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Abstract—Semantic segmentation of remote sensing images 

plays an important role in a wide range of applications including 
land resource management, biosphere monitoring and urban 
planning. Although the accuracy of semantic segmentation in 
remote sensing images has been increased significantly by deep 
convolutional neural networks, several limitations exist in 
standard models. First, for encoder-decoder architectures such as 
U-Net, the utilization of multi-scale features causes the underuse 
of information, where low-level features and high-level features 
are concatenated directly without any refinement. Second, long-
range dependencies of feature maps are insufficiently explored, 
resulting in sub-optimal feature representations associated with 
each semantic class. Third, even though the dot-product attention 
mechanism has been introduced and utilized in semantic 
segmentation to model long-range dependencies, the large time 
and space demands of attention impede the actual usage of 
attention in application scenarios with large-scale input. This 
paper proposed a Multi-Attention-Network (MANet) to address 
these issues by extracting contextual dependencies through 
multiple efficient attention modules. A novel attention mechanism 
of kernel attention with linear complexity is proposed to alleviate 
the large computational demand in attention. Based on kernel 
attention and channel attention, we integrate local feature maps 
extracted by ResNet-50 with their corresponding global 
dependencies and reweight interdependent channel maps 
adaptively. Numerical experiments on two large-scale fine 
resolution remote sensing datasets demonstrate the superior 
performance of the proposed MANet. Code is available at 
https://github.com/lironui/Multi-Attention-Network. 

Index Terms—fine-resolution remote sensing images, attention 
mechanism, semantic segmentation 

I. INTRODUCTION 
emantic segmentation of remote sensing images (i.e., the 

assignment of definite categories to groups of pixels in an 
image), plays a crucial role in a wide range of applications such 
as land resources management, yield estimation and economic 
assessment [1, 6-10].  

Vegetation indices are commonly used features extracted 
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from multispectral and hyperspectral images to characterize 
land surface physical properties. The normalized difference 
vegetation index (NDVI) [13] and soil-adjusted vegetation 
index (SAVI) [16] highlight vegetation over other land 
resources, whereas the normalized difference bareness index 
(NDBaI) [18] and the normalized difference bare land index 
(NBLI) [19] emphasize bare land. The normalized difference 
water index (NDWI) [20] and modified NDWI (MNDWI) [21] 
indicate water. These indices have been developed and applied 
widely in the remote sensing community. Meanwhile, different 
classifiers have been designed from diverse perspectives, from 
traditional methods such as logistic regression [22], distance 
measures [23] and clustering [24], to more advanced machine 
learning methods such as the support vector machine (SVM) 
[25], random forest (RF) [26] and artificial neural networks 
(ANN) [27] including the multi-layer perceptron (MLP) [28]. 
These classifiers depend critically on the quality of features that 
are extracted for pixel-level land cover classification. However, 
this high dependency on hand-crafted descriptors restricts the 
flexibility and adaptability of these traditional methods.  

Deep Learning (DL), a powerful approach to capture 
nonlinear and hierarchical features automatically, has had a 
significant impact on various domains such as computer vision 
(CV) [29], natural language processing (NLP) [30] and 
automatic speech recognition (ASR)  [31]. In the field of remote 
sensing, DL methods have been introduced and implemented 
for land cover and land use classification [32]. Compared with 
vegetation indices, which are based on physical and 
mathematical concepts and hand-coded from spectral bands 
only, DL methods can mine different kinds of information 
including temporal periods, spectra, spatial context and the 
interactions among different land cover categories [15]. 

For remotely sensed semantic segmentation, Fully 
Convolutional Network (FCN)-based methods [1] and encoder-
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decoder architectures such as SegNet [33] and U-Net [34] have 
been adopted widely. Generally, the FCN-based architectures 
comprise a contracting path that extracts information from the 
input image and generates high-level feature maps, and an 
expanding path, where high-level feature maps are utilized to 
reconstruct the mask for pixel-wise segmentation by the single 
[1] or multi-level [34, 35] up-sampling procedures. Despite 
their powerful representation capability, however, information 
flow bottlenecks limit the potential of these multi-scale 
approaches [36]. For example, the low-level and fine-grained 
detailed feature maps generated by the encoder are 
concatenated with high-level and coarse-grained semantic 
information generated by the decoder without any further 
refinement, leading to inadequate exploitation and deficient 
discrimination of features. Besides, the discriminative ability of 
the feature representations might be insufficient for challenging 
tasks such as semantic segmentation of fine spatial resolution 
remote sensing images. 

The utilization of context fusion at multiple scales is a 
feasible solution [12, 14, 37-41], increasing the discriminative 
power of feature representations. The multi-scale context 
information can be aggregated using techniques such as atrous 
spatial pyramid pooling [14, 37], pyramid pooling module [12], 
or context encoding module [39]. Although context captured by 
the above strategies is beneficial to characterizing objects at 
different scales, the contextual dependencies for whole input 
regions are homogeneous and non-adaptive, without 
considering the disparity between contextual dependencies and 
local representation of different categories. Further, these multi-
scale context fusion strategies are designed manually, with 
limited flexibility in modeling multi-context representations. 
The long-range dependencies of feature maps are insufficiently 
leveraged in these approaches, which may be of paramount 
importance for remotely sensed semantic segmentation. 

With strong capabilities to capture long-range dependencies, 
dot-product attention mechanisms have been applied in vision 
and natural language processing tasks. The dot-product-
attention-based Transformer has demonstrated state-of-the-art 

performance in a majority of tasks in natural language 
processing [30, 42-44]. The non-local module [45], a dot-
product-based attention modified for computer vision, has 
shown great potential in image classification [46], object 
detection [47], semantic segmentation [5] and panoptic 
segmentation [48]. 

Utilization of the dot-product attention mechanism often 
comes with significant memory and computational costs, which 
increase quadratically with the size of the input over space and 
time. It remains an intractable problem to model global 
dependency on large-scale inputs, such as video, long 
sequences and fine-resolution images. To alleviate the 
substantial computational requirement, Child et al. [49] 
designed a sparse factorization of the attention matrix and 
reduced the complexity from 𝑂𝑂(𝑁𝑁2)  to 𝑂𝑂(𝑁𝑁√𝑁𝑁) . Using 
locality sensitive hashing, Kitaev et al. [50] reduced the 
complexity to 𝑂𝑂(𝑁𝑁 log𝑁𝑁) . Katharopoulos et al. [11] 
represented self-attention as a linear dot-product of kernel 
feature maps to further reduce the complexity to 𝑂𝑂(𝑁𝑁), and 
Shen et al. [3] modified the position of the softmax functions.   

In this paper, by comparison, we not only dramatically 
decrease the complexity, but also amply exploit the potential of 
the attention mechanism by designing a multilevel framework. 
Specifically, we reduce the complexity of the dot-product 
attention mechanism to 𝑂𝑂(𝑁𝑁) by treating attention as a kernel 
function. As the complexity of attention is reduced dramatically 
by kernel attention, we propose a Multi-Attention-Network 
(MANet) with a ResNet-50 backbone which explores the 
complex combinations between attention mechanisms and deep 
networks for the task of semantic segmentation using fine-
resolution remote sensing images. The performance of the 
proposed algorithm is compared comprehensively with various 
benchmarks. The major contributions of this research are two-
fold: 1) a novel attention mechanism involving kernel attention 
with linear complexity is proposed to alleviate the huge 
computational demand from attention module; . 2) we propose 
a novel Multi-Attention-Network (MANet) with a multi-scale 

 
Fig. 2. Details of the channel attention mechanism. 

   
Fig. 3. Illustration of the attention block. 

  

 
Fig. 1. Illustration of the architecture of dot-product attention mechanism. 
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strategy to aggregate relevant contextual features 
hierarchically. The MANet extracts global contextual 
dependencies using multi-kernel attention. 

II. RELATED WORK 

A. Attention Inspired by Human Perception 
Due to the overwhelming computational requirement for 

perceiving surrounding scenes with detail equivalent to foveal 
vision, the selective visual attention endows humans with the 
ability to orientate rapidly towards salient objects in a 
sophisticated visual scene [51] and choose a subset of the 
available perceptual information before further processing. 
Inspired by the human attention mechanism, substantial 
algorithms have been developed over the last few decades [52-
54]. 

Recently, a very large number of domains has been 
influenced significantly by the wave of DL, which emphasizes 
end-to-end hierarchical feature extraction in an automatic 
fashion. Integration of DL with the attention mechanism has 
great potential to transform the paradigm in this field. Attention 
in DL could be regarded as a weighted combination of the input 
feature maps, where the weights are hinged on the similarities 
between elements of the input [55]. Given that kernel learning 
[56] processes all inputs simultaneously and order-
independently by computing the similarity between the inputs, 
attention could be interpreted as a kernel smoother [57] applied 

over the inputs in a sequence, where the kernel evaluates the 
similarity between different inputs. The formulae and 
mathematical proofs can be found in [55]. 

B. Dot-Product Attention 
To enhance word alignment in machine translation, 

Bahdanau et al. [58] proposed the initial formulation of the dot-
product attention mechanism. Subsequently, recurrences are 
entirely replaced by attention in the Transformer [44]. State-of-
the-art records in most natural language processing tasks 
demonstrate the superiority of attention mechanisms amongst 
others. Wang et al. [45] modified dot-product attention for 
computer vision and proposed the non-local module. This 
method has been developed and applied to many tasks of 
computer vision, including image classification [46], object 
detection [47], semantic segmentation [5] and panoptic 
segmentation [48]. These successful applications demonstrated 
further the effectiveness and general utility of attention 
mechanisms.  

C. Scaling Attention 
Besides dot-product attention, there exists another set of 

techniques for scaling attention (or simply attention) in the 
literature. Unlike dot-product attention which models global 
dependency, scaling attention reinforces informative features 
and whittles information-lacking features. In the squeeze-and-
excitation (SE) module [2], a global average pooling layer and 

 
Fig. 4. The structure of (a) the proposed MANet, (b) the ResBlock, and (c) the DeBlock. 
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a linear layer are harnessed to calculate a scaling factor for each 
channel, and then the channels are weighted accordingly. The 
convolutional block attention module (CBAM) [4], selective 
kernel unit (SK unit) [59] and efficient channel attention 
module (ECA) [60]  further boost the SE block’s performance. 
The principles and purposes of dot-product attention and 
scaling attention are entirely divergent. This paper focuses on 
dot-product attention due to its superiority in many computer 
vision and pattern recognition tasks. 

D. Semantic Segmentation 
FCN-based methods have brought tremendous progress and 

evolution in semantic segmentation. DilatedFCN and 
EncoderDecoder are two prominent directions followed by 
FCN. In DilatedFCNs [12, 14, 37-40, 61], dilate or atrous 
convolutions are harnessed to retain the receptive field-of-view, 
and a multi-scale context module is utilized to cope with high-
level feature maps. Alternatively, EncoderDecoders [34, 35, 62-
68] utilize an encoder to capture multi-level feature maps, 
which are then incorporated into the final prediction using a 
decoder. 

DilatedFCN The dilated or atrous convolution [38, 61] has 
been demonstrated to be an effective technology for dense 
prediction and has achieved high accuracy in semantic 
segmentation. In DeepLab [14, 37], the atrous spatial pyramid 
pooling (ASPP), comprised of parallel dilated convolutions 
with diverse dilated rates, is able to embed context information, 
while the pyramid pooling module (PPM) enables PSPNet [12] 
to incorporate the contextual prior among different scales. 
Alternatively, EncNet [39] utilizes a context encoding module 
to exploit global context information. FastFCN [40] further 
replaces the dilated convolutions with a joint pyramid 
upsampling (JPU) module to reduce computational complexity. 
To extract abundant contextual relationships, a dot-product 
attention mechanism is attached to the DANet [5]. For further 
differentiating the same-object-class contextual pixels from the 
different-object-class contextual pixels, the object-contextual 
representation (OCR) module is elaborated by the OCRNet 
[69]. 

EncoderDecoder Skip connections are employed to 
integrate the high-level features generated by the decoder and 
the low-level features generated by the corresponding encoder, 
which are the essential structure of U-Net [34]. In the recent 
literature [62-64], the plain skip connections in U-Net are 
substituted by more subtle and elaborate skip connections 
which reduce the semantic gap between the encoder and 
decoder. Meanwhile, the structural development based on 
residual connections is also a promising direction [35, 65-68].  
Taking DeepLab V3 as the encoder, DeepLab V3+ [37] 
combined the merits of DilatedFCN and EncoderDecoder in a 
single framework. 

E. Attention-based Networks for Semantic Segmentation 
Based on dot-product attention as well as its variants, various 

attention-based networks have been proposed to cope with the 
semantic segmentation task. Inspired by the non-local module 
[45], the Double Attention Networks (𝐴𝐴2 -Net) [70], Dual 
Attention Network (DANet) [5], Point-wise Spatial Attention 
Network (PSANet) [71], Object Context Network (OCNet) [72], 

and Co-occurrent Feature Network (CFNet) [73] were proposed 
for scene segmentation by exploring the long-range dependency.  

The computing resource required by dot-product attention 
modules is normally huge, which severely limits the application 
of attention mechanisms. Therefore, substantial researches have 
been implemented which aim to alleviate the bottleneck to 
efficiency and push the boundaries of attention, including 
accelerating the generation process of the attention matrix [69, 
74-76], pruning the structure of the attention block [77], and 
optimizing attention based on low-rank reconstruction [78]. 

Meanwhile, another burgeoning research area for semantic 
segmentation is how to embed the dot-product attention into a 
Graph Convolutional Network (GCN) and optimize the 
complexity of the attention [79-83]. 

III. METHODOLOGY 

A. Definition of Dot-Product Attention 
Supposing N and 𝐶𝐶 denote the length of input sequences and 

the number of input channels, respectively, where 𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊, 
and H and W denote the height and width of the input, given a 
feature 𝑿𝑿 = [𝒙𝒙1,⋯ ,𝒙𝒙𝑁𝑁] ∈ ΡN×C, dot-product attention utilizes 
three projected matrices 𝑾𝑾𝑞𝑞 ∈ Ρ𝐷𝐷𝑥𝑥×𝐷𝐷𝑘𝑘 , 𝑾𝑾𝑘𝑘 ∈ Ρ𝐷𝐷𝑥𝑥×𝐷𝐷𝑘𝑘 , and 
𝑾𝑾𝑣𝑣 ∈ Ρ𝐷𝐷𝑥𝑥×𝐷𝐷𝑣𝑣  to generate the corresponding query matrix Q, 
key matrix K and value matrix V as: 

𝑸𝑸 = 𝑿𝑿𝑾𝑾𝑞𝑞 ∈ Ρ𝑁𝑁×𝐷𝐷𝑘𝑘,  

𝑲𝑲 = 𝑿𝑿𝑾𝑾𝑘𝑘 ∈ Ρ𝑁𝑁×𝐷𝐷𝑘𝑘, (1) 

𝑽𝑽 = 𝑿𝑿𝑾𝑾𝒗𝒗 ∈ Ρ𝑵𝑵×𝑫𝑫𝒗𝒗.  

where 𝐷𝐷(∙)  means the dimension of  (∙). Please note that the 
shapes of 𝑸𝑸 and 𝑲𝑲 are supposed to be identical. Therefore, we 
use the same symbol to represent their shapes. 

A normalization function ρ evaluates the similarity between 
the i-th query feature 𝒒𝒒𝑖𝑖𝑇𝑇 ∈ Ρ𝐷𝐷𝑘𝑘  and the j-th key feature 𝒌𝒌𝑗𝑗 ∈
Ρ𝐷𝐷𝑘𝑘 by  𝜌𝜌(𝒒𝒒𝑖𝑖𝑇𝑇𝒌𝒌𝑗𝑗) ∈ Ρ1. Please note that the vectors in this paper 
default to column vectors. Generally, as the query feature and 
key feature are generated by diverse layers, the similarities 
between 𝜌𝜌(𝒒𝒒𝑖𝑖𝑇𝑇𝒌𝒌𝑗𝑗)  and 𝜌𝜌(𝒒𝒒𝑗𝑗𝑇𝑇𝒌𝒌𝑖𝑖)  are not symmetric. By 
calculating the similarities between all pairs of positions and 
taking the similarities as weights, the dot-product attention 
module computes the value at position i by aggregating the 
value features from all positions based on weighted summation: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽) = 𝜌𝜌(𝑸𝑸𝑲𝑲𝑇𝑇)𝑽𝑽. (2) 

The softmax is a standard normalization function as: 

𝜌𝜌(𝑸𝑸𝑇𝑇𝑲𝑲) = softmaxrow(𝑸𝑸𝑲𝑲𝑇𝑇), (3) 

where softmaxrow  indicates the application of the softmax 
function along each row of the matrix 𝑸𝑸𝑲𝑲𝑇𝑇. 

The 𝜌𝜌(𝑸𝑸𝑲𝑲𝑇𝑇)  models the similarities between all pairs of 
positions. However, as 𝑸𝑸 ∈ Ρ𝑁𝑁×𝐷𝐷𝑘𝑘  and 𝑲𝑲𝑇𝑇 ∈ Ρ𝐷𝐷𝑘𝑘×𝑁𝑁 , the 
product between 𝑸𝑸 and 𝑲𝑲𝑇𝑇 belongs to Ρ𝑁𝑁×𝑁𝑁, leading to 𝑂𝑂(𝑁𝑁2) 
memory complexity and 𝑂𝑂(𝑁𝑁2) computational complexity. As 
a consequence, the high resource-demand of the dot-product 
critically limits its application to large-scale inputs. One way to 
solve this problem is to modify the softmax [3], and another is 
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to rethink the attention via the lens of the kernel. An illustration 
of the architecture for the dot-product attention mechanism is 
shown in Fig. 1. 

B. Generalization of Dot-Product Attention Based on Kernel 
Under the condition of the softmax normalization function, 

the i-th row of the result matrix generated by the dot-product 
attention module (equation 2) can be written as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ 𝑒𝑒𝒒𝒒𝑖𝑖

𝑇𝑇𝒌𝒌𝑗𝑗𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝑒𝑒𝒒𝒒𝑖𝑖𝑇𝑇𝒌𝒌𝑗𝑗𝑁𝑁
𝑗𝑗=1

, (4) 

Then, equation (4) can be generalized for any normalization 
function and rewritten as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗�𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗�𝑁𝑁
𝑗𝑗=1

, 

sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� ≥ 0. 
(5) 

where sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗�  indicates the function calculating the 
similarity between 𝒒𝒒𝑖𝑖 and 𝒌𝒌𝑗𝑗. If sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = 𝑒𝑒𝒒𝒒𝑖𝑖

𝑇𝑇𝒌𝒌𝑗𝑗 , equation 
(5) is equivalent to equation (4). And sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� can be further 
expanded as sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗), where 𝜙𝜙(∙) and 𝜑𝜑(∙) 
can be considered as kernel smoothers [55] if 𝜙𝜙 = 𝜑𝜑 . 
Accordingly, the corresponding inner product space can be 
defined as 〈𝜙𝜙(𝒒𝒒𝑖𝑖),𝜑𝜑(𝒌𝒌𝑗𝑗)〉.  

Equation (4) can then be further rewritten as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
∑ 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗)𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑(𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1

, (6) 

which can be simplified as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ 𝜑𝜑(𝒌𝒌𝑗𝑗)𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁

𝑗𝑗=1

𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ 𝜑𝜑(𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1

. (7) 

As 𝑲𝑲 ∈ Ρ𝐷𝐷𝑘𝑘×𝑁𝑁 and 𝑽𝑽𝑇𝑇 ∈ Ρ𝑁𝑁×𝐷𝐷𝑣𝑣 , the product between 𝑲𝑲 and 𝑽𝑽𝑇𝑇 
belongs to Ρ𝐷𝐷𝑘𝑘×𝐷𝐷𝑣𝑣 , which reduces the complexity of the dot-
product attention mechanism considerably.  

C. Kernel Attention 
We take 𝜙𝜙(∙) = 𝜑𝜑(∙) = softplus(∙), where 

softplus(𝑥𝑥) = log (1 + 𝑒𝑒𝑥𝑥). (8) 

The reason why we select softplus(∙) instead of ReLU(∙) is that 
the nonzero property of the softplus enables the attention to 
avoid zero gradients when the input is negative. Then, the 
similarity function can be embodied as: 

  sim�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = softplus(𝒒𝒒𝑖𝑖)𝑇𝑇softplus�𝒌𝒌𝑗𝑗�, (9) 

thereby rewriting the equation (5) as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽)𝑖𝑖 =
softplus(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ softplus�𝒌𝒌𝑗𝑗�𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁

𝑗𝑗=1

softplus(𝒒𝒒𝑖𝑖)𝑇𝑇 ∑ softplus�𝒌𝒌𝑗𝑗�𝑁𝑁
𝑗𝑗=1

, (10) 

which can be further written in a vectorized form as: 

𝐷𝐷(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
softplus(𝑸𝑸)softplus(𝑲𝑲)𝑇𝑇𝑽𝑽

softplus(𝑸𝑸)∑ softplus(𝑲𝑲)𝑖𝑖,𝑗𝑗𝑇𝑇𝑗𝑗
. (11) 

As ∑ softplus�𝒌𝒌𝑗𝑗�𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁
𝑗𝑗=1  and ∑ softplus�𝒌𝒌𝑗𝑗�𝑁𝑁

𝑗𝑗=1 can be 
calculated and reused for each query, the time and memory 
complexity of the proposed linear attention mechanism based 
on equation (11) is 𝑂𝑂(𝑁𝑁) only.   

D. Multi-Attention-Network 
For the spatial dimension, as the computational complexity 

of the dot-product attention mechanism exhibits a quadratic 
relationship with the size of the input (𝑁𝑁 = 𝐻𝐻 × 𝑊𝑊), we design 
an attention mechanism based on kernel attention, named 
KAM. For the channel dimension, the number of input channels 
C is normally far less than the number of pixels contained in the 
feature maps (i.e., 𝐶𝐶 ≪ 𝑁𝑁). Therefore, the complexity of the 
softmax function for channels (i.e., 𝑂𝑂(𝐶𝐶2)) , is not large 
according to equation (3). Thus, we utilize the channel attention 
mechanism based on the dot-product [5], named CAM  (Fig. 2). 
Using the kernel attention mechanism (KAM) and channel 
attention mechanism (CAM) which model the long-range 
dependencies of positions and channels, respectively, we design 
an attention block to enhance the discriminative ability of 
feature maps extracted by each layer (Fig. 3). 

The structure of the proposed Multi-Attention-Network is 
illustrated in Fig. 4. We harness ResNet-50 pre-trained on 
ImageNet to extract feature maps. Specifically, five feature 
maps at different scales acquired from the outputs of [Conv, 
ResBlock-1, ResBlock-2, ResBlock-3, ResBlock-4] are 
adopted. The lowest level feature Res-4 is up-sampled directly 
by the DeBlock-4 which is comprised of a 3 × 3 deconvolution 
layer with stride=2 and two 1 × 1 convolution layers before and 
after the deconvolution layer. The feature maps generated by 
ResBlocks are then refined by corresponding attention blocks 
and added with the up-sampled lower feature maps. 
Subsequently, the fused features are up-sampled by the 
DeBlocks correspondingly. Finally, the output of the last 
DeBlock is up-sampled to the identical spatial resolution of the 
input by employing a deconvolution operation and fed into the 
final convolution layer to obtain the predicted segmentation 
map. 

IV. DATASET AND EXPERIMENTAL SETTING 

A. Datasets 
The effectiveness of the linear attention mechanism is tested 

using the ISPRS Potsdam dataset and the ISPRS Vaihingen 
dataset(http://www2.isprs.org/commissions/comm3/wg4/sema
ntic-labeling.html). All the results for the ISPRS dataset are 
tested using ground reference data without eroded boundaries, 
so the evaluation indices are not as high as reported in certain 
elements of the literature.  

Vaihingen: The Vaihingen semantic labeling dataset is 
composed of 33 images with an average size of 2494 × 2064 
pixels and a GSD of 5 cm. The near-infrared, red and green 
channels together with DSM are provided in the dataset. There 
are 16 images in the training set and 17 images in the test set. 
We exploited ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 
31, 33, 35, 38 for testing, ID: 30 for validation, and the 
remaining 15 images for training. We did not use DSM in our 
experiments to reduce computation. Note that we use only the 
red, green and blue channels in our experiments. For training, 
we crop the raw images into 512 × 512 patches and augmented 
them by rotating, resizing, horizontal axis flipping, vertical axis 
flipping, and adding random noise. 

 Potsdam: The Potsdam dataset contains 38 fine-resolution 
images of size 6000 × 6000 pixels with a ground sampling 



 6 

distance (GSD) of 5 cm. The dataset provides near-infrared, red, 
green and blue channels as well as DSM and normalized DSM 
(NDSM). There are 24 images in the training set and 16 images 
in the test set. Specifically, we utilize ID: 2_13, 2_14, 3_13, 
3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15, 
7_13 for testing, ID: 2_10 for validation, and the remaining 22 
images, except image named 7_10 with error annotations, for 
training.  The process of the training dataset is identical to that 
for Vaihingen. 

B. Evaluation Metrics 
The performance of MANet on the three datasets is evaluated 

using the overall accuracy (OA), the mean Intersection over 
Union (mIoU), and the F1 score (F1), which are computed on 
the accumulated confusion matrix: 

𝑂𝑂𝐴𝐴 =
∑ 𝑇𝑇𝑇𝑇𝑘𝑘𝑁𝑁
𝑘𝑘=1

∑ 𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝑇𝑇𝑘𝑘 + 𝑇𝑇𝑁𝑁𝑘𝑘 + 𝐹𝐹𝑁𝑁𝑘𝑘𝑁𝑁
𝑘𝑘=1

, (12) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁
�

𝑇𝑇𝑇𝑇𝑘𝑘
𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐹𝐹𝑇𝑇𝑘𝑘 + 𝐹𝐹𝑁𝑁𝑘𝑘

𝑁𝑁

𝑘𝑘=1

, (13) 

𝐹𝐹1 = 2 ×
𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 × 𝑝𝑝𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

, (14) 

where 𝑇𝑇𝑇𝑇𝑘𝑘, 𝐹𝐹𝑇𝑇𝑘𝑘, 𝑇𝑇𝑁𝑁𝑘𝑘, and 𝐹𝐹𝑁𝑁𝑘𝑘 indicate the true positive, false 
positive, true negative, and false negatives, respectively, for 
object indexed as class k. OA is calculated for all categories 
including the background. C. Experimental Setting 

We select ResNet-50 pre-trained on ImageNet as the 
backbone for all comparative methods which are implemented 
with PyTorch. The optimizer is set as the Adam with a 0.0003 
learning rate and 4 batch sizes. All the experiments are 
implemented on a single NVIDIA Tesla V100 GPU with 16 GB 
RAM. The cross-entropy loss function is used as a quantitative 
evaluation coupled with backpropagation to measure the 
disparity between the achieved segmentation maps and the 
ground reference: 

𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑦𝑦) = −𝑦𝑦 log(𝑝𝑝) − (1 − 𝑦𝑦) log(1 − 𝑝𝑝), (15) 

where p is the prediction generated by the network and y is the 
ground reference. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. The Complexity of Kernel Attention 
We analyze the efficiency merit of kernel attention over dot-

product attention in both memory and computation in this 
section. Given a feature 𝑿𝑿 = [𝒙𝒙1,⋯ ,𝒙𝒙𝑁𝑁] ∈ Ρ𝑁𝑁×𝐶𝐶, both the dot-
attention and kernel attention will generate the query matrix Q, 
key matrix K, and value matrix V.  

For the dot-attention, to compute the similarity using softmax 
function, we have to generate the 𝑁𝑁 × 𝑁𝑁 matrix by multiplying 
the transposed key matrix K and the value matrix V, resulting 
in 𝑂𝑂(𝐷𝐷𝑘𝑘𝑁𝑁2)  time complexity and 𝑂𝑂(𝑁𝑁2)  space complexity. 
Thus, to compute the similarity between each pair of positions, 
the dot-attention would occupy at least 𝑂𝑂(𝑁𝑁2)  memory and 
require 𝑂𝑂(𝐷𝐷𝑘𝑘𝑁𝑁2) computation. 

 For kernel attention, as the softmax function is substituted 
for kernel smoothers, we can alter the order of the commutative 
operation and avoid multiplication between the reshaped key 
matrix K and query matrix Q. Therefore, we can calculate the 

 
Fig. 5. Computation (a) and memory (b) requirements under different input 
sizes. The blue and orange bars depict the resource requirements of the kernel 
attention and dot-attention, respectively. The calculation assumes 𝐷𝐷 = 𝐷𝐷𝑣𝑣 =
2𝐷𝐷𝑘𝑘 = 64. The figure is in log scale. 
  

 
Fig. 6. Comparison of segmentation maps generated by FCN and our MANet, 
where (a) and (b) are from the Vaihingen dataset while (c)-(e) are from the 
Potsdam dataset 
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product between softplus(𝑲𝑲)𝑇𝑇 and V first and then multiply the 
result and Q with only 𝑂𝑂(𝑑𝑑𝑁𝑁)  time complexity and 𝑂𝑂(𝑑𝑑𝑁𝑁) 
space complexity. 

Dot-attention and kernel attention are compared in terms of 
resource consumption in Fig. 5. For a 64 × 64 × 64 input, the 
kernel attention yields a 21-fold saving of memory (69MB to 
3MB) and an 89-fold saving of computation (3 GMMACC to 
37 MMACC). With increasing input size, the gap widens. For 
a 64 × 256 × 256 input, the dot-attention requires unreasonable 
memory (17 GB) and computation (829 GMACC), while the 
kernel attention utilizes merely 1/340 memory (51MB) and 
1/1417 computation (585 MMACC).  

B. Ablation Study 
In the proposed MANet, attention blocks are used to exploit 

global contextual representations and enhance the capability for 
feature extraction. To evaluate the performance of each 
attention block, we conduct ablation experiments using 
different settings listed in Table I and Table Ⅱ.  

Table I shows the comparison of the ablation study on the 
Vaihingen dataset which demonstrates that the utilization of 
attention blocks increases the accuracy significantly compared 

with the baseline FCN with DeBlocks (ResNet-50), particularly 
for small objects, i.e., the Car. Even using a single attention 
block to enhance the context information could gain at least 
1.44% improvement in OA, 2.42% in mean F1-score, and 3.46% 
in mIoU. Moreover, low-level attention blocks contribute more 
than those in high-levels as the former contains rich context 
information. When all attention blocks are attached, the 
remarkable 6.18%increase in OA, 5.63% in mean F1-score, and 
7.53% in mIoU are achieved. These results demonstrate that our 
attention block brings significant breakthough to semantic 
segmentation by exploiting global context information from 
different perspectives. 

The ablation study results of the Potsdam dataset are reported 
in Table II. The utilization of a single attention block increases > 
2.50% in mean F1-score, 0.66% in OA, and 4.72% in mIoU, 
while the accuracy increase brought in by all attention blocks 

TABLE I 
QUANTITATIVE COMPARISON RESULTS ON THE VAIHINGEN TEST SET. 

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 
FCN 89.731 93.169 80.569 88.890 71.552 84.782 87.987 75.872 

FCN+Attention1 91.379 94.271 82.757 89.337 78.267 87.202 89.424 79.330 
FCN+Attention2 91.831  94.612  82.791  89.671  83.543  88.490  89.703  80.714  
FCN+Attention3 91.898 94.801 83.692 89.268 83.019 88.536 89.895 81.072 
FCN+Attention4 91.854 94.787 83.867 89.855 86.045 89.282 90.202 81.729 
Proposed MANet 93.024 95.471 84.637 89.978 88.945 90.411 90.963 83.397 

 

TABLE Ⅱ 
QUANTITATIVE COMPARISON RESULTS ON THE POTSDAM TEST SET. 

Method Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 
FCN 90.839 95.591 84.097 84.75 84.952 88.046 88.022 81.419 

FCN+Attention1 90.880 95.267 85.845 87.113 93.682 90.557 88.682 86.140 
FCN+Attention2 91.471 94.855 85.719 88.153 96.013 91.242 89.134 86.681 
FCN+Attention3 92.036 95.207 86.820 87.446 95.155 91.333 89.558 87.107 
FCN+Attention4 92.949 96.749 87.115 87.701 95.785 92.060 90.493 87.940 
Proposed MANet 93.254 96.632 87.991 88.948 96.387 92.642 91.054 89.012 

 
TABLE Ⅲ 

QUANTITATIVE COMPARISON RESULTS ON THE VAIHINGEN TEST SET 
Method` Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 

FCN [1] 89.731 93.169 80.569 88.890 71.552 84.782 87.987 75.872 
FCN+SE [2] 91.886 94.604 83.185 89.379 77.084 87.228 89.711 80.560 
FCN+CBAM [4] 91.592 94.766 84.195 89.494 80.877 88.185 89.956 80.577 
FCN+EAM [3] 92.450 95.075 83.743 89.479 86.231 89.396 90.324 81.993 
FCN+FAM [11] 92.605 94.214 84.154 90.138 84.897 89.202 90.304 81.401 
FCN+LAM [15] 92.075 94.820 83.420 89.730 83.626 88.734 90.047 81.021 
DANet [5] 91.384 94.100 83.086 89.015 76.794 86.876 89.473 78.050 
PSPNet [12] 91.383 94.196 83.050 88.713 75.021 86.473 89.358 77.486 
DeepLabV3+ [14] 91.630 94.086 82.505 87.991 77.656 86.774 89.124 78.722 
EaNet [17] 91.711 94.857 84.228 90.060 82.036 88.578 90.252 80.580 
Proposed MANet 93.024 95.471 84.637 89.978 88.945 90.411 90.963 83.397 

 

TABLE Ⅳ 
THE ABLATION STUDY ABOUT BACKBONES ON THE POTSDAM DATASET. 

Method` Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) mIoU (%) 
FCN [1] 90.839 95.591 84.097 84.750 84.952 88.046 88.022 81.419 
FCN+SE [2] 91.647 96.118 86.078 88.009 95.077 91.386 89.598 87.140 
FCN+CBAM [4] 92.719 96.127 85.773 88.217 95.827 91.733 89.898 87.722 
FCN+EAM [3] 92.748 96.041 86.480 88.407 96.023 91.940 90.241 87.861 
FCN+FAM [11] 92.580 96.127 86.787 88.165 95.792 91.890 90.179 87.875 
FCN+LAM [15] 92.771 96.406 86.476 87.277 96.090 91.804 90.119 87.542 
DANet [5] 91.944 96.348 86.003 87.673 86.010 89.596 89.728 83.710 
PSPNet [12] 92.199 96.107 86.940 88.339 86.302 89.977 90.143 84.056 
DeepLabV3+ [14] 92.093 95.282 85.549 86.537 94.813 90.855 89.176 86.331 
EaNet [17] 92.872 96.302 86.163 87.991 95.303 91.726 90.154 87.594 
Proposed MANet 93.254 96.632 87.991 88.948 96.387 92.642 91.054 89.012 
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are 4.60% in mean F1-score, 3.03% in OA, and 7.6% in mIoU, 
respectively. 

To validate the effectiveness visually and qualitatively, we 
present comparison of the segmented features generated by 
FCN and our MANet in Fig. 6. Due to the limited receptive 
field, the FCN generates the category of a specific pixel in 
consideration of its a few neighborhood only, leading to 
visually fragmented maps and confusion of objects. By 
contrast, the proposed attention block can model the global 
dependency of all pixels in the input features, and capture the 
global context information with enhanced segmentation 
accuracy. Particularly, the complex contour of the Low 
vegetation is preserved completely by our MANet (Fig. 6 (d)). 
Meanwhile, the category of Car generated by the proposed 
MANet is classified effectively and superior to the FCN as 
shown in Fig. 6 (b) and Fig. 6 (e). 

C. Quantitative Comparison Diverse Methods 
To further confirm the effectiveness of the proposed MANet, 

we compare our method with state-of-the-art approaches 
presented in the literature. Specifically, the comparative 
methods not only include the scaling attention mechanism i.e., 
SE module [2] and CBAM [4] but also consider the simplified 
dot-product attention mechanism i.e., EAM [3], FAM [11], and 
LAM [15]. Besides, several comparative networks are also 
taken into comparison, including the DANet [5] which utilizes 
the conventional dot-product attention mechanism and other 

receptive-field-enlarging, i.e., PSPNet [12], DeepLabV3+ [14], 
as well as EaNet [17]. For fair comparison, all experiments are 
conducted under the same setting for training and testing. All 
methods are implemented based on the same ResNet-50 
backbone while the FCN-based methods are equipped with 
DeBlocks. The detailed segmentation accuracy on the 
Vaihingen dataset and Potsdam dataset of each network is listed 

in  TABLE Ⅲ and TABLE Ⅳ, respectively. 
1) Comparison with Scaling Attention 

The scaling attention mechanisms are designed to reinforce 
informative features and reduce information-lacking features, 
instead of capturing global context information such as dot-
product attention mechanism. Hence, the scale attention and 
dot-product attention are not identical. In our experiments, we 
compare the performance of our method with two well-verified 
scaling attention mechanisms, i.e., SE module [2] and CBAM 

TABLE Ⅴ 
COMPARISON WITH SCALING ATTENTION. 

Dataset Method Mean F1 OA mIoU 

Vaihingen 

FCN [1] 84.782 87.987 75.872 
+ SE [2] 87.228 89.711 80.560 
+ CBAM [4] 88.185 89.956 80.577 
+ Ours 90.411 90.963 83.397 

Potsdam 

FCN [1] 88.046 88.022 81.419 
+ SE [2] 91.386 89.598 87.140 
+ CBAM [4] 91.733 89.898 87.722 
+ Ours 92.642 91.054 89.012 

 

 
Fig. 7. Qualitative comparisons (1024 × 1024 patches) between our method and baseline on Vaihingen test set. 
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[4], andthe results are shown in Table Ⅴ. As the CBAM [4] 
introduces the extra channel scaling attention block compared 

with the SE module [2], “+CBAM” achieves higher accuracies 
compared with “+SE”. In contrast, our MANet extracts global 
context correlation from the feature maps. Experimental results 
demonstrate the superiority of our method compared with 
scaling attention mechanism. 
2) Comparison with Simplified Dot-product Attention 

As both space and time consumption of the standard dot-
product attention mechanism increase quadratically with the 
input size, several research has devoted to simplify the 
complexity of the attention mechanism, including the efficient 
attention mechanism (EAM) [3], the fast attention mechanism 
(FAM) [11], and the linear attention mechanism (LAM) [15]. 
As shown in Table Ⅵ, the proposed KAM achieves the best 

accuracy compared with other simplified dot-product attention 
mechanism, due to the appropriate simplified scheme adopted. 
3) Comparison with other Comparative Networks 

The conventional dot-product attention mechanism is 
introduced in DANet [5] to capture feature dependencies both 
in spatial and channel dimensions, while PSPNet [12], 
DeepLabV3+ [14], and EaNet [17] employ variants of spatial 
pyramid pooling (SPP) to enlarge the receptive field. The 
proposed MANet models the global context information in the 
input features instead of expanding finite receptive fields by 
convolution layers with different kernel sizes (e.g. SPP). 
Besides, we capture the context information in multi-layers 
rather than in the lowest layer only (e.g. DANet). Hence, the 
performance of our MANet exceeds these comparative 
networks with a large margin. 

D. Evaluation in Efficiency 
We evaluate our kernel attention mechanism not only with 

the standard dot-product attention mechanism but also the 

scaling attention mechanism and the receptive-field-enlarging 
modules in terms of the computation complexity measured with 
GFLOPs (G), the number of parameters measured with Millions 
(M), as well as the memory consumption measured with 
Megabytes (MB). Note, we evaluate the consumption of the 
modules with the cost of 3×3 convolution for dimension 
reduction, and we do not consider the cost of backbone to 
ensure the fairness of the comparison. As illustrated in Table 
Ⅷ, for input in the size of 2048 × 128 × 128, our KAM 
requires 10× less GPU memory usage and significantly reduces 
about 78% parameters and computation complexity when 
compared with the DAB [5] based on the dot-product attention 
mechanism. Besides, it can be seen that our KAM is more 
efficient than other specially-designed modules when 
processing fine-resolution feature maps. 

E. Qualitative Analysis of the Segmentation Results 
Examples of the predicted patches in the size of 1024 × 1024 

are provided in Fig. 7 and Fig. 8, where regions with obvious 
improvement are highlighted by red boxes. Due to the loss of 
spatial information, the segmentation maps generated by FCN 
are ambiguous, particularly at the contour of objects. The 
utilization of scaling attention mechanisms, i.e., SE [2] and 
CBAM [4] brings limited accuracy increase. Although 
receptive-field-enlarging networks like PSPNet [12] and 
DeepLabV3+ [14] demonstrate enhanced segementation in 
confusing areas, the complex contour of the low vegetation is 
not generated completely shown in Fig. 8. With attention blocks 
extracting global context information in multi-layers, the 
proposed MANet not only reduces the incomplete and irregular 
semantic objects, but also better preserves the geometric details 
and complex contours.  Specifically, the geometry of buildings 
in Fig. 7 as well as the edges of the low vegetation in Fig. 8 are 
preserved. Besides, there are significant improvement in 
preserving the boundaries and reducing fragmented segments.  

F. Discussion on the Attention Mechanism 
Selective visual attention endows humans with the ability to 

orientate towards conspicuous objects over the visual scene in 
a computationally efficient manner. Thus, the attention 
mechanism, inspired by the biological mechanism, is intended 
as a computationally efficient structure with configurable 
flexibility. By representing the concept of attention via the lens 
of the kernel [55], we design a kernel attention module with 
𝑂𝑂(𝑁𝑁)  complexity. The effectiveness and efficiency of the 
proposed kernel attention is demonstrated consistently across a 

TABLE Ⅵ 
COMPARISON WITH SIMPLIFIED DOT-PRODUCT ATTENTION. 

Dataset Method Mean F1 OA mIoU 

Vaihingen 

FCN [1] 84.782 87.987 75.872 
+ EAM [3] 89.396 90.324 81.993 
+ FAM [11] 89.202 90.304 81.401 
+ LAM [15] 88.734 90.047 81.021 
+ Ours 90.411 90.963 83.397 

Potsdam 

FCN [1] 88.046 88.022 81.419 
+ EAM [3] 91.940 90.241 87.861 
+ FAM [11] 91.890 90.179 87.875 
+ LAM [15] 91.804 90.119 87.542 
+ Ours 92.642 91.054 89.012 

 

TABLE Ⅶ 
COMPARISON WITH OTHER COMPARATIVE NETWORKS. 

Dataset Method Mean F1 OA mIoU 

Vaihingen 

FCN [1] 84.782 87.987 75.872 
+ DAB [5] 86.876 89.473 78.050 
+ PPM [12] 86.473 89.358 77.486 
+ ASPP [14] 86.774 89.124 78.722 
+ LKPP [17] 88.578 90.252 80.580 
+ Ours 90.411 90.963 83.397 

Potsdam 

FCN [1] 88.046 88.022 81.419 
+ DAB [5] 89.596 89.728 83.710 
+ PPM [12] 89.977 90.143 84.056 
+ ASPP [14] 90.855 89.176 86.331 
+ LKPP [17] 91.726 90.154 87.594 
+ Ours 92.642 91.054 89.012 

 

TABLE Ⅷ 
EFFICIENCY COMPARISON WITH DIFFERENT MODULES WHEN PROCESSING 
INPUT FEATURE MAP OF SIZE [1 × 2048 × 128 × 128] DURING INFERENCE 

STAGE. 
Method Complexity (G) Parameters (M) Memory (MB) 
SE [2] 618.6  38.3  256 
CBAM [4] 618.6  38.3  256 
EAM [3] 154.7  9.4  288 
FAM [11] 85.9  5.3  160 
LAM [15] 85.9  5.3  160 
DAB [5] 392.2  23.9  1546 
PPM [12] 309.5  23.1  257 
ASPP [14] 503.0  15.1  284 
LKPP [17] 884.2  54.5  818 
Ours 85.9  5.3  160 
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wide range of quantitative experiments. We envisage the 
demonstrated resource efficiency will encourage more 
pervasive and flexible combinations between attention 
mechanisms and networks.  

VI. Conclusion 
This paper proposes kernel attention to reduce the complexity 

of the dot-product attention mechanism into 𝑂𝑂(𝑁𝑁) . By 
integrating kernel attention and ResNet-50, we design a Multi-
Attention-Network (MANet) comprised of a multi-scale 
strategy to incorporate semantic information at different levels, 
together with self-attention modules to aggregate relevant 
contextual features hierarchically. MANet exploits contextual 
dependencies over local features producing increased accuracy 
and computational efficiency. We implement a series of 
experiments involving the complex task of semantic 
segmentation of fine-resolution remote sensing images. MANet 
produces consistently the best classification performance with 
the highest accuracy. An extensive ablation study is conducted 
to evaluate the impact of the individual components of the 
proposed framework. Experimental results on ISPRS 
Vaihingen and Potsdam datasets demonstrate that the 
performance of the proposed framework greatly exceeds 
comparative benchmark methods.  
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