Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run

The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration
(compiled May 18, 2021)

Abstract

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G \mu$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model which interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on $G \mu$ by one to two orders of magnitude depending on the model which is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date, $G \mu \lesssim 4 \times 10^{-15}$. In the case of cosmic strings formed at the end of inflation in the context of Grand Unified Theories, these results challenge simple inflationary models.

PACS numbers: 95.75.-z,04.30.-w

I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2] detectors have opened a new channel to observe the Universe through the detection of gravitational waves. In their first three observing runs ($\mathrm{O} 1, \mathrm{O} 2$, and the first half of O3) the LIGO Scientific Collaboration and the Virgo Collaboration have reported the detection of 50 candidate gravitational-wave events from compact binary coalescences [3]. These detections have yielded important information on the population properties of these compact binary sources [4]. In the future, groundbased detectors may discover new sources of gravitational waves [5], some of which could probe the physics of the early Universe. Cosmic strings [6] belong to this category of sources. The third observing run (O3) started on April 1, 2019, and ended on March 27, 2020, and we use the data from the LIGO-Hanford (H1), LIGO-Livingston (L1) and Virgo (V1) interferometers to place constraints on cosmic strings. These constraints are reported in this letter.

Cosmic strings are line-like topological defects - analogues of vortices in different condensed matter systems - which are formed from spontaneous symmetry breaking phase transitions (with the additional condition that the vacuum manifold has non-contractible closed curves [6-9]). In cosmology, such phase transitions may have occurred at grand unification [10], corresponding to an energy scale of about $10^{16} \mathrm{GeV}$, and more generally at lower energy scales. Thus cosmic strings, through their different observational predictions, offer a tool to probe particle physics beyond the Standard Model at energy scales much above the ones reached by accelerators. In particular, the production of gravitational waves by cosmic strings $[11,12]$ is one of the most promising observational signatures accessible by ground-based detectors.

The width of the string, of the order of the energy scale of the transition, is generally negligible compared to the
cosmological scales over which it extends. This limit is well described by the Nambu-Goto action. Nambu-Goto strings [7] are parameterized by a dimensionless quantity: the string tension $G \mu$ related to the string formation energy scale $\eta, G \mu \sim\left(\eta / M_{\mathrm{Pl}}\right)^{2}$, where G is Newton's constant, M_{Pl} is the Planck mass, μ denotes the string linear mass density [13]; we set the speed of light $c=1$. In an expanding background, such as a radiation or dominated era, a cosmic string network relaxes towards a scaling solution - a self-similar, attractor solution in which all typical loop lengths are proportional to cosmic time, or equivalently they scale with the Hubble radius. Super-horizon (also called infinite) strings reach this scaling solution [14-16] being streched by the expansion of the Universe and by losing energy through the formation of sub-horizon (loop) strings, which consequently lead to a cascade of smaller loops eventually decaying through emission of gravitational waves [12, 17, 18]. In this paper we focus on the gravitational waves emitted by the network of loops. The length distribution of loops will therefore be crucial in determining the gravitationalwave signatures. We consider different loop distribution models which have been studied in the literature; they differ in the way they model the production and cascade of loops from the infinite string network.

Cosmic string loops oscillate periodically in time, emitting gravitational waves with power [11] $P_{\mathrm{gw}}=\Gamma_{\mathrm{d}} G \mu^{2}$ and decay in a lifetime $\ell / \gamma_{\mathrm{d}}$, where Γ_{d} is a numerical factor ($\Gamma_{\mathrm{d}} \sim 50$ [19]), ℓ is the invariant loop length and $\gamma_{\mathrm{d}}=\Gamma_{d} G \mu$ is the gravitational-wave length scale measured in units of time [20]. The high-frequency $(f \ell \gg 1$, where f denotes frequency) gravitational-wave spectrum of an oscillating loop is dominated by bursts emitted by string features called cusps and kinks [21-23]. Cusps [24] are points on the string that briefly travel at the speed of light; they are generic features for smooth loops. Kinks are discontinuities in the tangent vector of the string that propagate at the speed of light. They appear in pairs as
the result of collisions between two cosmic strings and are chopped off when a loop forms, hence a loop can contain any integer number of kinks. Numerical simulations of Nambu-Goto strings have shown that kinks accumulate over the cosmological evolution [14-16], while the number of cusps per loop is yet undetermined.

Cusps are short-lived and produce beamed gravitational waves in the forward direction of the cusp, while left-moving (right-moving) kinks propagate around the string, creating gravitational waves with a fan-like emission (like a lighthouse) in the directions generated by right-moving (left-moving) waves. Additionally, the collision of two kinks is expected to radiate gravitational waves isotropically. We report here searches for gravitational waves produced by cusps, kinks and kink-kink collisions, using O3 LIGO-Virgo data. In addition to distinct individual bursts, the incoherent superposition of weaker gravitational-wave bursts from cosmic strings produced over the history of the Universe would create a stochastic gravitational-wave background [23, 25].

Cosmic strings emit gravitational waves with a wide range of frequencies that can be searched by other means, including the cosmic microwave background [26], Big Bang nucleosynthesis [27] and pulsar timing arrays [2830], see also e.g., [31-33].

The gravitational-wave emission from cosmic string loops is introduced in Sec. II. We consider two simulationbased models [34, 35] (labeled A and B) for the loop distribution. We further develop a third model (labeled C) which interpolates between the other two models. We derive the burst rates and the dimensionless energy density in Sec. II. Individual gravitational-wave bursts are searched in O3 data with a dedicated analysis presented in Sec. III. The incoherent superposition of bursts from cusps, kinks and kink-kink collisions, produces a stationary and nearly Gaussian stochastic background of gravitational waves. We search O3 data for this background and the results, detailed in [36], are summarized in Sec. IV. Both the burst and stochastic background searches yield no detections. Combining their sensitivities, we constrain two cosmic string parameters in Sec. V: the string tension $G \mu$ and the number of kinks per loop. We provide a table listing the meanings of symbols used in this study in Supplemental Material.

II. GRAVITATIONAL WAVES FROM COSMIC STRING LOOPS

Gravitational waves are produced by cusps, kinks and kink-kink collisions on cosmic string loops. The strain waveforms are linearly polarized and have been calculated in [21-23]. For a loop of length ℓ at redshift z, they are power-law functions in the frequency domain for the starin [37]:

$$
\begin{equation*}
h_{i}(\ell, z, f)=A_{i}(\ell, z) f^{-q_{i}} \tag{1}
\end{equation*}
$$

where $i=\{\mathrm{c}, \mathrm{k}, \mathrm{kk}\}$ identifies the cusp, kink, and kinkkink collision cases. The power-law indices are $q_{\mathrm{c}}=4 / 3$, $q_{\mathrm{k}}=5 / 3, q_{\mathrm{kk}}=2$ and the amplitude A_{i} is [22]

$$
\begin{equation*}
A_{i}(\ell, z)=g_{1, i} \frac{G \mu \ell^{2-q_{i}}}{(1+z)^{q_{i}-1} r(z)} \tag{2}
\end{equation*}
$$

where $r(z)$ is the comoving distance to the loop. We adopt the cosmological model used in [37]; it is encoded in three functions $\varphi_{r}(z), \varphi_{V}(z)$, and $\varphi_{t}(z)$ (see Appendix A of [37]). The proper distance, the proper volume element and the proper time are $r(z)=\varphi_{r}(z) / H_{0}$, $\mathrm{d} V(z)=\varphi_{V}(z) / H_{0}^{3} \mathrm{~d} z$, and $t(z)=\varphi_{t}(z) / H_{0}$ respectively, where $H_{0}=67.9 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [38]. The prefactor $g_{1, i}$ is [39]: $g_{1, \mathrm{c}}=8 / \Gamma^{2}(1 / 3) \times(2 / 3)^{2 / 3} \approx 0.85$, $g_{1, \mathrm{k}}=2 \sqrt{2} / \pi / \Gamma(1 / 3) \times(2 / 3)^{2 / 3} \approx 0.29$, and $g_{1, \mathrm{kk}}=$ $1 / \pi^{2} \approx 0.10$, where Γ is the Gamma function [40].

Cusps and kinks emit gravitational waves in highly concentrated beams. Cusps are transient and produce a beam along a single direction, while kinks propagate around the loop, beaming over a fan-like range of directions. The beam opening angle is

$$
\begin{equation*}
\theta_{m}=\left(g_{2} f(1+z) \ell\right)^{-1 / 3} \tag{3}
\end{equation*}
$$

where $g_{2}=\sqrt{3} / 4$ [39]. To guarantee self-consistency (validity of the waveform), we require that $\theta_{m}<1 \mathrm{rad}$, which is equivalent to setting a lower limit on the frequency for a fixed loop length. For kink-kink collisions the gravitational-wave emission is isotropic [41].

The burst rate of type i, per unit loop size and per unit volume, can be decomposed into four factors:

$$
\begin{equation*}
\frac{\mathrm{d} R_{i}}{\mathrm{~d} \ell \mathrm{~d} V}=\frac{2}{\ell} N_{i} \times n(\ell, t) \times \Delta_{i} \times(1+z)^{-1} \tag{4}
\end{equation*}
$$

The first factor accounts for an average of N_{i} gravitational-wave burst events of type i produced per loop oscillation time periodicity $\ell / 2$. The second factor stands for the number of loops per unit loop size and per unit volume at cosmic time t

$$
\begin{equation*}
n(\ell, t)=\frac{\mathrm{d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}(\ell, t) \tag{5}
\end{equation*}
$$

The third factor, Δ_{i}, reflects that only a fraction of burst events can be effectively detected due to the beamed emission of gravitational waves with respect to the 4π solid angle. The gravitational-wave emission within a cone for cusps, a fan-like range of directions for kinks and all directions for kink-kink collisions can be conveniently absorbed into a single beaming fraction expression: $\Delta_{i}=\left(\theta_{m} / 2\right)^{3\left(2-q_{i}\right)}$. Finally the last factor shows that the burst emission rate is red-shifted by $(1+z)^{-1}$.

The burst rate at redshift z is then obtained by integrating over all loop sizes,

$$
\begin{equation*}
\frac{\mathrm{d} R_{i}}{\mathrm{~d} z}=\frac{\varphi_{V}(z)}{H_{0}^{3}(1+z)} \int_{\ell_{\min }}^{\ell_{\max }} \mathrm{d} \ell \frac{2 N_{i}}{\ell} n(\ell, t) \Delta_{i} \tag{6}
\end{equation*}
$$

Introducing the dimensionless loop size parameter $\gamma \equiv$ ℓ / t, Eq. 6 reads:

$$
\begin{align*}
\frac{\mathrm{d} R_{i}}{\mathrm{~d} z}(z, f)= & \frac{\phi_{V}(z)}{H_{0}^{3}(1+z)} \\
& \times \int_{\gamma_{\min }(z, f)}^{\gamma_{\max }(z)} \mathrm{d} \gamma \frac{2 N_{i}}{\gamma} n(\gamma, z) \Delta_{i}(\gamma, z, f) \tag{7}
\end{align*}
$$

The upper bound of the integral, $\gamma_{\max }(z)$, is derived by requiring the loop size to be smaller than the horizon size, i.e., $\gamma_{\max }=2$ and 3 for radiation and matter dominated universes, respectively [37]. The lower bound, $\gamma_{\min }$, corresponds to the fundamental frequency of a loop, i.e., $2 / \ell$, leading to $\gamma_{\min }(z, f)=2 /\left[f(1+z) \varphi_{t}(z) / H_{0}\right]$.

We consider two analytical models, labeled \mathbf{A} [34] and \mathbf{B} [35], to describe the distribution of cosmic string loops, $n(\gamma, z)$, in a scaling regime, within a Friedmann-Lemaître-Robertson-Walker metric. These models were respectively dubbed $\mathrm{M}=2$ and $\mathrm{M}=3$ in [37]. In model \mathbf{A} the number of long-lived non-self-intersecting loops of invariant length ℓ per unit volume per unit time formed at cosmic time t, is directly inferred from Nambu-Goto simulations of cosmic string networks in the radiation and matter eras. Model B is based on a different NambuGoto string simulation [42]. In this model the distribution of non-self-intersecting scaling loops is the extracted quantity. Within model \mathbf{B}, loops are formed at all sizes following a power-law specified by a parameter taking different values in the radiation and matter eras, while the scaling loop distribution is cut-off on small scales by the gravitational back-reaction scale. There is a qualitative difference between these two models, since in the latter, tiny loops are produced in a much larger amount than in the former. In addition, we will use a new model, based on [43] and labeled \mathbf{C}, which extends and encompasses both models A and B. Similarly to model B, model C assumes that the scaling loop distribution is a power-law, but leaves its slope unspecified. Given the wide parameter space opened by model \mathbf{C}, we will select two samples: models $\mathbf{C - 1}$ and $\mathbf{C - 2}$. Model $\mathbf{C - 1}$ (respectively $\mathbf{C - 2)}$ reproduces qualitatively the loop production function of model \mathbf{A} (resp. B) in the radiation era and the loop production of model \mathbf{B} (resp. A) in the matter era. We expect the addition of these two models to showcase intermediate situations in between the two simulationinferred models \mathbf{A} and \mathbf{B}. The loop distribution functions $n(\gamma, z)$ for the three models are given in the Supplemental Material [44].

For models \mathbf{A}, \mathbf{B} and \mathbf{C}, the contributions from cusps, kinks and kink-kink collisions to the gravitational-wave emission must be considered altogether. Indeed, the dimensionless decay constant Γ_{d} of a cosmic string, driving the loop size evolution, can be decomposed into three
contributions:

$$
\begin{align*}
\Gamma_{\mathrm{d}} & \equiv \frac{P_{\mathrm{gw}}}{G \mu^{2}}=\sum_{i} \frac{P_{\mathrm{gw}, i}}{G \mu^{2}} \\
& =N_{\mathrm{c}} \frac{3 \pi^{2} g_{1, \mathrm{c}}^{2}}{(2 \delta)^{1 / 3} g_{2}^{2 / 3}}+N_{\mathrm{k}} \frac{3 \pi^{2} g_{1, \mathrm{k}}^{2}}{(2 \delta)^{2 / 3} g_{2}^{1 / 3}}+N_{\mathrm{kk}} 2 \pi^{2} g_{1, \mathrm{kk}}^{2} \tag{8}
\end{align*}
$$

where $\delta=\max \left(1,1 /\left(2 g_{2}\right)\right)$, since the gravitational-wave frequency cannot be smaller than the fundamental frequency of the loop, $2 / \ell$, while the condition $\theta_{m}<1$ for cusps and kinks imposes $f>1 /\left(\ell g_{2}\right)$. Parameters $N_{\mathrm{c}}, N_{\mathrm{k}}$ are respectively the average number of cusps and kinks per oscillation. The number of kink-kink collisions per oscillation N_{kk} is $N_{\mathrm{kk}} \approx N_{\mathrm{k}}^{2} / 4$ for large N_{k}. While this equation is only an approximation when N_{k} is order unity, the kink-kink contribution is very small in this case and the error would hardly affect our results. On the other hand, it is clear that the kink-kink collision quickly dominates the gravitational-wave production when the number of kinks increases, as was also shown in [45]. Here we fix $N_{\text {c }}$ to be 1 and comment later on the effects of increasing N_{c}. The only free parameter is N_{k}; we consider $N_{\mathrm{k}}=1, \ldots, 200$, with the upper limit motivated by numerical simulations of string loops that favor $\Gamma_{\mathrm{d}} \sim 50$ [19].

The incoherent superposition of bursts from loops with all possible sizes through the history of the Universe produces a stochastic gravitational wave background (SGWB) [46]; its normalized energy density is defined as

$$
\begin{equation*}
\Omega_{\mathrm{GW}}(f)=\frac{f}{\rho_{c}} \frac{\mathrm{~d} \rho_{\mathrm{GW}}}{\mathrm{~d} f} \tag{9}
\end{equation*}
$$

where $\rho_{\mathrm{c}}=3 H_{0}^{2} c^{2} /(8 \pi G)$. The spectrum of the SGWB is [47]

$$
\begin{equation*}
\Omega_{\mathrm{GW}}(f)=\frac{4 \pi^{2}}{3 H_{0}^{2}} f^{3} \sum_{i} \int \mathrm{~d} z \int \mathrm{~d} \ell h_{i}^{2} \times \frac{\mathrm{d}^{2} R_{i}}{\mathrm{~d} z \mathrm{~d} \ell} \tag{10}
\end{equation*}
$$

The integration range is restricted by two requirements. First, the size of a loop is limited to a fraction of the Hubble radius, or equivalently of the cosmic time $\ell<\alpha t(z)$. Second, the frequency has to be larger than the lowfrequency cutoff $f \ell(1+z)>\delta$. In Fig. 1 we show examples of gravitational-wave spectra calculated with Eq. 10. The two plots at the top are derived from model \mathbf{A} and B with $N_{k} \gg 1$. The dominant contribution comes from kink-kink collisions. The lower plots show gravitationalwave spectra taking $N_{k}=1$ (left) and $N_{k}=100$ (right) and are derived from model \mathbf{C} with a given set of parameters (see Supplemental Material), i.e., $\chi_{\mathrm{rad}}=0.45$, $\chi_{\text {mat }}=0.295, c_{\mathrm{rad}}=0.15$, and $c_{\mathrm{mat}}=0.019$; the subscripts refer to matter and radiation eras, respectively. When N_{k} is large, the dominant contribution depends on the frequency band, which is a unique feature in this model. In this study, we ignore the suppression of the gravitational waves from cusps due to the primordial
black hole production as pointed out in [48]. Including such an effect leads to lower spectrum amplitudes for small N_{k}, thus reducing the sensitivity to cosmic string signals. In Fig. 1 we also show the 2σ power-law integrated (PI) curves [49] indicating the integrated sensitivity of the O3 search [36], along with projections for 2 years of the Advanced LIGO-Virgo network at design sensitivity, and the envisioned upgrade of Advanced LIGO, A $+[50]$, sensitivity after 2 years, assuming a 50% duty cycle.

III. BURST SEARCH

The O3 data set is analyzed with a dedicated burst search algorithm previously used to produce LIGO-Virgo results [37, 51, 52]. The burst analysis pipeline, as well as its O3 configuration, is described in the Supplemental Material. The search can be summarized into three analysis steps. First, we carry out a matched-filter search using the cosmic string waveform in Eq. 1. Then, resulting candidates are filtered to retain only those detected in more than one detector within a time window accounting for the difference in the gravitational-wave arrival time between detectors. Finally, double- and triple-coincident events are ranked using an approximated likelihood ratio $\Lambda(x)$, where x is a set of parameters used to discriminate true cosmic string signals from noise [53]. The burst search is performed separately for cusps, kinks and kinkkink collision waveforms, integrating $T_{\text {obs }}=273.5$ days of data when at least two detectors are operating simultaneously.

The left panel of Fig. 2 presents the cumulative distribution of coincident O3 burst events as a function of the likelihood ratio Λ for the cusp, kink and kink-kink collision searches. To estimate the background noise associated with each search, time shifts are applied to each detector strain data such that no real gravitational-wave event can be found in coincidence. For this study, we use 300 time-shifts, totaling $T_{\mathrm{bkg}}=225$ years of data containing only noise coincident events, the distribution of which is represented in the left panel of Fig. 2 with a $\pm 1 \sigma$ shaded band. The candidate events, obtained with no time shift, are all compatible with the noise distribution within $\pm 2 \sigma$. The cusp, kink and kink-kink collision waveforms are very similar, resulting in the loudest events being the same for the three searches. The ten loudest events were carefully scrutinized. They all originate from a well-known category of transient noise affecting all detectors, that are broadband and very short-duration noise events of unknown instrumental origin [54, 55].

From the non-detection result, we measure our search sensitivity to cosmic string signals by performing the burst search analysis over O3 data with injections of simulated cusp, kink and kink-collision waveforms. The amplitudes of injected signals comfortably cover the range where none to almost all the signals are detected. Other parameters (sky location, polarization angle, high-
frequency cutoff) are randomly distributed. To recover injected signals, we use the loudest-event method described in [56], where the detection threshold is set to the level of the highest-ranked event found in the search: $\log _{10}(\Lambda) \simeq 15.0,15.1$, and 15.1 for cusps, kinks, and kink-kink collisions, respectively. The resulting efficien$\operatorname{cies} \varepsilon_{i}\left(A_{i}\right)$ as a function of the signal amplitude are presented in the right panel of Fig. 2. Cusp events directed at Earth with $A_{\mathrm{c}}>2 \times 10^{-20} \mathrm{~S}^{-1 / 3}$ would have produced a result more significant than any of the ones obtained by our search, with $\sim 90 \%$ confidence. In terms of loop proper lengths, this corresponds, for example, to loops larger than $1.7 \times 10^{6}\left(G \mu / 10^{-10}\right)^{-3 / 2}$ light years at redshift 100 . The expected detection burst rate is calculated from the detection efficiency:

$$
\begin{equation*}
R_{i}=\int \frac{\mathrm{d} R_{i}}{\mathrm{~d} A_{i}}\left(A_{i}, f_{*} ; G \mu, N_{k}\right) \varepsilon_{i}\left(A_{i}\right) \mathrm{d} A_{i} \tag{11}
\end{equation*}
$$

The detectable burst rate $\mathrm{d} R_{i} / \mathrm{d} A_{i}$ is obtained from Eq. 7, which can be expressed in terms of amplitude using Eq. 2 and calculated for the lowest value of the high-frequency cutoff f_{*} which can be most abundantly observed (see Supplemental Material for details).

We assume that the occurrence of a detectable burst of gravitational waves follows a Poisson distribution with mean given by the estimated detection rate. For a set of parameters $\left(G \mu, N_{\mathrm{k}}\right)$, models which predict a detection rate larger than $2.996 / T_{\text {obs }}$ are excluded at 95%, i.e., we exclude models that predict a $>95 \%$ confidence level detection.

IV. STOCHASTIC SEARCH

A search for a stochastic gravitational wave background [46] is carried out using the LIGO and Virgo O3 data [36] where a correlated background in different interferometer pairs is sought. These results are combined with those from the previous two observing runs, O1 and O2 [37, 57, 58]. The results reported in [36] assume the normalized energy density of the stochastic background, Eq. (9) is a power-law α of the frequency:

$$
\begin{equation*}
\Omega_{\mathrm{GW}}(f)=\Omega_{\mathrm{ref}}\left(\frac{f}{f_{\mathrm{ref}}}\right)^{\alpha} \tag{12}
\end{equation*}
$$

where $f_{\text {ref }}$ denotes a reference frequency, fixed to 25 Hz , a convenient choice in the sensitive part of the frequency band. The search reported in [36] does not detect a stochastic background, and so sets upper limits depending on the value of α. The stochastic background from cosmic strings in the LIGO-Virgo frequency band is predicted to be approximately flat, setting the upper bound $\Omega_{\mathrm{GW}} \leq 5.8 \times 10^{-9}$ at the 95% credible level for a flat $\alpha=0$ background and using a log-uniform prior in Ω_{GW}; the $20-76.6 \mathrm{~Hz}$ band is responsible for 99% of this sensitivity.

Here we perform a Bayesian analysis taking into account the precise shape of the background (see Fig. 1)

FIG. 1. Predictions of the gravitational-wave energy density spectra using different models for the loop distribution function $n(\gamma, z)$ and for two values of the number of kinks per loop oscillation $N_{\mathrm{k}}, 1$ and 100 . The string tension $G \mu$ is fixed to 10^{-8}. Top-left: model A, $N_{\mathrm{k}}=100$. Top-right: $\operatorname{model} \mathbf{B}, N_{\mathrm{k}}=100$. Bottom-left: model $\mathbf{C - 1}, N_{\mathrm{k}}=1$. Bottom-right: model $\mathbf{C - 1}$, $N_{\mathrm{k}}=100$. For model C-1, we use the following model parameters (see Supplemental Material): $\chi_{\mathrm{rad}}=0.45, \chi_{\mathrm{mat}}=0.295$, $c_{\mathrm{rad}}=0.15, c_{\mathrm{mat}}=0.019$; the subscripts refer to the radiation and matter eras, respectively. We also show the energy density spectra of the three different components and 2- σ power-law integrated (PI) curves [49] for the O3 isotropic stochastic search [36], and projections for the HLV network at design sensitivity, and the A+ detectors [50].
instead of a power-law and use it to derive upper limits on the cosmic string parameters. We first calculate the log-likelihood function assuming a Gaussian distributed noise, which up to a constant is
$\ln \mathcal{L}\left(\hat{C}_{a}^{I J} \mid G \mu, N_{k}\right)=-\frac{1}{2} \sum_{I J, a} \frac{\left(\hat{C}_{a}^{I J}-\Omega_{\mathrm{GW}}^{(M)}\left(f_{a} ; G \mu, N_{k}\right)\right)^{2}}{\sigma_{I J}^{2}\left(f_{a}\right)}$.
Here $\hat{C}_{a}^{I J} \equiv \hat{C}^{I J}\left(f_{a}\right)$, with $I J$ as the detector pairs L1H1, L1-V1, and H1-V1. $\hat{C}^{I J}\left(f_{a}\right)$ and $\sigma^{2}\left(f_{a}\right)$ are, respectively, a cross-correlation estimator for the pair $I J$ and its variance at f_{a} [59]. Following the same approach as in the O1 stochastic analysis we use the frequency bins from 20 to 86 Hz [37] while higher frequencies do not contribute to the sensitivity. The spectrum, $\Omega_{\mathrm{GW}}^{(M)}\left(f_{a} ; G \mu, N_{k}\right)$ at f_{a}, is predicted by the model $M=\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ through Eq. 10.

We specify priors for the parameters in the cosmic string model, i.e., $p\left(G \mu \mid I_{G \mu}\right)$ and $p\left(N_{\mathrm{k}} \mid I_{N_{\mathrm{k}}}\right)$. The variables $I_{G \mu}$ and $I_{N_{\mathrm{k}}}$ denote the information on the distributions of $G \mu$ and N_{k}, which are determined by the-
ory predictions. For $p\left(G \mu \mid I_{G \mu}\right)$, we choose a log-uniform prior for $10^{-18} \leq G \mu \leq 10^{-6}$. The upper bound is set by the cosmic microwave background measurements [6063]. The lower bound is arbitrary, chosen for consistency with the study in [64]; we note that our results remain almost unchanged if we choose a smaller value for the lower bound on $G \mu$. For $p\left(N_{\mathrm{k}} \mid I_{N_{\mathrm{k}}}\right)$, we constrain $G \mu$ for each choice of N_{k}. Therefore the prior $p\left(N_{\mathrm{k}} \mid I_{N_{\mathrm{k}}}\right)$ is taken to be a δ-function for each value of N_{k}. The number of kinks per loop oscillation N_{k} being fixed, the posterior for $G \mu$ is calculated from Bayes' theorem:

$$
\begin{equation*}
p\left(G \mu \mid N_{\mathrm{k}}\right) \propto \mathcal{L}\left(\hat{C}_{a}^{I J} \mid G \mu, N_{\mathrm{k}}\right) p\left(G \mu \mid I_{G \mu}\right) p\left(N_{\mathrm{k}} \mid I_{N_{\mathrm{k}}}\right) \tag{14}
\end{equation*}
$$

We calculate 95% credible intervals for $G \mu$.

V. CONSTRAINTS

We show in Fig. 3 the region of the $G \mu$ and N_{k} parameter space excluded at the 95% confidence level by the burst and stochastic searches where $N_{\mathrm{c}}=1$. For

FIG. 2. Left panel: cumulative distribution of cosmic string burst candidate events produced by cusps (top), kinks (middle) and kink-kink collisions (bottom). The expected distributions from background noise are represented by $\pm 1 \sigma$ shaded areas. Right panel: the detection efficiency is measured using simulated signals, as a function of the signal amplitude for cusps, kinks and kink-kink collisions. Note that the horizontal axis measures different amplitude quantities, A_{i}, for the three types of signals, parameterized by the waveform frequency power law q_{i}.
the stochastic search (Sec. IV) we present constraints from the combined $\mathrm{O} 1+\mathrm{O} 2+\mathrm{O} 3$ data; for the burst search (Sec. III) we derive constraints from the non-detection result using O3 data, for models \mathbf{A}, \mathbf{B} and \mathbf{C}. For model \mathbf{C} we choose two sets of benchmark numbers: $\mathbf{C}-1$ where $\left(\chi_{\mathrm{rad}}, \chi_{\mathrm{mat}}\right)=(0.45,0.295)$ and \mathbf{C}-2 where $\left(\chi_{\mathrm{rad}}, \chi_{\mathrm{mat}}\right)=(0.2,0.45)$ (see the Supplemental Material).

For model A, the gravitational-wave signal is much weaker than the other models, leading to weaker constraints. Model C-2 mimics the loop production function of model \mathbf{A} in the matter era and of model \mathbf{B} in the radiation era. In the frequency band of LIGO-Virgo, the stochastic background is dominated by the contribution from loops in the radiation era, hence models \mathbf{B} and C-2 give similar results. Conversely, the spectrum from model $\mathbf{C}-1$, which mimics the loop production function of model \mathbf{A} in the radiation era and of model \mathbf{B} in the matter era, presents more subtle features. Larger values of $G \mu$ do not necessarily produce larger signals, creating structures in this figure. For an analytical understanding of these findings, see [65]. For a better understanding of the loop visibility domain in terms of redshift, see Fig. 2 of [45].

From the stochastic analysis, the following regions, depending on N_{k}, are excluded: $G \mu \gtrsim\left(9.6 \times 10^{-9}-10^{-6}\right)$ for model $\mathbf{A} ; G \mu \gtrsim(4.0-6.3) \times 10^{-15}$ for model \mathbf{B}; $G \mu \gtrsim(2.1-4.5) \times 10^{-15}$ aside from a small region where $N_{\mathrm{k}} \gtrsim 180$ for model $\mathbf{C}-1 ; G \mu \gtrsim(4.2-7.0) \times 10^{-15}$ for
model C-2.

The burst search upper limits are not as stringent as those from the stochastic search. The constraints on $G \mu$ for model \mathbf{A} are too weak to be represented in the figure. The only case where the burst analysis leads to tighter constraints, is for model C-1 and for $N_{\mathrm{k}}>70$.

Here N_{c} has been set to 1 . It was shown that N_{c} scales with the number of harmonics on the loop [66]. For large N_{c}, the decay constant Γ_{d} is enhanced, leading to a reduced lifetime of the loop. Consequently, a large N_{c} gives qualitatively the same result as increasing N_{k} : for model \mathbf{A}, the constraints are weakened, whereas for models \mathbf{B} and \mathbf{C} the bounds are insensitive to N_{c}; this has been confirmed by our numerical study.

One can also compare these results with limits obtained from pulsar timing array measurements, indirect limits from Big Bang nucleosynthesis and cosmic microwave background data [28]. Note here we do not investigate non-standard thermal history; see however, e.g. [67, 68]. Repeating the analysis done in [37] with N_{k} up to 200 , we find that for model \mathbf{A}, the strongest limit comes from pulsar timing measurements, with $G \mu \gtrsim$ 10^{-10} excluded. For model B, C-1 and C-2 the strongest upper limits are derived from this search.

FIG. 3. Exclusion regions at 95% C.L. on the cosmic string parameter space, $\left(N_{\mathrm{k}}, G \mu\right)$, derived from the stochastc search (pink) and the burst search (turquoise). Four models are considered to describe the distribution of cosmic string loops: model A (top-left), model B (top-right), model C-1 (bottom-left) and model C-2 (bottom-right). Note that the stochastic result combines the data of O1, O2 and O3 while the burst search only includes O3 data. We also report limits from other experiments: pulsar timing arrays (PTA) [28, 29], cosmic microwave background (CMB) [26] and Big Bang nucleosynthesis [27]. The notch in the SWGB constraint for Model $\mathbf{C - 1}$ is explained in Supplemental Material.

VI. CONCLUSIONS

Using data from the third observing run of Advanced LIGO and Virgo, we have performed a burst and a stochastic gravitational wave background search to constrain the tension of Nambu-Goto strings, as a function of the number of kinks per oscillation, for four loop distributions. We have tested models \mathbf{A} and \mathbf{B} already considered in the O1 and O2 analyses [58]. The current constraints on $G \mu$ are stronger by two and one orders of magnitude for models \mathbf{A} and \mathbf{B}, respectively, when fix$\operatorname{ing} N_{\mathrm{k}}=1$. In addition, we have used two variants of a new model, dubbed model \mathbf{C}, that interpolates between models \mathbf{A} and \mathbf{B}. For the first time, we have studied the effect of kink-kink interactions, which is relevant for large numbers of kinks, and investigated the effect of a large number of cusps, as both effects are favored by cosmic string simulations. In the context of cosmic strings formed at the end of an inflationary era, these results raise questions about the validity of simple inflationary models (occured between $10^{16}-10^{11} \mathrm{GeV}$) in the context of Grand Unified Thories [10], unless one invokes extra
fields in order to avoid cosmic string formation [69].
Given the current experimental results, it would seem important to intensify numerical and theoretical studies on cosmic strings. From a numerical point of view, the number of kinks and cusps should be determined. Concerning phenomenological aspects, new models, like model \mathbf{C} that interpolates between model \mathbf{A} and \mathbf{B}, should be further explored as well as models including particle physics leading to cosmic string formation in the early Universe. On the experimental side, the sensitivity of Advanced LIGO and Virgo detectors will continue to improve [50] and a fourth interferometer, KAGRA [70], will join the network.

Acknowledgments.- The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional
support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science \& Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-inAid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid

Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.

This document has been assigned the LIGO document number LIGO-P2000506.

Appendix A: Table of quantities appearing in the paper

The main quantities used in this analysis and their meaning are listed in Table A.

Appendix B: Loop distributions

For model \mathbf{A}, the loop distribution is given by the sum of

$$
\begin{align*}
& t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V} \mathrm{rad} \\
& \quad \times \begin{cases}\Theta(0.18 t-\ell) & t<t_{\mathrm{eq}} \\
\left.\Theta[\gamma)_{\mathrm{d}}\right)^{5 / 2} & 0.18 \times{ }_{\mathrm{rad}}^{3 / 4} \\
t^{3 / 2}(1+z)^{3} \\
\Theta\left[0.18 t_{\mathrm{eq}}-\ell+\gamma_{\mathrm{d}}\left(t-t_{\mathrm{eq}}\right)\right] & t>t_{\mathrm{eq}}\end{cases} \tag{B1}
\end{align*}
$$

for loops produced during the radiation era, and

$$
\begin{align*}
t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}{ }_{\text {mat }}= & \frac{0.27-0.45 \gamma^{0.31}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{2}} \Theta(0.18-\gamma) \\
& \times \Theta\left[\ell+\gamma_{\mathrm{d}}\left(t-t_{\mathrm{eq}}\right)-0.18 t_{\mathrm{eq}}\right] \tag{B2}
\end{align*}
$$

for loops produced during the matter era. Note that $t_{\text {eq }}$ is the time of the radiation to matter transition and that $\gamma_{\mathrm{d}}=\Gamma_{\mathrm{d}} G \mu$.

Models \mathbf{B} and \mathbf{C} rely on the assumption that loops are produced at all sizes with a given power-law. The loop production \mathcal{P} is parametrized by two additional parameters (c, χ)

$$
\begin{equation*}
t^{5} \mathcal{P}=c\left(\frac{\ell}{t}\right)^{2 \chi-3} \tag{B3}
\end{equation*}
$$

and is cutoff on scales smaller than the gravitational backreaction scale $\gamma_{\mathrm{c}} \approx 20(G \mu)^{1+2 \chi}$. The parameter χ controls the tilt of the loop production function, low values of χ favor the production of very small loops whereas high values of χ can be approximated by a Dirac delta loop production function on the large scales, i.e., to the one-scale model. For model \mathbf{B}, the loop distribution is the sum of

$$
t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}{ }_{\mathrm{rad}}= \begin{cases}\frac{0.08}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{3-2} \chi_{\mathrm{rad}}} & \gamma_{\mathrm{d}}<\gamma \tag{B4}\\ \frac{0.08\left(1 / 2-2 \chi_{\mathrm{rad}}\right)}{\left(2-2 \chi_{\mathrm{rad}}\right) \gamma_{\mathrm{d}} \gamma^{2-2 \chi_{\mathrm{rad}}}} & \gamma_{\mathrm{c}}<\gamma<\gamma_{\mathrm{d}} \\ \frac{0.08\left(1 / 2-2 \chi_{\mathrm{rad}}\right)}{\left(2-2 \chi_{\mathrm{rad}}\right) \gamma_{\mathrm{d}} \gamma_{c}^{2-2} \chi_{\mathrm{rad}}} & \gamma<\gamma_{\mathrm{c}}\end{cases}
$$

G	Gravitational constant
z	redshift
μ	string tension
N_{c}	average number of cusps per loop oscillation
N_{k}	number of kinks
Γ_{d}	dimensionless decay constant of cosmic strings
g_{1}, g_{2}	dimensionless prefactors for the GW amplitude and beaming angle
ℓ	cosmic string loop length
$\gamma \equiv \ell / t$	loop size parameter
θ_{m}	beaming angle for GW emission
P_{gw}	power of GW emission of cosmic strings
R_{i}	GW burst rate
$n(\ell, t)$	number density of cosmic string loops with length ℓ at t
$\Omega_{\mathrm{GW}}(f)$	present fractional GW energy density spectrum
\mathcal{L}	likelihood used in the Bayesian analysis
$p($ parameters $\mid I)$	probability density distribution of "parameters" given prior information "I"

TABLE I. Table of quantities appearing in the paper.
for loops produced during the radiation era,

$$
t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}{ }_{\text {mat }}= \begin{cases}\frac{0.015}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{3-2 \chi_{\mathrm{mat}}}} & \gamma_{\mathrm{d}}<\gamma \tag{B5}\\ \frac{0.015\left(1-2 \chi_{\mathrm{mat}}\right)}{\left(2-2 \chi_{\mathrm{mat}}\right) \gamma_{\mathrm{d}} \gamma^{2-2 \chi_{\mathrm{mat}}}} & \gamma_{\mathrm{c}}<\gamma<\gamma_{\mathrm{d}} \\ \frac{0.015\left(1-2 \chi_{\mathrm{mat}}\right)}{\left(2-2 \chi_{\mathrm{mat}}\right) \gamma_{\mathrm{d}} \gamma_{c}^{2-2 \chi_{\mathrm{mat}}}} & \gamma<\gamma_{\mathrm{c}}\end{cases}
$$

for loops produced during the matter era, and

$$
\left.\begin{array}{rl}
t^{4}{\frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}}_{\mathrm{rad}-\mathrm{mat}}= & \left(\frac{t}{t_{\mathrm{eq}}}\right)^{3}\left(\frac{1+z}{1+z_{\mathrm{eq}}}\right)^{3} t_{\mathrm{eq}}^{4} \\
& \times \frac{\mathrm{d}^{2} \mathcal{N}^{(3)}}{\mathrm{d} \ell \mathrm{~d} V} \mathrm{rad} \tag{B6}
\end{array} \frac{\gamma t+\gamma_{\mathrm{d}}\left(t-t_{\mathrm{eq}}\right)}{t_{\mathrm{eq}}}\right],
$$

for loops produced during the radiation era and decaying during the matter era. The subscripts ${ }_{\text {rad }}$ and mat refer to the radiation- and matter-dominated eras, respectively, and γ_{c} is the gravitational back-reaction scale.

For model C, the loop distribution can be approximated in the radiation era as

$$
\begin{align*}
& t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}{ }_{\mathrm{rad}}=\frac{c_{\mathrm{rad}}}{1 / 2-2 \chi_{\mathrm{rad}}} \\
& \times \begin{cases}\left(\gamma+\gamma_{\mathrm{d}}\right)^{2 \chi_{\mathrm{rad}}-3}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{rad}}-1 / 2}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{5 / 2}} & \gamma_{\mathrm{d}}<\gamma \\
\frac{\gamma^{2 \chi_{\mathrm{rad}}-2}}{\left(2-2 \chi_{\mathrm{rad}}\right) \gamma_{\mathrm{d}}}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{rad}}-1 / 2}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{5 / 2}} & \gamma_{\mathrm{c}}<\gamma<\gamma_{\mathrm{d}} \\
\frac{\gamma_{\mathrm{c}}^{2} \chi_{\mathrm{rad}}-2}{\left(2-2 \chi_{\mathrm{rad}}\right) \gamma_{\mathrm{d}}}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{rad}}-1 / 2}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{5 / 2}} & \gamma<\gamma_{\mathrm{c}}\end{cases} \tag{B7}
\end{align*}
$$

and in the matter era as

$$
\begin{align*}
& t^{4} \frac{\mathrm{~d}^{2} \mathcal{N}}{\mathrm{~d} \ell \mathrm{~d} V}=\frac{c_{\mathrm{mat}}}{1-2 \chi_{\mathrm{mat}}} \\
& \times \begin{cases}\left(\gamma+\gamma_{\mathrm{d}}\right)^{2 \chi_{\mathrm{mat}}-3}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{mat}}-1}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{2}} & \gamma_{\mathrm{d}}<\gamma \\
\frac{\gamma^{2 \chi_{\mathrm{mat}}-2}}{\left(2-2 \chi_{\mathrm{mat}}\right) \gamma_{\mathrm{d}}}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{mat}}-1}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{2}} & \gamma_{c}<\gamma<\gamma_{\mathrm{d}} \\
\frac{\gamma_{\mathrm{c}}^{2 \chi_{\mathrm{mat}}-2}}{\left(2-2 \chi_{\mathrm{mat}}\right) \gamma_{\mathrm{d}}}-\frac{\gamma_{\infty}^{2 \chi_{\mathrm{mat}}-1}}{\left(\gamma+\gamma_{\mathrm{d}}\right)^{2}} & \gamma<\gamma_{c}\end{cases} \tag{B8}
\end{align*}
$$

where γ_{∞} is the size of the largest loops in scaling units.

Appendix C: The burst analysis pipeline

The cosmic string burst search pipeline is divided into three main analysis steps. First, the cosmic string gravitational waveform is searched in LIGO and Virgo data using match-filtering techniques. A bank of waveform templates is chosen to match the expected signal in the frequency domain:

$$
\begin{equation*}
\tau_{i, j}(f)=A f^{-q_{i}} \Theta\left(f_{j}-f\right) \Theta\left(f-f_{l}\right) \tag{C1}
\end{equation*}
$$

The spectral index q_{i} is taken from Eq. 1 for cusps, kinks or kink-kink collisions. The waveform frequency f is limited in range using the Heaviside function Θ. The lowfrequency cut-off f_{l}, resulting from the size of the feature producing the gravitational waves, takes values well below the sensitive band of the LIGO and Virgo detectors. We take $f_{l}=16 \mathrm{~Hz}$. The high-frequency cutoff f_{j} is a consequence of the gravitational-wave emission being observable only within a (frequency-dependent) viewing angle θ_{m}, given in Eq. 3. The angle between the line of sight and the gravitational-wave direction, θ, must be smaller than $\theta_{m} / 2$, yielding $f<\left[2 g_{2} \ell(1+z) \theta^{3}\right]^{-1}$. This highfrequency cutoff is unknown and is considered as a free parameter, taking discrete values indexed by j. When searching for gravitational waves produced by cusps and kinks, we use 31 templates with high-frequency cutoff values distributed between 30 Hz and 4096 Hz and spaced in such a way that we guarantee less than 0.1% loss in the signal-to-noise ratio due to template mismatch. The cutoffs f_{j} are sparser at higher frequencies, with 17 templates below 100 Hz . For kink-kink collisions, the gravitational-wave radiation is isotropic and a single template covering the entire frequency band is used.

The standard matched filter output for template $\tau_{i, j}$ on the gravitational wave data $h_{\text {det }}$ is

$$
\begin{equation*}
\rho_{i, j, \mathrm{det}}(t)=4 \Re \int_{0}^{\infty} \frac{\tau_{i, j}^{*}(f) h_{\mathrm{det}}(f)}{S_{n}(f)} \exp (2 \sqrt{-1} \pi f t) \mathrm{d} f \tag{C2}
\end{equation*}
$$

Here, $S_{n}(f)$ is the single-sided noise power spectral density of the detector. It is estimated locally over a few minutes of detector data. The normalization parameter A in each template is determined by [71]

$$
\begin{equation*}
4 \Re \int_{0}^{\infty} \frac{\tau_{i, j}^{*}(f) \tau_{i, j}(f)}{S_{n}(f)} \exp (2 \sqrt{-1} \pi f t) \mathrm{d} f=1 \tag{C3}
\end{equation*}
$$

The O3 LIGO-Virgo dataset is analyzed in five consecutive chunks of data to account for the detectors' noise evolution over the entire run. This is because the statistic we use to rank events better separates the signal from noise when the characteristics of the noise are relatively unchanged. The chunk boundaries are defined by sudden changes of sensitivity of one detector and by commissioning interventions, including the 1-month commissioning break in October 2019. The signal-to-noise ratio timeseries $\rho_{i, j, \text { det }}(t)$ is computed for each detector, accumulating a total of 245 days, 252 days and 250 days for the L1, H1 and V1 detectors respectively. The signal-to-noise ratio time-series are required to be above 3.75 and are clustered among templates. If multiple templates trigger within a 0.1 second window, we cluster the event as a single trigger, the parameters of which are derived from the highest signal-to-noise ratio template in the cluster.

After the match-filtering step, a time coincidence is performed pair-wise between the triggers of each detector using a time window wide enough to account for the maximum light-travel time between detectors and calibration time uncertainties of 8 ms . A resulting set of

FIG. 4. The gravitational-wave spectra for model C-1 for different choices of $G \mu$ where N_{k} is fixed to be 90 . The gray band corresponds to the frequency range $(20-86) \mathrm{Hz}$ used in the analysis.
double- and triple-coincident events is obtained when at least two detectors are taking data in nominal conditions, yielding a total observation time of $T_{\text {obs }}=273.5$ days.

Finally, to discriminate astrophysical signals from background noise, we apply the multivariate method described in [53], which uses a set of simulated cosmic string events and typical noise events to statistically infer the
probability for a coincident event to be signal or noise. Hence, a likelihood ratio, Λ, is constructed with parameters characterizing the event [52]. For the O3 analysis, we introduce for the first time the event duration as a new discriminating variable. The event duration is defined as the duration for which $\rho_{i, j, \operatorname{det}}(t)$ remains above threshold considering all templates j and using a tolerance of 100 ms . Using this parameter, coupled to the signal-to-noise ratio, allows us to reject a large population of long-duration and low signal-to-noise ratio transient noise events contributing to the search background.

Appendix D: Feature in SGWB constraint for Model C-1

The stochastic gravitational-wave constraint for model C-1 has a special feature, shown in Fig. 3. The appearance of this notch, when $N_{\mathrm{k}}>70$, is induced by the unique behavior of the gravitational-wave spectrum in this model. In Fig. 4 we compare the corresponding spectrum for different choices of $G \mu$ with N_{k} fixed to be 90 . The cosmic string network produces a stochastic background in a wide frequency range, while LIGO/Virgo is only sensitive to a very narrow frequency window labeled by the grey band. As $G \mu$ increases, the stochastic power spectrum within the LIGO/Virgo window does not change monotonically. This leads to a non-exclusion in a small range of $G \mu$ when $N_{\mathrm{k}}>70$. The exact location of the notch is determined through a detailed Bayesian analysis presented in the main text.
[1] J. Aasi et al., Classical and Quantum Gravity 32, 074001 (2015).
[2] F. Acernese et al., Classical and Quantum Gravity 32, 024001 (2015).
[3] R. Abbott et al. (LIGO Scientific, Virgo), (2020), arXiv:2010.14527 [gr-qc].
[4] R. Abbott et al. (LIGO Scientific, Virgo), (2020), arXiv:2010.14533 [astro-ph.HE].
[5] K. Riles, Progress in Particle and Nuclear Physics 68, 1 (2013).
[6] T. W. B. Kibble, J.Phys.A A 9, 1387 (1976).
[7] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
[8] M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58, 477 (1995), arXiv:hep-ph/9411342 [hep-ph].
[9] T. Vachaspati, L. Pogosian, and D. Steer, Scholarpedia 10, 31682 (2015), arXiv:1506.04039 [astro-ph.CO].
[10] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys.Rev. D 68, 103514 (2003), arXiv:hep-ph/0308134 [hep-ph].
[11] T. Vachaspati and A. Vilenkin, Phys. Rev. D31, 3052 (1985).
[12] M. Sakellariadou, Phys. Rev. D42, 354 (1990), [Erratum: Phys. Rev.D43,4150(1991)].
[13] Cosmic superstrings [72], the analogues of cosmic strings arising from string theory, are characterized also by the intercommutation probability which can take values between 10^{-3} and 1 for fundamental superstrings (Fstrings) and between 10^{-1} and 1 for D-branes extended in one macroscopic dimension (D-strings). In our present study we concentrate on field theoretical objects [73], and in particular Nambu-Goto strings with intercommutation probability of order one.
[14] D. P. Bennett and F. R. Bouchet, Phys.Rev.Lett. 60, 257 (1988).
[15] B. Allen and E. Shellard, Phys. Rev. Lett. 64, 119 (1990).
[16] M. Sakellariadou and A. Vilenkin, Phys. Rev. D 42, 349 (1990).
[17] A. Vilenkin, Phys.Lett. B 107, 47 (1981).
[18] C. Hogan and M. Rees, Nature 311, 109 (1984).
[19] B. Allen and E. Shellard, Phys. Rev. D 45, 1898 (1992).
[20] Super-horizon cosmic strings also emit gravitational waves, due to their small-scale structure resulting from string intercommutations [12, 74, 75].
[21] T. Damour and A. Vilenkin, Phys.Rev.Lett. 85, 3761 (2000), arXiv:gr-qc/0004075 [gr-qc].
[22] T. Damour and A. Vilenkin, Phys.Rev. D 64, 064008 (2001), arXiv:gr-qc/0104026 [gr-qc].
[23] T. Damour and A. Vilenkin, Phys.Rev. D 71, 063510 (2005), arXiv:hep-th/0410222 [hep-th].
[24] We also include the so-called pseudocusps [76], defined as cuspy features moving with a velocity close to the speed of light.
[25] X. Siemens, V. Mandic, and J. Creighton, Phys. Rev. Lett. 98, 111101 (2007), arXiv:astro-ph/0610920 [astro$\mathrm{ph}]$.
[26] L. Pagano, L. Salvati, and A. Melchiorri, Phys. Lett. B760, 823 (2016), arXiv:1508.02393 [astro-ph.CO].
[27] R. H. Cyburt, B. D. Fields, K. A. Olive, and E. Skillman, Astropart. Phys. 23, 313 (2005), arXiv:astroph/0408033.
[28] P. D. Lasky et al., Phys. Rev. X6, 011035 (2016), arXiv:1511.05994 [astro-ph.CO].
[29] K. Aggarwal et al., Astrophys. J. 880, 2 (2019), arXiv:1812.11585 [astro-ph.GA].
[30] Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE].
[31] J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO].
[32] S. Blasi, V. Brdar, and K. Schmitz, Phys. Rev. Lett. 126, 041305 (2021), arXiv:2009.06607 [astro-ph.CO].
[33] W. Buchmuller, V. Domcke, and K. Schmitz, Phys. Lett. B 811, 135914 (2020), arXiv:2009.10649 [astro-ph.CO].
[34] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Phys. Rev. D89, 023512 (2014), arXiv:1309.6637 [astroph.CO].
[35] L. Lorenz, C. Ringeval, and M. Sakellariadou, JCAP 1010, 003 (2010), arXiv:1006.0931 [astro-ph.CO].
[36] B. Abbott et al. (LIGO Scientific Collaboration, Virgo), LIGO-DCC: P2000314
[37] B. Abbott et al. (LIGO Scientific Collaboration, Virgo), Phys. Rev. D 97, 102002 (2018), arXiv:1712.01168 [grqc].
[38] P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).
[39] A. C. Jenkins and M. Sakellariadou, Phys. Rev. D98, 063509 (2018), arXiv:1802.06046 [astro-ph.CO].
[40] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, seventh ed. (Elsevier/Academic Press, Amsterdam, 2007) pp. xlviii +1171 , translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX).
[41] P. Binetruy, A. Bohe, T. Hertog, and D. A. Steer, Phys. Rev. D 80, 123510 (2009), arXiv:0907.4522 [hep-th].
[42] C. Ringeval, M. Sakellariadou, and F. Bouchet, JCAP 0702, 023 (2007), arXiv:astro-ph/0511646 [astro-ph].
[43] P. Auclair, C. Ringeval, M. Sakellariadou, and D. Steer, JCAP 06, 015 (2019), arXiv:1903.06685 [astro-ph.CO].
[44] See Supplemental Material for more descriptions on the cosmic string loop distributions, and the burst analysis pipeline.
[45] C. Ringeval and T. Suyama, JCAP 12, 027 (2017), arXiv:1709.03845 [astro-ph.CO].
[46] N. Christensen, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc].
[47] S. Olmez, V. Mandic, and X. Siemens, Phys.Rev. D 81, 104028 (2010), arXiv:1004.0890 [astro-ph.CO].
[48] A. C. Jenkins and M. Sakellariadou, (2020), arXiv:2006.16249 [astro-ph.CO].
[49] E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013).
[50] B. Abbott et al. (KAGRA, LIGO Scientific Collaboration, Virgo), Living Rev. Rel. 23, 3 (2020), arXiv:1304.0670 [gr-qc].
[51] B. Abbott et al. (LIGO Scientific Collaboration, Virgo), Phys. Rev. D 100, 024017 (2019), arXiv:1905.03457 [grqc].
[52] J. Aasi et al. (Virgo, LIGO Scientific Collaboration), Phys. Rev. Lett. 112, 131101 (2014), arXiv:1310.2384 [gr-qc].
[53] K. C. Cannon, Class.Quant.Grav. 25, 105024 (2008).
[54] B. P. Abbott et al. (Virgo, LIGO Scientific Collaboration), Class. Quant. Grav. 33, 134001 (2016), arXiv:1602.03844 [gr-qc].
[55] M. Cabero et al., Class. Quant. Grav. 36, 15 (2019), arXiv:1901.05093 [physics.ins-det].
[56] P. R. Brady, J. D. Creighton, and A. G. Wiseman, Class.Quant.Grav. 21, S1775 (2004), arXiv:grqc/0405044 [gr-qc].
[57] B. P. Abbott et al. (Virgo, LIGO Scientific Collaboration), Phys. Rev. Lett. 118, 121101 (2017), arXiv:1612.02029 [gr-qc].
[58] B. Abbott et al. (LIGO Scientific Collaboration, Virgo), Phys. Rev. D 100, 061101 (2019), arXiv:1903.02886 [grqc].
[59] V. Mandic, E. Thrane, S. Giampanis, and T. Regimbau, Physical Review Letters 109 (2012), 10.1103/physrevlett.109.171102.
[60] P. Ade et al. (Planck Collaboration), (2013), arXiv:1303.5085 [astro-ph.CO].
[61] J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh, and M. Kunz, JCAP 1610, 042 (2016), arXiv:1609.03386 [astro-ph.CO].
[62] S. Henrot-Versille et al., Class. Quant. Grav. 32, 045003 (2015), arXiv:1408.5299 [astro-ph.CO].
[63] A. Lazanu and P. Shellard, JCAP 1502, 024 (2015), arXiv:1410.5046 [astro-ph.CO].
[64] P. Auclair et al., JCAP 04, 034 (2020), arXiv:1909.00819 [astro-ph.CO].
[65] P. G. Auclair, JCAP 11, 050 (2020), arXiv:2009.00334 [astro-ph.CO].
[66] D. Pazouli, A. Avgoustidis, and E. J. Copeland, (2020), arXiv:2008.13693 [hep-th].
[67] Y. Cui, M. Lewicki, D. E. Morrissey, and J. D. Wells, Phys. Rev. D 97, 123505 (2018), arXiv:1711.03104 [hepph .
[68] Y. Gouttenoire, G. Servant, and P. Simakachorn, JCAP 07, 032 (2020), arXiv:1912.02569 [hep-ph].
[69] J. Urrestilla, A. Achucarro, and A. C. Davis, Phys. Rev. Lett. 92, 251302 (2004), arXiv:hep-th/0402032.
[70] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto (The KAGRA Collaboration), Phys. Rev. D 88, 043007 (2013).
[71] X. Siemens, J. Creighton, I. Maor, S. Ray Majumder, K. Cannon, et al., Phys.Rev. D 73, 105001 (2006), arXiv:gr-qc/0603115 [gr-qc].
[72] J. Polchinski, AIP Conf. Proc. 743, 331 (2004), arXiv:hep-th/0410082.
[73] M. Sakellariadou, Nucl. Phys. B Proc. Suppl. 192-193, 68 (2009), arXiv:0902.0569 [hep-th].
[74] M. Hindmarsh, Phys. Lett. B251, 28 (1990).
[75] Y. Matsui, K. Horiguchi, D. Nitta, and S. Kuroyanagi, JCAP 1611, 005 (2016), arXiv:1605.08768 [astroph.CO].
[76] M. J. Stott, T. Elghozi, and M. Sakellariadou, Phys. Rev. D 96, 023533 (2017), arXiv:1612.07599 [hep-th].

Authors

R. Abbott, ${ }^{1}$ T. D. Abbott,,${ }^{2}$ S. Abraham, ${ }^{3}$ F. Acernese, ${ }^{4,5}$ K. Ackley, ${ }^{6}$ A. Adams, ${ }^{7}$ C. Adams, ${ }^{8}$ R. X. Adhikari, ${ }^{1}$
V. B. Adya, ${ }^{9}$ C. Affeldt, ${ }^{10,11}$ D. Agarwal, ${ }^{3}$ M. Agathos, ${ }^{12,13}$ K. Agatsuma, ${ }^{14}$ N. Aggarwal, ${ }^{15}$ O. D. Aguiar, ${ }^{16}$ L. Aiello, ${ }^{17,18,19}$ A. Ain, ${ }^{20,21}$ P. Ajith,,${ }^{22}$ T. Akutsu, ${ }^{23,24}$ K. M. Aleman, ${ }^{25}$ G. Allen, ${ }^{26}$ A. Allocca, ${ }^{27,5}$ P. A. Altin, ${ }^{9}$ A. Amato, ${ }^{28}$ S. Anand, ${ }^{1}$ A. Ananyeva, ${ }^{1}$ S. B. Anderson, ${ }^{1}$ W. G. Anderson, ${ }^{29}$ M. Ando, ${ }^{30,31}$ S. V. Angelova, ${ }^{32}$ S. Ansoldi, ${ }^{33,34}$ J. M. Antelis, ${ }^{35}$ S. Antier, ${ }^{36}$ S. Appert, ${ }^{1}$ Koya Arai, ${ }^{37}$ Koji Arai, ${ }^{1}$ Y. Arai, ${ }^{37}$ S. Araki, ${ }^{38}$ A. Araya, ${ }^{39}$ M. C. Araya, ${ }^{1}$ J. S. Areeda, ${ }^{25}$ M. Arène, ${ }^{36}$ N. Aritomi, ${ }^{30}$ N. Arnaud,,${ }^{40,41}$ S. M. Aronson, ${ }^{42}$ H. Asada, ${ }^{43}$ Y. Asali, ${ }^{44}$ G. Ashton, ${ }^{6}$ Y. Aso,,${ }^{45,46}$ S. M. Aston, ${ }^{8}$ P. Astone,,${ }^{47}$ F. Aubin, ${ }^{48}$ P. Auclair, ${ }^{36}$ P. Aufmuth, ${ }^{10,11}$ K. AultONeal,,${ }^{35}$
C. Austin, ${ }^{2}$ S. Babak, ${ }^{36}$ F. Badaracco, ${ }^{18,19}$ M. K. M. Bader, ${ }^{49}$ S. Bae,,${ }^{50}$ Y. Bae, ${ }^{51}$ A. M. Baer, ${ }^{7}$ S. Bagnasco, ${ }^{52}$ Y. Bai, ${ }^{1}$ L. Baiotti, ${ }^{53}$ J. Baird, ${ }^{36}$ R. Bajpai, ${ }^{54}$ M. Ball, ${ }^{55}$ G. Ballardin, ${ }^{41}$ S. W. Ballmer, ${ }^{56}$ M. Bals,,${ }^{35}$ A. Balsamo, ${ }^{7}$ G. Baltus, ${ }^{57}$ S. Banagiri, ${ }^{58}$ D. Bankar, ${ }^{3}$ R. S. Bankar, ${ }^{3}$ J. C. Barayoga, ${ }^{1}$ C. Barbieri, ${ }^{59,60,61}$ B. C. Barish, ${ }^{1}$ D. Barker, ${ }^{62}$ P. Barneo, ${ }^{63}$ S. Barnum, ${ }^{64}$ F. Barone,,${ }^{65,5}$ B. Barr, ${ }^{66}$ L. Barsotti, ${ }^{64}$ M. Barsuglia, ${ }^{36}$ D. Barta, ${ }^{67}$ J. Bartlett,,${ }^{62}$ M. A. Barton, ${ }^{66,23}$ I. Bartos, ${ }^{42}$ R. Bassiri, ${ }^{68}$ A. Basti, ${ }^{21,20}$ M. Bawaj, ${ }^{69,70}$ J. C. Bayley, ${ }^{66}$ A. C. Baylor, ${ }^{29}$ M. Bazzan,,${ }^{71,72}$ B. Bécsy, ${ }^{73}$ V. M. Bedakihale, ${ }^{74}$ M. Bejger, ${ }^{75}$ I. Belahcene, ${ }^{40}$ V. Benedetto, ${ }^{76}$ D. Beniwal, ${ }^{77}$ M. G. Benjamin, ${ }^{35}$ T. F. Bennett, ${ }^{78}$ J. D. Bentley, ${ }^{14}$ M. BenYaala, ${ }^{32}$ F. Bergamin, ${ }^{10,11}$ B. K. Berger, ${ }^{68}$ S. Bernuzzi, ${ }^{13}$ D. Bersanetti, ${ }^{79}$ A. Bertolini, ${ }^{49}$ J. Betzwieser, ${ }^{8}$ R. Bhandare, ${ }^{80}$ A. V. Bhandari, ${ }^{3}$ D. Bhattacharjee, ${ }^{81}$ S. Bhaumik, ${ }^{42}$ J. Bidler, ${ }^{25}$ I. A. Bilenko, ${ }^{82}$ G. Billingsley, ${ }^{1}$ R. Birney, ${ }^{83}$ O. Birnholtz, ${ }^{84}$ S. Biscans, ${ }^{1,64}$ M. Bischi,,${ }^{85,86}$ S. Biscoveanu, ${ }^{64}$ A. Bisht,,${ }^{10,11}$ B. Biswas, ${ }^{3}$ M. Bitossi, ${ }^{41,20}$ M.-A. Bizouard, ${ }^{87}$ J. K. Blackburn, ${ }^{1}$ J. Blackman, ${ }^{88}$ C. D. Blair, ${ }^{89,8}$ D. G. Blair, ${ }^{89}$ R. M. Blair, ${ }^{62}$ F. Bobba, ${ }^{90,91}$ N. Bode, ${ }^{10,11}$ M. Boer, ${ }^{87}$ G. Bogaert, ${ }^{87}$ M. Boldrini, ${ }^{92,47}$ F. Bondu, ${ }^{93}$ E. Bonilla, ${ }^{68}$ R. Bonnand, ${ }^{48}$ P. Booker, ${ }^{10,11}$ B. A. Boom,,${ }^{49}$ R. Bork, ${ }^{1}$ V. Boschi, ${ }^{20}$ N. Bose, ${ }^{94}$ S. Bose, ${ }^{3}$ V. Bossilkoo, ${ }^{89}$ V. Boudart, ${ }^{57}$ Y. Bouffanais, ${ }^{71,72}$ A. Bozzi, ${ }^{41}$ C. Bradaschia, ${ }^{20}$ P. R. Brady, ${ }^{29}$ A. Bramley, ${ }^{8}$ A. Branch, ${ }^{8}$ M. Branchesi,,${ }^{18,19}$ M. Breschi, ${ }^{13}$ T. Briant, ${ }^{95}$ J. H. Briggs,,${ }^{66}$ A. Brillet, ${ }^{87}$ M. Brinkmann, ${ }^{10,11}$ P. Brockill, ${ }^{29}$ A. F. Brooks, ${ }^{1}$ J. Brooks, ${ }^{41}$ D. D. Brown,,${ }^{77}$ S. Brunett, ${ }^{1}$ G. Bruno, ${ }^{96}$ R. Bruntz, ${ }^{7}$ J. Bryant, ${ }^{14}$ A. Buikema, ${ }^{64}$ T. Bulik, ${ }^{97}$ H. J. Bulten,,${ }^{49,98}$ A. Buonanno, ${ }^{99},{ }^{100}$ R. Buscicchio, ${ }^{14}$ D. Buskulic,,48 L. Cadonati, ${ }^{101}$ M. Caesar, ${ }^{102}$ G. Cagnoli, ${ }^{28}$ C. Cahillane, ${ }^{1}$ H. W. Cain III, ${ }^{2}$ J. Calderón Bustillo, ${ }^{103}$ J. D. Callaghan, ${ }^{66}$ T. A. Callister, ${ }^{104,105}$ E. Calloni,,${ }^{27,5}$ J. B. Camp, ${ }^{106}$ M. Canepa, ${ }^{107,79}$ M. Cannavacciuolo, ${ }^{90}$ K. C. Cannon, ${ }^{31}$ H. Cao, ${ }^{77}$ J. Cao, ${ }^{108}$ Z. Cao, ${ }^{109}$ E. Capocasa, ${ }^{23}$ E. Capote,,${ }^{25}$ G. Carapella, ${ }^{90,91}$ F. Carbognani, ${ }^{41}$ J. B. Carlin, ${ }^{110}$ M. F. Carney, ${ }^{15}$ M. Carpinelli, ${ }^{111,112}$ G. Carullo, ${ }^{21,}{ }^{20}$ T. L. Carver, ${ }^{17}$ J. Casanueva Diaz, ${ }^{41}$ C. Casentini, ${ }^{113,114}$ G. Castaldi, ${ }^{115}$ S. Caudill, ${ }^{49,116}$ M. Cavaglià, ${ }^{81}$ F. Cavalier, ${ }^{40}$ R. Cavalieri, ${ }^{41}$ G. Cella, ${ }^{20}$ P. Cerdá-Durán, ${ }^{177}$ E. Cesarini, ${ }^{114}$ W. Chaibi, ${ }^{87}$ K. Chakravarti, ${ }^{3}$ B. Champion, ${ }^{118}$ C.-H. Chan, ${ }^{119}$ C. Chan, ${ }^{31}$ C. L. Chan, ${ }^{103}$ M. Chan, ${ }^{120}$ K. Chandra, ${ }^{94}$ P. Chanial, ${ }^{41}$ S. Chao, ${ }^{119}$ P. Charlton, ${ }^{121}$ E. A. Chase, ${ }^{15}$ E. Chassande-Mottin,,${ }^{36}$ D. Chatterjee,,${ }^{29}$ M. Chaturvedi, ${ }^{80}$ K. Chatzioannou, ${ }^{1,104,105}$ A. Chen, ${ }^{103}$ C. Chen,,${ }^{122,}{ }^{123}$ H. Y. Chen, ${ }^{124}$ J. Chen, ${ }^{119}$ K. Chen, ${ }^{125}$ X. Chen, ${ }^{89}$ Y.-B. Chen, ${ }^{88}$ Y.-R. Chen, ${ }^{123}$ Z. Chen, ${ }^{17}$ H. Cheng, ${ }^{42}$ C. K. Cheong, ${ }^{103}$ H. Y. Cheung, ${ }^{103}$ H. Y. Chia, ${ }^{42}$ F. Chiadini, ${ }^{126,}{ }^{91}$ C-Y. Chiang, ${ }^{127}$ R. Chierici, ${ }^{128}$ A. Chincarini, ${ }^{79}$ M. L. Chiofalo, ${ }^{21,20}$ A. Chiummo, ${ }^{41}$ G. Cho, ${ }^{129}$ H. S. Cho, ${ }^{130}$ S. Choate, ${ }^{102}$ R. K. Choudhary, ${ }^{89}$ S. Choudhary, ${ }^{3}$ N. Christensen, ${ }^{87}$ H. Chu, ${ }^{125}$ Q. Chu, ${ }^{89}$ Y-K. Chu, ${ }^{127}$ S. Chua, ${ }^{95}$ K. W. Chung, ${ }^{131}$ G. Ciani, ${ }^{71,72}$ P. Ciecielag, ${ }^{75}$ M. Cieślar, ${ }^{75}$ M. Cifaldi, ${ }^{133,114}$ A. A. Ciobanu, ${ }^{77}$ R. Ciolfi, ${ }^{132, ~ 72 ~ F . ~ C i p r i a n o, ~}{ }^{87}$ A. Cirone, ${ }^{107,79}$ F. Clara, ${ }^{62}$ E. N. Clark, ${ }^{133}$ J. A. Clark, ${ }^{101}$ L. Clarke, ${ }^{134}$ P. Clearwater, ${ }^{110}$ S. Clesse, ${ }^{135}$ F. Cleva, ${ }^{87}$ E. Coccia, ${ }^{18,19}$ P.-F. Cohadon, ${ }^{95}$ D. E. Cohen, ${ }^{40}$ L. Cohen, ${ }^{2}$ M. Colleoni, ${ }^{136}$ C. G. Collette, ${ }^{137}$ M. Colpi, ${ }^{59,60}$ C. M. Compton, ${ }^{62}$ M. Constancio Jr., ${ }^{16}$ L. Conti, ${ }^{72}$ S. J. Cooper, ${ }^{14}$ P. Corban, ${ }^{8}$ T. R. Corbitt, ${ }^{2}$ I. Cordero-Carrión, ${ }^{138}$ S. Corezzi, ${ }^{70,69}$ K. R. Corley, ${ }^{44}$ N. Cornish, ${ }^{73}$ D. Corre, ${ }^{40}$ A. Corsi, ${ }^{139}$ S. Cortese, ${ }^{41}$ C. A. Costa, ${ }^{16}$ R. Cotesta, ${ }^{100}$ M. W. Coughlin, ${ }^{58}$ S. B. Coughlin,,${ }^{15,17}$ J.-P. Coulon, ${ }^{87}$ S. T. Countryman, ${ }^{44}$ B. Cousins, ${ }^{140}$ P. Couvares, ${ }^{1}$ P. B. Covas, ${ }^{136}$ D. M. Coward, ${ }^{89}$ M. J. Cowart,,${ }^{8}$ D. C. Coyne, ${ }^{1}$ R. Coyne, ${ }^{141}$ J. D. E. Creighton, ${ }^{29}$ T. D. Creighton, ${ }^{142}$ A. W. Criswell, ${ }^{58}$ M. Croquette, ${ }^{95}$ S. G. Crowder, ${ }^{143}$ J. R. Cudell, ${ }^{57}$ T. J. Cullen, ${ }^{2}$ A. Cumming, ${ }^{66}$ R. Cummings, ${ }^{66}$ E. Cuoco, ${ }^{41,144,20}$ M. Curyło, ${ }^{97}$ T. Dal Canton, ${ }^{100}, 40$ G. Dálya,,145 A. Dana, ${ }^{68}$ L. M. DaneshgaranBajastani, ${ }^{78}$ B. D'Angelo, ${ }^{107,79}$ S. L. Danilishin, ${ }^{146}$ S. D'Antonio, ${ }^{114}$ K. Danzmann, ${ }^{10,11}$ C. Darsow-Fromm, ${ }^{147}$ A. Dasgupta, ${ }^{74}$ L. E. H. Datrier, ${ }^{66}$ V. Dattilo, ${ }^{41}$ I. Dave, ${ }^{80}$ M. Davier ${ }^{40}$ G. S. Davies, ${ }^{148,}{ }^{149}$ D. Davis, ${ }^{1}$ E. J. Daw, ${ }^{150}$ R. Dean, ${ }^{102}$ M. Deenadayalan, ${ }^{3}$ J. Degallaix, ${ }^{151}$ M. De Laurentis, ${ }^{27,5}$ S. Deléglise, ${ }^{95}$ V. Del Favero, ${ }^{118}$ F. De Lillo, ${ }^{96}$ N. De Lillo, ${ }^{66}$ W. Del Pozzo, ${ }^{21,20}$ L. M. DeMarchi, ${ }^{15}$ F. De Matteis, ${ }^{113,114}$ V. D'Emilio,,${ }^{17}$ N. Demos,,${ }^{64}$ T. Dent,,${ }^{148}$ A. Depasse, ${ }^{96}$ R. De Pietri, ${ }^{152, ~} 153$ R. De Rosa, ${ }^{27,5}$ C. De Rossi, ${ }^{41}$ R. DeSalvo, ${ }^{115}$ R. De Simone, ${ }^{126}$ S. Dhurandhar, ${ }^{3}$ M. C. Díaz, ${ }^{142}$ M. Diaz-Ortiz Jr., ${ }^{42}$ N. A. Didio, ${ }^{56}$ T. Dietrich, ${ }^{100}$ L. Di Fiore, ${ }^{5}$ C. Di Fronzo, ${ }^{14}$ C. Di Giorgio, ${ }^{90,91}$ F. Di Giovanni, ${ }^{177}$ T. Di Girolamo, ${ }^{27,5}$ A. Di Lieto, ${ }^{21,20}$ B. Ding, ${ }^{137}$ S. Di Pace, ${ }^{92,47}$ I. Di Palma, ${ }^{92,47}$ F. Di Renzo, ${ }^{21,20}$ A. K. Divakarla, ${ }^{42}$ A. Dmitriev, ${ }^{14}$
Z. Doctor, ${ }^{55}$ L. D'Onofrio, ${ }^{27,5}$ F. Donovan, ${ }^{64}$ K. L. Dooley, ${ }^{17}$ S. Doravari, ${ }^{3}$ I. Dorrington, ${ }^{17}$ M. Drago, ${ }^{18,19}$ J. C. Driggers, ${ }^{62}$ Y. Drori, ${ }^{1}$ Z. Du, ${ }^{108}$ J.-G. Ducoin, ${ }^{40}$ P. Dupej, ${ }^{66}$ O. Durante, ${ }^{90,91}$ D. D'Urso, ${ }^{111,112}$
P.-A. Duverne, ${ }^{40}$ S. E. Dwyer, ${ }^{62}$ P. J. Easter, ${ }^{6}$ M. Ebersold, ${ }^{154}$ G. Eddolls, ${ }^{66}$ B. Edelman, ${ }^{55}$ T. B. Edo,,${ }^{1,150}$ O. Edy, ${ }^{149}$ A. Effler, ${ }^{8}$ S. Eguchi, ${ }^{120}$ J. Eichholz, ${ }^{9}$ S. S. Eikenberry, ${ }^{42}$ M. Eisenmann, ${ }^{48}$ R. A. Eisenstein, ${ }^{64}$ A. Ejlli, ${ }^{17}$
Y. Enomoto, ${ }^{30}$ L. Errico, ${ }^{27,5}$ R. C. Essick, ${ }^{124}$ H. Estellés, ${ }^{136}$ D. Estevez, ${ }^{155}$ Z. Etienne, ${ }^{156}$ T. Etzel, ${ }^{1}$ M. Evans, ${ }^{64}$ T. M. Evans, ${ }^{8}$ B. E. Ewing, ${ }^{140}$ V. Fafone, ${ }^{113,} 114,18$ H. Fair, ${ }^{56}$ S. Fairhurst, ${ }^{17}$ X. Fan, ${ }^{108}$ A. M. Farah, ${ }^{124}$ S. Farinon, ${ }^{79}$
B. Farr, ${ }^{55}$ W. M. Farr, ${ }^{104,105}$ N. W. Farrow, ${ }^{6}$ E. J. Fauchon-Jones, ${ }^{17}$ M. Favata, ${ }^{157}$ M. Fays, ${ }^{57,150}$ M. Fazio, ${ }^{158}$ J. Feicht, ${ }^{1}$ M. M. Fejer, ${ }^{68}$ F. Feng, ${ }^{36}$ E. Fenyvesi, ${ }^{67,159}$ D. L. Ferguson, ${ }^{101}$ A. Fernandez-Galiana, ${ }^{64}$ I. Ferrante, ${ }^{21,20}$
T. A. Ferreira, ${ }^{16}$ F. Fidecaro, ${ }^{21,20}$ P. Figura, ${ }^{97}$ I. Fiori, ${ }^{41}$ M. Fishbach,,${ }^{15,}{ }^{124}$ R. P. Fisher, ${ }^{7}$ J. M. Fishner, ${ }^{64}$
R. Fittipaldi, ${ }^{160,91}$ V. Fiumara, ${ }^{161,91}$ R. Flaminio, ${ }^{48,}{ }^{23}$ E. Floden, ${ }^{58}$ E. Flynn, ${ }^{25}$ H. Fong, ${ }^{31}$ J. A. Font, ${ }^{117,}{ }^{162}$
B. Fornal,,${ }^{163}$ P. W. F. Forsyth, ${ }^{9}$ A. Franke, ${ }^{147}$ S. Frasca, ${ }^{92,47}$ F. Frasconi, ${ }^{20}$ C. Frederick, ${ }^{164}$ Z. Frei, ${ }^{145}$ A. Freise, ${ }^{165}$ R. Frey, ${ }^{55}$ P. Fritschel, ${ }^{64}$ V. V. Frolov, ${ }^{8}$ G. G. Fronzé, ${ }^{52}$ Y. Fujii, ${ }^{166}$ Y. Fujikawa, ${ }^{167}$ M. Fukunaga, ${ }^{37}$
M. Fukushima, ${ }^{24}$ P. Fulda, ${ }^{42}$ M. Fyffe, ${ }^{8}$ H. A. Gabbard, ${ }^{66}$ B. U. Gadre, ${ }^{100}$ S. M. Gaebel, ${ }^{14}$ J. R. Gair, ${ }^{100}$ J. Gais, ${ }^{103}$ S. Galaudage, ${ }^{6}$ R. Gamba,,13 D. Ganapathy, ${ }^{64}$ A. Ganguly, ${ }^{22}$ D. Gao, ${ }^{168}$ S. G. Gaonkar, ${ }^{3}$ B. Garaventa, ${ }^{79,107}$ C. García-Núñez, ${ }^{83}$ C. García-Quirós, ${ }^{136}$ F. Garufi, ${ }^{27,5}$ B. Gateley, ${ }^{62}$ S. Gaudio, ${ }^{35}$ V. Gayathri, ${ }^{42}$ G. Ge, ${ }^{168}$ G. Gemme, ${ }^{79}$ A. Gennai, ${ }^{20}$ J. George, ${ }^{80}$ L. Gergely, ${ }^{169}$ P. Gewecke, ${ }^{147}$ S. Ghonge, ${ }^{101}$ Abhirup. Ghosh, ${ }^{100}$ Archisman Ghosh, ${ }^{170}$ Shaon Ghosh, ${ }^{29,157}$ Shrobana Ghosh, ${ }^{17}$ Sourath Ghosh, ${ }^{42}$ B. Giacomazzo, ${ }^{59,60,61}$ L. Giacoppo, ${ }^{92,47}$ J. A. Giaime, ${ }^{2,8}$ K. D. Giardina, ${ }^{8}$ D. R. Gibson, ${ }^{83}$ C. Gier, ${ }^{32}$ M. Giesler, ${ }^{88}$ P. Giri, ${ }^{20,}{ }^{21}$ F. Gissi, ${ }^{76}$ J. Glanzer, ${ }^{2}$ A. E. Gleckl, ${ }^{25}$ P. Godwin, ${ }^{140}$ E. Goetz, ${ }^{171}$ R. Goetz, ${ }^{42}$ N. Gohlke, ${ }^{10,}{ }^{11}$ B. Goncharov, ${ }^{6}$ G. González, ${ }^{2}$ A. Gopakumar, ${ }^{172}$ M. Gosselin, ${ }^{41}$ R. Gouaty, ${ }^{48}$ B. Grace, ${ }^{9}$ A. Grado, ${ }^{173,5}$ M. Granata, ${ }^{151}$ V. Granata, ${ }^{90}$ A. Grant, ${ }^{66}$ S. Gras, ${ }^{64}$ P. Grassia, ${ }^{1}$ C. Gray,,62 R. Gray, ${ }^{66}$ G. Greco, ${ }^{69}$ A. C. Green,,${ }^{42}$ R. Green, ${ }^{17}$ A. M. Gretarsson, ${ }^{35}$ E. M. Gretarsson, ${ }^{35}$ D. Griffith, ${ }^{1}$ W. Griffiths, ${ }^{17}$ H. L. Griggs, ${ }^{101}$ G. Grignani, ${ }^{70,}{ }^{69}$ A. Grimaldi, ${ }^{174,}{ }^{175}$ E. Grimes, ${ }^{35}$ S. J. Grimm, ${ }^{18,19}$ H. Grote, ${ }^{17}$ S. Grunewald, ${ }^{100}$ P. Gruning, ${ }^{40}$ J. G. Guerrero, ${ }^{25}$ G. M. Guidi, $,{ }^{85}, 86$ A. R. Guimaraes, ${ }^{2}$ G. Guixé, ${ }^{63}$ H. K. Gulati, ${ }^{74}$ H.-K. Guo, ${ }^{163}$ Y. Guo, ${ }^{49}$ Anchal Gupta, ${ }^{1}$ Anuradha Gupta, ${ }^{176}$ P. Gupta, ${ }^{49,116}$ E. K. Gustafson, ${ }^{1}$ R. Gustafson, ${ }^{177}$ F. Guzman, ${ }^{133}$ S. Ha, ${ }^{178}$ L. Haegel, ${ }^{36}$ A. Hagiwara,,${ }^{37,}{ }^{179}$ S. Haino, ${ }^{127}$ O. Halim, ${ }^{180,34}$ E. D. Hall, ${ }^{64}$ E. Z. Hamilton, ${ }^{17}$ G. Hammond, ${ }^{66}$ W.-B. Han, ${ }^{181}$ M. Haney, ${ }^{154}$ J. Hanks, ${ }^{62}$ C. Hanna, ${ }^{140}$ M. D. Hannam, ${ }^{17}$ O. A. Hannuksela, ${ }^{116,49,103}$ H. Hansen, ${ }^{62}$ T. J. Hansen, ${ }^{35}$ J. Hanson, ${ }^{8}$ T. Harder, ${ }^{87}$ T. Hardwick, ${ }^{2}$ K. Haris, ${ }^{49,116,22}$ J. Harms, ${ }^{18,19}$ G. M. Harry, ${ }^{182}$ I. W. Harry, ${ }^{149}$ D. Hartwig, ${ }^{147}$ K. Hasegawa, ${ }^{37}$ B. Haskell, ${ }^{75}$ R. K. Hasskew, ${ }^{8}$ C.-J. Haster, ${ }^{64}$ K. Hattori, ${ }^{183}$ K. Haughian, ${ }^{66}$ H. Hayakawa, ${ }^{184}$ K. Hayama, ${ }^{120}$ F. J. Hayes,,${ }^{66}$ J. Healy, ${ }^{118}$ A. Heidmann, ${ }^{95}$ M. C. Heintze, ${ }^{8}$ J. Heinze, ${ }^{10,}{ }^{11}$ J. Heinzel, ${ }^{185}$ H. Heitmann, ${ }^{87}$ F. Hellman, ${ }^{186}$ P. Hello, ${ }^{40}$ A. F. Helmling-Cornell, ${ }^{55}$ G. Hemming, ${ }^{41}$ M. Hendry, ${ }^{66}$ I. S. Heng, ${ }^{66}$ E. Hennes, ${ }^{49}$ J. Hennig, ${ }^{10,}{ }^{11}$ M. H. Hennig, ${ }^{10,11}$ F. Hernandez Vivanco, ${ }^{6}$ M. Heurs, ${ }^{10,}{ }^{11}$ S. Hild, ${ }^{146,49}$ P. Hill, ${ }^{32}$ Y. Himemoto, ${ }^{187}$ A. S. Hines, ${ }^{133}$ Y. Hiranuma, ${ }^{188}$ N. Hirata, ${ }^{23}$ E. Hirose, ${ }^{37}$ S. Hochheim, ${ }^{10,11}$ D. Hofman, ${ }^{151}$ J. N. Hohmann, ${ }^{147}$ A. M. Holgado, ${ }^{26}$ N. A. Holland, ${ }^{9}$ I. J. Hollows, ${ }^{150}$ Z. J. Holmes, ${ }^{77}$ K. Holt, ${ }^{8}$ D. E. Holz, ${ }^{124}$ Z. Hong, ${ }^{189}$ P. Hopkins, ${ }^{17}$ J. Hough, ${ }^{66}$ E. J. Howell, ${ }^{89}$ C. G. Hoy, ${ }^{17}$ D. Hoyland, ${ }^{14}$ A. Hreibi, ${ }^{10,}{ }^{11}$ B. Hsieh, ${ }^{37}$ Y. Hsu, ${ }^{119}$ G-Z. Huang, ${ }^{189}$ H-Y. Huang, ${ }^{127}$ P. Huang, ${ }^{168}$ Y-C. Huang, ${ }^{123}$ Y.-J. Huang, ${ }^{127}$ Y.-W. Huang, ${ }^{64}$ M. T. Hübner, ${ }^{6}$ A. D. Huddart, ${ }^{134}$ E. A. Huerta, ${ }^{26}$ B. Hughey, ${ }^{35}$ D. C. Y. Hui, ${ }^{190}$ V. Hui, ${ }^{48}$ S. Husa, ${ }^{136}$ S. H. Huttner, ${ }^{66}$ R. Huxford, ${ }^{140}$ T. Huynh-Dinh, ${ }^{8}$ S. Ide, ${ }^{191}$ B. Idzkowski, ${ }^{97}$ A. Iess, ${ }^{113,}{ }^{114}$ B. Ikenoue, ${ }^{24}$ S. Imam, ${ }^{189} \mathrm{~K}$. Inayoshi, ${ }^{192}$ H. Inchauspe, ${ }^{42} \mathrm{C}$. Ingram, ${ }^{77}$ Y. Inoue, ${ }^{125} \mathrm{G}$. Intini, ${ }^{92,47} \mathrm{~K}$. Ioka, ${ }^{193} \mathrm{M}$. Isi, ${ }^{64} \mathrm{~K}$. Isleif, ${ }^{147} \mathrm{~K}$. Ito, ${ }^{194}$ Y. Itoh, ${ }^{195,} 196$ B. R. Iyer, ${ }^{22}$ K. Izumi, ${ }^{197}$ V. JaberianHamedan, ${ }^{89}$ T. Jacqmin, ${ }^{95}$ S. J. Jadhav, ${ }^{198}$ S. P. Jadhav, ${ }^{3}$ A. L. James, ${ }^{17}$ A. Z. Jan, ${ }^{118}$ K. Jani, ${ }^{101}$ K. Janssens, ${ }^{199}$ N. N. Janthalur, ${ }^{198}$ P. Jaranowski, ${ }^{200}$ D. Jariwala, ${ }^{42}$ R. Jaume, ${ }^{136}$ A. C. Jenkins, ${ }^{131}$ C. Jeon, ${ }^{201}$ M. Jeunon, ${ }^{58}$ W. Jia, ${ }^{64}$ J. Jiang, ${ }^{42}$ H.-B. Jin, ${ }^{202,}{ }^{203}$ G. R. Johns, ${ }^{7}$ A. W. Jones, ${ }^{89}$ D. I. Jones, ${ }^{204}$ J. D. Jones, ${ }^{62}$ P. Jones, ${ }^{14}$ R. Jones, ${ }^{66}$ R. J. G. Jonker, ${ }^{49}$ L. Ju, ${ }^{89}$ K. Jung, ${ }^{178}$ P. Jung, ${ }^{184}$ J. Junker, ${ }^{10,}{ }^{11}$ K. Kaihotsu, ${ }^{194}$ T. Kajita, ${ }^{205}$ M. Kakizaki, ${ }^{183}$ C. V. Kalaghatgi, ${ }^{17}$ V. Kalogera, ${ }^{15}$ B. Kamai, ${ }^{1}$ M. Kamiizumi, ${ }^{184}$ N. Kanda, ${ }^{195,}{ }^{196}$ S. Kandhasamy, ${ }^{3}$ G. Kang, ${ }^{50}$ J. B. Kanner, ${ }^{1}$ Y. Kao, ${ }^{119}$ S. J. Kapadia, ${ }^{22}$ D. P. Kapasi, ${ }^{9}$ C. Karathanasis, ${ }^{206}$ S. Karki, ${ }^{81}$ R. Kashyap, ${ }^{140}$ M. Kasprzack, ${ }^{1}$ W. Kastaun, ${ }^{10,}{ }^{11}$ S. Katsanevas, ${ }^{41}$ E. Katsavounidis, ${ }^{64}$ W. Katzman, ${ }^{8}$ T. Kaur, ${ }^{89}$ K. Kawabe, ${ }^{62}$ K. Kawaguchi, ${ }^{37}$ N. Kawai, ${ }^{207}$ T. Kawasaki, ${ }^{30}$ F. Kéfélian, ${ }^{87}$ D. Keitel, ${ }^{136}$ J. S. Key, ${ }^{208}$ S. Khadka, ${ }^{68}$ F. Y. Khalili, ${ }^{82}$ I. Khan, ${ }^{18,}{ }^{114}$ S. Khan, ${ }^{17}$ E. A. Khazanov, ${ }^{209}$ N. Khetan,,18,19 M. Khursheed, ${ }^{80}$ N. Kijbunchoo, ${ }^{9}$ C. Kim, ${ }^{210,}{ }^{201}$ J. C. Kim, ${ }^{211}$ J. Kim, ${ }^{212}$ K. Kim, ${ }^{213}$ W. S. Kim, ${ }^{51}$ Y.-M. Kim, ${ }^{178}$ C. Kimball, ${ }^{15}$ N. Kimura, ${ }^{179}$ P. J. King,,${ }^{62}$ M. Kinley-Hanlon, ${ }^{66}$ R. Kirchhoff, ${ }^{10}, 11$ J. S. Kissel, ${ }^{62}$ N. Kita, ${ }^{30}$ H. Kitazawa, ${ }^{194}$ L. Kleybolte, ${ }^{147}$ S. Klimenko, ${ }^{42}$ A. M. Knee, ${ }^{171}$ T. D. Knowles, ${ }^{156}$ E. Knyazev, ${ }^{64}$ P. Koch, ${ }^{10,}{ }^{11}$ G. Koekoek, ${ }^{49,146}$ Y. Kojima, ${ }^{214}$ K. Kokeyama, ${ }^{184}$ S. Koley, ${ }^{49}$ P. Kolitsidou, ${ }^{17}$ M. Kolstein, ${ }^{206}$ K. Komori, ${ }^{64,30}$ V. Kondrashov, ${ }^{1}$ A. K. H. Kong, ${ }^{123}$ A. Kontos, ${ }^{215}$ N. Koper, ${ }^{10,}{ }^{11}$ M. Korobko, ${ }^{147}$ K. Kotake, ${ }^{120}$
M. Kovalam, ${ }^{89}$ D. B. Kozak, ${ }^{1}$ C. Kozakai, ${ }^{45}$ R. Kozu, ${ }^{216}$ V. Kringel,,${ }^{10,11}$ N. V. Krishnendu, ${ }^{10,11}$ A. Królak, ${ }^{217,} 218$ G. Kuehn, ${ }^{10,11}$ F. Kuei, ${ }^{119}$ A. Kumar, ${ }^{198}$ P. Kumar, ${ }^{219}$ Rahul Kumar, ${ }^{62}$ Rakesh Kumar, ${ }^{74}$ J. Kume, ${ }^{31}$ K. Kuns, ${ }^{64}$ C. Kuo, ${ }^{125}$ H-S. Kuo, ${ }^{189}$ Y. Kuromiya, ${ }^{194}$ S. Kuroyanagi, ${ }^{220}$ K. Kusayanagi, ${ }^{207}$ K. Kwak, ${ }^{178}$ S. Kwang, ${ }^{29}$ D. Laghi, ${ }^{21,20}$ E. Lalande, ${ }^{221}$ T. L. Lam, ${ }^{103}$ A. Lamberts,,${ }^{87,222}$ M. Landry, ${ }^{62}$ B. B. Lane, ${ }^{64}$ R. N. Lang, ${ }^{64}$ J. Lange, ${ }^{223,118}$ B. Lantz, ${ }^{68}$ I. La Rosa, ${ }^{48}$ A. Lartaux-Vollard, ${ }^{40}$ P. D. Lasky, ${ }^{6}$ M. Laxen, ${ }^{8}$ A. Lazzarini, ${ }^{1}$ C. Lazzaro, ${ }^{71,72}$ P. Leaci, ${ }^{92,47}$ S. Leavey, ${ }^{10,11}$ Y. K. Lecoeuche, ${ }^{62}$ H. K. Lee, ${ }^{224}$ H. M. Lee, ${ }^{213}$ H. W. Lee,,${ }^{211}$ J. Lee, ${ }^{129}$ K. Lee, ${ }^{68}$ R. Lee, ${ }^{123}$ J. Lehmann,,${ }^{10,11}$ A. Lemaître, ${ }^{225}$ E. Leon, ${ }^{25}$ M. Leonardi, ${ }^{23}$ N. Leroy, ${ }^{40}$ N. Letendre, ${ }^{48}$ Y. Levin, ${ }^{6}$ J. N. Leviton, ${ }^{177}$ A. K. Y. Li, ${ }^{1}$ B. Li, ${ }^{19}$ J. Li, ${ }^{15}$ K. L. Li, ${ }^{123}$ T. G. F. Li, ${ }^{103}$ X. Li, ${ }^{88}$ C-Y. Lin, ${ }^{226}$ F-K. Lin, ${ }^{127}$ F-L. Lin, ${ }^{189}$ H. L. Lin, ${ }^{125}$ L. C.-C. Lin, ${ }^{178}$ F. Linde,,${ }^{227,49}$ S. D. Linker, ${ }^{78}$ J. N. Linley, ${ }^{66}$ T. B. Littenberg, ${ }^{228}$ G. C. Liu, ${ }^{122}$ J. Liu, ${ }^{10,11}$ K. Liu, ${ }^{119}$ X. Liu, ${ }^{29}$ M. Llorens-Monteagudo, ${ }^{117}$ R. K. L. Lo, ${ }^{1}$ A. Lockwood, ${ }^{229}$ M. L. Lollie, ${ }^{2}$ L. T. London, ${ }^{64}$ A. Longo, ${ }^{230,} 231$ D. Lopez, ${ }^{154}$ M. Lorenzini, ${ }^{113,114}$ V. Loriette, ${ }^{232}$ M. Lormand, ${ }^{8}$ G. Losurdo, ${ }^{20}$ J. D. Lough, ${ }^{10,11}$ C. O. Lousto, ${ }^{118}$ G. Lovelace, ${ }^{25}$ H. Lück, ${ }^{10,11}$ D. Lumaca, ${ }^{113,114}$ A. P. Lundgren, ${ }^{149}$ L.-W. Luo,,${ }^{127}$ R. Macas, ${ }^{17}$ M. MacInnis, ${ }^{64}$ D. M. Macleod, ${ }^{17}$ I. A. O. MacMillan, ${ }^{1}$ A. Macquet, ${ }^{87}$ I. Magaña Hernandez, ${ }^{29}$ F. Magaña-Sandoval, ${ }^{42}$ C. Magazzù, ${ }^{20}$ R. M. Magee, ${ }^{140}$ R. Maggiore, ${ }^{14}$ E. Majorana, ${ }^{92,47}$ I. Maksimovic, ${ }^{232}$ S. Maliakal, ${ }^{1}$ A. Malik, ${ }^{80}$ N. Man,,${ }^{87}$ V. Mandic, ${ }^{58}$ V. Mangano,,${ }^{92,47}$ J. L. Mango, ${ }^{233}$ G. L. Mansell, ${ }^{62,64}$ M. Manske, ${ }^{29}$ M. Mantovani, ${ }^{41}$ F. Marchesoni, ${ }^{234,69}$ M. Marchio, ${ }^{23}$ F. Marion, ${ }^{48}$ Z. Mark,,${ }^{88}$ S. Márka, ${ }^{44}$ Z. Márka, ${ }^{44}$ C. Markakis, ${ }^{12}$ A. S. Markosyan, ${ }^{68}$ A. Markowitz, ${ }^{1}$ E. Maros, ${ }^{1}$ A. Marquina, ${ }^{138}$ S. Marsat, ${ }^{36}$ F. Martelli, ${ }^{85,86}$ I. W. Martin, ${ }^{66}$ R. M. Martin, ${ }^{157}$ M. Martinez, ${ }^{206}$ V. Martinez, ${ }^{28}$ K. Martinovic, ${ }^{131}$ D. V. Martynov, ${ }^{14}$ E. J. Marx, ${ }^{64}$ H. Masalehdan, ${ }^{147}$ K. Mason, ${ }^{64}$ E. Massera, ${ }^{150}$
A. Masserot, ${ }^{48}$ T. J. Massinger, ${ }^{64}$ M. Masso-Reid, ${ }^{66}$ S. Mastrogiovanni, ${ }^{36}$ A. Matas, ${ }^{100}$ M. Mateu-Lucena, ${ }^{136}$ F. Matichard,,${ }^{1,64}$ M. Matiushechkina, ${ }^{10,11}$ N. Mavalvala, ${ }^{64}$ J. J. McCann, ${ }^{89}$ R. McCarthy, ${ }^{62}$ D. E. McClelland, ${ }^{9}$ P. McClincy, ${ }^{140}$ S. McCormick, ${ }^{8}$ L. McCuller, ${ }^{64}$ G. I. McGhee, ${ }^{66}$ S. C. McGuire, ${ }^{235}$ C. McIsaac, ${ }^{149}$ J. McIver, ${ }^{171}$ D. J. McManus, ${ }^{9}$ T. McRae, ${ }^{9}$ S. T. McWilliams, ${ }^{156}$ D. Meacher, ${ }^{29}$ M. Mehmet,,${ }^{10,11}$ A. K. Mehta, ${ }^{100}$ A. Melatos, ${ }^{110}$ D. A. Melchor,,25 G. Mendell, ${ }^{62}$ A. Menendez-Vazquez, ${ }^{206}$ C. S. Menoni, ${ }^{158}$ R. A. Mercer, ${ }^{29}$ L. Mereni, ${ }^{151}$ K. Merfeld, ${ }^{55}$ E. L. Merilh, ${ }^{62}$ J. D. Merritt,,${ }^{55}$ M. Merzougui, ${ }^{87}$ S. Meshkov, ${ }^{1, a}$ C. Messenger, ${ }^{66}$ C. Messick, ${ }^{223}$ P. M. Meyers, ${ }^{110}$ F. Meylahn, ${ }^{10,11}$ A. Mhaske, ${ }^{3}$ A. Miani, ${ }^{174,}{ }^{175}$ H. Miao, ${ }^{14}$ I. Michaloliakos, ${ }^{42}$ C. Michel, ${ }^{151}$ Y. Michimura, ${ }^{30}$ H. Middleton, ${ }^{110}$ L. Milano, ${ }^{27}$ A. L. Miller, ${ }^{96,42}$ M. Millhouse, ${ }^{110}$ J. C. Mills, ${ }^{17}$ E. Milotti, ${ }^{180,}{ }^{34}$ M. C. Milovich-Goff, ${ }^{78}$ O. Minazzoli,,${ }^{87,}{ }^{236}$ Y. Minenkov, ${ }^{114}$ N. Mio, ${ }^{237}$ Ll. M. Mir, ${ }^{206}$ A. Mishkin, ${ }^{42}$ C. Mishra, ${ }^{238}$ T. Mishra, ${ }^{42}$ T. Mistry, ${ }^{150}$ S. Mitra, ${ }^{3}$ V. P. Mitrofanov, ${ }^{82}$ G. Mitselmakher, ${ }^{42}$ R. Mittleman, ${ }^{64}$ O. Miyakawa, ${ }^{184}$ A. Miyamoto, ${ }^{195}$ Y. Miyazaki, ${ }^{30}$ K. Miyo, ${ }^{184}$ S. Miyoki, ${ }^{184}$ Geoffrey Mo, ${ }^{64}$ K. Mogushi, ${ }^{81}$ S. R. P. Mohapatra, ${ }^{64}$ S. R. Mohite, ${ }^{29}$ I. Molina, ${ }^{25}$ M. Molina-Ruiz, ${ }^{186}$ M. Mondin, ${ }^{78}$ M. Montani,,${ }^{85,86}$ C. J. Moore, ${ }^{14}$ D. Moraru, ${ }^{62}$ F. Morawski, ${ }^{75}$ A. More, ${ }^{3}$ C. Moreno, ${ }^{35}$ G. Moreno, ${ }^{62}$ Y. Mori, ${ }^{194}$ S. Morisaki, ${ }^{31,37}$ Y. Moriwaki, ${ }^{183}$ B. Mours, ${ }^{155}$ C. M. Mow-Lowry, ${ }^{14}$ S. Mozzon, ${ }^{149}$ F. Muciaccia, ${ }^{92,47}$ Arunava Mukherjee, ${ }^{239,66}$ D. Mukherjee, ${ }^{140}$ Soma Mukherjee, ${ }^{142}$ Subroto Mukherjee, ${ }^{74}$ N. Mukund, ${ }^{10,11}$ A. Mullavey, ${ }^{8}$ J. Munch, ${ }^{77}$ E. A. Muñiz, ${ }^{56}$ P. G. Murray, ${ }^{66}$ R. Musenich, ${ }^{79,107}$ S. L. Nadji, ${ }^{10,11}$ K. Nagano, ${ }^{197}$ S. Nagano, ${ }^{240}$ K. Nakamura, ${ }^{23}$ H. Nakano, ${ }^{241}$ M. Nakano, ${ }^{37}$ R. Nakashima, ${ }^{207}$ Y. Nakayama, ${ }^{183}$ I. Nardecchia, ${ }^{113,114}$ T. Narikawa, ${ }^{37}$ L. Naticchioni, ${ }^{47}$ B. Nayak, ${ }^{78}$ R. K. Nayak, ${ }^{242}$ R. Negishi, ${ }^{188}$ B. F. Neil, ${ }^{89}$ J. Neilson, ${ }^{76,91}$ G. Nelemans, ${ }^{243}$ T. J. N. Nelson, ${ }^{8}$ M. Nery,,${ }^{10,11}$ A. Neunzert, ${ }^{208}$ K. Y. Ng, ${ }^{64}$ S. W. S. Ng, ${ }^{77}$ C. Nguyen, ${ }^{36}$ P. Nguyen, ${ }^{55}$ T. Nguyen, ${ }^{64}$ L. Nguyen Quynh, ${ }^{244}$ W.-T. Ni, ${ }^{202,168,245}$ S. A. Nichols, ${ }^{2}$ A. Nishizawa, ${ }^{31}$ S. Nissanke,,${ }^{246,49}$ F. Nocera, ${ }^{41}$ M. Noh, ${ }^{171}$ M. Norman, ${ }^{17}$ C. North, ${ }^{17}$ S. Nozaki, ${ }^{183}$ L. K. Nuttall, ${ }^{149}$ J. Oberling, ${ }^{62}$ B. D. O'Brien, ${ }^{42}$ Y. Obuchi, ${ }^{24}$ J. O'Dell, ${ }^{134}$ W. Ogaki, ${ }^{37}$ G. Oganesyan, ${ }^{18,19}$ J. J. Oh, ${ }^{51} \mathrm{~K}$. Oh,,${ }^{190} \mathrm{~S} . \mathrm{H}$. Oh,${ }^{51}$ M. Ohashi, ${ }^{184}$ N. Ohishi, ${ }^{45}$ M. Ohkawa, ${ }^{167}$ F. Ohme, ${ }^{10,11}$ H. Ohta, ${ }^{31}$ M. A. Okada, ${ }^{16}$ Y. Okutani,,191 K. Okutomi, ${ }^{184}$ C. Olivetto, ${ }^{41}$ K. Oohara, ${ }^{188}$ C. Ooi, ${ }^{30}$ R. Oram, ${ }^{8}$ B. O'Reilly, ${ }^{8}$ R. G. Ormiston, ${ }^{58}$ N. D. Ormsby, ${ }^{7}$ L. F. Ortega, ${ }^{42}$ R. O'Shaughnessy, ${ }^{118}$ E. O'Shea, ${ }^{219}$ S. Oshino, ${ }^{184}$ S. Ossokine, ${ }^{100}$ C. Osthelder, ${ }^{1}$ S. Otabe, ${ }^{207}$ D. J. Ottaway, ${ }^{77}$ H. Overmier, ${ }^{8}$ A. E. Pace, ${ }^{140}$ G. Pagano, ${ }^{21,20}$ M. A. Page, ${ }^{89}$ G. Pagliaroli,,18,19 A. Pai, ${ }^{94}$ S. A. Pai, ${ }^{80}$ J. R. Palamos,,${ }^{55}$ O. Palashov, ${ }^{209}$ C. Palomba, ${ }^{47}$ K. Pan, ${ }^{123}$
P. K. Panda, ${ }^{198}$ H. Pang, ${ }^{125}$ P. T. H. Pang, ${ }^{49,116}$ C. Pankow, ${ }^{15}$ F. Pannarale, ${ }^{92,47}$ B. C. Pant, ${ }^{80}$ F. Paoletti, ${ }^{20}$ A. Paoli, ${ }^{41}$ A. Paolone, ${ }^{47,247}$ A. Parisi, ${ }^{122}$ J. Park, ${ }^{213}$ W. Parker,,${ }^{835}$ D. Pascucci, ${ }^{49}$ A. Pasqualetti, ${ }^{41}$ R. Passaquieti, ${ }^{21,20}$ D. Passuello, ${ }^{20}$ M. Patel, ${ }^{7}$ B. Patricelli, ${ }^{41,20}$ E. Payne, ${ }^{6}$ T. C. Pechsiri, ${ }^{42}$ M. Pedraza, ${ }^{1}$ M. Pegoraro, ${ }^{72}$ A. Pele, ${ }^{8}$ F. E. Peña Arellano, ${ }^{184}$ S. Penn, ${ }^{248}$ A. Perego, ${ }^{174,175}$ A. Pereira, ${ }^{28}$ T. Pereira, ${ }^{249}$ C. J. Perez, ${ }^{62}$ C. Périgois, ${ }^{48}$ A. Perreca, ${ }^{174,}, 175$ S. Perriès, ${ }^{128}$ J. Petermann, ${ }^{147}$ D. Petterson, ${ }^{1}$ H. P. Pfeiffer, ${ }^{100}$ K. A. Pham, ${ }^{58}$ K. S. Phukon,, , ${ }^{49,27,3}$ O. J. Piccinni, ${ }^{47}$ M. Pichot, ${ }^{87}$ M. Piendibene, ${ }^{21,20}$ F. Piergiovanni,,${ }^{85,86}$ L. Pierini, ${ }^{92,47}$ V. Pierro, ${ }^{76,91}$ G. Pillant, ${ }^{41}$ F. Pilo, ${ }^{20}$ L. Pinard, ${ }^{151}$ I. M. Pinto, ${ }^{76,91, ~ 250, ~}{ }^{251}$ B. J. Piotrzkowski, ${ }^{29}$ K. Piotrzkowski, ${ }^{96}$ M. Pirello, ${ }^{62}$ M. Pitkin, ${ }^{252}$ E. Placidi, ${ }^{92,47}$ W. Plastino, ${ }^{230,}{ }^{231}$ C. Pluchar, ${ }^{133}$ R. Poggiani, ${ }^{21,20}$
E. Polini, ${ }^{48}$ D. Y. T. Pong, ${ }^{103}$ S. Ponrathnam, ${ }^{3}$ P. Popolizio, ${ }^{41}$ E. K. Porter, ${ }^{36}$ J. Powell,,${ }^{253}$ M. Pracchia, ${ }^{48}$ T. Pradier, ${ }^{155}$ A. K. Prajapati, ${ }^{74}$ K. Prasai, ${ }^{68}$ R. Prasanna, ${ }^{198}$ G. Pratten, ${ }^{14}$ T. Prestegard, ${ }^{29}$ M. Principe, ${ }^{76,}{ }^{250,91}$ G. A. Prodi, ${ }^{254,175}$ L. Prokhorov, ${ }^{14}$ P. Prosposito, ${ }^{113,}{ }^{114}$ L. Prudenzi, ${ }^{100}$ A. Puecher, ${ }^{49,116}$ M. Punturo, ${ }^{69}$ F. Puosi, ${ }^{20,}{ }^{21}$ P. Puppo, ${ }^{47}$ M. Pürrer, ${ }^{100}$ H. Qi, ${ }^{17}$ V. Quetschke, ${ }^{142}$ P. J. Quinonez, ${ }^{35}$ R. Quitzow-James, ${ }^{81}$ F. J. Raab, ${ }^{62}$ G. Raaijmakers, ${ }^{246}, 49$ H. Radkins, ${ }^{62}$ N. Radulesco, ${ }^{87}$ P. Raffai, ${ }^{145}$ S. X. Rail, ${ }^{221}$ S. Raja, ${ }^{80}$ C. Rajan, ${ }^{80}$ K. E. Ramirez, ${ }^{142}$ T. D. Ramirez, ${ }^{25}$ A. Ramos-Buades, ${ }^{100}$ J. Rana, ${ }^{140}$ P. Rapagnani, ${ }^{92,47}$ U. D. Rapol, ${ }^{255}$ B. Ratto, ${ }^{35}$ V. Raymond, ${ }^{17}$ N. Raza, ${ }^{171}$ M. Razzano, ${ }^{21,}{ }^{20}$ J. Read, ${ }^{25}$ L. A. Rees, ${ }^{182}$ T. Regimbau, ${ }^{48}$ L. Rei, ${ }^{79}$ S. Reid, ${ }^{32}$ D. H. Reitze, ${ }^{1,42}$ P. Relton, ${ }^{17}$ P. Rettegno, ${ }^{256,52}$ F. Ricci, ${ }^{92,47}$ C. J. Richardson, ${ }^{35}$ J. W. Richardson, ${ }^{1}$ L. Richardson, ${ }^{133}$ P. M. Ricker, ${ }^{26}$ G. Riemenschneider, ${ }^{256,52}$ K. Riles, ${ }^{177}$ M. Rizzo, ${ }^{15}$ N. A. Robertson, ${ }^{1,66}$
R. Robie, ${ }^{1}$ F. Robinet, ${ }^{40}$ A. Rocchi, ${ }^{114}$ J. A. Rocha, ${ }^{25}$ S. Rodriguez, ${ }^{25}$ R. D. Rodriguez-Soto, ${ }^{35}$ L. Rolland, ${ }^{48}$ J. G. Rollins, ${ }^{1}$ V. J. Roma, ${ }^{55}$ M. Romanelli, ${ }^{93}$ R. Romano, ${ }^{4,5}$ C. L. Romel, ${ }^{62}$ A. Romero, ${ }^{206}$ I. M. Romero-Shaw, ${ }^{6}$ J. H. Romie, ${ }^{8}$ C. A. Rose,,29 D. Rosińska, ${ }^{97}$ S. G. Rosofsky, ${ }^{26}$ M. P. Ross, ${ }^{229}$ S. Rowan, ${ }^{66}$ S. J. Rowlinson, ${ }^{14}$ Santosh Roy, ${ }^{3}$ Soumen Roy, ${ }^{257}$ D. Rozza, ${ }^{111,112}$ P. Ruggi, ${ }^{41}$ K. Ryan, ${ }^{62}$ S. Sachdev, ${ }^{140}$ T. Sadecki, ${ }^{62}$ J. Sadiq, ${ }^{148}$ N. Sago, ${ }^{258}$ S. Saito, ${ }^{24}$ Y. Saito, ${ }^{184}$ K. Sakai, ${ }^{259}$ Y. Sakai, ${ }^{188}$ M. Sakellariadou, ${ }^{131}$ Y. Sakuno, ${ }^{120}$ O. S. Salafia, ${ }^{61,60,59}$ L. Salconi, ${ }^{41}$ M. Saleem, ${ }^{260}$ F. Salemi, ${ }^{174,175}$ A. Samajdar, ${ }^{49,116}$ E. J. Sanchez, ${ }^{1}$ J. H. Sanchez, ${ }^{25}$ L. E. Sanchez, ${ }^{1}$ N. Sanchis-Gual, ${ }^{261}$ J. R. Sanders, ${ }^{262}$ A. Sanuy, ${ }^{63}$ T. R. Saravanan, ${ }^{3}$ N. Sarin, ${ }^{6}$ B. Sassolas, ${ }^{151}$ H. Satari, ${ }^{89}$ S. Sato, ${ }^{263}$ T. Sato, ${ }^{167}$ O. Sauter, ${ }^{42,48}$ R. L. Savage, ${ }^{62}$ V. Savant, ${ }^{3}$ T. Sawada, ${ }^{195}$ D. Sawant, ${ }^{94}$ H. L. Sawant, ${ }^{3}$ S. Sayah, ${ }^{151}$ D. Schaetzl, ${ }^{1}$ M. Scheel, ${ }^{88}$ J. Scheuer, ${ }^{15}$ A. Schindler-Tyka, ${ }^{42}$ P. Schmidt, ${ }^{14}$ R. Schnabel, ${ }^{147}$ M. Schneewind, ${ }^{10,11}$ R. M. S. Schofield, ${ }^{55}$ A. Schönbeck, ${ }^{147}$ B. W. Schulte, ${ }^{10,11}$ B. F. Schutz, ${ }^{17,10}$ E. Schwartz, ${ }^{17}$ J. Scott, ${ }^{66}$ S. M. Scott, ${ }^{9}$ M. Seglar-Arroyo, ${ }^{48}$ E. Seidel, ${ }^{26}$ T. Sekiguchi, ${ }^{31}$ Y. Sekiguchi, ${ }^{264}$ D. Sellers, ${ }^{8}$ A. S. Sengupta, ${ }^{257}$ N. Sennett, ${ }^{100}$ D. Sentenac, ${ }^{41}$ E. G. Seo, ${ }^{103}$ V. Sequino, ${ }^{27,5}$ Y. Setyawati, ${ }^{10,}{ }^{11}$ T. Shaffer, ${ }^{62}$ M. S. Shahriar, ${ }^{15}$ B. Shams, ${ }^{163}$ L. Shao, ${ }^{192}$ S. Sharifi, ${ }^{2}$ A. Sharma, ${ }^{18,}{ }^{19}$ P. Sharma, ${ }^{80}$ P. Shawhan, ${ }^{99}$ N. S. Shcheblanov, ${ }^{225}$ H. Shen, ${ }^{26}$ S. Shibagaki, ${ }^{120}$ M. Shikauchi, ${ }^{31}$ R. Shimizu, ${ }^{24}$ T. Shimoda, ${ }^{30}$ K. Shimode, ${ }^{184}$ R. Shink, ${ }^{221}$ H. Shinkai, ${ }^{265}$ T. Shishido, ${ }^{46}$ A. Shoda, ${ }^{23}$ D. H. Shoemaker, ${ }^{64}$ D. M. Shoemaker, ${ }^{223}$ K. Shukla, ${ }^{186}$ S. ShyamSundar, ${ }^{80}$ M. Sieniawska, ${ }^{97}$ D. Sigg, ${ }^{62}$ L. P. Singer, ${ }^{106}$ D. Singh, ${ }^{140}$ N. Singh, ${ }^{97}$ A. Singha, ${ }^{146,49}$ A. M. Sintes, ${ }^{136}$ V. Sipala, ${ }^{111,112}$ V. Skliris, ${ }^{17}$ B. J. J. Slagmolen, ${ }^{9}$ T. J. Slaven-Blair, ${ }^{89}$ J. Smetana, ${ }^{14}$ J. R. Smith, ${ }^{25}$ R. J. E. Smith, ${ }^{6}$ S. N. Somala, ${ }^{266}$ K. Somiya, ${ }^{207}$ E. J. Son, ${ }^{51}$ K. Soni, ${ }^{3}$ S. Soni, ${ }^{2}$ B. Sorazu, ${ }^{66}$ V. Sordini, ${ }^{128}$ F. Sorrentino, ${ }^{79}$ N. Sorrentino, ${ }^{21,{ }^{20}}$ H. Sotani, ${ }^{267}$ R. Soulard, ${ }^{87}$ T. Souradeep, ${ }^{255,3}$ E. Sowell, ${ }^{139}$ V. Spagnuolo, ${ }^{146,49}$ A. P. Spencer, ${ }^{66}$ M. Spera, ${ }^{71,72}$ A. K. Srivastava, ${ }^{74}$ V. Srivastava, ${ }^{56}$ K. Staats, ${ }^{15}$ C. Stachie, ${ }^{87}$ D. A. Steer, ${ }^{36}$ J. Steinlechner, ${ }^{146,49}$ S. Steinlechner, ${ }^{146,49}$ D. J. Stops, ${ }^{14}$ M. Stover, ${ }^{164}$ K. A. Strain, ${ }^{66}$ L. C. Strang, ${ }^{110}$ G. Stratta, ${ }^{268,86}$ A. Strunk, ${ }^{62}$ R. Sturani, ${ }^{249}$ A. L. Stuver, ${ }^{102}$ J. Südbeck, ${ }^{147}$ S. Sudhagar, ${ }^{3}$ V. Sudhir, ${ }^{64}$ R. Sugimoto, ${ }^{269, ~} 197$ H. G. Suh, ${ }^{29}$ T. Z. Summerscales, ${ }^{270}$ H. Sun, ${ }^{89}$ L. Sun, ${ }^{9,1}$ S. Sunil, ${ }^{74}$ A. Sur, ${ }^{75}$ J. Suresh, ${ }^{31,37}$ P. J. Sutton, ${ }^{17}$ Takamasa Suzuki, ${ }^{167}$ Toshikazu Suzuki, ${ }^{37}$ B. L. Swinkels, ${ }^{49}$ M. J. Szczepańczyk, ${ }^{42}$ P. Szewczyk, ${ }^{97}$ M. Tacca, ${ }^{49}$ H. Tagoshi, ${ }^{37}$ S. C. Tait, ${ }^{66}$ H. Takahashi, ${ }^{271}$ R. Takahashi, ${ }^{23}$ A. Takamori, ${ }^{39}$ S. Takano, ${ }^{30}$ H. Takeda, ${ }^{30}$ M. Takeda, ${ }^{195}$ C. Talbot, ${ }^{1}$ H. Tanaka,,${ }^{272}$ Kazuyuki Tanaka, ${ }^{195}$ Kenta Tanaka, ${ }^{272}$ Taiki Tanaka, ${ }^{37}$

Takahiro Tanaka, ${ }^{258}$ A. J. Tanasijczuk, ${ }^{96}$ S. Tanioka, ${ }^{23,46}$ D. B. Tanner, ${ }^{42}$ D. Tao, ${ }^{1}$ A. Tapia, ${ }^{25}$ E. N. Tapia San Martin, ${ }^{23}$ E. N. Tapia San Martin, ${ }^{49}$ J. D. Tasson, ${ }^{185}$ S. Telada, ${ }^{273}$ R. Tenorio, ${ }^{136}$ L. Terkowski, ${ }^{147}$ M. Test, ${ }^{29}$ M. P. Thirugnanasambandam, ${ }^{3}$ M. Thomas, ${ }^{8}$ P. Thomas, ${ }^{62}$ J. E. Thompson, ${ }^{17}$ S. R. Thondapu, ${ }^{80}$ K. A. Thorne, ${ }^{8}$
E. Thrane, ${ }^{6}$ Shubhanshu Tiwari, ${ }^{154}$ Srishti Tiwari, ${ }^{172}$ V. Tiwari, ${ }^{17}$ K. Toland, ${ }^{66}$ A. E. Tolley, ${ }^{149}$ T. Tomaru, ${ }^{23}$ Y. Tomigami, ${ }^{195}$ T. Tomura, ${ }^{184}$ M. Tonelli, ${ }^{21,20}$ A. Torres-Forné, ${ }^{117}$ C. I. Torrie, ${ }^{1}$ I. Tosta e Melo, ${ }^{111,112}$ D. Töyrä, ${ }^{9}$ A. Trapananti, ${ }^{234,69}$ F. Travasso, ${ }^{69,}{ }^{234}$ G. Traylor, ${ }^{8}$ M. C. Tringali, ${ }^{41}$ A. Tripathee, ${ }^{177}$ L. Troiano, ${ }^{274}, 91$ A. Trovato, ${ }^{36}$ L. Trozzo, ${ }^{184}$ R. J. Trudeau, ${ }^{1}$ D. S. Tsai, ${ }^{119}$ D. Tsai, ${ }^{119}$ K. W. Tsang, ${ }^{49, ~ 275, ~} 116$ T. Tsang, ${ }^{103}$ J-S. Tsao, ${ }^{189}$ M. Tse, ${ }^{64}$ R. Tso, ${ }^{88}$ K. Tsubono, ${ }^{30}$ S. Tsuchida, ${ }^{195}$ L. Tsukada, ${ }^{31}$ D. Tsuna, ${ }^{31}$ T. Tsutsui, ${ }^{31}$ T. Tsuzuki, ${ }^{24}$ M. Turconi, ${ }^{87}$ D. Tuyenbayev, ${ }^{127}$ A. S. Ubhi, ${ }^{14}$ N. Uchikata, ${ }^{37}$ T. Uchiyama, ${ }^{184}$ R. P. Udall, ${ }^{101,1}$ A. Ueda, ${ }^{179}$ T. Uehara, ${ }^{276}, 277$ K. Ueno, ${ }^{31}$ G. Ueshima, ${ }^{271}$ D. Ugolini, ${ }^{278}$ C. S. Unnikrishnan, ${ }^{172}$ F. Uraguchi, ${ }^{24}$ A. L. Urban, ${ }^{2}$ T. Ushiba, ${ }^{37}$ S. A. Usman, ${ }^{124}$ A. C. Utina, ${ }^{146}, 49$ H. Vahlbruch, ${ }^{10,}{ }^{11}$ G. Vajente, ${ }^{1}$ A. Vajpeyi, ${ }^{6}$ G. Valdes, ${ }^{2}$ M. Valentini, ${ }^{174,} 175$ V. Valsan, ${ }^{29}$ N. van Bakel, ${ }^{49}$ M. van Beuzekom, ${ }^{49}$ J. F. J. van den Brand, ${ }^{146,98,49}$ C. Van Den Broeck, ${ }^{116,49}$ D. C. Vander-Hyde, ${ }^{56}$ L. van der Schaaf, ${ }^{49}$ J. V. van Heijningen, ${ }^{89,96}$ M. H. P. M. van Putten, ${ }^{279}$ N. van Remortel, ${ }^{199}$ M. Vardaro, ${ }^{227,49}$ A. F. Vargas, ${ }^{110}$ V. Varma, ${ }^{88}$ M. Vasúth, ${ }^{67}$ A. Vecchio, ${ }^{14}$ G. Vedovato, ${ }^{72}$ J. Veitch, ${ }^{66}$ P. J. Veitch, ${ }^{77}$ K. Venkateswara, ${ }^{229}$ J. Venneberg, ${ }^{10,}{ }^{11}$ G. Venugopalan, ${ }^{1}$ D. Verkindt, ${ }^{48}$ Y. Verma, ${ }^{80}$ D. Veske, ${ }^{44}$ F. Vetrano, ${ }^{85}$ A. Viceré, ${ }^{85,}{ }^{86}$ A. D. Viets, ${ }^{233}$ V. Villa-Ortega, ${ }^{148}$ J.-Y. Vinet, ${ }^{87}$ S. Vitale, ${ }^{64}$ T. Vo, ${ }^{56}$ H. Vocca,,70,69 E. R. G. von Reis, ${ }^{62}$ C. Vorvick, ${ }^{62}$ S. P. Vyatchanin, ${ }^{82}$ L. E. Wade, ${ }^{164}$ M. Wade, ${ }^{164}$ K. J. Wagner, ${ }^{118}$ R. C. Walet, ${ }^{49}$ M. Walker, ${ }^{7}$ G. S. Wallace, ${ }^{32}$ L. Wallace, ${ }^{1}$ S. Walsh, ${ }^{29}$ J. Wang, ${ }^{168}$ J. Z. Wang, ${ }^{177}$
W. H. Wang, ${ }^{142}$ R. L. Ward, ${ }^{9}$ J. Warner, ${ }^{62}$ M. Was, ${ }^{48}$ T. Washimi, ${ }^{23}$ N. Y. Washington, ${ }^{1}$ J. Watchi, ${ }^{137}$ B. Weaver, ${ }^{62}$ L. Wei, ${ }^{10,11}$ M. Weinert, ${ }^{10,11}$ A. J. Weinstein, ${ }^{1}$ R. Weiss, ${ }^{64}$ C. M. Weller, ${ }^{229}$ F. Wellmann, ${ }^{10}, 11$ L. Wen, ${ }^{89}$
P. Weßels, ${ }^{10,11}$ J. W. Westhouse, ${ }^{35}$ K. Wette, ${ }^{9}$ J. T. Whelan, ${ }^{118}$ D. D. White, ${ }^{25}$ B. F. Whiting, ${ }^{42}$ C. Whittle, ${ }^{64}$ D. Wilken, ${ }^{10,}{ }^{11}$ D. Williams, ${ }^{66}$ M. J. Williams, ${ }^{66}$ A. R. Williamson, ${ }^{149}$ J. L. Willis, ${ }^{1}$ B. Willke, ${ }^{10}, 11$ D. J. Wilson, ${ }^{133}$ W. Winkler, ${ }^{10,11}$ C. C. Wipf, ${ }^{1}$ T. Wlodarczyk, ${ }^{100}$ G. Woan, ${ }^{66}$ J. Woehler, ${ }^{10,11}$ J. K. Wofford, ${ }^{118}$ I. C. F. Wong, ${ }^{103}$ J. Wrangel, ${ }^{10,11}$ C. Wu, ${ }^{123}$ D. S. Wu, ${ }^{10,11}$ H. Wu, ${ }^{123}$ S. Wu, ${ }^{123}$ D. M. Wysocki, ${ }^{29,} 118$ L. Xiao, ${ }^{1}$ W-R. Xu, ${ }^{189}$ T. Yamada, ${ }^{272}$ H. Yamamoto, ${ }^{1}$ Kazuhiro Yamamoto, ${ }^{183}$ Kohei Yamamoto, ${ }^{272}$ T. Yamamoto, ${ }^{184}$ K. Yamashita, ${ }^{183}$ R. Yamazaki, ${ }^{191}$ F. W. Yang, ${ }^{163}$ L. Yang, ${ }^{158}$ Yang Yang, ${ }^{42}$ Yi Yang, ${ }^{280}$ Z. Yang, ${ }^{58}$ M. J. Yap, ${ }^{9}$ D. W. Yeeles, ${ }^{17}$ A. B. Yelikar, ${ }^{118}$ M. Ying, ${ }^{119}$ K. Yokogawa, ${ }^{194}$ J. Yokoyama, ${ }^{31,30}$ T. Yokozawa, ${ }^{184}$ A. Yoon, ${ }^{7}$ T. Yoshioka, ${ }^{194}$

Hang Yu, ${ }^{88}$ Haocun Yu, ${ }^{64}$ H. Yuzurihara, ${ }^{37}$ A. Zadrożny, ${ }^{218}$ M. Zanolin, ${ }^{35}$ S. Zeidler, ${ }^{281}$ T. Zelenova, ${ }^{41}$ J.-P. Zendri, ${ }^{72}$ M. Zevin, ${ }^{15}$ M. Zhan, ${ }^{168}$ H. Zhang, ${ }^{189}$ J. Zhang, ${ }^{89}$ L. Zhang, ${ }^{1}$ R. Zhang, ${ }^{42}$ T. Zhang, ${ }^{14}$ C. Zhao, ${ }^{89}$ G. Zhao, ${ }^{137}$ Yue Zhao, ${ }^{163}$ Yuhang Zhao, ${ }^{23}$ Z. Zhou, ${ }^{15}$ X. J. Zhu, ${ }^{6}$ Z.-H. Zhu, ${ }^{109}$ M. E. Zucker, ${ }^{1,64}$ and J. Zweizig ${ }^{1}$
(The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration)
${ }^{1}$ LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{2}$ Louisiana State University, Baton Rouge, LA 70803, USA
${ }^{3}$ Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
${ }^{4}$ Dipartimento di Farmacia, Università di Salerno, I-84084 Fisciano, Salerno, Italy
${ }^{5}$ INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
${ }^{6}$ OzGrav, School of Physics \mathcal{G} Astronomy, Monash University, Clayton 3800, Victoria, Australia
${ }^{7}$ Christopher Newport University, Newport News, VA 23606, USA
${ }^{8}$ LIGO Livingston Observatory, Livingston, LA 70754, USA
${ }^{9}$ OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
${ }^{10}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
${ }^{11}$ Leibniz Universität Hannover, D-30167 Hannover, Germany
${ }^{12}$ University of Cambridge, Cambridge CB2 1TN, United Kingdom
${ }^{13}$ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
${ }^{14}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{15}$ Center for Interdisciplinary Exploration $\&$ Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
${ }^{16}$ Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
${ }^{17}$ Gravity Exploration Institute, Cardiff University, Cardiff CF24 3AA, United Kingdom
${ }^{18}$ Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
${ }^{19}$ INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
${ }^{20}$ INFN, Sezione di Pisa, I-56127 Pisa, Italy ${ }^{21}$ Università di Pisa, I-56127 Pisa, Italy
${ }^{22}$ International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
${ }^{23}$ Gravitational Wave Science Project, National Astronomical
Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
${ }^{24}$ Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka City, Tokyo 181-8588, Japan
${ }^{25}$ California State University Fullerton, Fullerton, CA 92831, USA
${ }^{26}$ NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
${ }^{27}$ Università di Napoli "Federico II", Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
${ }^{28}$ Université de Lyon, Université Claude Bernard Lyon 1,
CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
${ }^{29}$ University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
${ }^{30}$ Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{31}$ Research Center for the Early Universe (RESCEU), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{32}$ SUPA, University of Strathclyde, Glasgow G1 1 XQ, United Kingdom
${ }^{33}$ Dipartimento di Matematica e Informatica, Università di Udine, I-33100 Udine, Italy
${ }^{34}$ INFN, Sezione di Trieste, I-34127 Trieste, Italy
${ }^{35}$ Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
${ }^{36}$ Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006 Paris, France
${ }^{37}$ Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
${ }^{38}$ Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Ibaraki 305-0801, Japan
${ }^{39}$ Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
${ }^{40}$ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
${ }^{41}$ European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
${ }^{42}$ University of Florida, Gainesville, FL 32611, USA
${ }^{43}$ Department of Mathematics and Physics, Hirosaki University, Hirosaki City, Aomori 036-8561, Japan
${ }^{44}$ Columbia University, New York, NY 10027, USA
${ }^{45}$ Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Kamioka-cho, Hida City, Gifu 506-1205, Japan
${ }^{46}$ The Graduate University for Advanced Studies (SOKENDAI), Mitaka City, Tokyo 181-8588, Japan
${ }^{47}$ INFN, Sezione di Roma, I-00185 Roma, Italy
${ }^{48}$ Univ. Grenoble Alpes, Laboratoire d'Annecy de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
${ }^{49}$ Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands
${ }^{50}$ Korea Institute of Science and Technology Information (KISTI), Yuseong-gu, Daejeon 34141, Korea
${ }^{51}$ National Institute for Mathematical Sciences, Daejeon 34047, South Korea
${ }^{52}$ INFN Sezione di Torino, I-10125 Torino, Italy
${ }^{53}$ International College, Osaka University, Toyonaka City, Osaka 560-0043, Japan
${ }^{54}$ School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba City, Ibaraki 305-0801, Japan
${ }^{55}$ University of Oregon, Eugene, OR 97403, USA
${ }^{56}$ Syracuse University, Syracuse, NY 13244, USA
${ }^{57}$ Université de Liège, B-4000 Liège, Belgium
${ }^{58}$ University of Minnesota, Minneapolis, MN 55455, USA
${ }^{59}$ Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy
${ }^{60}$ INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
${ }^{61}$ INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy
${ }^{62}$ LIGO Hanford Observatory, Richland, WA 99352, USA
${ }^{63}$ Institut de Ciències del Cosmos, Universitat de Barcelona,
C/ Martí i Franquès 1, Barcelona, 08028, Spain
${ }^{64}$ LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{65}$ Dipartimento di Medicina, "Chirurgia e Odontoiatria Scuola Medica Salernitana",
Università di Salerno, I-84081 Baronissi, Salerno, Italy
${ }^{66}$ SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{67}$ Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
${ }^{68}$ Stanford University, Stanford, CA 94305, USA
${ }^{69}$ INFN, Sezione di Perugia, I-06123 Perugia, Italy
${ }^{70}$ Università di Perugia, I-06123 Perugia, Italy
${ }^{71}$ Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
${ }^{72}$ INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{73}$ Montana State University, Bozeman, MT 59717, USA
${ }^{74}$ Institute for Plasma Research, Bhat, Gandhinagar 382428, India
${ }^{75}$ Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
${ }^{76}$ Dipartimento di Ingegneria, Università del Sannio, I-82100 Benevento, Italy
${ }^{77}$ OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
${ }^{78}$ California State University, Los Angeles, 5151 State University Dr, Los Angeles, CA 90032, USA
${ }^{79}$ INFN, Sezione di Genova, I-16146 Genova, Italy
${ }^{80}$ RRCAT, Indore, Madhya Pradesh 452013, India
${ }^{81}$ Missouri University of Science and Technology, Rolla, MO 65409, USA
${ }^{82}$ Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
${ }^{83}$ SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
${ }^{84}$ Bar-Ilan University, Ramat Gan, 5290002, Israel
${ }^{85}$ Università degli Studi di Urbino "Carlo Bo", I-61029 Urbino, Italy
${ }^{86}$ INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
${ }^{87}$ Artemis, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, F-06304 Nice, France
${ }^{88}$ CaRT, California Institute of Technology, Pasadena, CA 91125, USA
${ }^{89}$ OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
${ }^{90}$ Dipartimento di Fisica "E.R. Caianiello", Università di Salerno, I- 84084 Fisciano, Salerno, Italy
${ }^{91}$ INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
${ }^{92}$ Università di Roma "La Sapienza", I-00185 Roma, Italy
${ }^{93}$ Univ Rennes, CNRS, Institut FOTON - UMR6082, F-3500 Rennes, France
${ }^{94}$ Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
${ }^{95}$ Laboratoire Kastler Brossel, Sorbonne Université, CNRS,
ENS-Université PSL, Collège de France, F-75005 Paris, France
${ }^{96}$ Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
${ }^{97}$ Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
${ }^{98}$ VU University Amsterdam, 1081 HV Amsterdam, Netherlands
${ }^{99}$ University of Maryland, College Park, MD 20742, USA
${ }^{100}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany
${ }^{101}$ School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
${ }^{102}$ Villanova University, 800 Lancaster Ave, Villanova, PA 19085, USA
${ }^{103}$ Faculty of Science, Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
${ }^{104}$ Stony Brook University, Stony Brook, NY 11794, USA
${ }^{105}$ Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
${ }^{106}$ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
${ }^{107}$ Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy ${ }^{108}$ Tsinghua University, Beijing 100084, China
${ }^{109}$ Department of Astronomy, Beijing Normal University, Beijing 100875, China
${ }^{110}$ OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
${ }^{111}$ Università degli Studi di Sassari, I-07100 Sassari, Italy
${ }^{112}$ INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy
${ }^{113}$ Università di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{114}$ INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{115}$ University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
${ }^{116}$ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
${ }^{117}$ Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
${ }^{118}$ Rochester Institute of Technology, Rochester, NY 14623, USA
${ }^{119}$ National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
${ }^{120}$ Department of Applied Physics, Fukuoka University, Jonan, Fukuoka City, Fukuoka 814-0180, Japan
${ }^{121}$ OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
${ }^{122}$ Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan
${ }^{123}$ Department of Physics and Institute of Astronomy,
National Tsing Hua University, Hsinchu 30013, Taiwan
${ }^{124}$ University of Chicago, Chicago, IL 60637, USA
${ }^{125}$ Department of Physics, Center for High Energy and High Field Physics,
National Central University, Zhongli District, Taoyuan City 32001, Taiwan
${ }^{126}$ Dipartimento di Ingegneria Industriale (DIIN),
Università di Salerno, I-84084 Fisciano, Salerno, Italy
${ }^{127}$ Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
${ }^{128}$ Institut de Physique des 2 Infinis de Lyon (IP2I), CNRS/IN2P3,
Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
${ }^{129}$ Seoul National University, Seoul 08826, South Korea
${ }^{130}$ Pusan National University, Busan 46241, South Korea
${ }^{131}$ King's College London, University of London, London WC2R 2LS, United Kingdom
${ }^{132}$ INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy ${ }^{133}$ University of Arizona, Tucson, AZ 85721, USA
${ }^{134}$ Rutherford Appleton Laboratory, Didcot OX11 ODE, United Kingdom
${ }^{135}$ Université libre de Bruxelles, Avenue Franklin Roosevelt 50-1050 Bruxelles, Belgium
${ }^{136}$ Universitat de les Illes Balears, IAC3-IEEC, E-07122 Palma de Mallorca, Spain
${ }^{137}$ Université Libre de Bruxelles, Brussels 1050, Belgium
${ }^{138}$ Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
${ }^{139}$ Texas Tech University, Lubbock, TX 79409, USA
${ }^{140}$ The Pennsylvania State University, University Park, PA 16802, USA
${ }^{141}$ University of Rhode Island, Kingston, RI 02881, USA
${ }^{142}$ The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
${ }^{143}$ Bellevue College, Bellevue, WA 98007, USA
${ }^{144}$ Scuola Normale Superiore, Piazza dei Cavalieri, 7-56126 Pisa, Italy
${ }^{145}$ MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
${ }^{146}$ Maastricht University, 6200 MD, Maastricht, Netherlands ${ }^{147}$ Universität Hamburg, D-22761 Hamburg, Germany
${ }^{148}$ IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain
${ }^{149}$ University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
${ }^{150}$ The University of Sheffield, Sheffield S10 2TN, United Kingdom
${ }^{151}$ Laboratoire des Matériaux Avancés (LMA), Institut de Physique des 2 Infinis (IP2I) de Lyon, CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
${ }^{152}$ Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
${ }^{153}$ INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
${ }^{154}$ Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
${ }^{155}$ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
${ }^{156}$ West Virginia University, Morgantown, WV 26506, USA
${ }^{157}$ Montclair State University, Montclair, NJ 07043, USA
${ }^{158}$ Colorado State University, Fort Collins, CO 80523, USA

[^0][^1]${ }^{265}$ Faculty of Information Science and Technology,
Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan
${ }^{266}$ Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India ${ }^{267}$ iTHEMS (Interdisciplinary Theoretical and Mathematical Sciences Program),
The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
${ }^{268}$ INAF, Osservatorio di Astrofisica e Scienza dello Spazio, I-40129 Bologna, Italy
${ }^{269}$ Department of Space and Astronautical Science,
The Graduate University for Advanced Studies (SOKENDAI), Sagamihara, Kanagawa 252-5210, Japan
${ }^{270}$ Andrews University, Berrien Springs, MI 49104, USA
${ }^{271}$ Department of Information and Management Systems Engineering,
Nagaoka University of Technology, Nagaoka City, Niigata 940-2188, Japan
${ }^{272}$ Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
${ }^{273}$ National Metrology Institute of Japan, National Institute of Advanced
Industrial Science and Technology, Tsukuba City, Ibaraki 305-8568, Japan
${ }^{274}$ Dipartimento di Scienze Aziendali - Management and Innovation Systems (DISA-MIS), Università di Salerno, I-84084 Fisciano, Salerno, Italy
${ }^{275}$ Van Swinderen Institute for Particle Physics and Gravity,
University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
${ }^{276}$ Department of Communications Engineering, National Defense
Academy of Japan, Yokosuka City, Kanagawa 239-8686, Japan
${ }^{277}$ Department of Physics, University of Florida, Gainesville, FL 32611, USA
${ }^{278}$ Trinity University, San Antonio, TX 78212, USA
${ }^{279}$ Department of Physics and Astronomy, Sejong University, Gwangjin-gu, Seoul 143-747, Korea
${ }^{280}$ Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
${ }^{281}$ Department of Physics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
(compiled May 18, 2021)

[^2]
[^0]: ${ }^{159}$ Institute for Nuclear Research, Hungarian Academy of Sciences, Bem t'er 18/c, H-4026 Debrecen, Hungary
 ${ }^{160}$ CNR-SPIN, c/o Università di Salerno, I-84084 Fisciano, Salerno, Italy
 ${ }^{161}$ Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy
 ${ }^{162}$ Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
 ${ }^{163}$ The University of Utah, Salt Lake City, UT 84112, USA
 ${ }^{164}$ Kenyon College, Gambier, OH 43022, USA
 ${ }^{165}$ Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
 ${ }^{166}$ Department of Astronomy, The University of Tokyo, Mitaka City, Tokyo 181-8588, Japan
 ${ }^{167}$ Faculty of Engineering, Niigata University, Nishi-ku, Niigata City, Niigata 950-2181, Japan
 ${ }^{168}$ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
 Innovation Academy for Precision Measurement Science and Technology (APM),
 Chinese Academy of Sciences, Xiao Hong Shan, Wuhan 430071, China
 ${ }^{169}$ University of Szeged, Dóm tér 9, Szeged 6720, Hungary
 ${ }^{170}$ Universiteit Gent, B-9000 Gent, Belgium
 ${ }^{171}$ University of British Columbia, Vancouver, BC V6T 1Z4, Canada
 ${ }^{172}$ Tata Institute of Fundamental Research, Mumbai 400005, India
 ${ }^{173}$ INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy
 ${ }^{174}$ Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
 ${ }^{175}$ INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
 ${ }^{176}$ The University of Mississippi, University, MS 38677, USA
 ${ }^{177}$ University of Michigan, Ann Arbor, MI 48109, USA
 ${ }^{178}$ Department of Physics, School of Natural Science,
 Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan 44919, Korea
 ${ }^{179}$ Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba City, Ibaraki 305-0801, Japan
 ${ }^{180}$ Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
 ${ }^{181}$ Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
 ${ }^{182}$ American University, Washington, D.C. 20016, USA
 ${ }^{183}$ Faculty of Science, University of Toyama, Toyama City, Toyama 930-8555, Japan
 ${ }^{184}$ Institute for Cosmic Ray Research (ICRR), KAGRA Observatory,
 The University of Tokyo, Kamioka-cho, Hida City, Gifu 506-1205, Japan
 ${ }^{185}$ Carleton College, Northfield, MN 55057, USA
 ${ }^{186}$ University of California, Berkeley, CA 94720, USA
 ${ }^{187}$ College of Industrial Technology, Nihon University, Narashino City, Chiba 275-8575, Japan
 ${ }^{188}$ Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata City, Niigata 950-2181, Japan
 ${ }^{189}$ Department of Physics, National Taiwan Normal University, sec. 4, Taipei 116, Taiwan
 ${ }^{190}$ Astronomy \mathcal{E} Space Science, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea, Korea
 ${ }^{191}$ Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara City, Kanagawa 252-5258, Japan
 ${ }^{192}$ Kavli Institute for Astronomy and Astrophysics,
 Peking University, Haidian District, Beijing 100871, China
 ${ }^{193}$ Yukawa Institute for Theoretical Physics (YITP),
 Kyoto University, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan
 ${ }^{194}$ Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan
 ${ }^{195}$ Department of Physics, Graduate School of Science,
 Osaka City University, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
 ${ }^{196}$ Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
 ${ }^{197}$ Institute of Space and Astronautical Science (JAXA),
 Chuo-ku, Sagamihara City, Kanagawa 252-0222, Japan
 ${ }^{198}$ Directorate of Construction, Services \& Estate Management, Mumbai 400094 India
 ${ }^{199}$ Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerpen, Belgium
 ${ }^{200}$ University of Biatystok, 15-424 Biatystok, Poland
 ${ }^{201}$ Department of Physics, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
 ${ }^{202}$ National Astronomical Observatories, Chinese Academic of Sciences, Chaoyang District, Beijing, China
 ${ }^{203}$ School of Astronomy and Space Science, University of Chinese Academy of Sciences, Chaoyang District, Beijing, China
 ${ }^{204}$ University of Southampton, Southampton SO17 1BJ, United Kingdom
 ${ }^{205}$ Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa City, Chiba 277-8582, Japan
 ${ }^{206}$ Institut de Física d'Altes Energies (IFAE), Barcelona Institute
 of Science and Technology, and ICREA, E-08193 Barcelona, Spain
 ${ }^{207}$ Graduate School of Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
 ${ }^{208}$ University of Washington Bothell, Bothell, WA 98011, USA
 ${ }^{209}$ Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
 ${ }^{210}$ Ewha Womans University, Seoul 03760, South Korea
 ${ }^{211}$ Inje University Gimhae, South Gyeongsang 50834, South Korea
 ${ }^{212}$ Department of Physics, Myongji University, Yongin 17058, Korea

[^1]: ${ }^{213}$ Korea Astronomy and Space Science Institute (KASI), Yuseong-gu, Daejeon 34055, Korea
 ${ }^{214}$ Department of Physical Science, Hiroshima University,
 Higashihiroshima City, Hiroshima 903-0213, Japan
 ${ }^{215}$ Bard College, 30 Campus Rd, Annandale-On-Hudson, NY 12504, USA
 ${ }^{216}$ Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN),
 The University of Tokyo, Kamioka-cho, Hida City, Gifu 506-1205, Japan
 ${ }^{217}$ Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
 ${ }^{218}$ National Center for Nuclear Research, 05-400 Świerk-Otwock, Poland
 ${ }^{219}$ Cornell University, Ithaca, NY 14850, USA
 ${ }^{220}$ Institute for Advanced Research, Nagoya University,
 Furocho, Chikusa-ku, Nagoya City, Aichi 464-8602, Japan
 ${ }^{221}$ Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada
 ${ }^{222}$ Laboratoire Lagrange, Université Côte d'Azur, Observatoire Côte d’Azur, CNRS, F-06304 Nice, France
 ${ }^{223}$ Department of Physics, University of Texas, Austin, TX 78712, USA
 ${ }^{224}$ Department of Physics, Hanyang University, Seoul 04763, Korea
 ${ }^{225}$ NAVIER, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
 ${ }^{226}$ National Center for High-performance computing, National Applied Research Laboratories, Hsinchu Science Park, Hsinchu City 30076, Taiwan
 ${ }^{227}$ Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
 ${ }^{228}$ NASA Marshall Space Flight Center, Huntsville, AL 35811, USA
 ${ }^{229}$ University of Washington, Seattle, WA 98195, USA
 ${ }^{230}$ Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, I-00146 Roma, Italy
 ${ }^{231}$ INFN, Sezione di Roma Tre, I-00146 Roma, Italy
 ${ }^{232}$ ESPCI, CNRS, F- 75005 Paris, France
 ${ }^{233}$ Concordia University Wisconsin, Mequon, WI 53097, USA
 ${ }^{234}$ Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
 ${ }^{235}$ Southern University and AछMM College, Baton Rouge, LA 70813, USA
 ${ }^{236}$ Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
 ${ }^{237}$ Institute for Photon Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ${ }^{238}$ Indian Institute of Technology Madras, Chennai 600036, India
 ${ }^{239}$ Saha Institute of Nuclear Physics, Bidhannagar, West Bengal 700064, India
 ${ }^{240}$ The Applied Electromagnetic Research Institute,
 National Institute of Information and Communications Technology (NICT), Koganei City, Tokyo 184-8795, Japan
 ${ }^{241}$ Faculty of Law, Ryukoku University, Fushimi-ku, Kyoto City, Kyoto 612-8577, Japan
 ${ }^{242}$ Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741252, India
 ${ }^{243}$ Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands
 ${ }^{244}$ Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
 ${ }^{245}$ Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
 ${ }^{246}$ GRAPPA, Anton Pannekoek Institute for Astronomy and Institute for High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
 ${ }^{247}$ Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, I-00185 Roma, Italy ${ }^{248}$ Hobart and William Smith Colleges, Geneva, NY 14456, USA
 ${ }^{249}$ International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal RN 59078-970, Brazil
 ${ }^{250}$ Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", I-00184 Roma, Italy
 ${ }^{251}$ Department of Engineering, University of Sannio, Benevento 82100, Italy
 ${ }^{252}$ Lancaster University, Lancaster LA1 $4 Y W$, United Kingdom
 ${ }^{253}$ OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
 ${ }^{254}$ Università di Trento, Dipartimento di Matematica, I-38123 Povo, Trento, Italy
 ${ }^{255}$ Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
 ${ }^{256}$ Dipartimento di Fisica, Università degli Studi di Torino, I-10125 Torino, Italy
 ${ }^{257}$ Indian Institute of Technology, Palaj, Gandhinagar, Gujarat 382355, India
 ${ }^{258}$ Department of Physics, Kyoto University, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan
 ${ }^{259}$ Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, Nagaoka City, Niigata 940-8532, Japan
 ${ }^{260}$ Chennai Mathematical Institute, Chennai 603103, India
 ${ }^{261}$ Centro de Astrofísica e Gravitação (CENTRA),
 Departamento de Física, Instituto Superior Técnico,
 Universidade de Lisboa, 1049-001 Lisboa, Portugal
 ${ }^{262}$ Marquette University, 11420 W. Clybourn St., Milwaukee, WI 53233, USA
 ${ }^{263}$ Graduate School of Science and Engineering, Hosei University, Koganei City, Tokyo 184-8584, Japan
 ${ }^{264}$ Faculty of Science, Toho University, Funabashi City, Chiba 274-8510, Japan

[^2]: ${ }^{\text {a }}$ Deceased, August 2020.

