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Abstract 

Background: Cognitive deficits profoundly impact on the quality of life of patients with 

schizophrenia. Alterations in Brain Derived Neurotrophic Factor (BDNF) signalling, which 

regulates synaptic function through the activation of full-length tropomyosin-related kinase B 

receptors (TrkB-FL), are implicated in the aetiology of schizophrenia, as is NMDA receptor 

(NMDA-R) hypofunction. However, whether NMDA-R hypofunction contributes to the disrupted 

BDNF signalling seen in patients remains unknown. 

Aims: The purpose of this study was to characterise BDNF signalling and function in a preclinical 

rodent model relevant to schizophrenia induced by prolonged NMDA-R hypofunction. 

Methods: Using the subchronic phencyclidine (PCP) model, we performed electrophysiology 

approaches, molecular characterisation and behavioural analysis. 

Results: The data showed that prolonged NMDA-R antagonism, induced by subchronic PCP 

treatment, impairs long-term potentiation (LTP) and the facilitatory effect of BDNF upon LTP in 

the medial prefrontal cortex (mPFC) of adult mice. In addition, TrkB-FL receptor expression is 

decreased in the PFC of these animals. By contrast, these changes were not present in the 

hippocampus of PCP-treated mice. Moreover, BDNF levels were not altered in the hippocampus 

or PFC of PCP-treated mice. Interestingly, these observations are paralleled by impaired 

performance in PFC-dependent cognitive tests in mice treated with PCP.  

Conclusions: Overall, these data suggest that NMDA-R hypofunction induces dysfunctional 

BDNF signalling in the PFC, but not in the hippocampus, which may contribute to the PFC-

dependent cognitive deficits seen in the subchronic PCP model. In addition, the data suggest 

that targeting BDNF signalling may be a mechanism to improve PFC-dependent cognitive 

dysfunction in schizophrenia. 
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Introduction 

Schizophrenia is characterized by positive and negative symptoms and pronounced 

cognitive deficits (Marder and Cannon, 2019). The drugs currently used relieve the positive 

symptoms (Huhn et al., 2019) but have limited efficacy for the negative symptoms and cognitive 

deficits (Fusar-Poli et al., 2015; Krause et al., 2018). Thus, there is an urgent need to understand 

the mechanisms contributing to these symptoms and for new effective treatments. 

A key role for glutamatergic dysfunction in schizophrenia is supported. In particular, 

there is evidence for N-methyl-D-aspartate receptor (NMDA-R) hypofunction in the prefrontal 

cortex (PFC) and hippocampus, brain regions dysfunctional in the disorder (Dauvermann et al., 

2017; Lee and Zhou, 2019). Furthermore, prolonged NMDA-R hypofunction induced by 

subchronic PCP administration in rodents induces cognitive, behavioural and neurochemical 

alterations, along with deficits in PFC metabolism (“hypofrontality”) and brain network 

connectivity, that have translational relevance to those seen in patients (Cochran et al., 2003; 

Egerton et al., 2008; Dawson et al., 2012, 2014; Neill et al., 2014). 

BDNF is a neurotrophic factor that, through the activation of the full length kinase 

receptor B (TrkB-FL), promotes neuronal survival, differentiation, and synaptic plasticity (Lee et 

al., 2001; Chao, 2003). Truncated isoforms of the receptor (TrkB-TC) act to limit BDNF signaling 

(Dorsey et al., 2006; Eide et al., 1996). Alterations in BDNF signaling are implicated in 

schizophrenia pathogenesis (Nieto et al., 2013; Palomino et al., 2006). Reduced BDNF and TrkB-
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FL expression, and increased TrkB-TC expression, in the PFC (Weickert et al., 2005; Wong et al., 

2013) and hippocampus (Durany et al., 2001; Iritani et al., 2003; Thompson Ray, 2011) of 

patients support reduced BDNF signalling in the disorder (Sigurdsson and Duvarci, 2015). 

Interestingly, serum BDNF levels are also positively associated with cognitive function in patients 

(Ahmed et al., 2015) and a functional single-nucleotide polymorphism (rs6265) in the BDNF gene 

is linked to neurocognitive deficits in patients(Egan et al., 2003).  Overall, the data suggests that 

BDNF signalling may play a key role in the cognitive deficits seen in the disorder. Evidence from 

relevant animal models also supports a role for disrupted BDNF signalling in the disorder 

(Faatehi et al., 2019; Fiore et al., 2004; Pillai and Mahadik, 2008). Despite these observations the 

potential contribution of sustained NMDA-R hypofunction to the disturbed BDNF signalling seen 

in schizophrenia remains to be adequately defined. Thus, here we characterize the molecular 

and functional deficits in BDNF signalling seen in the PFC and hippocampus of the subchronic 

PCP mouse model.  
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Methods 

Animals 

Male (2-3 months old) C57BL/6 mice (Charles River, Spain) were used. All procedures were 

carried out under European Community Guidelines (Directive, 2010/63/EU) and the Portuguese 

law (DL 113/2013) for Animal Care for Research Purposes. Animals were tagged and distributed 

in groups of five animals to each housing cage, kept in a controlled environment (14-10 h 

light/dark cycle, 45–65% humidity and 22-24 °C room temperature, RT) with food and water 

provided ad libitum. To determine allocation to either the control or experimental treatment 

group a pseudo‐randomization procedure was employed. Animals were habituated to the 

presence of the investigator and handled for 5-days before testing. Animal behaviour 

experiments were performed during the light phase and around the same time each day.  

 

Drug Treatments and Experimental Timeline 

Animals treated subchronically with PCP received 10 mg/kg PCP.HCl (2 ml/kg injection 

volume) (Tocris, UK, in 0.9% w/v sterile saline, intraperitoneally, i.p.) over 12 days (one daily 

administration on days 1-5 and 8-12, with no treatment on days 6 and 7). Controls received 

saline treatment with the same protocol. The PCP dosing regimen was based on published work 

showing that this induces cognitive, behavioural and neurochemical alterations in mice relevant 

to schizophrenia, that last for at least 7 days after the final PCP administration (Hashimoto et al., 

2007, 2008; Fujita et al., 2008; Tanibuchi et al., 2009; Santini et al., 2013). Thus, to make sure 

that all primary endpoint measures of interest were taken between 3-5 days after the final PCP 

injection, we performed the Morris Water Maze Test (MWMT) and other behavioural tests in 

two separate cohorts of animals. Therefore, the Open Field Test (OFT), Novel Object Recognition 
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Test (NORT) and Y-Maze Spontaneous Alternation Test (YMT) were conducted in one cohort of 

animals and the MWMT was performed in a separate cohort of animals. This also ensures that 

the results obtained in the OFT, NORT and YMT are not influenced by the stress induced by the 

MWMT.  

 The aim of the present study was to determine the primary endpoint measures of interest 

in the behavioural tests, and electrophysiology measurements, at around 72 hours after the final 

PCP administration, where the conformational changes induced by the drug are more prominent 

than its acute effects. This timepoint aligns with that measured in a broad base of published 

literature utilising subchronic PCP administration in both mice (Hashimoto et al., 2007, 2008; 

Fujita et al., 2008; Tanibuchi et al., 2009; Santini et al., 2013) and also in rats, using lower PCP 

doses (Cochran et al., 2003; Egerton et al., 2008; Dawson et al., 2012). The available 

pharmacokinetic information on repeated PCP administration in mice shows that animals are 

indeed “drug-free” at this timepoint. Nabeshima et al., 1987 reported the half-life of PCP in brain 

tissue in mice, at the end of a repeated dosing schedule (10 mg/kg, i.p., 14 days of treatment), 

to be approximately 30 minutes. Thus, this is the expected half-life of PCP in the brain associated 

with an i.p. injection of the same PCP dose used in our study in mice. Therefore, at 72 hours 

after the final PCP injection (approximately 142 half-lives), when we take the primary measures 

of interest in our study, the brain concentration of PCP in our treated mice would be negligible. 

Similar information supports subchronic PCP-treated rats being drug-free at this timepoint, 

albeit with the lower PCP doses applied (Kalinichev et al., 2008). In accordance with this, we 

aligned the test phase of NORT and the probe trial of the MWMT to be completed 72 hours after 

the final PCP administration. This meant that some aspects of the training for these tests must 

overlap with part of the PCP administration protocol. The PCP treatment and testing protocol 
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employed ensures that animals were not under the acute effects of PCP administration during 

behavioural testing for the primary end-point measures (the training and test phase of the NORT 

and MWMT probe trial). However, during the initial training phase of the MWMT, the 

habituation phase of the NORT and the OFT (no alterations detected), PCP treatment was 

ongoing. To ensure that animals were not under the effects of acute PCP treatment at these 

time points behavioural measurements were all conducted at least 20h after the previous PCP 

injection. 

The OFT was conducted on day 11. The probe trial of the MWMT was conducted on day 

15, 3 days after the final PCP administration. The test phase of the NORT and YMT were 

conducted on day 16, 4 days after the final PCP administration. For behavioural analysis 10-12 

PCP and 9-10 saline-treated mice were used.  

Electrophysiological and molecular characterisation was performed during the same time 

interval. However, a separate cohort of animals, 16 PCP-treated (10, hippocampus; 6, mPFC) and 

20 controls (10, hippocampus; 10, mPFC) was used to prevent the potential impact of animal 

manipulation and behavioural testing on electrophysiology. The experimental design is detailed 

in Figure 1.  

[insert Figure 1.] 

Ex Vivo Electrophysiology Recordings in medial prefrontal cortex  

Animals treated with saline or PCP were sacrificed by decapitation under deep isoflurane 

(Esteve, Barcelona, Spain) anaesthesia, and the brain was rapidly removed from the skull and 

submerged in ice-cold dissecting solution containing: 110 mM sucrose; 2.5 mM KCl; 0.5 mM 

CaCl2; 7 mM MgCl2; 25 mM NaHCO3; 1.25 mM NaH2PO4; 7 mM glucose, pH 7.4, gassed with 95% 

O2 and 5% CO2. For the electrophysiology in the medial prefrontal cortex (mPFC), coronal slices 
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(300 µm thick) were cut with a Vibratome (VT 1000S; Leica, Nussloch, Germany). The slices were 

then transferred to a pre-chamber containing artificial cerebrospinal fluid (aCSF) (124 mM NaCl, 

3 mM KCl, 1.2 mM NaH2PO4, 25 mM NaHCO3, 2 mM CaCl2, 1 mM MgSO4, and 10 mM glucose, 

pH 7.4), maintained for 30 min at 35°C with constant oxygenation. After recovery for at least 1 

h at RT, individual slices were transferred to a submerged recording chamber where they were 

continuously superfused at a rate of 3 ml/min with oxygenated aCSF at 32°C. A bipolar 

concentric wire stimulation electrode was placed in layer 2/3 of the mPFC (Figure 2(a)), 

delivering rectangular pulses of 0.1 ms duration every 20 s. The evoked responses were recorded 

through a microelectrode filled with aCSF (2–6 MΩ resistance) placed in the layer 5 of the mPFC, 

using an Axoclamp 2B amplifier (Axon Instruments, Foster City, CA, United States). Responses 

were digitized and continuously monitored on a computer using WinLTP 2.20b software 

(Anderson and Collingridge, 2007). Individual responses were monitored, and averages of six 

consecutive responses were used to calculate the slope of field excitatory postsynaptic 

potentials (fEPSPs). Due to difficulties experienced in inducing LTP in mPFC slices, multiple 

protocols were extensively tested and the protocol employed, which has been used before 

(Gemperle et al., 2003; Kerkhofs et al., 2018), was found to be the most reliable one in our hands. 

LTP was induced in the PFC by delivering a train of 100 Hz (50 pulses, 0.5 s duration) stimuli for 

priming, followed 15 min later by four trains of 100 Hz (50 pulses, 0.5 s duration, 1 every 10 s) 

stimuli. LTP was quantified as the % change in the average slope of the fEPSPs taken from 50 to 

65 min after LTP induction relatively to the average fEPSP slope measured during the 10 min 

prior to LTP induction. The effect of BDNF on LTP was evaluated by comparing the LTP magnitude 

in a control (aCSF superfusion) and test slice (BDNF superfusion) from the same animal. BDNF 

remained in the bath until the end of the recording period. The order of testing BDNF and control 
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treated slices was counterbalanced, to avoid any potential influence of dissection bias or time 

of day on the measurements. 

To make sure that, in our experimental conditions, we were assessing a synaptic signal, 

mostly glutamatergic in nature, we performed a control experiment with 10 μM of 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX), an AMPA/kainate glutamate receptor antagonist. CNQX was 

added to the aCSF superfusion solution of the slices containing mPFC taken from a saline-treated 

animal. After 10 min, CNQX was washed out from the system by superfusion aCSF and individual 

responses were monitored, and averages of six consecutive responses were used to calculate 

the slope of fEPSPs (Supplementary Figure 1). 

 

Ex Vivo Electrophysiology Recordings in hippocampal slices 

Animals treated with saline or PCP were sacrificed after being deeply anesthetized with 

isoflurane, 3 to 5 days after the final treatment (days 15-17). The brain was quickly removed and 

placed in ice-cold continuously oxygenated (O2/CO2: 95%/5%) aCSF and the hippocampi were 

dissected free. The hippocampal slices (400 μm thick) were cut perpendicularly to the long axis 

of the hippocampus with a McIlwain tissue chopper (Campden Instruments, Leicestershire, UK). 

After recovering functionally and energetically for at least 1 h in a resting chamber filled with 

oxygenated aCSF at RT, hippocampal slices were transferred to a recording chamber 

continuously superfused with oxygenated aCSF at 32°C (flow rate of 3 mL/min). fEPSPs were 

recorded extracellularly through a microelectrode filled with aCSF (2–6 MΩ) placed in the 

stratum radiatum of the CA1 hippocampal subfield (Figure 3(a)). The Schaffer collaterals were 

stimulated (rectangular pulses of 0.1 ms duration) every 10 s using a bipolar concentric wire 

electrode positioned at the CA3-CA1 border. Recordings were obtained with an Axoclamp 2B 
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amplifier (Axon Instruments, Foster City, CA, United States), digitized and continuously stored 

on a computer using WinLTP 2.20b software (Anderson and Collingridge, 2007). Individual 

responses were monitored, and averages of six consecutive responses were obtained to 

calculate the slope of the initial phase of the fEPSP. LTP induction and quantification were 

performed as previously described (Diógenes et al., 2011) using a stimulation paradigm 

optimised to detect the effect of BDNF upon LTP (𝜃-burst protocol; three trains of 100 Hz, three 

stimuli, separated by 200 ms) (Fontinha et al., 2008). This stimulus protocol is considered to be 

closer to physiological stimulations that occur in the hippocampus during episodes of learning 

and memory in vivo (Albensi et al., 2007). After a stable fEPSP slope was achieved, LTP was 

induced. In an independent slice from the same animal, LTP was induced after 20 min of BDNF 

perfusion (20 ng/mL). BDNF remained in the bath until the end of the experiment. Again, the 

order of testing BDNF and control treated slices was counterbalanced, to avoid any potential 

influence of dissection bias or time of day on the measurements. 

LTP was quantified as % change in the average slope of the fEPSP taken from 50 to 60 

min after LTP induction relatively to the average slope of the fEPSP measured during the 10 min 

prior to LTP induction. The effect of BDNF on LTP was evaluated by comparing the LTP magnitude 

in the first (control, aCSF superfusion) and second hippocampal slices (test, BDNF superfusion) 

from the same animal, as previously described (Figurov et al., 1996; Fontinha et al., 2008). 

 

BDNF, TrkB Receptor and NMDA-R subunits quantification 

Brain tissue samples (PFC and hippocampus) were isolated and washed with ice-cold 

phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4.2H2O, and 1.5 mM 

KH2PO4, pH 7.4) and lysed with Radio Immuno Precipitation Assay buffer (RIPA, 50 mM Tris-HCl 
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(pH 7.5), 150 mM NaCl, 5mM ethylenediamine tetra-acetic acid, 0.1% sodium dodecyl sulfate 

145 (SDS) and 1% Triton X-100) containing protease inhibitors (Roche, Penzberg, Germany). 

Tissue homogenates were clarified by centrifugation (13 000 g, 10 min, 4°C), and the amount of 

protein in the supernatant determined by Bio-Rad DC reagent assay (Bio-Rad Laboratories, 

Berkeley, USA). 

BDNF protein levels were quantified using an enzyme-linked immunosorbent assay 

(ELISA), according to the manufacturer’s instructions (Cat. No.: G7611, Promega, WI, USA). 

Samples were analysed in duplicate.  

For western blot, a loading buffer (350 mM Tris pH 6.8, 10% SDS, 30% glycerol, 600 mM 

Dithiothreitol, 0.06% bromophenol blue) was added and the mixture was heated to 95-100°C 

for 5 min. Each sample (70 μg of total protein) and the molecular weight marker (NZYTech, 

Lisbon, PT) were separated using 10% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS–PAGE) within a standard migration buffer (25 mM Tris pH 8.3, 192 mM 

Glycine, 10% SDS), at a constant voltage between 80-120 mV. Proteins were then transferred 

onto Polyvinylidene Difluoride (PVDF) membranes (GE Healthcare, Buckinghamshire, UK), 

previously soaked in methanol for 5 min, in the standard buffer (25 mM Tris pH= 8.3, 192 mM 

157 Glycine, 15% methanol) for 90 min. Membranes were then stained with Ponceau S solution 

to determine protein transference efficacy and then blocked with a 3% (w/v) bovine serum 

albumin in Tris-buffered saline solution containing 0.1% Tween-20 (20 mM Tris base, 137 mM 

NaCl and 0.1% Tween-20). Membranes were incubated with the primary antibody (overnight at 

4°C). These antibodies were: C-14 - the C-terminal of Trk-FL rabbit polyclonal antibody (1:2000; 

Santa Cruz Biotechnology, Dallas, TX, USA), which was used to quantify TrkB-FL levels, and the 

pan-TrkB mouse monoclonal antibody (1:1500), raised against the extracellular domain of 
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human TrkB (aa. 156–322; BD Bioscience), used to quantify the levels of TrkB-TC protein. We 

also quantified NMDA receptor expression in the PFC and hippocampus (Supplementary Figure 

2) using an GluN1 mouse monoclonal antibody (1:500; BD Bioscience, Franklin Lakes, NJ, USA), 

GluN2A mouse monoclonal antibody (1:200; Santa Cruz Biotechnology) and GluN2B rabbit 

polyclonal antibody (1:1000, Abcam, Cambridge, UK). Membranes were then incubated for 1h 

at RT with goat anti-mouse or goat anti-rabbit IgG-horseradish peroxidase-conjugated 

secondary antibodies (1:10000, Santa Cruz Biotechnology). Immunoreactivity was visualized 

using the Enhanced Chemiluminescence (ECL) detection system (GE Healthcare). Band intensity 

was recorded using the ChemiDoc system (Bio-Rad Laboratories) and quantified by digital 

densitometry software in ImageJ 1.45 (Bethesda, MD, USA). The intensity of GAPDH (mouse 

anti-GAPDH; 1:5000, Thermo Fischer Scientific) was used as the loading control. 

All Western Blot experiments were performed by the same researcher and with the same 

equipment. 

Behavioural Testing 

Y-Maze spontaneous alternation test 

Spontaneous alternation was tested in a Y-shaped maze with three white, opaque plastic 

arms (each with 15 x 5 x 12 cm) at a 120° angle from each other, as previously described (Hughes, 

2004). The animal was placed in an arm, facing the center of the maze, and allowed to freely 

explore the maze for 8 min. A correct alternation occurred when the animal sequentially moved 

to the other two arms of the maze without retracing its steps (i.e., from arm A to B to C). 

Movement sequences involving the animal re-visiting a previously visited arm, such as ABA or 

ACA, were recorded as being incorrect alternations. Based on all movements made over the 

entire session, the percentage of correct alternations was calculated. An arm entry was 
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considered to occur when all four of the animal’s limbs were within the given arm. The 

percentage of correct alternations was calculated by dividing the number of correct alternations 

by the number of alternation opportunities minus one x 100. 

Open field test 

The OFT was used to determine any impact of PCP on locomotor activity or anxiety-like 

behaviour that might affect performance on the other behavioural tests. The arena used (white, 

square, 40 x 40 x 40 cm) was the same used for the NORT. The OFT was carried out on the first 

time that animals had contact with the environment, i.e., on the first 5 min of the first day of 

NOR habituation phase, indicating the animals locomotor activity in response to a novel 

environment. The arena was virtually divided into three different square zones, namely a 

peripheral zone, an intermediate zone and a central zone. The amount of time spent in the 

central zone was used as an inverse indicator of anxiety-like behaviour. Mean velocity and 

distance travelled were quantified to compare locomotor activity. Movements were recorded 

and analysed using the videotracking software SMART® (PanLab, Barcelona, Spain). 

Novel object recognition test 

The NORT was conducted in an open field arena (40 X 40 X 40 cm), to which the animals 

had previously been exposed, in accordance with published protocols (Mouro et al., 2018). 

Animals were habituated to the arena context in the absence of any stimulus or object, under 

the same lighting and environmental conditions and every day around the same hour, for 15 

min on 2 consecutive days (habituation phase). The objects used in the training and test days 

were wooden dolls (7 cm height × 6 cm width). The role of the object, as either familiar or novel, 

and the location of their presentation were randomized across animals. Between every trial, the 

arena and the objects were cleaned with a 30% ethanol solution to erase any olfactory clues. 
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The objects were placed in symmetric and opposed corners of the arena, as previously described 

(Antunes and Biala, 2012). Animals were placed inside the arena facing away from the objects. 

During the acquisition phase the animals were exposed to two identical objects (familiar objects) 

and were allowed to freely explore the environment and the objects for 5 min. After a retention 

interval of 24 h, to test long-term memory (Antunes and Biala, 2012; Clarke et al., 2008), animals 

were placed as before inside the arena, this time containing one of the familiar objects and one 

novel object (test phase). Animals were allowed to explore the objects for 5 min, after which 

they were removed from the arena. The habituation phase coincided with days 11 and 12 of the 

subchronic treatment regimen, with PCP being administered to animals after behavioural 

testing. Immediately after being removed from the arena, an i.p. injection of a saline solution or 

PCP was administrated to the animals and then they returned to their home cage. The 

acquisition (day 15) and test phases of NORT (day 16) were performed after the injections had 

stopped, to prevent any impact of acute PCP administration on NORT performance. 

Exploratory behaviour was quantified as the amount of time animals spent sniffing the 

object, rearing towards the object or touching the object (Mouro et al., 2018). Object preference 

was quantified as the percentage of exploration time spent exploring each object over the total 

time spent exploring both objects. The Novelty Preference Index (NPI) was also calculated as 

(N-F)/(N + F), where N corresponds to the time spent exploring the novel object and F the time 

spent exploring the familiar object, during the test phase of NORT. Thus, this index ranges from 

-1 to 1, where 0 represents the absence of discrimination between novel and familiar objects, 1 

corresponds to exploration of the novel object only and -1 corresponds to exploration of the 

familiar object only. 

Morris Water Maze Test 
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Hippocampal-dependent spatial learning and memory was evaluated by the MWMT, as 

previously described (Batalha et al., 2013). The water maze consisted of a circular pool (100 cm 

diameter, 60 cm height) filled with white opaque water at RT. The pool was virtually divided into 

4 quadrants. An escape platform (8 cm diameter) was submerged beneath the water surface in 

the centre of the target quadrant. Animals were pre-trained in a one-day session to be 

familiarized with the maze and the presence of the platform, with no extra-maze visual cues 

presented. In the first trial the platform was placed at 1 cm above the water surface at the centre 

of the maze. Animals were placed directly on the platform being allowed to remain there for 20 

s before being removed from the maze. In the next trial, the platform was submerged 1 cm 

beneath the water surface, and the same protocol repeated. On the next day, extra-maze visual 

cues were positioned on the walls of the testing room. During the learning phase, animals were 

tested for 4 consecutive days (acquisition phase) with 4 trials per day and a 30 min inter-trial 

interval. Animals were released into the pool, facing the wall of the maze. If the animal located 

the platform in less than 60 s, it was allowed to remain on the platform for 10 s. If the animal 

failed to locate the platform within 60 s, the animal was guided or placed on the platform and 

allowed to remain there for 20 s. The start position (1, 2, 3, or 4) was randomized across trials 

to ensure that the animals were using extra-maze spatial cues to determine the platform 

location during the learning phase. For any given animal the platform location was maintained 

in the same target quadrant of the maze, but the target quadrant was randomized across 

animals to avoid bias. After successful completion of a trial, mice were removed from the maze 

and placed back into their home cages. One day after the final session of the acquisition phase 

(day 5), a probe trial was conducted. During this probe trial (60 s), the platform was removed 

from the maze, and the search pattern of the mice within the maze tracked. The proportion of 
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time spent in the target quadrant (the quadrant where the platform was previously located) was 

determined. The distance travelled to locate the platform (cm) and swim speed (velocity (cm/s), 

as a measure of possible motor defects that could interfere with an animal abilities to perform 

the task) were determined using videotracking software (SMART®).  

 

Statistical Analyses 

Data were analysed in GraphPad Prism 8 (San Diego, CA) using ANOVA or Student’s t-

test, where appropriate. Where significant interactions were detected in ANOVAs, post-hoc t-

tests with Bonferroni correction were performed. Outliers were identified by Grubbs' test. 

Statistical significance was set at p<0.05. 

A post-hoc power analysis based on the actual group sizes included in our manuscript 

was undertaken and included in the Supplementary material. 
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Results 

The facilitatory effect of BDNF upon LTP is attenuated in the PFC, but not in the hippocampus, of 

PCP-treated mice 

High Frequency Stimulation (HFS) induced LTP in L5 neurons of the mPFC in control mice 

as previously reported (Gemperle et al., 2003; Hempel et al., 2000; Fénelon et al., 2011). 

Subchronic PCP-treatment impaired the induction of LTP in the mPFC (main PCP treatment 

effect, F(1, 31)=10.17, p=0.003, two-way ANOVA) (Figure 2(d)). The half-life of PCP in the rodent 

brain after i.p. injection under repeated treatment conditions is approximately 30 min 

(Nabeshima et al., 1987). Therefore, at the time of recording, 72-120h after the final PCP 

administration, the PCP-induced impairment of LTP cannot be attributed to the acute blockade 

of NMDA-Rs. However, changes in the expression of the GluN2B NMDA-R subunit, known to be 

critical for LTP in the PFC (Zhao et al., 2005), may be involved as we found decreased GluN2B 

expression levels in the PFC of PCP-treated animals (Supplementary Figure 2). 

There was strong trend towards a significant interaction between subchronic PCP 

treatment and BDNF treatment on mPFC LTP (F(1,31)=4.12, p=0.051, two-way ANOVA), while the 

main effect of BDNF itself was found to be non-significant (F(1, 31)=2.42, p=0.130, two-way 

ANOVA). Given that the significance of the interaction was found to be very close to the 

significance threshold in this case, conservative post-hoc testing was applied to determine if 

there was any difference in the response to BDNF between the two treatment groups. We found 

that exogenous BDNF (20 ng/mL) significantly enhanced LTP magnitude (LTPCTR+BDNF: 92 ± 16 % 

vs. LTPCTR: 37 ± 13 %, n=8-10, p=0.031, t-test with Bonferroni correction) (Figure 2(d)) in the 

mPFC of control animals. However, BDNF failed to enhance LTP in mPFC slices from PCP-treated 
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mice (LTPPCP+BDNF: 12 ± 19 % vs. LTPPCP: 19 ± 12 %, n=8-9, p>0.999, t-test with Bonferroni 

correction). 

Given our functional data showing attenuated BDNF signalling in the mPFC of PCP-

treated mice, we measured BDNF, TrkB-FL and TrkB-TC expression levels in the PFC (Figure 2(e-

g)). While BDNF levels (n=6-9, p=0.482, t-test) were not significantly altered, there was a marked 

decrease in TrkB-FL receptor expression in the PFC of PCP-treated animals (n=11, p=0.008, t-

test). By contrast, there was no difference in TrkB-TC levels in the PFC of PCP-treated animals 

(n=11, p=0.117, t-test). This suggests that decreased BDNF signalling in the PFC of PCP-treated 

animals is mediated by decreased TrkB-FL receptor expression rather than through increased 

negative modulation (TrkB-TC) or alterations in the levels of the endogenous ligand. 

[insert Figure 2.] 

 

In the hippocampus, we did not find evidence for a significant PCP treatment effect on 

LTP  (F(1,32)=0.77, p=0.386, two-way ANOVA) or for a significant PCP-treatment x BDNF-treatment 

interaction (F(1,32)=0.06, p=0.806, two-way ANOVA). However, BDNF was found to significantly 

enhance hippocampal LTP (F(1, 32)=14.83, p=0.0005, two-way ANOVA). Thus, as previously 

reported (Fontinha et al., 2008; Tanqueiro et al., 2018), BDNF (20 ng/mL) facilitated LTP in 

hippocampal slices from both control animals. Interestingly, in clear contrast with PFC, the 

facilitatory action of BDNF on hippocampal LTP was also present in PCP-treated mice (Figure 

3(d)). Our molecular data also showed that subchronic PCP administration did not alter BDNF 

levels (n=9-10, p=0.610, t-test), TrkB-FL or TrkB-TC (n=11, p=0.106 and p=0.134, respectively, t-

test) expression in the hippocampus (Figure 3(e-g)). Additionally, GluN2A/B subunit expression 
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was unaltered and only GluN1 subunit was increased in the hippocampus of PCP-treated animals 

(Supplementary Figure 2). 

Overall, the data suggest that the ability of BDNF to enhance LTP is selectively 

compromised in mPFC. This is consistent with decreased TrkB-FL receptor expression seen in the 

PFC, but not the hippocampus, of PCP-treated mice. 

 

[insert Figure 3.] 

 

Subchronic PCP administration impairs spontaneous alternation and object recognition memory  

The YMT provides an index of working memory, reflecting the preference of control mice 

to explore less recently visited arms of the maze (Hughes, 2004; Kraeuter et al., 2019), that is 

regulated by the PFC (Lalonde, 2002). We found that PCP-treated animals performed less correct 

spontaneous alternations in the YMT (n=9-12, p=0.005, t-test) (Figure 4(a)), while motor 

performance and activity levels were not significantly altered in PCP-treated animals 

(Supplementary Figure 3). 

In the training phase of the NORT, control and PCP-treated animals explored each of the 

two identical objects for a similar proportion of time (Figure 4(b)). There was no evidence for a 

significant PCP treatment effect (F(1, 36)=3.17e-008, p=0,999, two-way ANOVA), object effect 

(F(1,36)=0.98, p=0.328, two-way ANOVA) or a PCP treatment x object interaction (F(1, 36)=1.13, 

p=0.294, two-way ANOVA) on object exploration during the training phase. By contrast, on the 

test day (Figure 4(c)) a significant PCP treatment x object interaction on object exploration time 

was found (F(1, 36)=11.65, p=0.0016, two-way ANOVA). Post-hoc tests showed that while control 

animals showed a significant preference for exploring the novel object (n=9, p<0.0001, t-test 
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with Bonferroni correction), PCP-treated animals did not (n=11, p=0.088, t-test with Bonferroni 

correction). In addition, a significant effect of object (familiar v novel) was also found (F(1, 

36)=38.65, p<0.0001, two-way ANOVA) while the effect of PCP treatment on overall object 

interaction time was found to be non-significant (F(1, 36)=8.57e-008, p=0.999, two-way ANOVA). 

 A similar effect was seen for the Novelty Preference Index (NPI) with PCP-treated 

animals showing a decreased preference for the novel object when compared to controls (n=11, 

p=0.026, t-test) (Figure 4(d)). Moreover, while NPI values in control animals were significantly 

different from zero (n=9, p=0.003, t-test), indicating novel object preference, this was not 

significant in PCP-treated animals (n=11, p=0.131, t-test). Total object exploration time 

(Supplementary Figure 4) and locomotor activity (Supplementary Figure 5) were not different 

between groups in either the training or test phase. 

Hippocampal-dependent spatial learning and memory was assessed using the MWMT. 

The path length to the platform (distance travelled) was used as an indicator of learning during 

the acquisition phase of the MWMT. A significant effect of training day (F(3,24)=28.78, p<0.0001, 

two-way ANOVA) on distance travelled was found, with animals travelling shorter distances as 

training days progressed, indicating that animals had learned the location of the platform. In this 

case we also found a significant PCP treatment x training day interaction (F(3, 24)=3.27, p=0.039, 

two-way ANOVA) and a significant effect of PCP treatment (F(1,24)=6.50, p=0.018, two-way 

ANOVA). To further understand the basis of the PCP treatment x day interaction post-hoc tests 

were applied. Post-hoc tests showed that PCP-treated animals travelled significantly further 

distances to reach the platform than controls on day 1 (p=0.008), but not on days 2, 3 or 4 

(p=0.287, p>0.999, p>0.999, respectively (Figure 4(e)) during the acquisition phase. This suggests 

that learning may be significantly impaired in PCP-treated animals on day 1 of acquisition, but 
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this is not seen on the other acquisition days. We also recorded the swim speed (mean velocity) 

and latency to reach the platform during the acquisition stage of the MWMT, and these data are 

reported in the supplementary material (Supplementary Figures 6 and 7). 

Importantly, during the probe trial, 72h after the final PCP administration, there was no 

significant difference in the percentage time spent in the target quadrant between groups (n=10, 

p=0.097, t-test) (Figure 4(f)) or in the number of passes over the target area (Supplementary 

Figure 8(a)), indicating that long-term spatial memory was not disrupted in PCP-treated animals. 

In addition, motor abilities in the probe test of MWMT were not altered in PCP-treated mice 

during this phase of the MWMT (Supplementary Figure 8(b,c)).  

 

[insert Figure 4.] 
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Discussion 

In this work, we have shown that PCP-treated mice display decreased TrkB-FL receptor 

levels and an impaired facilitatory effect of BDNF on LTP in the mPFC. By contrast, in the 

hippocampus, the ability of BDNF to facilitate LTP and TrkB-FL receptor expression are unaltered. 

This shows that prolonged NMDA-R hypofunction, induced by PCP-treatment, does not cause a 

global and unspecific loss of BDNF signalling in the brain, but that it selectively affects the PFC. 

PCP-treated mice also show impaired performance in PFC-dependent behavioural tests (YMT 

and NORT), but not in a hippocampus-dependent long-term spatial memory test (MWMT). This 

suggests that disturbed PFC BDNF signalling may contribute to PFC-dependent cognitive deficits 

induced by subchronic PCP administration (Cochran et al., 2003; Dawson et al., 2012). The data 

also suggest that therapies augmenting TrkB-FL receptor signalling may be useful in reversing 

the PFC-dependent cognitive deficits seen in the model (Dawson et al., 2012), and potentially in 

treating patients with schizophrenia. Future work directly accessing this hypothesis is required. 

  

Sustained NMDA-R hypofunction induces deficits in PFC synaptic plasticity that may contribute 

to the cognitive deficits seen in the subchronic PCP model 

LTP, the cellular substrate of learning and memory (Bliss and Collingridge, 1993), was 

used to evaluate the impact of subchronic PCP and BDNF on synaptic plasticity. In the 

hippocampus, BDNF increases LTP magnitude through TrkB-FL activation (Korte et al., 1995; 

Figurov et al., 1996; Minichiello et al., 2002), and we confirmed its facilitatory effect upon LTP 

(Figure 3(d)). While there are no published data regarding the ability of BDNF to facilitate LTP in 

the PFC, our data clearly show this effect (Figure 2(d)). We also found that subchronic PCP 

administration attenuated LTP induction in the mPFC. These findings align with the deficits in 
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PFC-dependent behavioural tests, including deficits in the YMT and NORT (Antunes and Biala, 

2012; Lalonde, 2002)(Figure 4), cognitive flexibility (Dawson et al., 2012) and working memory 

(Marquis et al., 2007), and PFC metabolism (“hypofrontality”) (Cochran et al., 2003; Dawson et 

al., 2012), that result from subchronic PCP administration. In addition, decreased GluN2B 

protein levels were found in the PFC of PCP-treated mice, which may contribute to the impact 

of PCP treatment on PFC LTP, given the crucial role of this NMDA-R subunit in LTP in this brain 

area (Zhao et al., 2005).  Contrasting with previous data (Nomura et al., 2016), we did not find 

impaired LTP in the hippocampus of PCP-treated animals in our work. Furthermore, GluN1 levels 

were found increased and GluN2A/GluN2B levels unchanged in the hippocampus of PCP-treated 

animals (Supplementary Figure 2). Others have found altered GluN1, GluN2A and GluN2B 

subunits levels in the PFC and hippocampus after subchronic PCP administration, however there 

are inconsistencies in the data (Anastasio and Johnson, 2008; Lindahl and Keifer, 2004). 

Effective performance in the NORT is thought to involve both the hippocampus and PFC 

(Barker et al., 2007; DeVito and Eichenbaum, 2010; Barker and Warburton, 2011; Cohen and 

Stackman Jr., 2015), whereas performance in the MWMT is thought to predominantly involve 

the hippocampus (Morris et al., 1982) but not the mPFC (de Bruin et al., 1994). Our data show 

that PCP-treated mice have deficits in the NORT, corroborating previous work (Hashimoto et al., 

2005; Horiguchi and Meltzer, 2013; Redrobe et al., 2010), but not in the MWMT, suggesting that 

the PFC rather than hippocampal dysfunction may be contributing to the NORT deficit seen in 

PCP-treated mice. 

Interestingly, we found that BDNF enhanced LTP in the hippocampus of PCP-treated 

animals (Figure 3), suggesting that BDNF signalling is not disrupted in this brain area. This is also 

consistent with our observation that BDNF, TrkB-FL and TrkB-TC levels were not altered in the 
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hippocampus of PCP-treated animals. In the hippocampus, the effect of BDNF upon LTP is most 

well characterised under a θ-burst protocol (Diógenes et al., 2011; Fontinha et al., 2008)  

However, the effects of BDNF upon synaptic plasticity in the mPFC have not been previously 

reported. Therefore, we used a published stimulation protocols validated for inducing LTP in the 

mPFC (Gemperle et al., 2003; Kerkhofs et al., 2018). Having tested several LTP protocols in 

preliminary experiments (not shown), we opted for the protocol that most reliably induced LTP 

in the mPFC and, importantly, that induced LTP of a similar magnitude to that induced in the 

hippocampus with the canonical θ protocol. To our knowledge, the effects of subchronic PCP 

administration upon mPFC synaptic plasticity have not previously been reported. However, 

previous work has shown impaired hippocampal LTP induced by subchronic PCP treatment 

(Nomura et al., 2016). In the PFC, the induction of LTP is more variable than in the hippocampus 

and requires activation of the NMDA-R and metabotropic glutamate receptors (Vickery et al., 

1997), whereas in the hippocampal CA1 LTP is mostly NMDA-R dependent (Nicoll and Malenka, 

1999). It was previously reported that the induction protocol used in this present work can 

induce LTP in approximately one third of attempts (Meunier et al., 2017). We also experienced 

this variability (Figure 2). Remarkably, in the presence of BDNF LTP in the mPFC did occur in most 

of the attempts, indicating that BDNF increases the probability of LTP induction in the mPFC.  

While behavioural measurement was carried out ~20 hours after the previous PCP 

administration for some of the measurements taken, and these are unlikely to be influenced by 

the acute effects of PCP, the drug was given shortly after training in some tests. This was the 

case for the habituation phase of NORT and after the initial training on days 1 and 2 of the 

MWMT acquisition phase. Given that NMDAR antagonists can disrupt memory consolidation in 

test such as the MWMT (Liang et al., 1994; Bye and McDonald, 2019) we might have expected 
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to see a deficit in performance across days in the acquisition phase of the test in PCP-treated 

mice. However, while we did see a deficit on day 1 of the MWMT acquisition, we found that 

PCP-treated mice performed similar to control mice on days 2-4 (Figure 4(e)), suggesting that 

the consolidation of long-term spatial memory had not been disrupted by PCP treatment 

following training on day 1. It is also important to note that any potential disruption of 

consolidation during the initial stages of the MWMT training phase is unlikely to influence the 

primary outcome measures of the probe trial when performance is similar in the later stages of 

the acquisition training, as seen in this study (Figure 4(e)). Furthermore, we find no evidence of 

a performance deficit in PCP-treated mice in our key primary outcome measure; performance 

during the MWMT probe trial (Figure 4(f)). Therefore, even if PCP-induced consolidation deficits 

were present during the initial phases of MWMT training, which does not seem to be the case, 

they would apparently not be sufficient to induce deficits in long-term spatial memory, as 

evidenced by a deficit in performance at the probe trial. One limitation to our study is that we 

did not perform a visible platform during day 1 of acquisition of the MWMT, and so we can not 

rule out that deficits in visual acuity may contribute to the performance deficit seen at this time 

in PCP-treated mice. 

 

Sustained NMDA-R hypofunction may contribute to decreased BDNF signalling in the PFC and 

PFC-dependent cognitive deficits in schizophrenia 

Our data show that the subchronic PCP model reproduces the reduced PFC TrkB-FL 

expression seen in patients with schizophrenia (Takahashi et al., 2000; Weickert et al., 2005), 

supporting a potential role for NMDA-R hypofunction in this impairment. This also highlights the 
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translational relevance of the subchronic PCP model for this deficit, which will be useful in 

testing the potential therapeutic value of targeting BDNF signalling to enhance PFC-dependent 

executive dysfunction in patients (Lesh et al., 2011; Peng et al., 2018). Furthermore, our data 

also suggest that prolonged NMDA-R hypofunction may contribute to the deficit in TrkB-FL 

expression seen in the PFC of patients (Takahashi et al., 2000; Weickert et al., 2005), although 

more work is needed to firmly establish this. Recent findings have also shown that an increased 

TrkB-FL/TrkB-TC ratio, in peripheral blood mononuclear cells, is predictive of better global 

cognition and working memory in patients during their first episode of psychosis 

(Cengotitabengoa et al., 2019), further highlighting the potential role of TrkB-FL signalling in 

modulating the cognitive deficits seen in patients.  

There are important limitations to consider. For example, PCP targets additional receptors 

to the NMDA-R (Kapur and Seeman, 2002; Seeman et al., 2005) and other mechanisms are likely 

to be involved in the dysfunctional BDNF signalling seen in patients (McLean et al., 2017; Santini 

et al., 2013). Moreover, we found that subchronic PCP does not completely reproduce the 

alterations in BDNF signalling reported in the PFC of patients, such as reduced BDNF (Weickert 

et al., 2005) and increased TrkB-TC (Wong et al., 2013) levels, potentially limiting translational 

relevance. However, our molecular observations do align with previous work (Snigdha et al., 

2011) showing that subchronic PCP did not alter BDNF levels in the PFC or hippocampus of male 

rats. Nevertheless, the authors did show that PCP decreased levels of BDNF in female animals.  

Indeed, previous work has been reported sex differences in schizophrenia rodent models 

regarding cognitive impairments (Sutcliffe et al., 2007; Li et al., 2016) and in the effects of 

PCP/NMDA-R antagonists on cognition and BDNF (Snigdha et al., 2010; Leger and Neill, 2016). 

As females were not included in our study, we cannot conclude how generalisable our 
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observations might be to female mice. Thus, future work undertaking a systematic 

characterising of our observations in female animals would be of interest. 

Discrepancies between our observations and others in terms of the impact of subchronic 

PCP treatment on BDNF may be due to differences in the species or strains used, the 

developmental time at which PCP is administered, the treatment regimen used, and the 

washout period employed.  

Indeed, published works that have commonly reported the application of lower doses of 

PCP (2-5 mg/kg) are those conducted in rats (Bruins Slot et al., 2005; Lee et al., 2005; Egerton et 

al., 2008; Snigdha and Neill, 2008; Dawson et al., 2012), whereas in mice higher doses, typically 

around 10 mg/kg once per day, as applied here, have most commonly been used (Fujita et al., 

2007; Hashimoto et al., 2007; 2008; Tanibuchi et al., 2009; Santini et al., 2013). There are also a 

limited number of subchronic PCP studies that have utilised a 10 mg/kg dosing regimen in adult 

rats (Martinez et al., 1999; Audet et al., 2009) and this dose has been applied in developmental 

rat models employing early postnatal administration (Andrews et al., 2018; Shan et al., 2018), 

albeit with less frequency. Our own experience with using PCP in both species indicates that 

mice are somewhat less sensitive to the acute effects of PCP than rats, although the field is 

currently lacking a systematic comparison between the two species, which would be of great 

benefit. However, the behavioural and neurobiological consequences of the different doses are 

generally reported to be similar between the two species when using these different doses 

(Jones et al., 2011; Pratt et al., 2012) and a 10 mg/kg dose has been shown to be optimal in 

inducing spatial learning and memory deficits in mice, whereas the doses need to induce this 

deficit in rats is lower (Zain et al., 2018). 
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The PCP dosing regimen used in our study is the same as that used in a number of previous 

studies (Hashimoto et al., 2007; Fujita et al., 2008; Hashimoto et al., 2008; Tanibuchi et al., 2009; 

Santini et al., 2013). All of these studies were conducted in mice, focusing on behavioural and 

neurochemical changes present during the 24h-72h after the final PCP treatment. As this is one 

of the most widely reported PCP mouse models, which also appears to show important 

reproducibility between labs, we chose to focus on this well-defined time point after subchronic 

PCP administration. There are studies that have looked at longer time points following on from 

PCP administration. However, these have usually been conducted in rats and can often involve 

the use of maintenance schedules of intermittent PCP administration in order to maintain the 

deficits. 

Importantly, the persistence of PCP-induced effects is one question that would benefit 

from more detailed systematic characterisation in terms of the observations we have made in 

the present work. This is particularly the case for mice, where the deficits are somewhat less 

well-defined in comparison to those seen in rats (Neill et al., 2016; Asif-Malik et al., 2017; 

Grayson et al., 2007; McLean et al., 2017; Doostdar et al., 2019; Mitsadali et al., 2020). Thus, it 

would also be interesting to characterise the persistence of PCP-induced deficits on BDNF 

signalling in mice with longer PCP timeframes. Similarly, determining whether the reported 

changes are reproduced in the neonatal PCP model, a model with a more neurodevelopmental 

focus (Amani et al., 2013; Gaskin et al., 2014; Nakatani-Pawlak et al., 2009), would also be 

particularly relevant.  

If indeed the primary change in BDNF signalling occurs in the frontal cortex as our data 

suggest, then changes reported in hippocampus by other authors (Semba et al., 2006; Harte et 

al., 2007; Snigdha et al., 2011; Mouri et al., 2012), whose measurements have been taken 
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following a longer ‘washout’ period, could be a downstream adaptive change in the 

hippocampus in response to the primary change in frontal cortex. This is an interesting 

suggestion that certainly warrants further systematic characterisation. 

There are also reports showing decreased BDNF levels in the hippocampus of patients 

with schizophrenia (Durany et al., 2001; Iritani et al., 2003) contrary to our observations in PCP-

treated animals, again suggesting that there are translational limits of the model in relation to 

the altered BDNF signalling seen in the disorder, and that mechanisms other than prolonged 

NMDA-R hypofunction may be important in patients. Alternatively, the observations in patients 

may relate to the impact of antipsychotic medication, with these drugs shown to influence brain 

BDNF expression levels, although these effects seem to be facilitatory in most rodent models 

(de Bartolomeis et al., 2017; Park et al., 2011; Yu et al., 2019). More work is needed to more 

fully characterise the relationship between antipsychotics and BDNF signalling. 

While our study identified BDNF dysfunction as a key mechanism that contributes to the 

impact of subchronic PCP administration on PFC function, other mechanisms are also involved. 

This includes, for example, dysfunction of the dopaminergic (Jentsch, 1997; Balla et al., 2003; 

McLean et al., 2017), GABAergic (Gong et al., 2009; Amitai et al., 2012; Dawson et al., 2014) and 

serotonergic (Hori et al., 2000; Santini et al., 2013; Yamazaki et al., 2018) systems. Interestingly, 

there is also some evidence that these neurotransmitter systems regulate BDNF function 

(Fumagalli et al., 2006; Porcher et al., 2018), therefore future characterisation of the inter-

related nature of these mechanisms in the PCP mouse model would be of interest. 

 

Conclusion 
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 In conclusion, our data suggest that reduced BDNF signalling in the PFC is a key 

mechanism contributing to the PFC dysfunction and the corresponding cognitive deficits in the 

PCP model, and suggest that NMDA-R hypofunction may be an important mechanism 

contribution to PFC BDNF dysfunction in schizophrenia. While these deficits have some 

translational relevance to the disturbed BDNF signalling reported in schizophrenia, the model 

does not fully recapitulate the BDNF signalling deficits seen in the disorder. Nevertheless, the 

subchronic PCP model offers an established range of biomarkers and phenotypes that can be 

used in future studies to further validate the potential of drugs targeting BDNF signalling in the 

PFC as a novel therapeutic strategy for the treatment of the executive cognitive deficits seen in 

schizophrenia. 
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