this with the

above result for the Jacobian yields the desired integral.
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B.3 Proofs for sums of exponential random vari-

ables

This section details the proofs of the results detailed in Tables 4.3.4 and 4.3.5 of

Section 4.3 which pertain to the upper-tail of Rd =
∑d

i=1 Xi where Xi ∼ GPD(σi, 0) =

Exp(σ−1
i ) for σi > 0. The proofs are presented such that each subsection considers

a different copula. Note that for the sake of notation, all proofs in this section are

written under the assumption that Xi ∼ Exp(σi) for all i = 1, . . . , d; the results

herein can easily be linked to the results given in Section 4.3 by replacing each σi for

i = 1, . . . , d with its reciprocal, i.e., 1/σi.

B.3.1 Perfect dependence

We induce perfect dependence between d exponentially distributed random variables

by letting X1 ∼ Exp(σ1) and Xi = σ1X1/σi for all i = 1, . . . , d. Then for Rd =∑d
i=1Xi, we have

Pr{Rd ≥ r} = Pr

{
X1

d∑
i=1

σ1

σi
≥ r

}
= Pr

X1 ≥ r

(
d∑
i=1

σ1

σi

)−1


= exp

−r
(

d∑
i=1

1

σi

)−1
 ,

as needed. Note that if σi = σ for all i = 1, . . . , d, then
(∑d

i=1
1
σi

)−1

= σ/d.

B.3.2 Independence

The proof for the independence copula is split into two cases: in the first case, we

assert that Xi ∼ Exp(σi) where σj 6= σi for all i = 1, . . . , d, j = 1, . . . , d and i 6= j. It

becomes much more difficult to derive the first-order behaviour of the survival function
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of Rd when we remove the constraint that σj 6= σi for all i, j = 1, . . . , d, i 6= j; this

we do for the second case. In particular, we derive results for d ≤ 4 and make the

assumption that this behaviour can be extended to Rd for d > 4.

Case 1

Let Xi ∼ Exp(σi) for σj 6= σi for all i = 1, . . . , d, j = 1, . . . , d and i 6= j. We make

the assumption that the density of Rd =
∑d

i=1Xi is of the form

fRd(r) =

(
d∏
i=1

σi

)
d∑
j=1

e−rσj∏
k 6=j(σk − σj)

, (B.3.1)

for r > 0. We prove this by induction and begin with the base case, which is d = 2.

We note that the joint density of (X1, X2) is

fX1,X2(x1, x2) = σ1σ2e
−σ1x1e−σ2x2 ,

for x1 > 0, x2 > 0 and consider the transformation (X1, X2) → (R1, R2), where

R2 = X1 + X2 and R1 = X1. Note that R2 ∈ [R1,∞) and R1 ∈ [0,∞). The joint

density of (R1, R2) is

fR1,R2(r1, r2) = σ1σ2e
−σ1r1e−σ2(r2−r1) = σ1σ2e

−(σ1−σ2)r1e−σ2r2 ,

for 0 < r1 < r2 as the determinant of the Jacobian for the transformation is one. The

marginal density of R2 is

fR2(r2) =

∫ r2

0

fR1,R2(r1, r2)dr1 = σ1σ2e
−σ2r2

∫ r2

0

e−(σ1−σ2)r1dr1

=
σ1σ2

σ2 − σ1

e−σ2r2
[
e−(σ1−σ2)r2 − 1

]
=

σ1σ2

σ2 − σ1

[
e−σ1r2 − e−σ2r2

]
,
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as needed. We now assume that (B.3.1) holds for Rd−1 and consider Rd. Note that

the joint density of (Rd−1, Xd) is

fRd−1,Xd(r, xd) =

(
d−1∏
i=1

σi

)
d−1∑
j=1

e−rσj∏d−1
k 6=j(σk − σj)

× σde−σdxd ,

for r > 0, xd > 0 and consider Rd = Rd−1 +Xd. The joint density of (Rd, Rd−1) is

fRd,Rd−1
(rd, rd−1) =

(
d−1∏
i=1

σi

)
d−1∑
j=1

e−rd−1σj∏d−1
k 6=j(σk − σj)

× σde−σd(rd−rd−1)

=

(
d∏
i=1

σi

)
d−1∑
j=1

e−rd−1(σj−σd)∏d−1
k 6=j(σk − σj)

× e−σdrd ,

for 0 < rd−1 < rd and the marginal density of Rd for rd > 0 is then

fRd(rd) =

(
d∏
i=1

σi

)
e−σdrd

d−1∑
j=1

1∏d−1
k 6=j(σk − σj)

∫ rd

0

e−rd−1(σj−σd)drd−1

=

(
d∏
i=1

σi

)
e−σdrd

d−1∑
j=1

1∏d−1
k 6=j(σk − σj)

1

σd − σj
[
e−rd(σj−σd) − 1

]
=

(
d∏
i=1

σi

)
d−1∑
j=1

1∏d−1
k 6=j(σk − σj)

[
e−σjrd

σd − σj
+

e−σdrd

σj − σd

]

=

(
d∏
i=1

σi

)
d∑
j=1

e−rdσj∏d
k 6=j(σk − σj)

,

and hence we have proven that (B.3.1) holds for all finite d. The survival function of

Rd is then

Pr{Rd ≥ s} =

∫ ∞
s

(
d∏
i

σi

)
d∑
j=1

e−rσj∏
k 6=j(σk − σj)

dr

=

(
d∏
i

σi

)
d∑
j=1

e−sσj∏
k 6=j σj(σk − σj)

,
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for s > 0. We note that, asymptotically, the term that dominates is the exponential

term with the smallest power. Hence, we have

Pr{Rd ≥ s} ∼
∏d

i σi

σJ
∏d

i 6=J(σi − σJ)
e−sσJ =

d∏
i 6=J

σi
(σi − σJ)

e−sσJ ,

as s→∞ and where σJ = min
i=1,...,d

{σi}. Note that this result only holds if σi 6= σj for

all i = 1, . . . , d, j = 1, . . . , d and i 6= j.

Case 2

Deriving the first-order behaviour of Pr{Rd ≥ s} becomes much more difficult when

we consider cases where subsets of the marginal scale parameters are equal. For

Xi ∼ Exp(σi) for i = 1, . . . , d, the number of cases that would need to be considered

is the number of partitions of the set {1, . . . , d}, i.e., the d-th Bell number. Whilst

we are unable to provide a parsimonious proof that can encompass all partitions for

any finite d, we explore the case d = 4 in Section B.4; we then make the assumption

that the results derived therein can be extended to d > 4. Under this assumption, we

have

Pr{Rd ≥ r} ∼ Kr|L|−1 exp{−rσmin} (B.3.2)

as r →∞, where σmin = min
i=1,...,d

{σi} and L = {j : σj = σmin, j = 1, . . . , d}. Note that

clearly this holds in the case where all marginal scales are different, i.e., case 1, and

where they are all equal, i.e., σi = σ for all i = 1, . . . , d. The latter follows as the

sum of d independent and identically distributed exponential random variables is a

gamma random variable with shape and rate parameter, d and scale σ, respectively.

B.3.3 Extreme value copula

Let Xi ∼ Exp(σi) for all i = 1, . . . , d and with dependence in X described using

the extreme value copula defined in Section 4.1. Following the assumptions made in
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Section 4.2.2 that lead to (4.2.9), the density of X is of the form

fX(x) ∼

{
d∏
i=1

σie
σixi

}
{−Vx(eσ1x1 , . . . , eσdxd)} , (B.3.3)

as each component of x = (x1, . . . , xd) tends to its respective upper-endpoint and

where Vx denotes the d-th partial derivative of V in (4.1.3) with respect to all compo-

nents. Following Coles and Tawn (1991) and the details provided in Section 4.4.3, we

re-write (B.3.3) in terms of the density h(·) for the distribution function H, defined

in (4.1.3). Then

fX(x) ∼

{
d∏
i=1

σi

}
e
∑d
i=1 σixi(∑d

i=1 e
σixi

)(d+1)
× h

(
eσ1x1∑d
i=1 e

σixi
, . . . ,

eσd−1xd−1∑d
i=1 e

σixi

)
,

as each component of x = (x1, . . . , xd) tends to its respective upper-endpoint. We

now apply the transformation X→ (Rd,W), where Rd =
∑d

i=1 Xi and

W = {Wk = σ1X1 − σk+1Xk+1, k = 1, . . . , d− 1}, (B.3.4)

with Wk ∈ [−σk+1Rd, σ1Rd] for all k = 1, . . . , d−1. Inverting this transformation and

deriving X as a function of Rd and W is non-trivial. To illustrate this, we note that

AdX = (Rd,W) and so X = A−1
d (Rd,W) where Ad is the d× d matrix

Ad =



1 1 1 . . . 1

σ1 −σ2 0 . . . 0

σ1 0 −σ3 . . . 0

...
...

...
. . .

...

σ1 0 0 . . . −σd


.
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Whilst the full inverse A−1
d can be evaluated computationally, we require only the first

column of A−1
d for this proof, as this provides the contribution of Rd to X which is all

we require for integrating fRd,W with respect to Rd and W. To find the first column

of A−1
d , we first note that the determinant of Ad is

|Ad| = (−1)d+1

d∑
i=1

∏
j 6=i

σj, (B.3.5)

which we prove by induction. The case d = 2 is trivial and so is omitted. Now,

assume that (B.3.5) holds for d = k and consider Ak+1, where

Ak+1 =



1 1 1 . . . 1 1

σ1 −σ2 0 . . . 0 0

σ1 0 −σ3 . . . 0 0

...
...

...
. . .

...
...

σ1 0 0 . . . −σk 0

σ1 0 0 . . . 0 −σk+1


.

We then have

|Ak+1| = (−1)kσ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

−σ2 0 . . . 0 0

0 −σ3 . . . 0 0

...
...

. . .
...

...

0 0 . . . −σk 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− σk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

σ1 −σ2 0 . . . 0

σ1 0 −σ3 . . . 0

...
...

...
. . .

...

σ1 0 0 . . . −σk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)kσ1(−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−σ2 0 . . . 0

0 −σ3 . . . 0

...
...

. . .
...

0 0 . . . −σk

∣∣∣∣∣∣∣∣∣∣∣∣∣
− σk+1|Ak|
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= (−1)kσ1(−1)k−1(−1)k−1

k∏
j=2

σj − σk+1|Ak|

= (−1)k
k∏
j=1

σj − σk+1(−1)k+1

k∑
i=1

∏
j 6=i

σj = (−1)k+2

(
k∏
j=1

σj +
k∑
i=1

∏
j 6=i

σj

)

= (−1)k+2

k+1∑
i=1

∏
j 6=i

σj .

as needed and so (B.3.5) holds for all finite d ∈ N. We can now write the inverse of

Ad as

A−1
d =

1

|Ad|
Ãd =

1

|Ad|
((−1)i+jMji)1≤i,j≤d,

where Ãd denotes the adjugate matrix and Mij is the (i, j)-th minor of Ad. Hence,

the (1, 1)-th component of A−1
d is

1

|Ad|
(−1)2M11 =

1

|Ad|

∣∣∣∣∣∣∣∣∣∣∣∣∣

−σ2 0 . . . 0

0 −σ3 . . . 0

...
...

. . .
...

0 0 . . . −σd

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

|Ad|
(−1)d−1

∏
i=2

σi

=
(−1)d−1

∏
i=2 σi

(−1)d+1
∑d

i=1

∏
j 6=i σj

=

∏
i=2 σi∑d

i=1

∏
j 6=i σj

,

and so we can express X1 in terms of Rd and a function g1 of W, i.e.,

X1 =

∏
i=2 σi∑d

i=1

∏
k 6=i σk

Rd + g1(w).

A similar strategy can be used to show that all components of X are of the form

Xj =
σ1X1 −Wj−1

σj
= φjRd + gj(W),
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for functions gj(W), which are functions of W only, and where

φj =

∏
i 6=j σi∑d

i=1

∏
k 6=i σk

,

for all j = 1, . . . , d. Note that σjφj = σkφk for all j = 1, . . . , d, k = 1, . . . , d. As the

transformation X → (Rd,W) is linear, the corresponding Jacobian has determinant

J = 1/|Ad|. Then for w = (w1, . . . , wd−1), the joint density of Rd and W is

fRd,W(r,w) ∼ |J |

{
d∏
i=1

σi

}
e
∑d
j=1 σj(φjr+gj(w))(∑d

j=1 e
σj(φjr+gj(w))

)(d+1)
×

h

 eσ1(φ1r+g1(w))(∑d
j=1 e

σj(φjr+gj(w))
) , . . . , eσd−1(φd−1r+gd−1(w))(∑d

j=1 e
σj(φjr+gj(w))

)


∼ |J |

{
d∏
i=1

σi

}
edσ1φ1r+

∑d
j=1 σjgj(w)

e(d+1)σ1φ1r
(∑d

j=1 e
σjgj(w)

)(d+1)
×

h

 eσ1φ1r+σ1g1(w)

eσ1φ1r
(∑d

j=1 e
σjgj(w)

) , . . . , eσ1φ1r+σd−1gd−1(w)

eσ1φ1r
(∑d

j=1 e
σjgj(w)

)


∼ |J |

{
d∏
i=1

σi

}
e−rσ1φ1G(w),

as r →∞ and where wk ∈ [−σk+1r, σ1r] for all k = 1, . . . , d− 1, and

G(w) =
e
∑d
j=1 σjgj(w))(∑d

j=1 e
σjgj(w)

)(d+1)
× h

(
eσ1g1(w)∑d
j=1 e

σjgj(w)
, . . . ,

eσd−1gd−1(w))∑d
j=1 e

σjgj(w)

)
.

Now to derive Pr{Rd ≥ s}, we make the assumption that

fRd(r) =

∫ σ1r

−σdr
· · ·
∫ σ1r

−σ2r
fRd,W(r,w)dw1 . . . wd−1

∼ |J |

{
d∏
i=1

σi

}
e−rσ1φ1

∫ ∞
−∞
· · ·
∫ ∞
−∞

G(w)dw, (B.3.6)
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as s→∞. The change of limits for the (d−1)-dimensional inner integral are required

as gi is unknown for i = 1, . . . , d and so without this assumption we are unable to in-

tegrate fRd,W(r,w) with respect to w. Whilst we do not prove that this assumptions

holds for any d > 2, the proof for d = 2 is given in Appendix A.5. To further justify

this assumption, we note that the probability that any component of W is in its re-

spective upper, or lower, tails is approximately zero; hence the integral of fRd,W(r,w)

with w in these regions is likely to have negligible effect on the asymptotic behaviour

of fRd(r). To see this, recall that in Section 4.2.2 we made the assumption that as

R → ∞, that each component of X tends to infinity at a similar rate. Combining

this with (B.3.4), we observe that there is a very low probability that any component

of W attains its upper or lower endpoint. Under the assumption that (B.3.6) holds,

it follows that

Pr{Rd ≥ r} ∼ K exp

{
−r

∏d
i=1 σi∑d

i=1

∏d
k 6=i σk

}
,

as r →∞ and where

K = |J |
d∑
i=1

d∏
k 6=i

σk

∫ ∞
−∞
· · ·
∫ ∞
−∞

G(w) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

G(w) > 0.

It can be shown that the power in the exponent of Pr{Rd ≥ r} as r → ∞ can be

re-written as ∏d
i=1 σi∑d

i=1

∏d
j 6=i σj

=

(
d∑
i=1

1

σi

)−1

,

which yields the required result.
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B.3.4 Inverted extreme value copula

Let Xi ∼ Exp(σi) for σi > 0 and all i = 1, . . . , d. By combining (4.1.1) and (4.1.4)

and differentiating with respect to all arguments, the joint density of X is

fX(x) =

{
d∏
i=1

x−2
i

σi

}
exp{−V ((σ1x1)−1, . . . , (σdxd)

−1)}

×
∑
π∈P

∏
πI∈π

−VπI ((σ1x1)−1, . . . , (σdxd)
−1), (B.3.7)

where V is defined in (4.1.3). We now apply the transformation given by (4.2.1),

namely X→ (Rd,W). The joint density of (Rd,W) for w = (w1, . . . , wd−1) ∈ [0, 1]d−1

is

fRd,W(r,w) = r−(d+1)

{
d∏
i=1

w−2
i

σi

}
exp{−V ((σ1rw1)−1, . . . , (σdrwd)

−1)}

×
∑
π∈P

∏
πI∈π

{−VπI ((σ1rw1)−1, . . . , (σdrwd)
−1)}

= r−(d+1)

{
d∏
i=1

w−2
i

σi

}
exp{−rV ((σ1w1)−1, . . . , (σdwd)

−1)}

×
∑
π∈P

rkπ
∏
πI∈π

{−VπI ((σ1w1)−1, . . . , (σdwd)
−1)}

∼ r−(d+1)

{
d∏
i=1

w−2
i

σi

}
exp{−rV ((σ1w1)−1, . . . , (σdwd)

−1)}

× r2d

d∏
i=1

{−Vxi((σ1w1)−1, . . . , (σdwd)
−1)},

as r → ∞ and where wd = 1 −
∑d−1

j=1 wj; the last line follows as max
π∈P
{kπ} = 2d. To

illustrate this we use a similar argument to that provided in Section 4.2.2, except here

we require the partition π ∈ P that minimises the order of homogeneity for the expres-

sion
∏

πI∈π{−VπI (z1, . . . , zd)}. It can be shown that arg max
π∈P

{kπ} = {{1}, . . . , {d}}

and hence max
π∈P
{kπ} = 2d as

∏d
i=1{−Vxi(z1, . . . , zd)} is the product of d functions with
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order of homogeneity −2. We then have

fRd,W(r,w) ∼ rd−1 exp{−rh(w)}q(w),

where h(w) = V ((σ1w1)−1, . . . , (σdwd)
−1), and

q(w) = −
d∏
i=1

w−2
i

σi
Vxi((σ1w1)−1, . . . , (σdwd)

−1);

recall that wd = 1−
∑d−1

j=1 wj. To derive the marginal density of Rd, we utilise Laplace’s

method, see Section 4.2.3. We denote H as the Hessian of h with respect to w and

w∗ = arg min
w∈[0,1]d−1

h(w), which we assume to be unique; then

fRd(r) =

∫
w∈[0,1]d−1

fR,W(r,w)dw ∼ Kr(d−1)/2 exp{−rh(w∗)},

as r →∞ and where K = (2π)(d−1)/2q(w∗)|−H(w∗)|−1/2. It follows that the survival

function of Rd is

Pr{Rd ≥ s} ∼
∫ ∞
s

Kr(d−1)/2e−rh(w∗)dr ∼ K2s
(d−1)/2e−rh(w∗),

as s → ∞, where K2 = K/h(w∗) > 0. Note that if σi = σ for all i = 1, . . . , d and

V (w) is symmetric, then

h(w) = σV

 1

w1

, . . . ,
1(

1−
∑d

j=1wj

)
 ,

and w∗ = (1/d, . . . , 1/d). Hence,

h(w∗) = σV (d, . . . , d) = σV (1, . . . , 1)/d.
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B.3.5 Standard Gaussian copula

We begin by considering the d−dimensional random vector Y ∼ Nd(0d,Σ), where

0d denotes a d-vector of zeroes and Σ is a d × d positive definite matrix, where

Σii = 1 and Σij = Σji = ρij ∈ (0, 1) for all i, j = 1, . . . , d, i 6= j. To perform the

transformation Y → X where Xi ∼ Exp(σi) for all i = 1, . . . , d, we let Φ̄(Yi) = e−σiXi

for all i = 1, . . . , d. Here Φ̄(·) denotes the survival function of the univariate standard

Gaussian distribution. By Mill’s ratio (Grimmett, 2020), we have that Φ̄(x) ∼ φ(x)
x

as x → ∞ and where φ denotes the density of the univariate standard Gaussian

distribution. Thus, we can approximate the transformation Yi → Xi by finding a

solution to

1

y

1√
2π
e−

1
2
y2 ∼ e−σx, (B.3.8)

which holds as x→∞.

To solve (B.3.8), we begin with an initial solution y0 that solves e−σx = e−
1
2
y20 , i.e.,

y0 =
√

2σx. Now, let y1 =
√

2σx+ ε where ε = o(
√
x). Substituting this into (B.3.8)

gives

e−σx ∼ 1√
2σx+ ε

1√
2π
e−

1
2

(2ε
√

2σx+ε2)e−σx,

as x→∞ and thus

1 ∼ 1√
2σx

1

1 + ε√
2σx

1√
2π
e−ε
√

2σxe−
1
2
ε2 ∼ 1√

2σx

1√
2π
e−ε
√

2σxe−
1
2
ε2 ,

which follows as

1

1 + ε√
2σx

→ 1 as x→∞.

Taking logs of both sides and rearranging gives

ε ∼ − log(4πσx)

2
√

2σx
− ε2

2
√

2σx
∼ − log(4πσx)

2
√

2σx
,
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as x→∞. Thus, an approximate solution to (B.3.8) is

y =
√

2σx− log(4πσx)

2
√

2σx
[1 + o (1)],

which can be applied to all components of Y. To calculate the determinant of the

Jacobian of the marginal transformation, we note that

∂yi
∂xi
∼
√

2σi
2

x
−1/2
i − 2− log(4πσixi)

4
√

2σix
3/2
i

∼
√

σi
2xi

,

as xi → ∞ and for all i = 1, . . . , d. We now make the assumption that as R → rF

that all components of X tends to their respective upper-endpoints with associated

rates determined by the following; we assume that F̄1(x1)/F̄j(xj) ∼ cj as F̄1(x1)→ 0

for constants cj > 0 and for j = 1, . . . , d, and that R→ rF ⇒ F̄1(x1)→ 0. The joint

density of X is then

fX(x) = (2π)−d/2|Σ|−1/2 exp

{
−1

2
ATxΣ−1Ax

}
× 2−d/2

d∏
i=1

√
σi
xi
, (B.3.9)

where

Ax =


√

2σ1x1 − log(4πσ1x1)

2
√

2σ1x1

...
√

2σdxd − log(4πσdxd)

2
√

2σdxd

 .

We now apply the transformation given by (4.2.1), i.e., X → (Rd,W). The joint

density of Rd and W is, for w = (w1, . . . , wd−1) ∈ [0, 1]d−1

fRd,W(r,w) ∼ (2π)−d/2|Σ|−1/2 exp

{
−1

2
ATr,wΣ−1Ar,w

}
× 2−d/2rd/2−1

d∏
i=1

√
σi
wi
,
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as r →∞, and where wd = 1−
∑d−1

j=1 wj and

Ar,w =


√

2σ1rw1 − log(4πσ1rw1)

2
√

2σ1rw1

...
√

2σdrwd − log(4πσdrwd)

2
√

2σdrwd

 =
√

2rBw −
1

2
√

2r
log(4πr)Cw,1 −

1

2
√

2r
Cw,2,

for

Bw =


√
σ1w1

...

√
σdwd

 , Cw,1 =


1√
σ1w1

...

1√
σdwd

 and Cw,2 =


log(σ1w1)√

σ1w1

...

log(σdwd)√
σdwd

 .

Now, consider the exponent in (B.3.9) and let Cw = log(4πr)Cw,1 + Cw,2. The expo-

nent can be written as

1

2
ATr,wΣ−1Ar,w =

1

2

(√
2rBw −

1

2
√

2r
Cw

)T
Σ−1

(√
2rBw −

1

2
√

2r
Cw

)
= rBT

wΣ−1Bw −
1

4

[
CT

wΣ−1Bw +BT
wΣ−1Cw

]
+

1

16r
CT

wΣ−1Cw

= rBT
wΣ−1Bw −

1

4

[
CT

wΣ−1Bw +BT
wΣ−1Cw

]
+ o(1),

as r →∞. We then have

1

2
ATr,wΣ−1Ar,w = rBT

wΣ−1Bw −
1

4

[
(log(4πr)Cw,1 + Cw,2)TΣ−1Bw+

BT
wΣ−1(log(4πr)Cw,1 + Cw,2)

]
= rBT

wΣ−1Bw − log(4πr)
1

4

[
CT

w,1Σ−1Bw +BT
wΣ−1Cw,1

]
− 1

4

[
CT

w,2Σ−1Bw +BT
wΣ−1Cw,2

]
+ o(1),

as r →∞ and so we can rewrite (B.3.9) as

fRd,W(r,w) ∼ (2π)−d/2|Σ|−1/22−d/2rd/2−1

(
d∏
i=1

√
σi
wi

)
(4πr)−g2(w)
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× exp {−rg1(w)} exp {−g3(w)} ,

as r →∞, and where g1(w) = BT
wΣ−1Bw and

g2(w) =
1

4

[
CT

w,1Σ−1Bw +BT
wΣ−1Cw,1

]
, and g3(w) =

1

4

[
CT

w,2Σ−1Bw +BT
wΣ−1Cw,2

]
.

To derive Pr{Rd ≥ s}, we require the (d − 1)-dimensional integral of fRd,W with

respect to w ∈ [0, 1]d−1; this can be approximated for large r by Laplace’s method,

which gives

fRd(r) ∼
∫ 1

0

· · ·
∫ 1

0

(2π)−d/2|Σ|−1/22−d/2rd/2−1

(
d∏
i=1

√
σi
wi

)
(4πr)−g2(w)

× exp {−rg1(w)} exp {−g3(w)} dw

∼ (2π)−d/2|Σ|−1/22−d/2rd/2−1

(
d∏
i=1

√
σi
w∗i

)
(4πr)−g2(w∗)

× exp {−rg1(w∗)} exp {−g3(w∗)} × |G1(w∗)|−1/2(2π)(d−1)/2r−(d−1)/2

∼ h2(w∗)rg2(w∗)−1/2 exp{−rg1(w∗)}, (B.3.10)

as r →∞ and where

h2(w) = 22g2(w)−(d+1)/2πg2(w)−1/2e−g3(w)|Σ|−1/2|G1(w∗)|−1/2

(
d∏
i=1

σi

)
d∏
i=1

w
−1/2
i

for w∗ = arg min
w∈[0,1]d−1

g1(w) and G1(w∗) is the Hessian of g1(·) evaluated at w∗. It can

then be shown that the survival function of Rd is of the form

Pr{Rd ≥ s} ∼ Ksg2(w∗)−1/2 exp{−sg1(w∗)} (B.3.11)

as s→∞ and for constant K > 0, which is the required result.

We note that w∗ cannot typically be solved analytically. However, if σi = σ for
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all i = 1, . . . , d and ρij = ρ for i 6= j, then

g1(w) = σ


√
w1

...√(
1−

∑
j wj

)

T

Σ−1


√
w1

...√(
1−

∑
j wj

)
 ,

and it can be shown that

w∗ = arg min
w∈[0,1]d−1

g1(w) = (1/d, . . . , 1/d).

Hence, g1(w∗) = σ1TΣ−1
1/d = σ(dηd)

−1 and g2(w∗) = 1
2
1
TΣ−1

1 = 1/(2ηd). To

prove this, we first note that the problem of minimising g1 can be approached from

the perspective of a non-linear program; by setting vi =
√
σiwi for all i = 1, . . . , d,

the problem is of the form

minimize
v

g1(v) =


v1

...

vd


T

Σ−1


v1

...

vd

 ,

subject to fi(v) = −vi < 0, i = 1, . . . , d, and

h(v) =
d∑
i=1

v2
i

σi
= 1.

Using this framework, any optimal solution v∗ must satisfy the Karush-Kuhn-Tucker

(KKT) conditions (Kuhn and Tucker, 1951), namely

−∇g1(v∗) = λ∇h(v∗) +
d∑
i=1

µi∇fi(v∗), (B.3.12)

µifi(v
∗) = 0, for i = 1, . . . , d, (B.3.13)

µi ≥ 0, for i = 1, . . . , d, (B.3.14)
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for constant λ ∈ R. Note that we do not require vi strictly greater than 0 as we can

show that the density is non-degenerate in this the case. To satisfy all of the above

conditions implies that any optimal solution v∗ = (v∗1, . . . , v
∗
d) must solve

− 1

2


v∗1
...

v∗d


T

Σ−1 = 2λ


v∗1/σ1

...

v∗d/σd


T

−


µ1

...

µd


⇒ −1

2

d∑
i=1

v∗i Σ
−1
ij = 2λv∗j/σj − µj for all j = 1, . . . , d

⇒ σj
v∗j

(
1

2

d∑
i=1

v∗i Σ
−1
ij − µj

)
=
σk
vk

(
1

2

d∑
i=1

v∗i Σ
−1
ik − µk

)
, (B.3.15)

for all j = 1, . . . , d and k = 1, . . . , d. Solving this system of equations is non-trivial

and numerical optimisation is difficult as the objective function is multi-modal; fur-

thermore, it is not necessarily clear whether or not the optimal solution lies on the

boundaries of the domain of v, i.e., vi = 0 for any i ∈ {1, . . . , d}. However, if σi = σ

for all i = 1, , . . . , d and ρi,j = ρ ∈ (0, 1) for all i 6= j, then we can illustrate that

v∗ = (1/
√
d, . . . , 1/

√
d) by solving (B.3.15) explicitly.

We begin by deriving the entries of Σ−1. Note that we can write Σ = (1− ρ)Id +

ρ1d×d, where 1d×d is a d× d matrix of ones and Id denotes the d× d identity matrix.

With Σ of this form, Miller (1981) illustrates that

Σ−1 =
1

(1− ρ)
Id −

ρ

1 + tr
(

ρ
1−ρ1d×d

) 1

(1− ρ)2
1d×d

=
1

(1− ρ)
Id −

ρ

(1− ρ+ dρ)(1− ρ)
1d×d,
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where tr(·) denotes the trace of a matrix. Thus,

Σ−1
ij =


a = 1

(1−ρ)
− ρ

(1−ρ+dρ)(1−ρ)
= 1−2ρ+dρ

(1−ρ)(1−ρ+dρ)
, if i = j,

b = − ρ
(1−ρ+dρ)(1−ρ)

, if i 6= j.

(B.3.16)

Substituting this into (B.3.15) with σi = σ for all i = 1, . . . , d gives the system of

equations

σ

2v∗j

(
d∑
i=1

v∗i Σ
−1
ij − 2µj

)
=

σ

2v∗j

(
avj + b

d∑
i 6=j

v∗i − µj

)
=
σ

2

(
a+

b

v∗j

d∑
i 6=j

v∗i − µj

)

=
σ

2

(
a+

b

v∗k

d∑
i 6=k

v∗i − µk

)
,

(B.3.17)

for all j = 1, . . . , d and k = 1, . . . , d, which simplifies to

bv∗k

d∑
i 6=j

v∗i − v∗kvjµj = bv∗j

d∑
i 6=k

v∗i − v∗j v∗kµk.

Now consider constraint (B.3.13); we have that either µi = 0 or v∗i = 0 for all i =

1, . . . , d. We consider the latter case first; here (B.3.17) becomes

v∗k

d∑
i 6=j

v∗i = 0,

which would imply that v∗k is also zero so as not to break constraint (B.3.14). In a

similar fashion, we can show that if v∗j is zero for any j, then all other v∗k for k 6= j

are also zero; this breaks the constraint that
∑d

i=1(v∗i )
2 = 1 and hence does not lead

to a feasible solution. Thus, we must instead have µi = 0 for all i = 1, . . . , d, and so

solve

v∗k

d∑
i 6=j

v∗i = v∗j

d∑
i 6=k

v∗i ,
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by letting v∗i = v∗ for all i = 1, . . . , d. With the constraint that
∑d

i=1(v∗i )
2 = 1, it

follows that v∗ = (1/
√
d, . . . , 1/

√
d), and hence w∗ = (1/d, . . . , 1/d), as required.

B.4 Pairing independent exponential scale param-

eters

Here we explore the behaviour of R4 for Xi ∼ Exp(σi) for i = 1, . . . , 4. For the scale

parameters σ1, . . . , σ4, there are five cases that we need to consider:

• σi = σ for all i = 1, . . . , 4,

• σi 6= σj for all i, j = 1, . . . , 4 and i 6= j,

• There is one pair of equal scale parameters only,

• There are two pairs of equal scale parameters only,

• There is one triple of equal scale parameters only.

Note that the first two cases are covered in Section B.3.2. Without loss of generality,

we cover the third case by letting σ1 = σ2, for the fourth case we let σ1 = σ2, σ3 = σ4

and σ1 6= σ3, and for the fifth case we let σ1 = σ2 = σ3. We begin by re-writing

(B.3.1) as

fRd(r) =

(
d∏
i

σi

)
d∑
j=1

e−rσj∏
k 6=j(σk − σj)

=

(∏d
i σi

)
∏d

i=2

∏
k<i(σi − σk)

[
d∑
j=1

(−1)j+1

d∏
i 6=j,i>1

∏
i>k

(σi − σk)e−rσj
]

=
d∏
i=1

σi
g(σ)

h(σ)
,

where

g(σ) =
d∑
j=1

(−1)j+1

d∏
i 6=j,i>1

∏
i>k

(σi − σk)e−rσj , and h(σ) =
d∏
i=2

∏
k<i

(σi − σk).
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For d = 4, it follows that

g(σ) = (σ4 − σ3)(σ4 − σ2)(σ3 − σ2)e−rσ1 − (σ4 − σ3)(σ4 − σ1)(σ3 − σ1)e−rσ2

+ (σ4 − σ2)(σ4 − σ1)(σ2 − σ1)e−rσ3 − (σ3 − σ2)(σ3 − σ1)(σ2 − σ1)e−rσ4 ,

h(σ) = (σ4 − σ3)(σ4 − σ2)(σ4 − σ1)(σ3 − σ2)(σ3 − σ1)(σ2 − σ1).

Through repeated use of L’Hôpital’s rule, we can explore the effect of different pairings

of σi.

B.4.1 One pair

Let σ1 → σ2. Note that g(σ2, σ2, . . . ) = h(σ2, σ2, . . . ) = 0, and so by L’Hôpital’s rule,

fR4(r) =
4∏
i=1

σi lim
σ1→σ2

g
′
σ1

(σ1, σ2, . . . )

h′σ1(σ1, σ2, . . . )
,

where g
′
σ1

(·) represents the first partial derivative of g(·) with respect to the subscript.

Note that from here, we only consider the function g(·), as h(·) contributes only to

the proportionality constant of the density. It follows that

g
′

σ1
(σ1, σ2, . . . ) = −(σ4 − σ3)(σ4 − σ2)(σ3 − σ2)re−rσ1 − (σ4 − σ3)(−σ4 − σ3 + 2σ1)e−rσ2

+ (σ4 − σ2)(−σ4 − σ2 + 2σ1)e−rσ3 − (σ3 − σ2)(−σ3 − σ2 + 2σ1)e−rσ4 ,

where

lim
σ1→σ2

g
′

σ1
(σ1, σ2, . . . ) = −(σ4 − σ3)(σ4 − σ2)(σ3 − σ2)re−rσ2 − (σ4 − σ3)(−σ4 − σ3 + 2σ2)e−rσ2

+ (σ4 − σ2)(−σ4 + σ2)e−rσ3 − (σ3 − σ2)(−σ3 + σ2)e−rσ4 .
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Hence,

fR4(r) = K1

[
− (σ4 − σ3)(σ4 − σ2)(σ3 − σ2)re−rσ2 − (σ4 − σ3)(−σ4 − σ3 + 2σ2)e−rσ2

+ (σ4 − σ2)(−σ4 + σ2)e−rσ3 − (σ3 − σ2)(−σ3 + σ2)e−rσ4

]
,

for constant K1 =
∏4

i=1 σi/ limσ1→σ2 h
′
σ1

(σ1, σ2, . . . ). The density of R4 is then

fR4(r) ∼


K1re

−rσ2 , if σ2 = min
i=1,...,4

σi,

K2e
−rσj , for σj = min

i=1,...,4
{σi} 6= σ2,

as r →∞ and for constants K1, K2 > 0.

B.4.2 Two pairs

We now consider σ1 → σ2 and σ3 → σ4. Note that

lim
σ3→σ4

g
′

σ1
(σ2, σ2, σ3, σ4) = lim

σ3→σ4
h
′

σ1
(σ2, σ2, σ3, σ4) = 0,

so we apply L’Hôpital’s rule again. We now have

g
′

σ1,σ3
(σ2, σ2, σ3, σ4) = −(σ4 − σ2)(σ4 − σ2 − 2σ3)e−rσ2 − (2σ3 − 2σ2)e−rσ2

− (σ4 − σ2)(σ2 − σ4)re−rσ3 − (2σ2 − 2σ3)e−rσ4 ,

which has limit

lim
σ3→σ4

g
′

σ1,σ3
(σ2, σ2, σ3, σ4) = (σ4 − σ2)(σ4 + σ2)e−rσ2 − 2(σ4 − σ2)e−rσ2

+ (σ4 − σ2)2re−rσ4 − 2(σ2 − σ4)e−rσ4 .
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Using a similar procedure to as the previous case, it follows that

fR4(r) ∼


K1re

−rσ2 , if σ2 = mini=1,...,4 σi,

K2re
−rσ4 , if σ4 = mini=1,...,4 σi,

as r →∞ and for constants K1, K2 > 0.

B.4.3 One triple

Finally, we consider σ1 → σ2 and σ2 → σ3. We begin by noting that

g
′

σ1
(σ2, σ2, . . . ) = −(σ4 − σ3)(σ4 − σ2)(σ3 − σ2)re−rσ2 − (σ4 − σ3)(−σ4 − σ3 + 2σ2)e−rσ2

+ (σ4 − σ2)(−σ4 + σ2)e−rσ3 − (σ3 − σ2)(−σ3 + σ2)e−rσ4 ,

and so we now have

g
′

σ1,σ3
(σ2, σ2, σ3, σ4) = −(σ4 − σ2)(σ4 + σ2 − 2σ3)re−rσ2 − 2(σ3 − σ2)e−rσ2

− (σ4 − σ2)(−σ4 + σ2)re−rσ3 − 2(σ2 − σ3)e−rσ4 .

Note that

lim
σ2→σ3

g
′

σ1,σ3
(σ2, σ2, σ3, σ4) = 0,

and it can also be shown that limσ2→σ3 h
′
σ1,σ3

(σ2, σ2, σ3, σ4) = 0. Hence, we can apply

L’Hôpital’s rule a second time. Considering the partial derivative of g with respect

to σ1 once and σ3 twice, we have

g1,2
σ1,σ3

(σ2, σ2, σ3, σ4) = 2(σ4 − σ2)re−rσ2 − 2e−rσ2 + (σ4 − σ2)(−σ4 + σ2)r2e−rσ3 + 2e−rσ4



APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 297

and

lim
σ2→σ3

g1,2
σ1,σ3

(σ2, σ2, σ3, σ4) = 2(σ4−σ3)re−rσ3−2e−rσ3+(σ4−σ3)(−σ4+σ3)r2e−rσ3+2e−rσ4 .

Hence,

fR4(r) ∼


K1r

2e−rσ3 if mini σi = σ3,

K2e
−rσ4 if mini σi = σ4,

as r → ∞ and for constants K1, K2 > 0. We note that integration of the density

of R4 provided for each case leads to the survival function of R4, which satisfies the

general form given by (B.3.2).
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Supplementary material for

Chapter 5

C.1 Delta-Laplace conditional distribution functions

C.1.1 Connection to main text

This appendix supports the material presented in Sections 5.2.2 and 5.3.1 of the main

paper. This appendix describes contributions to the pairwise likelihood function in

(5.3.2) given by the conditional distribution associated with the residual distribution

described in Section 5.2.2 of the main text.

C.1.2 Bivariate conditional distribution

We note that if we had Y (si) > 0 for all i = 1, . . . , d, then the corresponding joint

density of (5.2.9) for observed residuals z = (z1, . . . , zd−1) ∈ ((c1,∞)×· · ·×(cd−1,∞))
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is

fsO(z) = φd−1

{
Φ−1(FZ(s1|sO)(z1)), . . . ,Φ−1(FZ(sd−1|sO)(zd−1)); 0,Σ

} d−1∏
i=1

fZ(si|sO)(zi)

φ(Φ−1(FZ(si|sO)))
,

(C.1.1)

where c1, . . . , cd−1 are the censoring thresholds defined in Section 5.3.1 of the main

text, φ(·) is the PDF of a standard Gaussian distribution and φd−1(·; 0,Σ) is the CDF

of a (d − 1)−dimensional Gaussian distribution with mean 0 and correlation matrix

Σ defined in (5.2.10); components of z are not censored when in this domain.

For censoring thresholds c1, c2, the bivariate density with the conditioning con-

straints is

gsO(z1, z2; c1, c2) =



fsO(z1, z2) if z1 > c1, z2 > c2,

fsO(z1)FsO, 2|1{c2, z1} if z1 > c1, z2 ≤ c2,

fsO(z2)FsO, 1|2{c1, z2} if z1 ≤ c1, z2 > c2,

FsO(c1, c2) if z1 ≤ c1, z2 ≤ c2,

(C.1.2)

where the conditional distribution FsO, i|j(c, z) is given by

FsO, i|j(ci, zj) = Φ
{

Φ−1(FZ(si|sO)(ci));µi|j,Σi|j
}
, (C.1.3)

where µi|j = ΣijΣ
−1
jj Φ−1{FZ(sj |sO)(zj)} and Σi|j = Σij − Σ2

ijΣ
−1
jj with Σ defined in

(5.2.10). Both fsO(·, ·) and FsO(·, ·) are the bivariate analogues of (5.2.9) and (C.1.1)

and FZ(si|sO) is the CDF of a delta-Laplace distribution with parameters given in

(5.2.7); these and Σ are all identifiable as they are all fully determined by pairwise

distances.
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C.1.3 Multivariate extension of (C.1.3)

Suppose we have some sO ∈ S and sA ∈ S \ sO, which need not be any of the original

sampling locations, and is indexed such that sA = (s1, . . . , snA). We partition the

indices of set sA into two sets; indices for censored sites and non-censored sites, Ac

and Anc, respectively and without loss of generality we write Ac = (s1, . . . , snc) and

Anc = (snc+1, . . . , snA). If sites in Ac are censored with thresholds c1, . . . , cnc , then the

conditional distribution function of

(
Z(s1)|sO), . . . , Z(snc)|sO)

)∣∣∣∣(Z(snc+1|sO) = znc+1, . . . , Z(snA|sO) = znA

)

is FsO, Ac|Anc(c1, . . . , cnc , znc+1, . . . , znA) equals to

Φnc

{
Φ−1(FZ(s1|sO)(c1)), . . . ,Φ−1(FZ(snc |sO)(cnc));µAc|Anc ,ΣAc|Anc

}
, (C.1.4)

where

µAc|Anc = ΣAcAncΣ
−1
AncAnc

(Φ−1{FZ(snc+1|sO)(znc+1)}, . . . ,Φ−1{FZ(snA |sO)(znA)})T

ΣAc|Anc = ΣAcAc − ΣAcAncΣ
−1
AncAnc

ΣAncAc .

The notation ΣAB denotes the partition of Σ that takes rows indexed by the set A

and columns indexed by the set B.

C.2 Application dependence model evaluation

C.2.1 Connection to main text

This appendix supports the material in Section 5.4.3 of the main text. Appendix C.2.2

details the parameter estimates for the spatial AI model and Appendix C.2.3 details
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a diagnostic, based on χ, for evaluating the fitted dependence model.

C.2.2 Table of AI model parameter estimates

Table C.2.1 gives the estimates and standard errors for the model parameters discussed

in Section 5.4.3 of the main text. Note that those parameters without standard errors

were treated as fixed in the model fit.

Table C.2.1: Parameter estimates (standard errors) to 2 d.p.

α(h) β(h)

κα1 κα2 ∆ κβ1 κβ2 κβ3

1.95 (0.25) 0.73 (0.03) 0.00 38.58 (0.65) 1.02 (0.03) 1.00

µ(h) σ(h)

κµ1 κµ2 κµ3 κσ1 κσ2

0.65 (0.04) 0.28 (0.02) 140.00 (0.50) 34.22 (0.80) 0.89 (0.01)

δ(h)

κδ1 κδ2 κδ3 κδ4

0.43 (0.59) 0.46 (0.03) 142.14 (0.02) 1.00

ρ(h) (5.2.11)

κρ1 κρ2 θ L

58.71 (0.59) 0.53 (0.01) -0.18 (0.02) 0.93 (0.01)
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C.2.3 Probability of no rain diagnostic

We further evaluate the extremal behaviour of our fitted model by proposing a novel

statistic for extremal dependence of precipitation processes that is based on χ. We

define

χ(0)
q (s, sO) = Pr

{
(Y (s) = 0) |

(
Y (sO) > F−1

Y (sO)(q)
)}

, (C.2.1)

for s, sO ∈ S and q ∈ [0, 1]. This is the probability of observing no rain at s given that

an extreme is observed at sO. If {Y (s)} is truly stationary in both its marginal and

dependence structures, we would expect this measure to be a function of distance;

results in Section 5.4.2 of the main text suggest the former is not true, but that

there is only limited marginal non-stationarity. Figure C.3.3 compares estimates of

(C.2.1) from the model against estimates from the data, for different q, with sO in

the centre of S. Model estimates are calculated empirically from 1× 106 realisations

of {Y (s) : s ∈ S}, which are drawn using the scheme described in Section 5.3.4 of

the main text. For lower values of q, the model captures the empirical values for

the probability reasonably well. However, as q increases, model estimates of (C.2.1)

decrease whilst empirical estimates remain broadly the same. This could suggest that

our model for {Y (s)} is unable to capture some of the dependence behaviour in the

data, i.e., that caused by a mixture of processes.

C.3 Supplementary Figures
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Figure C.3.1: Spatially smoothed estimate of υ(s) for East Anglia.

Figure C.3.2: Q-Q plots for the fitted GAM GPD distributions at five randomly
sampled sites in S. The 95% confidence intervals are given by the blue dashed lines.
Bottom-right: Q-Q plot for pooled marginal transformation over all sites to standard
exponential margins.
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Figure C.3.3: Estimates of χ
(0)
q (s, sO) against distance h(s, sO) for q = (0.9, 0.95, 0.99).

Red points denote empirical estimates, black points denote estimates derived from
simulations from the fitted model.

Figure C.3.4: Q-Q plots for AD model, and empirical, R̄A of regions of increasing
size; these are illustrated in Figure 5.4.4 of the main text. Probabilities range from
0.7 to a value corresponding to the 20 year return level, with 95% confidence intervals
given by the blue dashed lines.
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Figure C.3.5: Left: Q-Q plots for AI model, and empirical, R̄A of four regions in
S, with 95% confidence intervals given by the dashed lines. Probabilities range from
0.7 to a value corresponding to the 20 year return level. Right: regions, each with
approximate area 925km2, are coloured 1-4 red, green, blue, cyan.

Figure C.3.6: Plots of 2 × 104 realisations of pairwise (R̄A, R̄B) for non-overlapping
regions A,B, illustrated in Figure C.3.5. Black points are model estimates, red points
are from the data. The regions A and B are labelled on the respective panels.
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D.1 Supplementary Figures

Figure D.1.1: Q-Q plots for the GPD GAM fits for {Y C(s)} at five randomly sampled
sites in S. Bottom-right: Q-Q plot for pooled marginal transformation over all sites
to standard exponential margins. The 95% confidence intervals are given by the blue
dashed lines.
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Figure D.1.2: Q-Q plots for the GPD GAM fits for {Y NC(s)} at five randomly sampled
sites in S. Bottom-right: Q-Q plot for pooled marginal transformation over all sites
to standard exponential margins. The 95% confidence intervals are given by the blue
dashed lines.

Figure D.1.3: Q-Q plots for the GPD GAM fits for {Y ∗(s)} at five randomly sampled
sites in S. Bottom-right: Q-Q plot for pooled marginal transformation over all sites
to standard exponential margins. The 95% confidence intervals are given by the blue
dashed lines.
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E.1 Comparison of χGG(h) and χBR(h)

In Section 7.2.2, we discuss using the theoretical χ(h) function from a Brown-Resnick

model rather than a Gaussian-Gaussian model. This is because the former is less

computationally expensive to compute and often approximates the latter very closely

for h ∈ R+. To illustrate this, Figure E.1.1 shows the best approximation of χBR(h) to

some fixed χGG(h) with Matérn correlation function and parameter set (θ1 = 1, θ2, σ).

Here θ1 is set to 1 as this controls spatial scaling only. The functions χBR(h) are

produced by minimising ‖χBR(h)−χGG(h)‖F for a sequence of fixed h ∈ [0, 10]. Each

figure uses different values of (θ2, σ).
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Figure E.1.1: Comparison of χGG(h) (black) and χBR(h) (red) for different parameter
values.

E.2 High resolution heatmap of non-stationary max

stable process in Sections 7.3.1 and 7.3.2

Figure E.2.1 gives a high-resolution heatmap of one realisation of a non-stationary

Brown-Resnick process, with pairwise χ(si, sj) given in (7.3.2). This process is used

in the simulation studies in Sections 7.3.1 and 7.3.2.
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Figure E.2.1: Heatmap of one high-resolution realisation of the max-stable process
proposed in Section 7.3.1 on a Gumbel marginal scale. This is sampled at 100× 100
equally spaced points in [−1, 1] × [−1, 1]. The parameter values in (7.3.2) are taken
to be o = (0, 0) and we have (λ, κ) = (2, 0.8).
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