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This thesis answers various questions related to Koszul duality and deformation

theory. We begin by giving a general treatment of deformation theory from the

point of view of homotopical algebra following Hinich, Manetti and Pridham. In

particular, we show that any deformation functor in characteristic zero is controlled

by a certain differential graded Lie algebra defined up to homotopy, and also

formulate a noncommutative analogue of this result valid in any characteristic.

In the next part of this thesis, we introduce a notion of left homotopy for Maurer–

Cartan elements in L∞-algebras and A∞-algebras, and show that it corresponds

to gauge equivalence in the differential graded case. From this we deduce a

short formula for gauge equivalence, and provide an entirely homotopical proof

to Schlessinger–Stasheff’s theorem. As an application, we answer a question of

T. Voronov, proving a non-abelian Poincaré lemma for differential forms taking

values in an L∞-algebra.

In the final part of this thesis, we generalize previous formulations of Koszul duality

for associative algebras by Keller–Lefèvre and Positselski. For any dg algebra A we

construct a model category structure on dg A-modules such that the corresponding

homotopy category is compactly generated by dg A-modules that are finitely
3



4 ABSTRACT

generated and free over A (disregarding the differential). We prove that this model

category is Quillen equivalent to the category of comodules over a certain, possibly

nonconilpotent differential graded coalgebra, a so-called extended bar construction

of A.
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CHAPTER 1

Introduction

It has long been observed that any reasonable deformation theory is “controlled”

by a differential graded (dg) Lie algebra, at least in characteristic zero. This central

principle of deformation theory, first recorded by Deligne in a letter to Millson

[GM88], has been demonstrated many times, starting from the work of Nijenhuis

and Richardson in the 1960s [NR64, NR67]. Recently this principle has been

formalized by [Pri10] using simplicial techniques and by [Lur] in the framework of

infinity categories. In the first part of this thesis, we show that this result can be

proved in a much more elementary way, with Koszul duality playing an essential

role in its proof.

The standard approach to deformation theory is as follows. Suppose that O

is an object of a certain category that one wants to deform and which is defined,

in some sense, over some ground field k. We will not attempt to axiomatize this

situation but a good example to keep in mind is an associative algebra over k. Then,

a deformation of O over a finite dimensional (Artinian) local ring K is an object

OK defined, in the same vague sense, over K and such that its ‘reduction’ modulo

the maximal ideal I of K is isomorphic to O. Two deformations OK and O′K are

equivalent if OK and O′K are isomorphic via an isomorphism that is the identity

modulo I. Thus, we have a functor Def associating to a local Artinian ring K the

set of equivalence classes of deformations of O over K. The fundamental problem of

deformation theory is finding a ‘universal’ ring Ku and the corresponding universal

deformation of O over Ku, i.e. an element in Def(Ku) so that any other deformation

of O over K is induced by a unique map Ku → K.

It has been understood for a long time that one can only expect the deformation

functor to be pro-representable, in other words we might as well extend the category

on which Def is defined to include projective limits of local Artinian k-algebras (we

will call them local pseudocompact k-algebras). Furthermore, it makes sense to at-

tempt to characterize functors on the category of local Artinian (or pseudocompact)

rings that deformation functors satisfy in concrete examples and then investigate

9



10 1. INTRODUCTION

whether these characteristic properties ensure (pro)representability. Note that a

representable functor preserves arbitrary limits; moreover under some mild con-

ditions on the category of set-theoretical nature, any functor preserving limits is

representable (the so-called Freyd’s adjoint functor theorem, [Fre64]). However, a

deformation functor may not preserve limits; indeed infinitesimal automorphisms

often present an obstruction to such a preservation, cf. [Sch68, Remark 2.15] for

an explanation of this point. On the other hand, we often have that it preserves

arbitrary products and that the natural map of sets

Def(B ×A C)→ Def(B)×Def(A) Def(C) (1.0.1)

is surjective (if it is bijective this would imply that Def preserves arbitrary colimits).

Additionally, it usually makes sense to impose the normalization condition: Def(k) is

a one-point set. Together with another mild condition on infinitesimal deformations,

these imply that Def has a hull, a certain weakening of the property of being

representable, [Sch68, Theorem 2.11].

In order to obtain a decisive general result, it is necessary to extend the category

of local pseudocompact algebras to that of local differential graded pseudocompact

algebras. The advantage of the latter is that it has the structure of a model category

and, in particular one can form its homotopy category. This model category was

constructed in a seminal paper of Hinich [Hin01] and an extended deformation

functor was considered in [Man02, Mer00]. The latter papers, however, did not

make full use of the strength of the model structure on local pseudocompact dg

algebras.

So, we now have a set-valued functor defined on the category of local pseu-

docompact dg algebras. It is a deformation functor if it is normalized, preserves

arbitrary products, has an appropriate analogue of (1.0.1) and, crucially, is homo-

topy invariant, so that it descends to a functor on the homotopy category of local

pseudocompact dg algebras. In the commutative case and when k has characteristic

zero, we will show that, under these conditions the functor is representable in

the homotopy category and there is a certain dg Lie algebra, defined up to a

quasi-isomorphism “controlling” it. In the associative case we will similarly show

that, under these conditions the functor is representable in the homotopy category

and there is a certain dg associative algebra, defined up to a quasi-isomorphism

“controlling” it; this will be valid in any characteristic.
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In Chapter 3, we explain how Deligne’s principle can be made into a rigorous

theorem. The approach that we take relies on three fundamental results that are

important and interesting in their own right:

(1) Koszul duality between dg Lie algebras and cocommutative dg conilpotent

coalgebras as formulated by Hinich [Hin01], as well as its associative variant

[Pos11];

(2) A theorem of Schlessinger and Stasheff [SS];

(3) A model category version of Brown’s representability theorem [Bro62] due

to [Jar11].

The final two chapters of this thesis are concerned with generalizations of the

Schlessinger–Stasheff theorem and of Koszul duality respectively. In the next part

of this introduction, we give an overview of our work in these two directions.

The Schlessinger–Stasheff theorem. A Maurer–Cartan element in a dg Lie

algebra V is a degree 1 element ξ ∈ V satisfying dξ+ 1
2 [ξ, ξ] = 0. It is important to

understand homotopies between Maurer–Cartan elements; for example, deformation

problems are governed by Maurer–Cartan elements up to an appropriate notion

of homotopy [SS, Man99]. Thus many different notions of homotopy have been

studied for Maurer–Cartan elements in dg Lie algebras and, more generally, in

L∞-algebras; see [DP16] for an up-to-date and extensive survey.

The Schlessinger–Stasheff theorem [SS] states that two Maurer–Cartan elements

in a pronilpotent dg Lie algebra are Sullivan homotopic (called Quillen homotopic

in [DP16]) if and only if they are gauge equivalent. In Chapter 4, we provide

an entirely homotopical proof of this result, and extend to it to L∞-algebras and

A∞-algebras under certain completeness conditions. To do this, we introduce a new

homotopy relation for Maurer–Cartan elements in complete L∞-algebras and A∞-

algebras. Maurer–Cartan elements are interpreted as morphisms of commutative

differential graded algebras (cdgas); this is reviewed in Section 4.1 along with

other relevant background on L∞-algebras and A∞-algebras. Two Maurer–Cartan

elements are then defined to be left homotopic if they are left homotopic between

morphisms in the category of cdgas, equipped with the model category structure

of [Hin97].

As motivation for our definition, in Section 4.2 we show that there is a model

structure on the category of complete dg Lie algebras, namely that of [LM15],
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in which gauge equivalence coincides with left homotopy, a result also obtained

by [RN18]. The results in this section should be considered Koszul dual to the

approach taken in the rest of the paper, where we choose to work in the setting of

cdgas in order for results to immediately generalize to the setting of L∞-algebras.

There are also close parallels between the approach in Section 4.2 and the recent

papers [BM13b, BFMT18], in which it is shown that gauge equivalence coincides

with left homotopy for a larger class of dg Lie algebras with a different model

structure. However, their result only holds in the generality of dg Lie algebras, and

the method used does not seem to easily generalize to L∞-algebras.

As an application, we answer a question posed by Voronov in [Vor12], and prove

a version of the Poincaré lemma for differential forms taking values in an L∞-algebra.

The notion of homotopy that we use is different from that used by Voronov, who

considers homotopies for arbitrary odd elements in dg Lie superalgebras, but in

the specific case of Maurer–Cartan elements in complete dglas, the notions will

coincide.

Koszul duality. Koszul duality is a phenomenon occurring widely throughout

algebra and geometry, going back to Quillen’s work [Qui69] on rational homotopy

theory, where it manifests as a duality between Quillen’s Lie model and Sullivan’s

commutative model for a space. Another classical example is the Bernstein–Gelfand–

Gelfand (BGG) correspondence [BGS96] between bounded derived categories of

finitely generated modules over symmetric and exterior algebras on a generating

vector space. Since then, Koszul duality has appeared in the study of operads

[GK94], deformation theory [Hin01], representation theory, algebraic geometry and

numerous other contexts.

A common theme in early examples of Koszul duality is the prevalence of

finiteness and boundedness conditions that are essential for the dualities to hold.

For example, if one tries to extend the BGG correspondence to the full derived

category, this already fails for symmetric and exterior algebras on one generator.

To remove these finiteness conditions, exotic derived categories were introduced

in [Hin01] and further developed in [LH03] and [Pos11]. The weak equivalences

are taken not to be all quasi-isomorphisms, but a strict subset of them. Following

[Pos11], in this thesis we will collectively refer to these structures as being “of

second kind”.
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The modern understanding of Koszul duality for differential graded (dg) algebras

and dg modules has been formulated in [Pos11]. According to this formulation there

is an adjunction between the categories of augmented dg algebras and conilpotent

dg coalgebras, given by bar and cobar constructions, which becomes a Quillen

equivalence under certain model category structures. The conilpotent dg coalgebra

associated to an augmented dg algebra by this equivalence is called its Koszul dual;

similarly the augmented dg algebra associated to a conilpotent dg coalgebra is called

its Koszul dual. There is also a Quillen equivalence between the corresponding

categories of dg modules and dg comodules. A variant of this correspondence exists

for non-augmented dg algebras and their modules.

A salient feature of this theory is that the model category structures on the

Koszul dual side (both for coalgebras and their comodules) are of the “second

kind”: the weak equivalences are not created in the underlying chain complexes

but are of a more subtle nature (so-called filtered quasi-isomorphisms).

The module-comodule Koszul duality is the easiest one to prove (though still

quite nontrivial), essentially because of its linear character: this is a duality between

stable model categories whose homotopy categories are triangulated. There are

two symmetric versions of it:

(1) the duality between modules over a dg algebra and dg comodules over its

Koszul dual conilpotent dg coalgebra and

(2) the duality between comodules over a conilpotent dg coalgebra and dg

modules over its Koszul dual dg algebra.

What happens if one drops the condition of conilpotency on the coalgebra side?

The model structure on the category of comodules does not depend on the conilpo-

tency assumption, [Pos11, Theorem 8.2]. Furthermore, Positselski proves ([Pos11,

Theorem 6.7]) that there is a Koszul duality between dg comodules over a possibly

nonconilpotent dg coalgebra and modules over its Koszul dual dg algebra. However,

this time both model structures are of the second kind: the weak equivalences on

dg modules are not merely quasi-isomorphisms. If the coalgebra happens to be

conilpotent, then the duality specialises to the ordinary one: the Koszul dual dg

algebra becomes cofibrant and weak equivalences of dg modules over a cofibrant dg

algebra are ordinary quasi-isomorphisms.

In Chapter 5 we construct a complementary version of Positselski’s non-



14 1. INTRODUCTION

conilpotent Koszul duality as a Quillen equivalence between model categories

of dg modules over a dg algebra and comodules over its “Koszul dual” dg coalgebra.

The difference between our version and the standard one is two-fold: firstly, the

weak equivalences between dg modules are of “second kind” (i.e. they are not cre-

ated in the category of underlying complexes) and secondly, our “Koszul dual” dg

coalgebra is typically much bigger than the ordinary bar construction; in particular

it is not conilpotent in general. This extended bar construction has been considered,

e.g. in a recent paper [AJ].

Perhaps the most interesting feature of this correspondence is an exotic model

structure of second kind on dg modules over a dg algebra: in the case of an ordinary

algebra (or, more generally, cohomologically non-positively graded dg algebra)

this structure reduces to the usual one; however in general it is different. There

are many competing inequivalent notions of weak equivalence of the second kind

for dg modules over a dg algebra (as opposed to dg comodules where there is

only one such notion); some of them support model category structures, [Bec14,

Proposition 1.3.6], [Pos11, Theorem 8.3]. Our structure is generally different from

those considered in the mentioned references and characterised by its compatibility

with Koszul duality. It is, necessarily, compactly generated (since such is the

category of dg comodules over any dg coalgebra, to which it is Quillen equivalent).

This model structure is relevant to the study of various triangulated categories of

geometric origin: coherent sheaves on complex analytic manifolds, cohomologically

locally constant sheaves on smooth manifolds, and D-modules on smooth algebraic

varieties. Its prototype is contained in the paper [Blo10] where the notion of a

cohesive module over a dg algebra is introduced, which is essentially the same as a

cofibrant object in our model structure.

1.1. Summary of main results

The following is a summary of the main new results from this thesis. The main

results from Chapter 4, on generalizing the Schlessinger–Stasheff for strongly

homotopy algebras, are:

Theorem 4.3.5. A short formula is given for gauge equivalence of Maurer–Cartan

elements in complete L∞-algebras and A∞-algebras. This result also admits a slight

generalization in a particular non-complete case; see Theorem 4.3.9.
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This result is used to prove the Schlessinger–Stasheff theorem in a purely

homotopical way; see Theorem 4.4.1. Our main application of this result is:

Theorem 4.5.3. Given a contractible manifold M , we show that every Maurer–

Cartan differential form on M with values in an L∞-algebra is gauge equivalent to

a constant. This is a strongly homotopy generalization of the non-abelian Poincaré

Lemma proven in [Vor12].

We note that [Vor12] uses different notions of homotopy and gauge equivalence;

however, in the context of Maurer–Cartan elements of complete dglas, the notions

coincide by the aforementioned Schlessinger–Stasheff theorem.

The main results from Chapter 5, on generalizing Koszul duality to (co)modules

over a non-conilpotent “extended Koszul dual”, are:

Theorem 5.2.8. A cofibrantly generated model category structure of second

kind exists on the category of (right) dg modules over a dg algebra, where a

morphism f : M → N is a fibration if it is surjective, and f is a weak equivalence

if it induces a quasi-isomorphism HomA(K,M) → HomA(K,N) for any finitely

generated A-module K that is free over V after forgetting the differential.

Theorem 5.2.11. There is a Quillen equivalence between the model category

structure of Theorem 5.2.8 of dg modules over a dg algebra A, and the category of

dg comodules over the extended Koszul dual of A.

1.2. Thesis outline and published work

The rest of this thesis is divided into four chapters.

Chapter 2 covers basic definitions and results that will be used throughout

the thesis, split into three sections, respectively on various algebraic objects, their

pseudocompact versions, and finally model categories. This chapter is included

mainly for the purpose of keeping the thesis self-contained and the material is all

standard, except for perhaps the notation used for various categories. A reader

who is familiar with these objects may safely skip this chapter and simply refer to

the Index of Notation instead.

Chapter 3 is based on the paper [GLST20b], which is joint work with Andrey

Lazarev, Yunhe Sheng and Rong Tang. We first give an overview of Brown’s repre-

sentability theorem, followed by Maurer–Cartan moduli spaces and the Schlessinger–
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Stasheff theorem, and finally Koszul duality on the level of algebras. The purpose

of this chapter is to show how these ingredients can be combined to give a proof

of Deligne’s principle that is more elementary than those previously found in the

literature. The chapter also serves as motivation and background for the rest of

the thesis.

Chapter 4 is based on the paper [Gua]. We begin by recalling preliminary

results on L∞- and A∞-algebras. Next we define left homotopy of Maurer–Cartan

elements and use it to prove the main result Theorem 4.3.5. We prove combinatorial

formulae for left homotopy in terms of rooted trees and give a direct proof that left

homotopy coincides with gauge equivalence. Finally, we give our main application

Theorem 4.5.3, generalizing the non-abelian Poincaré lemma to L∞-algebras.

Chapter 5 is based on the paper [GL], which is joint work with Andrey Lazarev.

We begin by defining the extended bar-cobar adjunction, and using it to associate

“Koszul dual” dg coalgebras to dg algebras. Next we recall Positselski’s model

structure of second kind on comodules, and prove the main results Theorem 5.2.8

and Theorem 5.2.11. Finally these results are generalized to the curved setting.



CHAPTER 2

Preliminaries

In this chapter, we introduce the background for the rest of this thesis; in particular,

we fix the notation for the various categories that we will work with in later chapters.

Throughout, k denotes a field equipped with the discrete topology; this applies even

if k is the field of real numbers R or the field of complex numbers C. Unadorned

tensor products and Homs are assumed to be over k.

2.1. Algebras and modules

2.1.1. Graded objects. By a vector space, we always mean a Z-graded vector

space over k, i.e. a vector space V with a direct sum decomposition V ∼=
⊕

i∈Z V
i

into vector subspaces V i of V . A nonzero element v ∈ V i is said to be homogeneous

of degree i, denoted by |v| = i. A nonzero linear map f : V → W between vector

spaces is said to have degree j if f(V i) ⊆ W i+j for all i ∈ Z, denoted by |f | = j.

Vector spaces and degree 0 maps form a category, denoted by Vect, which is

symmetric monoidal under the usual tensor product. Given a graded vector space

V , its suspension ΣV is a graded vector space with (ΣV )i = V i+1 and its dual V ∗

is a graded vector space with (V ∗)i = (V −i)∗. For ease of notation, Σ(V ∗) will

simply be denoted by ΣV ∗, and there is a canonical isomorphism Σ−1V ∗ ∼= (ΣV )∗.

An algebra is a monoid in the symmetric monoidal category Vect. The category

of algebras is denoted by Alg. Given a vector space V , the tensor algebra on V is

T (V ) :=
∞⊕
n=0

T n(V ), where T n(V ) := V ⊗n,

with multiplication induced by concatenation. This is the free algebra on V , in

the sense that V 7→ T (V ) defines a functor Vect→ Alg that is left adjoint to the

forgetful functor Alg→ Vect sending an algebra A to its underlying vector space:

HomAlg(T (V ), A) ∼= HomVect(V,A).

A commutative algebra is a commutative monoid in Vect. The category of

commutative algebras is denoted by CAlg. Given a vector space V , the symmetric
17
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algebra on V is

S(V ) :=
∞⊕
n=0

Sn(V ), where Sn(V ) := (V ⊗n)Sn .

Here (V ⊗n)Sn denotes the coinvariants of the permutation action of the symmetric

group Sn on V ⊗n. This is the free commutative algebra on V . When the underlying

field k is of characteristic zero, S(V ) may be viewed as a subspace of T (V ) by

identifying Sn(V ) with the invariants (V ⊗n)Sn ⊆ T n(V ) of the permutation action,

via the usual map

Sn(V ) = (V ⊗n)Sn → (V ⊗n)Sn , [w] 7→
∑
σ∈Sn

σ · w,

where [w] denotes the class of an element w ∈ V ⊗n, with inverse

(V ⊗n)Sn → Sn(V ) = (V ⊗n)Sn , w 7→ 1
n! [w]. (2.1.1)

A Lie algebra is a Lie object in Vect. Given a vector space V , the free Lie

algebra on V , denoted by L(V ), is the Lie subalgebra of T (V ) generated by V ,

where T (V ) is considered as a Lie algebra with the commutator bracket

[x, y] := x⊗ y − y ⊗ x for all x, y ∈ T (V ).

An algebra A is augmented if it is equipped with a surjective algebra homomor-

phism ε : A→ k called an augmentation. The kernel of ε, called the augmentation

ideal of A, will be denoted by sA.

2.1.2. Differential graded objects. A differential graded (dg) vector space or

cochain complex is a vector space V together with a linear map d : V → V of degree

1 such that d2 = 0, called a differential. Note that we work with cohomological

grading; one can instead work with homological grading by defining differentials to

have degree −1. The category of dg vector spaces is denoted by DGVect. This is

also a symmetric monoidal category, where the tensor product of two dg vector

spaces V andW is their tensor product V ⊗W in Vect together with the differential

dV⊗W = dV ⊗ idW + idV ⊗ dW . Given a dg vector space V , its suspension ΣV and

dual V ∗ are also dg vector spaces; in particular, V ∗ remains cohomologically graded

by the choice of its grading.

Definition 2.1.1. A differential graded algebra is a monoid in the symmetric

monoidal category DGVect, that is, a graded algebra A equipped with a differential
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d : A→ A that is a derivation:

d(xy) = d(x)y + (−1)|x|xd(y)

for all homogeneous x, y ∈ A. The category of dg algebras is denoted by DGA and

the category of augmented dg algebras is denoted by DGA∗.

A commutative differential graded algebra is a commutative monoid in DGVect.

The category of commutative dg algebras is denoted by CDGA.

A differential graded Lie algebra is a Lie object in DGVect, that is, a graded Lie

algebra L equipped with a differential d : L→ L that is a derivation with respect

to [−,−]:

d([x, y]) = [d(x), y] + (−1)|x|[x, d(y)]

for all homogeneous x, y ∈ L. The category of dg Lie algebras is denoted by DGLA.

We now consider modules over a dg algebra A. By default, we work with right

dg modules over dg algebras, unless stated otherwise.

Definition 2.1.2. A (right) differential graded A-module is a graded right A-

module M equipped with a differential dM : M →M that is compatible with the

module action and the differential d of A:

dM(ma) = dM(m)a+ (−1)|m|md(a),

for all homogeneous m ∈M , a ∈ A. The category of (right) dg A-modules over a

dg algebra A is denoted by DGMod-A.

The dual notion of a left differential graded A-module can be defined conveniently

by considering Aop, the opposite dg algebra of A, which has the same underlying dg

vector space structure as A but multiplication given by ab := (−1)|a||b|b · a for all

a, b ∈ A, where · denotes the original multiplication in A. Then a left dg A-module

is simply a dg Aop-module.

Definition 2.1.3. Let A and B be dg algebras. A differential graded A-B-bimodule

is a right dg B-module M that is also a left dg A-module, such that the module

structures commute: a(mb) = (am)b for all homogeneous a ∈ A, b ∈ B, m ∈M .
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2.2. Pseudocompact algebras and modules

The purpose of this section is to give a dictionary between the language of pseudo-

compact algebras, used in this thesis, and coalgebras, which are commonly used in

the literature.

2.2.1. Pseudocompact vector spaces. We will need a certain amount of theory

of topological vector spaces, although we will be dealing with one of the simplest

possible type of topological vector space: pseudocompact spaces.

Definition 2.2.1. A pseudocompact vector space is a topological vector space that

is complete and whose fundamental system of neighbourhoods of zero is formed by

subspaces of finite codimension. Morphisms of pseudocompact vector spaces are

continuous linear maps. A graded pseudocompact vector space is a graded object

in the category of pseudocompact vector spaces, i.e. a sequence V i, i ∈ Z, where

each V i is a pseudocompact vector space with morphisms defined component-wise.

Finally, a dg pseudocompact vector space is a graded pseudocompact vector space

V i, i ∈ Z with a continuous differential.

The category of pseudocompact vector spaces will be denoted by pcVect. The

categories of dg pseudocompact vector spaces will be denoted by pcDGVect.

Proposition 2.2.2. The category Vect is anti-equivalent to pcVect, and the category

pcDGVect is anti-equivalent to DGVect.

Proof. Given a vector space V , its k-linear dual V ∗ is pseudocompact. Indeed,

denoting by {Vα} the collection of finite-dimensional subspaces of V , we have

V = lim−−→α Vα and therefore V ∗ = lim←−−α V
∗
α . So, V ∗ is complete with respect to the

kernels of maps into finite-dimensional spaces. The functor backwards associates

to a pseudocompact vector space V its continuous linear dual, also denoted by V ∗.

It is straightforward to see that this gives the desired anti-equivalence. The dg case

is similar. �

The above proof shows that every (dg) pseudocompact vector space V is a

projective limit of its finite dimensional (dg) quotients Vα : V ∼= lim←−−α Vα. Conversely,

a projective system of finite-dimensional dg vector spaces determines a dg pseudo-

compact vector space. Given two dg pseudocompact vector spaces V ∼= lim←−−α Vα
and U ∼= lim←−−β Uβ the dg (not pseudocompact in general) space of continuous maps
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V → U is Hom(V, U) ∼= lim←−−β lim−−→α Hom(Vα, Uβ). Indeed, finite-dimensional dg

vector spaces are compact objects in DGVect, so by Proposition 2.2.2 they are the

cocompact objects in pcDGVect, i.e. the objects W such that Hom(−,W ) sends

projective limits to inductive colimits. Finally we note that a discrete vector space

is pseudocompact if and only if it is finite-dimensional.

Recall that the category DGVect has a symmetric monoidal structure given

by the usual tensor product. Similarly for two dg pseudocompact vector spaces

V = lim←−−α Vα and U = lim←−−β Uβ their completed tensor product is defined as V ⊗̂U :=

lim←−−α,β Vα ⊗ Uβ. We will omit the hat over the symbol of the tensor product as it

will always be understood. With this definition the anti-equivalence of Proposition

2.2.2 is that of symmetric monoidal categories, i.e. there are natural isomorphisms

(V ⊗U)∗ ∼= V ∗⊗U∗ where U and V are both dg vector spaces or both pseudocompact

vector spaces.

2.2.2. Pseudocompact algebras, or coalgebras. Just as algebras and dg al-

gebras can be defined succinctly as monoids in the symmetric monoidal categories

Vect and DGVect, we now consider monoids in pcVect and pcDGVect.

Definition 2.2.3. A pseudocompact (commutative) algebra is a (commutative)

monoid in the symmetric monoidal category pcVect. A pseudocompact (commu-

tative) differential graded algebra is a (commutative) monoid in the symmetric

monoidal category pcDGVect.

These four categories are denoted by adding pc to their discrete versions; for

example, the category of (graded) pseudocompact algebras is denoted by pcAlg.

Each of them also admits an augmented version, which will be denoted by adding

an asterisk at the end; for example, the category of augmented pseudocompact dg

algebras is denoted by pcDGA∗.

One can also define a (cocommutative) coalgebra and a (cocommutative) dg

coalgebra as a (cocommutative) comonoid in Vect and DGVect respectively. Us-

ing the monoidal anti-equivalence of Proposition 2.2.2, we see that the category

of (cocommutative) coalgebras is anti-equivalent to category of pseudocompact

(commutative) algebras. Similarly, the category of (cocommutative) dg coalgebras

is anti-equivalent to category of pseudocompact (commutative) dg algebras.

The following result is a dg version of the so-called fundamental theorem of

coalgebras.
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Theorem 2.2.4. Any (cocommutative) dg coalgebra is a union of its finite-dimensional

dg subcoalgebras.

Proof. The non-dg version of the theorem is well-known, see for example [Swe69,

Theorem 2.2.1]. The dg version is an easy consequence since any (possibly non-

differential) finite-dimensional subcoalgebra A of a dg coalgebra C is contained in

the dg subcoalgebra A⊕ d(A) which is also finite-dimensional. �

Corollary 2.2.5. Any (commutative) pseudocompact dg algebra is the projective

limit of its finite-dimensional quotients.

Proof. Given a (commutative) pseudocompact dg algebra A, its k-linear dual

A∗ is a (cocommutative) dg coalgebra. Then the desired statement is equivalent

to saying that A∗ is an inductive limit (i.e. a union) of its finite-dimensional dg

subcoalgebras which is Theorem 2.2.4. �

Remark 2.2.6. Theorem 2.2.4 (and hence, Corollary 2.2.5) uses the associativity

condition in an essential way and does not hold for other algebraic structures,

such as Lie coalgebras. See [Pos, Section 2.4] for an example of a Lie coalgebra

possessing no proper Lie subcoalgebras at all.

We will consider coaugmented dg coalgebras, i.e. dg coalgebras C supplied

with a dg coalgebra map k → C. In this case the quotient C/k is a dg coalgebra

without a counit. Given a dg coalgebra C we denote by ∆ = ∆1 : C → C ⊗ C

its comultiplication and by ∆n : C → C⊗n its nth iteration. A coaugmented dg

coalgebra C is conilpotent if the reduced comultiplication ∆̄ : C/k → C/k ⊗ C/k

in the non-counital dg coalgebra (C/k, ∆̄) satisfies C/k = ⋃∞
n=1 ker(∆̄n).

It is easy to see that C is conilpotent if and only if its dual pseudocompact

dg algebra C∗ is augmented and for its augmentation ideal I it holds that C∗ ∼=
lim←−−nC

∗/In. In other words, C∗ is a local complete augmented dg algebra with the

maximal dg ideal I. Note also that if an augmented pseudocompact dg algebra

is local (i.e. its augmentation ideal I is a unique dg maximal ideal), then it is

automatically I-adically complete since every ideal with finite-dimensional quotient

must contain some power of I and so every finite-dimensional quotient factors

through a power of I.

All together, we have the following result.
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Proposition 2.2.7. The category of (cocommutative) conilpotent dg coalgebras is

anti-equivalent to the category of local augmented (commutative) pseudocompact dg

algebras. �

We will denote that latter category by pcDGAloc and pcCDGAloc in the commu-

tative case.

Given a pseudocompact vector space V , the completed tensor algebra on V is

T̂ (V ) :=
∞∏
n=0

T n(V ), where T n(V ) := V ⊗̂n.

This is the free local pseudocompact algebra on V , in the sense that V 7→ T̂ (V )

defines a functor pcVect → pcAlgloc that is left adjoint to the forgetful functor

pcAlgloc → pcVect sending a local pseudocompact algebra A to its underlying vector

space:

HompcAlgloc(T̂ (V ), A) ∼= HompcVect(V,A).

There is also a 1-1 correspondence between derivations of T̂ (V ) and (continuous)

maps V → T̂ V .

Remark 2.2.8. This universal property does not hold when A is a non-local pseu-

docompact algebra, so T̂ V is not a free pseudocompact algebra. The construction

of a free pseudocompact algebra is in general very different, and is discussed later

in Section 5.1.

Similarly, the completed symmetric algebra on V is

Ŝ(V ) :=
∞∏
n=0

Sn(V ), where Sn(V ) := (V ⊗̂n)Sn .

This is the free local pseudocompact commutative algebra on V . Once again, we

note that Ŝ(V ) is free only in pcCAlgloc. There is also a 1-1 correspondence between

derivations of Ŝ(V ) and (continuous) maps V → ŜV .

2.2.3. Pseudocompact modules, or comodules.

Definition 2.2.9. Given a pseudocompact dg algebra C, a (right) pseudocompact

C-module is a pseudocompact vector space V together with a continuous linear

map V ⊗ C → V satisfying the usual axioms of associativity and unitality. The

category of pseudocompact dg C-modules is denoted by pcDGMod-C.
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Just like the fundamental theorem of coalgebras, this category is anti-equivalent

to the category of dg C∗-comodules, again via taking duals. Thus, all our results

concerning pseudocompact dg modules can readily be translated into results about

dg comodules if one wishes to do so.

2.3. Model categories

Model categories were introduced in [Qui67] (where they were referred to as

“closed” model categories), as an abstraction of the category of topological spaces

or simplicial sets. However it quickly became clear that this notion has much

wider applicability, in particular, much of classical homological algebra can be

formulated in the language of model categories. We will see in the next chapter that

deformation theory can likewise be profitably recast in this language. The survey

[DS95] covers most of our needs; for more in-depth treatment see [Hir03, Hov99].

2.3.1. Definition and examples of model categories. We begin by introduc-

ing some preliminary terminology for defining model categories.

Definition 2.3.1. Let C be a category and let i and p be maps in C such that

there is a commutative solid diagram as below.

A X

B Y

f

i p

g

h

A lift is a dashed map as in the diagram making the whole diagram commute. If

a lift exists in the diagram for any f and g, then i is said to have the left lifting

property (LLP) with respect to p, and p is said to have the right lifting property

(RLP) with respect to i.

Definition 2.3.2. A model category is a category C with three distinguished classes

of morphisms, called weak equivalences (W, ∼−→), fibrations (F, →→) and cofibrations

(C, ↪→), each closed under compositions and containing all identity maps. A

morphism is called an acyclic or trivial (co)fibration if it is both a (co)fibration

and a weak equivalence. We require the axioms below to be satisfied.

(MC1) Completeness: Limits and colimits exist in C.

(MC2) 2-out-of-3 : If f and g are composable maps in C such that two of f , g

and gf are weak equivalences, then so is the third.
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(MC3) Retracts: The classes of morphisms W, C and F are each closed under

retracts.

(MC4) Lifting: Cofibrations have the LLP with respect to acyclic fibrations.

Acyclic cofibrations have the LLP with respect to fibrations.

(MC5) Factorization: Any map f can functorially be factored in two ways:

(i) f = pi, where i is a cofibration and p is an acyclic fibration, and,

(ii) f = pi, where i is an acyclic cofibration and p is a fibration.

The above definition differs from the original one by Quillen in that the latter

only assumes the existence of finite limits and colimits and the factorizations of

maps as in axiom (MC5) were not required to be functorial. However, in practice,

the strengthened axioms hold in most of the cases of interest and this modification

is often preferred in the current literature.

Remark 2.3.3. The following observations on the axioms of a model category are

simple but useful.

(1) The axioms are over-determined. That is, given a model category, the

cofibrations are the morphisms that have the LLP with respect to acyclic

fibrations, and the fibrations are the morphisms that have the RLP with

respect to acyclic cofibrations.

(2) The axioms are self-dual. That is, given a model category C, its opposite

category Cop is a model category where a morphism f op : Y → X is a

fibration (resp. cofibration, weak equivalence) in Cop if its corresponding

morphism f : X → Y is a cofibration (resp. fibration, weak equivalence)

in C.

Due to existence of limits and colimits, a model category C has an initial object

∅ and a terminal object ∗; if these are isomorphic, C is called a pointed model

category. An object X of C is fibrant if the unique map X → ∗ is a fibration, and

cofibrant if the unique map ∅ → X is a cofibration. By the factorization axiom

(MC5), every object X is functorially associated with a fibrant object RX and an

acyclic cofibration X → RX; similarly, X is functorially associated with a cofibrant

object LX and an acyclic fibration LX → X. We will call RX and LX fibrant

and cofibrant replacements of X, respectively. Moreover, any object X ∈ C can be
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connected by (possibly a zigzag of) weak equivalences to an object that is both

fibrant and cofibrant, for example, such is the object L(RX) or R(LX).

Example 2.3.4. Here are a few examples of model categories.

(1) The category Top of topological spaces is a model category where weak

equivalences are the ordinary weak equivalences of topological spaces,

fibrations are Serre fibrations and cofibrations are those maps that have

the LLP with respect to Serre fibrations. All objects are fibrant and the

cofibrant objects are retracts of CW complexes. This is the prototypical

model category that served as a blueprint and motivation for developing

the whole theory of model categories.

(2) The category Ch(R) of chain complexes of modules over an associative

ring R has two natural model category structures with weak equivalences

being quasi-isomorphisms of chain complexes. In the first one (called the

projective model structure) fibrations are surjective maps and cofibrations

are chain maps having the LLP with respect to surjective chain maps,

whereas in the second one (called the injective model structure) cofibrations

are injective maps and fibrations are chain maps having the RLP with

respect to injective chain maps.

(3) The categories CDGA and DGLA of commutative dg algebras and dg Lie

algebras over a field of characteristic zero and DGA and DGA∗ of dg

algebras and augmented dg algebras over a field of arbitrary characteristic

have model structures, given in [Hin97]. Weak equivalences are quasi-

isomorphisms, fibrations are surjective maps and cofibrations are the maps

having the LLP with respect to fibrations. All objects are fibrant in these

model categories.

2.3.2. Homotopy categories. Next we discuss the notion of homotopy. In model

categories, homotopies come in two flavours, namely “left” and “right” homotopies,

which are based on “cylinder objects” and “path objects” respectively. The idea is

that for sufficiently nice objects, such as CW complexes in topological spaces, the

two notions of homotopy coincide.
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Definition 2.3.5. Let C be a model category and X ∈ C. A cylinder object for X is

an object X× I in C with a factorization of the canonical fold map ∇X = idX + idX
into

X qX X × I X,i

∇X

p

∼

with i a cofibration and p an acyclic fibration. Let f, g : X → Y be two maps in

C. A left homotopy from f to g is a map H : X × I → Y for some cylinder object

X × I for X making the following diagram commute:

X qX Y

X × I

f+g

i
H

If such a left homotopy exists, then f and g are left homotopic, denoted by f 'l g.

Definition 2.3.6. Let C be a model category and Y ∈ C. A path object for Y is an

object Y I in C with a factorization of the canonical diagonal map ∆Y = (idY , idY )

into

Y Y I Y × Y,i
∼

∆Y

p

with i an acyclic cofibration and p a fibration. Let f, g : X → Y be two maps in C.

A right homotopy from f to g is a map H : X → Y I for some path object Y I for

Y making the following diagram commute:

Y I

X X ×X
p

(f, g)

H

If such a right homotopy exists, then f and g are right homotopic, denoted by

f 'r g.

Remark 2.3.7. Some authors prefer to weaken the notions of a cylinder and path

object, for example, not insisting that the map X qX → X × I be a cofibration

(note that in the case of topological spaces the standard topological cylinder

X × [0, 1] this condition is not satisfied unless X is a CW complex). Nevertheless,

the factorization axiom (MC5) ensures that any object has a functorial cylinder

and path object.

The following result holds.
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Theorem 2.3.8. Let X be a cofibrant object and Y be a fibrant object of a model

category C. Then

(1) Two maps X → Y are left homotopic if and only if they are right homo-

topic.

(2) The relation of left or right homotopy on HomC(X, Y ) is an equivalence

relation. The set of homotopy classes of maps X → Y will be denoted by

[X, Y ].

(3) If f, g : X → Y are left homotopic and h : A → X is a map with A

cofibrant, then h ◦ f and h ◦ g are left homotopic. Similarly if k : Y → B

is a map with B fibrant then f ◦ k and g ◦ k are right homotopic.

(4) If X ′ is a cofibrant object weakly equivalent to X and Y ′ is a fibrant object

weakly equivalent to Y then there is a bijection [X, Y ] ∼= [X ′, Y ′].

(5) Suppose additionally that X, Y ∈ C are both fibrant and cofibrant and that

f : X → Y is a weak equivalence. Then X and Y are homotopy equivalent,

i.e. there exists a map g : Y → X such that f ◦ g is homotopic to idY and

g ◦ f is homotopic to idX .

Proof. See [Hov99, Proposition 1.2.5] for parts (1)–(4), and [Hov99, Proposition

1.2.8] for part (5). �

This allows one to construct the homotopy category of a model category.

Definition 2.3.9. The homotopy category of a model category C is the category

Ho C whose objects are the objects in C that are both fibrant and cofibrant and

for two fibrant-cofibrant objects X, Y ∈ C we have HomHo C(X, Y ) := [X, Y ], the

homotopy classes of maps from X to Y .

Theorem 2.3.8 ensures that Ho C is well-defined. Moreover, the correspondence

X 7→ L(RX) (or, equivalently, X 7→ R(LX)) determines a functor γ : C→ Ho C. It

follows from Theorem 2.3.8(5) that γ takes weak equivalences in C into isomorphisms

in Ho C; remarkably, γ is the universal functor out of C having this property.

Theorem 2.3.10. Let F : C→ D be a functor from a model category C to a category

D such that for any weak equivalence f ∈ C its image F (f) ∈ D is an isomorphism.

Then there exists a unique functor G : Ho C→ D such that G ◦ γ = F .

Proof. See [DS95, Theorem 6.2]. �
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Remark 2.3.11. The homotopy category of a model category C is where the most

important invariants of C lie. For example, the derived category of a ring R is

the homotopy category of Ch(R) from Example 2.3.4(2), with either projective or

injective model structure. Thus, different model structures on the same category

may lead to equivalent homotopy categories.

2.3.3. Quillen functors. Having defined the notion of a model category, it is

natural to consider functors between different model categories. It is unreasonable

to require that functors preserve the whole structure available (i.e. all classes W,

F, C) as this does not hold in many cases of interest. The appropriate notion here

is that of a “Quillen adjunction”.

Definition 2.3.12. Let C and D be model categories. An adjunction

F : C � D :G,

with F left adjoint to G, is a Quillen adjunction if F preserves cofibrations and G

preserves fibrations. In this case, F is called a left Quillen functor and G is called

a right Quillen functor.

If F : C � D :G is a Quillen adjunction, then one can prove that F carries

weak equivalences between cofibrant objects into weak equivalences and likewise G

carries weak equivalences between fibrant objects into weak equivalences. It follows

that F and G lift to functors LF and RG between the corresponding homotopy

categories Ho C and Ho D. We will refer to LF as the left derived functor of F and

to RG as the right derived functor of G. Moreover, (LF,RG) also form an adjoint

pair:

Theorem 2.3.13. Any Quillen adjunction F : C � D :G induces an (ordinary)

adjunction

LF : Ho C � Ho D :RG.

Proof. See [DS95, Theorem 9.7]. �

Definition 2.3.14. A Quillen adjunction F : C � D :G is called a Quillen equiv-

alence if the corresponding adjunction LF : Ho C � Ho D :RG is an ordinary

equivalence.



30 2. PRELIMINARIES

Example 2.3.15.

(1) Let R be an associative ring and C be the category of chain complexes of R

modules with its projective model structure, and D be the same category

with the injective model structure, cf. Example 2.3.4(2). Then the identity

functor C→ D is a right Quillen functor establishing a Quillen equivalence

between C and D. Its adjoint left Quillen functor D→ C is, of course, also

the identity functor. Informally, this can be interpreted as saying that

there are two equivalent approaches to classical homological functors: one

based on injective resolutions and the other based on projective resolutions.

(2) The functor of geometric realization from simplicial sets to topological

spaces is a left Quillen functor whose right adjoint is the functor associating

to a topological space its singular simplicial set [Hov99]. This adjunction

is a Quillen equivalence.

(3) In the next chapter, we will consider Koszul duality as a Quillen equivalence

between the categories of commutative dg algebras with the model structure

of Example 2.3.4(3) and the category of pseudocompact dg Lie algebras

and see that it underlies the modern approach to deformation theory.

The following criterion is useful for showing that a Quillen adjunction is a

Quillen equivalence.

Theorem 2.3.16. Let F : C � D :G be a Quillen adjunction. The following are

equivalent:

(1) (F,G) is a Quillen equivalence.

(2) F reflects weak equivalences (in the sense that, if Ff is a weak equivalence

in D, then f is a weak equivalence in C) between cofibrant objects, and,

for all fibrant Y ∈ D, the composition FLGY → FGY → Y is a weak

equivalence in D.

(3) G reflects weak equivalences between fibrant objects, and, for all cofibrant

X ∈ C, the composition X → GFX → GRFX is a weak equivalence in C.

Proof. See [Hov99, Corollary 1.3.16]. �

2.3.4. Cofibrantly generated model categories. We collect some definitions

and results on cofibrantly generated model categories from [Hov99].
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Definition 2.3.17. Let C be a category with and I be a class of maps in C.

(1) A λ-sequence in I is a functor X : λ→ C, i.e. a diagram

X0 → X1 → · · · → Xβ → . . . ,

such that each map Xβ → Xβ+1 (β < λ) is in I and such that X is colimit-

preserving, i.e. the induced map colimβ<gammaXβ → Xγ is an isomorphism

for any limit ordinal γ < λ.

(2) A transfinite composition of a λ-sequence X in I is the map

X0 → colimβ<λXβ.

(3) An object A ∈ C is small relative to I if there is some cardinal κ such that

for any κ-filtered ordinal λ and any λ-sequence X in I, the induced map

colimβ<λ HomC(A,Xβ)→ HomC(A, colimβ<λXβ).

is a set bijection. The object A is small if it is small relative to C.

Definition 2.3.18. Let C be a category with all small colimits and limits and I

be a class of maps in C.

(1) A morphism is called I-injective (resp. I-projective) if it has the right

(resp. left) lifting property with respect to morphisms in I. We write

I-inj := RLP(I) and I-proj := LLP(I).

(2) A morphism is called an I-fibration (resp. I-cofibration) if it has the right

(resp. left) lifting property with respect to I-projective (resp. I-injective)

morphisms. We write

I-fib := RLP(I-proj) and I-cof := LLP(I-inj).

(3) A map is a relative I-cell complex if it is a transfinite composition of

pushouts of elements of I. We denote by I-cell the class of relative I-cell

complexes.

Definition 2.3.19. A model category C is said to be cofibrantly generated if there

are sets I and J of maps such that the following conditions hold.

(1) The domains of the maps of I are small relative to I-cell.

(2) The domains of the maps of J are small relative to J-cell.

(3) Fibrations are J-injective.
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(4) Trivial fibrations are I-injective.

The set I is called the set of generating cofibrations, and J the set of generating

trivial cofibrations.

2.3.5. Proper model categories. In a model category C one can define the

notions of homotopy pullbacks and homotopy pushouts; an elementary construction

can be found in [DS95, Section 10].

Definition 2.3.20. Let X, Y and Z be objects in a model category C supplied

with maps X → Y and X → Z. Factor the map LX → X → Y as LX i1−→ Ỹ
p1−→ Y

where i1 is a cofibration and p1 is an acyclic fibration; similarly factor the map

LX → X → Z as LX i2−→ Z̃
p2−→ Z where i2 is a cofibration and p2 is an acyclic

fibration. Then the homotopy pushout Y qhX Z is by definition Ỹ qLX Z̃.

A homotopy pullback is defined dually as a homotopy pushout in Cop. It will be

denoted for objects X,Y and Z by Y ×hX Z.

Remark 2.3.21. The notions of a homotopy pullbacks and pushout are derived

functors of ordinary pullbacks and pushouts. Namely, consider the category of

diagrams Push(C) in a model category C of the form Y ← X → Z and a functor

F : Push(C)→ C obtained by taking the pushout of a given diagram. Then there

exists a model structure on Push(C) such that F is a left Quillen functor and then

the homotopy pushout is its left derived functor. The case of a homotopy pullback

is similar.

Homotopy pushouts and pullbacks are simplified in proper model categories.

Definition 2.3.22. A model category C is called left proper if for any pushout

diagram in C

A B

C D

i

f g

for which i is a cofibration and f is a weak equivalence, then the map g is also a

weak equivalence. Dually, C is right proper if for any pullback diagram in C
A B

C D

f g

p
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for which p is a fibration and g is a weak equivalence, then the map f is also a

weak equivalence.

Many model categories are left or right proper, as the following result makes

clear.

Proposition 2.3.23. Let C be a model category such that every object of C is

cofibrant. Then C is left proper. Dually, if every object of C is fibrant, then C is

right proper.

Proof. See [Lur, Proposition A.2.4.2]. �

Then the following result holds.

Proposition 2.3.24. Let Y ← X → Z be a diagram in a left proper model category

where X → Y is a cofibration. Then Y qX Z is weakly equivalent to Y qhX Z.

Dually, let Y → X ← Z be a diagram in a right proper model category where

Z → X is a fibration. Then Y ×X Z is weakly equivalent to Y ×hX Z.

Proof. See [Lur, Proposition A.2.4.4]. �

Lastly, we discuss the existence of derived mapping spaces in model categories.

Theorem 2.3.25. Let X be a cofibrant object and Y be a fibrant object in a model

category C.

(1) For any object A, there exists a simplicial set Mapl(A, Y ) such that

π0 Mapl(A, Y ) ∼= [A, Y ]l,

and a simplicial set Mapr(X,A) such that

π0 Mapr(X,A) ∼= [X,A]r.

(2) The functors A 7→ Mapl(A, Y ) and A 7→ Mapr(X,A) are left and right

Quillen functors from C to simplicial sets respectively.

(3) There is a natural isomorphism Mapl(X, Y ) ∼= Mapr(X, Y ).

Proof. See [Hov99, Section 5.4]. �

When X is cofibrant and Y is fibrant, we will write Map(X, Y ) for either

Mapl(X, Y ) or Mapr(X, Y ) and call it the derived mapping space from X to Y .



CHAPTER 3

Homotopical approach to deformation theory

In this chapter, we prove a version of Deligne’s principle: in characteristic zero,

every deformation problem is governed by a dg Lie algebra. This is a central result

in deformation theory and there have been many formalizations of this result, for

example, [Pri10] which uses simplicial techniques, and [Lur] where this principle

is formulated in the framework of ∞-categories. Our proof has the advantage of

being more elementary than those in the aforementioned references.

More precisely, we show that any extended deformation functor (a set-valued

functor satisfying certain conditions) from the category of local pseudocompact

commutative dg algebras is isomorphic to a functor of the form

MC (L,−) := MC(L,−)/∼

for some dg Lie algebra L. Here MC(L) = {x ∈ L1 : dx + 1
2 [x, x] = 0} denotes

the set of Maurer–Cartan elements of a dg Lie algebra L, and ∼ denotes gauge

equivalence. We also prove a noncommutative version of this result that is valid in

any characteristic.

3.1. Brown representability for compactly generated model categories

The Brown representability theorem [Bro62] is a necessary and sufficient condition

for a functor defined on the homotopy category of pointed topological spaces to be

representable. It has subsequently been formulated in various abstract contexts.

It will be convenient for us to use a version formulated in [Jar11] for compactly

generated model categories. Recall that an object K in a category C is said to be

compact if the functor HomC(K,−) : C→ Set preserves inductive colimits.

Definition 3.1.1. Let C be a model category. We say that C is compactly generated

if there exists a set S of compact cofibrant objects in C that detect weak equivalences,

that is, a map f : X → Y in C is a weak equivalence if and only if f induces a

bijection [K,X] → [K,Y ] for any K ∈ S. The elements of S are called compact

generators for C.
34
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Example 3.1.2. The category of connected pointed topological spaces is compactly

generated with S := {Sn : n = 1, 2, . . . }, the pointed spheres. It is interesting to

note that the category of all (i.e. not necessarily connected) topological spaces is

not compactly generated, [Hel81].

Remark 3.1.3. There is another, inequivalent notion of a compactly generated

model category contained in e.g. [MP12]. Under this notion the category of all

topological spaces is compactly generated.

Under the assumption of compact generation, an abstract Brown representability

holds in C.

Theorem 3.1.4. Let C be a compactly generated pointed model category with ∗

denoting its initial-terminal object. Suppose that a set-valued contravariant functor

F on C satisfies the following conditions:

(1) F (∗) = ∗.

(2) F takes weak equivalences to bijections of sets.

(3) F takes arbitrary coproducts of cofibrant objects in C into products of sets.

(4) Let A, B, C be cofibrant objects in C and A→ B, A→ C be morphisms

in C with A→ B being a cofibration. Then the natural map

F (B∐AC)→ F (B)×F (A) F (C)

is a surjection of sets.

Then the functor F is representable in the homotopy category of C, i.e. there exists

an object X in C and a natural weak equivalence F (Y ) ' [Y,X] for any Y ∈ C.

Proof. This is [Jar11, Theorem 19]. �

Remark 3.1.5. Theorem 3.1.4 is a model category version of the famous Brown

representability theorem [Bro62] that was originally formulated in the category of

pointed CW complexes. It is not the most general form of Brown’s representability

theorem (for such a statement see [Hel81]) since it can be formulated in a way not

requiring the existence of a model structure. In practice (and particularly for the

application we have in mind) a model structure is often present and the conditions

of the theorem are usually not difficult to verify.
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Remark 3.1.6. It is easy to see that, conversely, a representable up to homotopy

set-valued functor on a compactly generated model category must satisfy the

conditions listed in Theorem 3.1.4. To make a comparison with topology easier,

we will view F as a covariant functor on Cop represented by X ∈ Cop; we will

assume without loss of generality that X is cofibrant. Thus, for Y ∈ Cop we have

F (Y ) = [X, Y ]. The conditions (1), (2) and (3) are obvious. Applying Map(X,−)

to a homotopy pullback of B → A← C in C, we obtain a homotopy pullback of

simplicial sets (since Map(X,−) is a right Quillen functor).

Map(X,B ×hA C) //

��

Map(X,B)

��

Map(X,C) // Map(X,A)

Taking the connected components functor, we obtain a surjection

π0 Map(X,B ×hA C) π0 Map(X,B)×π0 Map(X,A) π0 Map(X,B)

F (B ×hA C) F (B)×F (A) F (C)

∼ = ∼ =

as required.

Note also that this argument shows that one should not, in general, expect that

the map F (B ×hA C) → F (B) ×F (A) F (C) is an isomorphism. Indeed, it follows

from the homotopy pullback diagram above that the homotopy fibre of the map

Map(X,B ×hA C)→ Map(X,B)×Map(X,C)

over a given point (f, g) ∈ Map(X,B) × Map(X,C) having the same image in

[X,A] is the based loop space Ω Map(X,A). Thus, the fibration

Ω Map(X,A)→ Map(X,B ×hA C)→ Map(X,B)×Map(X,C)

gives rise to a long homotopy exact sequence (the Mayer-Vietoris sequence, [DR80])

· · · π1 Map(X,B)× π1 Map(X,C) π1 Map(X,A)

F (B ×hA C) F (B)×F (A) F (C).

3.2. Maurer–Cartan elements and Maurer–Cartan moduli sets

We will outline here the general theory of Maurer–Cartan elements in dg Lie and

associative algebras and related moduli sets. We defer the more general definition
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of Maurer–Cartan elements in L∞- and A∞-algebras to the next chapter, as one

requires completeness conditions to ensure that certain infinite series converge.

Such technicalities are not required in this chapter.

3.2.1. Maurer–Cartan moduli in dg Lie algebras.

Definition 3.2.1. Let g be a dg Lie algebra over a field k of characteristic zero.

An element x ∈ g1 is called an Maurer–Cartan element if it satisfies the following

equation (called the Maurer–Cartan or master equation)

d(x) + 1
2[x, x] = 0.

The set of Maurer–Cartan elements in g will be denoted by MC(g). If A is a

commutative dg algebra then g⊗A has naturally the structure of a dg Lie algebra

and we will write MC(g, A) for MC(g⊗ A).

From now on we shall assume that g is nilpotent or, more generally, pro-nilpotent

(i.e. g ∼= lim←−−n g/g
[n] where g[n] is the dg Lie ideal generated by Lie products of at

least n elements). In this case it has a group G associated to it. To define G, recall

that Ug, the universal enveloping algebra of g, is the graded associative algebra

obtained by quotienting out the tensor algebra Tg by the ideal generated by the

relations a⊗ b− (−1)|a||b|b⊗ a− [a, b] for two homogeneous elements a, b ∈ g. By

definition there is a map g→ Ug that turns out to be an embedding. The algebra

Ug is a bialgebra with the elements of g ⊂ Ug being primitive elements; moreover

the set of primitive elements in Ug coincides with g. There is also an augmentation

Ug→ k that sends all elements of g to zero.

We will need to consider the completion Ûg of Ug at its augmentation ideal

I; i.e. Ûg ∼= lim←−−n Ug/I
n. Note that for a general dg Lie algebra g it may happen

that Ûg = 0, such is the case, e.g. when g is an ordinary semisimple Lie algebra.

However when g is pro-nilpotent, Ûg is always nontrivial; moreover the natural

map Ug→ Ûg is an embedding and so, g is likewise a subspace of Ûg. Then we

define the group G as the group of group-like elements in the bialgebra Ûg, i.e. the

set of elements g ∈ Ûg such that ∆(g) = g ⊗ g for the comultiplication ∆ on Ûg.

There is, in fact, an equivalence of categories between pro-nilpotent Lie algebras,

pro-nilpotent Lie groups and complete cocommutative Hopf algebras, cf. [Qui67,

Appendix A3].
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The group G is called the gauge group and acts on MC(g) by gauge transfor-

mations:

Proposition 3.2.2. Let g ∈ G and x ∈ MC(g). Both elements g and x are viewed

as lying in Ûg. Then the formula g · x := gxg−1 − d(g)g−1 determines an action of

G on MC(g).

Proof. First note that if g has vanishing differential then the Maurer–Cartan

condition takes the form [x, x] = 0 and the gauge action reduces to ordinary

conjugation; the desired statement in this case is clear. We will reduce the general

case to this one as follows. Introduce the graded Lie algebra g̃ having underlying

graded vector space g⊕ k · d where k · d is the one-dimensional Lie algebra spanned

by a symbol d sitting in cohomological degree 1. By definition for a ∈ g̃ we have

[d, a] := d(a), [d, d] = 0 whereas g is a Lie subalgebra in g̃. Given y ∈ g denote by ỹ

the element y+d ∈ g̃. A straightforward check shows that a degree 1 element x ∈ g

is Maurer–Cartan if and only if [x̃, x̃] = 0. We will view an element g ∈ g as an

element in Û g̃ via the embedding g ⊂ g̃ ⊂ Û g̃. Since d(g) = [d, g] = dg − gd ∈ Û g̃

we have d(g)g−1 = d− gdg−1 and so

gx̃g−1 = g(x+ d)g−1

= gxg−1 + gdg−1

= gxg−1 + d− d(g)g−1

= g̃ · x.

So, any Maurer–Cartan element x ∈ g gives rise to an Maurer–Cartan element

x̃ ∈ g̃ where g̃ has vanishing differential and the gauge action in g corresponds to

the conjugation action in g̃. The desired statement is now obvious. �

Two Maurer–Cartan elements x, y ∈ g are said to be gauge equivalent if x = g ·y

for some g ∈ G. We use ∼ to denote the corresponding equivalence relation.

Definition 3.2.3. Given a pro-nilpotent dg Lie algebra g we define its Maurer–

Cartan moduli set MC (g) as the set of equivalence classes MC(g)/∼ under gauge

equivalence.

If A is a commutative dg algebra, we will write MC (g, A) for MC (g⊗ A).
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Let us now discuss the important notion of homotopy of Maurer–Cartan elements.

First, let k[t, dt] be the graded commutative k-algebra generated by one polynomial

generator t in degree 0 and one exterior generator dt in degree 1. The differential is

defined by the rule d(t) = dt and extended to the whole k[t, dt] by the Leibniz rule.

Note that there are two maps k[t, dt]→ k given by setting t = 0 or t = 1. Note that

k[t, dt] is a path object for k in the model category CDGA of commutative dg algebras.

Note also that for any dg Lie algebra g the tensor product g⊗ k[t, dt] =: g[t, dt] is

a dg Lie algebra and evaluations at 0 and 1 determine two dg Lie algebra maps

g[t, dt]→ g.

Definition 3.2.4. Let g be a nilpotent dg Lie algebra. Two Maurer–Cartan

elements x, y ∈ g are called Sullivan homotopic if there exists z ∈ MC(g[t, dt]) such

that z|t=0 = x and z|t=1 = y.

An important theorem due to Schlessinger and Stasheff [SS] shows that homo-

topy and gauge equivalence are equivalent notions for nilpotent dg Lie algebras.

Theorem 3.2.5. Let g be a nilpotent dg Lie algebra. Then two Maurer–Cartan

elements x, y ∈ g are Sullivan homotopic if and only if they are gauge equivalent.

In particular, the relation of homotopy on MC(g) is an equivalence relation.

Proof. See, e.g. [CL10, Theorem 4.4]. A generalization of the theorem was also

independently proved in [Vor12, Theorem 5.2], in the context of arbitrary odd

elements in dg Lie superalgebras with an associated gauge group. �

Remark 3.2.6. The construction g[t, dt] := g ⊗ k[t, dt] used in the definition of

Sullivan homotopy makes sense for any dg Lie algebra g. For a general dg Lie algebra

g one does not expect to get a reasonable definition of an equivalence of Maurer–

Cartan elements in g using this construction. Suppose that g is pro-nilpotent, in

that case we define g[t, dt] := lim←−−n(g/g[n][t, dt]) and modify the notion of homotopy

of Maurer–Cartan elements accordingly. It is easy to see that Schlessinger–Stasheff

theorem 3.2.5 remains valid in this context. Moreover, Theorem 3.2.5 has a natural

interpretation in terms of model categories: it says, roughly speaking, that the

notions of left and right homotopy for nilpotent dg Lie algebras agree (see Chapter 4

for a precise statement and its generalizations).
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3.2.2. Maurer–Cartan moduli in dg algebras. We will now outline a parallel

treatment of Maurer–Cartan moduli for associative augmented dg algebras. It

will be convenient for us to work with non-unital dg algebras, i.e. dg algebras not

necessarily possessing a unit. It is well-known that the categories of non-unital dg

algebras and of augmented dg algebras are equivalent: given a non-unital dg-algebra

g one can adjoin a unit forming an augmented dg algebra ge := g ⊕ k · 1, and

conversely, any augmented dg algebra gives rise to a non-unital dg algebra, its

augmentation ideal.

Definition 3.2.7. Let g be a non-unital dg algebra over a field k of arbitrary

characteristic. An element x ∈ g is called an Maurer–Cartan element if it satisfies

d(x) + x2 = 0. The set of all Maurer–Cartan elements in g will be denoted by

MC(g).

Assume from now on that the non-unital dg algebra g is pro-nilpotent. In other

words, we have g = lim←−−n g/g
[n]; here g[n] is the dg ideal of g generated by products

of at least n elements. Clearly the elements of ge of the form 1 + i where i ∈ g0,

are invertible, and therefore form a group G that we will call the gauge group

associated to g.

Proposition 3.2.8. Let g ∈ G and x ∈ MC(g). Then the formula g · x :=

gxg−1 − d(g)g−1 determines an action of G on MC(g).

This action is well-defined by a similar argument as for Proposition 3.2.2; this

time we should make use of the associative algebra g̃ having underlying space

g⊗ k[d] where d is a degree one element with d2 = 0 (so that k[d] is the exterior

algebra on d which can be viewed as the universal enveloping algebra of the abelian

Lie algebra k · d). The product in g̃ is determined by requiring that g and k[d] are

subalgebras in g̃ and there is a commutation relation [d, a] = da− (−1)|a|ad = d(a)

for a being a homogeneous element in g of degree |a|. As before, we say that two

Maurer–Cartan elements x, y ∈ g are gauge equivalent if x = g · y for some g ∈ G

and let ∼ denote the corresponding equivalence relation.

Definition 3.2.9. The Maurer–Cartan moduli set MC (g) is the set of equivalence

classes MC(g)/∼ under gauge equivalence.

As before, if A is another dg algebra then we write MC(g, A) for MC(g⊗ A),

and write MC (g, A) for MC (g⊗ A).
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The notion of homotopy between two Maurer–Cartan elements in an augmented

dg algebra g can be treated in the same way as for dg Lie algebras, with an

appropriate analogue of the Schlessinger–Stasheff, see [CHL21, Theorem 4.1] where

this approach is carried out in the smooth context. We will now describe a

simple alternative way, that has the added advantage of not requiring that k has

characteristic zero.

Consider the dg algebra I spanned by two vectors a, b in degree 0 and one vector

c in degree 1. The differential is given by

d(a) = c, d(b) = −c, d(c) = 0

and the algebra structure is specified by

a2 = a, b2 = b, ca = c, bc = c, ab = ac = ba = cb = c2 = 0,

with unit element 1 = a+ b. This is the cochain algebra on the standard cellular

interval with two 0-cells corresponding to the endpoints and one 1-cell. The

dg algebra g ⊗ I is a path object for non-unital dg algebra g. There are two

‘evaluation’ maps p1, p2 : I→ k so that p1(a) = 1, p1(b) = p1(c) = 0 and p2(b) = 1,

p2(a) = p2(c) = 0, and these induce the corresponding evaluation maps g⊗ I→ g

required in the definition of the path object.

Definition 3.2.10. Let g be a non-unital dg algebra. Then two Maurer–Cartan

elements x, y ∈ g are homotopic if there exists z ∈ MC(g⊗I) such that (1⊗p1)(z) =

x and (1⊗ p2)(z) = y.

We have the following analogue of the Schlessinger–Stasheff theorem.

Theorem 3.2.11. Let g be as in Definition 3.2.10. Then two Maurer–Cartan

elements in g are homotopic if and only if they are gauge equivalent. In particular,

the relation of homotopy on MC(g) is an equivalence relation.

Proof. Any element z ∈ g ⊗ I ∼= I ⊗ g may be written uniquely as z = a⊗ z1+

b⊗z2+c⊗h with z1, z2 ∈ g1, h ∈ g0. The Maurer–Cartan equation for z is equivalent

to z1 and z2 being Maurer–Cartan elements such that d(h) = (1 + h)z1 − z2(1 + h)

is inside ge. Since 1 + h is invertible then the latter equation could be rewritten as

z2 = (1 + h)z1(1 + h)−1 − d(1 + h)(1 + h)−1 so z1 and z2 are gauge equivalent. �
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3.3. Koszul duality

3.3.1. Quillen equivalence between DGLA and pcCDGAop
loc. We now explain

a Quillen equivalence between DGLA and pcCDGAop
loc due to Hinich [Hin01], also

called Koszul duality, which is at the heart of the modern approach to deformation

theory. We assume that the ground field k has characteristic zero. A similar

approach works for algebras and (suitably defined) local pseudocompact algebras

over a pair of Koszul dual operads; we will not pursue this in full generality but

consider, later on, an associative analogue of this story.

Any local augmented pseudocompact commutative dg algebra A with augmen-

tation ideal I(A) determines a dg Lie algebra as follows.

Definition 3.3.1. Let A ∈ pcCDGAloc and set Harr(A) to be the dg Lie algebra

whose underlying space is the free Lie algebra on Σ−1I(A)∗ and the differential d

is defined as d = dI + dII ; here dI is induced by the internal differential on I(A)

and dII is determined by its restriction onto Σ−1I(A)∗ which is in turn induced by

the product map I(A)⊗ I(A)→ I(A).

Remark 3.3.2. Note that since I(A) is pseudocompact, its dual I(A)∗ is discrete

and thus, the dg Lie algebra Harr(A) is a conventional dg Lie algebra (with no

topology). The construction Harr(A) is the continuous version of the Harrison

complex associated with a commutative dg algebra.

Similarly, any dg Lie algebra determines a local pseudocompact commutative

dg algebra as follows.

Definition 3.3.3. For a dg Lie algebra g set CE(g) = ŜΣ−1g∗, the completed

symmetric algebra on Σ−1g∗. The differential d on CE(g) is defined as d = dI + dII ;

here dI is induced by the internal differential on g and dII is determined by its

restriction onto Σ−1g∗ which is in turn induced by the bracket map g⊗ g→ g.

The following result holds.

Proposition 3.3.4. The functors Harr : pcCDGAop
loc � DGLA : CE form an adjoint

pair.

Proof. We need to show that for A ∈ pcCDGAloc and g ∈ DGLA there are natural

isomorphisms

HomDGLA(Harr(A), g) ∼= MC(g⊗ A) ∼= HompcCDGAloc(CE(g), A).
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We prove the right-hand isomorphism, following [CL11, Proposition 2.2]. Forgetting

the differentials, a map f : (ŜΣ−1g∗, d) → (A, dA) in pcCDGAloc is equivalent to

a linear map Σ−1g∗ → A by freeness of Ŝ, which is equivalently an element

xf ∈ (g⊗ A)1.

Finally we show that xf ∈ MC(g⊗A) if and only if f commutes with differentials,

which says that there are commutative squares

Σ−1g∗ (Σ−1g∗)⊗n SΣ−1g∗

A A

f |Σ−1g∗

dn

f

dA

To dualize this square, we note that there is a canonical map

((Σ−1g∗)⊗n)∗ = ((Σ−1g∗)⊗nSn )∗ ←− ((Σ−1g)⊗n)Sn ,

given by identifying invariants with coinvariants, as in (2.1.1). Hence the square

commuting says 1
n!d
∗
nf
∗ = d∗Af

∗|Σ−1g∗ , giving the Maurer–Cartan equation for

xf ∈ (g⊗ A)1. The other bijection is proved similarly, using that Harr is defined

freely. �

The category pcCDGAloc has the structure of a model category.

Definition 3.3.5. A morphism f : A→ B in pcCDGAloc is called

(1) a weak equivalence if Harr(f) : Harr(B)→ Harr(A) is a quasi-isomorphism

of dg Lie algebras;

(2) a fibration if f is surjective;

(3) a cofibration if f has the LLP with respect to all acyclic fibrations.

Theorem 3.3.6. The category pcCDGAloc together with the classes of fibrations,

cofibrations and weak equivalences is a model category. Moreover, the adjoint pair

of functors (Harr,CE) is a Quillen equivalence between pcCDGAop
loc and DGLA.

Proof. See [Hin01]. �

Remark 3.3.7. By definition, all objects in the pcCDGAloc are fibrant, so by

Proposition 2.3.23 it is right proper.

The notion of the Maurer–Cartan moduli set has a natural interpretation in

terms of model structures on DGLA and pcCDGAloc.
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Theorem 3.3.8. Let g be a dg Lie algebra and A be a local pseudocompact dg

algebra. Then there are the following isomorphisms, natural in both variables:

[Harr(A), g] ∼= MC (g, A) ∼= [CE(g), A].

Proof. The bijection [Harr(A), g] ∼= [CE(g), A] follows from the adjunction

(Harr,CE) on the level of homotopy categories. Since Harr(A) is a cofibrant

dg Lie algebra, [Harr(A), g] can be identified with Sullivan homotopy classes of

maps Harr(A)→ g (choosing g[t, dt] as a path object for g) and the latter set can

be identified, by Theorem 3.2.5 with MC(g⊗A) modulo gauge equivalence, i.e. with

MC (g, A). Note that g ⊗ A may not be nilpotent, so we need a pro-nilpotent

version of Theorem 3.2.5. �

Remark 3.3.9. A weak equivalence in pcCDGAloc is not the same as a quasi-

isomorphism. Indeed, let g be the ordinary Lie algebra sl2(k). It is well-known that

the Chevalley-Eilenberg cohomology of sl2(k) is Λ(x), the exterior algebra on one

generator x in degree 3 and it follows that CE(g) is formal, i.e. quasi-isomorphic to

its own cohomology. However, CE(g) is not weakly equivalent to Λ(x), for if it were,

then the dg Lie algebra Harr(CE(g)) would be on the one hand, quasi-isomorphic to

g by Theorem 3.3.6, and on the other, to Harr(Λ(x)). But Harr(Λ(x)) is isomorphic

to the abelian Lie algebra with one basis vector in degree 2 and it is, of course, not

quasi-isomorphic to g = sl2(k). In fact, a weak equivalence in pcCDGAloc is that of

a filtered quasi-isomorphism and it is finer that a quasi-isomorphism: every weak

equivalence of local pseudocompact commutative dg algebras is a quasi-isomorphism

but not vice-versa.

Proposition 3.3.10. The category pcCDGAop
loc is compactly generated.

Proof. Let us denote by Xn, n ∈ Z the commutative algebra k ⊕ Σnk where Σnk

has zero multiplication. We claim that the set {Xn, n ∈ Z} forms a set of compact

generators for pcCDGAop. To see that note that under the Quillen equivalence of

Theorem 3.3.6, the algebra Xn corresponds to the free Lie algebra on one generator

in degree n− 1. These free Lie algebras clearly form a set of compact generators

for dg Lie algebras so the conclusion follows. �

3.3.2. Quillen equivalence between DGA∗ and pcDGAop
loc. We now explain an

associative analogue of the picture of Koszul duality from the previous section,
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where pcCDGAop
loc is replaced with pcDGAloc (i.e. the commutativity is dropped) and

DGLA is replaced with DGA∗, the category of augmented dg algebras, cf. [Pos11].

Here we do not insist that the ground field k has characteristic zero.

Any local augmented pseudocompact dg algebra A with augmentation ideal

I(A) determines an augmented dg algebra as follows.

Definition 3.3.11. For A ∈ pcDGAloc set Cobar(A) = TΣ−1I(A)∗, the uncom-

pleted tensor algebra on the discrete vector space Σ−1I(A)∗. The differential d on

Cobar(A) is defined as d = dI + dII ; here dI is induced by the internal differential

on I(A) and dII is determined by its restriction onto Σ−1I(A)∗ which is in turn

induced by the product map I(A)⊗ I(A)→ I(A).

Similarly, any augmented dg algebra g with augmentation ideal I(g) determines

a local pseudocompact dg algebra as follows.

Definition 3.3.12. For g ∈ DGA∗ set Bar(g) = T̂Σ−1I(g)∗, the completed tensor

algebra on Σ−1I(g)∗. The differential d on Bar(g) is defined as d = dI +dII ; here dI
is induced by the internal differential on g and dII is determined by its restriction

onto Σ−1I(g)∗ which is in turn induced by the product map I(g)⊗ I(g)→ I(g).

Remark 3.3.13. The construction Bar(g) is commonly referred to as the bar-

construction of the dg algebra g; its cohomology computes Extg(k, k). Similarly,

Cobar(A) is the cobar-construction of the pseudocompact dg algebra A (or its dual

dg coalgebra).

The following result holds.

Proposition 3.3.14. The functors Cobar : pcDGAop
loc � DGA∗ : Bar form an ad-

joint pair.

Proof. Apply the same argument as for Proposition 3.3.4 to show that for any

A ∈ pcDGAloc and g ∈ DGA∗ there are natural isomorphisms

HomDGA∗(Cobar(A), g) ∼= MC(I(g)⊗ A) ∼= HompcDGAloc(Bar(g), A).

The proof is easier than the proof of Proposition 3.3.4, as there is no need to

identify invariants with coinvariants. As a result, no factorials appear in the

resulting Maurer–Cartan condition. �

The category pcDGAloc has the structure of a model category.
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Definition 3.3.15. A morphism f : A→ B in pcDGAloc is called

(1) a weak equivalence if Cobar(f) : Cobar(B)→ Cobar(A) is a quasi-isomorphism

of dg algebras;

(2) a fibration if f is surjective;

(3) a cofibration if f has the LLP with respect to all acyclic fibrations.

Theorem 3.3.16. The category pcDGAloc together with the classes of fibrations,

cofibrations and weak equivalences is a model category. Moreover, the adjoint pair

of functors (Cobar,Bar) is a Quillen equivalence between pcDGAop
loc and DGA∗.

Proof. See [Pos11]. �

Remark 3.3.17. By definition, all objects in the pcDGAloc are fibrant, so by

Proposition 2.3.23 it is right proper.

Theorem 3.3.18. There are the following isomorphisms, natural in both variables:

[Cobar(A), g]DGA∗ ∼= MC (I(g), A) ∼= [Bar(g), A]pcDGAloc .

Proof. The proof is the same as that of Theorem 3.3.8 with Harr(A) and CE(g)

replaced by Cobar(A) and Bar(g) respectively. The only difference is that we

choose the smaller path object I(g) ⊗ I for I(g) and apply Theorem 3.2.11 to

identify homotopy classes of maps Cobar(A)→ g with MC (I(g), A). �

Remark 3.3.19. A weak equivalence in pcDGAloc is not the same as a quasi-

isomorphism. Indeed, let g be ordinary associative algebra k × k, the product of

two copies of k. Then Bar(g) is easily seen to be the dual to the bar-resolution of

the algebra k, in particular it is quasi-isomorphic to k. If it were weakly equivalent

to k in pcDGAloc then Cobar(Bar(g)) would be, on the one hand, quasi-isomorphic

to g ∼= k × k and, on the other, to Cobar(k) ∼= k giving a contradiction. In fact,

a weak equivalence in pcDGAloc is that of a filtered quasi-isomorphism and it is

finer that a quasi-isomorphism: every weak equivalence of local pseudocompact dg

algebras is a quasi-isomorphism but not vice-versa.

Proposition 3.3.20. The category pcDGAop
loc is compactly generated.

Proof. The argument is the same as in Proposition 3.3.10, using Theorem 3.3.16

in place of Theorem 3.3.6. �
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3.3.3. Relationship between two types of Koszul duality. We will now

discuss how the associative Koszul duality is related to the Lie-commutative one.

Given a dg Lie algebra g, its universal enveloping algebra Ug is a dg algebra;

this determines a functor DGLA → DGA∗ that is left adjoint to the functor Lie

taking an associative augmented dg algebra to the commutator dg Lie algebra of its

augmentation ideal. Similarly the forgetful functor Ass : pcCDGAloc → pcDGAloc is

right adjoint to the abelianization functor Ab: pcDGAloc → pcCDGAloc, associating

to an associative pseudocompact dg algebra g its quotient by the ideal topologically

generated by (graded) commutators in g. It is clear that both are in fact Quillen

adjunctions.

Proposition 3.3.21. The following diagrams of model categories and Quillen func-

tors between them is commutative in the sense that there is a functor isomorphism

U ◦ Harr ∼= Cobar ◦Ass and CE ◦Lie ∼= Ab ◦Bar.

DGA∗ DGLAU
oo DGA∗

Bar
��

Lie
// DGLA

CE
��

pcDGAop
loc

Cobar

OO

pcCDGAop
loc

Harr

OO

Ass
oo pcDGAop

loc
Ab
// pcCDGAop

loc

Proof. Straightforward unravelling of the definitions. �

3.4. Main theorems

3.4.1. Maurer–Cartan elements and the deformation functor based on a

dg Lie algebra. Any dg Lie algebra g determines a deformation functor Defg : A 7→

Defg(A) = MC (g, A) where A is a local pseudocompact commutative dg algebra.

Thus, Defg is a set-valued functor on pcCDGAloc. This (extended) deformation

functor has the following homotopy invariance property.

Theorem 3.4.1. Let g be a dg Lie algebra.

(1) If A → B is a weak equivalence in pcCDGAloc then the induced map

Defg(A) → Defg(B) is an isomorphism. Therefore Defg descends to a

set-valued functor on Ho(pcCDGAloc) that will be denoted by the same

symbol.

(2) If g and g′ are two quasi-isomorphic dg Lie algebras, then the functors

Defg and Defg′ are isomorphic.

Proof. This follows from Theorem 3.3.8. �
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Theorem 3.4.2. The set-valued functor Defg on Ho(pcCDGAloc) is representable

by the local pseudocompact commutative dg algebra CE(g). Conversely, any func-

tor on Ho(pcCDGAloc) that is homotopy representable by a local pseudocompact

commutative dg algebra A is isomorphic to the functor DefHarr(A).

Proof. By Theorem 3.3.8 we have Defg(A) = MC (g, A) ∼= [CE(g), A], which

means that Defg is representable by CE(g). Conversely, given a functor F on

pcCDGAloc representable by a local pseudocompact dg algebra A we have for

B ∈ pcCDGAloc:

F (B) = [B,A]

∼= [CE(Harr(A)), B]

∼= MC (Harr(A), B)

∼= DefHarr(A)(B)

as required. �

3.4.2. Finding a dg Lie algebra associated with a deformation functor.

We will now formulate the necessary and sufficient conditions on a homotopy

invariant functor on pcCDGA ensuring that it is representable (and thus, ‘controlled’

by a dg Lie algebra).

Theorem 3.4.3. Let F be a set-valued functor on pcCDGAloc such that:

(1) F is homotopy invariant: it takes weak equivalences in pcCDGAloc to

bijections of sets.

(2) F is normalized: F (k) is a one-element set.

(3) F takes arbitrary products in pcCDGAloc into products of sets.

(4) For any diagram in pcCDGAloc of the form B → A← C where A← C is

surjective, the natural map F (B ×A C)→ F (B)×F (A) F (C) is surjective.

Then F is homotopy representable, i.e. there exists X ∈ pcCDGAloc such that for

any Y ∈ pcCDGAloc there is a natural isomorphism F (Y ) ∼= [X, Y ].

Proof. This follows from Brown representability, Theorem 3.1.4, taking into

account that the model category pcCDGAop
loc is compactly generated, cf. Proposition

3.3.10. �
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Remark 3.4.4. One can consider deformation functors with values in simplicial

sets, rather than sets. This is the approach taken in [Lur, Pri10]. There is a version

of the representability theorem in this setting.

3.4.3. Associative deformation theory. Any augmented dg algebra g over a

field k of arbitrary characteristic determines a deformation functor Defg : A 7→

Defg(A) = MC (g, A) where A is a local pseudocompact associative dg algebra.

Thus, Defg is a set-valued functor on pcDGAloc. This (extended) deformation

functor has the following homotopy invariance property.

Theorem 3.4.5. Let g be an augmented dg algebra.

(1) If A → B is a weak equivalence in pcDGAloc then the induced map

Defg(A) → Defg(B) is an isomorphism. Therefore Defg descends to

a set-valued functor on Ho(pcDGAloc) that will be denoted by the same

symbol.

(2) If g and g′ are two quasi-isomorphic dg algebras, then the functors Defg
and Defg′ are isomorphic.

Proof. This follows from Theorem 3.3.18. �

Theorem 3.4.6. The set-valued functor Defg on Ho(pcDGAloc) is representable by

the local pseudocompact dg algebra Bar(g). Conversely, any functor on Ho(pcDGAloc)

that is homotopy representable by a local pseudocompact dg algebra A is isomorphic

to the functor DefCobar(A).

Proof. The proof is the same as that of Theorem 3.4.2, applying Theorem 3.3.18

instead of Theorem 3.3.8. �

3.4.4. Finding a dg algebra associated with a deformation functor. We

will now formulate the necessary and sufficient conditions on a homotopy invariant

functor on pcDGAloc ensuring that it is representable (and thus, ‘controlled’ by an

augmented (or, equivalently, non-unital) dg algebra).

Theorem 3.4.7. Let F be a set-valued functor on pcDGAloc such that:

(1) F is homotopy invariant: it takes weak equivalences in pcDGAloc to bijec-

tions of sets;

(2) F is normalized: F (k) is a one-element set.



50 3. HOMOTOPICAL APPROACH TO DEFORMATION THEORY

(3) F takes arbitrary products in pcDGAloc into products of sets.

(4) For any diagram in pcDGAloc of the form B → A← C where A← C is

surjective, the natural map F (B ×A C)→ F (B)×F (A) F (C) is surjective.

Then F is homotopy representable, i.e. there exists X ∈ pcDGAloc such that for any

Y ∈ pcCDGAloc there is a natural isomorphism F (Y ) ∼= [X, Y ].

Proof. This follows from Brown representability, Theorem 3.1.4, taking into

account that the model category pcDGAop
loc is compactly generated, cf. Proposition

3.3.10. �

3.4.5. Comparing commutative and associative deformations. Assume

now that k has characteristic zero. Any set-valued functor F on pcDGAloc deter-

mines by restriction a functor on pcCDGAloc and so it makes sense to ask whether

an associative deformation functor Defg for g ∈ DGA∗ restricts to a deformation

functor on pcCDGAloc. The following results answer this question.

Theorem 3.4.8. Let g be a dg algebra. Then the deformation functor Defg on

pcDGAloc restricts to the deformation functor DefLie(g) on pcCDGAloc.

Proof. We know by Theorem 3.4.6 that Defg is represented by a dg algebra

Bar(g). Then for h ∈ pcCDGAloc we have Defg(h) = [Bar(g), h]DGA∗ and so by

Proposition 3.3.21 and Theorem 3.3.8 we have:

Defg(h) ∼= [Ab(Bar(g)), h]pcCDGAloc

∼= [CE(Lie(g)), h]pcCDGAloc

∼= MC (Lie(g), h)

∼= DefLie(g)(h)

as claimed. �

Remark 3.4.9. As we saw, every deformation functor in characteristic zero is

controlled by a dg Lie algebra. On the other hand, not every deformation functor

is defined on the category pcDGAloc (which would imply that it is controlled by

an associative dg algebra), in the same way as not every Lie algebra comes from

an associative algebra. An interesting example of an associative deformation

theory is that of deformations of modules over an associative algebra. Let g be an

algebra and M be a g-module. Deformations of M are controlled by the dg algebra
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REnd(M), the derived endomorphism algebra of M viewed as a non-unital algebra

(which can be obtained as the ordinary endomorphism algebra of a g-projective

resolution of M). Considered as a functor on pcCDGAloc, this deformation theory

is controlled by Lie(REnd(M)), the commutator Lie algebra of REnd(M). More

generally, deformations of A∞-modules over an A∞-algebra are controlled by a

certain non-unital dg algebra, cf. [GLST20a] regarding this example.



CHAPTER 4

Gauge equivalence for complete L∞-algebras

In this chapter, we turn our attention to the Schlessinger–Stasheff theorem, and

show that an analogous statement holds in the generality of L∞- and A∞-algebras.

As a particularly interesting application, we show that a non-abelian version of the

Poincaré lemma holds for differential forms with values in an L∞-algebra.

Throughout this chapter we assume k is a field of characteristic zero.

4.1. Strongly homotopy algebras

We start by recalling basic facts on L∞- and A∞-algebras, which are strongly

homotopy versions of dg Lie algebras and dg algebras. Afterwards we give definitions

of Maurer–Cartan elements and Sullivan homotopy in this more general setting.

All definitions given in this section are standard and agree with those commonly

found in the literature, except for the notion of completeness: in particular, the

definition given here agrees with [LM15] but not with [BFMT18].

A∞-algebras, and later L∞-algebras, were originally defined in [Sta63] and

[LS93] respectively as graded vector spaces V together with collections of linear

maps V ⊗n → V , n = 1, 2, . . . satisfying various identities. We choose to give more

concise definitions below, which say that an L∞- or A∞-structure is determined by

a Maurer–Cartan element in a suitable graded Lie algebra, and briefly explain how

the two definitions are equivalent.

Definition 4.1.1 (following [HL09]). Let V be a graded vector space.

(1) An L∞-structure on V is a continuous degree 1 derivationm of the complete

cdga ŜΣ−1V ∗, such that m2 = 0 and m has no constant term. The pair

(V,m) is called an L∞-algebra, and (ŜΣ−1V ∗,m) is called its representing

complete cdga.

Given two L∞-algebras (U,mU ) and (V,mV ), an L∞-morphism U → V

is a continuous cdga map (ŜΣ−1V ∗,mV )→ (ŜΣ−1U∗,mU).

(2) An A∞-structure on V is a continuous degree 1 derivationm of the complete

dga T̂Σ−1V ∗, such that m2 = 0 and m has no constant term. The pair
52
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(V,m) is called an A∞-algebra, and (T̂Σ−1V ∗,m) is called its representing

complete dga.

Given two A∞-algebras (U,mU ) and (V,mV ), an A∞-morphism U → V

is a continuous dga map (T̂Σ−1V ∗,mV )→ (T̂Σ−1U∗,mU).

One recovers the standard definition of an L∞-structure as a sequence of graded

maps as follows: By definition, the derivation m is determined by its components

mi : Σ−1V ∗ → SiΣ−1V ∗, i ≥ 1. Dualize the components mi and apply the canonical

identification (2.1.1) of Sn-invariants and Sn-coinvariants, to get graded symmetric

maps `i : SiΣV → ΣV of degree 1, with mi = 1
i!`
∗
i . The condition m2 = 0 then

translates into higher Jacobi identities.

Under the identification SiΣV ∼=
∧
iV , an L∞-structure on V is equivalently a

sequence of graded antisymmetric brackets [−, . . . ,−]i :
∧
iV → V of degree 2− i.

For later convenience, we adopt the convention that the graded symmetric and

graded antisymmetric operations are related by `i = Σ [−, . . . ,−]i (Σ−1)⊗i, so that

by the Koszul sign rule,

`i(x1, . . ., xi) = (−1)
∑i−1

j=1(i−j)|xj |Σ [Σ−1x1, . . . ,Σ−1xi].

Analogously, an A∞-structure is equivalent to a sequence of graded maps

T iV → V , i ≥ 1, of degree 2 − i, satisfying higher associativity identities. Note

that factorials do not appear in the A∞-algebra case, because there is no need to

identify invariants and coinvariants.

Remark 4.1.2. Note that a dg Lie algebra structure on V is an L∞-structure on V

where the derivation m is further required to be quadratic, that is, m = m1 +m2

with m1 : Σ−1V ∗ → Σ−1V ∗ and m2 : Σ−1V ∗ → Σ−1V ∗⊗̂Σ−1V ∗. In this case, m1

corresponds to the differential of V and m2 corresponds to the Lie bracket. The

condition m2 = 0 then says precisely that the differential of V has square zero,

and that the Lie bracket of V satisfies the Jacobi identity. Thus, L∞-algebras

generalize (dg) Lie algebras. Arguing similarly, we also have that A∞-algebras are

a generalization of (dg) algebras.

For our purposes, V will often be a pseudocompact vector space instead of

discrete. In this case, an L∞-structure, A∞-structure, etc., on V is defined by

replacing the complete cdga ŜΣ−1V ∗ in Definition 4.1.1 with the cdga SΣ−1V ∗,

and replacing the complete dga T̂Σ−1V ∗ with the dga TΣ−1V ∗.
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Recall from Example 2.3.4(3) that the categories CDGA and DGA have model

structures in which the weak equivalences are quasi-isomorphisms and the fibrations

are degreewise surjections. All objects are therefore fibrant. We now give a

description of the cofibrant objects.

Definition 4.1.3. A Sullivan cdga (resp. Sullivan dga) is defined to be a cdga

of the form SV (resp. dga of the form TV ) such that V is a graded vector space

admitting a filtration

0 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ V, V =
⋃
i≥0

Vi,

that is compatible with the differential d, i.e. d(Vi) ⊆ SVi−1 (resp. d(Vi) ⊆ TVi−1)

for all i.

The cofibrant objects in the model categories of (c)dgas are precisely retracts of

Sullivan (c)dgas. A proof appears in, for example, [Pos11, Theorem 9.1] for dgas;

the same proof also works for cdgas.

Definition 4.1.4. An L∞-algebra (resp. A∞-algebra) V is complete if V is pseu-

docompact and its representing cdga (resp. dga) is cofibrant in the model category

of cdgas (resp. dgas).

Definition 4.1.5.

(1) Let (V,m) be a complete L∞-algebra and A be a cdga. An element

ξ ∈ V ⊗ A is Maurer–Cartan if it has degree 1 and satisfies the Maurer–

Cartan equation

(id⊗ dA)(ξ) +
∑
i≥1

1
i! [ξ, . . . , ξ]

A
i = 0,

where [−, . . . ,−]Ai is the A-linear extension of [−, . . . ,−]i.

(2) Let (V,m) be a complete A∞-algebra and A be a cdga. An element

ξ ∈ V ⊗ A is Maurer–Cartan if it has degree 1 and satisfies the Maurer–

Cartan equation

(id⊗ dA)(ξ) +
∑
i≥1

mA
i (ξ, . . . , ξ) = 0,

where mA
i is the A-linear extension of mi.

The set of all Maurer–Cartan elements in V ⊗ A is denoted by MC(V,A). In the

case where A = k, we write MC(V, k) simply as MC(V ).
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Remark 4.1.6. The completeness condition on the L∞- and A∞-algebra ensures

that the infinite sums converge in Definition 4.1.5.

Given any cdga A and complete L∞-algebra V , a Maurer–Cartan element in

the L∞-algebra V ⊗A is represented by a cdga map SΣ−1V ∗ → A. Similarly, given

any dga A, a Maurer–Cartan element in the A∞-algebra V ⊗A is represented by a

dga map TΣ−1V ∗ → A. For details see, for example, Proposition 2.2 and Remark

2.3 in [CL11].

Next we consider a notion of homotopy for Maurer–Cartan elements. Let

V be an L∞-algebra or A∞-algebra. Consider the L∞-algebra or A∞-algebra

V [t, dt] := V ⊗ k[t, dt], where k[t, dt] denotes the free cdga generated by a degree

0 symbol t and a degree 1 symbol dt. Then there are two natural cdga maps

f0, f1 : k[t, dt]→ k, sending t to 0 and 1 respectively, and sending dt to 0.

Definition 4.1.7. Let (V,m) be a complete L∞-algebra or A∞-algebra, and A be

a cdga. Two elements ξ, η ∈ MC(V,A) are Sullivan homotopic if there exists an

element h ∈ MC(V,A[t, dt]) such that (id⊗ f0)(h) = ξ and (id⊗ f1)(h) = η.

The following result is well-known; see for example [Laz13].

Proposition 4.1.8. Let (V,m) be a complete L∞-algebra or A∞-algebra, and let A

be a cdga. Two Maurer–Cartan elements ξ, η ∈ MC(V,A) are Sullivan homotopic

if and only if their representing (c)dga maps are right homotopic (Definition 2.3.6)

in the model category of (c)dgas.

Proof. This is immediate from regarding h ∈ MC(V ⊗ A[t, dt]) as a cdga map

SΣ−1V ∗ → A[t, dt] or a dga map TΣ−1V ∗ → A[t, dt]. Then

A A[t, dt] Ai
f0

f1

is a good path object for A in the model category of (c)dgas; here i denotes the

natural inclusion. �

Finally, for the purpose of this chapter it is useful to rewrite the gauge action

from Section 3.2 in the following way. Let V be a complete dgla, with differential

d and bracket [−,−]. In this case, (V ⊗ A)0 is a Lie algebra and the gauge

group G of V ⊗ A is defined by exponentiating (V ⊗ A)0. That is, G consists of

formal symbols {ex : x ∈ (V ⊗ A)0}, with multiplication exey := ex∗y given by the
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Baker–Campbell–Hausdorff (BCH) formula, defined by

x ∗ y := log(exey)

using the formal power series ex := ∑∞
n=0

xn

n! and log(1 + t) := ∑∞
n=1(−1)n+1 tn

n
. The

first few terms are

x ∗ y = x+ y + 1
2[x, y] + 1

12[x, [x, y]] + 1
12[y, [y, x]]− 1

24[y, [x, [x, y]]] · · · .

Definition 4.1.9. The gauge action of G on MC(V,A) is defined by

ex · ξ = ξ +
∞∑
n=1

(adx)n−1

n! (adx ξ − dx). (4.1.1)

Two Maurer–Cartan elements ξ, η ∈ V ⊗ A are said to be gauge equivalent if they

lie in the same orbit of the gauge action. We write MC (V,A) for the quotient of

MC(V,A) by the gauge action.

If V is a complete dga, we say that two Maurer–Cartan elements in V ⊗ A are

gauge equivalent if they are gauge equivalent in the corresponding dgla, taken with

the commutator bracket.

Remark 4.1.10. Completeness of V implies that V is pronilpotent; thus the infinite

series in the BCH formula and the above gauge action (4.1.1) converge. Indeed, the

ascending filtration on SΣ−1V ∗ corresponds to a descending filtration on V , and

the Sullivan condition on the differential of SΣ−1V ∗ corresponds to pronilpotence

of V ∗ with respect to this filtration. This result appears in [Ber15, Theorem 2.3]

in the case where V is assumed to have finite type; we can avoid this since we are

working with pseudocompact vector spaces.

Write g = V ⊗ A. If V is a complete dgla, then g is pronilpotent and the

definition above coincides with Proposition 3.2.2. To see this, we apply a similar

trick as in the proof of that proposition to first reduce to the case with zero

differential: let g̃ be the graded Lie algebra g⊕k ·δ with δ in cohomological degree 1

and [x, δ] := −dx, [δ, δ] = 0. Then two elements ξ, η ∈ MC(g) are gauge equivalent

if ξ + δ, η + δ ∈ MC(g̃) satisfy η + δ = eadx(ξ + δ). Indeed,

η+ δ = eadx(ξ)+eadx(δ) = eadx(ξ)+(eadx−1)(δ)+ δ = eadx(ξ)+ eadx − 1
adx

(−dx)+ δ

which is the formula (4.1.1). It therefore suffices to check that eadx(ξ) corresponds

to the congugation x · ξ = xξx−1 in the gauge action defined previously. This can

be found in, for example, [BFMT20].
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Our aim is to establish gauge equivalence as a left homotopy in the model

category of cdgas. In particular, left and right homotopy coincide when the

domain is cofibrant and the codomain is fibrant, so this would prove that Sullivan

homotopy and gauge equivalence coincide in the case of dglas. We will see how

this interpretation extends to Maurer–Cartan elements in L∞-algebras.

4.2. Gauge equivalence as a left homotopy of DGLAs

It this section, we show that gauge equivalence for complete dglas coincides with left

homotopy between complete dgla morphisms, with respect to the model category

structure of [LM15]. An analogous result is proved in [BM13b, BFMT18] for

a different model structure. The key to this construction lies in an alternative

characterization of Maurer–Cartan elements in V , when V is a dgla, as follows.

Let L(x) be the free complete dgla generated by one element x of degree 1, with

differential dx = −1
2 [x, x]. Then there is a correspondence between the set MC(V )

and the set of dgla morphisms L(x) → V . Thus, to describe a left homotopy in

a model category of complete dglas we require a cylinder object for L(x); such a

cylinder is given by the Lawrence–Sullivan interval introduced in [LS14].

The Lawrence–Sullivan interval L is the free complete dgla on three generators

a, b, z, where |a| = |b| = 1, |z| = 0, with differential

da+ 1
2[a, a] = 0, db+ 1

2[b, b] = 0,

dz = adz(b) + adz
eadz − id(b− a).

That is, the differential d is defined such that a and b are Maurer–Cartan elements

in L, and are gauge equivalent by a = ez · b.

Proposition 4.2.1. Let i0, i1 : L(x)→ L be the natural inclusions and p : L→ L(x)

be the natural projection, that is, i0(x) = a, i1(x) = b and p(a) = p(b) = x, p(z) = 0.

Then

L(x) L L(x)
i0

i1

p

is a good cylinder object for L(x) in the category of complete dglas, equipped with a

model structure in which a morphism f : (V, d)→ (V ′, d′) is

(1) a weak equivalence if SΣ−1(V ′)∗ → SΣ−1V ∗ is a weak equivalence in the

category of cdgas.

(2) a fibration if it is surjective.
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Proof. See [BFMT18] Corollary 5.3 and Theorem 7.6. �

It is then straightforward to show that gauge equivalence corresponds to the

notion of a left homotopy in the category of complete dglas.

Proposition 4.2.2. Let V be a complete dgla. Two Maurer–Cartan elements

ξ, η ∈ V are gauge equivalent if and only if there exists a dgla morphism h : L→ V

such that h(a) = ξ and h(b) = η.

Proof. Consider the element h(z) ∈ V . If h is a dgla morphism, then h(z) has

degree 0, and d(h(z)) = h(dz), from which a direct computation shows ξ = eh(z) · η.

Conversely, if ξ and η are gauge equivalent by ξ = ex · η, then define h(a) = ξ,

h(b) = η and h(z) = x. The same computation shows that h is a dgla morphism. �

It is natural to ask how this result can be generalized to a notion of homotopy

when V is an L∞-algebra. In [BM13a], two Maurer–Cartan elements ξ, η ∈ V are

called cylinder homotopic (terminology following [DP16]) if there exists an L∞-

morphism L→ V such that h(a) = ξ and h(b) = η. Then by [BM13a, Proposition

4.5], two Maurer–Cartan elements are cylinder homotopic if and only if they are

Sullivan homotopic. The resulting generalization, however, is no longer a left

homotopy of complete dglas.

4.3. Left homotopy of Maurer–Cartan elements

A different approach will be taken in this section: loosely, we will work in the

Koszul dual picture, and consider Maurer–Cartan elements in L∞-algebras and

A∞-algebras by their representing (c)dga maps. We define the following notion of

homotopy for Maurer–Cartan elements.

Definition 4.3.1.

(1) Let V be a complete L∞-algebra and A be a cdga. Two Maurer–Cartan

elements ξ, η ∈ V ⊗ A are left homotopic if their representing cdga maps

SΣ−1V ∗ → A are left homotopic in the model category of cdgas.

(2) Let V be a complete A∞-algebra and A be a cdga. Two Maurer–Cartan

elements ξ, η ∈ V ⊗ A are left homotopic if their representing dga maps

TΣ−1V ∗ → A are left homotopic in the model category of dgas.
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4.3.1. The cylinder object for (c)dgas. We recall a cylinder object for cdgas

constructed in [FOT08, Section 2.2]. Given a cofibrant cdga of the form (SV, d),

its cylinder C(SV ) is defined to be the cdga (S(V ⊕ V̄ ⊕ V̂ ), D), where V̄ ∼= ΣV

and V̂ ∼= V , and the differential D is defined by

D(v) = dv, D(v̄) = v̂, D(v̂) = 0.

We also define a degree −1 derivation s on C(SV ) by

s(v) = v̄, s(v̄) = s(v̂) = 0.

Then θ := [s,D] = sD +Ds is a derivation of degree 0, so eθ = ∑∞
n=0 θ

n/n! is an

automorphism of C(SV ). Explicitly,

θ(v) = sdv + v̂, θ(v̄) = θ(v̂) = 0,

and inductively, θn(v) = (sD)n(v) for n ≥ 2 as s2 = 0. Since SV is a Sullivan cdga,

θN(v) = 0 for some N , and hence we have a convergent series

eθ(v) = v + v̂ +
∞∑
n=1

(sD)n(v)
n! , eθ(v̄) = v̄, eθ(v̂) = v̂. (4.3.1)

Analogously, given a cofibrant dga of the form (TV, d), its cylinder C(TV ) is

defined to be the dga (T (V ⊕ V̄ ⊕ V̂ ), D), with D and eθ defined as above. This is

a different cylinder to the one constructed by [BL77].

Proposition 4.3.2. Let (SV, d) be a cofibrant cdga. Let i : SV → C(SV ) be the

natural inclusion and p : C(SV )→ SV be the natural projection, that is, i(v) = v

and p(v) = v, p(v̄) = p(v̂) = 0. Then

SV C(SV ) SV
i

eθ◦ i

p

is a good cylinder object for (SV, d) in the model category of cdgas. Analogously, if

(TV, d) is a cofibrant dga, then

TV C(TV ) = (T (V ⊕ V̄ ⊕ V̂ ), D) TV
i

eθ◦ i

p

is a good cylinder object for (TV, d) in the model category of dgas.

Since C(SV ) and C(TV ) are good cylinder objects, ξ and η are left homotopic

if and only if there exists a cdga morphism H : C(SV ) → k or dga morphism

H : C(TV )→ k that is a left homotopy between their representing (c)dga maps.
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4.3.2. Left homotopy in (c)dgas. From now on, let V be a complete L∞-

algebra; everything we say will have an obvious analogue for complete A∞-algebras.

Consider the vector space V ⊕ V̄ ⊕ V̂ , where V̄ ∼= Σ−1V and V̂ ∼= V . This is a

complete L∞-algebra with differential

d(ξ) = dξ, d(ξ̄) = 0, d(ξ̂ ) = ξ̄, (4.3.2)

and all brackets defined as 0 on the second and third components. Then the

representing cdga of V ⊕ V̄ ⊕ V̂ is isomorphic to C(SU), where U = Σ−1V ∗,

Ū = Σ−1V̄ ∗ ∼= ΣU and Û ∼= U , with differential D as in Section 4.3.1.

Note that an element in V ⊕ V̄ ⊕ V̂ is Maurer–Cartan if and only if it is of

the form ξ + x + 0 for some ξ ∈ MC(V ) and x ∈ V 0. Indeed, write an arbitrary

degree 1 element as ξ + x+ η with ξ ∈ V , x ∈ V̄ and η ∈ V̂ . Since the brackets are

nonzero only on the first component, the Maurer–Cartan equation for ξ + x+ η

reduces to

d(ξ) + d(x) + d(η) +
∑
i≥2

1
i! [ξ, . . . , ξ]i = 0, (4.3.3)

Since d(x) = 0 by definition, x is arbitrary and we require d(η) = 0 ∈ V̄ and

ξ ∈ MC(V ). By abuse of notation, we denote also by ξ its representing cdga map

(SU, d)→ A, and by x its equivalent degree 0 linear map Ū → A. Hence x and ξ

together determine a cdga map Hξ,x : C(SU)→ A that is a left homotopy between

ξ and x ∗ ξ := Hξ,x ◦ eθ ◦ i, by

Hξ,x(u) = ξ(u), Hξ,x(ū) = x(ū), Hξ,x(û) = 0.

We recall the following terminology.

Definition 4.3.3. Let A be an algebra.

(1) A degree n derivation of A is a linear map d : A→ A of degree n such that

d(xy) = d(x)y + (−1)n|x|xd(y)

for all homogeneous x, y ∈ A. A derivation with odd (even) degree is

called an odd (even) derivation.

(2) Let f : A→ B be a dga map. A linear map g : A→ B is an f -derivation

if

g(xy) = g(x)f(y) + f(x)g(y), for all x, y ∈ A.

If A = B and f = id, then an f -derivation is a degree 0 derivation of A.
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Note that the square of a constant odd derivation is 0.

Lemma 4.3.4. Let f : A→ B be a dga map.

(1) If g : A→ A is a derivation, then fg is an f -derivation.

(2) If g : B → B is a derivation, then gf is an f -derivation.

Our next result gives a compact formula for left homotopy of Maurer–Cartan

elements. In the next section, we will show that the formula specialises to gauge

equivalence in the case where V is a dg(l)a.

Theorem 4.3.5.

(1) Let V be a complete L∞-algebra. Then two Maurer–Cartan elements

ξ, η ∈ V are left homotopic if and only if their representing cdga maps

ξ, η : SΣ−1V ∗ → k satisfy

η = ξ ◦ e[x̃,d],

where x̃ is the constant degree −1 derivation of SΣ−1V ∗ induced by the

left homotopy.

(2) Let V be a complete A∞-algebra. Then two Maurer–Cartan elements

ξ, η ∈ V are left homotopic if and only if their representing dga maps

ξ, η : TΣ−1V ∗ → k satisfy

η = ξ ◦ e[x̃,d],

where x̃ is the constant degree −1 derivation of TΣ−1V ∗ induced by the

left homotopy.

Proof. Consider first the L∞-case. We lift the homotopy Hξ,x between ξ and

x ∗ ξ to SU in the following sense: Let f be the cdga map Hid,x ◦ eθ ◦ i : SU →

SU . Then x ∗ ξ = ξ ◦ f and the identity map of SU is left homotopic to f via

Hid,x : C(SU)→ SU , defined by

Hid,x(u) = u, Hid,x(ū) = x(ū), Hid,x(û) = 0.

We now show that f = e[x̃,d], where x̃ is the constant derivation of SU corre-

sponding to x. First convert the homotopy Hid,x into a Sullivan homotopy between

the identity morphism of SU and f . Consider the map

ezθ + sezθdz : C(SU)→ C(SU)[z, dz], (4.3.4)
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which is well-defined as any element u+ ū+ ũ ∈ C(SU) satisfies θN (u+ ū+ ũ) = 0

for sufficiently large N (see Section 4.3.1), so ezθ is indeed a polynomial in z. By

[BL05, Theorem 3.4], equation (4.3.4) defines a Sullivan homotopy between the

identity morphism and the automorphism eθ = e[s,D] of C(SU). Then defining

F,G : SU → SU [z] to be the compositions

F = Hid,x ◦ ezθ ◦ i, G = Hid,x ◦ sezθ ◦ i,

we obtain that F + Gdz : SU → SU [z, dz] is a Sullivan homotopy from id to f .

Since the constant term of F is always the identity on SU , the map F is formally

invertible and the integral formula from [BL05] gives

f = exp
[ ∫ 1

0
GF−1 dz, d

]
.

Finally we show that G = x̃F , from which it follows immediately that the integral

converges and evaluates to x̃, concluding the proof of the theorem. Indeed, Hid,xs

and x̃Hid,x are both Hid,x-derivations S(U ⊕ Ū ⊕ Û) → SU , and they agree on

U ⊕ Ū ⊕ Û :

Hid,xs(u) = Hid,x(ū) = x(ū), Hid,xs(ū) = Hid,x(û) = 0, Hid,xs(û) = 0,

and

x̃Hid,x(u) = x̃(u) = x(ū), x̃Hid,x(ū) = x̃x(ū) = 0, x̃Hid,x(û) = 0.

Hence Hid,xs = x̃Hid,x, which gives G = x̃F as required.

Now suppose ξ is a Maurer–Cartan element in an A∞-algebra. In the A∞-case,

the integral formula no longer applies due to the lack of graded commutativity.

However, we can reduce to the L∞-case as follows. Since k is commutative, its

representing dga map ξ : TU → k factors as ξ = ξ′ ◦ p, where p : TU → SU is

the canonical projection and ξ′ : SU → k is a cdga map. Similarly there are

factorizations x ∗ ξ = (x ∗ ξ)′ ◦ p and H = H ′ ◦ p. Then ξ′ and (x ∗ ξ)′ are

Maurer–Cartan elements in the L∞-algebra represented by SU , and the cdga map

H ′ defines a left homotopy between them. By definition (x ∗ ξ)′ = x ∗ ξ′, hence by

the L∞-case,

x ∗ ξ = (x ∗ ξ′) ◦ p = ξ′ ◦ e[x̃,dSU ] ◦ p = ξ′ ◦ p ◦ e[x̃,dTU ] = ξ ◦ e[x̃,dTU ].

This proves the A∞-case. �
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We would like to extend Theorem 4.3.5 to Maurer–Cartan elements in L∞-

algebras and A∞-algebras of the form V ⊗ A, that are not necessarily complete.

However, given two left-homotopic Maurer–Cartan elements ξ, η ∈ V ⊗ A, it is not

true that their representing cdga maps ξ, η : SΣ−1V ∗ → A satisfy η = ξ ◦ e[x̃,d] for

some degree −1 derivation x̃ of SΣ−1V ∗, as the following counterexample shows.

Example 4.3.6. Take (V, d) to be a dg vector space, so that it has a linear

differential and a decomposition V = H(V )⊕ΣB⊕B, where H(V ) is the homology

of V and Bn = im dn−1 ⊆ V n. Take A = SΣ−1V ∗ and let ξ be the identity map on

A and η be the endomorphism on A induced by the projection of V onto H(V ).

Then ξ and η are left homotopic, but η is not an automorphism, so cannot be of

the form id ◦ e[x̃,d]. Indeed, if x̃ is the constant derivation corresponding to the

homotopy, then the exponential e[x̃,d] diverges.

To obtain an analogue of Theorem 4.3.5 for Maurer–Cartan elements in V ⊗ A

requires introducing a semi-completed symmetric algebra and a semi-completed

tensor algebra: for a pseudocompact vector space V , define

S ′V =
⊕
i≥0

SiV and T ′V =
⊕
i≥0

T iV.

Since V is pseudocompact, Si(V ) and T i(V ) are still assumed to mean completed

tensor powers. However, S ′V and T ′V differ from ŜV and T̂ V by taking the direct

sum of tensor powers instead of the direct product. Thus S ′V and T ′V are not

pseudocompact, but do have some non-discrete topology. They have the following

property.

Lemma 4.3.7. Let V be a pseudocompact vector space.

(1) Let B be a pseudocompact (c)dga. Any continuous linear map V → B

extends uniquely to a continuous cdga map S ′V → B or a continuous dga

map T ′V → B.

(2) Any continuous linear map V → S ′V extends uniquely to a continuous

derivation of S ′V , and any continuous linear map V → T ′V extends

uniquely to a continuous derivation of T ′V .

Proof.

(1) Since elements of S ′V and T ′V are finite sums of tensor powers, it suffices

to prove that a linear map f : V = lim←−−i Vi → B extends to continuous
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maps V ⊗̂n → B for all n ≥ 2. Since f is determined by Vi → B, we define

f⊗n : Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin → B, and take the projective limit to obtain a

map on V ⊗̂n.

(2) This follows the same argument as above, but instead we extend f to

Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin by ∑n−1
j=0 1j ⊗ f ⊗ 1n−1−j. �

This allows us to give an alternative characterization of Maurer–Cartan elements

as continuous (c)dga maps.

Lemma 4.3.8. Let V be a finite-dimensional complete L∞-algebra, and let A be a

cdga. There is a correspondence

MC(V ⊗ A) ∼= Hom(S ′Σ−1(V ⊗ A)∗, k).

Let V be a finite-dimensional complete A∞-algebra. There is a correspondence

MC(V ⊗ A) ∼= Hom(T ′Σ−1(V ⊗ A)∗, k).

We recover the usual representing (c)dga maps if V is finite-dimensional and

A = k.

Proof. We treat the L∞-case only. First note that the object S ′Σ−1(V ⊗A)∗ makes

sense: V is finite-dimensional, so V ⊗ A is discrete and its dual is pseudocompact.

Recall that V ⊗A ∼= ((V ⊗A)∗)∗. So there is a correspondence between (Σ(V ⊗A))0

and continuous degree 0 linear maps Σ−1(V ⊗ A)∗ → k, which correspond to

continuous degree 0 algebra maps S ′Σ−1(V ⊗ A)∗ → k by Lemma 4.3.7.

The Maurer–Cartan condition corresponds to the correct axioms for differentials

on S ′Σ−1(V ⊗ A)∗ by the same argument as the usual (non-continuous) cdga case

in Proposition 3.3.4: Apply Lemma 4.3.7 again to replace the commutative square

in the proof of Proposition 3.3.4 by

Σ−1(V ⊗ A)∗ (Σ−1(V ⊗ A)∗)⊗n S ′Σ−1(V ⊗ A)∗

k k

dn

The rest of the proof is identical. �

Lemma 4.3.8 allows us to imitate the previous case when A = k, replacing V by

V ⊗ A. Let V be a finite-dimensional complete L∞-algebra, and let A be a cdga.
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We proceed as at the start of the section: consider (V ⊗A)⊕ ĞV ⊗ A⊕ V̂ ⊗ A with

notation, differential and brackets as in (4.3.2). For U = Σ−1(V ⊗ A)∗, consider

C(S ′U) := (S ′(U ⊕ Ū ⊕ Û), D),

where Ū ∼= ΣU and Û ∼= U , and D are defined as for C(SU) in Section 4.3.1.

The same computation as (4.3.3) shows that an element in (V ⊗A)⊕ ĞV ⊗ A⊕

V̂ ⊗ A satisfies the Maurer–Cartan equation if and only if it is of the form ξ+x+ 0

for some ξ ∈ MC(V ⊗ A) and x ∈ (V ⊗ A)0. Hence, by Lemma 4.3.8, x and ξ

together determine a continuous cdga map H : C(S ′U)→ k.

Theorem 4.3.9.

(1) Let V be a finite-dimensional complete L∞-algebra and A be a cdga. Two

Maurer–Cartan elements ξ, η ∈ V ⊗ A are left homotopic if and only if

their representing continuous cdga maps ξ′, η′ : S ′Σ−1(V ⊗A)∗ → k satisfy

η′ = ξ′ ◦ e[x̃′,d′],

where x̃′ is the constant degree −1 derivation of S ′Σ−1(V ⊗ A)∗ induced

by the left homotopy.

(2) Let V be a finite-dimensional complete A∞-algebra and A be a cdga. Two

Maurer–Cartan elements ξ, η ∈ V ⊗ A are left homotopic if and only if

their representing continuous dga maps ξ′, η′ : T ′Σ−1(V ⊗ A)∗ → k satisfy

η′ = ξ′ ◦ e[x̃′,d′],

where x̃′ is the constant degree −1 derivation of T ′Σ−1(V ⊗ A)∗ induced

by the left homotopy.

Proof. We prove the L∞-case; the A∞-case can be reduced to the L∞-case as

before. While the object C(S ′U) defined above is not a cylinder object, we can treat

it as if it were one. As before, we can define an automorphism eθ = ∑∞
n=0 θ

n/n! of

C(S ′U); note that the Sullivan condition still holds on the differential D of S ′U , so

the series still converges. Then by Lemma 4.3.7 and Lemma 4.3.8, ξ and η are left

homotopic if and only if there is a cdga map H ′ such that the diagram commutes:

S ′U k

C(S ′U)
eθ◦ ii

ξ′

η′

H′
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The rest of the proof is the same as Theorem 4.3.5, replacing C(SU) with C(S ′U)

everywhere. The Sullivan condition still holds on the differential d′ of S ′U , so the

exponential e[x̃′,d′] converges as before. �

4.4. Left homotopy and gauge equivalence

In this section, Theorem 4.3.5 and Theorem 4.3.9 are used to obtain combinatorial

formulae for the Maurer–Cartan element x ∗ ξ = Hξ,x ◦ eθ ◦ i, in terms of rooted

trees. The formulae will show that Theorem 4.3.5 and Theorem 4.3.9 specialize

to gauge equivalence in the case of a dgla or dga. We will use this to deduce the

following theorem at the end of the section.

Theorem 4.4.1. Let V be a complete dgla and A be a cdga. For any two Maurer–

Cartan elements ξ and η in V ⊗ A, the following are equivalent:

(1) ξ and η are gauge equivalent;

(2) ξ and η are left homotopic;

(3) ξ and η are Sullivan homotopic.

A proof that (1) and (3) coincide already appears in the literature; see for

example [SS] and [CL10, Theorem 4.4]. The originality of Theorem 4.4.1 lies in

directly establishing the equivalence of (1) and (2). The proof that (2) and (3)

coincide is purely model category theoretic, so this theorem also provides a new

proof that gauge equivalence and Sullivan homotopy coincide.

The terminology and conventions that we will use for rooted trees mainly follow

those of [GK94, Section 1.1], which we recall now for convenience. A tree is a

nonempty connected oriented graph without loops, such that each vertex has at

least one incoming and one outgoing edge. Some edges can be bound by a vertex at

one end only; such edges are called external and other edges are called internal. A

rooted tree has a distinguished external edge called the root. All the other external

edges are called leaves; the edges of a rooted tree can therefore be partitioned into

the root, the leaves and the internal edges. There is also a single degenerate tree

with no vertices, and a single leaf.

Example 4.4.2. The following tree has two vertices, root f , four leaves {a, b, c, e}

and internal edge d.
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•

•

f

d e

a b c

A tree with exactly one vertex and n leaves is called an n-star. Given two trees

T1 and T2, the composition of T1 and T2 along an edge j ∈ T2 is the tree obtained

by identifying the root of T1 with the jth leaf of T2. Additionally, given a rooted

tree T and a natural number k, we say that the maximal height k sub-tree of T

is the rooted sub-tree of T consisting of all vertices with a path to the root with

length at most k, together with their internal edges and leaves.

Theorem 4.4.3. Let V be a complete L∞-algebra, and let x ∈ V 0, ξ ∈ MC(V ).

Then

x ∗ ξ =
∑
T

(−1)nr
n!j1! . . . jn!T (x, ξ),

where the sum is taken over all rooted trees T such that every vertex has at least

one leaf, and for each rooted tree T ,

(1) n is the number of vertices of T ;

(2) r is the number of orderings of the vertices of T such that each vertex is

greater than its parent;

(3) T (x, ξ) is the unique word associated to T given by labelling exactly one leaf

on each vertex by x and all remaining leaves by ξ, and associating to each

degree i vertex with inputs η1, . . . , ηi−1, x the operation [η1, . . . , ηi−1, x];

(4) j1, . . . , jn are the numbers of ξ attached to each of the n vertices.

Proof. As before, we write U = Σ−1V ∗. Using that x̃2 = 0 (as the square

of a constant odd derivation is 0), the same calculation as for the series eθ in

equation (4.3.1) gives

e[x̃,d](u) = u+
∞∑
n=1

(x̃d)n(u)
n!

for u ∈ U . From Theorem 4.3.5 and Theorem 4.3.9, the Maurer–Cartan element

x ∗ ξ is represented by the cdga map ξ ◦ e[x̃,d] : SU → k, so the restriction of ξ ◦ e[x̃,d]

to U is evx∗ξ. Applying ξ ◦ e[x̃,d] to an element u : ΣV → k in U is equivalent to

forming a tree by successive compositions. Since x̃ and d are derivations, each
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(x̃d)n(u) is a sum of words determined by sequences di1 , di2 , . . . , din , for any

i1, . . . , in ≥ 1. Hence at each step:

(1) Applying di to u ∈ U gives the composition 1
i!u ◦ `i. Applying id⊗j−1 ⊗

di ⊗ id⊗k−j to an element of U⊗k therefore corresponds to composition

with an i-star along j.

(2) Applying x̃ to u ∈ U is the evaluation evx(u). Applying id⊗j−1⊗ x̃⊗ id⊗k−j

to an element of U⊗k therefore corresponds labelling the jth leaf with x.

(3) Applying ξ to u ∈ U is the evaluation evξ(u). Since ξ extends to a cgda

map, this corresponds to labelling all remaining leaves with ξ.

Every sequence di1 , di2 , . . . , din gives words of the form (−1)nT (x, ξ)/i1! . . . in!.

Indeed, regard ξ and x as elements in ΣV , so that ξ and x have degrees 0 and

−1 respectively. Then by graded symmetry of the `i, there must be exactly one x

on each vertex, and every term can be written as `i(η1, . . . , ηi−1, x), which equals

[η1, . . . , ηi−1, x] by our grading convention. Finally, each x̃d introduces a sign −1,

as both `i and x both have odd degree.

To determine the coefficient, it remains to count how many ways compositions

give rise to the same word. By graded commutativity, we can form the trees such

that each composition or labelling by x always fills the last unlabelled leaf on each

vertex. With this restriction, the number of ways a tree can be built is r, the

number of monotone orderings of its vertices. �

Example 4.4.4. We illustrate the combinatorics of the proof in a simple example.

Consider the sequence x̃d3x̃d2:

U U⊗2 U U⊗3 U⊗2d2= 1
2! `
∗
2 x̃ d3 x̃

This corresponds to building a rooted tree via the following sequence (we omit

drawing the root for simplicity).

•
d27−→ 1

2! •
x̃7−→ •

x d37−→ 1
3! •

•
x x̃7−→ 1

2! •

•
x

x

Note that every time x̃ follows a di, there are i choices for labelling x. In this case

the number of monotone orderings of the vertices is simply r = 1 (higher values of

r are possible for higher di, by composing trees along different edges attached to
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the same vertex), and we have n = 2, j1 = 2− 1 = 1, j2 = 3− 1 = 2. The resulting

term in x ∗ ξ is 1
2!2! [[ξ, ξ, x], x].

When V is a dgla, the above formula only allows rooted trees with vertices

of valence 1 or 2, and the coefficients r, j1, . . . , jn equal 1 for every tree. This

recovers the formula (4.1.1) for gauge equivalence in dglas, and recovers the formula

of [Get09, Proposition 5.9] in the case of L∞-algebras.

Similarly we can use Theorem 4.3.5 and Theorem 4.3.9 to obtain the following

analogous formula for the A∞-case.

Theorem 4.4.5. Let A be a complete A∞-algebra, and let x ∈ A0, ξ ∈ MC(A).

Then

x ∗ ξ =
∑
T

∑
λ

(−1)n
n! Tλ(x, ξ),

where the sum is taken over all planar rooted trees T , and for each rooted tree T ,

(1) n is the number of vertices of T ;

(2) λ ranges over labellings of T that label n leaves by x and all remaining

leaves by ξ, such that for any 1 ≤ k ≤ n, the maximal height k sub-tree of

T has k leaves labelled by x;

(3) Tλ(x, ξ) is the word given by the labelling λ and associating to each degree

i vertex the operation mi : T iΣA→ ΣA.

Proof. The calculation is similar to the L∞-case in Theorem 4.4.3, except the

lack of graded commutativity means that each mi can take more than one x. Each

sequence di1 , di2 , . . . , din gives words of the form (−1)nTλ(x, ξ). �

Proof of Theorem 4.4.1. First note that the equivalence of (2) and (3) is im-

mediate by completeness of V . Also, if V is finite-dimensional, then the equivalence

of (1) and (2) is immediate by Theorem 4.3.9 and Theorem 4.4.3. Finally in the

infinite dimensional case, by completeness of V we have V = lim←−−Vi where Vi are

all finite-dimensional complete dglas. Hence (1) and (2) are equivalent for V , as

they are equivalent for each Vi. �

Remark 4.4.6. In the case where V ⊗ A is complete (in particular, when A = k),

we can simplify the above proof, as the result is just a direct consequence of

Theorem 4.3.5 and Theorem 4.4.3.
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4.5. A strong homotopy Poincaré lemma

The Poincaré lemma states that on a contractible manifold, every closed differential

form of positive degree is exact. The following non-abelian analogue to the Poincaré

lemma is proved in [Vor12, Theorem 3.1].

Theorem 4.5.1 (Non-abelian Poincaré lemma). Let M be a contractible manifold

and let g be a dgla. Let ξ be a g-valued differential form on M such that ξ is a

Maurer–Cartan element in g⊗ Ω(M). Then ξ is gauge equivalent to a constant.

Example 4.5.2. For the simplest example of this theorem, suppose g = R; this is

trivially a dgla by setting dg = 0, [−,−]g = 0, and R to be concentrated in degree

0. An R-valued differential form of degree 1 is just a form ω ∈ Ω1(M). Since the

brackets vanish, ω being Maurer–Cartan just means

dω = 0, ω ∈ Ω1(M),

and ω being gauge equivalent (4.1.1) to a constant means there is some Maurer–

Cartan element C = C ⊗ 1 ∈ R⊗ Ω(M) such that

ω = eσ · C = C − dσ for some σ ∈ Ω0(M).

However, C ⊗ 1 has total degree 1, forcing C ∈ g1 = 0. Hence the theorem says a

closed 1-form is exact, recovering the usual Poincaré lemma for 1-forms.

It was suggested in [Vor12] that Theorem 4.5.1 may be extended to the setting of

L∞-algebras. Here, we prove such a statement as an application of the results from

the previous sections, by interpreting the left homotopy defined in Definition 4.3.1

as a gauge equivalence in the case of L∞-algebras, where there is no independent

notion of gauge equivalence.

We note also that [Vor12] considers different notions of homotopy and gauge

equivalence, which hold for arbitrary odd elements in dg Lie superalgebras (ad-

mitting a gauge group, in the case of gauge equivalence), not just Maurer–Cartan

elements. For Maurer–Cartan elements of complete dglas, the notion of homotopy

considered in [Vor12] coincides with Sullivan homotopy by [Vor12, Remark 5.2],

and gauge equivalence also coincides by a generalization of the Schlessinger–Stasheff

theorem [Vor12, Theorem 5.2].
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Theorem 4.5.3 (Strong homotopy Poincaré lemma). Let M be a contractible

manifold and let g be a complete L∞-algebra. If ξ is a g-valued differential form

on M that is Maurer–Cartan, then ξ is gauge equivalent to a constant.

Proof. If g is a complete dgla, then by Theorem 4.4.1, two Maurer–Cartan

elements in g⊗Ω(M) are gauge equivalent if and only if their representing cdga maps

are left homotopic. More generally, the explicit formulas obtained in Theorem 4.4.3,

coinciding with those in [Get09], allow us to interpret left homotopy as a gauge

equivalence for Maurer–Cartan elements in L∞-algebras.

Now, since M is contractible, Ω(M) is weakly equivalent to R. By completeness

of g, homotopy classes of maps SΣ−1g→ Ω(M) correspond to homotopy classes of

maps SΣ−1g→ R. Hence MC (g,Ω(M)) ∼= MC (g). �



CHAPTER 5

Koszul duality for compactly generated derived categories

of second kind

In this chapter, we use the extended bar-cobar adjunction to associate “extended

Koszul dual” dg coalgebras to dg algebras. These extended Koszul duals will be

given by an “extended bar construction”, and the resulting coalgebras are generally

much larger than the Koszul duals given by the usual bar construction; they are also

not conilpotent in general. Our goal is to prove that there is a Quillen equivalence

between model categories of dg modules over a dg algebra and comodules over its

extended Koszul dual dg coalgebra.

Of particular interest is the exotic model structure on dg modules, where the

weak equivalences for dg modules are now also of second kind. Model categories of

second kind arise naturally in the context of Koszul duality, where in order to remove

boundedness conditions, one is led to consider a notion of weak equivalence that is

more subtle than quasi-isomorphism [Hin01, LH03]. On the comodule side, derived

categories of second kind also have the advantage of being more well-behaved

than the usual derived category. For example, it is well known that the derived

category D(A) of dg A-modules for a dg algebra A is compactly generated by A

itself, and the compact objects are precisely perfect complexes. On the other hand,

it is unclear if the derived category D(C) of dg C-comodules for a dg coalgebra

C is compactly generated; however, its derived category of second kind is indeed

compactly generated.

The main idea in the proof of the model structure is to identify the weak

equivalences using a class of dg modules, called “twisted dg modules”, which are

thought of as prototype cofibrant objects. These twisted modules have appeared in

the study of derived categories of coherent sheaves on complex analytic manifolds

and infinity local systems on topological spaces [CHL21].

72
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5.1. Extended bar construction

Given an algebra A, its pseudocompact completion qA is the projective limit of the

inverse system of quotients by cofinite-dimensional ideals of A. Pseudocompact

completion defines a functor from Alg→ pcAlg that is left adjoint to the functor

pcAlg→ Alg forgetting the topology.

Definition 5.1.1. Let V be a pseudocompact graded vector space. If V is finite-

dimensional, its pseudocompact tensor algebra qTV is the pseudocompact completion

of the tensor algebra TV . For a general pseudocompact vector space V = lim←−−i Vi,

its pseudocompact tensor algebra is

qTV := lim←−−
i

qTVi.

Proposition 5.1.2. Let V be a pseudocompact graded vector space.

(1) The pseudocompact tensor algebra qTV is the free pseudocompact algebra

on V , that is, for any pseudocompact algebra A there is a bijection

HompcAlg( qTV,A) ∼= Hom(V,A).

(2) For any pseudocompact qTV -qTV -bimodule M there is a bijection

Der( qTV,M) ∼= Hom(V,M).

Proof.

(1) If V is finite-dimensional, then V is discrete and

Hom(V,A) ∼= HomAlg(TV,A),

which equals HompcAlg( qTV,A) as pseudocompact completion is left ad-

joint to the forgetful functor. More generally, writing V = lim←−−i Vi and

A = lim←−−j Aj with Vi and Aj finite-dimensional, we have

HompcAlg( qTV,A) ∼= lim←−−
j

HompcAlg( qTV,Aj)

∼= lim←−−
j

lim−−→
i

HompcAlg( qTVi, Aj)

∼= lim←−−
j

lim−−→
i

Hom(Vi, Aj) ∼= Hom(V,A).

Here, the second bijection holds as finite-dimensional algebras are cocom-

pact in pcAlg, that is, for any finite-dimensional algebra A, the functor
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HompcAlg(−, A) takes projective limits to inductive colimits. This is for-

mally dual to the statement that finite-dimensional coalgebras are compact

objects; see [GG99, Lemma 1.9] for a proof.

(2) Recall the following construction, which allows us to turn questions about

derivations into question about algebra homomorphisms. Given a graded

pseudocompact algebra A and an A-A-bimodule M consider the pseudo-

compact algebra A⊕M with multiplication (a,m) · (b, n) = (ab, an+mb),

and let p : A⊕M → A be the natural projection. Then there is a bijection

Der(A,M) ∼= {f ∈ HompcAlg(A,A ⊕M) : p ◦ f = 1A}. Setting A = qTV

and using part (1), we have

Der( qTV,M) ∼= {f ∈ Hom(V, qTV ⊕M) : p ◦ f = 1
qTV |V }

∼= Hom(V,M). �

Remark 5.1.3. The pseudocompact algebra qTV is the k-linear dual to the Sweedler

cofree coalgebra on the discrete vector space V ∗, [Swe69, Section 6.4].

Proposition 5.1.4. For any pseudocompact vector space V , there is a bimodule

resolution of qTV given by

0 qTV ⊗ V ⊗ qTV qTV ⊗ qTV qTV 0d m

where m is multiplication and d(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v.

Proof. We use the following well-known fact for algebras that also holds in

the pseudocompact setting. Let A be a graded pseudocompact algebra with

multiplication µ : A ⊗ A → A. Then Ω(A) = kerµ is an A-A-bimodule and the

map δ : A→ Ω(A) given by δ(a) = a⊗ 1− 1⊗ a is a derivation. For any derivation

d : A → M taking values in an A-A-bimodule M , there is a unique bimodule

homomorphism f : Ω(A)→M such that d = f ◦ δ; hence

Der(A,M) ∼= HomA-A(Ω(A),M).

Now by Proposition 5.1.2,

Der( qTV,M) ∼= Hom(V,M) ∼= Hom
qTV - qTV ( qTV ⊗ V ⊗ qTV,M),

so Ω( qTV ) ∼= qTV ⊗ V ⊗ qTV as required. �

All our dg algebras are augmented, except in Section 5.3. The augmentation

ideal of a dg algebra A is denoted by sA.
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Definition 5.1.5. We define a pair of functors

Ω: (pcDGA∗)op � DGA∗ : qB

as follows. The cobar construction associates to a pseudocompact dg algebra C the

dg algebra

ΩC := TΣ−1
sC∗

with differential defined in the usual way.

The extended bar construction associates to a dg algebra A the pseudocompact

dg algebra
qBA := qTΣ−1

sA∗.

We define the differential on qBA as follows: Let d1 : Σ−1
sA∗ → Σ−1

sA∗ and

d2 : Σ−1
sA∗ → Σ−1

sA∗⊗̂Σ−1
sA∗ be induced by dualising the differential and multipli-

cation on A respectively. For a pseudocompact vector space V , consider the semi-

completed tensor algebra T ′(V ) = ⊕
n≥1 V

⊗̂n, which has a topology that is neither

pseudocompact nor discrete, and has the property HomAlg(T ′(V ), B) ∼= Hom(V,B)

for any pseudocompact algebra B, by Lemma 4.3.7. Then by Proposition 5.1.2(1),

the identity on qTΣ−1
sA∗ induces a map i : T ′(Σ−1

sA∗)→ qT (Σ−1
sA∗), and we define

the differential to be

i ◦ (d1 + d2) : Σ−1
sA∗ → T ′(Σ−1

sA∗)→ qT (Σ−1
sA∗).

5.1.1. The Maurer–Cartan functor and representability. Let A be a dg

algebra (possibly discrete, pseudocompact or otherwise). A Maurer–Cartan element

in A is an element x ∈ A of degree 1 such that dx+ x2 = 0. The set of all Maurer–

Cartan elements in A is denoted by MC(A). For any dg algebra A and any

pseudocompact dg algebra C, define MC(A,C) := MC(A⊗C); this is functorial in

both arguments.

Proposition 5.1.6. Let A be an augmented dg algebra and C be an augmented

pseudocompact dg algebra. There are natural bijections

HomDGA∗(ΩC,A) ∼= MC( sA, sC) ∼= HompcDGA∗( qBA,C).

In particular, Ω is a left adjoint functor to qB.

Proof. Forgetting the differential, any map of augmented pseudocompact algebras

f : qBA→ C is equivalent to a linear map Σ−1
sA∗ → sC by Proposition 5.1.2, which
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is equivalently a degree 1 element x ∈ sA⊗ sC. Note that the map lands in sC as it

is augmented.

The condition that f commutes with differentials is then equivalent to condition

that x satisfies the Maurer–Cartan equation; this can be proven just like the

corresponding statement for the non-extended bar construction, see the proof of

Proposition 3.3.14 and Proposition 3.3.4. The other bijection is proved similarly. �

Remark 5.1.7. An adjoint pair of functors (Ω,Bext) between DGA∗ and pcDGA∗

was defined in [AJ, Section 5.3] in a different way; it was also proved that that

these functors represent the Maurer–Cartan sets (called “twisting cochains” in

[AJ]) as in Proposition 5.1.6. It follows that these functors are (isomorphic to) the

functors Ω and qB defined above.

5.2. Extended Koszul duality for modules

We begin by recalling the notion of Maurer–Cartan twistings of dg algebras and

dg modules, and recalling the standard formulation of Koszul duality for modules,

which we will later generalize.

Definition 5.2.1. Let (A, dA) be a dg algebra and x ∈ MC(A).

(1) The twisted algebra of A by x, denoted by Ax = (A, dx), is the dg algebra

with the same underlying algebra as A and differential dx(a) = dA(a) +

[x, a].

(2) Let (M,dM ) be a left dg A-module. The twisted module ofM by x, denoted

by M [x] = (M,d[x]), is the left dg Ax-module with the same underlying

module structure as M and differential d[x](m) = d(m) + xm.

Furthermore, if A and B are dg algebras and M is a dg A-B-bimodule, then

for any x ∈ MC(A) the twisted module of M by x is a dg Ax-B-bimodule, that is,

the right B-module action remains compatible with the new differential.

Definition 5.2.2. A twisted A-module is a dg A-module that is free as an A-module

after forgetting the differential, that is, it is isomorphic as an A-module to V ⊗ A

for some graded vector space V . A finitely generated twisted A-module is a twisted

A-module V ⊗ A with V finite-dimensional.

Given any graded vector space V , the A-module V ⊗ A equipped with the

differential 1⊗dA is a twisted A-module. More generally, by considering V ⊗A as a
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(End(V )⊗A)-A-bimodule, every twisted A-module is of the form (V ⊗A, 1⊗dA)[x]

for some x ∈ MC(EndV ⊗ A), as noted in [CHL21, Remark 3.2].

Definition 5.2.3. Let A be an augmented dg algebra, and let qBA be its extended

bar construction. Let ξ ∈ MC(A⊗ qBA) be the canonical Maurer–Cartan element

corresponding to the counit Ω qBA→ A of the adjunction Ω a qB. Define a pair of

functors

G : (pcDGMod- qBA)op � DGMod-A :F

as follows. The functor F associates to a dg A-module M the pseudocompact dg
qBA-module

FM := (M∗ ⊗ qBA)[ξ]

and the functor G associates to a pseudocompact dg qBA-moduleN the dg A-module

GN := (N∗ ⊗ A)[ξ].

The functors F and G are well-defined as FM is a dg (A⊗ qBA)ξ- qBA-bimodule

and GN is a dg ( qBA⊗ A)ξ-A-bimodule; the left (A⊗ qBA)ξ-module structure on

FM is disregarded as similarly with GN . It is a standard fact that G is left adjoint

to F ; more generally this is true replacing qBA with any pseudocompact dg algebra

C and ξ with any Maurer–Cartan element in A⊗C, see for example [Pos11, Section

6.2].

Remark 5.2.4. In the standard formulation of Koszul duality, the functors are

defined as follows: the bar construction of a dg algebra A is instead defined to

be BA = T̂Σ−1
sA∗, a local or pronilpotent pseudocompact dg algebra (or dually, a

conilpotent dg coalgebra). Given a dg A-module M , the corresponding BA-module

is defined as (M∗⊗BA)[ξ] where ξ ∈ MC(A⊗BA) is the canonical Maurer–Cartan

element corresponding to the counit ΩBA→ A of the Koszul duality adjunction

for algebras. Conversely, given a BA-module N , the corresponding A-module is

defined as (N∗ ⊗ A)[ξ].

5.2.1. Model category structure on DGMod-A. We now define model category

structures on DGMod-A and pcDGMod- qBA making the adjunction G a F a Quillen

pair. In [Pos11] Positselski constructs a model category structure of the “second

kind” on the category of dg comodules over an arbitrary (not necessarily conilpotent)
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dg coalgebra; this will be the model category structure on pcDGMod- qBA. We begin

by recalling this result.

Definition 5.2.5. Let C be a dg coalgebra. A dg C-comodule is coacyclic if it is in

the minimal triangulated subcategory of the homotopy category of dg C-comodules

containing the total C-comodules of exact triples of dg C-comodules and closed

under infinite direct sums.

Theorem 5.2.6. [Pos11, Theorem 8.2] Let C be a dg coalgebra. There exists a

model category structure on the category of dg C-comodules, where

(1) a morphism f : M → N is a weak equivalence if its cone is a coacyclic dg

C-comodule;

(2) a morphism is a cofibration if it is injective;

(3) a morphism is a fibration if it is surjective with a fibrant kernel.

Furthermore, this model category structure is cofibrantly generated, where

generating cofibrations are injective maps between finite-dimensional comodules.

Its homotopy category is a compactly generated triangulated category, with compact

generators being finite-dimensional dg comodules; see [Pos11, Section 5.5]. This

allows us to dualize Theorem 5.2.6 to get a model category structure as follows:

Theorem 5.2.7. Let A be a pseudocompact dg algebra. There exists a model

category structure on the category of pseudocompact dg A-modules, where

(1) a morphism f : M → N is a weak equivalence if it induces a quasi-

isomorphism

HomA(M,V )→ HomA(N, V )

for any finite-dimensional dg qBA-module V ;

(2) a morphism is a fibration if it is surjective;

Theorem 5.2.8. Let A be an augmented dg algebra. There is a cofibrantly generated

model category structure on DGMod-A, where

(1) a morphism f : M → N is a weak equivalence if it induces a quasi-

isomorphism

HomA((V ⊗ A)[x],M)→ HomA((V ⊗ A)[x], N)

for any finitely generated twisted A-module (V ⊗ A)[x];
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(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect

to acyclic fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

To prove Theorem 5.2.8, we will apply the following version of the transfer

principle, which appears in [BM03, Sections 2.5–2.6].

Theorem (Transfer principle). Let M be a model category cofibrantly generated

by the sets I and J of generating cofibrations and generating acyclic cofibrations

respectively. Let C be a category with finite limits and small colimits. Let

L : M � C :R

be a pair of adjoint functors. Define a map f in C to be a weak equivalence

(respectively fibration) if R(f) is a weak equivalence (respectively fibration). These

two classes determine a model category structure on C cofibrantly generated by L(I)

and L(J) provided that:

(1) The functor L preserves small objects;

(2) C has a functorial fibrant replacement and a functorial path object for

fibrant objects.

Furthermore, with this model structure on C, the adjunction L a R becomes a

Quillen pair.

We first check that the weak equivalences and fibrations, obtained by transferring

the model structure on pcDGMod- qBA along the adjunction G a F , admit the

characterisations in Theorem 5.2.8. In fact, both the functors F and G preserve

weak equivalences between all objects.

Lemma 5.2.9.

(1) A morphism g of dg A-modules is a weak equivalence if and only if F (g)

is a weak equivalence.

(2) A morphism f of pseudocompact qBA-modules is a weak equivalence if and

only if G(f) is a weak equivalence.
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Proof. For (1), let g : M → N be a map of dg A-modules. By definition

F (g) : FM → FN is a weak equivalence if and only if it induces a quasi-isomorphism

Hom
qBA(FM, V )→ Hom

qBA(FN, V )

for any finite-dimensional dg qBA-module V . Equivalently, this says that the dg A-

modulesM⊗V and N⊗V (with possibly twisted differentials) are quasi-isomorphic

for any finite-dimensional V , that is, g is a weak equivalence.

For (2), it suffices to show that G takes exact triples of qBA-modules to weakly

trivial A-modules. Let N1 → N2 → N3 be an exact triple of qBA-modules and

N be its total complex. Then GN is the total complex of the complex G(N3)→

G(N2) → G(N1), which is a bicomplex with three vertical columns and the all

horizontal rows exact.

Now let M = A ⊗ V be a finitely generated twisted A-module. Applying

HomA(M,−) to the above bicomplex gives Hom(V,G(N3))→ Hom(V,G(N2))→

Hom(V,G(N1)). Since exactness of the rows is preserved, GN is indeed weakly

trivial. �

Lemma 5.2.10. A morphism g of dg A-modules is a fibration if and only if F (g) is

a fibration.

Proof. Let g : M → N be a fibration in dg A-modules, so M ∼= N ⊕ V for some

graded vector space V . Then F (g) : FN → FM is a cofibration in pcDGMod- qBA if

and only if it is injective with cofibrant cokernel. But indeed, F (g) : (N∗⊗ qBA)[ξ] →

(M∗ ⊗ qBA)[ξ] has cokernel (V ∗ ⊗ qBA)[ξ], which is cofibrant. �

Proof of Theorem 5.2.8. By Lemma 5.2.9 and Lemma 5.2.10, it suffices to

check conditions (1) and (2) in the transfer theorem. Condition (1) holds as G

preserves small objects, and every object is fibrant so the first part of (2) trivially

holds. Hence it only remains to prove that functorial path objects exist for any

A-module. Let I be the standard interval object for dg vector spaces, that is,

I = k ⊕ Σ−1k ⊕ k with differential d(a, b, c) = (da,−db+ a− c, dc). Then for any

A-module M , there is a factorisation

M
e−→M ⊗ I (p1,p2)−−−−→M ⊕M
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where e(a) = (a, 0, a) and p1(a, b, c) = a, p2(a, b, c) = c. Clearly (p1, p2) is a

fibration by Lemma 5.2.10. Since I is acyclic, we have a quasi-isomorphism

(M ⊗ V ∗)[x] → (M ⊗ V ∗)[x] ⊗ I ∼= (M ⊗ I ⊗ V ∗)[x]

for any finitely generated twisted A-module (V ⊗ A)[x], so e is a weak equivalence.

Thus M ⊗ I is a functorial path object for M . �

We now show that the adjoint pair (F,G) is a Quillen equivalence.

Theorem 5.2.11. Let A be an augmented dg algebra and qBA be its extended bar

construction.

(1) For any dg A-module M , the counit GFM → M of the adjunction is a

weak equivalence of A-modules.

(2) For any pseudocompact qBA-module N , the counit FGN → N of the

adjunction is a weak equivalence of pseudocompact qBA-modules.

Thus, the Quillen adjunction G a F is a Quillen anti-equivalence between dg

A-modules and pseudocompact qBA-modules.

Proof. For any qBA-module N , consider

BN := qBA⊗ Σ−1
sA∗ ⊗N,

which is a cofibrant resolution of N . Then the functor G : (pcDGMod- qBA)op →

DGMod-A can also be written as Hom
qBA(BN, k), and the functor F : DGMod-A→

(pcDGMod- qBA)op is (M∗ ⊗ qBA)[ξ].

Now for any A-module M , the qBA-module F (M) is cofibrant, so GF (M) is

quasi-isomorphic to Hom(F (M), k) = M . Cofibrantly replacing M with a twisted

module M ⊗ V , we obtain that M and GF (M) are weakly equivalent.

Conversely, given a qBA-module N , the composition FG(N) is the two-term

resolution of N from Proposition 5.1.4, so is weakly equivalent to N . �

Remark 5.2.12. Note that the homotopy category of the constructed model

category on dg A-modules is a compactly generated triangulated category (being

anti-equivalent to the category of pseudocompact dg modules over a qBA) with

compact (small) objects being dg modules that are homotopy equivalent to retracts

of finitely generated twisted A-modules. We will denote this homotopy category by

DII
c (A).
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Example 5.2.13. Consider the dg algebra A = k[x]/x2 with zero differential and x

in degree 1. We have }BA ∼= }k[x]. If k is algebraically closed then the pseudocompact

completion }k[x] of k[x] is the product of completions of k[x] at every maximal ideal

of k[x], the latter correspond precisely to elements of k. In other words,

}BA ∼= }k[x] ∼=
∏
α∈k

(k[[x]])α

(this result, in a more general form, is given in [GG99, Example 1.13]). The derived

category DII
c (A) of A of second kind is anti-equivalent to the derived category (of

second kind) of pseudocompact modules over ∏α∈k(k[[x]])α and thus, is drastically

different from the ordinary derived category of A. Note that MC(A) = {ax : a ∈ k};

then the twisted A-modules Aξ for ξ ∈ MC(A) are pairwise weakly inequivalent

and form a set of compact generators for DII(A); it is easy to see that it is not

possible to choose a single compact generator.

Example 5.2.14. The derived category of second kind DII
c arises in a number of

situations of a geometric origin:

(1) Let M be a smooth manifold and A ∗(M) be its smooth de Rham algebra;

here the ground field k is R, the real numbers. The choice of a point in

M makes A ∗(M) into an augmented dg algebra. A compact object in

DII
c (A ∗(M)) is a cohesive A ∗(M)-module of [Blo10] and the subcategory

of compact objects is equivalent to the triangulated category of perfect

cohomologically locally constant complexes of sheaves on M by [CHL21,

Theorem 8.1].

(2) Let M be a smooth affine algebraic variety over a field k of characteristic

zero having a base point Spec(k) → M and A ∗(M) be its algebraic de

Rham algebra. Then twisted modules over A ∗(M) correspond to D-

modules, i.e. modules over the ring of differential operators on M by

[Pos11, Theorem B.2] while compact objects in DII
c (A ∗(M)) correspond

essentially to coherent D-modules.

(3) Let M be a compact complex manifold and A 0∗(M) be the Dolbeault

algebra of M that can be viewed as augmented by a choice of a base

point in M . Again, a compact object DII
c (A ∗(M)) is a cohesive A 0∗(M)-

module and the subcategory of compact objects is equivalent to the derived
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category of sheaves on M with coherent cohomology, [Blo10, Theorem

4.1.3] or [CHL21, Theorem 8.3].

5.2.2. Comparison with other weak equivalences in DGMod-A. Here, we

compare the notion of weak equivalences in our model structure on DGMod-A with

other notions of a weak equivalence from the literature.

Firstly, we can consider the standard model structure on DGMod-A where weak

equivalences are quasi-isomorphisms and fibrations are surjections. It is clear that

any weak equivalence in our model structure is a quasi-isomorphism, by considering

A-modules trivially twisted by the Maurer–Cartan element x = 0. It follows

that DII
c (A) contains the ordinary derived category of A as a full subcategory.

If A is concentrated in nonpositive degrees (e.g. it is an ordinary algebra), or

Ā is concentrated in degrees > 1 (e.g. cohomology algebras of simply-connected

topological spaces) then by the degree considerations, qBA ∼= T̂Σ−1
sA∗, the usual

bar construction of A from which it follows that our model structure on A-modules

is the ordinary one (i.e. of the first kind). Another situation where we obtain the

ordinary model category of the first kind is when the dg algebra A is cofibrant.

However, for general A, even with a vanishing differential, we get a different result,

cf. Example 5.2.13.

In [Pos11], the coderived category and contraderived category of a dg algebra

A are defined, which are obtained by localising at coacyclic dg A-modules and

contraacyclic dg A-modules respectively. These categories are different, in general,

from the ordinary derived category of the first kind, even for ungraded algebras,

see e.g. [Pos11, Example 3.3] and thus, also from DII
c (A).

It was observed in [Pos11, KLN10] that the category DII
c (A) is contained in

both the coderived and contraderived category of A. It is, therefore, the derived

category of A of the second kind that is closest to the ordinary derived category

of A. If A is right Noetherian and has finite right homological dimension then

DII
c (A) coincides with both coderived and contraderived category of A by [Pos11,

Question 3.8]. Another situation when this happens is when A is the cobar

construction of a (possibly nonconilpotent) dg coalgebra B since in this case the

co/contraderived category of A is equivalent to the coderived category of B and

is, therefore, compactly generated. Related questions are considered in the recent

paper [Pos17].
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5.3. Curved extended Koszul duality for modules

In this section, we consider generalisations of the previous results in the cases where

the underlying dg algebra is curved or non-augmented. First we need to develop

the extended bar-cobar formalism in the curved, non-augmented context.

A curved dg algebra is a graded algebra A with a degree one derivation d : A→ A,

such that for any a ∈ A, d2(a) = [h, a] for some h ∈ A2 satisfying d(h) = 0. The

linear map d is usually called the differential of A, despite not being square zero,

and h is called the curvature of A.

A morphism of curved algebras (A, dA, hA)→ (B, dB, hB) is a pair (f, b) consist-

ing of a morphism of graded algebras f : A→ B and an element b ∈ B1 satisfying

the equations:

f(dA(x)) = dB(f(x)) + [b, f(x)],

f(hA) = hB + dB(b) + b2,

for all x ∈ A; if b = 0 then the corresponding morphism A → B is called

strict. The category of curved dg algebras is denoted by CDG and the category of

pseudocompact curved dg algebras is denoted by pcCDG; additionally we assume

that our (pseudocompact or not) curved dg algebras have nonzero units. A Maurer–

Cartan element in a curved dg algebra A is an element x ∈ A of degree 1 such that

h+ dx+ x2 = 0. Given two curved dg algebras (A, dA, hA) and (B, dB, hB) their

tensor product A⊗B is likewise a curved dg algebra with dA⊗B := dA⊗ 1 + 1⊗ dB
and hA⊗B := hA ⊗ 1 + 1⊗ hB.

Given a curved dg algebra (A, dA, hA) and an element b ∈ A1 (not necessarily

Maurer–Cartan) we can define the twisting of A by b as a curved dg algebra Ab with

the same underlying vector space as A, twisted differential db(x) := dA(x) + [b, x]

for x ∈ A and curvature hb := hA + dA(b) + b2. Then (id, b) determines a (curved)

isomorphism Ab → A.

If A is a curved dg algebra, then a dg A-module is a graded (right) A-module

M with a degree one derivation dM : M →M such that dM is compatible with the

differential d on A, and for any m ∈ M , d2
M(m) = mh; one can similarly define

left dg A-modules. If M is a left dg A-module and x ∈ A1, then there is a left

dg Ax-module M [x] defined as in the uncurved case, cf. Definition 5.2.1. Given

a curved dg algebra A and a pseudocompact curved dg algebra C, we denote
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the categories of dg A-modules and pseudocompact C-modules by DGMod-A and

pcDGMod-C, just as before.

We now describe how to modify the bar and cobar constructions from Defini-

tion 5.1.5 in the general non-augmented and curved case. Let A be a unital curved

dg algebra with differential d and curvature h. Since 1 6= 0 in A we can choose a

homogeneous k-linear retraction ε : A→ k, to be regarded as a “fake augmentation”.

It allows one to identify the dg vector space sA := A/k with a subspace (possibly

not dg) of A so that A ∼= k ⊕ sA. The multiplication m : A⊗ A→ A restricted to
sA has two components mε

sA : sA⊗ sA→ sA and mε
k : sA⊗ sA→ k. We will denote the

corresponding components of the differential d and curvature h by dε
sA, d

ε
k and hε

sA,

respectively; note that the component hεk vanishes for degree reasons. Explicitly,

for all sa,sb ∈ sA ⊂ A,

mε
sA(sa,sb) = sasb− ε(sasb), mε

k(sa,sb) = ε(sasb);

dε
sA(sa) = d(sa)− ε(d(sa)), dεk(sa) = ε(d(sa));

hε
sA = h− ε(h) = h.

(5.3.1)

To alleviate notation, we will suppress the superscript ε at m
sA, mk etc. where it

does not lead to confusion.

Consider the graded algebra T ′Σ−1A∗, the non-reduced semi-completed bar

construction of A. Choose a basis {ti : i ∈ I} in sA where I is some indexing set

and let {τ, ti : i ∈ I} be the basis in Σ−1A∗ dual to the basis {1, ti : i ∈ I} in A.

We will write ∂ti for the derivation of T ′Σ−1A∗ having value 1 on ti and zero on

other basis elements of Σ−1A∗ and similarly for ∂τ . Then define the differential on

T ′Σ−1A∗ as the following derivation:

ξ :=
∑
i∈I

([τ, ti] + fi(t))∂ti + (g(t) + τ 2)∂τ +
∑
i∈I

ai∂ti

where fi(t), g(t) stand for sums of linear and quadratic monomials in t (so these

elements of T ′Σ−1A∗ do not depend on τ). Here the term ∑
i∈I fi(t)∂ti corresponds

to the “multiplication and differential” m
sA and d

sA, the term ∑
i∈I ai∂ti reflects the

curvature h
sA, the term g(t)∂τ corresponds to mk and dk, and the term (∑i∈I [τ, ti] +

τ 2)∂τ reflects the multiplication with the unit in A. Let ξ1 := ∑
i∈I fi(t)∂ti +∑

i∈I ai∂ti and ξ2 := ∑
i∈I [τ, ti]∂ti + (g(t) + τ 2)∂τ ; then ξ = ξ1 + ξ2.

The reduced semi-complete bar construction B′εA of A is a subalgebra in T ′Σ−1A∗

spanned by sums of monomials which do not depend on τ (so only depend on ti,
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i ∈ I). Thus, the underlying graded algebra of B′εA is isomorphic to T ′Σ−1
sA∗. The

differential on B′εA is ξ1. Note that ξ2 = 0 but ξ2
1 = 0 only when ε : A→ k is a dg

algebra map; in this case g(t) = 0. However (B′εA, ξ1) is a curved dg algebra, more

precisely the following result holds.

Lemma 5.3.1. Let A be a curved dg algebra. Then:

(1) The reduced semi-complete bar construction B′εA endowed with the differ-

ential ξ1 defined above, is a curved dg algebra with curvature −g(−t), an

element of T ′Σ−1
sA∗ obtained from −g(t) by replacing every indeterminate

ti with −ti.

(2) The curved dg algebra B′εA is independent, up to a natural isomorphism, of

the choice of a basis in sA. Furthermore, for different choices of retractions

A→ k, the corresponding reduced semi-complete bar constructions are

isomorphic as curved dg algebras. More precisely, denote by bε−ε′ the

element in B′A ∼= T ′Σ−1
sA∗ corresponding to the linear map ε− ε′ : A→ k;

then the curved map (id, bε−ε′) determines a curved isomorphism B′εA→

B′ε′A.

(3) The correspondence A → B′εA determines a contravariant functor from

the category CDG to the category of topological curved dg algebras.

Proof. Taking into account that 0 = ξ2 = ξ2
1 + [ξ1, ξ2] + ξ2

2 we have for k ∈ I,

ξ2
1(tk) = −[ξ1, ξ2](tk)− ξ2

2(tk).

Furthermore, a straightforward calculation shows that [ξ1, ξ2](tk) has no terms

depending on ti, i ∈ I whereas the only term of ξ2
2(tk) depending on ti, i ∈ I has

the form g(t)∂τ ([tk, τ ]) = (−1)|tk|[tk, g(t)]. It follows that

ξ2
1(tk) = −(−1)|tk|[g(t), tk]

as required.

Next, the statement about the independence of B′ε(A) on a basis in sA is obvious.

Let ε′ : A → k be another fake augmentation; then formulas (5.3.1) show that

h is unchanged whereas mε′
sA(sa,sb) = mε

sA(sa,sb) + (ε − ε′)(sasb), and similarly for the

differential. This implies that B′ε′A is obtained from B′εA by twisting with the

element ε− ε′ ∈ B′εA, which is equivalent to the stated claim.
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To see that the construction A → B′εA is functorial, we will view an object

in CDG as a curved dg algebra A with a choice of a retraction A → k, however

morphisms need not respect the retraction; this is clearly the same as (or, more

accurately, equivalent to) the category CDG. Any map A → B in CDG can

canonically be factorized in CDG as A→ A→ B with the first map being a change

of retraction in A followed by a map preserving retractions. The construction B′εA

is clearly functorial with respect to retraction-preserving maps and a change of

retraction is also functorial by part (2). �

This allows us to define the extended bar construction of a curved dg algebra

in the same way as it was done in the uncurved case; from now on we will suppress

the subscript ε and write B′εA for the semi-complete bar construction of A; by

Lemma 5.3.1 this specifies a curved pseudocompact dg algebra up to a natural

isomorphism.

Definition 5.3.2. Let A be a curved dg algebra with a retraction ε : A→ k. The

extended bar construction of A is the graded pseudocompact algebra

qBA := qTΣ−1
sA∗.

Then by Proposition 5.1.2(1), the identity on qTΣ−1
sA∗ induces a map i : B′A ∼=

T ′(Σ−1
sA∗)→ qBA ∼= qT (Σ−1

sA∗), and we define the differential d
qBA on qBA to be

d
qBA := i ◦ ξ1 : Σ−1

sA∗ → T ′(Σ−1
sA∗)→ qT (Σ−1

sA∗).

The curvature of qBA is the image of the curvature in B′A under the map i : B′A→
qBA. This gives qBA the structure of a curved pseudocompact dg algebra.

Remark 5.3.3. It follows from Lemma 5.3.1 that the correspondence A 7→ qBA

is a functor CDG → pcCDGop. A version of the definition above with T̂Σ−1
sA∗

(the local pseudocompact bar construction of a curved non-augmented algebra) in

place of qTΣ−1
sA∗ is found in [Pos11, Section 6.1], albeit formulated in the language

of coalgebras. However Positselski’s local bar construction is not functorial with

respect to non-strict maps in CDG since maps between pseudocompact algebras

of the form T̂Σ−1
sA∗ must preserve their maximal ideals whereas this is not true

for pseudocompact algebras of the form qTΣ−1
sA∗ (which can have many maximal

ideals).
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Now recall that given a pseudocompact curved dg algebra C there is defined a

curved dg algebra

ΩC := TΣ−1
sC∗

with sC := C/k, cf. [Pos11, Section 6.1]. Note that the definition of Ω can be given

along the lines of the definition of qB, only simpler since there is no analogue, or

need, for an intermediate step involving the semi-complete bar construction. Then

we have the following result.

Proposition 5.3.4. The correspondence C 7→ Ω(C) determines a functor pcCDGop →

CDG. This functor is left adjoint to qB : CDG→ pcCDGop.

Proof. The functoriality of ΩC was explained in [Pos11, Section 6.1]; alternatively

the arguments in the proof of Lemma 5.3.1 apply with obvious modifications. The

adjointness follows as in the non-curved case; namely by noticing that for A ∈ CDG,

C ∈ pcCDG the sets of morphisms HomCDG(ΩC,A) and HompcCDG( qBA,C) are both

naturally isomorphic to MC(A⊗ C). �

Remark 5.3.5. If a curved dg algebra A is happens to be augmented, then there

is a natural choice of a retraction ε : A→ k, namely, the given augmentation. In

this case, qBA is uncurved. Similarly, if A has vanishing curvature, qBA is naturally

augmented. If A is both augmented and uncurved, then so is qBA.

Now for a curved dg algebra A and its bar construction qBA, there is an

adjunction

G : pcDGMod- qBAop � DGMod-A :F (5.3.2)

as defined in Definition 5.2.3; these functors are well-defined as the twisting of

a curved dg algebra by a Maurer–Cartan element gives an uncurved dg algebra.

Furthermore, Theorem 5.2.6 holds (with the same definitions of weak equivalences,

fibrations and cofibrations) when the dg coalgebra C is curved (indeed, this is how

it was formulated in [Pos11]). Thus, pcDGMod- qBAop has the structure of a model

category and by transferring along the adjunction (5.3.2) we obtain the following

generalisation of Theorem 5.2.8; the arguments are the same as in the uncurved

case.

Theorem 5.3.6. Let A be a curved dg algebra. There is a cofibrantly generated

model category structure on DGMod-A, where
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(1) a morphism f : M → N is a weak equivalence if it induces a quasi-

isomorphism

HomA((V ⊗ A)[x],M)→ HomA((V ⊗ A)[x], N)

for any finitely generated twisted A-module (V ⊗ A)[x];

(2) a morphism is a fibration if it is surjective;

(3) a morphism is a cofibration if it has the left lifting property with respect

to acyclic fibrations.

With this model structure, the adjunction G a F is a Quillen pair.

Similarly, there are model structures on DGMod-A when A is curved and

augmented, or non-curved and non-augmented. Altogether there are four cases as

below. Case (4) is the case considered previously and proved in Theorem 5.2.11.

Again, the arguments employed in the augmented uncurved case generalize in a

straightforward fashion.

Theorem 5.3.7. With the above model structures, the functors G a F form a

Quillen anti-equivalence between the categories pcDGMod- qBA and DGMod-A in

each of the following four cases:

(1) A is curved and non-augmented, qBA is curved and non-augmented;

(2) A is curved and augmented, qBA is non-curved and non-augmented;

(3) A is non-curved and non-augmented, qBA is curved and augmented;

(4) A is non-curved and augmented, qBA is non-curved and augmented.



Notation

A list of notation for the various categories we use is included here as a reference

tool. For more details, refer to the page number in the rightmost column.

Vect Z-graded vector spaces 17

DGVect differential graded (dg) vector spaces 18

Alg Z-graded algebras 17

CAlg Z-graded commutative algebras 17

DGA dg algebras 19

DGA∗ augmented dg algebras 19

CDGA commutative dg algebras 19

pcX any category X above with pseudocompact topology 20

DGLA dg Lie algebras 19

pcDGAloc local augmented pseudocompact dg algebras 23

pcCDGAloc local augmented pseudocompact commutative dg algebras 23

DGMod-A right dg modules over algebra A 19

pcDGMod-A right dg modules over a pseudocompact algebra A 23

CDG curved dg algebras (Chapter 5 only) 84

pcCDG curved pseudocompact dg algebras (Chapter 5 only) 84
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