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Abstract 
 
Harnessing the nominally terminal oxo atoms of the linear uranyl (UO2

2+) cation represents a 

frontier within the field of f-element hybrid materials. Here we outline a route for systematically 

accessing uranyl oxo atoms via judicious pairing with Ag+ cations or aryl iodo benzoic acids, and 

describe the syntheses and crystal structures of four new heterometallic compounds containing 

Ag+ cations, the UO2
2+ cation, and o- (1), m- (2), p-iodo- (3), and 2,5-diiodobenzoic acid (4) 

ligands. Vibrational and luminescence spectroscopic properties for all four compounds are 

reported, as are computational findings from quantum chemical calculations and density-based 

quantum theory of atoms in molecules (QTAIM) analyses. Single crystal X-ray diffraction 

analysis of compounds 1-4 shows that the nominally terminal uranyl oxo atoms are engaged in 

either covalent UO2-Ag cation-cation interactions (CCIs) (1 and 3) or non-covalent assembly via 

halogen bonding interactions (2 and 4). Raman, infrared (IR), and luminescence spectra are 

redshifted with respect to the free uranyl cation indicating that both halogen-oxo and cation-

cation interactions weaken the U=O bond, and in the case of compound 3 we note a rare example 

of activation of the uranyl asymmetric stretch (ν3) in the Raman spectra, likely due to the Ag-oxo 

CCI lowering the symmetry of the uranyl cation. Quantum chemical calculations and density-

based quantum theory of atoms in molecules (QTAIM) analysis highlight a quantitative 
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difference between halogen bonds and CCIs, with the latter interactions shown to significantly 

decrease uranyl bond orders and electron density at bond critical points. 

Introduction 

The development of heterometallic uranyl hybrid materials is a topic of sustained interest 

as inclusion of a second metal in uranyl systems broadens the range of possible uranyl 

architectures and can lead to variation in material properties, such as luminescence, 

photochemistry, and magnetism, that are otherwise inaccessible in homometallic uranyl 

compounds.1-12 The general approach for preparing heterometallic uranyl compounds relies upon 

the utilization of heterofunctional, multitopic ligands that feature multiple sites for potential 

metal-ligand coordination;1, 6, 13, 14 however, inorganic crystal engineering, utilizing both 

supramolecular and coordination chemistry principles, offers additional levels of control in the 

hybrid material assembly process, and our group has previously demonstrated the ability to tune 

binding and non-covalent assembly in both the equatorial coordination sphere and at the uranyl 

oxo atoms.15-19 Extending inorganic crystal engineering to heterometallic hybrid materials, 

wherein a fixed inorganic (uranyl) building block is paired with carefully selected organic 

ligand(s) and/or transition metal cation allows for investigation of structure-property trends in 

heterometallic uranyl hybrid materials and this approach is valuable as the means for tuning 

uranyl photophysical and vibrational properties have not been fully realized. 

The utility of pairing Ag+ with the uranyl cation to exploit UO2-transition metal (TM) 

cation-cation interactions (CCIs) both structurally and spectroscopically has not been explored in 

detail and only a few examples of hybrid materials feature this mode of assembly.2, 13, 20, 21 The 

redox-active Ag+ presents a number of unique characteristics that make it an attractive choice as 

a secondary metal center in hybrid materials, including the ability to vary its bandgap depending 
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on coordination environment and the potential to turn on/off uranyl luminescence, which could 

lead to applications in photocatalysis.2, 13, 22, 23 Moreover, Ag+ is known for its ability to bind to 

both O and N, the common binding functionalities of most multitopic ligands, as well as its 

affinity for iodine, which we incorporate here via the use of iodobenzoate ligands. This latter 

pairing, between Ag+ and I, is notable as 129I is a problematic, gaseous fission product in nuclear 

waste processes, with Ag+ based sorbents some of the most promising materials for I2 capture 

during nuclear fuel reprocessing.24, 25  

Herein we continue our work of pairing the uranyl cation with halogenated benzoic acids, 

as well as Ag+ cations, and detail the synthesis of four novel compounds (1-4) with o-iodo-, m-

iodo-, p-iodo, and 2,5-diiodobenzoic acid ligands. All compounds have been characterized via X-

ray diffraction, vibrational and luminescence spectroscopy, and quantum chemical calculations, 

and structural analysis reveals that the aryl iodines of iodobenzoic acid ligands are not only 

supramolecular synthon sites, but also covalent bonding participants in heterometallic 

compounds.26 Moreover, we observe that the nominally terminal uranyl oxo atoms are involved 

in either UO2-Ag CCIs (1 and 3) or halogen bonding interactions (2 and 4), and thus this family 

of uranyl hybrid materials provides an excellent platform to structurally and spectroscopically 

evaluate these two assembly motifs, and uranyl oxo engagement more generally. Raman and 

luminescence spectroscopy are used to compare the two assembly motifs of 1-4, and Raman 

spectra for all four compounds feature multiple ν1 bands ascribed to U–oxo bond symmetric 

stretching modes, with the lowest ν1 frequency noted for compound 3 (which also features the 

strongest CCI). We also observe activation of the uranyl asymmetric stretch (ν3) in the Raman 

spectra of 3, which is quite unusual for a uranyl hybrid material. Luminescence spectra of 1-4 

illustrate that while UO2-Ag CCIs and halogen bonding interactions do influence resulting 
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spectra, the identity of the equatorial ligands also contribute to the observed evolution in 

photoluminescent behavior. Finally, quantum chemical calculations at the density functional 

(DFT) level of theory along with density-based quantum theory of atoms in molecules (QTAIM) 

analysis highlight quantitative differences in UO2-Ag CCIs and halogen bonding interactions, 

with the former resulting in greater weakening of U-oxo bonds, which manifests as redshifts in 

vibrational and luminescence spectra.   

Experimental Section 

Materials and Methods 

Caution: Whereas the uranium oxyacetate dihydrate [UO2(CH3COO)2]•2H2O and uranyl nitrate 

hexahydrate [UO2(NO3)2]•6H2O used in this study consists of depleted U, standard precautions 

for handling radioactive and toxic substances should be followed.  

All organic materials, o-iodobenzoic acid (o-IBA) (Sigma-Aldrich, 98%), m-iodobenzoic acid 

(m-IBA) (Alfa Aesar, 98+%), p-iodobenzoic acid (p-IBA) (Sigma-Aldrich, 98%), and 2,5-

diiodobenzoic acid (2,5-diIBA) (Sigma-Aldrich, 97%), were purchased and used as received. 

AgNO3 (Alfa, 99.9+%) is also commercially available and was used without further 

modification. 

Synthesis 

Compound 1, [UO2Ag(C7H4IO2)2(NO3)]2, was synthesized by combining [UO2(NO3)2]•6H2O 

(0.124 g, 0.25 mmol), o-iodobenzoic acid (o-IBA) (0.126 g, 0.50 mmol), AgNO3 (0.084 g, 0.50 

mmol), sodium hydroxide (30 µL, 5M), and distilled water (3.0 g, 166.7 mmol) in a Parr 

autoclave (final pH 3.27) and then heating statically at 150 ºC for 48 hours. Upon removal from 

the oven, the sample was allowed to cool over four hours and the Parr autoclave was opened 

after approximately sixteen hours. Orange rectangular plate crystals were obtained from the bulk 
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product after decanting the supernatant liquor, washing three times with distilled water and 

ethanol, and air-drying at room temperature overnight. 

Compounds 2, [UO2Ag(C7H4IO2)3]n, 3, [UO2Ag(C7H4IO2)3]n, and 4, [[UO2Ag(C7H3I2O2)3]n]2, 

were prepared following the same procedure as 1 with m-iodo- (m-IBA) (0.126 g, 0.50 mmol), p-

iodo- (p-IBA) (0.126 g, 0.50 mmol), and 2,5-diiodobenzoic acid (2,5-diIBA) (0.126 g, 0.50 

mmol) replacing o-IBA in 2-4, respectively. Additionally, for 3, [UO2(NO3)2]•6H2O was 

replaced by [UO2(CH3COO)2]•2H2O (0.105 g, 0.25 mmol). Final pH values for 2-4 were 3.36, 

3.73, and 3.51, respectively. Upon cooling to room temperature and washing with distilled water 

and ethanol, X-ray quality orange plate crystals were separated from the bulk product for all 

three materials. 

Characterization 

X-Ray Structure Determination 

Single crystals from each bulk sample were isolated and mounted on MiTeGen micromounts. 

Structure determination for each of the single crystals was achieved by collecting reflections 

using 0.5˚ ω scans on a Bruker SMART diffractometer equipped with an APEX II CCD detector 

using MoKα (λ=0.71073 Å) radiation at 293(2) K. The data were integrated using the SAINT 

software package27 contained within the APEX II software suite28 and absorption corrections 

were applied using SADABS.29 The crystal selected from the bulk product of compound 4 was a 

two component non-merohedral twin that was accounted for using TWINABS.30 Compound 1 

was solved via the Patterson Method (SHELXS-2014),31 whereas 2-4 were solved via direct 

methods using SIR 92,32 and all four compounds were refined using SHELXL-201431 contained 

within the WinGX33 software suite. In each structure, all non-hydrogen atoms were located via 

difference Fourier maps and refined anisotropically. Aromatic hydrogen atoms were located via 
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difference Fourier maps, yet were placed at their idealized positions and allowed to ride on the 

coordinates of their parent carbon atom ((Uiso) fixed at 1.2Ueq). All figures were prepared with 

Crystal Maker,34 and data collection and refinement details for 1-4 are included in Table 1. 

Table 1 Crystallographic Data for Compounds 1-4 

 1 2 3 4 

chem 
formula 

C28H16I4N2O18Ag2U2 C21H12I3O8AgU C21H12I3O8AgU C21H9I6O8AgU 

formula weight 1867.83 1118.91 1118.91 1496.58 

crystal system triclinic triclinic monoclinic triclinic 

space group P-1 P-1 P21/n P-1 

a (Å) 8.8109(4) 8.677(7) 9.1545(5) 11.210(7) 

b (Å) 11.4713(6) 9.815(8) 14.2946(7) 12.407(8) 

c (Å) 11.4852(6) 15.0560(11) 19.4243(10) 23.0870(11) 

α (deg) 117.072(4) 97.859(6) 90 77.655(6) 

β (deg) 106.043(3) 98.971(7) 93.878(11) 82.316(6) 

γ (deg) 91.445(3) 101.625(7) 90 74.954(7) 

V (Å3) 977.81(9) 1221.7(14) 2536.0(2) 3019.0(3) 

Z 1 2 4 4 

T (K) 293(2) 293(2) 293(2) 293(2) 

λ (Mo Kα)  0.71073 0.71073 0.71073 0.71073 

Dcalc (g cm-3) 3.172 3.042 2.931 3.293 

µ (mm-1) 12.476 11.256 10.845 12.183 

Rint 0.0297 0.0662 0.0421 0.0332 

R1 [I>2σ(I)] 0.0384 0.0419 0.0297 0.0387 
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wR2 [I>2σ(I)] 0.0879 0.0821 0.0720 0.0849 

 

Powder X-ray Diffraction 

Powder X-ray diffraction (PXRD) data on the bulk reaction product of compounds 1-4 (Figures 

S4-S7, Supporting Information) were used to examine the purity of each sample. All data were 

collected on a Rigaku Miniflex (Cu Kα, 2θ=3-60˚) and were analyzed using the Match software 

program.35 Initially, the bulk products of compounds 1, 3, and 4 were found to contain multiple 

solid-state phases. The impurity for 1 was removed by not including any NaOH in the reaction 

vessel during synthesis (lowering the final pH to 2.31), while minor impurities persisted in the 

bulk products of 3 and 4 upon synthesis using a range of conditions and upon washing with a 

wide array of organic solvents. As a result, single crystals of 3 and 4 were hand-selected for all 

spectroscopic characterization described herein.    

Spectroscopic Characterization 

Infrared spectra of single crystals of 1-4 were collected using a Bruker Tensor 27 FT-IR 

microspectrometer. Crystals were placed on glass microscope slides at room temperature and 

crushed using a diamond attenuated total reflectance (ATR) microscope objective with a beam 

aperature of 100 µm, over the range 400 to 4000 cm-1.   

Raman spectra for single crystals of 1-4 were collected using a Bruker Sentinel system equipped 

with a 785 nm 400 mW laser and a high sensitivity TE-cooled, 1024 x 255 CCD array linked via 

fiber optics to a video assisted Raman probe in a microscope mount. The spectra were collected 

for fifteen seconds with four signal accumulations over the range of 80-3200 cm-1. 

Room temperature, solid-state luminescence measurements were obtained for 1-4 on a Horiba 

JobinYvon Fluorolog-3 spectrophotometer. Data were manipulated using the FluoroEssence 
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software package and experimental parameters (slit width, integration time, etc.) were adjusted 

on a sample-by-sample basis to obtain suitable data with a sufficiently high signal-to-noise ratio. 

Computational Details 

Density functional theory (DFT) was used to calculate partially optimized structures and 

vibrational frequencies for 1-4, and was initially carried out using the hybrid-GGA B3LYP 

exchange-correlation functional, which has been shown to reproduce experimental parameters of 

uranyl complexes with high accuracy.36, 37 The Dunning aug-cc-pVDZ basis set38 was used for 

all atoms except I, Ag, and U, for which Ahlrichs def-SVP basis set and accompanying effective 

core potentials (ECPs) were used.39 For greater context, additional DFT calculations at the 

B3LYP level were run, which utilized the ECP60MWB and ECP60MWB_SEG basis sets for 

U,40-42 the def2-TZVP basis set for C, H, N, and O,39 and ECPs for Ag43 and I.44 Calculations 

were performed using either the Turbomole quantum chemistry software suite (v 7.3)45 or 

Gaussian1646 in combination with NBO7.47, 48 Analysis of resultant electron densities was 

performed in the AIMA11 software suite49 using Bader’s Quantum Theory of Atoms in 

Molecules (QTAIM) approach.50 Visualizations of calculated results were generated with 

GaussView 651 or Avogadro.52 

Results  

Description of Structures 

Single crystal X-ray crystallographic analyses revealed that each of the four compounds in this 

family of materials feature unique local structures about the uranyl and silver metal centers. 

Additionally, modes of connectivity and/or supramolecular assembly vary for all compounds, 

thus they are described in detail for 1-4 as well.  
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Compound 1, [UO2Ag(C7H4IO2)2(NO3)]2, is a UO2-Ag heterometallic material featuring 

o-IBA ligands that crystallizes in the space group P-1. The single crystallographically unique 

[UO2]2+ cation adopts hexagonal bipyramidal geometry and features two bidentate o-IBA ligands 

in the equatorial plane along with a bidentate nitrate group (bound via O5 and O6) (Figure 1). 

U1-O bonds to the two bidentate o-IBA ligands (O3, O4, O7, O8) are at an average distance of 

2.446 Å, whereas U1-O distances to the bidentate nitrate group are 2.485(6) Å (U1-O5) and 

2.482(6) Å, respectively. The local structure of 1 also features a five-coordinate silver cation 

(Ag1) which adopts square pyramidal molecular geometry and binds to two carboxylate oxygen 

atoms (O3, O8), two aryl iodines from o-IBA ligands (I1, I2), and a uranyl oxo atom (O2) on the 

symmetry equivalent [UO2]2+ cation to generate a binuclear secondary building unit (SBU) 

(Figure 1). Forming the base of the Ag square pyramid are Ag1-O (carboxylate) bonds at 

distances of 2.403(6) Å (Ag1-O3) and 2.500(6) Å (Ag1-O8), respectively, and Ag1-I bonds at 

distances of 2.7213(10) Å (Ag1-I1) and 2.6848(10) Å (Ag1-I2). The Ag1-O2 CCI in 1 is at the 

apex of the Ag pentagonal bipyramid at a distance of 2.464(7) Å, and this is the first of two 

occurrences of this bonding motif we describe herein. O2 participation in the CCI does not seem 

to alter the U=O bond significantly as U-oxo bond lengths are statistically equivalent at 1.746(7) 

Å (U1-O1) and 1.743(7) Å, respectively.   
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Figure 1 Polyhedral representation of compound 1 highlighting local coordination environments 
of UO2

2+ and Ag+ cations. Yellow polyhedra are U(VI) centers and silver polyhedra are Ag(I) 
centers, whereas red spheres are oxygen atoms, purple spheres are iodine atoms, and blue 
spheres are nitrogen atoms. All H atoms have been omitted for clarity. 
 

 The heterometallic dimers of 1 are assembled into a supramolecular 1D chain along the 

[001] direction via halogen bonding interactions between an o-IBA iodine atom (I2) from one 

SBU with an oxygen atom (O9) from the nitrate moiety on the neighboring SBU (Figure 2), and 

the corresponding I-O interaction distance and angle are 3.331(7) Å (95.2% sum of the van der 

Waals radii) and ∠C-I•••O 162.7(7)º. 

 

Figure 2 Compound 1 viewed along the [001] direction highlighting halogen bonding 
interactions that link heterometallic dimers of 1 into a 1D chain. 
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 Switching from o-IBA to m-IBA yields compound 2, [UO2Ag(C7H4IO2)3]n, which 

crystallizes in the space group P-1. Similar to 1, the single crystallographically unique [UO2]2+ 

cation adopts hexagonal bipyramidal geometry, yet in 2, equatorial coordination is exclusively 

bidentate m-IBA ligands, and U1-O bond distances to the three m-IBA ligands (O3-O8) are at an 

average of 2.472 Å (Figure 3). The structure of 2 also features a four-coordinate silver cation 

(Ag1) that adopts distorted tetrahedral molecular geometry and binds to two carboxylate oxygen 

atoms (O4, O5) and two aryl iodines from m-IBA ligands (I1, I3) (Figure 3). Ag1-O 

(carboxylate) bonds are at distances of 2.413(6) Å (Ag1-O4) and 2.339(6) Å (Ag1-O5), whereas 

Ag1-I bonds are at distances of 2.9750(15) Å (Ag1-I1) and 2.820(2) Å (Ag1-I3). 

 

Figure 3 Polyhedral representation of compound 2 detailing local coordination environments of 
UO2

2+ and Ag+ cations. All H atoms have been omitted for clarity. 
 

 The mononuclear UO2-Ag SBUs highlighted in Figure 3 are linked to form a 1D chain 

along the [100] direction via the two Ag-I bonds described above, and the chains of 2 are further 

assembled into a supramolecular 2D sheet in the (010) plane via halogen bonding interactions 
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between an m-IBA iodine atom (I3) from one SBU with a uranyl oxo atom (O2) on the 

neighboring SBU (Figure 4). The corresponding I-O interaction distance and angle are 3.415(7) 

Å (97.6% sum of the van der Waals radii) and ∠C-I•••O 127.5(3)º, and these interactions in 2 

mark the first of two examples of this assembly motif observed in this family of compounds. We 

also note that oxo atom (O2) participation in the halogen bonding interactions of 2 does result in 

small differences in U=O bond lengths as the U1-O2 bond distance is 1.768(6) Å, whereas the 

U1-O1 bond is at a distance of 1.746(6) Å.   

 

Figure 4 Supramolecular 2D sheet of compound 2 viewed in the (010) plane. Halogen bonding 
interactions with uranyl oxo atoms that link 1D chains of 2 to form a 2D sheet are highlighted in 
red circles.  
 

 The introduction of p-IBA yields compound 3, [UO2Ag(C7H4IO2)3]n, which crystallizes 

in the space group P21/n. The single crystallographically unique [UO2]2+ cation adopts hexagonal 

bipyramidal geometry, and similar to 2, equatorial coordination is exclusively bidentate IBA 

ligands (in this case p-IBA) with U1-O bond distances to the three p-IBA ligands (O3-O8) at an 

average of 2.453 Å (Figure 5). The local structure of 3 also features a four-coordinate silver 
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cation (Ag1) which adopts tetrahedral molecular geometry and links three uranyl centers via 

coordination to two carboxylate oxygen atoms (O6, O7), an aryl iodine atom from a p-IBA 

ligand on a neighboring unit (I1), and a uranyl oxo atom (O1) on another symmetry equivalent 

[UO2]2+ cation to generate a trinuclear SBU (Figure 5). Forming the base of the Ag tetrahedron 

are Ag1-O (carboxylate) bonds at distances of 2.397(4) Å (Ag1-O6) and 2.375(4) Å (Ag1-O7), 

respectively, and the Ag1-O2 CCI at a distance of 2.343(4) Å. Completing the Ag tetrahedron in 

3 is the Ag1-I1 bond, which forms the apex of the tetrahedron, and is at distance of 2.700(7) Å. 

In contrast to 1 where we noted U=O bond lengths did not vary with oxo atom participation in a 

UO2-Ag CCI, we do observe small changes in the U=O bond lengths of 3 which are at distances 

of 1.772(4) Å (U1-O1) and 1.793(4) Å, respectively.   

 

Figure 5 Polyhedral representation of compound 3 detailing local coordination environments of 
UO2

2+ and Ag+ cations. All H atoms have been omitted for clarity. 
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 The trinuclear UO2-Ag SBUs highlighted in Figure 5 are linked to form a 2D sheet in 

(100) plane via the combination of Ag-O and Ag-I bonding along with UO2-Ag CCIs described 

above (Figure 6). Supplementing the formation of sheets are bifurcated halogen bonding 

interactions between an iodine from one p-IBA ligand (I3) and two carboxylate oxygen atoms 

(O4, O5) on a neighboring SBU (Figure 6). The bifurcated linkage features an iodine atom (I3) 

acting as a halogen bond donor, and the halogen bonding interactions with carboxylate oxygen 

atoms are at distances of 3.413(4) Å (I3-O4) (97.5% sum of the van der Waals radii) and 

3.342(4) Å (I3-O5) (95.5% sum of the van der Waals radii), respectively, with corresponding 

angles of ∠C19-I3•••O4 153.54(17)º and ∠C19-I3•••O5 157.74(17)º.   

 

Figure 6 2D sheet of compound 3 viewed in the (100) plane. Bifurcated halogen bonding 
interactions with carboxylate oxygen atoms that supplement formation of sheets of 3 are shown. 
 



 15 

 Switching from the mono-substituted p-IBA to 2,5-diIBA resulted in compound 4, 

[[UO2Ag(C7H3I2O2)3]n]2, which crystallizes in the space group P-1. Compound 4 features two 

crystallographically unique [UO2]2+ cations, both of which adopt hexagonal bipyramidal 

geometries. Both [UO2]2+ cations feature equatorial coordination to three 2,5-diIBA ligands and 

the average U1-O (O5-O10) bond distance is 2.469 Å, whereas the average U2-O (O11-O16) 

bond distance is 2.467 Å (Figure 7). The local structure around both uranyl cations in 4 also 

features five-coordinate silver cations (Ag1, Ag2), which each adopt distorted trigonal 

bipyramidal molecular geometries as a result of coordination to two carboxylate oxygen atoms 

and three aryl iodine atoms, respectively, from 2,5-diIBA ligands (Figure 7). Ag1-

O(carboxylate) bond distances are 2.368(5) Å (Ag1-O8) and 2.632(6) (Ag1-O9), whereas Ag2-

O(carboxylate) bonds are at distances of 2.375(5) Å (Ag2-O11) and 2.594(5) Å (Ag2-O14). Ag-I 

bond distances are at averages of 2.843 Å for Ag1 (I1, I3, I5) and 2.848 Å for Ag2 (I7, I9, I11), 

and Ag coordination via the different sites (O and I) on the 2,5-diIBA ligands yields two 

identical, yet crystallographically unique mononuclear SBUs.   
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Figure 7 Polyhedral representation of compound 4 detailing local coordination environments of 
the two crystallographically unique UO2

2+ and Ag+ cations. All H atoms have been omitted for 
clarity. 
 

 The two unique SBUs of 4 shown in Figure 7 are linked to form two, parallel 1D chains 

along the [100] direction via the Ag-O and Ag-I bonds described previously (Figure 8). 

Additional assembly of the chains of 4 into supramolecular 2D sheets occurs via two distinct 

bifurcated halogen bonding interactions with uranyl oxo atoms on the neighboring chains (Figure 

8). The bifurcated interactions are between uranyl oxo atoms (O2 and O3) and iodine atoms from 

four unique 2,5-diIBA ligands (I3, I5, I7, I9), all of which are also participating in bonding with 

Ag cations. The first of two interactions is between uranyl oxo atom (O2), acting here as a 

halogen bond acceptor, and the iodine atoms I7 and I9 and the corresponding interaction 

distances and angles are 3.376(5) Å (I2-O7) (96.5% sum of the van der Waals radii), 3.047(5) Å 

(I2-O9) (87.1% sum of the van der Waals radii), ∠C24-I7•••O2 167.4 (2)º, and ∠C31-I9•••O2 
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174.3(3)º (Figure 8, blue boxes). The second, unique bifurcated interactions is between the 

uranyl oxo atom (O3), also acting as a halogen bond acceptor, and the iodine atoms I3 and I5 

with interaction distances of 3.182(5) Å (I3-O3) (90.9% sum of the van der Waals radii) and 

3.078(5) Å (I3-O5) (87.9% sum of the van der Waals radii), respectively, and corresponding 

angles of ∠C10-I3•••O3 169.5(2)º and ∠C17-I5•••O3 168.4(2)º (Figure 8, red boxes). Similar to 

2, we do note that oxo atom (O2, O3) participation in the halogen bonding interactions of 4 does 

result in small differences in U=O bond lengths as the U1-O2 and U2-O3 bond distances are 

1.777(5) Å (U1-O2) and 1.776(5) Å (U2-O3), respectively, whereas the U1-O1 and U2-O4 

bonds are at distances of 1.747(6) Å and 1.750(6) Å. 

 

Figure 8 Unique chains of compound 4 viewed in the (001) plane. Bifurcated halogen bonding 
interactions with uranyl oxo atoms that link chains to form supramolecular 2D sheets are 
highlighted in blue and red boxes. 
 

Structural Discussion 

 As compounds 1-4 were synthesized from similar reaction conditions, the resulting 

structures provide an opportunity to assess the impact of including Ag+ as a secondary metal 

center in uranyl hybrid materials on means of covalent and non-covalent assembly. The 

equatorial environments about the uranyl cations of 1-4 are nearly identical (bidentate 

carboxylate coordination), the nitrate group in 1 is the only anomaly, thus we can attribute the 
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observed modulations in hybrid material dimensionality and evolution of modes of assembly to 

the Ag+ secondary metal centers, and to a lesser extent to changes in aryl iodine position about 

the benzoic acid ligands. Of particular note in 1-4, the nominally terminal uranyl oxo atoms are 

involved in either UO2-Ag CCIs (1 and 3) or halogen bonding interactions (2 and 4), thus this 

family of uranyl hybrid materials also provides a unique platform to evaluate these two synthons 

involving uranyl oxo atoms (Table 2). 

Table 2 Summary of Uranyl Oxo Participation in Covalent and Non-Covalent Assembly in 
Heterometallic UO2-Ag Compounds 1-4. 
 
Compound Benzoic Acid 

Ligand 
Dimensionality UO2-Ag CCI Halogen 

Bonding with 
Oxo Atoms 

1 o-IBA Molecular Yes No 

2 m-IBA 1D Chain No Yes 

3 p-IBA 2D Sheet Yes No 

4 25diIBA 1D Chains (x2) No Yes (x4) 

 

  Compounds 1-4 feature uranyl cations coordinated by iodo-functionalized benzoic acid 

ligands (o-, m-, p-IBA, and 2,5-diIBA) to form anionic units, which are charge balanced and 

further coordinated by Ag+ secondary metal centers to form heterometallic SBUs. In compound 1 

(with o-IBA), we observe a square pyramidal, five-coordinate Ag(I) cation which participates in 

a UO2-Ag CCI. This interaction links uranyl units to form a heterometallic molecular dimer at a 

distance of 2.464(7) Å, which is indicative of genuine Ag-oxo bonding as the interaction distance 

is at 76.0% the sum of the van der Waals radii. UO2-Ag CCIs are relatively rare in the hybrid 

material literature, and the examples in 1 (and 3) are only the third and fourth examples of this 

bonding motif in heterometallic UO2-Ag carboxylate compounds.21, 53 In compound 2 (with m-
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IBA), we note a distorted tetragonal, four-coordinate Ag(I) cation, which binds two carboxylate 

oxygens and two aryl iodines in the uranyl equatorial plane. Instead of a UO2-Ag CCI (in a 

molecular compound), we observe a uranyl coordination polymer where uranyl oxo atom 

participation in halogen bonding interactions supplements covalent metal-to-ligand assembly. 

Whereas halogen bonding with the uranyl oxo atoms remains relatively unusual, it can be a 

robust supramolecular synthon, in particular with iodine atoms, as our group has demonstrated in 

multiple recent studies.15, 16, 19, 54-56 In compound 3 (with p-IBA), we observe a tetragonal, four-

coordinate Ag(I) cation which once again participates in a UO2-Ag CCI. The CCI links uranyl 

units to form a heterometallic trinuclear SBU at a distance of 2.343(4) Å, which is the shortest 

bond distance ever observed in a UO2-Ag CCI,13, 53 and these SBUs are further linked to form 2D 

sheets. Bifurcated halogen bonding interactions supplement sheet formation in 3, yet unlike 2, do 

not involve the uranyl oxo atoms. In compound 4 (with 2,5-diIBA), we note two 

crystallographically unique distorted trigonal bipyramidal, five-coordinate Ag(I) cations, which 

each bind two carboxylate oxygens and three aryl iodines in the uranyl equatorial plane. The Ag-

O and Ag-I coordination from the two Ag(I) cations links heterometallic SBUs to form two, 

parallel 1D chains, which are further assembled into 2D sheets via bifurcated halogen bonding 

interactions with uranyl oxo atoms. This is an interaction motif that has been observed once 

before in a uranyl hybrid material,55 yet the ‘strengths’ of the interactions in 4 are notable (three 

of four I-oxo interactions at <91% sum of the van der Waals radii). 

 Looking at the dimensionality and means of assembly observed in 1-4, and the electronic 

manifestations thereof, we can make two comments about the role of the Ag+ as a secondary 

metal center. In terms of modulating uranyl hybrid material dimensionality, we do not see the 

silver cation play a significant role in 1-4. Uranyl hybrid materials are known to form 1D and 2D 
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planar architectures,3, 4 and this is what was observed in 1-4; however, regarding modes of 

assembly, specifically those involving the nominally terminal uranyl oxo atoms, we do note that 

Ag+ inclusion in the hybrid materials seems to exert some influence. Moreover, the character of 

U=O bonds can be impacted by changing the extent to which electron density is donated to the 

uranyl unit.36, 57 The consistent presence of silver in the equatorial plane, via coordination with 

carboxylate oxygen atoms, would likely contribute additional electron density to the uranyl unit, 

thereby weakening the U=O bonds, and making them ‘better’ interaction acceptors. Compounds 

1-4 experimentally verify this prediction with all materials featuring either robust UO2-Ag CCIs 

(1 and 3) or strong halogen bonding interactions (2 and 4), and computational details on the 

nature and strength of the CCIs and halogen bonds are detailed below.  

Vibrational and Luminescence Spectroscopy 

Raman and infrared (IR) spectroscopy are complementary spectroscopic methods which 

reveal information regarding bonding and local environments for uranyl compounds and 

species.58 The uranyl cation is known to feature three characteristic vibrational modes and the 

symmetric (ν1, 860-880 cm-1, Raman active) and asymmetric (ν3, 930-960 cm-1, infrared active) 

stretching modes are known to be sensitive to coordinating ligands, a direct result of uranyl bond 

weakening due to ligand coordination in equatorial plane.58-60 Uranyl stretching modes are also 

often used as diagnostics of ionic/covalent bonding and non-covalent interaction strength as well 

as probes of equatorial covalency.61 Recently we quantified equatorial coordination and oxo 

interaction contributions to uranyl vibrational spectra in a series of homometallic compounds,54 

and here we aim to extend these efforts to heterometallic species while also delineating 

spectroscopic differences between CCIs and halogen bonding interactions at uranyl oxo atoms.  
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Looking at the Raman spectra of compounds 1-4, which are highlighted in Figure 9, we 

note multiple peaks in the spectral window where we expect the uranyl symmetric stretch (ν1). 

This is a likely result of the Ag-oxo bonding and halogen-oxo interactions at the uranyl moiety in 

1-4, which may lower the idealized D∞h point group symmetry of the [UO2]2+ unit. Distortion of 

the uranyl cation or a change in the local point group symmetry can result in the removal of 

degeneracy and thus Raman activation of the asymmetric ν3 mode and infrared activation of the 

symmetric ν1 mode are both possible.58 The likely reason for observation of multiple peaks in the 

area of the symmetric stretching vibrational mode (ν1) in Figure 9 lies in the crystal structures of 

these compounds where the UO2-Ag CCIs and I-oxo halogen bonding interactions in 1-4 lower 

the symmetry of the sites occupied by U atoms in the crystals, resulting in the splitting of 

degenerate modes and activation of modes otherwise inactive in the Raman or IR spectra. As a 

result, Raman spectra can show multiple ν1 bands ascribed to each of the U–oxo bond symmetric 

stretching modes, and this is what is noted in Figure 9.   

 

 



 22 

 

Figure 9 Identification of the Raman peaks of 1-4 and calculated corresponding U-oxo bond 
lengths. ν1 and ν3 indicate peaks correspond to the symmetric and asymmetric stretches of the 
uranyl cation, respectively. 
 

The Raman spectra of 1-4 also allow us to take a closer look at the effects of UO2-Ag 

CCIs and halogen bonding at the uranyl oxo groups. An oxo linkage between the uranyl moiety 

and a silver cation or a halogen bond at the uranyl oxo atoms could lead to a decrease in the 

strength and increase in the length of the U–oxo bond. The closer an Ag+ cation is to the oxo 

group, the larger the influence is expected to be on the bond lengths according to Badger’s 

Rule,62, 63 and the Raman spectra of compounds 1 and 3 are consistent with this empirical 

expectation. The shortest Ag-oxo CCI is observed in 3, at 2.343(4) Å, and it is in the spectra of 3 

where we observe the most peaks in the window of interest, including one of the lowest ν1 

frequencies observed in a uranyl compound (807 cm-1).58 Additionally, we note a small peak at 

895 cm-1, which we attribute to activation of the uranyl asymmetric stretch in the Raman spectra 

(Figure 9). This is indicative of the Ag-oxo CCI in 3 lowering the symmetry of the uranyl cation 
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to something other than D∞h, and one explanation for the bond length and interaction distance 

variations in 1-4, and in compound 3 in particular, is ‘charge transfer’ from Ag+ cations or iodine 

atoms to the central uranium atom of the uranyl moiety, which would weaken the U-oxo bonds 

and result in bond elongation.  

To further investigate possible CCI or halogen bond mediated charge transfer we looked 

at the photoluminescence of compounds 1-4. Uranyl materials are known to exhibit a 

characteristic green emission profile that results from ligand-to-metal charge transfer transitions 

between uranyl bonding (3σu, 3σg, 2πu, and 1πg) and non-bonding (5f δu and φu) molecular 

orbitals,64, 65 and for 2-4, characteristic emission (four to five major vibronic peaks) was 

observed upon excitation at 420 nm (Figures S2, Supporting Information). Emission fine 

structure for compound 1 was not completely resolved at room temperature, thus a similar 

comment cannot be made for this material. The average vibronic progression of uranyl emission 

bands are coupled to the Raman active vibrational modes, and for 2-4 these values were found to 

match reasonably well with measured Raman frequencies highlighted in Figure 9 (Table S1, 

Supporting Information). Based on the values of the average vibronic gap between emission 

peaks, we can experimentally estimate the strength of the U-oxo bonds and the influence of the 

surrounding bonding. Lower values of the average vibronic gaps imply a stronger chemical 

interaction between the uranyl and Ag cations; however, this method seems to be more limited 

for gauging halogen bonding strengths. While we note the smallest average vibronic gap for 3, 

which features our strongest CCI, per crystallographic metrics, these estimates indicate the 

halogen bonding in 2 is ‘stronger’ than the interactions in 4. In contrast we note an average 

redshift of ca. 8 nm when qualitatively comparing the luminescence spectra of compounds 2 and 

4. We have demonstrated previously that equatorial ligand binding exerts greater influence on 
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resulting uranyl vibrational spectra in materials where there are halogen bonds with uranyl oxo 

atoms,54 and here we suspect this behavior extends to photoluminescence spectra as well, due to  

small differences in Ag+ equatorial coordination detailed in Figures 3 and 7.  

Computational Results 

In order to more comprehensively understand structural and spectroscopic findings for 1-

4, we turned to density functional theory (DFT) calculations and quantum theory of atoms in 

molecules (QTAIM) analysis to probe the results highlighted in previous sections. Initial DFT 

calculations were performed on a model system consisting of dimeric models of 1-4, which were 

constructed using crystallographically-derived geometries. Partial optimization of the uranyl 

unit, all coordinating species, and the Ag+ center was then performed, and these partially 

optimized structures were then analyzed to identify the symmetric (ν1) and asymmetric (ν3) 

uranyl stretching modes. Tables S3 and S4 (Supporting Information) contain the calculated 

values for ν1 and ν3, which broadly agree with experimental values with good quantitative 

accuracy, particularly for compounds 1, 2, and 4. Notably, the significant decreases in ν1 and ν3 

observed for 3 (Figures 9 and S3) are replicated, although some underestimation is noted for the 

calculated ν3 values.   

To ascertain the specific role of the Ag+ cations or iodine atoms with regards to potential 

‘charge transfer’ to the uranyl oxo group and resulting spectroscopic effects, we first simplified 

the model of compound 1 to deconvolute the electronic interactions that impact uranyl 

vibrational spectra. This was done by starting with an optimized structure of, 

[UO2(C7H4IO2)2(NO3)]-, which is a monomeric version compound 1 with the Ag+ cation 

removed. This complex features C2v point group symmetry and U-oxo and U-Oeq bond distances 

that are very similar to those described for compound 1. Restoring the Ag+ cation and then 
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calculating vibrational frequencies of the monomer, [UO2Ag(C7H4IO2)2(NO3)], reveal a small 

influence of Ag+ coordination at the uranyl oxo atoms as well, and support the idea that 

coordination of two benzoate oxygens reduces the delocalization of electron density into U - O 

π* orbitals. We also assessed the monomer via natural energy decomposition analysis (NEDA), 

which revealed a stabilization of 94.51 kcal/mol due to charge transfer interactions, with this 

value reflecting only the energy of interaction between Ag+ with the iodo- and benzoate moieties 

of the monomer (Table S5, Supporting Information). Returning to analysis of compound 1, we 

were unable to fully optimize geometries; however, NEDA reveals a stabilization of -120.55 

kcal/mol per U=O/Ag unit due to charge transfer, i.e., ‘covalent’ interactions. To suggest that 

this interaction is the result only of the coordinate covalent bond between the uranyl oxo atom 

and the silver ion would be an oversimplification as NEDA only evaluates the changes in total 

energy arising from all of the interactions between fragments. With that said, it does provide a 

nice breakdown of the interactions into covalent (-241.115 kcal/mol), polarization (-258.795 

kcal/mol), and electron pair repulsion (+405.094 kcal/mol), leading to a net stabilization of -

94.816 kcal/mol for the dimer versus the calculated monomeric structure.  

 We also assessed compounds 1-4 using Natural Resonance Theory, via NBO, to further 

probe the ionic and covalent nature of halogen interactions and CCIs at the uranyl oxo atoms, 

which can be determined from first-order reduced density matrices, yielding properties such as 

Wiberg bond indices.66 Via NBO analysis, and specifically Wiberg bond indices, one can extract 

metrical information, and for compound 1 we note a slightly lower bond order for the oxo atom 

(O2) that is coordinated to Ag+ and a slightly increased U-O bond order for the terminal oxo 

group (Table S6, Supporting Information), which is likely due to the donation of electrons from 

the silver ion into U-oxo σ- or π-antibonding orbitals. In contrast to 1, compound 2 includes Ag+ 
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coordination to only benzoate oxygens and aryl iodide groups, and here we note lower U-O bond 

orders for the bridging benzoate oxygens bound to Ag+, when compared to non-bridging 

benzoate moieties (Table S7, Supporting Information). Uranyl oxo atoms participate in halogen 

bonding interactions in 2; however, these do not impact the U-oxo bond order as much as in 

compound 1 where interactions were a result of a UO2-Ag CCI. Compound 3 also features a 

UO2-Ag CCI, similar to 1, and NBO analysis shows many of the features identified above. 

Notably, the shorter UO2-Ag CCI has an impact on resulting U-oxo bond orders as we see a clear 

weakening of U-oxo and U-O(benzoate) bonds due to Ag+ coordination (Table S8, Supporting 

Information). Finally, in compound 4, there is Ag+ coordination only to benzoate oxygens and 

aryl iodide groups, similar to 2, and interactions at the oxo atoms are bifurcated halogen bonds. 

The halogen interactions at the uranyl oxo atoms are some of the strongest that have been 

experimentally observed, yet NBO analysis finds that these interactions do not perturb the uranyl 

bonding directly (Table S9, Supporting Information). Moreover, this compound also affords the 

opportunity to compare uranyl centers with and without second sphere coordination of Ag+, and 

in the former case we note weakening of U-O(benzoate) bond orders, in line with the results 

discussed above for 2. 

 Compounds 1-4 were further evaluated via topological analysis using the Quantum 

Theory of Atoms in Molecules (QTAIM), where localized molecular orbitals were adapted from 

those derived from Natural Resonance Theory. For all four compounds, uranium charge and 

localization indices appear as expected for a U(VI) system. Values of the electron density at the 

bond critical point, ρBCP(U,O), and the delocalization index, δ(U,O), are also typical of the U-O 

interaction of uranyl, except for compound 3, where the oxo atom directly coordinated by Ag+ 

has a substantially lower ρBCP(U,O) and δ(U,O) (Table 3). Interestingly, the UO2-Ag CCI in 1 
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does not result in changes to bond critical points or delocalization indices of the same magnitude, 

which may reflect greater electron sharing in the UO2-Ag interaction in 3. Further comparison of 

each of the interactions at the uranyl oxo atoms in 1-4 (Table 3) demonstrates the substantial 

difference between UO2-Ag CCIs and halogen bonding interactions. Bond critical points, 

ρBCP(Ag,O), and delocalization indices, δ(Ag,O), indicate a significant degree of electron 

sharing, which coupled with concomitant reductions in the same parameters for U-oxo 

interactions suggest that UO2-Ag CCIs, particularly in compound 3, are the origin of the 

reduction in vibrational frequencies (redshifts) highlighted in Figures 9 and S3 (Supporting 

Information), as well as Tables S3 and S4 (Supporting Information).  

Table 3 Topological parameters of uranyl cations as well as Ag-oxo CCIs (*) and I-O halogen 
bonding interactions (x) in 1-4. ρBCP = magnitude of electron density at the bond or interaction 
critical point and δ(A,B) = delocalization index of the bond or non-covalent interaction.  
 

Compound ρBCP(U,O) 
(a.u) 

δ(U,O) ρBCP(O, Ag) 
(a.u) 

δ(O,Ag) ρBCP(O, I) 
(a.u) 

 
1 

 
0.325, 0.324*  
0.325, 0.324* 

 
1.91, 1.83*  
1.91, 1.83* 

 
0.034 
0.034 

 
0.214 
0.214 

 
n/a 

 
2 

 
0.309x, 0.325  
0.309x, 0.325 

 
1.87x, 1.90  
1.87x, 1.88  

 
n/a 

 
n/a 

 
0.008 

 
3 

 
0.306, 0.291 
0.306, 0.285* 

 
1.86, 1.86 

1.89, 1.73* 

 
0.045 

 
0.291 

 
n/a 

 
4 

 
0.323, 0.303 
0.324, 0.301x 

 
1.90, 1.87 

 1.90, 1.81x 

 
n/a 

 
n/a 

 
0.0135 
0.007 

 
 
Conclusions 

 The syntheses and crystal structures of four heterometallic compounds containing the 

UO2
2+ cation, o- (1), m- (2), p-iodo- (3), and 2,5-diiodobenzoic acid (4) ligands, as well as Ag+ 

cations are described and their means of covalent and supramolecular assembly have been 

detailed. Vibrational and luminescence spectra reveal redshifts with respect to the free uranyl 
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cation indicating that the CCIs and halogen-oxo interactions in 1-4 weaken U-oxo bonds, and in 

the case of compound 3 we note a rare example of activation of the uranyl asymmetric stretch 

(ν3) in the Raman spectra. Due to the engagement of the uranyl oxo atoms in each compound, 

this family of materials provides a platform to structurally and spectroscopically evaluate these 

two assembly motifs, which were quantifiably compared using quantum chemical calculations 

and density-based quantum theory of atoms in molecules (QTAIM) analysis. Both methods of 

theoretical analysis highlight a quantitative difference between halogen bonds and CCIs, with 

CCIs shown to significantly decrease uranyl bond orders and the electron density at the bond 

critical points, as well as significantly redshifting corresponding uranyl vibrational spectra. 

Halogen bonding interactions, on the other hand, are shown to have less influence, and in 

particular are noted to have limited impacts on uranyl vibrational spectra, which is consistent 

with previous computational and experimental studies.54, 56 Collectively, the efforts described 

herein appreciably move forward our ongoing aims to enhance structure-property delineations in 

uranyl chemistry, particularly in complexes featuring oxo participation in covalent and non-

covalent assembly. Future work is in-progress to expand the library of materials featuring oxo-

based assembly motifs with the larger goal of developing experimental signatures and theoretical 

‘rules of the road’ for systematic oxo atom participation, in both uranyl and transuranic systems.  

Supporting Information Available 

X-ray crystallographic files in CIF format, ORTEP figures of all compounds, IR, luminescence, 

and PXRD spectra of all compounds, tables of DFT and QTAIM results, and tables of selected 

bond lengths are all available. CIFs have also been deposited at the Cambridge Crystallographic 

Database Centre and may be obtained from http://www.ccdc.cam.ac.uk by citing reference 

numbers 2038396-2038399 for compounds 1-4, respectively. 

http://www.ccdc.cam.ac.uk/
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