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Abstract: III-Sb barrier detectors suitable for the mid-wave infrared were grown on GaSb by molecular 8 

beam epitaxy. Using both bulk-InAsSb and an InAsSb-InAs strained layer superlattice, operation close to 9 

room temperature was demonstrated with cut-off wavelengths of 4.82 μm and 5.79 μm, respectively, with 10 

zero-bias operation possible for the bulk-InAsSb detector. X-ray diffraction, temperature dependent dark 11 

current and spectral quantum efficiency were measured, and an analysis based on calculated specific 12 

detectivity carried out. 1/f noise effects are considered. Results indicate these optimized devices may be 13 

suitable as alternatives to InSb, or even HgCdTe, for many applications, especially where available power is 14 

limited. 15 

III-Sb alloys and quantum structures are being developed as alternatives to HgCdTe or InSb for mid-wave 16 

infrared (MWIR) detectors.[1-4] InSb generally requires cooling to 77 K for acceptable levels of performance 17 

and, whilst HgCdTe-based sensors generally still offer the highest signal to noise ratios, they suffer from a 18 

lack of large-area native substrates, an acute bandgap-compositional dependence at longer wavelengths,[5] 19 

uniformity issues and excessive cost. III-Sb alloys benefit from native 4” GaSb and 3” InAs substrates, lower 20 

cost, and the possibility for a wide range of heterostructures with lattice matched materials and alloys, e.g. 21 

AlAsSb, InAs, InAsSb or InGaAsSb.[6] Cut-off wavelengths between 1.7 μm and (at least) 12 μm can be 22 

achieved using various alloys and strained layer superlattices (SLS).[7-9] However, high dark currents due to 23 

trap-related processes and surface recombination are frequently problematic; the community has focussed 24 

extensively on developing III-Sb barrier detector designs, which address surface and defect related dark curre-25 

nts using AlSb-based electron-blocking barriers.[10-12] These barrier or “nBn” detectors were first reported 26 

using InAs and AlAsSb in 2006.[13] Since then, the design has been widely copied and extended to include 27 

InAsSb, e.g.[10] InGaAsSb [6] InAs-GaSb SLS e.g. [14,15] and InAsSb-InAs or “Ga free” SLS e.g. [7-9]. In 28 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
5
1
0
4
9



2 

 

2 

 

addition to the references given, many others exist in the literature. InAsSb-InAs SLSs offer increased min-29 

ority carrier lifetimes over InAs-GaSb designs. They are also simpler to grow, since only the Sb shutter needs 30 

to be actuated, and can effectively cover the MWIR atmospheric transmission window between ~4.5 – 5.5 μm 31 

to allow for free space comms and LIDAR applications, amongst others. 32 

In this work, we report bulk-InAsSb and InAsSb-InAs SLS structures suitable for near-to-room-temperature 33 

operation with cut off wavelengths of 4.82 μm and 5.79 μm, respectively. For many applications, cooling 34 

requirements are heavily reduced, or even removed. For the bulk-InAsSb structure, zero bias operation is also 35 

demonstrated, achieved using a design combining a p-n junction with a barrier diode. The presence of a built-36 

in field allows low-power bias-free operation, while carriers generated at the p-n junction through Shockley 37 

Read Hall or surface related processes cannot contribute to dark current. In reverse operating bias, electron 38 

current cannot flow (due to the presence of the wide-gap barrier) and corresponding hole transport is prevented 39 

due to charge neutrality. In other words, dark currents generated in the p-n junction layers do not contribute 40 

to the detector noise. While p-i-n InSb structures also offer zero bias operation, they generally require cooling 41 

to 77 K. Our devices offer strong quantum efficiencies: at 250 K the bulk material detector has a quantum 42 

efficiency of 30% at 4.0 μm, whereas the SLS has 17% at 5.0 μm. Moreover, these values were obtained with 43 

a single pass and without an antireflection coating. Given suitable design modifications, the detector bandw-44 

idth is also expected to be in the GHz range. The devices could be ideal for applications where available power 45 

or cooling is restricted, such as continuous remote monitoring. 46 

Growth was carried out by solid source III-V molecular beam epitaxy (MBE) with SUMO® cells for Al, Ga 47 

and In, and valved cracker cells for As and Sb. The epilayer structures are shown in Fig. 1(a) and (b). GaSb 48 

substrates were prepared by degassing under vacuum at 350 C for 6-8 hours, before oxide removal at 530 C 49 

under constant Sb2 flux. The samples were then cooled to 505 C for GaSb buffer layer growth. To optimize 50 

conditions in the growth chamber, the buffer was grown to a thickness of 2-3 μm over ~3 hours. The growth 51 

temperature for InAsSb bulk material was 450 C whereas the SLS layers were grown at 430 C. V-III ratios  52 

 53 
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 54 

Figure 1: Layer structures for (a) bulk and (b) for the SLS.  Band diagrams are given in (c) and (d), calculated 55 

by solving the Poisson Equation. 56 

were maintained at ~1.6:1 and, in order to control the unintentional doping, a low level of Te dopant was used 57 

for the absorber layers.  58 

Dark currents in infrared barrier detectors are known to vary nonlinearly with the absorber donor density Nd 59 

(intentional or unintended). The diffusion current varies with 1/ Nd, but also with 1/τ, where τ the minority 60 

carrier lifetime. τ falls as Nd increases.[16] Capacitance voltage measurements were therefore made to reveal 61 

Nd in the n-type layers. As shown in Fig. 2(b), a background doping level of around 1016 cm−3 was found for  62 
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 63 

Figure 2: (a) Capacitance-voltage data for the bulk and SLS detectors. (b) The associated doping densities 64 

calculated by assuming single sided depletion in the n-type layers. 65 

 66 

Figure 3: X-ray diffraction results and modelling (a) for the InAsSb bulk-material detector and (b) for the 67 

InAsSb-InAs SLS. 68 
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the n-InAsSb and n-type SLS layers above the barrier. The same doping concentration can be assumed for the 69 

absorber layers, which were grown under the same conditions. Free passage of holes, and hence strong quant-70 

um efficiency, was ensured by engineering the barrier layer composition using software based on the model 71 

solid approach and grown using AlSb-based materials at 505 C. The combination of the barrier diode with the 72 

p-n junction is illustrated in Figs. 1 (c) and (d).  73 

In order to reduce dark currents due to crystalline defects in the material, and hence maximize 300 K detector 74 

performance, lattice matching was optimised using x-ray diffraction and the epilayer mismatch reduced to 75 

<500 ppm for the bulk-InAsSb and barrier layers. The x-ray results are given in Fig. 3 where the superlattice  76 

 77 

Figure 4: (a) Dark currents as a function of voltage and temperature for the bulk material detector (upper) 78 

and the SLS detector (lower). Part (b) shows the dark currents at 300 K as a function of area at -0.4 V for the 79 

bulk detector (solid symbols) and at -0.3 V for the SLS (open symbols). Parts (c) and (d) show Arrhenius plots 80 

for the bulk and SLS, respectively, where open symbols denote measurements without cold shielding. 81 

Activation energy fittings and dashed lines for Rule ’07 are also shown.  82 
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fringes were fitted using software based on the Takagi-Taupin equations.[17] The Sb content was dilute to 83 

achieve a 0.225 eV effective bandgap at 250 K. Whilst trap related or Auger dark currents dominate at high 84 

temperature, low temperature detector performance is ultimately limited by the background photon flux due 85 

to the 300 K scene. This occurs below the BLIP (background limited infrared photodetection) temperature, 86 

and further cooling without cold shielding is ineffective due to the photon noise. Fig. 4(a) shows dark currents 87 

as a function of voltage and temperature, while part (b) shows the effective suppression of surface currents by 88 

the barrier layer: the current at operating bias is plotted as a function of device area, showing close to zero 89 

intercept. Parts (c) and (d) show Arrhenius plots at -0.3 V. Dark current activation energies can be used to rev-90 

eal the dominant dark current process, and hence further reduce it. For the bulk detector this is close to the full 91 

4 K bandgap of the absorber (0.345 eV). Similarly, for the SLS, the effective bandgap is calculated to be 0.30 92 

eV (also at 4 K).[18] This indicates Auger limited dark currents. The comparison with the low temperature 93 

bandgap is intentional, in other words, the activation energy is not thought to vary as temperature incre-94 

ases.[19] A second gradient is observed for the SLS detector below roughly 200 K. We attribute this to a shift 95 

from the Auger limited regime to a weak tunnelling process. The shielded measurements diverge from the 96 

data below approximately 200 K for both detectors. Whilst conceding that HgCdTe offers lower leakage 97 

currents, as indicated by the Rule ’07 heuristic lines on the figures, the difference is often less than one order 98 

of magnitude at operating temperature.  99 

Detector performance is usually limited by the Shot or thermal noise on the dark current, which varies with 100 

its square root. The specific detectivity gives a figure of merit for the signal to noise ratio. The sum of the 101 

theoretical Shot and thermal noise currents is given by 102 

In2 = 2qI0 + 4kT/Rd  (1) 103 

where q is the elementary charge, I0 the DC dark current, k the Boltzmann constant, T the detector temperature 104 

and Rd the dynamic resistance. However, a more accurate determination of the total system noise can be obtai-105 

ned using a Signal Analyzer or Spectrum Analyser together with a preamplifier. This will reveal noise due to 106 

interaction with the amplifier, or 1/f effects, and provide a real-world indication of performance.  107 
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 108 

Figure 5: Quantum efficiency and specific detectivity at 4.0 μm for the bulk InAsSb detector and at 5.0 μm 109 

for the SLS, as determined using Eq. 2 and the data from Fig. 4. For the SLS, a further line is included for 110 

4.5 um and 125 K. Dotted lines indicate the BLIP limits for f/2 optics [20]. 111 

Once In2 is known, all that is left is to find the detector responsivity, Ri. While this can be achieved using a 112 

blackbody at an appropriate temperature, we prefer to obtain full spectral dependence using a calibrated FTIR 113 

spectrometer. D* then can be obtained from, 114 

 D∗ = Ri/√2qJ + 4kT/RdAd  (2) 115 

or 116 

D∗ = Ri/√In2    (3)  117 

where J is the dark current density and RdAd the resistance area product (which is simply dV/dJ  by numerical 118 

approximation). 119 
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 120 

Figure 6: Spectral specific detectivity found using Eq. 2 for (a) the bulk detector, at 400 mV and zero bias, in 121 

steps of 25 K. Reference data from [21] is also given at 250 K and 300 K. (b) for the SLS, also in steps of 25 122 

K, with reference data at 253 K and 295 K.[22]  123 

Quantum efficiency and specific detectivity are shown in Fig. 5. The former increases monotonically with 124 

bias for both detectors, reflecting improved extraction of photogenerated carriers. For the bulk material detec- 125 

tor, a zero bias response is also included: this falls significantly between 200 – 300 K due to an increase in the 126 

recombination processes. At finite bias, both detectors exhibit a weaker temperature dependence. The specific 127 

detectivity exhibits the opposite behaviour to the quantum efficiency, falling monotonically with temperature. 128 

In turn, this reflects the increase in the detector noise as the dark currents increase, which dominates over the 129 

increase in quantum efficiency. The shape of the specific detectivity is to some extent flat with applied bias 130 

but increases gradually with bias for the bulk-InAsSb detector between 275 – 300 K (owing to increased quan-131 

tum efficiency) but falls with bias at lower temperatures (owing to increased dark currents). Strong performa-132 

nce at 300 K confers advantages in applications where limited cooling is available (perhaps due to limited 133 

power), e.g. continuous remote monitoring. Above 200 K, the SLS performance improves with bias. BLIP 134 

conditions are included for f/2 optics and 300 K scene temperature, taken from [20]. These coincide with the 135 
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data at around 200 K for the bulk detector and 125 K for the SLS, and differ from the temperature at which 136 

the dark currents diverge from the shielded measurements in Fig 4(c) and (d) owing to the absence of f/2 optics 137 

and the low emissivity of the probe station interior. When the detector performance exceeds the BLIP limits, 138 

the lower level of performance applies in practice. Full spectral dependence for the D* is shown in Fig. 6. 139 

Low-power 2-stage thermoelectric (TE) coolers suitable for these detectors can readily achieve temperatures 140 

of 250 K or below and cut-off wavelengths at 250 K, 275 K and 300 K are shown in Table 1 (found by extrap-141 

olating the squared response vs 1/energy). The end user can then select between 300 K operation or low power 142 

TE cooling. By operating at zero bias, the device power can also be reduced and the zero bias detectivity of 143 

the bulk detector is close to the 300 mV response between 200 – 250 K. Uncooled operation is also possible 144 

for the SLS detector. Referring to Fig. 5, the D* at 300 K varies by less than a factor of 2 between 150 and 145 

300 mV applied bias and the dark currents in Fig. 4(a) are <1 Acm-2 for room temperature operation. Reference 146 

data given in (a) for Soibel (2014) [21] is exceeded by our devices at finite bias at all temperatures. At 275 K 147 

and zero bias, our detector exhibits performance comparable to [21] at 250 K. The applied bias in [21] is not 148 

listed explicitly but appears to be ~300 mV (based on Fig. 3 in the reference). Ref [22] also reports detectors 149 

using InAsSb-InAs SLS and the level of performance and cut-off wavelength are comparable to our own. 150 

However, devices in [22] benefit from an antireflective coating, obtaining 74% quantum efficiency at 4.24 151 

μm. The dark current density is further reported to be similar; at 300 K and 250 K values of 1.17 A/cm2 and 152 

0.1 A/cm2 compare with 0.9 A/cm2 and 0.09 A/cm2 for our devices.  153 

The preceding analysis considers detector noise occurs only due to Shot and thermal noise contributions. This 154 

is a common assumption in the literature, and very little work has been carried out to measure the noise freque-155 

ncy spectrum in barrier detectors. To address this concern, we present an analysis of the measured noise  156 

 250 K 275 K 300 K 

Bulk InAsSb 4.64 4.77 4.82 

InAsSb-InAs SLS 5.50 5.67 5.79 

Table 1: Cut off wavelengths in μm for both detectors at temperatures within the range of 2-stage TE coolers.  157 
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 158 

Figure 7: Noise current as function of frequency for the bulk-InAsSb detector. Results from two devices are 159 

shown; these were typical results from a larger sample. 160 

in Fig. 7. The figure includes lines indicating the levels of Shot noise expected based on dark current measur-161 

ements carried out for the specific devices analysed immediately beforehand. The level of thermal (Johnson) 162 

noise was less than the Shot noise to the extent that is has been excluded for our analysis. In the limit f→∞ 163 

the measured noise exceeds the calculated Shot noise by approximately a factor of 2, an effect we attribute to 164 

noise from the amplifier. Moreover, the noise current rises with 1/f dependence: at 300 Hz the measured noise 165 

is higher by a factor of ~4 at 225 K and ~7 at 250 K.  The 1/f component of the noise intersects the frequency 166 

independent component at 1.8 kHz at 225 K and 2.8 kHz at 250 K. In other words, barrier detector devices, 167 

which are in some sense a hybrid between photovoltaic detector and photoconductor, share some of the 1/f 168 

noise properties of photoconductors. 169 

This work has demonstrated barrier detectors on GaSb based on III-Sb materials suitable for mid-wave infra-170 

red detection at or close to 300 K. At 300 K, cut-off wavelengths of 4.82 μm and 5.79 μm were measured for 171 

devices with bulk-InAsSb and InAsSb-InAs SLS absorbers, respectively. At the same temperature, specific 172 

detectivity exceeded 5 × 109 and 1 × 109 cmHz1/2W−1 at 4.0 μm and 5.0 μm, respectively. Zero bias operat-173 

ion was demonstrated for the 4.82 μm detector; conferring advantages for applications where available power 174 

is limited. A noise spectral measurement was carried out revealing the presence of finite 1/f noise. These 175 

optimized devices are suitable for low power applications through near-room temperature operability and are 176 

intended to replace HgCdTe or InSb for many applications. This work was supported through the dstl Space 177 
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Programme via the DASA Space-to-Innovate Phase I competition to develop a III-V barrier-diode MWIR 178 

detector for space applications under grant number DSTLX1000140474. The data that support the findings of 179 

this study are available from the corresponding author upon reasonable request. 180 
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